Mustinka River Watershed Restoration and Protection Strategy Report

The valley's fate is in your hand

MINNESOTA

Mustinka River

NORTH DAKOTA

Lake Traverse

Bois

00

HEALTHEVALLEY BE INFORMED. GET INVOLVED. PARTICIPATE IN THE MUSTINKA WATERSHED ASSESSMENT

For more information contact the Bois de Sioux Watershed District or visit www.bdswd.com

Minnesota Pollution Control Agency

wq-ws4-20a

October 2016

Project Partners

Emmons & Olivier Resources, Inc.:

Meghan Funke, PhD

Jason Ulrich

Jason Naber

Etoile Jensen

Cary Hernandez (Minnesota Pollution Control Agency)

Jon Roeschlein (Bois de Sioux Watershed District)

Pete Waller (Board of Soil and Water Resources)

Matt Solemsaas (Stevens SWCD)

Bill Kleindl (Stevens County)

Sara Gronfeld (Traverse County/SWCD)

Blayne Johnson (Big Stone SWCD)

Joe Montonye (Grant SWCD)

Brad Mergens (Otter Tail SWCD)

Table of Contents

Project Par	tners2
Key Terms.	
What is the	e WRAPS Report?
Users' Guide	2
1. Watersl	hed Background & Description10
2. Watersl	hed Conditions
2.1 Wa	ter Quality Assessment12
Streams	
Lakes	
2.2 Wa	ter Quality Trends
2.3 Stre	essors and Sources
Stressors	s of Biologically-Impaired Stream Reaches15
Pollutan	t Sources16
2.4 TM	DL Summary21
2.5 Pro	tection Considerations22
3. Prioritiz	ing and Implementing Restoration and Protection22
3.1 Civi	c Engagement23
Technica	Il Committee Meetings23
Civic Eng	agement
3.2 Tar	geting of Geographic Areas24
BMP Pric	pritization and Targeting Tools25
BMP Pric	pritization and Targeting Approach and Results26
3.3 Res	toration & Protection Strategies

	Watershed-wide	.34
	Mustinka River Subwatershed	.36
	Fivemile Creek Subwatershed	.40
	West Branch Subwatershed	.41
	Twelvemile Creek Subwatershed	.43
	Eighteenmile Creek Subwatershed	.45
4.	Monitoring Plan	50
5.	References and Further Information	51
Apj	pendix A: Stream Geomorphic Surveys	52
Арј	pendix B: Stream Assessment Status	53
Арј	pendix C: Lake Assessment Status	56
Арј	pendix D: Completed Stream TMDL Allocation Summaries	57
Ap	pendix E: Agricultural Conservation Planning Framework	60
A	Approach	.62
	Watershed Hot Spots	.62
	BMP Performance	.62
	BMP Costs	.62
	Terrain Suitability	.64
В	Best Management Practice Selection	.66
	In-field Practices	.66
	Edge-of-Field Practices	. 67
	Land Use Changes	. 67
H	IUC 090201020301 Results: West Branch (Toqua)	. 69
H	IUC 090201020305 Results: West Branch	. 71
H	IUC 090201020401 Results: Five Mile Creek East	. 73

HUC 090201020402 Results: Five Mile Creek West	75
HUC 090201020403 Results: Lower Twelve Mile Creek	77

Key Terms

Assessment Unit Identifier (AUID): The unique water body identifier for each river reach comprised of the USGS eight-digit HUC plus a three-character code unique within each HUC.

Aquatic life impairment: The presence and vitality of aquatic life is indicative of the overall water quality of a stream. A stream is considered impaired for impacts to aquatic life if the fish Index of Biotic Integrity (IBI), macroinvertebrate IBI, dissolved oxygen, turbidity, or certain chemical standards are not met.

Aquatic recreation impairment: Streams are considered impaired for impacts to aquatic recreation if fecal bacteria standards are not met. Lakes are considered impaired for impacts to aquatic recreation if total phosphorus, chlorophyll-a, or Secchi disc depth standards are not met.

Hydrologic Unit Code (HUC): A Hydrologic Unit Code (HUC) is assigned by the USGS for each watershed. HUCs are organized in a nested hierarchy by size. For example, the Red River of the North Basin is assigned a HUC-4 of 0902 and the Mustinka River Watershed is assigned a HUC-8 of 09020102.

Impairment: Water bodies are listed as impaired if water quality standards are not met for designated uses including: aquatic life, aquatic recreation, and aquatic consumption.

Index of Biotic integrity (IBI): A method for describing water quality using characteristics of aquatic communities, such as the types of fish and invertebrates found in the waterbody. It is expressed as a numerical value between 0 (lowest quality) to 100 (highest quality).

Protection: This term is used to characterize actions taken in watersheds of waters not known to be impaired to maintain conditions and beneficial uses of the waterbodies.

Restoration: This term is used to characterize actions taken in watersheds of impaired waters to improve conditions, eventually to meet water quality standards and achieve beneficial uses of the waterbodies.

Source (or Pollutant Source): This term is distinguished from 'stressor' to mean only those actions, places or entities that deliver/discharge pollutants (e.g., sediment, phosphorus, nitrogen, pathogens).

Stressor (or Biological Stressor): This is a broad term that includes both pollutant sources and non-pollutant sources or factors (e.g., altered hydrology, dams preventing fish passage) that adversely impact aquatic life.

Total Maximum Daily Load (TMDL): A calculation of the maximum amount of a pollutant that may be introduced into a surface water and still ensure that applicable water quality standards for that water are met. A TMDL is the sum of the wasteload allocation for point sources, a load allocation for nonpoint sources and natural background, an allocation for future growth (i.e., reserve capacity), and a margin of safety as defined in the Code of Federal Regulations.

What is the WRAPS Report?

The state of Minnesota has adopted a "watershed approach" to address the state's 80 "major" watersheds (denoted by 8-digit hydrologic unit code or HUC). This watershed approach incorporates water quality assessment, watershed analysis, civic engagement, planning, implementation, and measurement of results into a 10-year cycle that addresses both restoration and protection. It is also a one stop location for identification of water quality issues downstream of the watershed that needs to be considered in local water management.

As part of the watershed approach, waters not meeting state standards are still listed as impaired and Total Maximum Daily Load (TMDL) studies are performed, as they have been in the past, but in addition the watershed approach process facilitates a more cost-effective and comprehensive

characterization of multiple water bodies and overall watershed health. A key aspect of this effort is to develop and utilize watershed-scale models and other tools to help state agencies, local governments and other watershed stakeholders determine how to best proceed with restoring and protecting lakes and streams. This report summarizes past assessment and diagnostic work and outlines ways to prioritize actions and strategies for continued implementation.

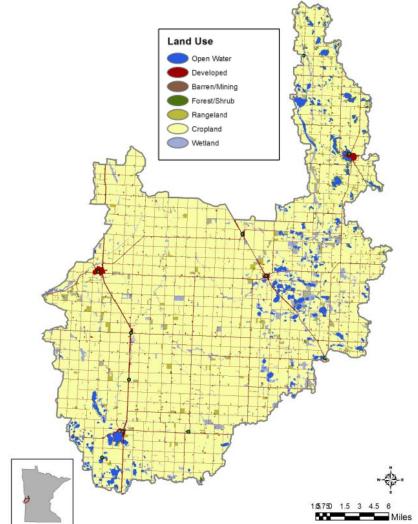
Purpose	 Support local working groups and jointly develop scientifically-supported restoration and protection strategies to be used for subsequent implementation planning Summarize Watershed Approach work done to date including the following reports: Mustinka River Watershed Monitoring and Assessment Mustinka River Watershed Biotic Stressor Identification Mustinka River Watershed Total Maximum Daily Load
Scope	 Impacts to aquatic recreation and impacts to aquatic life in streams Impacts to aquatic recreation in lakes
Audience	 Local working groups (local governments, Soil and Water Conservation Districts [SWCDs], watershed management groups, etc.) State agencies (Minnesota Pollution Control Agency [MPCA], Department of Natural Resources [DNR], Board of Water and Soil Resources [BWSR], etc.)

Users' Guide

This Watershed Restoration and Protection Strategy (WRAPS) report summarizes past monitoring, water quality assessments, and other water quality studies that have been conducted in the Mustinka River Watershed. In addition, it outlines ways for local groups to prioritize projects that can be implemented in the watershed to improve water quality. The WRAPS report contains a large amount of information. The purpose of the following table is to provide a Quick Reference guide for users to quickly identify what information can be found in each section of the report.

Section	Title	Description	Pages					
Summaries	Summaries of Past Monitoring and Water Quality Studies							
1	Watershed Background	A brief description of the Mustinka River Watershed.	10					
2.1	Water Quality Assessment	A summary of how fishable, swimmable and usable the lakes and streams are in the watershed.	12					
2.2	Water Quality Trends	A summary of lakes and streams with improving or declining water quality based on at least 10 years of monitoring data.	15					
2.3.1	Stressors of Biological Impairments	A summary of factors that cause fish and invertebrate communities in streams to become unhealthy (also known as stressors).	15					
2.3.2	Pollutant sources	A summary of sources of pollutants (such as phosphorus, bacteria or sediment) to lakes and streams, including point sources (such as sewage treatment plants) or non-point sources (such as runoff from the land).	16					
2.4	TMDL Summary	A summary of TMDL studies in the watershed. A TMDL is a calculation of how much pollutant a lake or stream can receive before it becomes unfishable, unswimmable, or unusable.	21					
2.5	Protection Considerations	A summary of lakes and streams in the watershed that are not impaired but are either close to becoming impaired or of exceptionally high quality and need to be protected.	22					
Ways to Pri	Ways to Prioritize Projects that Protect or Restore Water Quality							
3.1	Civic Engagement	A summary of input meetings with local partners in the watershed on the development of the WRAPS report.	23					

Table 1. WRAPS Report Quick Reference Guide


Section	Title	Description	Pages
3.2	Targeting of Geographic Areas	A summary of the results from different tools that were used to identify, locate and prioritize restoration and protection projects in the watershed.	24
3.3	Restoration & Protection Strategies	Tables identifying potential projects in the watershed that could restore or protect water quality. These projects are divided into individual tables for each of the three smaller watersheds.	32
4	Monitoring Plan	A plan for ongoing water quality monitoring to fill data gaps, determine changing conditions, and gauge implementation effectiveness.	50
Supporting I	nformation		
5	References	A bibliography of reports referenced in the WRAPS document (e.g., Monitoring and Assessment and Stressor I.D. Reports).	51
Appendix A	Stream Geomorphic Surveys	Descriptions of the geomorphology (dimensions and form) of stream segments throughout the Mustinka River Watershed	52
Appendix B	Stream Assessment Status	Detailed results from the 2012 MPCA monitoring and assessment indicating which streams are supporting or not supporting of water quality standards	53
Appendix C	Lake Assessment Status	Detailed results from the 2012 MPCA monitoring and assessment indicating which lakes are supporting or not supporting of water quality standards	56
Appendix D	Completed Stream TMDL Summaries	TMDL allocation tables for each impaired stream with a completed TMDL study. These tables quantify the maximum amount of pollutant from point sources (wasteload allocation) and nonpoint sources (load allocation) that can be received by the lake or stream and still meet water quality standards.	57
Appendix E	Agricultural Conservation Planning Framework	Methods and results from the Agricultural Conservation Planning Framework (ACPF), which include a LiDAR-based model that identifies pollutant hotspots and targets potential field-scale sites for a set of specific agricultural Best Management Practices (BMPs) such as sediment control basins (WASCOBs), restored wetlands, riparian buffers and grassed waterways.	60

1. Watershed Background & Description

The Mustinka River Watershed covers 909 square miles (562,112 acres) in west central Minnesota, including areas of Otter Tail, Grant, Stevens, Big Stone, and Traverse Counties. The Mustinka River discharges into Traverse Lake, the headwater of the Bois de Sioux River.

Predominant land use is cultivated cropland (81%). Other minor land uses include emergent herbaceous wetlands (5%), developed open space (4%), open water (4%), and pasture/hay (3%). Cropland in the Mustinka River Watershed is dominated by soybeans and corn with some small areas of spring wheat.

Cities and towns within the Mustinka River Watershed include: Clinton, Donnelly, Elbow Lake, Graceville, Herman, Morris, Norcross, Wendell, and Wheaton.

The Mustinka River Watershed has two distinct regions, the headwater region in the northeast characterized by steeper topography and many small lakes and wetlands, and the downstream agricultural region characterized by flat topography and cultivated cropland.

Additional Mustinka & Red River Watershed Resources

USDA Natural Resources Conservation Service (NRCS) Rapid Watershed Assessment for the Mustinka River Watershed: <u>http://www.nrcs.usda.gov/wps/portal/nrcs/detail/mn/technical/dma/rwa/09020102.html</u>

Minnesota Department of Natural Resources (DNR) Watershed Assessment Mapbook for the Mustinka River Watershed:

http://files.dnr.state.mn.us/natural_resources/water/watersheds/tool/watersheds/wsmb55.pdf

Minnesota Nutrient Reduction Strategy:

http://www.pca.state.mn.us/index.php/water/water-types-and-programs/surface-water/nutrient-reduction/nutrient-reduction-strategy.html

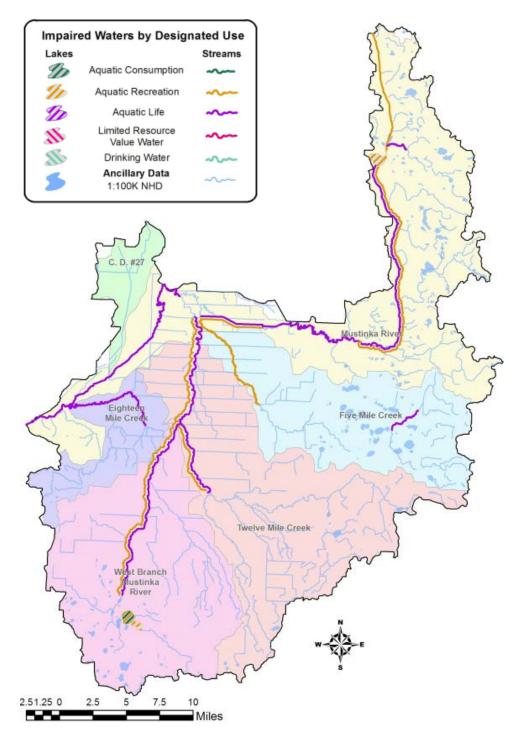
Minnesota Nutrient Planning Portal:

http://mrbdc.mnsu.edu/mnnutrients/minnesota-major-watersheds

Red River Basin Commission Reports:

http://www.redriverbasincommission.org/Reports/reports.html

Manitoba State of Lake Winnipeg Report:


http://www.gov.mb.ca/conservation/waterstewardship/water_quality/state_lk_winnipeg_report/index.ht ml

2. Watershed Conditions

Existing studies and planning already completed in the Mustinka River Watershed:

- Bois de Sioux Watershed District Overall Plan. May 2003. Prepared by HDR Engineering.
- Development of the Soil and Water Assessment Tool (SWAT) to Assess Water Quality in the Bois de Sioux and Mustinka River Watersheds. April 2008. Prepared by Bethany Kurz, Energy & Environmental Research Center, University of North Dakota.
- Red River Biotic Impairment Assessment. June 2009. Prepared by Emmons and Olivier Resources.
- Application of the Flow Reduction Strategy in the Bois de Sioux Watershed. April 2010. Prepared by JOR Engineering.
- Mustinka River Turbidity TMDL Report. June 2010. Prepared by the Minnesota Pollution Control Agency (MPCA).
- Mustinka River Turbidity TMDL Implementation Plan. November 2010. Prepared by Emmons and Olivier Resources.

Additionally, geomorphic evaluation of 22 separate reaches was conducted by Emmons & Olivier Resources, Incorporated (EOR), Department of Natural Resources (DNR), and the MPCA in October of 2011, across the Mustinka River Watershed as part of the 2015 Mustinka River Watershed TMDL study. The investigation found that channel dimensions have likely responded to increased streamflow in the region by becoming enlarged. Summaries of the geomorphic investigation by individual survey location are available in **Appendix A**.

2.1 Water Quality Assessment

This report addresses waters for protection or restoration of aquatic life uses based on the fishery, macroinvertebrate community, dissolved oxygen (DO) concentration, and turbidity levels and for

aquatic recreation uses based on bacteria levels or nutrient levels and water clarity. Waters that are listed as impaired will be addressed through restoration strategies and a defined TMDL study. Waters that are not impaired will be addressed through protection strategies to help maintain water quality and recreation opportunities (see Section 2.5 and Section 3).

Some of the waterbodies in the Mustinka River Watershed are impaired by mercury; however, this report does not cover toxic pollutants. For more information on mercury impairments see the statewide mercury TMDL at: <u>http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/tmdl-projects/special-projects/statewide-mercury-tmdl-pollutant-reduction-plan.html.</u>

Streams

Streams are assessed for aquatic life and aquatic recreation designated uses.

Aquatic life use impairments include:

- Low fish index of biotic integrity (Fish IBI); which means an unhealthy fish community is present,
- Low macroinvertebrate (i.e., aquatic bugs) index of biotic integrity (Invertebrate IBI); which means an unhealthy macroinvertebrate community is present,
- DO levels too low to support fish or macroinvertebrate life,
- Turbidity/total suspended solids (TSS) levels too high to support fish or macroinvertebrate life,
- pH levels too low or too high to support fish or macroinvertebrate life, and
- Chlorides levels too high to support fish or macroinvertebrate life.

Aquatic recreation use impairments include: *Escherichia coli* (*E. coli*); bacteria, found in the intestinal tracts of warm-blooded animals, which is an indicator of fecal pollution levels that are too high for safe human contact (wading or swimming).

Table 2 below summarizes the ability of the stream reaches to support aquatic life uses and aquatic recreation uses in the Mustinka River Watershed. **Appendix B** includes a complete summary of the stream impairment assessment by designated use and pollutants for all assessed AUIDs.

	Total	-				Aquatic Recreation Use			
Subwatershed	Stream Reaches		NS	IF	NA	FS	NS	IF	NA
Mustinka River	11		6		5	1	3	2	5
Fivemile Creek	4		1	2	1		1		3
West Branch Mustinka River	5		2		3		1		4
Twelvemile Creek	4		2		2		2		2
Eighteenmile Creek	1		1					1	
Total	25		12	2	11	1	7	3	14

FS = fully supporting; NS = not supporting; IF = insufficient data to assess; NA = no monitoring data

Lakes

Lakes are assessed for aquatic recreation uses based on ecoregion specific water quality standards for total phosphorus (TP), chlorophyll-a (chl-*a*) (i.e., the green pigment found in algae), and secchi transparency depth. To be listed as impaired, a lake must not meet water quality standards for TP and either chl-*a* or secchi depth.

There are 188 lakes with surface areas greater than 10 acres; of these, 23 have had some water quality data collected. These lakes were chosen to be geographically representative of a wide-range of lakes in the watershed, or because they are a recreational and locally important resource. MPCA's monitoring approach is described in more detail in the Monitoring and Assessment Report. Table 3 below summarizes the ability of the assessed lakes to support aquatic recreation uses in the Mustinka River Watershed. **Appendix C** includes a complete summary of the lake assessment and aquatic recreation use impairments.

Subwatershed	Total Number of Assessed	Aquatic Recreation Use			Impaired Lakes	
	Lakes	FS	NS	IF		
Mustinka River	6		1	5	Lightning	
Fivemile Creek	13			13		
West Branch Mustinka River	2		2			
Twelvemile Creek	2			2	East Toqua, Lannon	
Eighteenmile Creek	0					
TOTAL	23	0	3	20		

Table 2 Lake	Aquatic Recreation	Lico Accoccmont and	Impairment Summary
Table J. Lake	Aqualic Necleation	Use Assessment and	inipan ment Summary

FS = fully supporting; NS = not supporting; IF = insufficient data to assess; NA = no monitoring data

2.2 Water Quality Trends

A seasonal Kendall test for trend using R Statistical Software was used to identify statistically significant trends in the water quality of lakes and streams in the Mustinka River Watershed. Trends were only reported that had statistical confidence of at least 90% (meaning that there is at least a 90% chance that the data are showing a true trend and at most a 10% chance that the trend is a random result of the data), contained at least 10 years of data, and were missing no more than 75% of the samples from the entire period.

Long-term water quality and flow records are available from the Mustinka River at Highway 75 near Wheaton, Minnesota (station S000-062, AUID 09020102-502), and from Lightning (lake ID 26-0282) and Traverse (lake ID 78-0025) Lakes. There was a statistically significant decrease in average annual total suspended solid concentrations of 46% in the Mustinka River at Highway 75 near Wheaton from 2001 to 2011. However, there was not a corresponding statistically significant decrease in seasonal (winter = December through February, spring: March through May; summer: June through August; autumn: September through November) total suspended solid concentrations due to insufficient data available in any one season over time to calculate a long-term trend. Therefore, the average annual decrease may be a random result of data collected from different seasons over time. No statistically significant changes in average growing season Secchi depth transparency were observed in Lightning Lake based on 14 years of data collected between 1988 and 2011.

2.3 Stressors and Sources

In order to develop appropriate strategies for restoring or protecting waterbodies the stressors and/or sources impacting or threatening them must be identified and evaluated. A **stressor** is something that adversely impacts or causes fish and macroinvertebrate communities in streams to become unhealthy. Biological stressor identification is done for streams with either fish or macroinvertebrate biota impairments and encompasses both evaluation of pollutants and non-pollutant-related factors as potential stressors (e.g., altered hydrology, fish passage, habitat). Pollutant source assessments are completed where a biological stressor ID process identifies a pollutant as a stressor as well as for the typical pollutant impairment listings. **Pollutants** (such as phosphorus, bacteria or sediment) to lakes and streams include point sources (such as sewage treatment plants) or non-point sources (such as runoff from the land).

Stressors of Biologically-Impaired Stream Reaches

A stressor identification study was conducted to identify the factors (i.e., stressors) that are causing the fish and macroinvertebrate community impairments in the Mustinka River Watershed, including pollutants and non-pollutant-related factors, such as altered hydrology, fish passage, or habitat. Table 4 summarizes the primary stressors identified in streams with aquatic life impairments in the Mustinka River Watershed. Common stressors were interrupted, low for prolonged periods, or extremely low flows (**intermittent flow**), increased surface water runoff and seasonal variability in stream flow (**altered hydrology/flashiness**), lack of overwintering habitat and fish refugia due to wetland dominated

headwaters with little to no oxygen (**lack of fish source area**), dams and improperly sized culverts that block fish passage (**fish barrier**), very low or highly fluctuating DO levels due to excess nutrients fertilizing stream algae growth (**DO/TP**), and increased suspended and deposited sediment that inhibits fish spawning and feeding behaviors (**turbidity/TSS**).

				Stressors						
Subshed	AUID	Stream	Biological Impairment	Intermittent Flow	Altered Hydrology/ Flashiness	Lack of fish source area	Fish Barrier	DO (TP)	Turbidity (TSS)	
Mustinka River	-580	Mustinka River, Lightning Lake to Mustinka R Flowage	Fish				0	*		
	-538	Unnamed Creek	Fish, Inverts	0		0				
Fivemile Creek	-578	Fivemile Creek	Fish	0		0	0			
Twelvemile	-514	Twelvemile Creek, upstream of West Branch Twelvemile	Fish, Inverts		0			•	•	
Creek	-557	Twelvemile Creek, West Branch to Mustinka R	Fish, Inverts		0			0	•	
Eighteenmile Creek	-508	Eighteenmile Creek	Fish, Inverts					•		

Table 4: Mustinka River Watershed Stressor Identification Study Summary

O = No TMDL needed, $\bullet = TMDL$ needed, $\bullet = TMDL$ deferred, * = TMDL needed to address conventional DO impairment but not identified as primary stressor through SID process

Pollutant Sources

This section summarizes the sources of pollutants (such as phosphorus, bacteria or sediment) to lakes and streams in the Mustinka River Watershed, including point sources (such as sewage treatment plants) or non-point sources (such as runoff from the land).

Point Sources

Point sources are defined as facilities that discharge stormwater or wastewater to a lake or stream and have a National Pollutant Discharge Elimination System or State Disposal System (NPDES/SDS) Permit. There are eight municipal wastewater facilities, two municipal water treatment facilities, nine industrial stormwater facilities, and eight large animal feeding operations that require NPDES permitting located in the Mustinka River Watershed (Table 5).

Subshed	Point Source Name	Permit #	Туре	Pollutant reduction needed beyond current permit conditions/ limits?	Receiving (impaired) water body
	Wheaton WWTP	MN0047287	Municipal Wastewater	No	Mustinka River (-502)
	Elbow Lake WWTP	MNG580082	Municipal Wastewater	Yes	Mustinka River (-580)
	Wendell WWTP	MNG580082	Municipal Wastewater	No	Mustinka River (-580)
	City of Herman Municipal Airport	A00001565	Industrial Stormwater	No	Mustinka River (-518)
Mustinka River	Grant County Highway Department	A00016180	Industrial Stormwater	No	Mustinka River (-580)
	Grant County Highway Garage Norcross	A00016185	Industrial Stormwater	No	Mustinka River (-518)
	Aggregate Industries – Elbow Lake	A00000427	Industrial Stormwater	No	Mustinka River (-580)
	City of Elbow Lake Municipal Airport	A00000371	Industrial Stormwater	No	Mustinka River (-580)
	Elbow Lake Gravel Inc	A00001795	Industrial Stormwater	No	Mustinka River (-580)
	Herman WWTP	MN0023647	Municipal Wastewater	No	Fivemile Creek (-510)
Fivemile Creek	City of Herman Public Works	A00010980	Industrial Stormwater	No	Fivemile Creek (-510)
	Grant County Highway Garage	A00016181	Industrial Stormwater	No	Fivemile Creek (-510)
	Big Stone Co Hutterite Colony Graceville	MN0064483	Municipal Wastewater	No	West Branch Twelve Mile Creek (-511)
West Branch	Graceville WWTP	MN0023540	Municipal Wastewater	Yes	West Branch Twelve Mile Creek (-511)
	Dumont WWTP	MN0064831	Municipal Wastewater	No	West Branch Twelve Mile Creek (-511)

 Table 5: Point Sources in the Mustinka River Watershed

Subshed	Point Source Name	Permit #	Туре	Pollutant reduction needed beyond current permit conditions/ limits?	Receiving (impaired) water body
	City of Dumont	A00010548	Industrial Stormwater	No	West Branch Twelve Mile Creek (-511)
	Scott Andrews Farm - Sec 10	MNG440755	Feedlot	No	West Branch Twelve Mile Creek (-511)
	Renee Schwebach Farm	MNG441108	Feedlot	No	West Branch Twelve Mile Creek (-511)
	Arens Land & Livestock	MNG440495	Feedlot	No	West Branch Twelve Mile Creek (-511)
	Big Stone Co Hutterite Colony	MNG440392	Feedlot	No	West Branch Twelve Mile Creek (-511)
	Donnelly WTP	MNG640028	Municipal Water Treatment	No	Twelve Mile Creek (-514)
	Donnelly WWTP	MN0041319	Municipal Wastewater	No	Twelve Mile Creek (-514)
Twelve Mile Creek	Craig Lichtsinn Feedlot	MNG440304	Feedlot	No	Twelve Mile Creek (-514)
	Dollymount Dairy LLP	MNG440668	Feedlot	No	Twelve Mile Creek (-514)
	Pederson Family Farm Inc	MNG440876	Feedlot	No	Twelve Mile Creek (-514)
Eighteen- mile Creek	Wheaton WTP	MNG640115	Municipal Water Treatment	No	Eighteenmile Creek (-508)
CD #27	Valley Pork, LLP	MNG440400	Feedlot	No	Mustinka River (-503)

Nonpoint Sources

Nonpoint sources of pollution, unlike pollution from industrial and sewage treatment plants come from many diffuse sources. Nonpoint source pollution is caused by rainfall or snowmelt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes and streams. Common non-point pollutant sources in the Mustinka River Watershed are:

- Fertilizer and/or manure runoff: Fertilizer and manure contains high concentrations of phosphorus, nitrogen, and bacteria that can runoff into lakes and streams when not properly managed.
- **Field and stream erosion**: Field erosion can deliver sediment containing total suspended solids and phosphorus when soil is disturbed or exposed to wind and rain; stream erosion can deliver sediment from destabilized banks or transport of deposited sediment in the stream during very high flows.
- **Failing septic systems**: Septic systems that are not maintained or failing near a lake or stream can contribute excess phosphorus, nitrogen, and bacteria.
- Internal loading: Lake sediments contain large amounts of phosphorus that can be released into the lake water through physical mixing or under certain chemical conditions.
- **Upstream lakes and streams**: Some lakes and streams receive most of their pollutants from upstream waterbodies. For these lakes, restoration and protection efforts should focus on improving the water quality of the upstream contributing lake or stream.
- Wildlife fecal runoff: Dense or localized populations of wildlife, such as beavers or geese, can contribute phosphorus and bacteria pollutants to streams or ponds.

Fertilizer and/or manure runoff, field and stream erosion, and upstream loading were identified as common non-point pollutant sources to impaired streams, while fertilizer runoff, in-lake sediment phosphorus release (internal loading), and upstream lake loading were identified as common non-point pollutant sources to impaired lakes.

Subwatershed	Pollutant	Watershed of Impaired Stream/Reach (AUID) and/or Lake (ID)	Fertilizer and/or manure run-off	Field and stream erosion	Failing septic systems	Internal loading	Upstream lakes and streams	Wildlife fecal runoff
	ТР	Lightning Lake (26-0282-00)	●		0	0		
		Mustinka River (-580)	0	•				
		Mustinka River (-502)		0			•	
		Mustinka River (-503)		0			•	
Mustinka River	TSS	Mustinka River (-518)		0			•	
		Mustinka River (-580)		•				
		Mustinka River (-582)		•			•	
		Mustinka River (-506)	•		0			0
	E. coli	Mustinka River (-518)						
		Mustinka River (-580)	0		0			0
Fivemile Creek	E. coli	Fivemile Creek (-510)	•		0			0
		East Toqua Lake (06-0138-00)	0		0	•	ο	
	ТР	Lannon Lake (06-0139-00)	0		0	•		
West Branch		West Branch Twelvemile Creek (-511)	0	•				
	E. coli	West Branch Twelvemile Creek (-511)	•					0
	ТР	Twelvemile Creek (-514)	0	•				
		Twelvemile Creek (-514)		●				
Twelve Mile Creek	TSS	Twelvemile Creek (-557)		•			0	
		Twelvemile Creek (-514)	●					0
	E. coli	Twelvemile Creek (-557)	•		0			0
Eighteenmile Creek	ТР	Eighteenmile Creek (-508)	0	●				

Table 6. Relative Magnitude of Contributing Nonpoint Pollutant Sources in the Mustinka River Watershed

Eighteenmile CreekTPEighteenmile Creek (-508) \bigcirc \bullet Key: \bullet = High \bullet = Moderate \bigcirc = Low. Note: All sources listed in the table were identified in completed TMDL studies. The
symbols in the table differentiate the relative ranking of implementation targeting for the more significant sources.

2.4 TMDL Summary

A TMDL is a calculation of how much pollutant a lake or stream can receive before it becomes unfishable, unswimmable, or unusable. These studies are required by the Clean Water Act for all impaired lakes and streams. There are 3 impaired lakes and 11 impaired streams in the Mustinka River Watershed with completed TMDL studies (Table 7). Table 8 and Table 21 (See Appendix D) summarize the individual TMDL wasteload and load allocations and percent reductions needed to meet water quality standards and goals for each impaired stream or lake.

Impaired Lake (ID) or Stream			TMDL	. Polluta	nt
(AUID)	Impairment	Study	E. coli	ТР	TSS
East Toqua Lake (06-0138-00)	Nutrient/ Eutrophication Biological Indicators	**		٠	
Lannon Lake (06-0139-00)	Nutrient/ Eutrophication Biological Indicators	**		•	
Lightning Lake (26-0282-00)	Nutrient/ Eutrophication Biological Indicators	**		•	
Mustinka River (-502)	Turbidity	**			•
Mustinka River (-503)	Turbidity	*			•
Mustinka River (-506)	Bacteria	**	•		
Eighteenmile Creek (-508)	Dissolved oxygen, Fish & macroinvertebrate bioassessments	**		•	
Fivemile Creek (-510)	Bacteria	**	•		
West Branch Twelvemile Creek (-511)	Bacteria, Dissolved oxygen	**	•	٠	
Twelvemile Creek (-514)	Bacteria, Dissolved oxygen, Turbidity, Fish & macroinvertebrate bioassessments	**	•	•	•
Mustinka Dirar (540)	Bacteria	**	•		
Mustinka River (-518)	Turbidity	*			•
Twelvemile Creek (-557)	Bacteria, Turbidity, Fish & macroinvertebrate bioassessments	**	•		•
Mustinka River (-580)	Bacteria, Dissolved oxygen, Turbidity, Fish bioassessments	**	•	•	•
Mustinka River (-582)	Turbidity	**			•

Table 7. Completed Total Maximum Daily Load studies in the Mustinka River Watershed

* June 2010 Mustinka River Turbidity TMDL: <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=14019</u> ** 2015 Mustinka River Watershed TMDL (in progress): <u>http://www.pca.state.mn.us/index.php/water/water-types-and-</u> programs/minnesotas-impaired-waters-and-tmdls/tmdl-projects/red-river-basin-tmdl/mustinka-river-major-watershed.html

		-			Allo	cations (k	g/year)					
		Wast	eload All	ocation		Load	Allocatio	n		MOS	RC	
Lake (ID)	Pollutant	WWTFs	WWTFs Construction & Industrial Stormwater MS4 Communities Watershed Runoff* Internal P Release Internal P Release Outflow Cutflow		Internal P Release Upstream Lake Outflow		Atmospheric Deposition	Margin of Safety	Reserve Capacity	Percent Reduction		
East Toqua Lake (06-0138-00)	ТР		0.1		57.7	465.3	342.0	0.0	45.3	101.2		95%
Lannon Lake (06-0139-00)	ТР		0.1		412.0	109.5		0.0	11.9	59.3	-	94%
Lightning Lake (26-0282-00)	ТР		0.4		1,370.8	132.6		0.0	55.6	173.4	-	58%

Table 8. Allocation summary for completed lake TMDLs in the Mustinka River Watershed

* Includes Wasteload Allocation transfers for future Regulated MS4 Communities

2.5 **Protection Considerations**

While the vast majority of lakes and rivers, in the Mustinka Watershed, are impaired for one or more designated uses, watershed stakeholders should seek opportunities to identify and implement protection strategies on the remaining, unimpaired waterbodies. Additionally, the recent and continued proliferation of tile drainage in the watershed should be considered as it will likely increase stress to waterbodies due to the increased nitrate and reactive phosphorus export.

3. Prioritizing and Implementing Restoration and Protection

The Clean Water Legacy Act (CWLA) requires that WRAPS reports summarize priority areas for targeting actions to improve water quality, identify point sources and identify nonpoint sources of pollution with sufficient specificity to prioritize and geographically locate watershed restoration and protection actions. In addition, the CWLA requires including an implementation table of strategies and actions that are capable of cumulatively achieving needed pollution load reductions for point and nonpoint sources.

This section of the report provides the results of such prioritization and strategy development. Because much of the nonpoint source strategies outlined in this section rely on voluntary implementation by landowners, land users, and residents of the watershed it is imperative to create social capital (trust, networks, and positive relationships) with those who will be needed to voluntarily implement best management practices. Thus, effective ongoing civic engagement is fully a part of the overall plan for moving forward.

3.1 Civic Engagement

A key prerequisite for successful strategy development and on-the-ground implementation is meaningful civic engagement. This is distinguished from the broader term 'public participation' in that civic engagement encompasses a higher, more interactive level of involvement. Specifically, the University of Minnesota Extension's definition of civic engagement is "Making 'resourceFULL' decisions and taking collective action on public issues through processes that involve public discussion, reflection, and collaboration." A resourceFULL decision is one based on diverse sources of information and supported with buy-in, resources (including human), and competence. Further information on civic

engagement is available at: http://www1.extension.umn.edu/community/civic-engagement/.

Technical Committee Meetings

The Mustinka River Watershed is made up of numerous local partners who have been involved at various levels throughout the project. The technical committee is made up of members representing the Bois de Sioux Watershed District, MPCA, DNR, counties, and SWCDs within the watershed. Table 9 outlines the meetings that occurred regarding the Mustinka River Watershed monitoring, TMDL development, and WRAPS report planning. Additional information about technical committee members and meeting agendas can be found on the Mustinka River Watershed TMDL and WRAPS website: http://www.healthofthevalley.com/.

Date	Location	Meeting Focus
June 24, 2011		Watershed Assessment and Monitoring
January 23, 2014	Bois de Sioux Watershed District Office, Wheaton, MN	Source Assessment Summary, and TMDL and Allocations Approach
February 25, 2015		TMDL Results and WRAPS Kick-off
April 16, 2015	1	WRAPS Results

Table 9. Mustinka River Watershed TMDL Technical Committee Meetings

Civic Engagement

The MPCA along with the local partners and agencies in the Mustinka River Watershed recognize the importance of public involvement in the watershed process. Table 10 outlines the opportunities used to engage the public and targeted stakeholders in the watershed. More information can be found on the Mustinka River Watershed TMDL and WRAPS website: <u>http://www.healthofthevalley.com/</u>.

The Mustinka River Watershed WRAPS Report went through its 30-day public noticed review and comment period from March 28, 2016, through April 27, 2016. The MPCA received two comments regarding the WRAPS report, all of which were submitted by the Minnesota Department of Agriculture. All comments have been addressed in this final WRAPS report.

Date	Location	Focus
October 2011	Press Release and Radio Spot on KFGO AM Radio's "Ripple Effects"	Project Kick-off and Stream Stability Assessment Field Work
April 2012	Poster Mailing (see report cover)	Health of the Valley Campaign
October 2012	Press Release and Radio Spot on KFGO	Stream Health and Channel Stability
February 2013	AM Radio's "Ripple Effects"	Watershed Restoration and Soil Health
January 23, 2014	American Legion, Wheaton, MN	TMDL and WRAPS Open House
Ongoing	Project Website: www.healthofthevalley.com	TMDL and WRAPS Process, Events and Documentation

Table 10. Mustinka River Watershed TMDL Civic Engagement Meetings

3.2 Targeting of Geographic Areas

The following section describes the specific tools and methodology that were used in the Mustinka River Watershed to identify, locate and prioritize potential watershed restoration actions within five focus HUC-12 watersheds, comprising about 30% of the total watershed area. These five watersheds were selected based on recommendations from stakeholders and are areas where current restoration efforts are currently being planned. While restoration actions need to be undertaken watershed-wide, focusing on these five watersheds allowed use of advanced BMP prioritization and targeting tools. These BMP analyses could not have been conducted watershed-wide because of the time and effort required; therefore, BMP results for the five HUC-12s, while representing locally relevant, actionable plans, are meant as an illustrative example of the types of analyses that should be conducted watershed-wide as BMP strategies are being developed in the future.

Three BMP tools were used in the five HUC-12 watersheds: (1) the HSPF model developed by EOR, (2) the Water Quality Decision Support Application (WQDSA) developed by the International Water Institute, and (3) the ACPF developed by Mark Tomer and others at the USDA-ARS (Ames, Iowa). The WQDSA and ACPF are recently developed GIS tools that utilize high resolution LiDAR (Light Detection and Ranging) digital elevation data to assist in prioritizing areas and finding suitable, field-scale BMP

sites. The overall prioritization and targeting methodology was based upon the results of these three tools as well as economic analyses and is intended to serve as a roadmap to stimulate BMP planning and implementation discussions amongst stakeholders. It also provides rough estimates of the extent of BMP implementation and associated costs needed to achieve practical reduction goals at the HUC-8 (watershed-wide) scale. While proposed WRAPS actions outlined in Section 3.3 at HUC-8 and HUC-11 scale are aimed at reducing TSS/turbidity, *E. coli* and phosphorus and improving conditions stemming from altered hydrology (e.g., intermittency of flow, flashiness), for this HUC-12 scale analysis, reducing phosphorus loads was the sole focus. A 10% watershed-wide phosphorus reduction goal was targeted which conforms to the goal set forth in the MPCA's Nutrient Reduction Strategy (NRS) for the Red River Basin.

BMP Prioritization and Targeting Tools

HSPF Model

The HSPF is a large-basin, watershed model that simulates runoff and water quality in urban and rural landscapes. An HSPF watershed model was created for the Mustinka River Watershed for use with TMDL analyses. The model was constructed and calibrated using data from 2001-2006, focusing on simulation of flow, phosphorus, and sediment. Although model simulations and results are based on a more generalized, larger scale perspective of watershed processes (and thus, less useful with regards to finer scale prioritization compared to the LiDAR based analyses discussed below) their value lies in estimation of river flows and water quality in areas where limited or no observed data has been collected, as well as, estimations of the locations and proportions of watershed sources -- specific combinations of landuse, slopes and soils -- comprising pollutant loading at downstream locations (e.g., Wheaton) where more substantial observed data are available. HSPF modeled watershed sources were used in concert with results from the WQDSA to help select HUC-12 watersheds for the more focused BMP siting analyses using the ACPF discussed below.

Water Quality Decision Support Application

The WQDSA is a LiDAR-based analysis framework for small-watershed to field scale prioritization of potential pollutant source areas or "hotspots". Hotspots are distinct areas on the landscape judged to be contributing relatively high amounts of pollutants to nearby waterbodies. The WQDSA looks at the agricultural landscape at a very small scale -- in this case, individual 3 square meter source areas. In each source area, the WQDSA estimates (1) the amount of pollutants leaving the source area and (2) the proportion of these pollutants reaching the nearest stream. These resulting source area pollution estimates were summed and ranked at the HUC-12 watershed scale with those ranked the highest (e.g., upper 25%) being designated as hotspots. The WQDSA was created for the Red River basin and was run for the Mustinka River Watershed by the International Water Institute (IWI). The WQDSA output was used to target and prioritize phosphorus and sediment hotspots on the landscape in order to facilitate cost-effective BMP planning on the areas with the highest potential to contribute to downstream water quality pollution. These results were used to select HUC-12 watersheds for the more focused BMP siting analyses using the ACPF discussed below.

Agricultural Conservation Planning Framework

The ACPF is a LiDAR-based GIS analysis framework that, similar to the WQDSA, determines pollutant hotspots (principally based on estimated runoff risk) on the landscape but more importantly targets potential field-scale sites for a set of specific agricultural BMPs such as sediment control basins (WASCOBs), restored wetlands, riparian buffers and grassed waterways. Siting is based on LiDAR terrain analyses taking into account criteria identified by NRCS to meet Environmental Quality Incentives Programs (EQIP) specifications (e.g., contributing drainage area to BMP, location of dominant runoff flowpaths, basin depths and volumes, etc.).

BMP Prioritization and Targeting Approach and Results

The overall prioritization and targeting approach to meet the 10% phosphorus reduction goal utilized all three tools discussed above to varying degrees. The overarching BMP strategy was to reduce phosphorus fertilizer applications watershed wide by more efficiently applying phosphorus according to soil P tests (i.e., Bray-1). Research in Iowa watersheds suggests this practice of keeping soil P levels at an optimal range reduces phosphorus loads by an average of 17% and increases farmer profits due to reduced fertilizer application. In addition to the watershed-wide phosphorus practice, five HUC-12 watersheds were selected for more focused BMP analysis. In these watersheds, land retirement BMPs (e.g., CRP) and a BMP combining cover crops with no-till (which was also intended to improve soil health) were explored as well as "structural" type BMPs such as WASCOBs, riparian buffers, and grassed waterways.

The ACPF tool was run by EOR for five HUC-12 watersheds in the Mustinka River Watershed (see map in Appendix E) for targeting of specific field-scale structural BMP sites. These watersheds of interest were selected based on input received from stakeholders during planning meetings as well as results from HSPF modeling and the WQDSA (discussed above). Results of the ACPF analyses were intended to provide a basis for discussion on BMP planning and implementation within these watersheds, and also serve as an example of the potential value in doing ACPF analyses on additional HUC-12s within the Mustinka watershed in the future. Phosphorus was the pollutant of focus for this exploratory analysis although most of the results will apply to sediment as well.

Structural/Terrain Dependent BMP Siting using ACPF

Terrain dependent BMPs refer to those structural practices whose cost-effectiveness is dependent on characteristics of landscape (topography, soils, landuse). For example, the optimal locations for enhancing riparian buffers are at the intersections between perennial streams (vs. intermittent) and areas of relatively high overland runoff (i.e., where significant runoff flow from agricultural fields enters the stream via the riparian zone). Impoundments such as WASCOBs need to be sited where high runoff and erosion potential exist and where topography is conducive to impounding significant runoff after construction of a berm/embankment.

The ACPF tools were designed principally with depressional/prairie pothole topography in mind, particularly where WASCOBs, restored depressional wetlands and constructed nutrient removal

wetlands are concerned (the latter refers to wetlands constructed within headwater channels for, principally, removal of nitrate). As such, the lake plain areas of the Mustinka provide little opportunity for harnessing existing on-field, riparian and in-channel depressional storage. In these areas, riparian buffers were the sole terrain dependent BMP sited. In the beach ridge/moraine areas, potential WASCOB locations were sited in addition to buffers. In all areas, significant overland flow paths were delineated where they entered perennial streams. These features represent areas of interest for possible implementation of grassed waterways and/or wider riparian buffers (or other form of grade stabilization, side inlet installation, etc.).

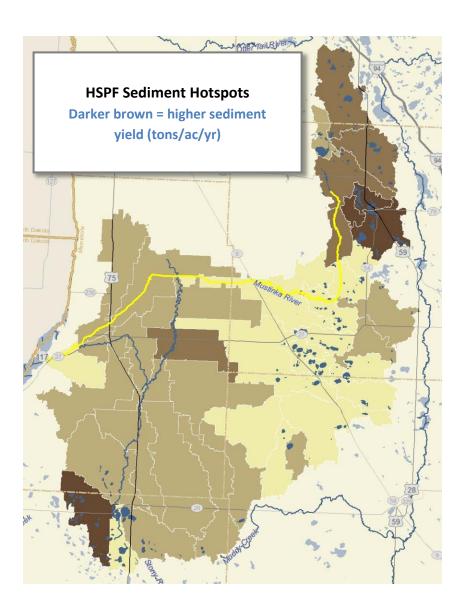
As implied above, BMP siting analysis was constrained to areas around perennial streams; this is due to the assumption that practices are more cost-effective when placed in areas with consistent flow. Intermittent streams can be important during certain seasons and precipitation events but the focus of the ACPF analysis was on channels most likely to export pollutants downstream.

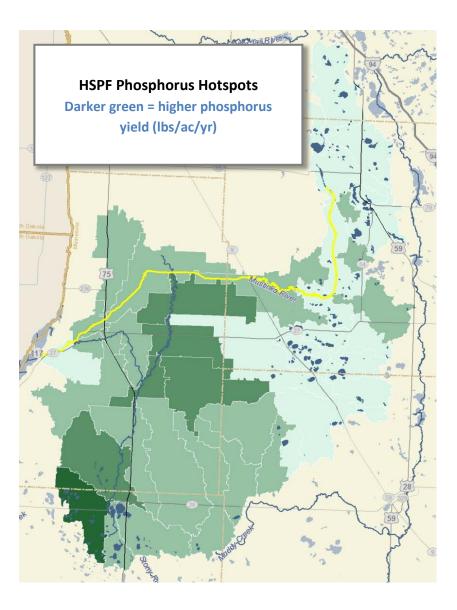
ACPF results for WASCOBs, riparian buffers and grassed waterways were integrated into the overall BMP plan and are summarized below and in Table 11. ACPF methodology, results and implementation are discussed in greater detail within **Appendix E.**

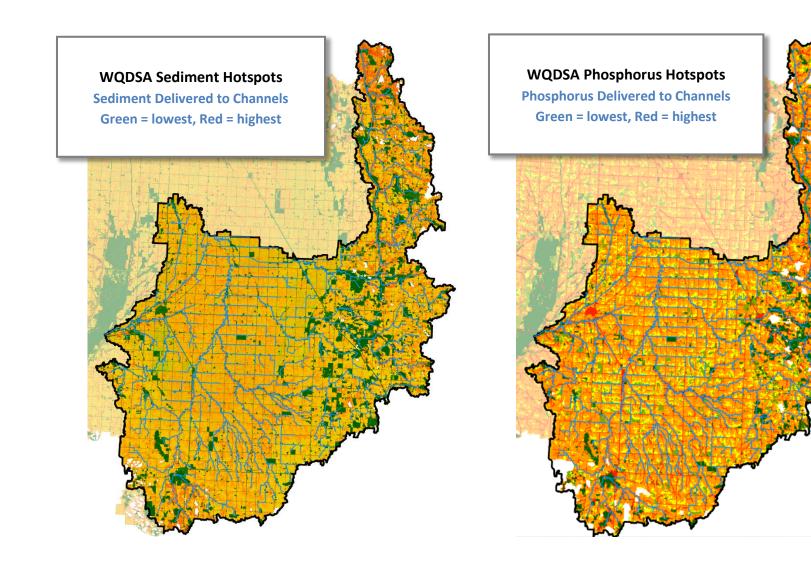
BMP Cost-Benefit Analysis and Results

A cost-benefit analysis was conducted for the watershed-wide phosphorus application BMP in combination with ACPF-sited structural BMPs in the five targeted HUC-12s in the Mustinka River Watershed. The overall results suggest that adoption of the phosphorus application BMP on 30% of the total cropped area in the watershed (approximately 166,000 acres including 45,000 acres in targeted HUC-12s; 121,000 outside the targeted HUC-12s) combined with the ACPF targeted BMPs in the five HUC-12s of focus would meet the 10% phosphorus reduction goal set forth by the MPCA. If the total drainage area targeted for structural BMPs in the five subwatersheds is spread over the entire watershed, assuming a similar proportion of suitable site opportunities, roughly 10% of the Mustinka Watershed's cropped land would have to drain to one or more structural BMPs (WASCOBs, riparian buffers and/or grassed waterways) to achieve the 10% phosphorus reduction goal.

Further details about each ACPF practice can be found in Appendix E. Cost-benefit ratios (cost per pound of phosphorus removed) were based on the assumptions listed in Table 22 regarding the estimation of treated watershed area and phosphorus load for each practice. Cost-effectiveness of each ACPF practice is reported across all five HUC-12s in Table 11 below, and by individual HUC-12 in Appendix E.


Land retirement and cover crops have the highest (most expensive) cost-effectiveness ratio, reducing phosphorus application rates have the lowest (free) cost-effectiveness ratio, and edge-of-field, terrain dependent, structural Ag BMPs have moderate cost-effectiveness ratio.


 Table 11. Estimated phosphorus reductions and cost-effectiveness for proposed BMPs applied watershed-wide and in five targeted HUC-12 subwatersheds in the Mustinka River Watershed


Category	Practice	% P Reduction	Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb P reduction)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	46 ¹	12	1,014
In-Field	Reduce phosphorus application rates	17	(-12)	166,000²	9,456	(-207)
in-rieid	Cover crops, no-till, increase soil organic matter	29	78	28,225 ¹	2,849	793
	Sediment basins	85	6	704 ¹	208	22
Edge-of- Field	Riparian buffers	58	7	55,687 ¹	11,241	34
	Grassed waterways	58	31	4,039 ¹	815	155
¹ BMP was ap	oplied in five targeted HUC-12 sub	watersheds				

² BMP was applied watershed-wide

ΤοοΙ	Description	How can the tool be used?	Notes	Link to Information and data
Light Detection and Ranging (LiDAR)	Elevation data in a digital elevation model (DEM) GIS layer. Created from remote sensing technology that uses laser light to detect and measure surface features on the earth.	General mapping and analysis of elevation/terrain. These data have been used for: erosion analysis, water storage and flow analysis, siting and design of BMPs, wetland mapping, and flood control mapping. A specific application of the data set is to delineate small catchments.	The layers are available on the MN Geospatial Information website for most counties.	<u>MnGEO</u>
Water Quality Decision Support Application / PTMapp	LiDAR based GIS terrain analyses for determining hydrologic and water quality pathways in rural landscapes.	Mapping of priority runoff and pollutant (nitrogen, phosphorus, sediment) source areas ("hotspots") for use in BMP targeting and planning strategies.	Developed and administered by International Water Institute; serves as foundation for the BWSR's PTMapp; public release of toolset was Fall 2015.	<u>RRBDIN</u>
Agricultural Conservation Planning Framework	LiDAR based GIS terrain analyses for determining potential locations for specific agricultural BMPs at the field scale.	Field scale mapping of potential locations of BMPs and creation of cost-effective BMP scenarios.	Developed and administered by USDA-ARS (Ames, IA); public release of toolset was Fall 2015.	<u>ACPF</u>
Hydrological Simulation Program – FORTRAN (HSPF) Model	Simulation of watershed hydrology and water quality for both conventional and toxic organic pollutants from pervious and impervious land. Typically used in large watersheds (greater than 100 square miles).	Incorporates watershed-scale and non-point source models into a basin-scale analysis framework. Addresses runoff and constituent loading from pervious land surfaces, runoff and constituent loading from impervious land surfaces, and flow of water and transport/ transformation of chemical constituents in stream reaches.	Local or other partners can work with MPCA HSPF modelers to evaluate at the watershed scale: 1) the efficacy of different kinds or adoption rates of BMPs, and 2) effects of proposed or hypothetical land use changes.	<u>AquaTerra</u>

3.3 **Restoration & Protection Strategies**

•

•

•

•

This section provides detailed tables identifying restoration and protection strategies for individual lakes and streams in each HUC-11 subwatershed that restore or protect water quality. These projects are divided into sections by HUC-11 subwatershed, and include the following information:

County location Otter Tail Water quality conditions and goals Wilkin Strategies Richland Estimated scale of adoption needed for each strategy to achieve the water quality goal Governmental units • with primary responsibility C. D. #27 Estimated timeline • for full implementation of Roberts Mustinka River strategy Interim 10-year milestones for Five Mile Creek implementation of 18 00 Eighteen Mile strategy Twelve Mile Creek West Branch Mustinka River Stevens Johr

This section provides a short description of the major water quality concerns in the Mustinka River Watershed that were developed based in part on input from local partners during the February 25, 2015, WRAPS Technical Advisory Committee meeting in Wheaton, Minnesota. These water quality concerns were used to guide the identification and prioritization of restoration and protection strategies in this section.

- **Carp**: are pervasive throughout the lakes and streams in the watershed; the vigorous bottom feeding behavior of carp re-suspends sediment, increases turbidity, and destroys habitat.
- Impoundments: have accumulated extensive sediment and need dredging.
- Agricultural drainage: past ditching and substantial recent and ongoing increases in tile drainage have altered watershed runoff patterns and stream flow; in particular, increases in tile drainage are likely to increase nitrate and reactive phosphorus concentrations in downstream streams and lakes. Misconceptions exist among farmers about the impact of tiling on nutrients in agricultural runoff.
- **Dissolved nutrients**: misconceptions exist among farmers about the difference between sediment, TP and reactive phosphorus, and the impacts agricultural practices have on the export of these different types of nutrients.
- Soil health: intensive agricultural practices deplete the organic matter content of the soil which increases nutrient leaching and decreases infiltration of runoff into the soil; soil health is marginal watershed-wide; challenges remain with cover crops to improve soil health due to herbicide residue and short growing season.
- **Degraded riparian condition**: there is an overall lack of stream buffers that stabilize stream banks and filter pollutants from watershed runoff; individual counties are in the process of conducting stream surveys to identify priority areas.
- Altered hydrology: stream channelization, loss of wetland storage, laser-guided grading of farmed-through head water streams, and tiling of the shallow groundwater – all components of altered hydrology – have exacerbated the effect of typical late-summer dry down conditions throughout the watershed. This results in extended periods of stagnant, low flow conditions in streams and ditches which adversely impacts local fish, macroinvertebrates, and nutrient release.
- **Ditch dredging**: dredging activities in low gradient systems potentially remove and re-deposit sediment and phosphorus on farm fields and/or riparian areas; more research is needed to understand how these activities affect sediment export downstream.
- Wind erosion: unprotected soils in winter result in extensive wind erosion of soil from fields.
- Lack of stream connectivity: perched culverts and disconnection from the natural floodplain have limited hydrologic and biologic connectivity in watershed streams.
- Straight pipe septic systems: some individual septic systems are failing and discharging nutrients and bacteria directly to lakes and streams.
- **Degraded water quality**: excess nutrients and sediment have resulted in degraded water quality of lakes and streams watershed-wide.

Watershed-wide

Table 12. Strategies and actions proposed for the entire Mustinka River Watershed

able 12. Strategies a	Waterbody ar		Parameter		ater Quality					Gove	ernme F	ntal Ur Respon			nary		Estimated Year to				
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR	MDA	Achieve Water Quality Target				
						Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x				n/a				
						Wetland restoration	Restore all degraded or ditched wetlands identified through PTMApp/ACPF or by DNR program priorities.	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	х	x				x	x	x	n/a				
						Shoreline restoration	Manage high water issues	Develop water management plan		Х				Х			n/a				
All	All Lakes	All	All	n/a	n/a	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	х								n/a				
						Sediment management	Wind erosion barriers; buffer strips	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					х	х	n/a				
						Nutrient management	Increase Ag P fertilizer application efficiency on 30% of cropland; shoreline buffers, side water inlets, sedimentation basins, ag BMPs on 10% of cropped land	Increase P fertilizer application efficiency on 15% of cropland; Identify priority areas using PTMapp or ACPF; contact landowners and secure funding; implement Ag BMPs on 5% of cropland	x	x					x	x	n/a				
						Channel restoration	Restore proper channel geometry and appropriate buffered meandor corridors	Identify priority areas and secure funding						х			n/a				
						Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	х								n/a				
All	All Streams	All	All	n/a	Wetland restoration identified through PTMApp/ACPF or by DNR program priorities.	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				х	x	x	2031						
				11/ a	- 7 5	., u		1 <i>1</i> , a	in a	Sediment and nutrient management	Increase Ag P fertilizer application efficiency on 30% of cropland; strategically designed, located, and managed impoundments and collection channels to address TSS and TP issues watershed wide; ag BMPs on 10% of cropped land	Increase P fertilizer application efficiency on 15% of cropland; Conduct modeling to determine design, location and management of impoundments to maximize TSS and TP retention; implement Ag BMPs on 5% of cropland	x	x					x	x	n/a
							Wind breaks, shelterbelts, or vegetative plantings to reduce wind erosion	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					х	х	n/a				
						Sediment management	Red Path Impoundment	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					х	х	n/a				
Mustinka River		Grant, Otter	A 11		- /	Ditch retrofits	Side water inlets and buffer strips on Ditch system #s 11 East	Complete retrofits on priority ditch systems	х	х							n/a				
(09020102010)	All streams	Tail, Traverse	All	n/a	n/a	Channel restoration	JD 14 - restore oxbow	Complete design and secure funding						Х			n/a				
						Impoundments	TCD 27 - multi-purpose storage project	Feasibility completed and funding secured	Х	Х			Х				n/a				
						Ditch retrofits	Ditch system #s: 9, 10, 36, 29, 30, 20, 46, 39, 48, and 27	Complete retrofits on priority ditch systems	х	х							n/a				
						Detention storage	Big Lake Project		Х	Х			Х			[n/a				
		Grant,				Ditch retrofits	Ditch system #s: 8, 15, 32, 33, 21, 3, and 6	Complete retrofits on priority ditch systems	Х	Х	\square						n/a				
Fivemile Creek (09020102020)	All streams	Stevens,	All	n/a	n/a	Ditch systems with open inlets	Ditch system #s 9 and 29	Completed	Х	Х							n/a				
	Traverse				Flow management	Restore flow. Eliminate cropping protected waters channel.	Conduct modeling to determine flow restoration strategy			х			х			n/a					

	Waterbody ar	nd Location	Parameter	Wa	ater Quality					Gove		ental U Respon			nary	Estimated Year to
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR MDA	Achieve Water Quality Target
West Branch Mustinka River (09020102030)	All streams	Big Stone, Traverse	All	n/a	n/a	Detention storage	Moonshine Lake; Leonardsville 12; Leonardsville 31E; Leonardsville 31W; Tara 12		х	х			х			n/a
						Detention storage	Moonshine 4; Moonshine 13; Moose Head; Eldorado 7; Dollymount 30		х	х			х			n/a
Truckiewille		Channel				Ditch system side-water inlets and buffer strips	Ditch system #s 1 East and West; and 42.	Completed	х	х						n/a
Twelvemile Creek (09020102040)	All streams	Stevens, Traverse, Big Stone	All	n/a	n/a	Ditch system wetland restoration	Ditch system #1	Feasibility completed and funding secured		х					x	n/a
(05020102040)		Stone				Ditch retrofits	Ditch system #s 37*; 8; 2; 7*; 51; 16*; 17*; 40; 19; 4* (+ Fivemile); 23; 30; 35; 44; 28; 31*; 38; and 37. *Priority systems. Ditch system #s 1 and 15	Complete retrofits on priority ditch systems	x	x						n/a
Eighteenmile Creek (09020102050)	All streams	Traverse	All	n/a	n/a	Ditch retrofits	Ditch System #s 22; 41*; and 55. *Priority system	Complete retrofits on priority ditch systems	x	х						n/a

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

Mustinka River Subwatershed

Table 13. Strategies and actions proposed for the Mustinka River Subwatershed

	Waterbody ar		Parameter		iter Quality					Gove	ernme F		Inits wi nsibilit		mary		Estimated			
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR	MDA	Year to Achieve Water Quality Target			
						Nutrient management	Ag BMPs, buffer strips; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	х					x	x	2031			
						Conservation	Keep existing CRP land in CRP program (make permanent)	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			x				2031			
Mustinka River (09020102010)	Mustinka River, Fivemile Cr to Unnamed Cr	Traverse	Total suspended solids	49% samples greater	92% reduction at very high flows;	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				х	x	x	2031			
(09020102010)	(09020102-502)		[Turbidity]	than 65	37% reduction at high flows	Stream restoration	Bank stabilization	Identify priority areas and secure funding		Х				Х			2031			
				mg/L		Drainage water management	Side water inlet; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х							2031			
						Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x								2031			
			Sediment			Sediment management	Buffer strips; maintain retention areas; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	х					x	x	2031			
Mustinka River (09020102010)		oxygen demand [Dissolved	5% samples less than 5 mg/L	<10% samples less than 5 mg/L	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				х	x	x	2031				
	(03020102-505)		oxygen]			Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x								2031			
Mustinka River (09020102010)	Mustinka River, Unnamed Cr to Lk Traverse (09020102-503)	Traverse	Total suspended solids [Turbidity]	61% samples greater than 25 NTU	<10% samples greater than 25 NTU (or 47 mg/L TSS); 33-91% TSS reduction across all flow regimes	Sediment management	Gully erosion; Grade stabilization	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	x					x	x	2031			
Mustinka River	Mustinka River, Headwaters to	Otter Tail,		Seasonal geomean =	Seasonal geomean < 126 cfu/100mL;	Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		х			x				2031			
(09020102010)	Lightning Lk (09020102-506)	Grant	E. coli	146-752 cfu/100mL	Unknown reduction across	Manure management	Buffer strips; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х							2031			
					flow regimes	Conservation	Keep existing CRP land in CRP program (make permanent)	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			х				2031			
	Mustinka River, Grant/Traverse		Total	42% samples	<10% samples greater than 25 NTU (or 47 mg/L	Conservation	Buffer strips with permanent easements	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			x				2031			
Mustinka River (09020102010)	County Line to Fivemile Cr (09020102-518)	Traverse	suspended solids [Turbidity]	suspended solids	suspended solids	e suspended solids	greater than 25 NTU	TSS); 78-89% TSS reduction across all	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x								2031
					flow regimes	Sediment management	Riparian buffers	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					х	x	2031			

	Waterbody ar	nd Location	Parameter	Wat	ter Quality					Gove		ntal Ui Respon		th Prima /	у	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	MDA	Year to Achieve Water Quality Target
						Flood damage reduction, Downstream flow augmentation, Sediment management, and Wetland restoration	The BdSWD Redpath Project will provide about 16,000 acre feet of flood control storage of which 13,000 acre feet will be gate controlled. This is expected to reduce damages to agricultural lands, roads, and bridges downstream along the Mustinka River, Twelvemile Creek and numerous legal ditch systems. This project will also help to minimize cross-over flows from the Mustinka Watershed to the Rabbit River Watershed and provide benefits on the Bois de Sioux River and Red River. Release of water following periods of high flow will help to sustain flows on the river. The project will reduce erosion and will allow suspended solids to settle out thereby reducing turbidity. Wetland areas totaling about 620 acres will be managed to provide spawning habitat for Northern Pike, feeding and resting areas for migrating shorebirds and waterfowl, and 300 acres of stream corridor restoration.	Secure funding package and complete phased construction	x							2031
						Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
	Unnamed Creek,		Intermittency			Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x	2031
Mustinka River (09020102010)	Unnamed Cr to Mustinka R (09020102-538)	Grant	of flow [Invert/Fish IBI]	Fish IBI = 9 Invert IBI = 25	Fish and Invert IBI above thresholds	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
						Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
Mustinka River (09020102010)	Unnamed Creek, Unnamed Cr to Mustinka R (09020102-538)	Grant	Lack of fish source area [Invert/Fish IBI]	Fish IBI = 9 Invert IBI = 25	Fish and Invert IBI above thresholds	Increase connectivity	Increase connectivity where appropriate	Feasibility completed and funding secured						x		2031
	(09020102-558)		101]			Stream restoration	Improve riparian zones	Identify priority areas and secure funding		Х				Х		2031
Mustinka River (09020102010)	Mustinka River, Lightning Lk to Mustinka River Flowage	Grant	E. coli	Seasonal geomean = 241-849	Seasonal geomean < 126 cfu/100mL; Unknown reduction across	Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		х			x			2031
	(09020102-580)			cfu/100mL	flow regimes	Manure management	Buffer strips; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
Mustinka River (09020102010)	Mustinka River, Lightning Lk to Mustinka River	Grant	Stream eutrophication [Dissolved	15% samples less than 5 mg/L DO;	<10% samples less than 5 mg/L; TP < 0.150 mg/L; 20-58% reduction	Nutrient management	Buffer strips; upland BMPs; winter wind erosion barriers; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	х				>	x	2031
(Flowage (09020102-580)		oxygen]	TP = 0.192 - 0.337 mg/L	in TP at very high to low flows	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031

	Waterbody ar	nd Location	Parameter	Wat	ter Quality					Gove			nits witl sibility	n Prim	nary	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR MDA	Year to Achieve Water Quality Target
Mustinka River (09020102010)	Mustinka River, Lightning Lk to Mustinka River Flowage (09020102-580)	Grant	Barrier to fish migration (Pine Ridge Dam) [Fish IBI]	Fish IBI = 25	Fish IBI above threshold	Increase connectivity	Dam removal, modification with rock-arch rapids, or bypass with nature-like fish passage channel	Feasibility completed and funding secured						x		2025
Mustinka River (09020102010)	Mustinka River, Lightning Lk to Mustinka River	Grant	Total suspended solids	5% samples greater than 65	77% reduction at very high flows; 14% reduction at	Sediment management	Improve outlet of Lightning Lake; buffer strips; upland BMPs; winter wind erosion barriers	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	x					x x	2031
(09020102010)	Flowage (09020102-580)		[Turbidity]	mg/L	high flows	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
	Mustinka River, Mustinka River		Total	63%	87% reduction at	Sediment management	Wind erosion barriers; tributary BMPs	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	x					x x	2031
Mustinka River (09020102010)	Flowage to Grant/Traverse County Line	Grant	suspended solids [Turbidity]	samples greater than 65	very high flows; 36% reduction at high flows	Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	x						2031
	(09020102-582)			mg/L		Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x x	2031
						Channel restoration	Channel restoration Hwy 9 west	Complete the channel restoration at Hwy 9 west						Х		2021
						Channel restoration	Restore proper channel geometry and appropriate buffered meandor corridors	Restore 8-9 miles of historical Mustinka River channel						x		2031
						Conservation	Keep existing CRP land in CRP program (make permanent)	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			х			2031
						Stream restoration	Bank stabilization	Identify priority areas and secure funding		Х				Х		2031
						Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	х	х				х	x x	2031
Mustinka River (09020102010)	Mustinka River Ditch, Twelvemile Cr to	Traverse	Fish IBI, Invert IBI, DO, Turbidity, <i>E</i> .	Insufficient data or not	Maintain or improve water	Nutrient management	Ag BMPs, buffer strips; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	х					x x	2031
, , , , , , , , , , , , , , , , , , ,	Mustinka R (09020102-553)		coli	assessed	quality	Manure management	Possible old manure pit; Feed lot projects	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
						Improve soil health	Increase vegetative cover with cover crops	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
						Drainage water management	Side water inlet; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	x						2031
						Septic system improvements	Use MPCA grant funds to address SSTS; Address SSTS through land sales	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
Mustinka River (09020102010)	Trisko (26-0141- 00)	Grant	Phosphorus	Insufficient data	Maintain or improve water quality	Shoreline restoration	Restore bank erosion	Completed		x				x		2021

	Waterbody an	d Location	Parameter	Wa	ter Quality					Gove	rnment Re		its witl sibility	n Prin	nary	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR	Year to Achieve Water Quality Target
Mustinka River (09020102010)	Flekkefjord (26- 0142-00)	Grant	Phosphorus	Not assessed	Maintain or improve water quality	Storm water runoff management	Rain gardens Separate storm water and sanitary systems	Install 5 rain gardens; complete storm sewer separation	x	х		x			x	2031
Mustinka River (09020102010)	Lightning (26- 0282-00)	Grant	Phosphorus	Growing season TP = 153 µg/L	Growing season TP < 90 μg/L 61% reduction in watershed runoff TP load 10% reduction in internal TP load	Shoreline restoration Nutrient management	Repair bluff erosion See strategies for All Lakes	Completed		x				X		2021 2031
Mustinka River (09020102010)	Mud (56-0804- 00)	Otter Tail	Phosphorus	Not assessed	Maintain or improve water	Nutrient management	Buffer strip on NW side of lake Address bank erosion issues BMPs on tributaries to lake	Completed	x	x					x	2021
					quality	Water level management	DNR management of water level (WPA)	Develop water management plan						Х		2031

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

Fivemile Creek Subwatershed

Table 14. Strategies and actions proposed for the Fivemile Creek Subwatershed

	Waterbody ar	d Location	Parameter	Wa	ter Quality					Gove	ernmen [:] Re	ntal Un espons			ry	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	MDA	Year to Achieve Water Quality Target
Fivemile Creek	Fivemile Creek, T127 R45W S24, East Line to	Grant,	5 1'	Seasonal geomean =	Seasonal geomean < 126 cfu/100mL;	Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
(09020102020)	Mustinka River Ditch	Stevens, Traverse	E. coli	217-569 cfu/100mL	Unknown reduction across flow regimes	Point source improvements	City of Herman leaking sanitary and storm system	Identify and fix sanitary and storm system leaks				х				2031
	(09020102-510)				now regimes	Manure management	Manure application practices; ag BMPs; pasture management (12 operations); exclusion fencing; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		x						2031
Fivemile Creek (09020102020)	Unnamed Creek, Unnamed Cr to Unnamed Cr	Grant, Stevens	Intermittency of flow [Fish	Fish IBI = 0	Fish IBI above threshold	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	x				x	< x	2031
	(09020102-578)		IBI]			Drainage water management	Side water inlets; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	х	х						2031
Fivemile Creek (09020102020)	Unnamed Creek, Unnamed Cr to Unnamed Cr (09020102-578)	Grant, Stevens	Barriers to fish migration [Fish IBI]	Fish IBI = 0	Fish IBI above threshold	Increase connectivity	Increase connectivity where appropriate	Feasibility completed and funding secured						x		2025
Fivemile Creek (09020102020)	Unnamed Creek, Unnamed Cr to Unnamed Cr (09020102-578)	Grant, Stevens	Lack of fish source area [Fish IBI]	Fish IBI = 0	Fish IBI above threshold	Increase connectivity	Increase connectivity where appropriate	Feasibility completed and funding secured						x		2025
						Manure management	Pasture management	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		x						2031
						Nutrient management	Buffer strips; side-water inlets; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					< x	2031
Fivemile Creek	Unnamed Ditch, Unnamed ditch	Grant,	Fish IBI, Invert IBI, DO,	Not	Maintain or	Carp management	High velocity culvert to prevent fish passage	Install high velocity culvert and conduct follow-up monitoring					х	х		2031
(09020102020)	to Fivemile Cr (09020102-525)	Stevens	Turbidity, E. coli	assessed	improve water quality	Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
						Point source improvements	City of Herman leaking sanitary and storm system	Identify and fix sanitary and storm system leaks				х				2031
						Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
Fivemile Creek (09020102020)	Pullman (26- 0298-00)	Grant	Phosphorus	Not assessed	Maintain or improve water quality	Storm water runoff management	Rain gardens Separate storm water and sanitary systems	Install 5 rain gardens; complete storm sewer separation	x	x		x			<	2031

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

West Branch Subwatershed

Table 15. Strategies and actions proposed for the West Branch Subwatershed

	s and actions proposed waterbody and waterbody		Parameter		ter Quality					Gove			nits wit sibility	h Prin	nary	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR MDA	Year to Achieve Water Quality Target
West Branch Mustinka River	Twelvemile Creek, West Branch T125 R46W S33,	Big Stone, Traverse	E. coli	Seasonal geomean = 152-440	Seasonal geomean < 126 cfu/100mL; Unknown	Septic system improvements	Address failed SSTS; use loans and grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
(09020102030)	south line to Twelvemile Cr (09020102-511)			cfu/100mL	reduction across flow regimes	Manure management	Feedlot operations in Big Stone County; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
						Nutrient management	Buffer strips; sedimentation basins; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	x					x x	2031
	Twelvemile Creek, West		<u>.</u>	21%	<10% samples less	Conservation	Keep existing CRP land in CRP program (make permanent)	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			x			2031
West Branch Mustinka River (09020102030)	Branch T125 R46W S33, south line to	Big Stone, Traverse	Stream eutrophication [Dissolved oxygen]	samples less than 5 mg/L DO; TP = 0.588 -	than 5 mg/L; TP < 0.150 mg/L; 24-53% reduction in TP at low to very	Improve soil health	Increase vegetative cover with cover crops; combined practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
	Twelvemile Cr (09020102-511)		oxyEcu]	0.955 mg/L	high flows	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x x	2031
						Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
						Sediment management	Side water inlet	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	х					x x	2031
						Septic system improvements	Address failed SSTS; use loans and grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
						Nutrient management	Ag BMPs, buffer strips, sedimentation basins; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	х					x x	2031
West Branch	Unnamed Creek,		Fish IBI, Invert	Insufficient	Maintain or	Manure management	Feedlot operations in Big Stone County	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
Mustinka River (09020102030)	CD 33 to W Br Twelvemile Cr (09020102-524)	Traverse, Big Stone	IBI, DO, Turbidity, <i>E.</i> <i>coli</i>	data or not assessed	improve water quality	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x x	2031
						Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
						Ditch retrofits	2-stage ditches		Х	Х						2031
						Sediment management	Side water inlet	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	х	х					x x	2031
West Branch	East Toqua (06-			Growing	Growing season TP < 90 μg/L		Reduce urban runoff	Identify priority areas and secure funding		х		х				2031
Mustinka River (09020102030)	0138-00)	Big Stone	Phosphorus	season TP = 583 μg/L	70% reduction in watershed runoff TP load	Nutrient management	See strategies for all lakes									2031

	Waterbody an	d Location	Parameter	Wa	ter Quality					Gove		ntal Ur espon		th Prima V	iry	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	MDA	Year to Achieve Water Quality Target
					90% reduction in											
					internal TP load											
West Branch Mustinka River (09020102030)	Lannon (06- 0139-00)	Big Stone	Phosphorus	Growing season TP = 764 µg/L	Growing season TP < 90 μg/L 77% reduction in watershed runoff TP load 99% reduction in internal TP load	Nutrient management	See strategies for All Lakes									2031
West Branch Mustinka River (09020102030)	North Rothwell Slough (06- 0147-00)	Big Stone	Phosphorus	Not assessed	Maintain or improve water quality	Nutrient management	Restore bluff erosion	Completed	x	х					x x	2021

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

Twelvemile Creek Subwatershed

 Table 16. Strategies and actions proposed for the Twelvemile Creek Subwatershed

	Waterbody a		vemile Creek Subwaters		ter Quality					Gove			nits with sibility	n Prim	ary	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	Parameter (incl. non-pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR MDA	Year to Achieve Water Quality Target
Twelvemile Creek (09020102040)	Twelvemile Creek, T126 R45W S21, south line to W Br Twelvemile	Stevens, Traverse, Big Stone	E. coli	Seasonal geomean = 186-284 cfu/100mL	Seasonal geomean < 126 cfu/100mL; Unknown reduction across	Septic system improvements	Address failed SSTS; use loans and grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031
	Cr (09020102- 514)				flow regimes	Manure management	Buffer strips; pasture management; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
	Twelvemile Creek, T126			23%	<10% samples less	Nutrient management	Buffer strips with permanent easements; sedimentation basins; ag BMPs; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	x	x					x x	2031
Twelvemile Creek (09020102040)	R45W S21, south line to W Br Twelvemile	Stevens, Traverse, Big Stone	Stream eutrophication [Dissolved oxygen]	samples less than 5 mg/L DO; TP = 0.614 -	than 5 mg/L; TP < 0.150 mg/L; 44-58% reduction in TP at low to	Drainage water management	Side water inlets; pattern tile outlet controls; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	x						2031
	Cr (09020102- 514)			0.946 mg/L	very high flows	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x x	2031
						Improve soil health	Grid soil sampling; Increase vegetative cover with cover crops; combine practice with no- till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
Twelvemile	Twelvemile Creek, T126 R45W S21,	Stevens,	Altered	Fish IBI = 19 (0 2nd visit)	Fish and Invert IBI	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	x				x	x x	2031
Creek (09020102040)	south line to W Br Twelvemile Cr (09020102- 514)	Traverse, Big Stone	hydrology/Flashiness [Invert/Fish IBI]	Invert IBI = 13	above thresholds	Ditch retrofits Drainage water management	Side water inlet; alternate tile intakes; 25% of tiled cropland draining to constructed or restored wetlands	Complete retrofits on priority ditch systems Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x x	x						2031 2031
Twelvemile	Twelvemile Creek, T126 R45W S21,	Stevens,	Total suspended	8% samples greater	91% reduction at	Sediment management	Buffer strips with permanent easements; sedimentation basins; ag BMPs; side water inlets	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	x					x x	2031
Creek (09020102040)	south line to W Br Twelvemile Cr (09020102- 514)	Traverse, Big Stone	solids [Turbidity]	than 65 mg/L	very high flows	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	x				x	x x	2031
						Improve soil health	Increase vegetative cover with cover crops; combine practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
Twelvemile Creek (09020102040)	Twelvemile Creek, W Br Twelvemile Cr to Mustinka	Grant, Stevens, Traverse	E. coli	Seasonal geomean = 135-248 cfu/100mL	Seasonal geomean < 126 cfu/100mL; Unknown reduction across flow regimes	Septic system improvements	Address failed SSTS; use grant funds when possible	Replace all systems deemed Imminent Threat to Public Health because of surface water discharges, secure funding for cost-share program		x			x			2031

	Waterbody a	nd Location	Demonstran (in al	Wa	ter Quality					Gove	ernme F		nits wi nsibility		nary	Estimate
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	Parameter (incl. non-pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR	Year to Achieve Water Qua Target
	River Ditch (09020102-557)					Manure management	Buffer strips; pasture management; manure pit closures	Conduct windshield survey to identify manure problems; Contact landowners of problem areas		х						2031
Twelvemile Creek	Twelvemile Creek, W Br Twelvemile Cr	Grant, Stevens,	Altered hydrology/ Flashiness	Fish IBI = 46 (26 2nd visit)	Fish and Invert IBI	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				x	x	X 2031
(09020102040)	to Mustinka River Ditch	Traverse	[Invert/Fish IBI]	Invert IBI =	above thresholds	Ditch retrofits		Complete retrofits on priority ditch systems	Х	Х						2031
	(09020102-557)			17		Drainage water management	Side water inlet; alternate tile intakes; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
	Twelvemile					Nutrient management	Decrease TP load from upstream -514 and - 511; See strategies for All Streams Buffer strips with permanent easements Upland BMPs Winter wind erosion barriers	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	х					x	X 2031
Twelvemile Creek (09020102040)	Creek, W Br Twelvemile Cr to Mustinka	Grant, Stevens, Traverse	Stream eutrophication/ Dissolved oxygen	TP = 0.351 mg/L	TP < 0.150 mg/L	Wetland restoration	Wetland restoration projects; See strategies for All Streams	Identify projects using PTMapp/ACPF or DNR wildlife management area program priorities, contact landowners, secure funding	x	х				х	х	X 2031
(09020102040)	River Ditch (09020102-557)	Haveise	[Invert/Fish IBI]			Drainage water management	Side water inlet; pattern tile outlet controls; 25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
						Improve soil health	Grid soil sampling; Increase vegetative cover with cover crops; combine practice with no- till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
T	Twelvemile Creek, W Br			8% samples	Newdor	Sediment management	Buffer strips with permanent easements; upland BMPs; winter wind erosion barriers	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding	x	х					x	X 2031
Twelvemile Creek (09020102040)	Twelvemile Cr to Mustinka River Ditch	Grant, Stevens, Traverse	Total suspended solids [Turbidity]	greater than 65 mg/L	No reductions across flow regimes	Improve soil health	Increase vegetative cover with cover crops; combined practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
	(09020102-557)					Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	х						2031
						Ditch retrofits		Complete retrofits on priority ditch systems	Х	Х						2031

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

Eighteenmile Creek Subwatershed

Table 17. Strategies and actions proposed for the Eighteenmile Creek Subwatershed

	Waterbody ar	nd Location	Parameter	Wa	ter Quality					Gove		tal Uni espons		th Prima '	ary	Estimated
HUC-11 Subwatershed	Waterbody (ID)	Location and Upstream Influence Counties	(incl. non- pollutant stressors)	Current Conditions	Goals / Targets and Estimated % Reduction	Strategies (see key below)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones (year ending 2021)	BdSWD	SWCD	MPCA	City	County	DNR	BWSR	Year to Achieve Water Quality Target
						Nutrient management	Buffer strips; side-water inlets; See strategies for All Streams	Identify priority areas using PTMapp or ACPF, contact landowners, and secure funding; See milestones for All Streams	х	х					x x	2031
Eighteenmile	Eighteenmile		Stream eutrophication		TP < 0.150 mg/L;	Conservation	Keep existing CRP land in CRP program (make permanent)	Identify priority areas using site visits and/or GIS tools (PTMapp, ACPF) and secure funding		х			х			2031
Creek (09020102050)	Creek, Unnamed Cr to Mustinka R (09020102-508)	Traverse	[Dissolved oxygen, Fish/Invert IBI]	TP = 0.546 mg/L	48-52% reductions at very high to low flows	Improve soil health	Increase vegetative cover with cover crops; combined practice with no-till	Establish at least one 5-year pilot site in each HUC-11 and monitor soil organic matter content; Share with other landowners	x							2031
						Drainage water management	25% of tiled cropland draining to constructed or restored wetlands	Identify suitable wetland sites (using GIS tools such as PTMapp or ACPF) and contact landowners	x	x						2031

Key: Red rows = impaired waters requiring restoration; White rows = unimpaired waters requiring protection.

Table 18. Key for Strategies Column

Parameter (incl.one- polition stressor) Description Example RMP-/actions Impolition stressor) Impolition for the stressor of controls solit and solit conservation practices that reduce solit control is write familiand Conservation reduces in the solition of solition reduces and solition of controls solitand solition conservation reduces in the solition of solition reduces and solition of solition of solition solition of solition of solition of solition of solition of solition solition of solition of solition of solition of solition of solition solition of solition of solition of solition of solition solition of solition solition of solition of solition controls and solition controls and solition controls and solition solition of solition solition of solition solition solition of solition solition of solition solition solition of solition solition of solition and using wegetation to solition of solition solition solition of solition solition of solition solition controls buffer (use solition and control buffer solition control basin Tereated solition control basin Tereated solition control basin Tereated control solition (control family and and solition of solition solition control basin Tereated control solition (control solition (control family and adoption do the solition solition control basin Tereated control solition (control family family and adoption control solition (control family family and adoption control solition (control family family and adoption control solition (control family famil			Strategy Key
polution size Description Concording Improve upund/field structures rund(concist) and water conservation practices that reduce scaling conting Aver conservation lision Ver conservation lision Investigating familiants Retroins including corennials Retroins including corennials Conservation core reservation structures Grassed value ways Retroins including corennials Conservation core reservation structures Retroins including corennials Retroins including corennials Provescription and increases Retroins including corennials Retroins including corennials Provescription and increases Retroins including corennials Retroins including corennials Provescription and increases Provescription Retroins including increases Provescription and increases Provescription Retroins including increases Provescription and increases Provescription and increases Retroins including increases Retroins including and revegetation of ravines Retroins including increases Retroins including increases Retroins including and revegetation of ravines Provescription and increases Retroins including increases Retroins including and revegetation of ravines Prover Water Conservation till			Strategy key
TS Water conservation practices that reduce sole resisting relations including preennols Relations including preennols Relations including preennols Relations including preennols Grased waterways Strategies to reduce from water instruct sediments Grased waterways Strategies to reduce from watersheet Proge and biomass planning Operand to respect to the sole of flow reduction strategies should be targeted to ravine subwatersheds Proge and biomass planning Operand to form adjust of the reduction strategies flow and using vegetation to stabilize these areas. Protect/stabilize banks/bluffs: reduce collapse of bluffs Vector deviation Strategies to reduce flow reducting present flow reducting pr		Description	Example BMPs/actions
TS Indicid runoff, or otherwise minimize sediment from generalize a segment in sincluding percensis is TS Traces to reduce flow some of flow reduction strategies should be targeted to ravise subatersheds TS Traces and biomass plenting TS Traces and biomass plenting TS Statigets to reduce flow some of flow reduction strategies should be targeted to ravise subatersheds TS Traces and biomass plenting TS Traces and plenting and receptation of travine by elsepting and influcture plent where from and and the strates TS Traces Trace Concour farming and contour builfer strips Unprove forestry management Torace and reduce anoutoutout Terrace		Improve upland/field surface runoff controls: Soil and	Cover crops
Issuing farmiand Rolations including peremnials Conservation cover seements Grased waterways Stategies to reduce flow-some of flow reduction strategies should be targeted to ravine subwatersheds Fortage and biomass planting Contour farming Grased userways Totato frame Totato frame And contour farming Contour farming Areading resonant for exemption to stabilize the areass Totato frame And contour farming Areading resonant for exemption to stabilize the areass Totato frame Areading resonant for exemption to stabilize the areass Totato frame Statilize ravings Resolution grave flow for exemption to stabilize the areass Statilize ravings Statilize ravings Resolution grave flow for flow for the stabilish riparian for exet buffer Vescolution grave flow for flow for the stabilize ravings Contour farming and control buffer strips Contour farming and control buffer strips Resolution and revegetation of ravines thy test ravines descent revorts rol busin Strange flow revert revore revorts ravines Also, may include test ravines des			Water and sediment basins, terraces
TS Grassed waterways Grassed waterways Strategies to reduce flow-some of flow reduction strategies should be targeted to ravine subwatersheds Frage and biomass planting Grassed waterways Open tile inter control - siner pipes, french drains Contour farming Open tile inter control - siner pipes, french drains Contour farming Welland restoration Strategies of antered hydrology (reducing peak flow) and erosion of straumbank by reducing peak river (hydrology (reducing peak flow) Strategies of antered hydrology (reducing peak flow) and erosion of straumbank by reducing peak river (hydrology (reducing peak flow) Strategies of antered hydrology (reducing peak flow) Strabilite rations Strategies of antered hydrology (reducing beak flow) Strabilite rations Strategies of antered hydrology (reducing beak flow) Vestock exclusion - ontrolled strain crossings Strategies and hydrolitics flow in constraints Vestock exclusion - ontrolled strain crossings Vestock exclusion undices hydrolitics ripis Vestock exclusion - ontrolled strain crossings Vestock exclusion undices hydrolitics ripis Vestock exclusion - Conservation ripits hydrolitics ripis Vestock exclusion Vestock exclusion - Conservation ripits hydrolitics ripis Vestock exclusion			Rotations including perennials
TS Strategies to reduce flow-some of flow reduction strategies should be targeted to ravine subwatersheds Foregr-add infinition Foregr-add infinition Improve transmission Strategies to reduce flow-some of flow reduction strategies should be targeted to ravine subwatersheds Improve transmission Strategies to reduce colory of streambank type during peak river flow Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission Strategies for altered hydrology (reducing peak flow) Improve transmission			Conservation cover easements
TSS Residue management - conservation tillage Forage and biomass planning TSS Protect/Atabilize banks/bluffs: Reduce collapse of bluffs Genteur faming Wetland restoration Strategies for altered hydrology (reducing peak flow) and erosion of streambank by reducing peak inverted hydrology (reducing peak flow) Streambank stabilization Establize ravines: Reducing erosion of ravines by dispersion and infiltrating field runoff and increasing variant for establish fright for establish fright for the stabilization Establize for establish fright for the stabilization Establize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing variant for establish fright for estabilish fright for the strips Contour faming and contour buffer strips Over one for estry management Freid edge buffs; Rodice control basin Terrace Residue management - conservation tillage Proper Water Cross-forainage Maintaining and rodi contruction Maintaining and revegetation of ravine. Proper Water Cross-forainage Maintaining and contour buffer strips Over orop Residue management - conservation tillage Forest Roads - Cross-Forainage Maintaining and rading a diging active forest Roads & Cost-Variange Maintaining and fright strips (Stromwater Cost Widths and/or filter strips Closure of Incitrive Roads & Post-Harvest			Grassed waterways
TSS Forage and biomass planning TSS Protect/stabilize banks/bluffs: Reduce collapse of bluffs and erosion of streambank by reducing peak river flow? Stabilize ravines: Reducing erosion of ravines by dispersing and infitrating field runoff and increasing wetation to stabilize these areas. Streambank stabilization Stabilize ravines: Reducing erosion of ravines by dispersing and infitrating field runoff and increasing wetation core ravines. Sking of control fastion Field edge buffers, borders, windbreask and/or filter strips Contour farming and contour buffer Uvestock exclusion - control basin Field edge buffers, borders, windbreask and/or filter strips Contour farming and contour buffer dispersing and infitrating field runoff and increasing wetation core ravines. Sking of contour buffer contour farming and contour buffer strips Outcour farming and contour buffer strips Water and sediment control basin Terrace Contour farming and contour buffer strips Water and sediment control basin Terrace Context raving and construction Residue management - conservation tillage Residue management - conservation tillage Improve forestry management Proper Water Crossings and road construction Imation and algning active Forest Roads Conservation age Maintaining and algning active Forest Roads Colour of inactive Roads & Posit-Harwsit Location & String of Landings			Strategies to reduce flow- some of flow reduction strategies should be targeted to ravine subwatersheds
TSS Open tile inlet controls - riser pipes, french drains Verdand restoration Open tile inlet controls - riser pipes, french drains Verdand restoration Wetdand restoration Stripcorpping Stripcorpping Strambark by reducing peak river free Strategies for altered hydrology (reducing peak flow) Tabilize ravines: Reducing peak river free Strategies for altered hydrology (reducing peak flow) Stabilize ravines: Reducing peok of ravines by dispersing and infiltrating field number and increasing wegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravines (Contour farming and contour buffer strips Field edge buffers, borders, windbreaks and/or filter strips Outsor farming and contour buffer strips Outsor farming and contour buffer strips Outsor farming and contour buffer strips Outsor farming and contour buffer strips Weter construction basin Weter construction basin Terrace Conservation crop rotation Conservation conservation tillage Improve forestry management Proper Water Construgts and construction Free Raads - Cross-Drainage Martaning and aligning active forest Roads Martaning and aligning active forest Roads & Post-Harvest Course of Inactive Roads & Post-Harvest Locatin & String of Landingis Stabilistor meet stabi			Residue management - conservation tillage
TSS Concur farming Protect/stabilize banks/bluffs: Reduce collapse of buffs and erosion of streambank by reducing peak river flow and using vegetation to stabilize these areas. Streambank stabilization TSS Stabilize ravines; Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravines Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravines by more forestry management Field edge buffers, borders, windbreaks and/or filter strips Improve forestry management Proper Water Construction Concur rop rotation Cover crop Residue management - conservation tillage Proper Water Construction Proper Water Construction Construction Construction Construction Cover or p Maintaining and aligning active forest Roads Colsure of inactive Roads & Post-Harvest Construction & Sizing of Landings Colsure of Landings Colsure of Landings Improve urban stormwater management [to reduce Stabilis prian Amagement Zone Widths and/or filter strips Improve urban stormwater management [to reduce Stabilis for re-establish Riparian Amagement Zone Widths and/or filter strips			Forage and biomass planting
Forecl/stabilize banks/bluffs: Reduce collapse bills Stripcropping Protecl/stabilize banks/bluffs: Reduce collapse bills Strategies for altered hydrology (reducing peak flow) and erosion of streambank by reducing peak river flow Strategies for altered hydrology (reducing peak flow) and using vegetation to stabilize these areas. Establish or re-establish riparian forest buffer Livestock exclusion - controlled stream crossings Etablish or re-establish riparian forest buffer Livestock exclusion - controlled stream crossings Field edge buffers, bodres, windbreaks and/or filter strips gestative cover near ravines. Also, may include earthwork/regrading and revegetation of ravines by dispersing and inflictating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravines. Field edge buffers, bodres, windbreaks and/or filter strips Diversions Conservation cortor basin Terrace Conservation cortor obasin Conservation cortor obasin Terrace Conservation tillage Improve forestry management Proper Water Conservation tillage Maintaining and aligning active forest Roads Conservation conservation Closure of Inactive Roads & Post-Harvest Location & Sining of Londings Livestow exclusion Rige of Londingis Estabilish or re-estabilsh Ripa			Open tile inlet controls - riser pipes, french drains
Image: Stripcropping Stripcropping Protect/stabilize banks/bluffs: Reduce collapse of bluffs and using vegetation to stabilize these areas. Strategies for altered hydrology (reducing peak flow) TSS Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near avines. Also, may include arithwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Contour farming and contour buffer earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Over or near avines. Field edge buffers, borders, windbreaks and/or filter strips Outour farming and contour buffer strips Outour farming and contour buffer strips Over or near avines. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near avines. Field edge buffers, borders, windbreaks and/or filter strips Over or near avines. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near avines. Residue management - conservation tillage Improve forestry management Proper Water Consings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Icoation & Sitring of Landings Lo			Contour farming
Protect/stabilize banks/bluffs Strategies for altered hydrology (reducing peak flow) and erosion of streambank by reducing peak river flows and using vegetation to stabilize these areas. Strategies for altered hydrology (reducing peak flow) TSS Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Uversions Contour farming and contour buffer strips Water and sediment control basin Terrace Conservation crop rotation Conservation crop rotation Cover crop Residue management - conservation tillage Improve forestry management Proper Water Crossings and revest Roads Goster a flating and aligning active Forest Roads Conservation tillage Maintaining and aligning active forest Roads & Cross-Drainage Maintaining and aligning active forest Roads Closure of Inclive Roads & Porset Horads & Bost Harvest Location & Sizing of Landings Location & Sizing of Landings Eablish or re-establish Riparian Management Zone Widths and/or filter strips			Wetland restoration
and erosion of streambank by reducing peak river flows and using vegetation to stabilize these areas. Streambank stabilization TSS Stabilize ravines: Reducing erosion of ravines by test control led stream crossings Estabilish or re-estabilish riparian forest buffer Livestock exclusion - controlled stream crossings Stabilize ravines: Reducing erosion of ravines by test control led stream crossings Stabilize ravines: Reducing erosion of ravines with test control and increasing vegetative cover near ravines. Also, may include arithwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Outcur farming and contour buffer strips Outcur farming and contour buffer strips Uversions Water and sediment control basin Terrace Conservation crop rotation Cover crop Residue management - conservation tillage Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Location & Sizing of Landings See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Stripcropping
and using vegetation to stabilize these areas. Intervention is stabilized in stabilization TSS Addition is additional stabilized in the stabilis in parian forest buffer Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Vegetative cover near ravines. Also, may include earthwork/regrading and algoing active forest Roads Consevation conservation tillage Improve forestry management to reduce Forest Roads & Post-			Strategies for altered hydrology (reducing peak flow)
TSS Establish or re-establish riparian forest buffer Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Diversions Contour farming and contour buffer strips Water and sediment control basin Diversions Terrace Conservation crop rotation Cover crop Residue management - conservation tillage Improve forestry management Proper Water Crossings and rod construction Forest Roads - Cross-Drainage Costror forestro from da ligning active Forest Roads Costrating and aligning active Forest Roads Costrating and aligning active Forest Roads Improve urban stormwater management [to reduce Stablish or re-establish Riparian Management Zone Widths and/or filter strips			Streambank stabilization
Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Outour farming and contour buffer strips Contour farming and contour buffer strips Water and sediment control basin Terrace Conservation crop rotation Cover crop Residue management - conservation tillage Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Establish or re-establish riparian forest buffer
Stabilize ravines: Reducing erosion of ravines by dispersing and infiltrating field runoff and increasing vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Field edge buffers, borders, windbreaks and/or filter strips Uversions Diversions Vater and sediment control basin Terrace Conservation corp rotation Conservation corp rotation Cover crop Residue management - conservation tillage Improve forestry management Proper Water Crossings and rous forestry forest Roads Clocure of inactive Roads & Post-Harvest Clocure of inactive Roads & Post-Harvest Locure of inactive Roads & Post-Harvest Locure of inactive Roads & Post-Harvest Locure of inactive Roads & Post-Harvest Locure of inactive Roads & Post-Harvest Locure of inactive Roads & Post-Harvest Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPS	тсс		Livestock exclusion - controlled stream crossings
vegetative cover near ravines. Also, may include earthwork/regrading and revegetation of ravine. Contournation barier strips Diversions Diversions Water and sediment control basin Terrace Conservation crop rotation Conservation of control control basin Residue management - conservation tillage Residue management - conservation tillage Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs	155		Field edge buffers, borders, windbreaks and/or filter strips
earthwork/regrading and revegetation of ravine. Fearthwork/regrading and revegetation of ravine. Vater and sediment control basin Terrace Conservation crop rotation Cover crop Residue management - conservation tillage Proper Water Crossings and road construction Forest Roads - Cross-Drainage Minitaining and aligning active Forest Roads Coure of Inactive Roads & Post-Harvest Coure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pra.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Contour farming and contour buffer strips
Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce			Diversions
Improve forestry management Conservation crop rotation Cover crop Residue management - conservation tillage Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Establish or removal_by_BMPs			Water and sediment control basin
Cover crop Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Terrace
Improve forestry management Residue management - conservation tillage Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Conservation crop rotation
Improve forestry management Proper Water Crossings and road construction Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Cover crop
Forest Roads - Cross-Drainage Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Residue management - conservation tillage
Maintaining and aligning active Forest Roads Maintaining and aligning active Forest Roads Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs		Improve forestry management	Proper Water Crossings and road construction
Closure of Inactive Roads & Post-Harvest Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Forest Roads - Cross-Drainage
Location & Sizing of Landings Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Maintaining and aligning active Forest Roads
Establish or re-establish Riparian Management Zone Widths and/or filter strips Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Closure of Inactive Roads & Post-Harvest
Improve urban stormwater management [to reduce See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs			Location & Sizing of Landings
			Establish or re-establish Riparian Management Zone Widths and/or filter strips
			See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs
Improve upland/field surface runoff controls: Soil and water conservation practices that reduce soil erosion Strategies to reduce sediment from fields (see above - upland field surface runoff)		water conservation practices that reduce soil erosion	Strategies to reduce sediment from fields (see above - upland field surface runoff)
and field runoff, or otherwise minimize sediment from leaving farmland Constructed or restored wetlands			Constructed or restored wetlands
Phosphorus (TP) Pasture management	Phosphorus (TP)		Pasture management
Restored wetlands			Restored wetlands
Reduce bank/bluff/ravine erosion Strategies to reduce TSS from banks/bluffs/ravines (see above for sediment)		Reduce bank/bluff/ravine erosion	Strategies to reduce TSS from banks/bluffs/ravines (see above for sediment)

		Strategy Key
rameter (incl. non- bllutant stressors)	Description	Example BMPs/actions
· · · · · · · · · · · · · · · · · · ·	Increase vegetative cover/root duration: Planting crops	Conservation cover (easements/buffers of native grass & trees, pollinator habitat)
	and vegetation that maximize vegetative cover and	Perennials grown on marginal lands and riparian lands
	minimize erosion and soil losses to waters, especially during the spring and fall.	Cover crops
		Rotations that include perennials
	Preventing feedlot runoff: Using manure storage, water	Open lot runoff management to meet 7020 rules
	diversions, reduced lot sizes and vegetative filter strips to reduce open lot phosphorus losses	Manure storage in ways that prevent runoff
	Improve fertilizer and manure application management: Applying phosphorus fertilizer and manure onto soils	Soil P testing and applying nutrients on fields needing phosphorus
	where it is most needed using techniques which limit exposure of phosphorus to rainfall and runoff.	Incorporating/injecting nutrients below the soil
		Manure application meeting all 7020 rule setback requirements
	Address failing septic systems: Fixing septic systems so	Sewering around lakes
	that on-site sewage is not released to surface waters. Includes straight pipes.	Eliminating straight pipes, surface seepages
	Reduce in-water loading: Minimizing the internal	Rough fish management
	release of phosphorus within lakes	Curly-leaf pondweed management
		Alum treatment
		Lake drawdown
		Hypolimnetic withdrawal
	Improve forestry management	See forest strategies for sediment control
	Reduce Industrial/Municipal wastewater TP	Municipal and industrial treatment of wastewater P
		Upgrades/expansion. Address inflow/infiltration.
	<u>Treat tile drainage waters</u> : Treating tile drainage waters to reduce phosphorus entering water by running water through a medium which captures phosphorus	Bioreactor
	Improve urban stormwater management	See MPCA Stormwater Manual: <u>http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs</u>
	Reducing livestock bacteria in surface runoff: Preventing	Strategies to reduce field TSS (applied to manured fields, see above)
	manure from entering streams by keeping it in storage or below the soil surface and by limiting access of	Improved field manure (nutrient) management
	animals to waters.	Adhere/increase application setbacks
		Improve feedlot runoff control
		Animal mortality facility
E. coli		Manure spreading setbacks and incorporation near wells and sinkholes
		Rotational grazing and livestock exclusion (pasture management)
	Reduce urban bacteria: Limiting exposure of pet or	Pet waste management
	waterfowl waste to rainfall	Filter strips and buffers
		See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs

		Strategy Key
Parameter (incl. non- pollutant stressors)	Description	Example BMPs/actions
	Address failing septic systems: Fixing septic systems so	Replace failing septic (SSTS) systems
	that on-site sewage is not released to surface waters. Includes straight pipes.	Maintain septic (SSTS) systems
	Reduce Industrial/Municipal wastewater bacteria	Reduce straight pipe (untreated) residential discharges
		Reduce WWTP untreated (emergency) releases
	Reduce phosphorus	See strategies above for reducing phosphorus
	Increase river flow during low flow years	See strategies above for altered hydrology
Dissolved Oxygen	In-channel restoration: Actions to address altered portions of streams.	
	Increase living cover: Planting crops and vegetation that	Grassed waterways
	maximize vegetative cover and evapotranspiration	Cover crops
	especially during the high flow spring months.	Conservation cover (easements & buffers of native grass & trees, pollinator habitat)
		Conservation cover (easements & burlets of native grass & trees, polinator nabitat)
		Rotations including perennials
	Improve drainage management: Managing drainage	Treatment wetlands
	waters to store tile drainage waters in fields or at constructed collection points and releasing stored waters after peak flow periods.	Restored wetlands
Altered hydrology; peak flow and/or low base flow (Fish/Macroinvertebrate IBI)	<u>Reduce rural runoff by increasing infiltration</u> : Decrease surface runoff contributions to peak flow through soil	Conservation tillage (no-till or strip till w/ high residue)
	and water conservation practices.	Water and sediment basins, terraces
	Improve urban stormwater management	See MPCA Stormwater Manual: http://stormwater.pca.state.mn.us/index.php/Information_on_pollutant_removal_by_BMPs
	Improve irrigation water management: Increase groundwater contributions to surface waters by withdrawing less water for irrigation or other purposes.	Groundwater pumping reductions and irrigation management
	Improve riparian vegetation: Planting and improving	50' vegetated buffer on protected of waterways
	perennial vegetation in riparian areas to stabilize soil, filter pollutants and increase biodiversity	One rod ditch buffers
		Lake shoreland buffers
		Increase conservation cover: in/near water bodies, to create corridors
Deenliettet		Improve/increase natural habitat in riparian, control invasive species
Poor Habitat (Fish/Macroinvertebrate IBI)		Tree planting to increase shading
,		Streambank and shorline protection/stabilization
		Wetland restoration
		Accurately size bridges and culverts to improve stream stability
		Retrofit dams with multi-level intakes
		Restore riffle substrate

		Strategy Key
Parameter (incl. non- pollutant stressors)	Description	Example BMPs/actions
	Restore/enhance channel: Various restoration efforts largely aimed at providing substrate and natural stream morphology.	Two-stage ditch Dam operation to mimic natural conditions Restore natural meander and complexity
Connectivity (Fish IBI)	Removal fish passage barriers: Identify and address barriers.	Dam removal Properly size and place culverts for flow and fish passage Construct nature-like fish passage

4. Monitoring Plan

Data from three monitoring programs will continue to be collected and analyzed for the Mustinka River Watershed:

Intensive Watershed Monitoring collects water quality and biological data throughout each major watershed, once every 10 years. This work is scheduled for its second iteration in the Mustinka River Watershed in 2020. This data provides a periodic but intensive "snapshot" of water quality throughout the watershed.

http://www.pca.state.mn.us/index.php/water/water-monitoring-and-reporting/water-quality-and-pollutants/water-quality-condition-monitoring/watershed-sampling-design-intensive-watershed-monitoring.html

The *Watershed Pollutant Load Monitoring Network* intensively collects pollutant samples and flow data to calculate daily sediment and nutrient loads on either an annual or seasonal (no-ice) basis. In the Mustinka River Watershed, there are three proposed seasonal subwatershed pollutant load monitoring sites.

http://www.pca.state.mn.us/index.php/water/water-types-and-programs/surface-water/streams-andrivers/watershed-pollutant-load-monitoring-network.html

The *Citizen Surface Water Monitoring Program* is a network of volunteers who make monthly lake and river transparency readings. Several dozen data collection locations exist in the Mustinka River Watershed. This data provides a continuous record of one water quality parameter throughout much of the watershed.

http://www.pca.state.mn.us/index.php/water/water-monitoring-and-reporting/volunteer-watermonitoring/volunteer-surface-water-monitoring.html

In addition to the monitoring conducted in association with the WRAPS process, each local unit of government associated with water management may have their own monitoring plan. Furthermore, there are many citizen monitors throughout the watershed collecting both stream and lake data. All data collected locally should be submitted regularly to the MPCA for entry into the EQuIS database system. <u>http://www.pca.state.mn.us/index.php/data/surface-water.html</u>

5. References and Further Information

Minnesota Pollution Control Agency (MPCA). 2010. Mustinka River Turbidity Total Maximum Daily Load Report. <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=14019</u>.

Minnesota Pollution Control Agency (MPCA). 2013. Mustinka River Watershed Monitoring and Assessment Report. <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=20325</u>.

Minnesota Pollution Control Agency (MPCA). 2015. Mustinka River Watershed Restoration and Protection Project: Stressor Identification Report.

http://www.eorinc.com/documents/Mustinka%20River%20Stressor%20ID%20Report%202-27-15%20DRAFT.pdf.

Minnesota Pollution Control Agency, Minnesota Department of Agriculture, Minnesota Board of Water & Soil Resources, Natural Resources Conservation Service, Farm Service Agency, Minnesota Department of Natural Resources, Minnesota Department of Health, Minnesota Public Facilities Authority, University of Minnesota, Metropolitan Council, and the United States Geologic Service. September 2014. The Minnesota Nutrient Reduction Strategy. Wq-21-80, 348 pp.

http://www.pca.state.mn.us/index.php/view-document.html?gid=20213

National Resources Conservation Service. 2012. Environmental Quality Incentives Program. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip/</u>

Tomer, M.D., S.A. Porter, D.E. James, K.M.B. Boomer, J.A. Kostel, and E. McLellan. 2013. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning. Journal of Soil and Water Conservation 68(5): 113A-120A.

Tomer, M. D., Porter, S. A., Boomer, K. M. B., James, D. E., Kostel, J. A., Helmers, M. J., Isenhart, T. M., McLellan, E. (2015). Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential. Journal of Environmental Quality. In press. <u>https://data.nal.usda.gov/dataset/agricultural-conservation-planning-framework-acpftoolbox</u>.

Mustinka River Watershed Reports

All Mustinka River Watershed reports referenced in this watershed report are available at the Mustinka River Watershed webpage: <u>http://www.pca.state.mn.us/index.php/water/water-types-and-</u> <u>programs/watersheds/mustinka-river.html</u> Appendix A: Stream Geomorphic Surveys

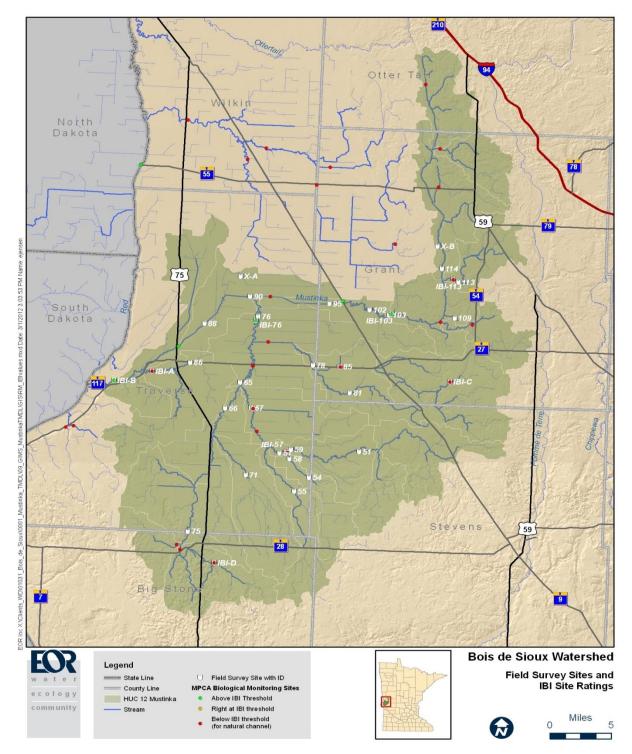


Figure 1. Survey Reaches and IBI Scores within the Mustinka Watershed

REACH INFORM	ATION
Stream/River	Twelvemile
County	Stevens
Drainage Area	58.5 sq. miles
Date	10/26/2011
Field/Site ID	51
Bio Monitoring	No
GEOMORPHIC SU	IMMADY
Est. Bankfull El.	1036.2'
Channel Slope	0.15%
Sinuosity	1.0
Sinuosity Bankfull Width	1.0 62.5'
and the second	
Bankfull Width	62.5'
Bankfull Width W/D Ratio	62.5′ 70.7

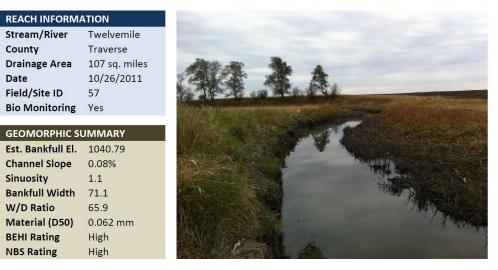
• Bankfull width is extraordinary wide due to ditch geomorphology, reach position within a wetland complex and Red River Valley flooding characteristics; thus the W/D ratio is also very high; this phenomenon is common throughout this study area

REACH INFORM	ATION
Stream/River	East Fork
	Twelvemile
County	Traverse
Drainage Area	17 sq. miles
Date	-
Field/Site ID	54
Bio Monitoring	No
GEOMORPHIC S	UMMARY
Est. Bankfull El.	-
Channel Slope	-
Sinuosity	-
Bankfull Width	-
W/D Ratio	-
Material (D50)	-
BEHI Rating	-
NBS Rating	-

NOTES & OBSERVATIONS

• Did not survey – no perennial flow and frequently no discernible channel; large cattail wetland flowage;

REACH INFORMATION


(p)	West Fork
Stream/River	Twelvemile
County	Traverse
Drainage Area	23 sq. miles
Date	-
Field/Site ID	55
Bio Monitoring	No

GEOMORPHIC SUM	MARY
Est. Bankfull El.	-
Channel Slope	-
Sinuosity	-
Bankfull Width	-
W/D Ratio	-
Material (D50)	-
BEHI Rating	-
NBS Rating	-

NOTES & OBSERVATIONS

• Did not survey - no perennial flow

- Good buffer (width and quality)
- Some floodplain vegetation killed off by recent sustained high water

REACH INFORM	ATION	
Stream/River	Twelvemile	at at
County	Traverse	and the second
Drainage Area	110 sq. miles	
Date	-	
Field/Site ID	59	
Bio Monitoring	No	A second s
Est. Bankfull El.	-	
GEOMORPHIC SU	JMMARY	A CONTRACT OF A
Channel Slope	-	
Sinuosity	-	CALLER STATISTICS
Bankfull Width	-	
W/D Ratio	-	
Material (D50)	-	
BEHI Rating	-	
NBS Rating	2	

• Did not complete survey, reach influenced by active beaver dam

REACH INFORM	ATION
Stream/River	West Branch
	Twelvemile
County	Traverse
Drainage Area	493 sq. miles
Date	10/26/2011
Field/Site ID	65
Bio Monitoring	No
GEOMORPHIC SU	JMMARY
Est. Bankfull El.	1014.1'
Channel Slope	0.03%
Sinuosity	1.5
Bankfull Width	33.3'
W/D Ratio	9.1
Material (D50)	0.27mm
BEHI Rating	High
NBS Rating	High

- More entrenched than other study reaches;
- Channel evolution (lateral) is resulting in a number of severely eroding banks within reach

REACH INFORM	ATION	
Stream/River	West Brank Twelvemile	
County	Traverse	
Drainage Area	181 sq. miles	
Date	-	
Field/Site ID	66	11 410
Bio Monitoring	No	Water a loss that have
GEOMORPHIC S	JMMARY	A STATISTICS AND
GEOMORPHIC S	JMMARY	
Est. Bankfull El.	-	A REAL PROPERTY OF THE REAL
Channel Slope	-	
Sinuosity	-	A REAL PROPERTY AND A REAL
Bankfull Width	-	
W/D Ratio	-	
Material (D50)	-	
BEHI Rating	-	
NBS Rating	-	the second second

• Did not complete survey – water levels were too high and soils were unconsolidated; possible downstream beaver dam?

REACH INFORM	ATION				XXII
Stream/River	Twelvemile		ANA AD-	C. Anda	AND
County	Traverse		VALLER	The Hall	1 332
Drainage Area	169 sq. miles		XXX	2 MAX	A A A
Date	10/24/2011			MAX V	the state
Field/Site ID	67	4			The Carlos
Bio Monitoring	Yes				Rot at
GEOMORPHIC S	UMMARY	A SECTION		I A	
Est. Bankfull El.	1023.1		and the	A Street Street	
Channel Slope	0.09%	- Andrews			
Sinuosity	1.1			CAR CONTRACT	
Bankfull Width	28.2		AN IN	THE A	
W/D Ratio	20.9		1	The A	Mar Carlos
Material (D50)	0.36 mm		the same to the	R Sh	
BEHI Rating	Very High			No.	and the
NBS Rating	Very High	13			a transfer

NOTES & OBSERVATIONS

• Heavier shade in certain segments likely is resulting in less herbaceous vegetation and a slightly wider bankfull width.

REACH INFORMATION

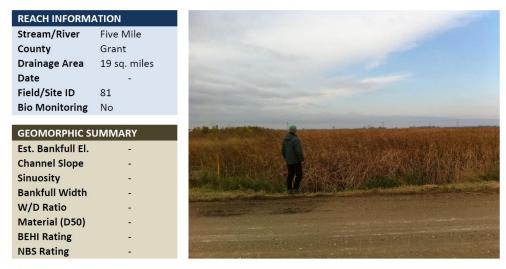
Stroom / Divor	W. Branch
Stream/River	Twelvemile
County	Traverse
Drainage Area	73 sq. miles
Date	10/24/2011
Field/Site ID	75
Bio Monitoring	No

GEOMORPHIC SUMMARY			
Est. Bankfull El.	1081.4'		
Channel Slope	0.06%		
Sinuosity	1.0		
Bankfull Width	21.8'		
W/D Ratio	10.2		
Material (D50)	0.06 mm		
BEHI Rating	Moderate		
NBS Rating	Very Low		

NOTES & OBSERVATIONS

- Stream channel confined to steep banks, no bankfull benches exists.
- Poor instream habitat (lack of pools and riffles, coarse substrate). •

REACH INFORM	ATION	
Stream/River	Twelve Mile	NI AND
County	Traverse	
Drainage Area	514 sq. miles	
Date	10/25/2011	
Field/Site ID	76	
Bio Monitoring	Yes	
GEOMORPHIC SI	UMMARY	
Est. Bankfull El.	997.1	
Channel Slope	0.002%	
Sinuosity	1.3	
Bankfull Width	53.6'	
W/D Ratio	10.2	
Material (D50)	0.68 mm	
BEHI Rating	High	
NBS Rating	Moderate	


1. ×

NOTES & OBSERVATIONS

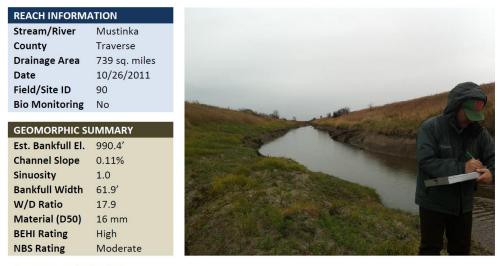
- Significant erosion in first 650' downstream of Cty Hwy 14 crossing; excluded from BEHI
- Very low gradient

REACH INFORM	ATION
Stream/River	Fivemile
County	Traverse
Drainage Area	98.2 sq. miles
Date	10/26/2011
Field/Site ID	78
Bio Monitoring	No
GEOMORPHIC SI	
Est. Bankfull El.	1033.2'
Channel Slope	0.02%
Sinuosity	1.1
Bankfull Width	31.6'
W/D Ratio	26.1
Material (D50)	0.06 mm
material (Doo)	
BEHI Rating	Low

- Some signs of aggradation, gravel was overlaying silt, longitudinal profile was silt dominated;
- Good buffer; ≥ 150' from stream centerline

• Did not survey – no perennial flow and frequently no discernible channel; large cattail wetland flowage;

REACH INFORM	ATION
Stream/River	CD#8
County	Grant
Drainage Area	69 sq. miles
Date	10/26/2011
Field/Site ID	85
Bio Monitoring	Yes
GEOMORPHIC S	
Est. Bankfull El.	1040.8′
Channel Slope	0.17%
Sinuosity	1.0
Bankfull Width	15.6′
W/D Ratio	7.5
Material (D50)	0.06 mm
BEHI Rating	High
NBS Rating	Low
NOTES & OBSER	VATIONS
NOTES & OBSER	VAIIONS


• Similar to site 95, higher gradient of this reach appears to be connected to relative greater habitat quality witnessed (less embeddedness, aquatic vegetation, greater pool depth and frequency)

REACH INFORM	ATION	
Stream/River	Eighteenmile	
County	Traverse	
Drainage Area	12.9 sq. miles	
Date	10/24/2011	
Field/Site ID	86	
Bio Monitoring	No	
GEOMORPHIC S	UMMARY	
Est. Bankfull El.	1004.5'	
Channel Slope	0.06%	A President President President
Sinuosity	1.6	Stand and the state of the second
Bankfull Width	28.3′	
W/D Ratio	98.1	
Material (D50)	0.06 mm	AN MUSE CALL THE ALL THE ALL THE ALL THE
BEHI Rating	Very Low	
NBS Rating	Very Low	NEW MARCE 200 CE DATA DE SA

- This stream was dry during the assessment. A large beaver dam exists on the upstream end of the reach and is affecting the hydrology downstream.
- The very high width/depth ratio is indicative of a wide, shallow channel and low floodplain.

REACH INFORM	ATION	
Stream/River	Mustinka	
County	Traverse	
Drainage Area	757 sq. miles	
Date	10/25/2011	
Field/Site ID	88	
Bio Monitoring	No	
GEOMORPHIC SU		
Est. Bankfull El.	980.68	ENGLAND A CONTRACT OF LAND
Channel Slope	0.003%	the second se
Sinuosity	1.0	A REAL PROPERTY AND A REAL
Bankfull Width	54.9'	1/ TOTAL STREET BEAM STREET BALLED
W/D Ratio	14.9	
Material (D50)	0.062 mm	
BEHI Rating	Moderate	

- Multiple side-inlet control failures in area
- Significant amount of floodplain vegetation killed off by recent sustained inundation

NOTES & OBSERVATIONS

• Active channel evolution (lateral), which is resulting in a number of significant ditch bank failures; a separate BEHI and NBS was completed for bank failure within survey reach and scored Very High and High, respectively

Automatical and a second state of a second state of the	The subject of the second
REACH INFORM	ATION
Stream/River	Mustinka
County	Grant
Drainage Area	191 sq. miles
Date	10/25/2011
Field/Site ID	95
Bio Monitoring	No
GEOMORPHIC S	UMMARY
Est. Bankfull El.	1036.2'
Channel Slope	0.05%
Sinuosity	1.0
Bankfull Width	57.1'
W/D Ratio	18.2
Material (D50)	1.5 mm
BEHI Rating	High
NBS Rating	High
NOTES & OBSER	VATIONS

• Similar to site 85, higher gradient of this reach appears to be connected to relative greater habitat quality witnessed (less embeddedness, aquatic vegetation, greater pool depth and frequency)

REACH INFORMA Stream/River	Mustinka
County	Grant
Drainage Area	185 sq. miles
Dialitage Area Date	10/26/2011
Field/Site ID	102
Bio Monitoring	No
GEOMORPHIC SU	JMMARY
Est. Bankfull El.	1036.2'
Channel Slope	0.02%
Sinuosity	2.3
Bankfull Width	29.7′
W/D Ratio	13.0
Material (D50)	1.1 mm
BEHI Rating	High

- A large beaver dam exists at the upper end of the reach and sediment is accumulating above the dam.
- A defined riffle/pool sequence exists below the dam with small cobble and boulders present.

REACH INFORM	
Stream/River	Mustinka
County	Grant
Drainage Area	171 sq. miles
Date	10/25/2011
Field/Site ID	103
Bio Monitoring	Yes
GEOMORPHIC SU	
Est. Bankfull El.	
Channel Slope	0.02%
Sinuosity	1.9
Bankfull Width	33.2'
W/D Ratio	11.3
Material (D50)	3.2 mm
BEHI Rating	High
NBS Rating	Low

- Eroded stream banks on outside bends of meanders typical in this reach.
- Defined riffle/pool sequence, pool depth greater than 3 feet.

NOTES & OBSERVATIONS

• This reach contains a very narrow and shallow stream that flows through a steep gradient grassy swale. Very little instream habitat exists in this reach.

REACH INFORM	ATION	
Stream/River	Mustinka	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERT
County	Grant	A strategy and a second s
Drainage Area	24.5 sq. miles	
Date	10/25/2011	
Field/Site ID	113	AND A DESCRIPTION
Bio Monitoring	Yes	
GEOMORPHIC S	JMMARY	The state of the state of the
Est. Bankfull El.	1100.5′	
Channel Slope	0.04%	
Sinuosity	1.2	
Bankfull Width	17.1′	Millis and Millis and Millis
W/D Ratio	25.5	
Material (D50)	0.06 mm	
BEHI Rating	Moderate	

- Poor instream habitat, substrate consists of fine silt/clay.
- Floodplain is accessible during most storm events.

REACH INFORM	ATION	
Stream/River	Mustinka	
County	Grant	
Drainage Area	92 sq. miles	
Date	10/25/2011	the second se
Field/Site ID	114	
Bio Monitoring	No	
GEOMORPHIC S	UMMARY	
Est. Bankfull El.	1088.0'	
Channel Slope	0.20%	
Sinuosity	1.1	
Bankfull Width	142.7'	
W/D Ratio	214.6	
Material (D50)	13.0 mm	
BEHI Rating	Moderate	
NBS Rating	Very Low	

- Relatively steep gradient between prominent riffles containing coarse substrate (gravel and small cobble).
- Floodplain accessible during high flow events.

REACH INFORMA	ATION	
Stream/River	Eighteenmile	
County	Traverse	
Drainage Area	50 sq. miles	A CONTRACT OF THE PARTY OF THE
Date	10/26/2011	and the second sec
Field/Site ID	IBI A	The second s
Bio Monitoring	Yes	
GEOMORPHIC SU	JMMARY	
Est. Bankfull El.	986.6'	STATISTICS OF THE STATISTICS
Channel Slope	0.01%	
Sinuosity	1.1	
Bankfull Width	18.4′	SURVEX NOT ON ONE /
W/D Ratio	12.9	
Material (D50)	1.3 mm	
BEHI Rating	Moderate	22 PARADON MARINA DA
NBS Rating	Very Low	

- Stream banks well vegetated and stable.
- Coarse substrate and over-hanging riparian vegetation are key habitat features.

REACH INFORM	ATION	
Stream/River	Mustinka	
County	Traverse	
Drainage Area	858.3 sq. miles	<u></u>
Date	10/26/2011	MK.
Field/Site ID	IBI B	Contraction of the second s
Bio Monitoring	Yes	A MANAGER AND A STREET AND
GEOMORPHIC SU	JMMARY	
Est. Bankfull El.	979.0	A Second Second
Channel Slope	0.006%	
Sinuosity	1.2	
Bankfull Width	253.4'	
W/D Ratio	41.0	
Material (D50)	N/A	
BEHI Rating	N/A	
NBS Rating	Low	

- River system is relatively wide with a low floodplain resulting in a high width/depth ratio.
- Stream banks stable and well vegetated, deep pools present in this reach.

REACH INFORMATION

Stream/River	Unknown
County	Grant
Drainage Area	10 sq. miles
Date	10/26/2011
Field/Site ID	IBI C
Bio Monitoring	Yes

GEOMORPHIC SU	JMMARY
Est. Bankfull El.	1102.1'
Channel Slope	0.08%
Sinuosity	1.3
Bankfull Width	13.5'
W/D Ratio	11.2
Material (D50)	2.2 mm
BEHI Rating	Moderate
NBS Rating	Moderate

NOTES & OBSERVATIONS

- Headwater, higher gradient stream
- Intensively grazed

REACH INFORM	ATION
Stream/River	CD-#8
County	Big Stone
Drainage Area	16.6 sq. miles
Date	10/24/2011
Field/Site ID	IBI D
Bio Monitoring	Yes
GEOMORPHIC S	
Est. Bankfull El.	1099.0'
Channel Slope	0.37%
Sinuosity	1.3
Bankfull Width	9.8'
W/D Ratio	7.8
Material (D50)	4.0 mm
BEHI Rating	Moderate
NBS Rating	Low

NOTES & OBSERVATIONS

• A wide buffer zone exists upstream of 720th Avenue. The "E" channel in this reach is very stable with undercut banks and pools providing instream habitat. The stream is ditched downstream of 720th Avenue and no buffer exists.

REACH INFORMATION Stream/River Former Mustinka County Traverse Drainage Area Date Field/Site ID X-A Bio Monitoring No GEOMORPHIC SUMMARY Est. Bankfull El. Channel Slope Sinuosity

NOTES & OBSERVATIONS

Bankfull Width W/D Ratio Material (D50) BEHI Rating NBS Rating

- Did not survey; bottom unconsolidated and no longer an active flowage
- Former Mustinka River Channel, cut off by Army Corps bypass

Appendix B: Stream Assessment Status

Table 19: Assessment status of stream reaches in the Mustinka River Watershed

				Aquatic Life							
Subshed	AUID (Last 3 digits)	Stream	Reach Description	Fish Index of Biotic Integrity	Macroinvertebrate Index of Biotic Integrity	Dissolved Oxygen	Turbidity/TSS	Chloride	Hq	Ammonia	Bacteria
Eighteenmile Creek	508	Eighteenmile Creek	Unnamed Cr to Mustinka R	NS	NS	NS	FS	FS	FS	FS	IF
	510	Fivemile Creek	T127 R45W S24, east line to Mustinka River Ditch			IF	FS	FS	FS	FS	NS
Fivemile Creek	525	Unnamed ditch	Unnamed ditch to Fivemile Cr			IF	FS		FS		NA
	564	Unnamed ditch	Unnamed Cr to Unnamed ditch	NA*	NA*						
	578	Unnamed creek	Unnamed Cr to Unnamed Cr	NS				-			NA
	502	Mustinka River (Old Channel)	Fivemile Cr to Unnamed Cr	NA*	NA*	FS	NS	FS	FS	FS	FS
	503	Mustinka River	Unnamed Cr to Lk Traverse	NA*	NA*	IF	NS	FS	FS	FS	IF
Mustinka River	506	Mustinka River	Headwaters to Lightning Lk	NA*	NA*	NS	FS	FS	FS	FS	NS
	518	Mustinka River	Grant/Traverse County line to Fivemile Cr	NA*	NA*		NS*				NS
	538	Unnamed creek	Unnamed Cr to Mustinka R	NS	NS		FS				NA
	553	Mustinka River Ditch	Twelvemile Cr to Mustinka R				NS*				NA
Mustinka River	559	Unnamed creek	Unnamed Cr to Unnamed Cr	NA*	NA*						

						Aquat	ic Life				Aq Rec
Subshed	AUID (Last 3 digits)	Stream	Reach Description	Fish Index of Biotic Integrity	Macroinvertebrate Index of Biotic Integrity	Dissolved Oxygen	Turbidity/TSS	Chloride	Hq	Ammonia	Bacteria
	561	Unnamed creek	Unnamed Cr to Mustinka R	NA*	NA*						
	562	Unnamed creek	Unnamed Cr to Unnamed Cr	NA*	NA*						
	580	Mustinka River	Lightning Lk to Mustinka River Flowage	NS	FS	NS	NS	FS	FS	FS	NS
	582	Mustinka River	Mustinka River Flowage to Grant/Traverse County Line	FS	FS	IF	NS		FS	FS	IF
	513	Twelvemile Creek (County Ditch 1)	Lundberg Lk to T126 R45W S28, north line	NA*	NA*						
Twelvemile Creek	514	Twelvemile Creek	T126 R45W S21, south line to W Br Twelvemile Cr	NS	NS	NS	NS		FS	FS	NS
I welvemile Creek	557	Twelvemile Creek	W Br Twelvemile Cr to Mustinka River Ditch	NS	NS	IF	NS	FS	FS	FS	NS
	579	County Ditch 42	Between Twelvemile Cr and Fivemile Cr	NA*	NA*						
West Branch	511	Twelvemile Creek, West Branch	T125 R46W S33, south line to Twelvemile Cr			NS	FS		FS	FS	NS
Mustinka River	512	Judicial Ditch 4	Headwaters to Twelvemile Cr	NA*	NA*						
West Branch	524	Unnamed creek	CD 33 to W Br Twelvemile Cr			NS	FS		FS		NA
Mustinka River	527	County Ditch 8	Headwaters to Lannon Lk	NA*	NA*						

				Aquatic Life							Aq Rec
Subshed	AUID (Last 3 digits)	Stream	Reach Description	Fish Index of Biotic Integrity	Macroinvertebrate Index of Biotic Integrity	Dissolved Oxygen	Turbidity/TSS	Chloride	Hq	Ammonia	Bacteria
	532	Unnamed creek	Unnamed Cr to Unnamed Cr	NA*	NA*						

FS = Fully Supporting: found to meet the water quality standard,

NS = Not Supporting: does not meet the water quality standard and therefore, is impaired,

IF = the data collected was insufficient to make a finding,

NA = not assessed

NA* = aquatic life assessment and/or impairments have been deferred until the adoption of Tiered Aquatic Life Uses due to the AUID being predominantly (>50%) channelized or having biological data limited to a station occurring on a channelized portion of the stream.

-- = no data collected for this parameter

Appendix C: Lake Assessment Status

Subshed	Lake ID	Lake	Aquatic Recreation
	26-0140	Elbow	IF
	26-0141	Trisko	IF
Mustinka River	26-0185	Cottonwood	IF
	26-0235	Mustinka River Flowage	IF
	26-0282	Lightning	NS
	56-0804	Mud	IF
	26-0188	Unnamed	IF
	26-0194	Big	IF
	26-0199	Unnamed	IF
	26-0203	Nelson	IF
	26-0206	Keitzman Slough	IF
	26-0208	Ohlsrud	IF
Fivemile Creek	26-0213	East Niemaki	IF
	26-0214	West Niemaki	IF
	26-0215	Unnamed	IF
	26-0217	Unnamed	IF
	26-0218	Unnamed	IF
	26-0343	Unnamed	IF
	75-0241	Unnamed	IF
West Branch Mustinka	06-0138	East Toqua	NS
River	06-0139	Lannon	NS
Twelvemile Creek	75-0258	Unnamed	IF
	75-0348	Unnamed	IF

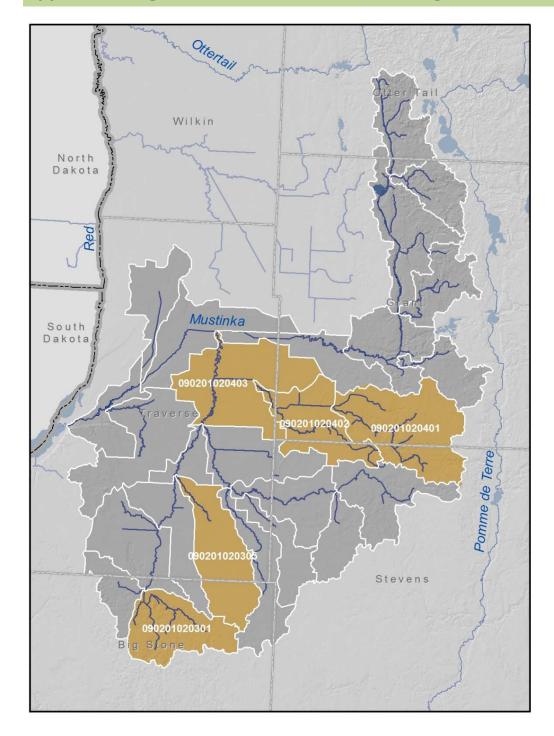
Table 20: Assessment status of lakes in the Mustinka River Watershed

NS = Not Supporting: does not meet the water quality standard and therefore, is impaired

IF = the data collected was insufficient to make a finding

Appendix D: Completed Stream TMDL Allocation Summaries

			Allocati	ons (TP/TSS in ka	g/day, <i>E. coli</i> in			
Stream/	Pollutant	Flow Zone	Wastelo	ad Allocation	Load A	llocation	Percent	
Reach (AUID)	Reach (AUID) =		WWTFs	Regulated Stormwater	Upstream Outflow	Watershed Runoff	Margin of Safety	Reduction
		Very High		0.2	75,150.9	1,819.8	8,552.3	92%
		High		0.1	13,835.8	1,565.8	1,711.3	37%
09020102-502	TSS	Mid		0.08	7,499.9	921.9	935.8	0%
		Dry		0.04	4,575.6	430.7	556.3	0%
		Very Dry		0.008	2,037.5	93.0	236.7	0%
		Very High	894	24	52	,381	5,924	91%
		High	894	3	6,	604	835	88%
09020102-503	TSS	Mid	894	<10	7	44	181	46%
		Dry	*	<10		*	*	77%
		Very Dry	*	<10		*	*	33%
		Very High				65.3	7.3	n/a
		High				10.6	1.2	n/a
09020102-506	E. coli	Mid				3.9	0.4	n/a
		Low				1.6	0.2	n/a
		Very Low				0.5	0.1	n/a
		Very High		0.00096		11.6	1.3	52%
		High		0.00018		2.2	0.2	48%
09020102-508	ТР	Mid		0.0001		1.2	0.1	51%
		Low		0.00004		0.6	0.1	51%
		Very Low		0.00002		0.2	0.0	n/a
		Very High	3.4			138.4	15.7	n/a
		High	3.3			39.0	4.7	0%
09020102-510	E. coli	Mid	3.3			18.4	2.4	0%
		Low	3.3			7.8	1.2	77%
		Very Low	3.3			1.6	0.6	88%
00020102 514	E coli	Very High	4.6			372.2	41.9	n/a
09020102-511	E. coli	High	4.6			63.7	7.6	n/a
		Mid	4.6			35.3	4.4	n/a
09020102-511	E. coli	Low	4.6			20.6	2.8	n/a
		Very Low	4.6			7.4	1.3	n/a


Table 21. Allocation summary for completed stream TMDLs in the Mustinka River Watershed

			Allocati	ons (TP/TSS in k	g/day, <i>E. coli</i> ir	billions organi	sms/day)	
Stream/	itant	Flow Zone	Wastelo	ad Allocation	Load A	llocation		Percent
Reach (AUID)	Pollt		WWTFs	Regulated Stormwater	Upstream Outflow	Watershed Runoff	Margin of Safety	Reduction
		Very High	5.6	0.004		39.3	5.0	53%
09020102-511		High	5.6	0.0002		2.6	0.9	34%
	ТР	Mid	*	0.0004		4.7	0.5	27%
		Dry	*	0.0002		3.0	0.3	24%
		Very Dry	*	0.0002		1.4	0.2	0%
		Very High				301.0	33.4	n/a
		High				64.2	7.1	n/a
09020102-514	E. coli	Mid				37.9	4.2	n/a
		Low				24.2	2.7	n/a
		Very Low				11.4	1.3	n/a
		Very High		0.003		35.8	4.0	58%
	ТР	High		0.0006		7.6	0.8	44%
09020102-514		Mid		0.0004		4.5	0.5	44%
		Low		0.0002		2.9	0.3	46%
		Very Low		0.0002		1.4	0.2	0%
	TSS	Very High		1.3		15,523.6	1,725.0	91%
		High		0.3		3,313.4	368.2	0%
09020102-514		Mid		0.2		1,954.6	217.2	0%
		Low		0.1		1,246.0	138.5	0%
		Very Low		<0.1		589.0	65.4	0%
		Very High			361.9	157.0	72.6	n/a
		High			44.4	29.9	10.4	n/a
09020102-518	E. coli	Mid			17.2	14.8	4.5	49%
		Low			1.6	14.9	2.3	88%
		Very Low			0.5	5.2	0.8	78%
		Very High	295	4	8,	972	1,034	89%
09020102-518	TSS	High	295	<1	1,	003	145	85%
		Mid	*	<1		*	*	80%
		Low	*	<1		*	*	78%
09020102-518	TSS	Very Low	*	<1		*	*	80%
		Very High			888.2	49.8	104.2	n/a
09020102-557	E. coli	High			181.5	12.4	21.5	n/a
		Mid			107.9	5.5	12.6	n/a

			Allocati	Allocations (TP/TSS in kg/day, <i>E. coli</i> in billions organisms/day)					
Stream/	Pollutant	Flow Zone	Wastelo	ad Allocation	Load A	llocation		Percent	
Reach (AUID)	Pollt		WWTFs	Regulated Stormwater	Upstream Outflow	Watershed Runoff	Margin of Safety	Reduction	
		Low			67.2	4.9	8.0	n/a	
		Very Low			30.4	3.5	3.8	n/a	
		Very High	283.9	2.6	17,249.8	30,848.2	5,376.0	0%	
		High	283.9	0.5	3,681.8	6,036.8	1,111.4	0%	
09020102-557	TSS	Mid	283.9	0.3	2,172.0	3,392.6	649.9	0%	
		Low	283.9	0.2	1,384.6	2,054.9	413.7	0%	
		Very Low	283.9	0.066	654.5	808.0	194.1	0%	
		Very High	8.4		65.3	288.2	40.1	n/a	
	E. coli	High	8.3		10.6	25.5	4.8	n/a	
09020102-580		Mid	8.3		3.9	5.0	1.8	n/a	
		Low	*		1.6	*	0.8	n/a	
		Very Low	*		0.5	*	0.2	n/a	
	ТР	Very High	12.56	0.004		30.2	4.8	20%	
		High	0.62*	0.0006		4.4	0.6	30%	
09020102-580		Mid	0.62*	0.002		1.2	0.2	55%	
		Dry	0.62*	0.0002		0.1	0.1	58%	
		Very Dry	0.62*	0.0002		0.0	0.1	0%	
		Very High	296.5	2.8		18,325.9	2,069.5	77%	
		High	296.5	0.2		1,952.9	250.0	14%	
09020102-580	TSS	Mid	296.5	0.08		551.5	94.2	0%	
		Low	296.5	0.02		87.4	42.6	0%	
		Very Low	*	<0.01		*	11.8	0%	
		Very High		0.5	18,625.1	3,211.5	2,426.3	87%	
00020102 502	TCC	High		0.2	2,249.6	877.2	347.4	36%	
09020102-582	TSS	Mid		0.08	847.9	499.1	149.7	0%	
		Low		0.04	383.8	311.2	77.2	0%	
09020102-582	TSS	Very Low		0.02	105.8	131.6	26.4	0%	

* See TMDL WLA methodology for allocation determination at lower flow zones

n/a - insufficient monitoring to determine existing load and therefore percent reduction needed to meet TMDL

Appendix E: Agricultural Conservation Planning Framework

The ACPF is a LiDAR-based analysis framework that, similar to the WQDSA, determines pollutant hotspots (principally based on estimated runoff risk) on the landscape but also targets potential field-scale sites for a set of specific agricultural BMPs such as sediment control basins (WASCOBs), restored wetlands, riparian buffers and grassed waterways. Siting is based on LiDAR terrain analyses taking into account criteria identified by NRCS to meet EQIP specifications (e.g., contributing drainage area to BMP, location of dominant runoff flowpaths, basin depths and volumes, etc.).

The ACPF was run by EOR for five HUC-12 watersheds in the Mustinka River Watershed (see map in Appendix E). These watersheds of interest were selected based on input received from stakeholders during planning meetings as well as results from HSPF modeling and the Watershed Water Quality Decision Support Framework (discussed above). Results of the ACPF analyses were intended to provide a basis for discussion on BMP planning and implementation within these watersheds, and also serve as an example of the potential value in doing ACPF analyses on additional HUC-12s within the Mustinka watershed in the future. Phosphorus was the pollutant of focus for this exploratory analysis although most of the results will apply to sediment as well.

Structural/Terrain Dependent BMP Siting using ACPF

Terrain dependent BMPs refer to those structural practices whose cost-effectiveness is dependent on characteristics of landscape (topography, soils, landuse). For example, the optimal locations for enhancing riparian buffers are at the intersections between perennial streams (vs. intermittent) and areas of relatively high overland runoff (i.e., where significant runoff flow from agricultural fields enters the stream via the riparian zone). Impoundments such as WASCOBs need to be sited where high runoff and erosion potential exist and where topography is conducive to impounding significant runoff after construction of a berm/embankment.

The ACPF tools were designed principally with depressional/prairie pothole topography in mind, particularly where WASCOBs, restored depressional wetlands and constructed nutrient removal wetlands are concerned (the latter refers to wetlands constructed within headwater channels for, principally, removal of nitrate). As such, the lake plain areas of the Mustinka provide little opportunity for harnessing existing on-field, riparian and in-channel depressional storage. In these areas, riparian buffers were the sole terrain dependent BMP sited. In the beach ridge/moraine areas, potential WASCOB locations were sited in addition to buffers. In all areas, significant overland flow paths were delineated where they entered perennial streams. These features represent areas of interest for possible implementation of grassed waterways and/or wider riparian buffers (or other form of grade stabilization, side inlet installation, etc.).

As implied above, BMP siting analysis was constrained to areas around perennial streams; this is due to the assumption that practices are more cost-effective when placed in areas with consistent flow. Intermittent streams can be important during certain seasons and precipitation events but the focus of the ACPF analysis was on channels most likely to export pollutants downstream.

ACPF results for water and sediment control basins (WASCOBs), riparian buffers and grassed waterways were integrated into the overall BMP plan and are summarized below.

Approach

Best Management Practice (BMP) strategies were analyzed for five HUC-12s in the Mustinka River Watershed using the ACPF (see map on preceding page). BMP strategies were analyzed by taking into account the following factors:

- Watershed Hot Spots: areas within the watershed where modeling predicts higher than average nutrient production rates (See Section 3.2 for sediment and phosphorus hotspot maps)
- BMP Performance: research-based nutrient removal rates for a suite of BMPs
- BMP Cost: the cost associated with BMPs from an installation AND lost income standpoint
- **Terrain Suitability**: the watersheds were evaluated for areas where the terrain is most suited to implement specific structural BMPs

Watershed Hot Spots

Targeted land cover and management areas are general areas where nutrient yields are highest (e.g., P pounds/acre/year entering stream channels from adjacent lands) and where prioritization planning should begin. These areas present more practical BMP opportunities as costs for implementation would generally be a function of the size of the area treated and independent of the amount of nutrient treated. Potential target areas were selected using results of the WQDSA analysis which takes into account phosphorus erosion/export from fields and flow distance from the nearest stream; this procedure produces fairly fine scale determinations of probable hotspots. An additional methodology for determining hotspots was also implemented as part of the ACPF analysis discussed below and is based primarily on analysis of field scale runoff risk.

BMP Performance

Phosphorus reductions associated with BMPs were compiled from existing research and prior experience. Reduction estimates representing averages across research studies came from the MPCA's 2014 Minnesota Nutrient Reduction Strategy (MNRS). The average removal rate for each practice is found in Table 22.

Phosphorus removal rates are highest for no-till and practices aimed at trapping sediment since phosphorus is generally tied to sediment particles. Moderate to high rates of phosphorus removal are also seen in land retirement practices.

BMP Costs

Costs per acre per year were estimated based on information in the MNRS and EQIP BMP database. The TP percent reductions were divided by unit costs to generate a cost-effectiveness index. This index is designed to show relative differences between BMPs. Negative costs and cost-effectiveness indicate BMPs that have been demonstrated to result in a net profit.

Agricultural BMP costs were based on analysis from the MNRS and data from the EQIP database which accounts for the installation costs and lost revenues associated with each practice. The costs and cost-effectiveness values presented in Table 22 and Table 24 - Table 28 are based on costs per year per acre. These calculated costs are straight-forward for nutrient management BMPs, but costs for edge-of-field

and land use change BMPs are primarily related to initial installation costs which can be substantial compared to the nutrient management costs. Therefore, sediment basin BMPs were assumed to have a 20-year life span whereby installation costs are spread evenly across 20 years. Similarly, riparian buffers, grassed waterways and land use change BMPs were assumed to have a 5-year life span – this reduced life span takes into account that these BMPs may be more easily re-introduced to agriculture if so desired than the aforementioned BMPs.

Moreover, edge-of-field BMP costs are associated with the BMP itself – the area of the BMP doing the treatment – not the upslope area treated. Therefore, to calculate cost per year per acre, the cost was divided by the upslope treatment area. Treatment areas for sediment basins were assumed to be 100 times the impoundment pool area (using Tomer 2013 guidelines) and 25 times the grassed waterway and riparian buffer areas (based on the ACPF analysis described later). This cost division across multiple years and treated acres makes these BMPs much more cost-effective and viable alternatives or supplements to the nutrient management BMPs.

It is important to note that the cost estimates for these BMPs do not take into account any potential cost savings or economic benefit that may be provided by the practice. For instance, increasing soil organic matter may eventually reduce fertilizer need and increase yield.

Category	Practice	% reduction per acre	Est. Cost (\$/ac/yr)
	Reduce phosphorus application rates	17	(12)
	Cover crops	29	78
In-Field Practices	Convert intensive tillage to conservation tillage	33	26
	Convert conservation tillage to no-till	90	18
	Increase soil organic matter	0	NA
	Sediment basins ^{1,a}	85	6
Edge-of-Field Practices	Riparian buffers ^{2,b}	58	7
	Grassed waterways ^{2,b}	58	31
_	Perennials/energy crops ^b	34	698
Land Use Changes	Pasture and/or land retirement ^b	75	585
	Extended alfalfa rotations ^b	59	71

Table 22. BMP estimated reductions per unit area and costs

¹Assumed 1:100 ratio between pool area and upslope drainage area for /acre/yr costs

² Assumed 1:25 ratio between vegetated treatment area and upslope drainage area for /acre/yr costs

^a Assumed lifespan of 20 years for /acre/yr costs

^b Assumed 5-year commitment for /acre/yr costs

Terrain Suitability

Beyond the conceptual and modeled estimates of removal potential from applying various BMPs to the watershed, the task of determining where the BMPs should actually be placed is an important step. To place BMPs on inappropriate locations will reduce their effectiveness (increase costs) and likewise, targeting BMPs to locations where they will provide the most benefit will increase their effectiveness (decrease costs). In a large agricultural watershed like this, a prioritization and targeting framework is warranted to ensure efficient use of resources and avoid an inefficient "shotgun effect."

The ACPF features an ArcGIS toolbox that helps optimize the placement of structural BMPs on the landscape by evaluating terrain suitability using high-resolution digital elevation data (LiDAR). These BMPs are referred to here as "terrain-dependent" as the terrain in which they are placed affects both cost and effectiveness.

The GIS toolbox was implemented for five HUC-12 subwatersheds in the Mustinka River Watershed. Three terrain-dependent, structural Ag BMPs were analyzed: grassed waterways (GWWs), water and sediment control basins (WASCOBs or sediment basins), and riparian buffers. LiDAR with a 3-meter resolution was used as the topographic input data for the GIS tools used to assess potential sites.

The primary numerical output from the GIS analyses necessary for BMP scenario reduction analyses was the upslope drainage area calculated for each sited BMP aggregated at the HUC-12 subwatershed level.

These cumulative drainage areas represented the source areas to be treated for which the BMP percent reductions were applied.

Terrain Suitability is based on the notion that certain Ag BMPs are much more practical to implement if the topography in the targeted area maximizes the effectiveness of the practice and minimizes the installation and operating costs. An example of this concept is a nutrient removal wetland for which research has shown that denitrification is maximized when the wetland pool is shallow enough to support emergent wetlands plants but is continually filled. These attributes have been shown to be tied to existing depressional pool volume and the ratio between pool area and contributing upslope drainage area. Moreover, installation costs will be minimized if an existing (presumably drained) depression already exists and requires minimal design and excavation. A set of automated GIS tools was used to analyze terrain suitability for several types of structural BMPs and is discussed in detail later in this section. The assumptions and methodology used for the ACPF results analysis are presented below in Table 23.

Agricultural Conservation Practice	Treated Watershed Area Estimate	Treated Phosphorus Load Estimate
Corn/Soybean to Pasture and/or Land Retirement	Total area of buffer boxes ¹ with Runoff Rank of 'Critical' and 'High'	Zonal mean ² of WQDSA TP yield (lb/ac/yr) of the buffer box multiplied by the buffer box area
Reduce phosphorus application rates	30% of total cropped area within the HUC-12	Zonal mean of WQDSA TP yield (lb/ac/yr) of the cropped area multiplied by the cropped area
Cover crops, no-till, increase soil organic matter	Total area of cropped fields with Runoff Risk of 'Critical' or 'Very High'	Zonal mean of WQDSA TP yield (lb/ac/yr) of cropped field area multiplied by the cropped field area
Water and Sediment Control Basins (WASCOB)	LiDAR based contributing area to WASCOB	Zonal mean of WQDSA TP yield (lb/ac/yr) of cropped field in which the WASCOB is located multiplied by the contributing area to the WASCOB
Riparian buffers	LiDAR based contributing area to buffer boxes via grassed waterway flow paths, assuming 90% and 95% of total contributing area in beach ridge-dominated and lake plain- dominated HUC-12s, respectively, intercepted by a buffer without a grassed waterway upstream	Zonal mean of WQDSA TP yield (Ib/ac/yr) of contributing area multiplied by the contributing area
Grassed waterways	LiDAR based contributing area to buffer boxes via grassed waterway flow paths, assuming 5% of total	Zonal mean of WQDSA TP yield (lb/ac/yr) of contributing area multiplied by the contributing area

Table 23. Assumptions and Methodology for ACPF BMP analysis

Agricultural Conservation Practice	Treated Watershed Area Estimate	Treated Phosphorus Load Estimate				
	contributing area routed through a grassed waterway					
¹ Refers to uniformly sized polygons drawn along each side of perennial streams which serve as the analysis window for determining optimal buffer function						
² Refers to ArcGIS: Spatial Analyst: Zonal Statistics function						

Best Management Practice Selection

BMPs to be evaluated for applicability in the Mustinka River Watershed are split into the following three major categories:

In-field Practices

The first grouping of practices includes nutrient management practices as well as conservation practices associated with changes in in-field management practices such as use of conservation crops, no-tillage, or increasing organic matter. Because these practices are not mutually exclusive of one another, they were grouped together for the cost-benefit analysis using the cost and effectiveness estimates for cover crops.

Cover crops:

Although there are many options available for cover crop species the analysis uses fall-planted rye. Cover crops reduce soil erosion and limit the amount of nitrate-N leaching from the soil during the late fall-winter-early spring.

Convert intensive tillage to conservation tillage:

The practice consists of switching from moldboard to chisel plowing which leaves at least 30% crop residue on the fields before and after planting to reduce soil erosion.

Convert conservation tillage to no-till:

The practice consists of switching existing chisel plowing to no-till where the ground is not tilled as to not disturb the soil. This increases water infiltration, organic matter retention, nutrient cycling, and reduction of soil erosion.

Increasing organic matter:

For analysis purpose it is assumed that the organic matter is increased by 100%, which would take the soils in the watershed from an estimated 3% to 6%. Increased organic matter provides both greater water and nutrient retention preventing leaching and increasing soil fertility. Soil organic matter and is a major factor in the productivity and sustainability of agronomic systems. Currently, the primary practices for building soil organic matter are planting cover crops, reducing tillage and applying manure

rather than commercial fertilizer. However, just cover crops in conjunction with no-till were incorporated into the BMP scenario analysis.

Edge-of-Field Practices

These practices are typically larger, sometimes structural practices that are terrain dependent. In contrast to the in-field practices, these BMPs can only be installed in areas that support them. This siting was done through use of the ACPF tools as described below.

Water and Sediment Control Basins (WASCOBS):

These are small earthen ridge-and-channel or embankments built across a small watercourse or area of concentrated flow within a field. They are designed to trap agricultural runoff water, sediment and sediment-borne phosphorus as it flows down the watercourse; this keeps the watercourse from becoming a field gully and reduces the amount of runoff and sediment and phosphorus leaving the filed. WASCOB's are usually straight slivers that are just long enough to bridge an area of concentrated flow and are generally grassed. The runoff water detained in a WASCOB is released slowly, usually via infiltration or a pipe outlet and tile line (Minnesota Department of Agriculture).

Riparian Buffers:

These are vegetated zones immediately adjacent to a stream and are generally designed to trap sediment and phosphorus laden surface runoff, which is important but not uniformly opportune along streams. However, different designs and vegetation can improve water quality in different ways. Where vegetation roots can interact with the water table, carbon cycling and denitrification may be enhanced. In areas where the water table depth and overland runoff is high, stiff-stemmed grasses may be beneficial to intercept and reduce runoff and sediment from reaching the stream. Where appreciable amounts of neither runoff nor groundwater can be intercepted, benefits such as stream bank stabilization may be possible (Tomer et al. 2013).

Grassed Waterways:

Grassed waterways are constructed channels that are seeded to grass and drain water from areas of concentrated flow. The vegetation slows down the water and the channel conveys the water to a stable outlet at a non-erosive velocity. Grassed waterways should be used where gully erosion is a problem. These areas are commonly located between hills and other low-lying areas on hills where water concentrates as it runs off the field (NRCS 2012). The size and shape of a grassed waterway is based on the amount of runoff that the waterway must carry, the slope, and the underlying soil type. It is important to note that grassed waterways also trap sediment entering them via field surface runoff and in this manner perform similarly to riparian buffer strips.

Land Use Changes

The following practices involve taking agricultural land out of production. As is noted in the cost section these are fairly high-cost practices primarily as a result of the loss of income that results. The analysis

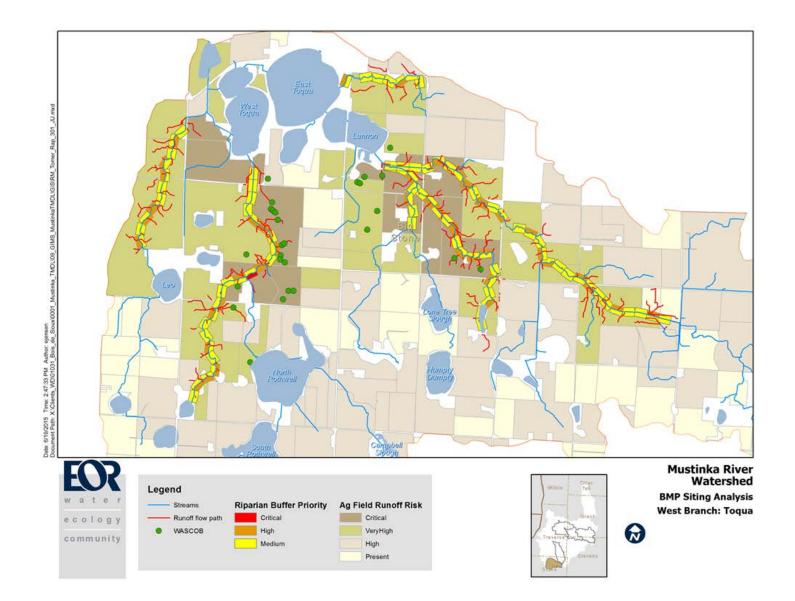
that is provided assumes that these practices, if implemented, would be targeted to the hot-spots identified by the watershed modeling. The practices would be further targeted by looking into the yield history of the specific fields so that the practices would only be placed in low-yield areas. This would help to minimize the cost per acre of the practices. Note that, for simplicity, only pasture/land retirement was examined for this report but the other practices have similar feasibility and cost-effectiveness.

Pasture/Land Retirement:

This practice removes land from agricultural production and converts it perennial vegetation to limit soil erosion. This is a long-term CRP program (10-15 year). The established vegetation is a near natural system that has animal habitat and soil improvement benefits.

Perennials/Energy Crops:

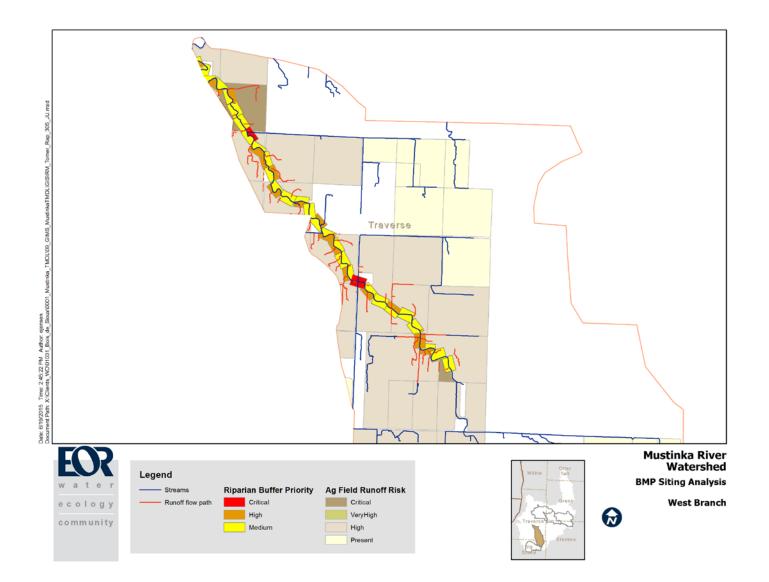
The practice consists of converting corn/soybean lands to perennial or energy crops. Perennial Crops are CRP long-term (10-15 years) program intended to reduce soil erosion by converting land to perennial crops. Energy Crops are perennial crops, such as switchgrass, that produce biomass that can be used as bio-energy feedstock. These crops improve soil cover, reduce soil erosion, and reduce nitrogen and phosphorus loss.


Extended Rotation:

An extend rotation is a rotation of corn, soybean, and at least three years of alfalfa or legume-grass mixtures managed for hay harvest. These crops provide soil cover, reduce soil erosion, and reduce phosphorus loss.

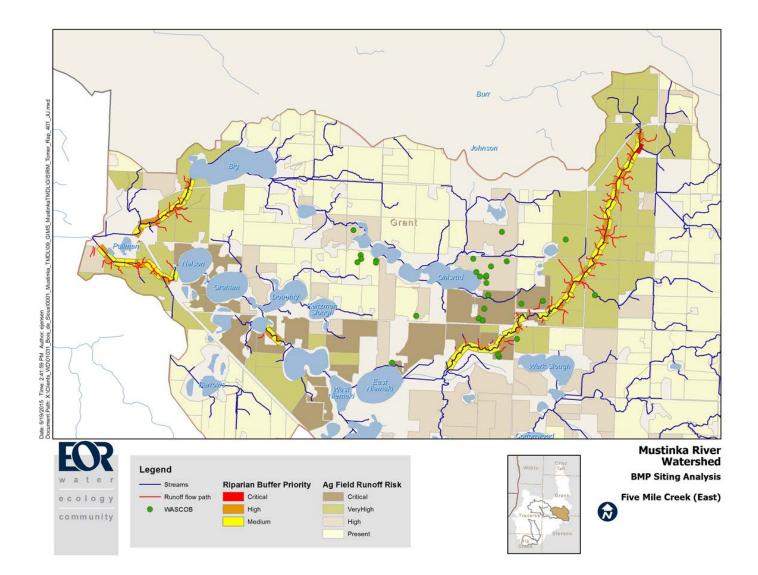
HUC 090201020301 Results: West Branch (Toqua)

Category	Practice	% P Reduction	Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	5	1	2,336
In Field	Reduce phosphorus application rates	17	(-12)	7,144	423	(-199)
In-Field	Cover crops, no-till, increase soil organic matter	29	78	6,769	683	773
Edge-of- Field	Sediment basins	85	5.90	315	93	21
	Riparian buffers	58	6.78	7,004	1,414	34
	Grassed waterways	58	30.58	778	157	151


 Table 24. Agricultural Conservation Practice Framework reductions and cost-benefit for West Branch Toqua (090201020301)

HUC 090201020305 Results: West Branch

Category	Practice	% P Reduction	Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	16	4	1,524
to Field	Reduce phosphorus application rates	17	(-12)	8,628	510	(-204)
In-Field	Cover crops, no-till, increase soil organic matter	29	78	164	17	817
	Sediment basins	85	5.90			
Edge-of- Field	Riparian buffers	58	6.78	2,293	463	34
	Grassed waterways	58	30.58	121	24	155


 Table 25. Agricultural Conservation Practice Framework reductions and cost-benefit for West Branch (090201020305)

HUC 090201020401 Results: Five Mile Creek East

Category	Practice	% P Reduction	Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	6	2	540
L. Cald	Reduce phosphorus application rates	17	(-12)	12,016	711	(-215)
In-Field	Cover crops, no-till, increase soil organic matter	29	78	6,433	649	810
Edge-of- Field	Sediment basins	85	5.90	389	115	23
	Riparian buffers	58	6.78	11,950	2,412	35
	Grassed waterways	58	30.58	1,328	268	160

 Table 26. Agricultural Conservation Practice Framework reductions and cost-benefit for Five Mile Creek East (090201020401)

HUC 090201020402 Results: Five Mile Creek West

(0902010204)						
Category	Practice	% P Reduction	Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	6	1	520
In-Field	Reduce phosphorus application rates	17	(-12)	7,305	432	(-213)
	Cover crops, no-till, increase soil organic matter	29	78	7,514	758	807
Edge-of- Field	Sediment basins	85	5.90			
	Riparian buffers	58	6.78	4,198	847	35
	Grassed waterways	58	30.58	221	45	159

 Table 27. Agricultural Conservation Practice Framework reductions and cost-benefit for Five Mile Creek West (090201020402)

HUC 090201020403 Results: Lower Twelve Mile Creek

(05020102040						
Category	Practice	Practice %P Reduction	Practice Cost (\$/ac-yr)	Treated Watershed Area (ac)	Phosphorus Reduction (lb)	Cost-Benefit (\$/lb)
Land Use Change	Corn/Soybean to Pasture and/or Land Retirement	75	585	13	3	1,186
In-Field	Reduce phosphorus application rates	17	(-12)	11,680	691	(-204)
	Cover crops, no-till, increase soil organic matter	29	78	7,346	741	784
Edge-of- Field	Sediment basins	85	5.90			
	Riparian buffers	58	6.78	30,242	6,105	34
	Grassed waterways	58	30.58	1,592	321	152

Table 28. Agricultural Conservation Practice Framework reductions and cost-benefit for Lower Twelve Mile Creek (090201020403)