Minnesota wetland plant response to salinity stressors: conductivity, chloride and sulfate

High level recommendations

- Aquatic plants are sensitive to specific conductance, chloride and sulfate and their response should be considered in development of any aquatic life salinity related criteria or standards development
- Salinity criteria or standards development should be stratified at least to a level II ecoregion scale
- Species extirpation analysis; XC95 and HC05 is an appropriate biological response approach
- The current 230 mg/L Class 2 aquatic life chloride standard may not be adequately protective of aquatic plants in Minnesota
- Additional wetland plant data paired in space and time with salinity variables (conductivity, chloride and sulfate from across MN are recommended to improve salinity response benchmark development

Mark Gernes, Research Scientist MPCA, Surface Monitoring Section, EAO Division

Introduction

Plants are known to be responsive to salinity and ionic gradients, including those associated with sulfate, sulfide, ammonium, chloride, iron and carbonates (Flowers et al 2010, Kinsman-Costello et al 2015). These major ion constituents affect specific conductance or simply "conductivity", a measure of water's ability to conduct electricity, which increases with elevated ion concentrations. Thus, conductivity represents concentrations of nonspecific cation and anion mixtures that are present in water (ionic strength). Elevated ionic strength (conductivity) and ion composition due to natural sources, as well as human caused pollutant loading, has long been recognized as affecting plant species structure and community composition (Moyle and Hotchkiss 1945). These mixtures of ions are typically associated with disassociated salts; therefore, "conductivity" and "salinity", the proportion or concentration of salts in

solution, are closely related. Several investigators report aquatic plant taxa responding differently in their sensitivity or tolerance to salinity (Timoney 2015, Klosowski 2006, Miklovic and Galatowitsch 2005, Hammer and Heseltine 1988). U.S. EPA (1988) reported on plant and algae sensitivity thresholds to chloride ranging from 71 mg/L in the algae *Spirogyra setifomis* and *Chlorella luteoviridis* tolerating chloride concentrations up to 36,400 mg/L.

Flowers et al. (2010) reviewed the evolutionary development of plant tolerance to salinity, including those that have high tolerance to salinity known as halophytes. Halophytes have developed various anatomical or physiological adaptions to manage the osmotic stress associated with high ionic strength. Adaptation examples include concentrating ions or organic solutes within vacuoles (salt crystal formation) or maintaining stringent (conservative) control of ion exchange between root and shoots, which is a metabolic response and requires additional energy expenditure. Some plants adapted to high saline conditions have developed salt glands, which enable the plant to secrete excess salts, avoiding toxic concentrations of potentially harmful ions. The majority of plants possess some limited physical mechanisms such as vacuolization to potentially tolerate increased ionic strength; though, physiological tolerance to increased ionic strength is not present in all plants (Flowers et al 2010, Cushman 2001). Not surprisingly, plants more tolerant to salinity often also show tolerance to other environmental stressors such as nutrient loading, flooding or drought.

Several cations including K⁺, Ca²⁺, Fe²⁺ and Mg²⁺ are important to plant mineral nutrition. Ion transfer and sequestration are important in mediating plant osmotic balance, nutrient uptake, as well as photosynthetic, respiratory and related physiologic processes while also responding to increased ionic strength (Klosowski 2006, Cushman 2001). There may also be important differences between emergent plant species rooted in wetland sediments compared to free-floating or weak rooted aquatic species suspended in the water column (Hammer and Heseltine 1988, Hinneri 1976). There is limited research reporting on responses of large segments of freshwater plant growth forms or guilds to increased ionic

strength, particularly due to pollutant loading and especially in wetlands (Borgnis and Boyer 2015, Miklovic and Galatowitsch 2005).

The impetus of this current investigation was to contribute wetland plant salinity response information toward development and revision of conductivity and chloride water quality standards in Minnesota primarily applicable to industrial and agricultural uses of surface waters including lakes, streams and wetlands.

Current state water-quality standards in Minnesota (Minn. Rules, Ch. 7050) include standards for conductivity, chloride and sulfate. Minnesota's Class 3A chloride standard of 50 mg/L is set to maintain quality surface water for industrial consumption uses, except food processing, with only minimal treatment and the Class 3B chloride standard for general industrial uses, including cooling and material transport with only moderate amounts of treatment is 100 mg/L. Minnesota's current Class 3C surface water chloride standard is 250 mg/L and is applicable to surface waters used for industrial cooling or material transport with minimal treatment. These industrial use standards are mostly intended to protect equipment from corrosion, scaling and from process fouling. Most Minnesota surface waters are classed as 3C except for wetlands. In wetland waters, the current 3D industrial use chloride standard is a narrative "maintain background", to protect and maintain suitability for industrial uses. Implementation of background narrative standards is more challenging than numeric standards due to the need to characterize "background" conditions often in case by case applications. In current rulemaking the Class 3 conductivity and chloride standards are proposed to be consolidated into a single narrative industrial use class.

Ensuring water is able to be used for agriculture, the State of Minnesota currently has a conductivity standard of 1000 μ S/cm applied as a Class 4A standard to protect the suitability of surface waters for use as agricultural irrigation sources primarily for terrestrially grown crops (Minn. Rules 7050.0224 Subp. 2).

Similarly, the water quality standard of 10 mg/L for sulfate is a Class 4A standard applicable in surface waters used for the production of wild rice, during periods when the rice may be susceptible to damage by high sulfate levels. Related Class 4B standards protect surface waters for use by livestock and wildlife at a total salinity of 1,000 mg/L.

Minnesota has not adopted an aquatic life and recreation beneficial use (Class 2) standard for conductivity or sulfate. Minnesota's current aquatic life and recreation standard for chloride is 230 mg/L. This conforms to U.S. EPA national chloride criteria guidance (U.S. EPA 1988) based on literature at that time and principally on invertebrate and vertebrate test organism assay endpoints. In their guidance U.S. EPA reported that a final guideline based on plants was not available since methods for testing plant responses did not conform to testing guidelines used in the U.S at that time.

Recent work by U.S EPA scientists examined the effect of increased specific conductance (conductivity) on macroinvertebrates in Appalachian streams (U.S. EPA 2011, 2016 and Cormier et al 2013). In their research, they developed an approach to use biological and water chemistry field data to estimate a biological response benchmark for conductivity based on thresholds of extirpation. This approach applies the distribution and probability of observing individual macroinvertebrate genera across a conductivity gradient, assuming that each observed genus exhibits an optimal response range to conductivity. At some point beyond this optimal range, invertebrates experience stress due to continued increases in conductivity, up to a point of extirpation where some genera may no longer be observed (extirpated) from field samples. Where "extirpation" means "depletion of a genus within a population to the point where it is no longer a viable resource or it is unlikely to fulfill its function within the ecosystem". The extirpation methods utilized a cumulative distribution function (CDF) model biological response to stress and provide a means to estimate extirpation values of conductivity individually for each observed genera. The extirpation response benchmark or XC95 (extirpation concentration at 95%) represents the concentration below which 95% of observations of that genus occur. Griffith et al (2018)

used the same extirpation probability approach to derive a conductivity benchmark for stream fish community data.

The hazardous concentration (HC) is a field benchmark, equivalent to the criterion continuous concentration (CCC) value typically derived from laboratory toxicity tests and applied as water quality criteria for the protection of aquatic organisms. Benchmarks differ from water quality criteria or standards in they are not defined in regulation, but provide scientific basis to potentially support resource management decisions.

In the approach used here and adapted from U.S. EPA 2011, 2016 and Cormier et al 2013 the hazardous concentration is based on the potential for extirpation of one or more species in wetland plant communities. A hazardous concentration can be derived for wetland plants by combining XC95 values from all qualifying observed species in response to the same stressor variable (e.g. conductivity). Setting the hazardous concentration at the 5th percentile represents the estimated value or concentration where there is a 5% or less chance that all observed species could be expected to persist. So at the HC05 there is a 95% chance that at least one observed plant species (or genera whichever taxon is analyzed) could be expected to become extirpated, at least in-part, due to exceeding the HC05 benchmark.

Work presented here provides parallel analysis and discussion of the extirpation probability approach to estimate aquatic life salinity benchmarks for specific conductance, chloride and sulfate for 114 aquatic plant species principally observed in depressional wetlands (1995 – 2012). These wetland plant and water chemistry data were collected by Minnesota Pollution Control Agency scientists.

In this investigation, an initial analysis of wetland data proceeded using plant data at the genus level and analyzed at a statewide extent. In that initial phase of the investigation, which is not reported on here, the data were split into two sets to provide both development and validation of wetland plant genera results. That design was insightful, though in 2019 an MPCA internal review team suggested it

would be more informative to analyze the plant data: 1) as species; and 2) given the relatively small size of the available paired chemistry and plant data it would be better to pool the data into a single data set and examine benchmarks at a state and level II ecoregion (Omernick and Griffith 2014, Omernick 1987) scale. Examining benchmarks at an ecoregion scale was viewed as particularly important given the known natural background salinity gradient across MN. Results following this geographically revised design and species level taxonomy are presented and discussed below.

Revising state water quality standards or proposing expressed criteria as potential water quality standards was not a goal for this investigation. However, results presented and discussed here may provide support and contribute to future data acquisition efforts and to future revisions of state water quality standards. Findings discussed here intend to provide justification for the need to consider plant responses and wetland communities when developing and revising future water quality standards regarding salinity related variables.

wq-rule4-17x

6

Methods

MPCA wetland investigators collected wetland plant and water chemistry data between 1995 and 2012 from 587 discrete wetland stations (usually basins) to develop and implement biological condition indicators including indices of biological integrity (IBIs) focused on depressional wetlands (Gernes and Helgen 2002, 1999, Genet and Bourdaghs 2007, 2006, Genet 2015, 2012). Biological community and water chemistry data were collected from the nearshore wadeable extent, of primarily depressional wetland habitats. Field investigators collected plant data via 100-m² field plots (releve's) targeted to represent the wetland emergent community. Plots were typically 10 X 10 m and less frequently, 5 X 20 m. Rectangular plots allowed data collection when water depth was too deep to wade for establishing the preferred 10 X 10 m square plots. In the north central-northeastern region of the state, four clustered 5 x 5 m plots whose total area summed to 100-m² constituted a single sample. Multiple small plots were intended to improve sample representation of diverse wetland plant community structure and composition. In all cases, regardless of sample type, plots were located within the emergent community in the near-shore area often including a portion of adjacent shallow open water community when that community was present.

Water chemistry variables were measured or collected using accepted field and laboratory measurement and analysis techniques (MPCA 2015, 2008) from the same location within the wetland where biological sampling occurred. Specific conductance and water temperature were measured in situ using commercial multi-parameter water quality instruments following manufacturer's calibration recommendations at least weekly. Water chemistry grab samples were collected from the top 10-20 cm of the water surface near where biological sampling occurred. These samples were analyzed by the MN Department of Health, Environmental Laboratory, typically for alkalinity, sulfate, total chloride, total Kjeldahl nitrogen, total phosphorus, and total suspended solids though the analyte suite changed over

time. For example, sulfate analysis began in 2001. Water chemistry sampling usually occurred in June or July during the most active plant community growth and development period. In accord with MPCA wetland monitoring protocols (MPCA 2015, 2008). Invertebrate community sampling typically occurred in June along with corresponding water chemistry sampling, followed by plant community sampling in July. Water chemistry samples were collected a second time, during roughly one third of the plant community visits. Depending on monitoring program goals there were also numerous occasions where water chemistry sample collections occurred without any concurrent biological sampling either plant or invertebrates. These supplemental water chemistry visits frequently occurred during months other than June and July. Thus, nearly twice the number of wetland chemistry samples were collected by MPCA investigators compared with the number of plant community visits. This additional sampling allowed an assessment of a broader temporal range of wetland chemistry variability.

To maximize the pairs of plant community sample visit paired with chemistry sampling visits it was often necessary to link plant visit data with corresponding chemistry data collected during the invertebrate sampling visit from the same year and same wetland sample station. This was recognized as not ideal, since the U.S. EPA extirpation benchmark methods recommend chemistry and biology data be synchronously collected on the same date and station visit. When available, chemistry sample visits collected concurrently with plant community sampling visits were used preferentially instead of the chemistry samples collected during the invertebrate visit from the same year and station. Sample number influences the confidence in the extirpation results as described below. Cormier et al (2018) and U.S. EPA (2016) recommended the total number of paired biology and chemistry samples exceed 500, though valid results may be obtained with smaller data sets (~200) if certain background conditions are met.

MPCA wetland monitoring protocols (MPCA 2015, 2008) specified collection of replicate data from 10% of wetland sampling stations within each specific wetland project to determine method variability. In

a small number of project years MPCA wetland monitoring designs assessed the sample variability within sites by sampling multiple locations within a single wetland basin. As a result of both replicate and spatial variability replicate sampling; and repeated visits over multiple years to detect station trends, many wetland stations were sampled multiple times.

Water chemistry data came from geographically well distributed wetland stations that represented depressional wetland geochemical conditions dominant throughout Minnesota where bicarbonates, carbonates or in the west sulfates are the matrix ions (Gorham 1983). MPCA wetland sampling designs across several indicator development projects included natural wetlands as well as restored depressional wetlands and ponds constructed for livestock watering or stormwater treatment. Plant community data from these diverse depressional wetland stations represented the range of species expected to occur in shallow marsh, deep marsh, shallow open water and fringing fresh meadow and shrub-carr communities typical of Minnesota depressional wetlands. Even given the statewide distribution of depressional wetland stations, pH at these stations typically ranged within the circumneutral range between 6 and 9.

Only plant species with a minimum of 25 observations of paired water chemistry samples and biological survey results were included in the calculation of extirpation concentration (XC95) and hazardous concentration (HC05) benchmark values for each of the three salinity stressors. Species were included in the analysis only if they occurred at least once in high quality reference sites, thus assuring that they were characteristic of natural depressional wetlands. Reference quality designated wetland stations required they minimally met the following criteria: a) no significant presence of invasive plants; b) no history of drainage, filling or excavation associated with the wetland, c) the wetland must be well buffered with natural vegetation and not have direct discharges from municipal or industrial facilities, or receive direct agricultural runoff. Observations of nonnative invasive species observed in limited areal extent in at least at least one reference site were retained in the data set and analyzed for their XC95

Minnesota Pollution Control Agency

benchmarks. Such invasive species included: *Cirsium arvense*, *Lythrum salicaria*, *Phalaris arundinacea*, *Typha angustifolia* and *Typha* X *glauca*.

Cumulative Distribution Function (CDF) plots distribute probability values from 0 to 1 (0% to 100%) as observations of a given plant species response to a range of observed concentrations of stressor. Using two-point interpolation from the x and y axis on CDF plots estimated the potential for extirpation of plant species across an empirical range of salinity variable concentrations. The CDF equation used in this study (1) weighted the results to control for uneven observation frequency across environmental gradients (Cormier and Suter 2013, U.S. EPA 2011). It is reasonable to assume that plant species will have an optimal salinity variable response range. Inclusion of data from a range of high quality reference sites and impaired sites assured a range of salinity variable exposures to assess species response.

$$F(x) = \frac{\sum_{i=1}^{Nb} W_i \sum_{j=1}^{Mi} I(X_i j < x \text{ and } G_i j)}{\sum_{i=1}^{Nb} W_i \sum_{j=1}^{Mi} I(G_i j)}$$
(1)
Where: X_{ij} is the conductivity value in the j^{th} sample of bin i ,
 N_b is the total number of bins,
 M_i is the number of samples in the i^{th} bin,
 G_{ij} is true if the genus of interest was observed in the jth sample of the bin i ,
 I is an indicator function that equals 1 if the indicated conditions are

An aquatic plant community hazardous concentration benchmark at the 0.05 percentile (HC05) was derived from analysis of combined and ranked plant species XC95 values. The HC05 criterion is analogous to U.S. EPA standardized toxicity expressions of criterion continuous

Cumulative proportion for each species (2)

$$(P) = R \div (N+1)$$

Where, R is the cumulative proportion of each species' XC95 value and N is the number of genera (Cormier and Suter 2013).

concentration (CCC). U.S. EPA defined the CCC as the national water quality criteria recommendation for the highest instream concentration of a toxicant or an effluent that organisms could be exposed indefinitely and be expected to endure, without causing an unacceptable effect (U.S. EPA 1991). At the hazardous concentration value (HC05) there is a 95% chance of extirpating up to 5% of the species that could otherwise be expected to occur in the community. The cumulative proportion of each species calculated and summed using formula (2) yielded an estimate of the hazardous concentration (HC05).

Plant community and water chemistry data were stored, managed and assessed using MS Access 2016. MS Excel 2016 with the optional data analysis package loaded, permitted basic data summaries, analysis and some charting. Salinity extirpation concentration (XC95) derived by cumulative distribution function (CDF) analysis, including plotting, and the 0.05 Hazardous Continuous Concentration (HC05) estimates were generated in R (R Core Team 2019) version 3.2 Dark and Stormy Night, using XC95 extirpation analysis code from https://github(leppott/XC95) with 'tidyverse'; 'lubridate'; 'ggplot2'; "devtools' and 'XC95' packages loaded and active. Only genera with a minimum of 25 observations were included in XC95 and HC05 calculations. Additional statistical analyses, including Kruskal-Wallis median difference test were similarly analyzed in R with 'FSA' and 'Psych' packages loaded and active.

Plant taxonomic treatment used here followed federal plant taxonomic authority sources https://www.itis.gov/ and USDA Plants https://plants.sc.egov.usda.gov/java/.

Wetland plant response to salinity • June 2020

Results

Figure 1 presents conductivity at 587 depressional wetlands across Minnesota's three level II ecoregions (Omernick and Griffith 2014, Omernick 1987). Cumulatively these stations represented an increasing gradient of conductivity from NE Minnesota to the west and SW. These stations represent a natural background conductivity gradient which has likely been exacerbated by pollutant loadings or anthropomorphic physical alterations. Surficial geology accounts for significant geographic differences in surface water ionic composition across the state. In particular, bicarbonates and carbonates are important ionic constituents throughout Minnesota. In the northcentral and southcentral to southeast region of the state Ca²⁺ and Mg²⁺ carbonates are the dominant ion, derived from weathered glacial till particularly under circumneutral to slightly alkaline pH typical in most of Minnesota surface waters, including wetlands (Gorham et al. 1983). Sulfate, derived from Cretaceous shale, tends to increase in the western region of the state. Lower average precipitation contributes to the dominance of sodium and sulfate ionic composition in surface waters near the border of Minnesota with North and South Dakota especially when conductivity levels exceed 900 µS/cm. The relatively low conductivity values observed in the Mixed Wood Shield ecoregion in NE Minnesota are characteristic for this region (Gorham et al. 1983, Moyle and Hotchkiss 1945). The majority of this ecoregion features intact native vegetation and naturally low total alkalinity resulting in naturally low ionic strength. In contrast the Temperate Prairies ecoregion in the west and southern regions of the state in agricultural land-use are characterized by high conductivity. Figure 1 stations symbolized as greater than 820 µS/cm may represent sulfate dominated chemistry (Gorham 1983). Many of the sampled wetlands with low to moderate conductivity (<25.1 -485) in the Temperate Prairies ecoregion primarily have isolated or precipitation driven hydrology, reducing surface discharge loading influence from the surrounding landscape. Genet and Bourdaghs (2007) reported an average conductivity below 20 µS/cm for depressional wetland reference sites in the

Temperate Prairies ecoregion. Many of those reference sites were isolated basins and well buffered by adjacent perennial vegetation.

Figure 2 illustrates frequency distributions of log10 transformed conductivity, chloride and sulfate sample observations from all available samples, i.e. not just samples able to be paired with biol. data. Bin width varied by variable. For conductivity bins were 1.232 units (0.0906 log10); chloride bins were 1.171 (0.0821 log10) wide and for sulfate the bins were 1.208 (0.0821 log10) wide. Conductivity (A) observations were nearly normally distributed with a slight skew toward higher concentrations. Distributions of both chloride (B) and sulfate observations were strongly influenced by non-detect samples. If the non-detects had been excluded the chloride histogram would have had a closer to normal distribution. If the non-detects, would have been removed in the sulfate histogram the distribution would be have been nearly uniform.

Table 1 present's corresponding descriptive statistics for conductivity, chloride and sulfate statewide and across Minnesota's three level II ecoregions. These results are derived from the entire available wetland chemistry sample set. Many of the observations in the full data set were trend or replicate samples collected independent of biological sampling. Thus the total number of wetland chemistry samples was notably greater than the number of chemistry biology samples presented in the plant species extirpation analysis discussed below.

In parallel with the descriptive statistics in Table 1, Figure 3 presents boxplots of conductivity, chloride and sulfate statewide and across the three level two ecoregions. Data for these boxplots were log10 transformed to reduce the large number of outliers above the upper bounds. Conductivity boxplot (A) results from the Mixed Wood Shield (MWS) clearly showed the first and third quartiles of conductivity to be notably lower compared to conductivity distributions statewide and from the Temperate Prairies and Mixed Wood Plains. Chloride boxplot group (B) showed the chloride distribution in the MWS is similarly lower compared to the other two ecoregions. These differences for the MWS ecoregion could be

expected based on differences in natural background chemistry and geology. Sulfate boxplot (C) showed the median distribution of sulfate in the Temperate Prairies ecoregion to be notably elevated compared to statewide results and also the MWP and MWS ecoregions. Considering these boxplot results it was not surprising that a Kruskal-Wallis analysis found significant differences geographically for all three salinity variables. For conductivity, Kruskal-Wallis chi-squared = 581.15, df = 3 and p-value 2.2 e-16 (p < 0). Chloride Kruskal-Wallis chi-squared results were 219.74, df =3, p-value < 2.2 e-16 (p < 0). Kruskal-Wallis sulfate analysis was similarly significantly different across geography, chi-squared 592.76, df =3 and p-value < 2.2 e-16. Post hoc Dunns tests were performed using the Benjamini-Hochberg stepwise discrimination method to further examine significance in the salinity variables against geography. Findings from the Dunn's test are presented in Table 2 for each salinity variable where different geographic cases are paired stepwise. All ecoregions and statewide pairing combinations for conductivity and sulfate were found to be significantly different. Chloride pairings were also found to be significantly different. Chloride pairings were also found to be significantly different in all combinations except chloride data distributions in the TP compared to the MWP which were not significantly different.

Figure 4 illustrates boxplots of wetland salinity variables by ecoregion and month for conductivity (A-C), chloride (D-F) and sulfate (G-I). Plots were derived from the entire MPCA wetland sample set from 1995 – 2016. All data were log10 transformed to remove the majority of outliers. In both the Temperate Prairies and the Mixed Wood Plains the median salinity variable concentrations tended to be lower in the summer and higher in spring and fall periods. Chloride medians tended to present a more erratic pattern. These results represent the full range of conditions present in Minnesota depressional wetlands as opposed to only representing seasonal natural background conditions present in reference only data.

Table 3 presents descriptive statistics by salinity variable for paired chemistry and plant samples statewide and by ecoregion. Ranges of variable values were noticeably different In terms of paired sample numbers statewide for each salty parameter. U.S. EPA researchers have recommended 500 to

200 paired samples to obtain reliable extirpation analysis. Chloride (n = 158) and sulfate (n = 111) paired samples in the MWS ecoregion were below these recommendations and thus the extirpation results in these cases should be considered to be potentially less reliable.

Extirpation analysis output for each species within each analysis region included: a) a general affects model (GAM) probability plot, a cumulative distribution function (CDF) plot, XC95 estimate, and the number of sample observations. The XC95 results for each included species provides a threshold, defined as the probability of occurrence where 95% of the observations of this species occur, across the value range of each measured stressor. One hundred and fourteen plant species (114) were included in the extirpation analysis, across four geographic extents: statewide, Temperate Prairies (TP), Mixed Wood Plains (MWP) and Mixed Wood Shield (MWS) ecoregions; where each species with sufficient observations associated with each of the three salinity stressors resulted in nearly 1,380 results specific to chemical variable by plant species by region. Regions with insufficient observations of a given species (e.g. < 25) were not included in analysis and therefore the total number of species analyzed by region varied.

General affects model probability plots usually followed three general patterns: a) increasing; b) optimal or c) decreasing. These three patterns are illustrated in Figure 5 against statewide conductivity analysis for three common wetland plant species; *Calamagrostis canadensis, Asclepias incarnata ssp. incarnata* and *Stucknia pectinatus*. Figure 6 provides cumulative distribution function plot results for these same three plant species. Species XC95 estimates from the CDF analysis was output in R and reported here.

Calamagrostis canadensis (Canada bluejoint) is an emergent grass that occurs throughout Minnesota and is common in many wetland communities, particularly shallow marshes, fresh meadows and shrubcarrs. This species shows a decreasing probability distribution in response to increasing conductivity

15

(Figure 5A). Decreasing probability response distribution could also be recognized as a response curve where toxicity response of a species shows the test species is unable to remain viable as the stressor increases.

The XC95 for *C. canadensis* related to conductivity statewide was 362 µS/cm (Figures 3A & 4A). Appendices A, B and C provide; conductivity, chloride and sulfate XC95 estimates respectively for individual species statewide and regionally. Conductivity XC95 results for *C. canadensis* ranged from 295 in the MWS to 596 in the MWP. An XC95 estimate of conductivity response for *C. canadensis* was not able to be analyzed in the TP due to insufficient observations (Appendix A). Chloride extirpation XC95 results for *Calamagrostis canadensis* statewide was 85 mg/L and ranged from 14 mg/L in the TP; 89 mg/L in the MWP and 26 mg/L in the MWS (Appendix B). Sulfate related XC95 for *C. canadensis* statewide was 530 mg/L. Regionally *C. canadensis* XC95 sulfate estimates ranged widely; from 530 mg/L in the TP; to 11,400 mg/L in the MWP ecoregion the XC95 value was estimated to be 158 mg/L (Appendix C). These results corroborate a contention that some species may have a large amplitude response to sulfate inpart due to differences in regionally and locally different buffering factors such as associated iron and organic carbon in the habitat as reported for sulfide by Marbo et al. (2017) for wild rice (*Zizannia palustris*). Unfortunately in this investigation sample observations for wild rice and sulfate were insufficient statewide, as well as regionally to provide sulfate related XC95 results.

Similar to *C. canadensis, Asclepias incarnata* ssp. *incarnata* (swamp milkweed) is an emergent forb locally common throughout Minnesota, typically occurring in shallow marshes, wet meadows and shrubcarrs. In contrast, however, *A. incarnata ssp. incarnata* exhibits an optimized data distribution in the statewide response to conductivity (Figure 5B). Optimized distributions have an initial low probability, which increases with increased stress influence up to an optimal point and then decreases back down toward zero. An optimized distribution pattern was the most common response pattern to conductivity among the 114 wetland plant species results presented in Appendix A. Some species showed an inverted

optimized probability response with a high probability of occurrence at low stressor, with the probability decreasing as the stressor increased up to point where the probability curve rebounded near the highest observed stressor. The statewide conductivity XC95 for *Asclepias incarnata ssp. incarnata* was estimated to be 1491 which is distributed at the top of the upper quartile of all species XC95 values (Figure 7 boxplots). The MWP ecoregion conductivity XC95 of 485 was significantly lower and about the lowest quartile range of tested species in this region. Unfortunately there were not sufficient observations of swamp milkweed in either the TP or the MWS to confidently estimate an XC95. Examining the other two salinity stressors with *A. incarnata* ssp. *incarnata*, found the statewide chloride XC95 to be 96 mg/L and slightly lower in the MWP where the XC95 as calculated to be 89 mg/L. These results were near the statewide chloride median for tested species and just below the lower quartile of all species in the MWP (Figure 7). Analysis of *A. incarnata* ssp. *incarnata* to sulfate resulted in a statewide XC95 of 814 mg/L which was just above the upper quartile for all tested species statewide in response to sulfate (Figure 7). Similar to this species response to conductivity and chloride the regional finding for sulfate was significantly lower, where the XC95 was 24 mg/L in the MWP which was near the first (25%) quartile of 22.25 mg/L.

Like *Calamagrostis canadensis* and *Asclepias incarnata* ssp. *incarnata*, *Stuckenia pectinatus* (sago pondweed) is common throughout MN, however it is a submergent plant. As shown in Figure 5 *Stuckenia pectinatus* extirpation cumulative distribution function response to statewide conductivity showed an increasing pattern with an XC95 of 2340. This species similarly had an increasing response pattern to conductivity in the TP and MWP ecoregions. Cormier and Suter (2013) have suggested XC95 results may not be as reliable for species exhibiting an increasing response since the full response may not be able to be examined as the true extirpation may occur beyond the range of the test data. Regionally, the XC95 estimates for *Stuckenia pectinatus* ranged from 2163 µS/cm in the TP down to 885 µS/cm in the MWP. Within their regional test areas these XC95 results were either at or above the respective third quartile

for conductivity response (Figure 7). Considering the ion specific salinity stressors, chloride and sulfate the response of *Stuckenia pectinatus* was similarly near or above the respective upper quartile. For chloride statewide the XC95 for *Stuckenia pectinatus* was estimated as 150 mg/L and ranged from 211 in the TP to 110 mg/L in the MWP. Insufficient observations of this species prevented a commensurate XC95 estimate in the MWS. The response of *Stuckenia pectinatus* to sulfate statewide found an XC95 of 902 mg/L and ranged from 902 mg/l in the TP to 182 in the MWP, without a response estimate available in the MWS. The response pattern for *Stuckenia pectinatus* to sulfate was an increasing curve for all geographies with sufficient observations. Responses of this species to chloride was a bell shaped optimal curve statewide as well as in the TP and the MWP.

Similar estimates for all observed species in each of the four investigated regions are provided in three appendices, one for each salty variable (A) conductivity; (B) chloride; and (C) sulfate. Each appendix presents individual species results, including XC95 estimates, number of observations of each respective species and response curve type. Response curve pattern were not always obvious, occasionally requiring judgment. Curves were preferentially designated to be decreasing or increasing and were only judged as optimal when several observation points distributed in two defined groups along the X-axis. Curves with an upper decline on the y-axis, then a short curve up, but then arcing down and continuing to decrease often toward a group of points along the X-axis distributed distant from the axis origin were judged to be decreasing.

Cattails (*Typha sp.*) are common, often dominant emergent plants especially in shallow marshes. Three *Typha* taxa, occur in Minnesota. Two of these taxa (*T. latifolia* and *T. angustifolia*) are recognized as species. *Typha latifolia* (broad-leaved cattail) is native and *T. angustifolia* (narrow-leaved) is a nonnative invasive species originating from the mid-Atlantic coast (Bansal et al. 2019). Minnesota's third *Typha* taxa (*T. X glauca*) is a hybrid of the two species. MPCA sample observations are nearly equally divided among the three *Typha* taxa. Table 4 presents XC95 results for *Typha* taxa for each region. Many

wetland investigators consider *Typha*, though not uniformly across the genus, to be tolerant to many stressors, including salts i.e. high conductivity (Bansal et al. 2019, Timoney 2015, Milburn et al 2007, Miklovic and Galatowitsch 2005).

In examining the XC95 results by *Typha* taxa across the test areas by stressor, *Typha latifolia* consistently showed a lower XC95 result than *T. angustifolia* and *T. X glauca* with one notable exception. In the MWS where the sulfate XC95 result for *T. latifolia* 158 m/L was compared to the very low sulfate XC95 value of 14 mg/L for *T. X glauca* in the MWS (Table 4). In the three regions where XC95 results were available for all three *Typha* taxa *T. angustifolia* had a higher XC95 result in three salinity stressors than both *T. X glauca* and *T. latifolia*. Combined, these results suggest the hybrid *T. X glauca* is less tolerant to salinity stressors than *T. angustifolia*. Figure 8 illustrates GAM probability plots for the three *Typha* taxa in three ecoregions and statewide in response to conductivity. *Typha latifolia* consistently showed an optimal response curve whereas the other two *Typha* taxa consistently, though in a couple cases somewhat aberrantly, resulted in increasing probability plot responses. Recognizing increasing GAM probability plot patterns may demonstrate a less reliable XC95 result since the upper end of the curve does not flatten within the range of observed conductivities, which implies a potentially higher conductivity would be needed to result in extirpation of that taxa. These results support a contention that the native cattail *T. latifolia* is most sensitive to salinity variables among the three *Typha* taxa present in MN.

Tables 5, 6 and 7 list plant species based on extirpation analysis are potentially most sensitive or tolerant with respect to the salinity variables conductivity, chloride and sulfate as derived from species XC95 results. Ranked XC95 estimates for each species analyzed statewide and in the three ecoregions were used to derive lists of sensitive or tolerant species for each salinity stressor. The threshold for sensitive species was set at less or equal to the 10th percentile. Tolerant species were those that occurred at or above the 90th percentile XC95 results in each respective region. Several species occurred in either

the < 10th percentile or > the 90th percentile ranking in only one region. To improve confidence of a species having a reliable response as sensitive or tolerant, only species ranked in the respective percentiles in at least two regions are included in Tables 5, 6 and 7. Complete tabular listing of XC95 results for all 114 species analyzed statewide and by the three ecoregions are provided in the Appendix A (conductivity), B (chloride) and C (sulfate). The majority of species presented here as sensitive or tolerant based on XC95 extirpation values were emergent perennials mostly typical of shallow marsh or fresh meadow wetland communities. Though a few submergent and floating leaved species typical of deep marshes or shallow open water wetlands also are included in these lists.

Coefficients of conservativeness (Milburn et al 2007) for species are also provided in the sensitive and tolerant tables. These coefficients represent a species fidelity to varying degrees of competition, stress or disturbance were developed through an objective review process by expert botanists familiar with MN wetland flora to consider all wetland or aquatic plants recognized as occurring in MN. Coefficients of conservativeness (C-values) range from 10 to 1 where species with high fidelity to undisturbed habitats, low stress would be assigned a value of or near 10 and more opportunistic stress tolerant species would be assigned a value close to 1. Nonnative species are assigned a 0 or an "*" to indicate no contribution to natural community integrity. Generally species with coefficients \geq 6 could be considered sensitive and species with C-values < 4 could be considered tolerant to stress. Though an objective panel of professional judgement review process was used to assign species C-values there remained some degree of subjectivity in the assignments. In contrast, data presented in Tables 5, 6 and 7 are entirely quantitative and empirical in response only to salinity related stressors. Both approaches are provided to afford readers easy comparison between the two assessments. Generally there was good concordance between the assigned C-values and extirpation based sensitive or tolerant species responses to the three salinity stressors, with one exception. Milburn et al. (2007) assigned Potamogeton pusillus a C of 7 suggesting it is more of a sensitive species whereas in this work it is the only species to

repeatedly occur in the list of tolerant species in several regions for all three salinity stressors. Some investigators (Harguinteguy et al. 2016 and Monferran et al. 2012) report *Potamogeton pussilus* as able to grow in habitats polluted with heavy metals, particularly Cr, Cu and Zn.

Table 8 presents a summary of two forms of overall plant community environmental benchmark thresholds for each of the three salinity stressors within the four regions considered within this investigation. Part A presents thresholds based on the 95th percentile of least impaired depressional wetland reference sites along with the number of reference sites in each region for each of the three stressor variables. This approach was adapted from methods and results presented by Genet and Bourdaghs (2007, 2006). Table 8 part B provides extirpation based probability derived hazardous concentration (HC05) estimates for wetland plant community responses to each of the three stressors across regions.

Results for specific conductance criteria generally finds the 95th percentile reference site method results in more conservative (higher) values compared to the extirpation based method. This pattern did not hold in the Mixed Wood Plains (MWP) ecoregion where the 330 mg/L HC05 estimate for conductivity was higher, compared to the 232 mg/L criteria derived using the 95th percentile of reference site conductivity results. HC05 extirpation results for chloride and sulfate were consistently higher than the 95th percentile of reference site results for all respective regional comparisons of these two anions. Statewide and ecoregion based results from both criteria derivation methods are notably lower than the Class 3 industrial use standard (1000 μ S/cm) for specific conductance and similarly the Class 2 aquatic life and recreational use standard for chloride of 230 mg/L is much higher than the wetland chloride criteria presented in Table 8 using the two different threshold derivation methods. Most of the statewide and regional sulfate benchmarks based on the extirpation HC05 criteria and the 95th percentile of the reference site observations are similar to or slightly above the 10 mg/L Class 4 standard to protect waters for propagation of wild rice. One notable exception was evident from the results presented in Table 8. The sulfate extirpation HC05 concentration benchmark of 69.6 mg/L for the Temperate Prairies ecoregion

of western and southwestern Minnesota is nearly seven times the Class 4 sulfate standard of 10 mg/L.

Wetland plant response to salinity • June 2020

Discussion

Specific conductance is a specific ionic strength water quality response variable recognized to be biologically relevant (Cormier et al. 2013, U.S. EPA 2011). There are no previous known extrapolations or models of specific conductance effect on Minnesota depressional wetland condition. Genet (2012) considered reporting on specific conductance as a wetland stress criterion, but instead chose to report on the specific ion-chloride. Extensive scientific work has considered chloride gradients and corresponding plant community structure from hypersaline to freshwater environments. An early Minnesota specific examination of aquatic plants to ion specific gradients, particularly sulfate was reported by Moyle and Hotchkiss (1945). Many investigators have since recognized the adverse effects of increased salinity on freshwater wetland plant communities (Borgnis and Boyer 2015, Timoney 2015, Miklovic and Galatowitsch 2005, Hinneri 1976). These more recent investigations have reported on primarily specific anions such as chloride and sulfate rather than the non-specific indicator conductivity.

Minnesota waters, including depressional wetlands occur across a gradient of natural background salinity conditions including gradients of conductivity, chloride and sulfate due to surficial geology and surface to groundwater interactions (Gorham et al 1983). Genet (2015) reported sulfate and chloride concentrations in the Mixed Wood Plains and Temperate Prairie ecoregions exhibited significant differences with higher concentrations in the Temperate Prairies ecoregion. Water level fluctuation and desiccation within wetlands additionally accentuate ambient natural variation of these parameters. Hydrologic and landscape alterations along with pollutant loading have the potential to additionally affect ionic strength including concentrations of chloride and sulfate in Minnesota wetland waters. Natural and anthropogenically derived regional differences are further substantiated by the results presented here and underscore the importance of examining biological responses within geographic strata that exhibit similar ionic composition. Applying this design element reduces the confounding

Minnesota Pollution Control Agency

influence of variant background conditions. Researchers who developed the extirpation benchmark approach (Cormier and Suter 2013, U.S EPA 2016, 2011) that was used here, recognized and asserted the importance of analyses datasets should represent similar conductivity variable background conditions. Recognizing the importance of examining extirpation response within similarly composed ionic backgrounds an initial design of this investigation was abandoned. In that first design the available dataset was split roughly into 2/3 – 1/3 respectively as a development set and a validation set. This design was dropped in favor of analyzing the biological response at an individual ecoregion and statewide scale as discussed in the current study. In their Appalachian stream dataset (Cormier and Suter 2013, U.S EPA 2016, 2011) the data used are constrained to the same level III ecoregion scale to avoid influence of variant regional conditions. In the current investigation, a level II ecoregion stratification was used which is a higher geographic scale than the level III ecoregion scale. Due to the limited size of the available paired chemistry and corresponding plant dataset in this investigation it was judged to be inadvisable to stratify analysis at a level III ecoregion scale. Recognizing the wide ranged salinity gradient present in MN it is acknowledged results from the statewide scale may be less useful as reliable benchmark criterial, however results at this scale were presented to compare to results at the level II ecoregion scale.

Not surprisingly, analysis of statewide chemistry sampling results and HC05 benchmarks are intermediate to ecoregion findings for all three salinity stressors. Potential future development of either ion specific or general salinity water quality standards should consider regionally based development approaches. However, based on findings reported here if resource or other constraints prevent utilizing regionally based ionic stressor standards development a statewide development path should be expected to result in an intermediate result that will be too high in some regions of the state and too low in others. Thus exceedances in some parts of the state could entirely be due to natural background conditions. It is clear from the results presented here that wetland and aquatic plants have a wide range of sensitivity or tolerance to salinity based stressors. It is also clear that potential future water quality standards meant to

be protective of aquatic life and recreation, i.e. Class 2 standards should consider responses from wetland and aquatic plants.

Groundwater-surface water interaction and evapotranspiration significantly affects conductivity values and likely also surface water concentrations of chloride and sulfate. Groundwater discharge conveys solutes and increases conductivity in surface water wetlands. Under natural conditions as is present in much of the Mixed Wood Shield ecoregion, conductivity is typically highest in mid-summer as ground water flow tends to decrease, evapotranspiration reaches maximum levels and wetland water levels frequently decrease resulting in dissolved ion concentration increases. Precipitation events add water to the system resulting in temporary dilution effects. This general pattern is common especially in the MWS, though, as demonstrated in Figure 4 it is not uniform across all wetland settings, regions, salinity variables and seasonal progression. There is a large amount of chloride concentration temporal variability across all three Minnesota level II ecoregions, with results plotted on a natural log scale used in Figure 3B showed a greater median and larger quartile amplitude of chloride concentration occurring in the Mixed Wood Plains compared particularly to the MWS ecoregion, though not as great a difference in the TP. It is reasonable to suspect part of this result is reflective of Minnesota population demographics and associated infrastructure as 81 of the 100 most populous cities in Minnesota

<u>https://www.minnesota-demographics.com/cities_by_population</u> occur in this region, including the Minneapolis, St. Paul and the surrounding suburban metropolitan area occur in the Mixed Wood Plains. These local and regional population centers could be expected to have increased anthropogenically derived sources of chloride loading from roadway deicer's and water softener elution discharges and in both the MWP and Temperate Prairies application of agricultural fertilizers (Dugan et al 2017).

Additionally, wetland salinity chemistry in wetlands often varies spatially within the same basin (Winter 2003). Conductivity is frequently higher near shore compared to central deeper water column areas in wetlands. Pollutant loadings are frequently received at the near shore margin and likely

influence conductivity values as well as concentrations of chloride and sulfate. For the data sets used in this analysis wetland water chemistry and plant community data used in the extirpation analysis were mostly collected near the wetland shore margin during the early to mid-summer period.

Some readers may be interested in individual species potential extirpation (XC95) results. Appendices A, B and C list species XC95 estimates based in response to conductivity, chloride and sulfate stress respectively along with best fit GAM plot response type, either decreasing, optimal or decreasing. Some wetland plant species appeared to be clearly more sensitive or tolerant to salinity variables as examined here. Evaluations of extirpation sensitivity or tolerance were presented in Table 5 (conductance), Table 6 (chloride) and Table 7 (sulfate). Somewhat surprisingly few species showed sensitivity to more than one salinity variable. Dulichium arundinaceum showed sensitivity to conductivity and chloride. While *Potamogeton natans* showed sensitivity to conductivity and sulfate. For a given variable most species were sensitive in only a single region, including statewide analysis. Only Eupatorium perfoliatum var. perfoliatum was recognized as sensitive to conductivity statewide and in the MWP. Carex lasiocarpa var. americana was listed as chloride sensitive statewide, in all four geographic regions: statewide, TP, MWP and MWS. Carex utricularia appeared as sensitive to chloride statewide, and in the TP and the MWP. Lysimachia thrysiflora was listed as sensitive to chloride in the TP and MWP ecoregions. For all three variables the list of sensitive species was relatively short compared to the list of tolerant species. With three exceptions, given the larger number of species presented as tolerant to conductivity, chloride and sulfate species by species comparison is not explicitly discussed here. Readers are referred to Tables 5, 6 and 7. Three species Cirsium arvense, Potamogeton pusillus and Typha angustifolia were recognized as tolerant to all three salinity variables. Potamogeton pusillus was unique among the tolerant taxa in that it appeared as tolerant in the statewide tolerant listing and each of the ecoregions not only for chloride, but also for sulfate.

wq-rule4-17x

26

Wetland plant response to salinity • June 2020

As has been discussed, stratification to geographic extents which are similar in ionic composition and strength is an important consideration for developing ion based criteria. However the interaction between ions and their potentially related biological response may also be critical. In this study measurements of individual anion constituents of wetland waters were determined from identical samples collected in space and time. In examining the biological response of respective ionic constituents the influence of one ion constituent over response to another cannot be effectively separated in field data. For example, if a plant species is particularly responsive to sulfate, possibly even extirpated from sample then the response of that species, in-fact because of the missing species the entire plant community response to chloride may be masked by the sulfate influence. This potential confounding influence of mixed chemistry constituents present in field data is difficult, if not impossible to control is acknowledged as a concern with field data investigations. Further, since the extirpation approach is affected by number of observations and the HC05 estimate increases as number of included taxa decreases (Cormier and Suter 2013, Cormier et al 2013, U.S. EPA 2011) in the sulfate example above the HC05 for chloride response could be higher as a result of the influence of sulfate.

Cormier et al. (2013) assert the importance of protective benchmarks (i.e. HC05) not occurring within (below) the natural background range. When natural gradient ranges differ greatly across different geographies as they do in Minnesota, benchmarks applicable in one ecoregion may not be applicable in adjacent ecoregions and in some instances possibly not even within the same ecoregion if that ecoregion includes areas of greatly dissimilar surface geology. For example the Temperate Prairies ecoregion which includes glacial lacustrine plains in the NW as well as areas of relatively recent and older glacial moraine and till plains in the S. Reference site thresholds derived at the 95th percentile (Table 8) represent the best available estimates of natural background levels in depressional wetlands of the three salty parameters discussed here. Extirpation derived hazardous concentration (HC05) benchmarks for Minnesota's three level II ecoregions and statewide are also presented in Table 8. Comparing these two

Minnesota Pollution Control Agency

benchmarks in respective geographic extents finds the conductivity HC05 to be lower than the 95th reference centile in all regions except the Mixed Wood Plains. This might suggest the plant based HC05 may not be a reliable benchmark approach as a conductivity threshold in most regional extents of the state. Regardless these results still support aquatic plants as being a relatively sensitive assemblage that are responsive to the effects of conductivity.

In contrast the plant extirpation-based HC05 benchmarks for chloride and for sulfate were higher or similar to the 95th centile reference site natural background results in statewide results and for each of the three ecoregions. This meets one important principle in support of the HC05 biological response indicator.

The Hazardous Concentration (HC05) results for chloride ranged from 38.3 down to 8.9 mg/L representing a range of measurable biological response that is minimally 6 times lower and maximally nearly 26 times lower than the current Class 2 aquatic life based chloride standard of 230 mg/L. These HC05 chloride results suggest significant chloride sensitivity in some aquatic plant species and wetland plant communities that are well below the state aquatic life and recreation standard. There is growing public awareness and concerns about increasing ambient, surface and groundwater, chloride concentration and salinization resulting from widespread use of deicing agents, water softener related wastewater discharges, agricultural mineral fertilizer applications and soil erosion (Dugan et al. 2017, Herbert et al. 2015).

Sulfur is a secondary plant nutrient typically available to most plants in the oxidized sulfate form. The biologically-reduced form, sulfide, occurs in anoxic wetland substrates and can be toxic to aquatic plants when present in elevated concentrations. The geochemistry of sulfide is very complex. The MPCA wetland-monitoring program has not routinely collected sulfide data, which requires controlled sample extraction methods from sediment pore water. Extensive research of sulfide toxicity affecting wild rice

Minnesota Pollution Control Agency

Zizannia palustris by Myrbo et al. (2017) has demonstrated complex sulfide biogeochemistry related to presence of carbon and iron compounds within sediments. The HC05 results presented here for sulfate range from 9.4 mg/L in the MWP to 69.6 mg/L in the TP ecoregion which was significantly higher than statewide and in the other two ecoregions. However the sulfate 69.6 mg/L HC05 result in the TP was not surprising in the context of that region typically exhibiting the highest concentrations of sulfate. The 69.6 mg/L is just below the median sulfate concentration from the entire data set in this region and less than one half the mean concentration of sulfate in the TP. Sulfate HC05 results in the MWP (9.4) and MWS (14.2) ecoregions were fairly similar to the existing 10 mg/L sulfate standard applicable to waters that support populations of wild rice (*Zizania palustris*). Though *Zizania palustris* was often observed in the wetland samples there were not sufficient (\geq 25) wild rice observations associated with sulfate samples to permit an XC95 estimate statewide or in any of the three ecoregions.

On a relative risk basis, analysis of stressors in a baseline assessment of Minnesota wetland condition, Genet (2012) reported chloride as the leading depressional wetland stressor to plant communities for statewide extent. In the second cycle of the same wetland survey, Genet (2015) found chloride remained a leading relative risk stressor in depressional wetland plant communities. He found relatively high chloride concentrations occurred in nearly 50% of the depressional wetlands sampled as part of the second cycle. In the same study, Genet reported sulfate being a moderate risk pollutant but still likely adversely affecting depressional wetland plant communities. Further, report Genet derived a reference site only 5th percentile (i.e. 5% or less of reference sites) for chloride of 8.6 mg/L in the TP; 7.9 mg/L in the MWP and 3.3 mg/L in the MWS. In this investigation the HC05 ecoregion chloride results were 8.9 mg/L in the TP, 38.3 mg/L in the MWP and 8.9 mg/L in the MWS. These chloride extirpation benchmarks are comparable to the reference site ecoregion thresholds for "Poor" condition, except in the MWP where the chloride HC05 result was notably higher than the reference site result. Similarly comparing Genet's (2015) 5th centile reference site threshold for sulfate with sulfate HC05 results finds

the following. The TP reference site criterion for sulfate is 127.4 mg/L, in the MWP the sulfate Poor threshold is 12.5 mg/L. Genet (2015) does not provide a sulfate criterion for the MWS. In this study the HC05 benchmark for sulfate was 69.9 mg/L in the TP and 9.4 in the MWP. Findings by Genet (2015 & 2012) are reasonably comparable to the HC05 results reported here by ecoregion and support the significance of sulfate and chloride as important stressors in Minnesota wetlands.

Results presented here could have clearly benefitted from additional paired data observations. As discussed earlier, this is particularly the case for specific conductance and sulfate biological response in the Mixed Wood Shield Ecoregion. The number of paired field chemistry and biology samples are fewer then the number of samples recommended in Cormier et al (2018) and U.S. EPA (2016). They recommended a minimum of 200-and preferably at least 500 paired samples to obtain stable HC05 values in their macroinvertebrate work. This current study included more than 800-paired water chemistry and biological samples in statewide analysis. At the ecoregion scale paired sample numbers were considerably below the preferred 500 sample number in the TP and MWP, but above the minimum 200 sample count recommendation. In the MWS ecoregion the number of paired samples (157) was considerably below the recommended 200 sample minimum. Consequently results in the MWS may not be reliable without further sample extrapolation testing or additional data. As additional data become available it may be appropriate to repeat the extirpation and hazardous concentration analysis. Ideally, larger data sets would increase the number of wetland plant species and expand the number of wetland communities evaluated for potential stress due to increases in specific conductance, chloride concentrations and/or sulfate concentrations. Regardless, the results and findings presented and discussed here provide justification to consider the protection of wetland aquatic plants when evaluating aquatic life standards for specific conductance, chloride and sulfate.

30

Wetland plant response to salinity • June 2020

Acknowledgements

Angela Preimesberger in the MPCA water quality toxics and standards program encouraged an initial investigation into wetland plant responses to salinity variables. Angela reviewed and edited a prior draft and provided much support and encouragement. Laura Lyle, former MPCA staff in the water quality Standards Unit reviewed a previous draft and provided much technical support concerning the extirpation. Kirk Wythers assistance with obtaining and running the R XC95 script is acknowledged and appreciated as the collegial assistance with Excel and Access as well as joint R XC95 script provided by Joel Chirhart. Support for staff time and encouragement is greatly appreciated from Kim Laing, Supervisor of the MPCA South Biological Monitoring Unit. Mike Bourdaghs and John Genet's technical input, review and comments on a previous draft as well as leadership in development of the MPCA wetland-monitoring program over the last 15 years is much appreciated.

Past wetland monitoring crew leaders for data collection including Joel Chirhart, John Genet, Judy Helgen, and Harold Weigner are acknowledged as are MPCA wetland plant community monitoring crew leaders Mike Bourdaghs, Josh Horky, Sara Owens, and Bruce Sandstorm are acknowledged and appreciated. Field assistance and office data management provided by many interns, student workers, and temporary field technicians, seasonal employees and fill-in MPCA full-time staff field assistants not individually named due to the number and at the risk of missing someone – their assistance is greatly appreciated and acknowledged.

Wetland plant response to salinity • June 2020

Literature cited

Bansal, Sheel, Shane C. Lishawa, Sue Newman, Brian A. Tangen, Doulas Wilcox, Dennis Albert, Michael J.
Anteau, Michael J. Chimney, Ryan L. Cressey, Edward DeKeyser, Kenneth J. Elgersma, Sarah A.
Finkelstein, Joanna Freeland, Richards Grosshans, Page E. Klug, Daniel J. Larkin, Beth A. Lawrence,
George Linz, Joy Marburger, Gregory Noe, Clint Otto, Nicholas Reo, Jennifer Richards, Curtis
Richardson, LeRoy Rodgers, Amy J. Schrank, Dan Svedarsky, Steven Travis, Nancy Tuchman, Lisamarie
Windham-Myers. 2019. Typha (Cattail) invasion in North American Wetlands: Biology, Regional
Problems, Impacts, Ecosystem Services, and Management. Wetlands, 39645-684.

https://doi.org/10.1007/s13157-019-01174-7.

Borgnis, Evyan and Katharyn E. Boyer. 2015. Salinity tolerance and competition drive distributions of native and invasive submerged aquatic vegetation in the Upper San Francisco Estuary. Estuaries and Coasts, DOI 10.1007/s12237-015-0033-5.

http://online.sfsu.edu/katboyer/Boyer Lab/Publications files/Borgnis%20and%20Boyer%202015.pdf

- Cormier, Susan M., Glenn W. Suter II, and Lei Zheng. 2013. Derivation of a benchmark for freshwater ionic strength. Environ. Toxicol. and Chem. 32(2), 263-271.
- Cormier, Susan M., Glenn W. Suter II. 2013. A method for deriving water-quality benchmarks using field data. Environ. Toxicol. and Chem. 32(2), 255-262.
- Cormier, Susan M., Lei Zheng, Ryan A. Hill, Rachael M. Novak and Colleen M. Flaherty. 2018. A flow-chart for developing water quality criteria from two field-based methods. Science of the Total Environment 633: 1647-1656.

Cushman, John C. 2001. Osmoregulation in Plants: Implications for Agriculture. Amer. Zool. 41: 758-769.

Wetland plant response to salinity • June 2020

- Dugan, Hilary A., Sarah L. Bartlett, Samantha M. Burke, Jonathan P. Doubeck, Flora E. Krivak-Tetley,
 Nicolas K. Skaff, Jamie C. Summers, Kaitlin J. Farrell, Ian M McCullough, Ana M. Morales-Williams,
 Derek C. Roberts, Zutao Ouyang, Facundo Scordo, Paul C. Hanson, and Kathleen C. Weathers. 2017.
 Salting our freshwater lakes. Proceedings of the National Academy of Science (PNAS) April 25, 2017
 114(17): 4453-4458. www.pnas.org/cgi/doi/10.1073/pnas.1620211114.
- Flowers, Timothy J., Hanaa K. Galal and Lindell Bromham. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional. Plant Biol. 37: 604-612.
- Genet, John A. and Michael Bourdaghs. 2006. Development and validation of indices of biological integrity (IBI) for depressional wetlands in the Temperate Prairies Ecoregion. Minnesota Pollution Control Agency, Biological Monitoring Unit, St. Paul, MN
- Genet, John A. and Michael Bourdaghs. 2007. Development of Preliminary Plant and Macroinvertebrate Indices of Biological Integrity (IBI) for Depressional Wetlands in the Mixed Wood Shield Ecoregion. Minnesota Pollution Control Agency, Biological Monitoring Unit, St. Paul, MN.
- Genet, John A. 2012. Status and Trends of Wetlands in Minnesota: depressional wetland quality baseline. Wq-bwm1-06. Minnesota Pollution Control Agency, St. Paul, MN.

https://www.pca.state.mn.us/sites/default/files/wq-bwm1-06.pdf

Genet, John A. 2015. Status and trends of wetlands in Minnesota: Depressional Wetland Quality Assessment (2007-2012). wq-bwm1-08. Minnesota Pollution Control Agency, St. Paul, MN. <u>https://www.pca.state.mn.us/sites/default/files/wq-bwm1-08.pdf</u>.

Gernes, Mark C. and Judy C. Helgen. 1999. Indexes of biotic integrity (IBIs) for wetlands: vegetation and invertebrate IBIs. Report to U.S. EPA, wq-bwm6-06. Minnesota Pollution Control Agency, St. Paul, MN.

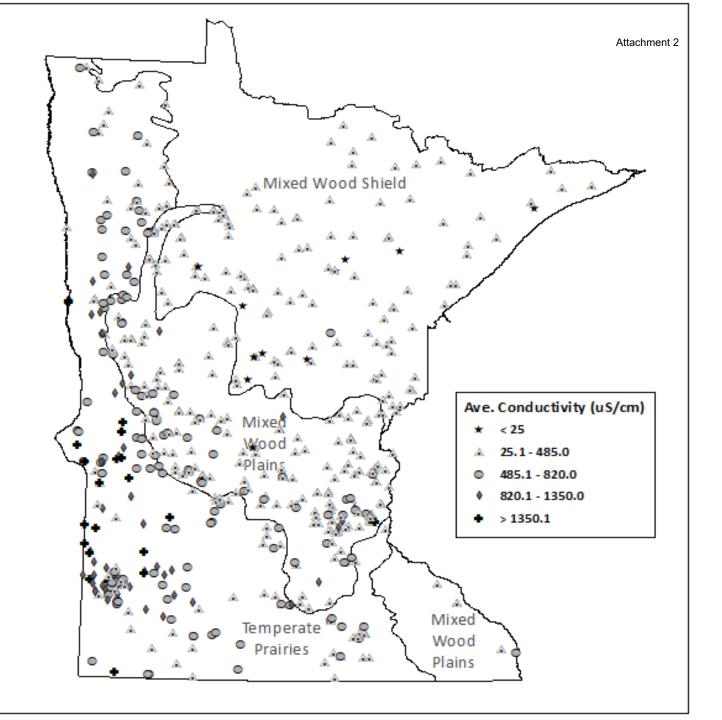
Wetland plant response to salinity • June 2020

- Gernes, Mark C. and Judy C. Helgen. 2002. Indexes of Biological Integrity (IBI) for large depressional wetlands in Minnesota. Report to U.S. EPA, Federal Assistance #CD-995525-01. Minnesota Pollution Control Agency, St. Paul, MN.
- Griffith, M.B., L. Zheng and S.M. Cormier. 2018. Using extirpation to evaluate ionic tolerance of freshwater fish. Environ. Toxicol. Chem. 37(3): 871-883. Doi: 10.1002/etc.4022. Epub 2017 Dec 29. <u>https://www.ncbi.nlm.nih.gov/pubmed/29091302</u>
- Gorham, Eville, Walter E. Dean and Jon E. Sanger. 1983. The chemical composition of lakes in the northcentral United States. Limnol. Oceanogr. 28(2), 287-301.
- Hammer, U. Theodore and J. Michael Heseltine. 1988. Aquatic macrophytes in saline lakes of Canadian prairies. Hydrobiologica 158: 101-116.
- Harguinteguy, Carlos A., M. Noelia Cofre, Alicia Fernandez-Cirelli and M. Luisa Pignata. 2016. The macrophytes Potamogeton pussillus L. and Myriophyllum aquaticum (Vell.) Verdc as potential bioindicators of a river contaminated by heavy metals. MicroChem J. 124:228-234.
- Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardon, K. N. Hopfensperger, L. P. M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10):206. <u>http://dx.doi.org/10.1890/ES14-00534.1</u>
- Hinneri, Sakari. 1976. On the ecology and phenotypic plasticity of vascular hydrophytes in a sulphate-rich, acidotropic freshwater reservoir, SW coast of Finland. Ann. Bot. Fennici 13: 97-105.
- Kinsman-Costello, Lauren E., Jonathan O'Brien, and Stephen K. Hamilton. 2015. Natural stressors in uncontaminated sediments of shallow freshwaters: the prevalence of sulfide, ammonia and reduced iron. Environ. Toxicol. and Chem. 34(3), 467-479.

- Klosowski, Stanislaw. 2006. The relationships between environmental factors and the submerged *Potamentea* associations in lakes of north-eastern Poland. Hydrobiologica 560: 15-29.
- Milburn, Scott A., Michael Bourdaghs and Jason J. Husveth. 2007. Floristic Quality Assessment for Minnesota Wetlands. wq-bwm2-01, Minnesota Pollution Control Agency, St. Paul.

https://www.pca.state.mn.us/sites/default/files/wq-bwm2-01.pdf .

- Miklovic, Stephanie and Susan M. Galatowitsch. 2005. Effect of NaCl and Typha angustifolia L. on marsh community establishment: a greenhouse study. Wetlands, 25(2): 420-429.
- Minnesota Pollution Control Agency. 2008. Water chemistry assessment protocol for depressional wetland monitoring sites. wq-bwm5-01 (vers. 1). Biological Monitoring Program, St. Paul, MN.
- Minnesota Pollution Control Agency. 2015. Water chemistry assessment protocol for wetland monitoring sites. Wq-bwm5-01 (vers. 2). Biological Monitoring Program, St. Paul, MN.


https://www.pca.state.mn.us/sites/default/files/wq-bwm5-01.pdf.

- Monferran, Magdalena V., Maria Pignata and Daniel A. Wunderlin. 2012. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pussilus in presence of copper. Environ. Poll. 161: 15-22.
- Moyle, John B. and Neil Hotchkiss. 1945. The aquatic and marsh vegetation of Minnesota and its value to waterfowl. MN Dept. Conserv., Technical Bull. Number 3. St. Paul, MN
- Myrbo, A., E.B. Swain, D.R. Engstrom, J. Coleman Wasik, J. Brenner, M. Dykhuizen Shore, E.B. Peters and G. Blaha. 2017. Sulfide generated by sulfate reduction is a primary controller of the occurrence of wild rice (*Zizania palustris*) in shallow aquatic ecosystems. J. Geophys. Res. Biogeosci. 122: 2736-2753. <u>https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2017JG003787.</u>

Wetland plant response to salinity • June 2020

- Omernick , J.M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77, 118-125.
- Omernick, J.M. and G.E. Griffith. 2014. Ecoregions of the conterminous United States; evolution of a hierarchical spatial framework. Environmental Management 54(6): 1249-1266.
- R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria. URL <u>http://www.R-project.org/</u>.
- Timoney, Kevin P. 2015. Impaired Wetlands in a Damaged Landscape: the legacy of Bitumen Exploitation in Canada (Springer Briefs in Environmental Science). Springer Cham Heidelberg, New York, Dordrecht, London. Pp. 217.
- U.S. EPA (Environmental Protection Agency). 1988. Ambient Water Quality Criteria for Chloride 1988. Office of Water EPA/440/5-88-001, 46 pp. <u>https://www.epa.gov/sites/production/files/2018-08/documents/chloride-aquatic-life-criteria-1988.pdf.</u>
- U.S. EPA (Environmental Protection Agency). 1991. Technical Support Document for Water Quality-based Toxics Control. Office of Water EPA/505/2-90-001, PB91-127415, 335 pp. https://www3.epa.gov/npdes/pubs/owm0264.pdf.
- U.S. EPA (Environmental Protection Agency). 2011. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-10/023F.
- U.S EPA (Environmental Protection Agency). 2016. *Public Review Draft;* Field-Based Methods for Developing Aquatic Life Criteria for Specific Conductivity. Office of Water, Office of Science and Technology, Washington, DC. EPA-822-R-07-010, 4304T.
- Winter, Thomas C. (Ed). 2003. Spatial and temporal variability in specific conductance and chemical characteristics of wetland water and water column biota in the wetlands of in the Cottonwood Lake

area (Chap. 3); in Hydrological, chemical and biological characteristics of a prairie pothole wetland complex under highly variable climate conditions: the Cottonwood Lake area, east-central North Dakota. U.S. Geological Survey, DOI 10.3133/pp1675, ISBN 0607894318, Reston, VA., pp. xii, 109. Figure 1. Wetland sampling locations (n= 587) showing the range of specific conductance (μ S/cm) at each sampling location. Stations with more than one conductivity sample are presented as averages for that station.

Attachment 2

Figure 2. Histograms of data depressional wetland data distribution for: A) Conductivity; B) chloride (Cl) and C) sulfate (SO-24). Data were parsed into 40 equal bins. Bin ranges were 0.0906 log10 units wide for conductivity (n = 1376), 0.0687 log10 units wide for chloride (n = 1432 and 0.0821 log10 units wide for sulfate (n = 1300).

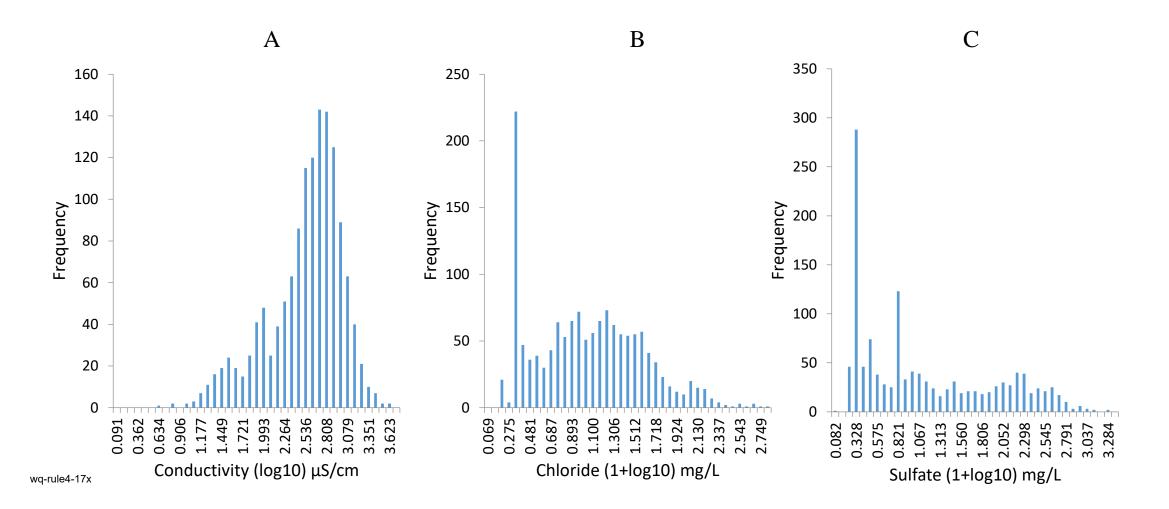


Table 1. Table 1. Descriptive statistics for laboratory derived chemistry variables (Sulfate and Chloride) and field derived Conductivity results. Minimum and maximum wetland chemistry sample results include those paired with plant data provided for each variable along with data collection date range. Plant sample counts with corresponding chemistry sample results also provided. Laboratory detection limits = "detect limit".

Parameter	Statistic	Statewide	Temperate Prairies	Mixed Wood Plains	Mixed Wood Shield
Conductivity (µS/cm)	n =	= 1376	547	602	227
	Mear	n 486.1	756.9	377.9	120.8
	Mediar	n 394.5	645.0	329.5	73.0
	Minimun Maximun		5.83	3.6	8.4
			4195	1836	597
Chloride (mg/L)	hloride (mg/L) $n =$		546	651	235
	Mear	n 22.4	16.1	34.1	4.6
	Mediar	n 8.7	11.8	11.1	1.1
	Minimun	n 0.5	1	0.5	0.5
	Maximum	n 560	211	560	49.2
Sulfate (mg/L)	n =		523	589	188
	Mear	n 67.1	152.9	11.0	4.0
	Mediar	n 5.0	82.1	2.1	1
	Minimun	n 0.5	1	0.5	0.5
	Maximun	n 1920	1920	291	158

Figure 3. Box plots of salinity variables; conductivity, chloride and sulfate statewide and across the three level II ecoregions present in Minnesota. Variables are plotted at log10 scale. Chloride and sulfate were transformed by adding 1 to data values prior to applying log10 transformations to avoid negative log values. Temperate Prairies = TP; Mixed Wood Plains = MWP; and MWS = MWS.

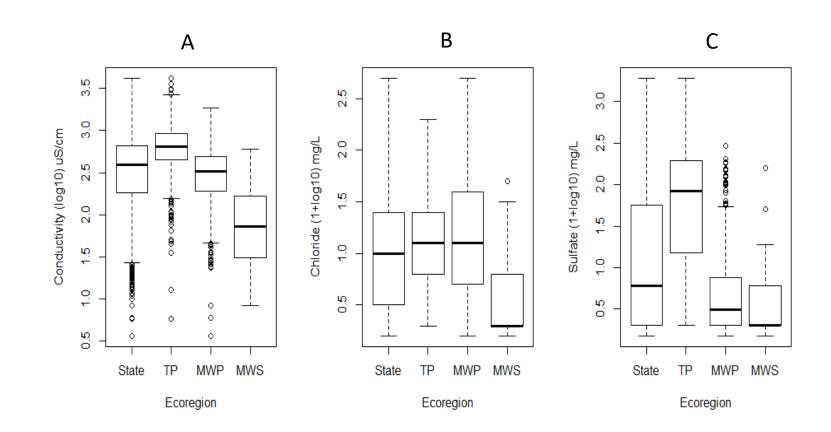
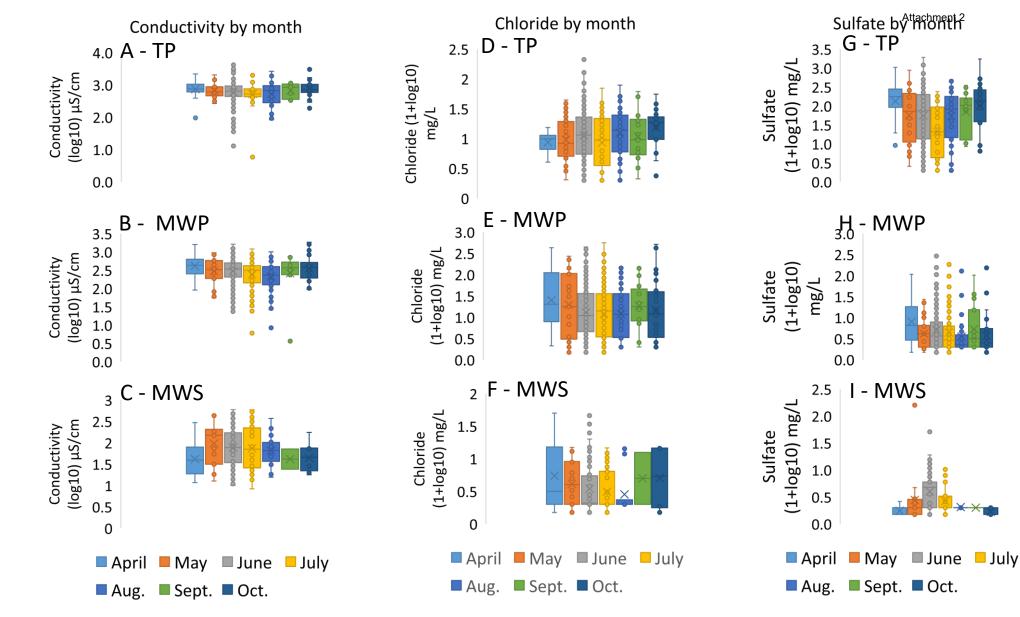



Table 2. Dunns post hoc test multiple comparison p-value results, after Kruskal-Wallis test showed differences in medians across ecoregion and statewide data for conductivity, chloride and sulfate. Dunns test applied the Benjamini-Hochberg stepped pairwise comparison method.

	Condu	ctivity	Chloride		Su	lfate
Pairings	Z-statistic	Adjusted	Z-	Adjusted	Z-	Adjusted
		p-value	statistic	p-value	statistic	p-value
State - TP	13.63	< 0	-2.85	0.005	-15.63	< 0
State – MWP	-3.96	< 0	4.2	< 0	-9.15	< 0
State - MWS	-16.02	< 0	-12.54	< 0	-10.6	< 0
TP - MWP	-14.94	< 0	0.95	0.03 - ns	-21.03	< 0
TP - MWS	-23.26	< 0	-13.14	< 0	-19.25	< 0
MWP - MWS	12.25	< 0	14.2	< 0	4.45	< 0

Figure 4. Boxplots of conductivity, chloride and sulfate concentrations by month (April – Oct.) in Minnesota's three ecoregions: Temperate Prairies = TP; Mixed Wood Plains = MWP; and Mixed Wood Shield = MWS

n = Mean Median Minimum Maximum n = n =	811 452.7 372 5.8 3141 115 834	304 728.8 635.5 5.8 3141 38 296	350 353.5 325.5 23.4 1628 73	157 139.5 10.2 10 531 53
Median Minimum Maximum n =	372 5.8 3141 115	635.5 5.8 3141 38	325.5 23.4 1628 73	10.2 10 531 53
Minimum Maximum n =	5.8 3141 115	5.8 3141 38	23.4 1628 73	10 531 53
Maximum n =	3141 115	3141 38	1628 73	531 53
<u>n =</u> n =	115	38	73	53
n =				
	834	296	200	1.50
	834	296	200	1 50
			380	158
Mean	20.0	16.7	29.1	4.1
Median	7.4	9.4	12	1.2
Minimum	0.5	1	0.5	1
Maximum	560	211	560	48
n =	114	37	72	56
n =	723	285	327	111
				5.8
				2.3
	J 1			2.5
	1020		-	158
Movimum	1920	1920	291	43
	Mean Median Minimum Maximum	Mean62.3Median5Minimum1	Mean62.3141.6Median550.4Minimum11	Mean62.3141.612.5Median550.42.5Minimum111

Table 3. Descriptive statistics for paired biology and chemistry data sets.

Figure 5. Generalized additive model (GAM) probability plots for three common wetland plant species analyzed against statewide conductivity data to illustrate the three typical responses to a range of specific conductance values. Each plot includes a trend line fitted to the probability plot along with 95% confidence interval lines to illustrate the three main data distribution patterns: (A). *Calamagrostis* canadensis illustrates a decreasing response in plot A., plot (B) *Asclepias incarnata ssp. incarnata* responds in an optimized curve suggesting an optimal conductivity range; and (C) *Stucknia pectinatus* in Plot C illustrates an increasing or positive response to increased conductivity. Vertical dashed lines in each plot represents the 95th percentile extirpation concentration (XC95) from the weighted cumulative distribution function.

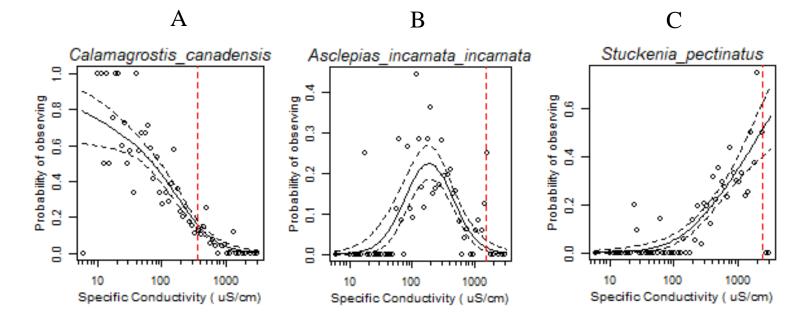
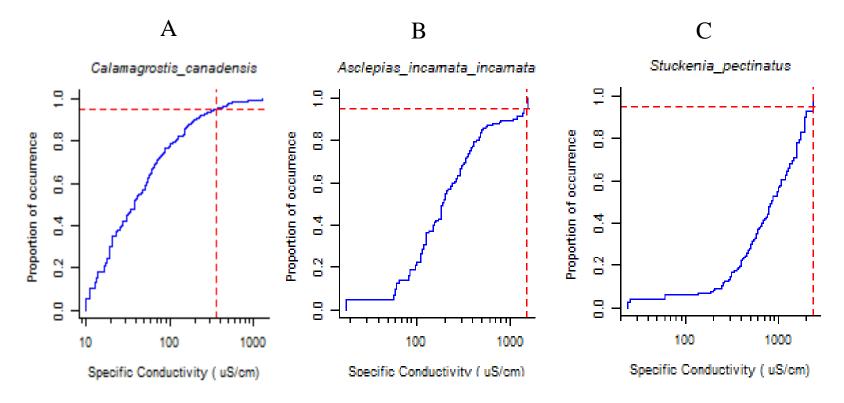



Figure 6. CDF plot output from wt.cdf from XC95 package in R. Analysis illustrates different responses to a range of specific conductance values for three common wetland plant species (A) *Calamagrostis canadensis*, (B) *Asclepias incarnata incarnata* and (C) *Stuckenia pectinatus*. Vertical dashed line represents the 95th percentile extirpation value (XC95) from the weighted cumulative distribution function.

Attachment 2

Figure 7. Boxplots of XC95 results regionally for three salinity stressor variables: conductivity, chloride and sulfate

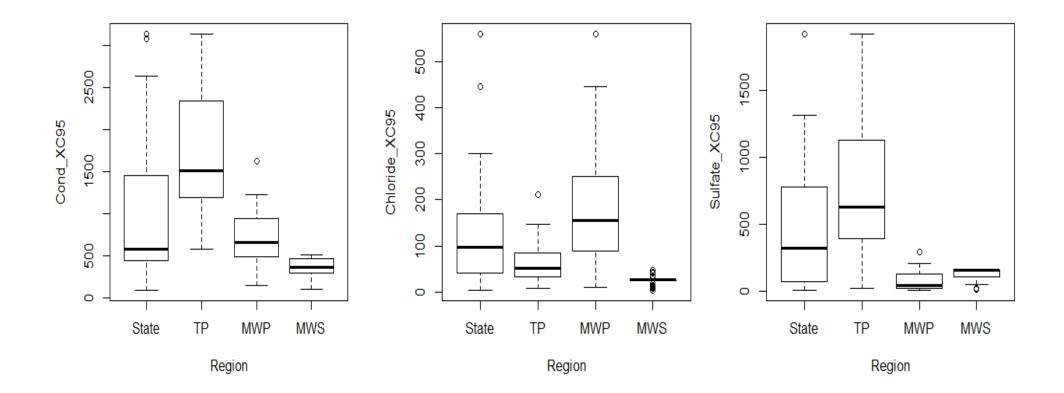


Table 4. XC95 estimates for the three cattail (Typha) taxa occurring in MN against conductivity, chloride and sulfate statewide and by ecoregion. Ecoregions are Temperate Prairies (TP); Mixed Wood Plains (MWP) and Mixed Wood Shield (MWS). Following each respective XC95 value and separated by a hyphen are the probability plot response patterns: optimum (op), increasing (in) and decreasing (de).

Stressor	Typha Taxa	Statewide	ТР	MWP	MWS
Conductivity	Typha latifolia	1010 - op	1482 - op	544 - op	432 - in
	Typha angustifolia	3141 - in	3141 - in	1628 - in	
	Typha X glauca	2507 – in	2347 – in	1200 – in	497 - in
Chloride	Typha latifolia	48 – de	46 – de	45 - de	34 - in
	Typha angustifolia	560 — ор	146 – in	560 - in	
	Typha X glauca	446 – in	211 – in	352 – in	33 - in
Sulfate	Typha latifolia	902 – de	899 – de	30 – de	158 - in
	Typha angustifolia	1310 – in	1310 – in	291 - ор	
	Typha X glauca	910 – in	1060 – in	203 – in	14 - op

Figure 8. Illustrations of generalized additive model (GAM) probability plots for the three cattail (Typha) taxa that occur in Minnesota in response to conductivity across four geographic regions: statewide (A); the Temperate Prairies (B. TP); Mixed Wood Plains (C. MWP); and Mixed Wood Shield (D. MWS).

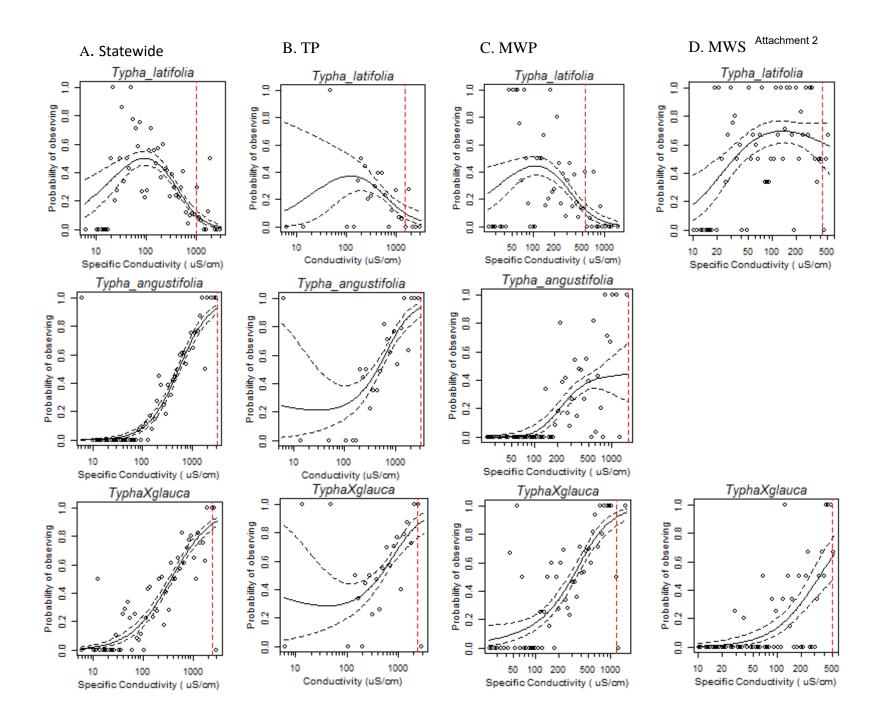


Table 5. XC95 estimates and number of observations (n =) for species demonstrating the greatest sensitivity (A) and greatest tolerance (B) to specific conductance across the four analysis regions. Selections determined by XC95 estimates within the 10th percentile for of all species specific conductance XC95 results within each respective region or the 90th percentile of species XC95 results for tolerant selections. Percentile XC95 percentile thresholds provided for each respective region. Final selections for either sensitive or tolerant species required estimates of a minimum of two regions.

A. Species sensitive to specific conductance		10th percentile 10th percentile 10		Cond - N 10th per XC95 < 4	centile	Cond - MWS Attachme 10th percentile XC95 < 181.6			
Species	Species	XC95	n =	XC95	n =	XC95	n =	XC95	n =
	C value ₁								
<u>Brasenia schreberi</u>	7	98	42					126	156
Calla palustris	8	167	50					164	47
Dulichium arundinaceum	8	111	69					110	54
Eupatorium perfoliatum var. perfoliatum	4	186	51			357	44		
Glyceria canadensis	7	132	61					176	47
Lysimachia terrestris	7	170	29					136	26
Potamogeton natans	5	203	68						
Spiraea alba	5	181	30						
Triadenum fraseri	6	181	87					167	63
B. Species tolerant to specific		Cond - s	tate	Cond - TP		Cond - N	ИWР	Cond - I	MWS
conductance		90th percentile				90th pe	rcentile	90th pe	rcentile
		XC95 <u>></u>	2340	XC95 ≥ 3	3141	XC95 <u>></u> 3	1200	XC95 ≥ 4	494
Species	Species	XC95	n =	XC95	n =	XC95	n =	XC95	n =
	C value ₁								
<u>Alisma trivale</u>	4	3141	195	3141	48				
Ceratophyllum <u>demersum</u>	2	2638	465	3141	171				
Cirsium arvense	*	3141	83	3141	38				
Lemna minor	5	2638	672	3141	253	1200	344		
Lemna trisulca	5	3087	423	3141	199				
Phalaris arundinacea	*	2340	501	3141	155				
Potamogeton pussilus	7	3141	198	3141	62				
Schoenoplectus tabermaemontani	4					1230	84	513	30
Scutellaria lateriflora	5	2340	130			1230	98	494	
Typha angustifolia	*	3141	329	3141	198	1628	108		
Typha X glauca	*	2507	410			1200	204	513	30
Urtica dioica ssp. gracilis	1	2340	84			1628	50		

1 Milburn, Bourdaghs and Husveth 2007

Table 6. XC95 estimates and number of observations (n =) for species demonstrating the greatest sensitivity (A) and greatest tolerance (B) to chloride across the four analysis regions. Selections determined by XC95 estimates within the 10th percentile for species chloride XC95 sensitivity responses within each respective region or the 90th percentile of species XC95 results for tolerant selections. Percentile XC95 percentile thresholds provided for each respective region. Final selections for either sensitive or tolerant species required estimates of a minimum of two regions.

 A. Species chloride 			ide - state		ride - TP		hloride		Chlori	de - MWS
sensitivity		10th	percentile	10th	percentile	e 10	Oth per	centile	10th p	Attachm Attachm Dercentile
			<19.2		5 < 17.6		C95 < 4	5.4	XC95	<u><</u> 13
Species	Species	XC95	n =	XC95	n =	XC95	5 n	=	XC95	n =
	C value ₁									
Carex lasiocarpa var. americana	7	16	130	8	25	24	42		13	63
Carex utricularia	7	13	157	13	28	10	55			
<u>Coumarum palustre</u>	7	11	65						12	53
Dulichium	8	11	77						13	59
arundinaceum										
Lysimachia thyrsiflora	6			9	28	39	89			
Torreychloa pallida	8	4	25						4	25
B. Species chloride		Chlor	ide - state	Chlo	ride - TP	Cł	loride -	MWP	Chloric	le - MWS
tolerance			percentile		percentile		th perc			ercentile
			≥446		5 ≥ 172		:95 <u>≥</u> 56		XC95 >	
Species	Species	XC9	5 n =	XCS	95 n =)	(C95	n =	XC95	n =
	C value ₁									
Cirsium arvense	*	560) 74				560	25		
<i>Galium trifidum</i> ssp.	6	560) 231				560	100		
trifidum										
Lythrum salicaria	*	560) 88				560	80		
Lemna minor	5	446	5 706						44	106
Mentha arvensis	3	560) 70				560	36		
Pilea pumila var. pumila	3	560	556				560	52		
Potamogeton pusillus	7	560	216	21	1 59		560	111	48	45
Riccia fluitans	-	560	240				560	99		
Rumex britannica	6	560	95				560	53		
Salix interior	2	446	56							
Typha angustifolia	*	560					560	119		
Typha X glauca	*	446	5 446	21	1 158				33	34
Urtica dioica spp.	1	560					560	41		
gracilis	_						-			

¹ Milburn, Bourdaghs, and Husveth 2007

Table 7. XC95 estimates and number of observations (n =) for species demonstrating the greatest sensitivity (A) and greatest tolerance (B) to sulfate across the four analysis regions. Selections determined by XC95 estimates within the 10th percentile for all species sulfate XC95 results within each respective region or the 90th percentile of species XC95 results for tolerant selections. Percentile XC95 percentile thresholds provided for each respective region. Final selections for either sensitive or tolerant species required estimates of a minimum of two regions.

	Sulfate - s	tate	Sulfate	- TP	Sulfate	- MW	/P	Sulfate - MWS		
	10th perc	entile	10th pe	rcentile	10th pe	ercent	tile	10th per	rcentile	
	XC95 < 45	.5	XC95 <	255	XC95 <	18.2		XC95 < 17.2		
Species	XC95	n =	XC95 n =		XC95 n =			XC95	n =	
C value ₁										
6	25	74			1	.7	36			
5	21	55						17	33	
7	13	56			1	.1	37			
5	20	85			1	.7	64			
	Sulfate	- state	Sulfate	e - TP	Sulfate	- MW	Р	Sulfate	- MWS	
	90th pctl		90th pctl		90th pctl			90th pc	tl	
	00000	000000		XC95 ≥ 1627.5		000000			~~~	
Species	XC95	n =	XC95	n =	XC95	n =		XC95	n =	
C value ₁										
4	1920	173	1920	47				158	43	
2	1310	426	1920	138				158	39	
*	1920	73	1920	34	203	25				
5					203	334		158	74	
5	1310	398						158	29	
5	1310	207						158	81	
*	1920	432			203	231		158	61	
7	1920	198	1920	58	203	104		158	36	
6					291	71		158	25	
*	1310	294			291	111				
	<u>C value</u> 6 5 7 5 5 <u>5</u> <u>5</u> 4 2 * 5 5 5 5 5 5 5 * 7 6	10th perc Species XC95 < 45	C value ₁ 25 74 6 25 74 5 21 55 7 13 56 5 20 85 5 20 85 5 20 85 6 Sulfate - state 90th $gctl$ 90th $gctl$ XC95 \geq 1310 173 Species XC95 n = C value ₁ 173 2 4 1920 173 2 1310 426 * 1920 398 5 1310 207 * 1920 432 7 1920 432 7 1920 198 6 V 198	10th percentile XC95 < 45.5	10th percentile 10th percentile $XC95 < 15$ Species XC95 n = $XC95 < 1$ 6 25 74 7 5 21 55 7 7 13 56 7 5 20 85 7 7 13 56 7 5 20 85 7 90th pctt 90th pctt 90th pctt 90th pctt 90th pctt 70^{13} Species XC95 n = $XC95 \ge 1310$ XC95 n = C value1 1920 173 1920 47 4 1920 173 1920 34 4 1920 173 1920 34 5 1310 398 138 34 5 1310 207 134 1920 58 5 1310 207 58 58 58 58 6 1920 198 1920 58 58	10th percentile 10th percentile 10th percentile 10th percentile 10th percentile XC95 < XC95 XC95	10th percentile XC95 < 45.5 10th percentile XC95 < 25.5 10th percentile 	10th percerrite 10th percerrite 10th percerrite 10th percerrite 10th percerrite $XC95 < 18.2$ Species XC95 n = XC95 n = XC95 n = C value1 N </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

1 Milburn, Bourdaghs, and Husveth 2007

Table 8. MPCA wetland stressor assessment thresholds derived at the 95th percentile from all samples at least disturbed reference sites. Where 95% of the reference site observations would be less than (<) this value. Compared to the 0.05 percentile estimated hazardous concentration (HC05) for analyzed wetland plant species.

Reference Site based (95 th percentile)										
Applicable Region	Conductance	Chloride	Sulfate (mg/L)							
	(μS/cm)	(mg/L)								
Statewide (Reference	461 (n = 66)	7.8 (n = 58)	17.6 (n = 54)							
Sites										
Temperate Prairies	634 (n = 13)	6.6 (n = 7)	27.7 (n = 7)							
Mixed Wood Plains	232 (n = 14)	7.6 (n = 13)	9.3 (n = 17)							
Mixed Wood Shield	189 (n = 41)	4.4 (n = 38)	5 (n = 18)							

B. Extirpation based Hazardous Concentration (HC05)

Applicable Region	Conductance (µS/cm)	Chloride (mg/L)	Sulfate (mg/L)
Statewide (HC05)	166 (n = 811)	10.8 (n = 834)	22.6 (n = 723)
Temperate Prairies	590 (n = 303)	8.9 (n = 296)	69.6 (n = 285)
Mixed Wood Plains	330 (n = 366)	38.3 (n = 380)	9.4 (n = 327)
Mixed Wood Shield	131 (n = 156)	8.9 (n = 158)	14.2 (n = 111)

Appendix A. Wetland plant species individual extirpation estimates in response to conductivity (μ S/cm) in fo geographic regions; statewide, Temperate Prairies ecoregion (TP), Mixed Wood Plains ecoregion (MWP) and Wood Shield ecoregion (MWS). Number of paired plant and conductivity observations (n =) are provided as generalized affects model (GAM) probability plot curve "fit" (Pattern) where biol. response related to chemi as increasing (in); optimal (op); decreasing (de) or undefined (*).

	St	atewi	ide		TP			MW	D	
SPECIES	XC95	n	Pattern	XC95	n	Pattern	XC95	n	Pattern	XC95
Acer negundo	2340	44	ор				784	42	ор	
Acorus americanus	357	50	ор				158	37	ор	
Alisma triviale	3141	195	ор	3141	48	de	608	98	de	492
Alopecurus aequalis var. aequalis	538	44	ор							
Asclepias incarnata ssp. incarnata	1491	109	ор				485	74	ор	
Bidens cernua	643	51	ор				534	49	de	
Brasenia schreberi	98	42	de							126
Calamagrostis canadensis	362	188	de				596	84	de	295
Calla palustris	167	50	ор							164
Campanula aparinoides	464	95	ор				550	45	ор	241
Carex atherodes	1259	72	*	1233	42	de				
Carex bebbii	444	33	de							
Carex comosa	911	85	ор				910	66	ор	
Carex diandra	387	46	ор							336
Carex hystericina	562	90	ор				636	48	in	482
Carex interior	134	26	de							
Carex lacustris	452	233	de	1244	27	ор	552	110	ор	466
Carex lasiocarpa var. americana	475	136	de	1540	25	ор	531	48	ор	286
Carex retrorsa	501	36	ор							
Carex stipata var. stipata	597	30	ор							
Carex stricta	614	92	de				709	40	de	269
Carex utriculata	474	161	de	993	29	ор	496	61	de	356
Ceratophyllum demersum	2638	465	in	3141	171	in	833	265	in	471
Chara vulgaris	1595	57	ор	1595	36	ор				
Cicuta bulbifera	497	206	de				945	100	de	472
Cicuta maculata	892	57	ор				837	45	ор	
Cirsium arvense	3141	83	in	3141	38	ор	1157	28	ор	
Comarum palustre	181	67	ор							326
Cornus sericea ssp. sericea	578	40	ор							
Dulichium arundinaceum	111	69	de							110
Eleocharis aciculari s var. acicularis	843	55	ор				667	32	ор	
Eleocharis palustris	1030	322	de	1540	97	ор	497	144	ор	304
Elodea canadensis	480	40	ор				487	34	ор	
Epilobium coloratum	1540	51	ор							
Epilobium eptophyllum	506	72	ор				454	31	ор	
Equisetum fluviatile	506	49	ор							
Eupatorium perfoliatum var. perfoliatum	186	51	de				357	44	de	
Galium tinctorium	503	43	ор				545	26	ор	
Galium trifidum ssp. trifidum	499	219	de	1132	26	de	652	97	de	466

Chasenin hannalia	201	1 4 7	da	1			410	40	da	200
Glyceria borealis Glyceria canadensis	301 132	147 61	de de				410	42	de	298 176
Glyceria grandis var. grandis	501	201	ор	1056	37	de	468	97	de	473
Impatiens capensis	814	134	ор ор	1050	57	uc	973	92	in	494
Iris versicolor	419	64	de				498	34	de	434
Leersia oryzoides	554	216	ор	1362	28	ор	722	138	ор	468
Lemna minor	2638	672	in	3141	253	in	1200	344	in	479
Lemna trisulca	3087	423	in	3141	199	in	713	211	in	382
Lycopus americanus	1213	130	de	1646	25	*	786	71	de	493
Lycopus uniflorus	1157	228	de				529	109	de	466
Lysimachia terrestris	170	29	de							136
Lysimachia thyrsiflora	451	203	de	584	28	ор	541	94	de	300
Lythrum salicaria	1628	53	ор				1628	48	in	
Mentha arvensis	1628	70	ор				1628	35	ор	
Mimulus ringens var. ringens	589	32	ор							
Myriophyllum sibiricum	1540	64	ор	1540	34	ор				
Myriophyllum verticillatum	534	58	ор				498	27	de	
Najas flexilis	451	71	ор				463	35	ор	339
Najas guadalupensis	457	29	ор							
Nuphar lutea ssp. variegata	334	57	ор							297
Nymphaea odorata	232	93	de				497	47	ор	204
Onoclea sensibilis	349	25	ор	~ ~ ~ ~	455	,		40	,	470
Phalaris arundinacea	2340	501	ор	3141	155	de	945	40	de	478
Phragmites australis	995	26	ор *				0.25	40		
Pilea fontana Pilea pumila var. pumila	910	47 56					935 1628	40 50	op in	
Poa_ alustris	1628 520	50 61	op on				973	25	in *	492
Polygonum amphibium	901	228	ор ор	1287	79	de	903	101	ор	328
Polygonum hydropiperoides	770	25	ор	1207	,,,	uc	505	101	Οp	520
Polygonum lapathifolium	1044	79	ор				1020	49	de	
Polygonum sagittatum	303	66	ор				339	46	de	
Potamogeton foliosus ssp. foliosus	1493	75	ор	1556	30	in	680	40	ор	
Potamogeton gramineus	484	38	de							
Potamogeton natans	203	68	de							347
Potamogeton pusillus	3141	198	de	3141	62	ор	1157	90	in	396
Potamogeton strictifolius	2638	148	in	2638	56	in	552	74	ор	
Potamogeton zosteriformis	497	145	ор				497	112	ор	
Ranunculus flabellaris	702	41	ор							
Ranunculus pensylvanicus	748	41	ор							
Ranunculus sceleratus	2340	39	in							
Riccia fluitans	996	251	ор	1002	95	ор	729	109	de	501
Ricciocarpos natans	677	47	*							
Rorippa palustris	1385	76	ор	757	44	de		_		
Rumex maritimus	1421	112	in	1217	62	de	1020	57	in	
Rumex britannica	500	101	ор	4499	40	_	1157	61	ор	333
Sagittaria latifolia	478	313	op do	1130	48	ор	498	180	ор	479
Sagittaria rigida	269	51	de	l			343	39	ор	

Salix discolor	520	39	ор							
Salix interior	1628	58	ор	704	31	ор				
Salix petiolaris	515	39	de							
Schoenoplectus acutus var. acutus	2340	87	ор	2340	67	ор				
Schoenoplectus fluviatilis	1921	135	in	1506	95	de	408	34	ор	
Schoenoplectus tabernaemontani	1540	181	ор	1460	71	de	1230	84	ор	513
Scirpus cyperinus	221	144	de				272	53	de	238
Scolochloa festucacea	2340	32	ор							
Scutellaria galericulata	487	167	ор				719	102	ор	443
Scutellaria lateriflora	2340	130	ор				1230	98	ор	494
Sium suave	1300	177	ор	1254	68	ор	697	71	ор	373
Solanum dulcamara var. dulcamara	3141	25	*							
Sparganium erectum ssp. stoloniferum	214	72	ор							304
Sparganium eurycarpum	1209	159	ор	1203	70	de	1200	78	ор	
Spiraea alba	181	30	ор							
Spirodela polyrrhiza	554	368	ор	590	49	ор	782	262	de	494
Stachys palustris	1331	43	*							
Stuckenia pectinatus	2340	166	in	2163	111	in	785	60	in	
Thelypteris palustri s var. pubescens	277	59	ор				360	28	ор	347
Triadenum fraseri	181	87	ор							167
Typha angustifolia	3141	329	in	3141	198	in	1628	108	in	
Typha latifolia	1010	263	ор	1482	70	ор	544	108	ор	432
Typha X glauca	2507	410	in	2347	1911	in	1200	204	in	497
Urtica dioica ssp. gracilis	2340	84	in				1628	50	in	
Utricularia intermedia	282	36	de							383
Utricularia macrorhiza	987	383	de	1536	139	ор	608	151	ор	427
Utricularia minor	589	97	de				610	42	ор	317
Wolffia columbiana	599	85	ор				842	70	ор	
Zizania palustris	407	36	ор				398	35	ор	

Attachment 2

our d Mixed is the stry shows

MWS	;
n	Pattern
61	in
29	de
91	de
47 33	ор
55	ор
29	ор
38	in
	,
99	de
62	de
30	de
74	ор
53	in
104	ор
53	ор
54	de
97	de
100	ор

86 47 75 37	de de in in	
56 106 33 39 99 26 32	in op in * op op	
26	ор	
35 51	op de	
83	in	
33 52	in de	
41 46	de in	
55	in	
34 96	op op	

30	in
92	de
57	ор
27	in
42	ор
57	ор
77	in
28	ор
63	ор
93	in
30	in
25	de
107	ор
40	de

Appendix B. Wetland plant species individual extirpation estimates in response to chloride (mg/L) in four geographic regions; statewide, Temperate Prairies ecoregion (TP), Mixed Wood Plains ecoregion (MWP) and Mixed Wood Shield ecoregion (MWS). Number of paired plant and chloride observations (n =) are provided as is the generalized affects model (GAM) probability plot curve "fit" (Pattern) where biol. response related to chemistry shows as increasing (in); optimal (op); decreasing (de) or undefined (*).

optimal (op), decreasing (de) of under	Statewide				TP			MW	D C	MWS			
SPECIES	XC95	n	Pattern	XC95	n	Pattern	XC95	n	Pattern	XC95	n	Pattern	
Acer negundo	89	40	in				89	34	in				
Acorus americanus	19	46	ор										
Alisma triviale	140	197	de	33	47	de	140	87	de	33	63	ор	
Alopecurus aequalis var. aequalis	29	53	de										
Asclepias incarnata ssp. incarnata	96	94	ор				89	63	de				
Bidens cernua	42	57	ор				40	46	de				
Brasenia schreberi	23	44	de							26	30	*	
Calamagrostis canadensis	85	187	ор	14	26	de	89	68	ор	26	93	de	
Calla palustris	25	53	de							26	50	de	
Campanula aparinoides	35	84	de				53	38	de	26	30	*	
Carex atherodes	68	82	de	69	45	de							
Carex bebbii	79	29	de										
Carex comosa	86	85	de				76	62	de				
Carex diandra	20	49	de							24	30	de	
Carex hystericina	170	92	de				170	49	de	24	40	ор	
Carex interior	10	25	de										
Carex lacustris	170	236	ор	28	28	de	170	107	ор	26	101	de	
Carex lasiocarpa var. americana	16	130	de	8	25	de	24	42	de	13	63	de	
Carex retrorsa	170	27	ор										
Carex stipata var. stipata	110	35	de										
Carex stricta	73	88	de				100	39	de	26	28	*	
Carex utriculata	13	157	de	13	28	de	10	55	ор	26	74	de	
Ceratophyllum demersum	170	500	ор	211	143	ор	170	301	ор	26	54	*	
Chara vulgaris	45	57	ор	52	35	de							
Cicuta bulbifera	170	219	ор				194	104	ор	26	104	ор	
Cicuta maculata	200	60	in				200	43	in				
Cirsium arvense	560	74	in	130	34	in	560	25	ор				
Comarum palustre	11	65	de							12	53	de	
Cornus sericea ssp. sericea	93	37	in										
Dulichium arundinaceum	11	77	de							13	59	de	
Eleocharis acicularis var. acicularis	93	57	ор				89	34	ор				
Eleocharis palustris	170	323	de	95	91	de	170	130	de	26	102	de	
Elodea canadensis	300	58	in				300	53	in				
Epilobium coloratum	32	42	ор										
Epilobium leptophyllum	200	65	de				200	31	ор				
Equisetum fluviatile	50	53	ор										
Eupatorium perfoliatum var. perfoliatum	25	40	de										
Galium tinctorium	61	39	de										
Galium trifidum ssp. trifidum	560	231	de	20	25	de	560	100	de	25	106	de	
Glyceria borealis	29	155	de				37	46	de	24	86	de	

Glyceria canadensis	9	64	de							26	53	de
Glyceria grandis var. grandis	170	196	de	50	36	de	170	81	de	33	79	op
Impatiens capensis	199	134	in	50	50	üc	199	97	in	33	33	in
Iris versicolor	89	68	ор				99	31	ор	26	28	in
Leersia oryzoides	175	220	ор				170	139	de	33	57	*
Lemna minor	446	706	in	84	218	ор	446	379	in	44	106	in
Lemna trisulca	120	445	ор	106	176	in	89	235	ор	12	33	de
Lycopus americanus	89	126	ор	84	25	ор	87	65	ор	9	36	ор
Lycopus uniflorus	300	235	de	0.	20	σp	300	106	de	26	105	de
Lysimachia terrestris	32	31	de							13	29	ор
Lysimachia thyrsiflora	35	205	de	9	28	de	39	89	de	26	88	de
Lythrum salicaria	560	88	in	-			560	80	in			
Mentha arvensis	560	70	in				560	36	in			
Mimulus ringen s var. ringens	42	32	de									
Myriophyllum sibiricum	79	77	*	52	30	de	80	35	*			
Myriophyllum verticillatum	28	56	ор									
Najas flexilis	300	94	ор				300	54	in	24	29	*
Najas guadalupensis	110	32	in				110	26	ор			
Nuphar lutea ssp. variegata	12	53	de				_		- 1-	24	34	de
Nymphaea odorata	106	106	ор				117	47	ор	26	56	de
Phalaris arundinacea	170	504	ор	84	142	de	170	273	ор	42	88	in
Pilea fontana	300	55	in				300	48	in			
Pilea pumila var. pumila	560	56	in				560	52	in			
Poa palustris	100	60	de				107	27	in	26	29	ор
Polygonum amphibium	77	222	de	69	74	de	77	98	de	8	50	de
Polygonum hydropiperoides	105	29	in									
Polygonum lapathifolium	114	93	ор				120	57	de			
Polygonum sagittatum	42	61	de				42	41	de			
Potamogeton foliosus ssp. foliosus	300	73	ор				300	47	ор			
Potamogeton gramineus	10	42	de									
Potamogeton natans	21	72	de							26	46	in
Potamogeton pusillus	560	216	in	211	59	ор	560	111	in	48	45	in
Potamogeton strictifolius	140	163	in	84	42	ор	140	96	ор	19	25	*
Potamogeton zosteriformis	89	158	de				89	119	de			
Potentilla norvegica ssp. monspeliensis	99	25	de									
Ranunculus flabellaris	110	41	de									
Ranunculus pensylvanicus	37	35	de									
Ranunculus sceleratus	53	41	ор									
Riccia fluitans	560	240	de	32	82	de	560	99	ор	26	59	ор
Ricciocarpos natans	110	48	de									
Rorippa palustris	54	79	de	69	38	de	40	28	ор			
Rumex maritimus	69	136	ор	84	55	in	49	74	ор			
Rumex britannica	560	95	de				560	53	de	26	32	*
Sagittaria latifolia	170	314	de	69	47	de	170	170	de	48	97	*
Sagittaria rigida	300	60	de				300	39	ор			
Salix discolor	77	43	ор									
Salix interior	446	56	*	20	28	de						
												-

Salix petiolaris	170	43	de									
Schoenoplectus acutu s var. acutus	35	99	ор	28	70	de	49	26	de			
Schoenoplectus fluviatilis	58	129	ор	49	87	in	110	39	ор			
Schoenoplectus tabernaemontani	170	171	de	49	65	ор	170	72	de	33	34	*
Scirpus cyperinus	170	139	de				170	45	ор	24	91	de
Scolochloa festucacea	49	38	de									
Scutellaria galericulata	180	166	ор				200	96	de	26	58	ор
Scutellaria lateriflora	110	145	in				110	105	in	15	25	ор
Sium suave	34	168	de	29	67	de	50	61	de	24	40	de
Solanum dulcamara var. dulcamara	200	27	in									
Sparganium erectum ssp. stoloniferum	71	71	de							24	58	de
Sparganium eurycarpum	199	156	ор	34	69	ор	199	68	ор			
Spirodela polyrrhiza	199	394	ор	42	49	ор	191	264	ор	33	81	de
Stachys palustris	110	40	ор									
Stuckenia pectinatus	150	195	ор	211	107	in	110	84	ор			
Thelypteris palustris var. pubescens	61	55	de				89	26	de	13	27	*
Torreyochloa pallida	4	25	de							4	25	de
Triadenum fraseri	14	92	de							24	69	de
Typha angustifolia	560	315	ор	146	169	in	560	119	in			
Typha latifolia	48	273	de	46	68	de	45	105	de	34	99	in
Typha X glauca	446	446	in	211	179	in	352	253	in	33	34	in
Urtica dioica ssp. gracilis	560	69	in				560	41	ор			
Utricularia intermedia	13	38	de							24	27	*
Utricularia macrorhiza	170	400	de	38	125	de	170	160	de	26	114	de
Utricularia minor	110	119	de				110	53	de	26	45	de
Wolffia columbiana	140	102	in				140	80	in			
Zizania palustris	10	26	de									

Appendix C. Wetland plant species individual extirpation estimates in response to sulfate (mg/L) in four geographic regions; statewide, Temperate Prairies ecoregion (TP), Mixed Wood Plains ecoregion (MWP) and Mixed Wood Shield ecoregion (MWS). Number of paired plant and sulfate observations (n =) are provided as is the generalized affects model (GAM) probability plot curve "fit" (Pattern) where biol. response related to chemistry shows as increasing (in); optimal (op); decreasing (de) or undefined (*).

	St	atewi	ide	ТР				MWF)	MWS		
SPECIES	XC95	n	Pattern	XC95	n	Pattern	XC95	n	Pattern	XC95	n	Pattern
Acer negundo	1310	27	in									
Acorus americanus	180	40	de									
Alisma triviale	1920	173	de	1920	47	de	22	83	de	158	43	in
Alopecurus aequalis var. aequalis	163	49	de									
Asclepias incarnata ssp. incarnata	814	82	de				24	55	de			
Bidens cernua	350	55	de				26	44	de			
Brasenia schreberi	50	31	de									
Calamagrostis canadensis	530	143	de	530	25	de	24	51	de	158	67	in
Calla palustris	158	40	de							158	37	ор
Campanula aparinoides	51	69	de				24	33	de			
Carex atherodes	350	67	*	309	43	de						
Carex bebbii	199	27	de									
Carex comosa	57	68	de				57	55	de			
Carex diandra	103	44	de							12	26	de
Carex hystericina	40	86	de				40	48	de	158	35	ор
Carex lacustris	158	181	de	314	28	de	20	86	de	158	67	ор
Carex lasiocarpa var. americana	814	99	de	392	25	de	7	34	de	158	40	in
Carex stipata var. stipata	29	31	de									
Carex stricta	814	73	de				24	36	de			
Carex utriculata	422	123	de	471	28	de	22	47	de	16	48	de
Ceratophyllum demersum	1310	436	ор	1920	138	in	122	259	in	158	39	in
Chara vulgaris	814	57	ор	811	36	de						
Cicuta bulbifera	58	173	de				56	91	de	158	71	de
Cicuta maculata	250	53	de				100	39	*			
Cirsium arvense	1920	73	in	1920	34	ор	203	25	*			
Comarum palustre	158	45	de							158	35	in
Cornus sericea ssp. sericea	33	27	de									
Dulichium arundinaceum	50	50	de							50	35	in
Eleocharis acicularis var. acicularis	435	51	de				126	32	de			
Eleocharis palustris	724	271	de	602	91	de	21	113	de	50	67	de
Elodea canadensis	20	51	de				20	46	ор			
Epilobium coloratum	814	40	de									
Epilobium leptophyllum	445	57	de				6	30	de			
Equisetum fluviatile	37	48	de									
Eupatorium perfoliatum var. perfoliatum	52	29	de									
Galium tinctorium	58	28	de									
Galium trifidum ssp. trifidum	528	199	de	530	25	ор	40	96	de	158	78	in
Glyceria borealis	168	121	de				10	43	de	158	55	ор
Glyceria canadensis	49	48	de							50	37	in
Glyceria grandis var. grandis	260	173	de	390	35	ор	20	77	de	158	61	ор

Impatiens capensis	183	124	de				203	93	ор	15	27	de
Iris versicolor	45	49	de				205	55	υp	15	27	üc
Leersia oryzoides	500	193	de				24	125	de	158	44	in
Lemna minor	923	620	*	1200	212	in	203	334	in	158	74	in
Lemna trisulca	1310	398	in	1310	167	ор	128	202	in	158	29	in
Lycopus americanus	435	102	de			- 1-	203	54	in			
Lycopus uniflorus	1310	207	de				23	102	de	158	81	in
Lysimachia thyrsiflora	46	164	de	22	28	de	40	75	de	158	61	in
Lythrum salicaria	281	74	de				33	67	ор			
, Mentha arvensis	814	65	*				23	35	ор			
Mimulus ringens var. ringens	445	29	de						,			
Myriophyllum sibiricum	814	53	ор	650	28	de						
Myriophyllum verticillatum	156	50	de									
Najas flexilis	76	77	de				20	45	de			
Najas guadalupensis	69	32	de				27	26	de			
Nuphar lutea ssp. variegata	50	43	de							158	26	in
Nymphaea odorata	25	74	de				17	36	de	50	35	ор
Phalaris arundinacea	1920	432	de	1335	140	de	203	231	de	158	61	in
Pilea fontana	56	53	de				57	48	ор			
Pilea pumila var. pumila	320	53	de				49	49	de			
Poa palustris	106	48	de									
Polygonum amphibium	400	184	de	358	74	de	203	78	de	18	32	de
Polygonum hydropiperoides	240	29	ор									
Polygonum lapathifolium	724	87	de				291	55	ор			
Polygonum sagittatum	50	52	de				24	39	de			
Potamogeton foliosus ssp. foliosus	724	64	ор				126	38	ор			
Potamogeton gramineus	7	30	de									
Potamogeton natans	21	55	de							17	33	de
Potamogeton pusillus	1920	198	de	1920	58	*	203	104	ор	158	36	in
Potamogeton strictifolius	1200	129	de	1200	38	in	21	77	de			
Potamogeton zosteriformis	530	123	de				9	90	de			
Ranunculus flabellaris	445	36	*									
Ranunculus pensylvanicus	500	31	de									
Ranunculus sceleratus	1310	40	in									
Riccia fluitans	200	203	de	201	80	ор	40	85	de	158	38	in
Ricciocarpos natans	180	44	de									
Rorippa palustris	453	79	*	457	38	ор	126	28	de			
Rumex maritimus	528	131	ор	528	54	ор	291	71	in			
Rumex britannica	281	84	de				21	49	de	158	25	in
Sagittaria latifolia	327	272	de	393	47	de	126	153	de	158	72	in
Sagittaria rigida	13	56	de				11	37	de			
Salix discolor	29	32	de									
Salix interior	137	45	de	92	28	de						
Salix petiolaris	81	39	de									
Schoenoplectus acutus var. acutus	1310	89	in	954	68	de						
Schoenoplectus fluviatilis	902	118	in	891	85	ор	24	30	de			
Schoenoplectus tabernaemontani	724	151	in	724	64	ор	182	61	*	158	26	in

Scirpus cyperinus	430	108	de				20	40	de	158	65	in
Scolochloa festucacea	1310	34	*									
Scutellaria galericulata	59	129	de				40	80	de	158	37	in
Scutellaria lateriflora	1310	136	de				56	101	in			
Sium suave	500	155	de	437	67	de	24	59	ор	158	29	in
Sparganium erectum ssp. stoloniferum	118	49	de							158	37	in
Sparganium eurycarpum	426	142	de	384	68	de	203	60	ор			
Spirodela polyrrhiza	69	335	de	78	49	de	30	222	de	158	64	ор
Stachys palustris	440	36	in									
Stuckenia pectinatus	902	174	in	902	105	ор	182	68	in			
Thelypteris palustris var. pubescens	48	42	de									
Triadenum fraseri	106	68	de							158	46	in
Typha angustifolia	1310	294	in	1310	166	in	291	111	ор			
Typha latifolia	902	233	de	899	67	de	30	96	de	158	70	in
Typha X glauca	910	400	in	1060	150	in	203	222	in	14	28	ор
Urtica dioica ssp. gracilis	1310	65	*				182	39	in			
Utricularia intermedia	170	29	de									
Utricularia macrorhiza	740	344	de	740	121	ор	39	141	in	158	82	de
Utricularia minor	170	106	de				39	52	in	50	33	in
Wolffia columbiana	20	85	de				17	64	de			