	07/25/17	REVISOR	CKM/EP	AR4237
1.1	Pollution Control Agency			
1.2 1.3	Adopted Permanent Rule Relat Life Use	ing to Water Quality S	Standards and Tiero	ed Aquatic
1.4	7050.0140 USE CLASSIFICA	FIONS FOR WATERS	S OF THE STATE.	
1.5	[For te	xt of subps 1 and 2, see	M.R.]	
1.6	Subp. 3. Class 2 waters, aq	uatic life and recreation	on. Aquatic life and	recreation
1.7	includes all waters of the state that	t support or may suppo	rt aquatic biota, bath	ing, boating,
1.8	or other recreational purposes and	for which quality contro	ol is or may be necess	ary to protect
1.9	aquatic or terrestrial life or their h	abitats or the public he	alth, safety, or welfa	re.
1.10	[For te	ext of subps 4 to 8, see	M.R.]	
1.11 1.12	7050.0150 DETERMINATION PHYSICAL CONDITIONS, AN	-	,	
1.13	[For te	xt of subps 1 and 2, see	M.R.]	
1.14	Subp. 3. Narrative standar	ds. For all Class 2 wate	ers, the aquatic habit	at, which
1.15	includes the waters of the state and	stream bed, shall not be	degraded in any mat	erial manner,
1.16	there shall be no material increase	in undesirable slime gr	owths or aquatic plar	nts, including
1.17	algae, nor shall there be any signi	ficant increase in harm	ful pesticide or other	residues in
1.18	the waters, sediments, and aquation	e flora and fauna; the no	ormal aquatic biota a	nd the use
1.19	thereof shall not be seriously impa	aired or endangered, the	e species composition	n shall not be
1.20	altered materially, and the propaga	ation or migration of aq	uatic biota normally	present shall
1.21	not be prevented or hindered by the	ne discharge of any sew	age, industrial waste	e, or other
1.22	wastes to the waters.			
1.23	Subp. 3a. Assessment criter	•ia. The criteria by whi	ch water bodies are	assessed to
1.24	determine if beneficial uses are su	pported, and definition	s of the data and info	ormation
1.25	required for that assessment, is in	Guidance Manual for A	ssessing the Quality (of Minnesota
1.26	Surface Waters for Determination	of Impairment: 305(b)	Report and 303(d) L	ist (2014 and

	07/25/17	REVISOR	CKM/EP	AR4237
2.1	as subsequently amended), which is in	neorporated by refer	ence. The guidance	manual is not
2.2	subject to frequent change and is available	ilable at http://www.	.pca.state.mn.us/lupg	31125.
2.3	Subp. 4. Definitions. For the pu	rposes of this chapte	er and chapter 7053,	the following
2.4	terms have the meanings given them.			
2.5	A. "122-day ten-year low f	low" or "122Q ₁₀ " m	eans the lowest aver	age 122-day
2.6	flow with a once in ten-year recurrence	e interval. A 122Q ₁₀	is derived using the s	ame methods
2.7	used to derive a $7Q_{10}$, and the guideli	nes regarding period	d of record for flow	data and
2.8	estimating a $7Q_{10}$ apply equally to de	termining a 122Q ₁₀	, as described in part	7050.0130,
2.9	subpart 3.			
2.10	B. "Altered materially," "m	aterial increase," "m	naterial manner," "se	riously
2.11	impaired," and "significant increase,"	as used in subparts	3, 5, and 6, mean th	at pollution
2.12	of the waters of the state has resulted	in degradation of the	physical, chemical,	or biological
2.13	qualities of the water body to the exter	nt that attainable or p	previously existing be	eneficial uses
2.14	are actually or potentially lost.			
2.15	C. "Aquatic biota" means th	e aquatic community	composed of game	and nongame
2.16	fish, minnows and other small fish, n	nollusks, insects, cru	staceans and other i	nvertebrates,
2.17	submerged or emergent rooted vegeta	ation, suspended or f	floating algae, substr	ate-attached
2.18	algae, microscopic organisms, and ot	her aquatic-depende	ent organisms that re-	quire aquatic
2.19	systems for food or to fulfill any part	of their life cycle, s	uch as amphibians a	nd certain
2.20	wildlife species.			
2.21	D. "Assemblage" means a t	axonomic subset of	a biological commu	nity such as
2.22	fish in a stream community.			
2.23	E. "Biological condition gra	adient" means a con	cept describing how	aquatic
2.24	communities change in response to inc	reasing levels of stres	ssors. In application,	the biological

REVISOR

CKM/EP

3.1 condition gradient is an empirical, descriptive model that rates biological communities on
3.2 a scale from natural to highly degraded.

F. "Biological criteria, narrative" or "biocriteria, narrative" means written
statements describing the attributes of the structure and function of aquatic assemblages in
a water body necessary to protect the designated aquatic life beneficial use. The singular
form "biological criterion, narrative" or "biocriterion, narrative" may also be used.

G. "Biological criteria, numeric" or "biocriteria, numeric" means specific
quantitative measures of the attributes of the structure and function of aquatic communities
in a water body necessary to protect the designated aquatic life beneficial use. The singular
form "biological criterion, numeric" or "biocriterion, numeric" may also be used.

H. "BOD₅" or "five-day biochemical oxygen demand" means the amount of
dissolved oxygen needed by aerobic biological organisms to break down organic material
present in a given water sample at a certain temperature over a five-day period.

I. "Chlorophyll-a" means a pigment in green plants including algae. The
concentration of chlorophyll-a, expressed in weight per unit volume of water, is a
measurement of the abundance of algae.

J. "Diel flux" means the daily change in a constituent, such as dissolved oxygen or pH, when there is a distinct daily cycle in the measurement. Diel dissolved oxygen flux means the difference between the maximum daily dissolved oxygen concentration and the minimum daily dissolved oxygen concentration.

K. "Ecoregion" means an area of relative homogeneity in ecological systems based
on similar soils, land use, land surface form, and potential natural vegetation. Minnesota
ecoregions are shown on the map in part 7050.0468.

3.24 L. "Eutrophication" means the increased productivity of the biological community
 3.25 in water bodies in response to increased nutrient loading. Eutrophication is characterized

7050.0150

REVISOR CKM/EP AR4237

4.1	by increased growth and abundance of algae and other aquatic plants, reduced water
4.2	transparency, reduction or loss of dissolved oxygen, and other chemical and biological
4.3	changes. The acceleration of eutrophication due to excess nutrient loading from human
4.4	sources and activities, called cultural eutrophication, causes a degradation of water quality
4.5	and possible loss of beneficial uses.
4.6	M. "Eutrophication standard" means the combination of indicators of enrichment
4.7	and indicators of response as described in subpart 5. The indicators upon which the
4.8	eutrophication standard for specific water bodies are based are as provided under subparts
4.0	5a to 5c.
4.9	
4.10	N. "Hydraulic residence time" means the time water resides in a basin or,
4.11	alternately, the time it would take to fill the basin if it were empty.
4.12	O. "Impaired water" or "impaired condition" means a water body that does not
4.13	meet applicable water quality standards or fully support applicable beneficial uses, due in
4.14	whole or in part to water pollution from point or nonpoint sources, or any combination
4.15	thereof.
4.16	P. "Index of biotic integrity," "index of biological integrity, " or "IBI" means an
4.17	index developed by measuring attributes of an aquatic community that change in quantifiable
4.18	and predictable ways in response to human disturbance, representing the health of that
4.19	community.
4.20	Q. "Lake" means an enclosed basin filled or partially filled with standing fresh
4.21	water with a maximum depth greater than 15 feet. Lakes may have no inlet or outlet, an
4.22	inlet or outlet, or both an inlet and outlet.
4.23	R. "Lake morphometry" means the physical characteristics of the lake basin that
4.24	are reasonably necessary to determine the shape of a lake, such as maximum length and
4.25	width, maximum and mean depth, area, volume, and shoreline configuration.

07/25/17 REVISOR CKM/EP AR4237 S. "Lotic water" means a flowing or moving water body such as a stream, river, 5.1 or ditch. 5.2 S. T. "Mixing status" means the frequency of complete mixing of the lake water 5.3 from surface to bottom, which is determined by whether temperature gradients are established 5.4 and maintained in the water column during the summer season. 5.5 T. U. "Measurable increase" or "measurable impact" means a change in trophic 5.6 status that can be discerned above the normal variability in water quality data using a weight 5.7 of evidence approach. The change in trophic status does not require a demonstration of 5.8 statistical significance to be considered measurable. Mathematical models may be used as 5.9 a tool in the data analysis to help predict changes in trophic status. 5.10 U. V. "Natural causes" means the multiplicity of factors that determine the physical, 5.11 chemical, or biological conditions that would exist in a water body in the absence of 5.12 measurable impacts from human activity or influence. 5.13 V. W. "Normal aquatic biota" and "normally present" mean a healthy aquatic 5.14 community expected to be present in the water body in the absence of pollution of the water, 5.15 consistent with any variability due to natural hydrological, substrate, habitat, or other physical 5.16 5.17 and chemical characteristics. Expected presence is based on comparing the aquatic community in the water body of interest to the aquatic community in representative reference 5.18 water bodies. 5.19 W. X. "Nuisance algae bloom" means an excessive population of algae that is 5.20 characterized by obvious green or blue-green pigmentation in the water, floating mats of 5.21 algae, reduced light transparency, aesthetic degradation, loss of recreational use, possible 5.22 harm to the aquatic community, or possible toxicity to animals and humans. Algae blooms 5.23 are measured through tests for chlorophyll-a, observations of Secchi disk transparency, and 5.24

5.25 observations of impaired recreational and aesthetic conditions by the users of the water

AR4237

6.3 X: Y. "Periphyton" means algae on the bottom of a water body. In rivers or streams,
6.4 these forms are typically found attached to logs, rocks, or other substrates, but when dislodged
6.5 the algae will become part of the seston.

6.6 $\underbrace{\text{Y}}_{\cdot} \underline{Z}_{\cdot}$ "Readily available and reliable data and information" means chemical, 6.7 biological, and physical data and information determined by the commissioner to meet the 6.8 quality assurance and quality control requirements in subpart 8, that are not more than ten 6.9 years old from the time they are used for the assessment. A subset of data in the ten-year 6.10 period, or data more than ten years old can be used if credible scientific evidence shows 6.11 that these data are representative of current conditions.

6.12 Z. <u>AA.</u> "Reference water body" means a water body minimally or least impacted
by point or nonpoint sources of pollution that is representative of water bodies of a similar
6.14 surface water body type and within a geographic region such as an ecoregion or watershed.
6.15 Reference water bodies are used as a base for comparing the quality of similar water bodies
6.16 in the same geographic region.

6.17 AA: <u>BB.</u> "Reservoir" means a body of water in a natural or artificial basin or 6.18 watercourse where the outlet or flow is artificially controlled by a structure such as a dam. 6.19 Reservoirs are distinguished from river systems by having a hydraulic residence time of at 6.20 least 14 days. For purposes of this item, residence time is determined using a flow equal to 6.21 the $122Q_{10}$ for the months of June through September.

BB. CC. "River nutrient region" means the geographic basis for regionalizing the
river eutrophication criteria as described in Heiskary, S. and K. Parson, Regionalization of
Minnesota's Rivers for Application of River Nutrient Criteria, Minnesota Pollution Control
Agency (2013), which is incorporated by reference. The document is not subject to frequent
change and is available through the Minitex interlibrary loan system.

REVISOR CKM/EP

CC. DD. "Secchi disk" means a tool that is used to measure the transparency of 7.1 lake water. A Secchi disk is an eight-inch weighted disk on a calibrated rope, either white 7.2 7.3 or with quadrants of black and white. To measure water transparency with a Secchi disk, the disk is viewed from the shaded side of a boat. The depth of the water at the point where 7.4 the disk reappears upon raising it after it has been lowered beyond visibility is recorded. 7.5 DD. EE. "Secchi disk transparency" means the transparency of water as measured 7.6 by a Secchi disk, a Secchi tube, or a transparency tube. 7.7 EE. FF. "Secchi tube" means a tool that is used to measure the transparency of 7.8 stream or river water. A Secchi tube is a clear plastic tube, one meter in length and 1-3/4 7.9 inch in diameter, with a mini-Secchi disk on a string. To measure water transparency, the 7.10 tube is filled with water collected from a stream or river and, looking into the tube from the 7.11 top, the weighted Secchi disk is lowered into the tube by a string until it disappears and then 7.12 raised until it reappears, allowing the user to raise and lower the disk within the same water 7.13 sample numerous times. The depth of the water at the midpoint between disappearance and 7.14 reappearance of the disk is recorded in centimeters, which are marked on the side of the 7.15 tube. If the Secchi disk is visible when it is lowered to the bottom of the tube, the transparency 7.16 7.17 reading is recorded as "greater than 100 centimeters."

7.18 FF. GG. "Seston" means particulate matter suspended in water bodies and includes
7.19 plankton and organic and inorganic matter.

GG. HH. "Shallow lake" means an enclosed basin filled or partially filled with
standing fresh water with a maximum depth of 15 feet or less or with 80 percent or more
of the lake area shallow enough to support emergent and submerged rooted aquatic plants
(the littoral zone). It is uncommon for shallow lakes to thermally stratify during the summer.
The quality of shallow lakes will permit the propagation and maintenance of a healthy
indigenous aquatic community and they will be suitable for boating and other forms of
aquatic recreation for which they may be usable. Shallow lakes are differentiated from

REVISOR CKM/EP

- 8.1 wetlands and lakes on a case-by-case basis. Wetlands are defined in part 7050.0186, subpart
 8.2 1a.
- 8.3 <u>HH. II.</u> "Summer-average" means a representative average of concentrations or
 8.4 measurements of nutrient enrichment factors, taken over one summer season.
- 8.5 H. JJ. "Summer season" means a period annually from June 1 through September
 8.6 30.

JJ. KK. "Transparency tube" means a tool that is used to measure the transparency 8.7 of stream or river water. A transparency tube is a graduated clear plastic tube, 24 inches or 8.8 more in length by 1-1/2 inches in diameter, with a stopper at the bottom end. The inside 8.9 8.10 surface of the stopper is painted black and white. To measure water transparency, the tube is filled with water from a surface water; the water is released through a valve at the bottom 8.11 end until the painted surface of the stopper is just visible through the water column when 8.12 8.13 viewed from the top of the tube. The depth, in centimeters, is noted. More water is released until the screw in the middle of the painted symbol on the stopper is clearly visible; this 8.14 depth is noted. The two observed depths are averaged to obtain a transparency measurement. 8.15

- 8.16 KK. LL. "Trophic status or condition" means the productivity of a lake as measured
 8.17 by the phosphorus content, algae abundance, and depth of light penetration.
- 8.18 <u>LL. MM.</u> "Use attainability analysis" means a structured scientific assessment of 8.19 the physical, chemical, biological, and economic factors affecting attainment of the uses of 8.20 water bodies. A use attainability analysis is required to remove a designated use specified 8.21 in section 101(a)(2) of the Clean Water Act that is not an existing use. The allowable reasons 8.22 for removing a designated use are described in Code of Federal Regulations, title 40, section 8.23 131.10 (g).
- 8.24 <u>MM. NN.</u> "Water body" means a lake, reservoir, wetland, or a geographically
 8.25 defined portion of a river or stream.

	07/25/17 REVISOR CKM/EP AR4237
9.1	NN. OO. "Water body type" means a group of water bodies with similar natural
9.2	physical, chemical, and biological attributes, where the characteristics are similar among
9.3	water bodies within each type and distinct from water bodies of other types.
9.4	[For text of subps 5 to 5c, see M.R.]
9.5	Subp. 6. Impairment of biological community and aquatic habitat. In evaluating
9.6	whether the narrative standards in subpart 3, which prohibit serious impairment of the normal
9.7	aquatic biota and the use thereof, material alteration of the species composition, material
9.8	degradation of stream beds, and the prevention or hindrance of the propagation and migration
9.9	of aquatic biota normally present, are being met, the commissioner will consider all readily
9.10	available and reliable data and information for the following factors of use impairment:
9.11	[For text of items A to D, see M.R.]
9.12	E. any other scientifically objective, credible, and supportable factors.
9.13	A finding of an impaired condition must be supported by data for the factors listed in
9.14	at least one of items A to C. The biological quality of any given surface water body will be
9.15	assessed by comparison to the biological conditions determined by the commissioner using
9.16	a biological condition gradient model or a set of reference water bodies which best represents
9.17	the most natural condition for that surface water body type within a geographic region.
9.18	[For text of subps 7 and 8, see M.R.]
9.19	7050.0155 PROTECTION OF DOWNSTREAM USES.
9.20	All waters must maintain a level of water quality that provides for the attainment and
9.21	maintenance of the water quality standards of downstream waters, including the waters of
9.22	another state.

REVISOR

10.1 7050.0217 OBJECTIVES FOR PROTECTION OF SURFACE WATERS FROM 10.2 TOXIC POLLUTANTS.

10.3	Subpart 1. Purpose and applicability. The purpose of this part is to establish the
10.4	objectives for developing numeric water quality standards listed in parts 7050.0220,
10.5	7050.0222, 7050.0227, and 7052.0100 and site-specific water quality criteria for toxic
10.6	pollutants or chemicals developed in the absence of numeric standards. The listed numeric
10.7	standards for toxics and site-specific numeric criteria established by methods in parts
10.8	7050.0218 and 7050.0219 protect Class 2 waters for the propagation and maintenance of
10.9	aquatic biota, the consumption of fish and edible aquatic life by humans, the use of surface
10.10	waters for public and private domestic consumption where applicable, and the consumption
10.11	of aquatic organisms by wildlife. These criteria also protect the uses assigned to Class 7,
10.12	limited resource value, waters as described in parts 7050.0140 and 7050.0227.
10.13	[For text of subp 2, see M.R.]
10.14	7050.0218 FOR TOXIC POLLUTANTS: DEFINITIONS AND METHODS FOR
10.15 10.16 10.17	DETERMINATION OF HUMAN HEALTH-BASED NUMERIC STANDARDS AND SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE.
10.16	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH,
10.16 10.17	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE.
10.16 10.17 10.18	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.]
10.16 10.17 10.18 10.19	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following
10.16 10.17 10.18 10.19 10.20	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following terms have the meanings given them.
10.16 10.17 10.18 10.19 10.20 10.21	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following terms have the meanings given them. [For text of items A to R, see M.R.]
10.16 10.17 10.18 10.19 10.20 10.21 10.22	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following terms have the meanings given them. [For text of items A to R, see M.R.] S. "Criterion" means a number or numbers established for a pollutant derived
10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following terms have the meanings given them. [For text of items A to R, see M.R.] S. "Criterion" means a number or numbers established for a pollutant derived under this part or part 7050.0219 or 7052.0110, or issued by the USEPA, to protect aquatic life, humans, or wildlife.
10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23	SITE-SPECIFIC NUMERIC CRITERIA FOR AQUATIC LIFE, HUMAN HEALTH, AND FISH-EATING WILDLIFE. [For text of subps 1 and 2, see M.R.] Subp. 3. Definitions. For the purposes of parts 7050.0217 to 7050.0227, the following terms have the meanings given them. [For text of items A to R, see M.R.] S. "Criterion" means a number or numbers established for a pollutant derived under this part or part 7050.0219 or 7052.0110, or issued by the USEPA, to protect aquatic

	07/25/17	REVISOR	CKM/EP	AR4237
11.1	maternal exposure during prenatal deve	lopment, or direct ex	posure postnatally ur	ntil the
11.2	time of sexual maturation. Developmen	tal toxicity may be d	etected at any point in	n the
11.3	lifespan of the organism. The major ma	nifestations of develo	opmental toxicity incl	lude:
11.4	(1) death of the developing	ng organism;		
11.5	(2) structural abnormality	Ι;		
11.6	(3) altered growth; or			
11.7	(4) functional deficiency.			
11.8	U. "Duration" means the time	over which the instrea	am concentration of a	pollutant
11.9	is averaged for comparison with the star	ndard or criterion.		
11.10	V. "Durations for human healt	h-based algorithms"	or "D" means the leng	gth of the
11.11	exposure period under consideration for	r noncancer and linea	ar cancer algorithms.	
11.12	(1) The four default D use	ed in developing refe	rence doses and corres	sponding
11.13	intake rates are:			
11.14	(a) acute: a period of	f 24 hours or less;		
11.15	(b) short-term: a peri	iod of more than 24 l	nours, up to 30 days;	
11.16	(c) subchronic: a per	iod of more than 30	days, up to eight year	s based
11.17	on application of the less than ten percent	nt standard life expec	ctancy of 70 years for	humans;
11.18	or			
11.19	(d) chronic: a period	of more than eight y	rears.	
11.20	(2) The default durations	for use in the linear	cancer algorithms with	th age
11.21	dependent adjustment factors are:			
11.22	(a) two years for the	birth up to two-year	age group;	
11.23	(b) 14 years for the t	wo- up to 16-year ag	e group; and	

7050.0218

	07/25/17 REVISOR CKM/EP AR4237			
12.1	(c) 54 years for the 16- up to 70-year age group.			
12.2	For any algorithm, use of chemical-specific data to define durations for noncancer or linear			
12.3	cancer algorithms are preferred when acceptable data are available.			
12.4	W. "Effect concentration" or "EC50" means the toxicant concentration that causes			
12.5	equilibrium loss, immobilization, mortality, or other debilitating effects in 50 percent of the			
12.6	exposed organisms during a specific time of observation.			
12.7	X. "Endocrine" or "E" means a change in circulating hormone levels or interactions			
12.8	with hormone receptors, regardless of the organ or organ system affected. Health endpoints			
12.9	with or without the E designation are deemed equivalent, for example, thyroid (E) = thyroid,			
12.10	and must be included in the same health risk index equation.			
12.11	Y. "Final acute value" or "FAV" means an estimate of the concentration of a			
12.12	pollutant corresponding to the cumulative probability of 0.05 in the distribution of all the			
12.13	acute toxicity values for the genera or species from the acceptable acute toxicity tests			
12.14	conducted on a pollutant. The FAV is the acute toxicity limitation applied to mixing zones			
12.15	in part 7050.0210, subpart 5; and to dischargers in parts 7053.0215, subpart 1; 7053.0225,			
12.16	subpart 6; and 7053.0245, subpart 1.			
12.17	Z. "Food chain multiplier" or "FCM" means the ratio of a bioaccumulation factor			
12.18	by trophic level to an appropriate bioconcentration factor. FCM refers to values developed			
12.19	using USEPA models or from available and reliable field studies.			
12.20	AA. "Frequency" means the number of times a standard can be exceeded in a			
12.21	specified period of time without causing acute or chronic toxic effects on the aquatic			
12.22	community, human health, or fish-eating wildlife.			
12.23	BB. "Genus mean acute value" or "GMAV" means the geometric mean of the			
12.24	SMAVs available for the genus.			

13.1	CC. "Health risk index" means the sum of the quotients calculated by identifying
13.2	all chemicals that share a common health endpoint or are based on linear carcinogenicity
13.3	and dividing the water or fish tissue concentration for each chemical (measured or statistically
13.4	derived) by its applicable chronic standard or chronic criterion. To meet the objectives in
13.5	part 7050.0217, the health risk index must not exceed a value of one. The equations for the
13.6	risk indices are found in part 7050.0222, subpart 7, items D and E.
13.7	DD. "Health risk index endpoint" or "health endpoint" means the general
13.8	description of toxic effects used to group chemicals for the purpose of calculating a health
13.9	risk index.
13.10	EE. "Intake rate" or "IR" means rate of ingestion, inhalation, or dermal contact,
13.11	depending on the route of exposure, expressed as the amount of a media taken in, on a per
13.11	body weight and daily basis, for a specified duration.
15.12	body weight and daily basis, for a specified duration.
13.13	FF. "Lethal concentration" or "LC50" means the toxicant concentration killing
13.14	50 percent of the exposed organisms in a specific time of observation.
13.15	GG. "Lowest observable adverse effect level" or "LOAEL" means the lowest
13.16	exposure level that caused a statistically or biologically significant increase in the frequency
13.17	or severity of adverse effects observed between the exposed population and its appropriate
13.18	control group.
13.19	HH. "Magnitude" means the acceptable amount of a toxic pollutant in water or
13.20	fish tissue expressed as a concentration.
13.21	II. "Maximum criterion" or "MC" means the highest concentration of a toxicant
13.22	in water to which aquatic organisms can be exposed for a brief time with zero to slight
13.23	mortality. The MC equals the FAV divided by two.
13.24	JJ. "Maximum standard" or "MS" means the highest concentration of a toxicant
13.24	in water to which aquatic organisms can be exposed for a brief time with zero to slight
10.40	in stater to stillen aquate organisms can be exposed for a orier time with 2010 to slight

- 14.1 mortality. The MS equals the FAV divided by two. Maximum standards are listed in part14.2 7050.0222.
- 14.3 KK. "MDH" means the Minnesota Department of Health.
- 14.4 LL. "Mode of action" or "MOA" means the sequence of key events following
 14.5 pollutant or chemical exposure upon which the toxic outcome depends.
- MM. "National methods" means the methods the USEPA uses to develop aquatic
 life criteria as described in Stephan, C.E., D.J. Mount, D.J. Hansen, J.H. Gentile, G.A.
 Chapman, and W.A. Brungs, 1985, "Guidelines for Deriving Numerical National Water
 Quality Criteria for the Protection of Aquatic Organisms and Their Uses," USEPA, Office
 of Research and Development, Environmental Research Laboratories, Duluth MN;
 Narragansett, RI, Corvallis, OR. 98 p; available through the National Technical Information
 Service, Springfield, VA. (Publication PB85-227049)
- 14.13 NN. "No observable adverse effect level" or "NOAEL" means the highest exposure
 14.14 level at which there is no statistically or biologically significant increase in the frequency
 14.15 or severity of adverse effects between the exposed population and its appropriate control
 14.16 group.
- 14.17 OO. "Octanol to water partition coefficient" or " K_{ow} " means the ratio of the 14.18 concentration of a chemical in the octanol phase to its concentration in the aqueous phase 14.19 of a two-phase octanol to water system after equilibrium of the chemical between the two 14.20 phases has been achieved. The base 10 logarithm of the K_{ow} or log K_{ow} is used in the 14.21 calculation of bioaccumulation factors. The log K_{ow} has been shown to be proportional to 14.22 the bioconcentration potential of lipophilic organic chemicals.
- PP. "Percent effluent" means the representation of acute or chronic toxicity of an
 effluent as a percent of whole effluent mixed in dilution water, where acute toxicity is
 expressed by LC50s or EC50s and chronic toxicity is expressed by NOAEL.

REVISOR CKM/EP AR4237

15.1	QQ. "Reference dose" or "RfD" means an estimate of a dose for a given duration
15.2	to the human population, including susceptible subgroups such as infants, that is likely to
15.3	be without an appreciable risk of adverse effects during a lifetime. It is derived from a
15.4	suitable dose level at which there are few or no statistically or biologically significant
15.5	increases in the frequency or severity of an adverse effect between the dosed population
15.6	and its associated control group. The RfD includes one or more divisors, applied to the
15.7	suitable dose level, accounting for:
15.8	(1) uncertainty in extrapolating from mammalian laboratory animal data to
15.9	humans;
15.10	(2) variation in toxicological sensitivity among individuals in the human
15.11	population;
15.12	(3) uncertainty in extrapolating from effects observed in a short-term study
15.13	to effects of long-term exposure;
15.14	(4) uncertainty in using a study in which health effects were found at all doses
15.15	tested; and
15.16	(5) uncertainty associated with deficiencies in the available data.
15.17	The product of the divisors is not to exceed 3,000 in an RfD used for a chronic standard.
15.18	The RfD is expressed in units of daily dose as milligrams of chemical per kilogram of body
15.19	weight-day or mg/kg-day.
15.20	RR. "Relative source contribution factor" or "RSC" means the percentage or
15.21	apportioned amount (subtraction method) of the reference dose for a pollutant allocated to
15.22	surface water exposures from drinking or incidental water ingestion and fish consumption.
15.23	In the absence of sufficient data to establish a pollutant- or chemical-specific RSC value,
15.24	the default RSC is 0.2 or 0.5 as described in part 7050.0219, subpart 5.

CKM/EP

16.1 SS. "Species mean acute value" or "SMAV" means the geometric mean of all the
16.2 available and acceptable acute values for a species.

16.3 TT. "Standard" means a number or numbers established for a pollutant or water 16.4 quality characteristic to protect a specified beneficial use as listed in parts 7050.0221 to 16.5 7050.0227. The standard for a toxic pollutant includes the CS, MS, and FAV. Some pollutants 16.6 do not have an MS or an FAV due to insufficient data. For these pollutants, the CS alone 16.7 is the standard.

16.8 UU. "Toxic effect" means an observable or measurable adverse biological event 16.9 in an organ, tissue, or system. The designation of health endpoints does not exclude other 16.10 possible observable or measurable biological events. For the purpose of grouping chemicals 16.11 and creating a health risk index when multiple chemicals are present, toxic effects may be 16.12 ascribed to more general health risk index endpoints or health endpoints.

VV. "Toxic pollutant" has the meaning given it in part 7050.0185, subpart 2, item
F. Toxic pollutant is used interchangeably in this part and parts 7050.0217, 7050.0219, and
7050.0222, subpart 7, items B to G, with the terms "pollutant" and "chemical."

WW. "Toxic unit" means a measure of acute or chronic toxicity in an effluent.
One acute toxic unit (TUa) is the reciprocal of the effluent concentration that causes 50
percent effect or mortality to organisms for acute exposures (100/LC50); one chronic toxic
unit (TUc) is the reciprocal of the effluent concentration that causes no observable adverse
effect level on test organisms for chronic exposures (100/NOAEL).

16.21 XX. "Trophic level" or "TL" means the food web level in an ecosystem that is 16.22 occupied by an organism or group of organisms because of what they eat and how they are 16.23 related to the rest of the food web. For example, trophic level 3 in an aquatic ecosystem 16.24 consists of small fish such as bluegills, crappies, and smelt and trophic level 4 consists of 16.25 larger carnivorous fish such as walleye, northern pike, and most trout species.

	07/25/17	REVISOR	CKM/EP	AR4237
17.1	YY. "USEPA" means the United	l States Environme	ntal Protection Agence	ey.
17.2	ZZ. "Water quality characteristic	c" means a characte	eristic of natural wate	rs, such
17.3	as total hardness or pH. Some water quality	characteristics can	affect the toxicity of p	ollutants
17.4	to aquatic organisms.			
17.5	AAA. "Whole effluent toxicity to	est" means the aggre	gate toxic effect of an	effluent
17.6	measured directly by a toxicity test. Effects	s on tested organism	is are measured and ex	xpressed
17.7	as toxic units or percent effluent for both	acute and chronic v	whole effluent toxicity	y tests.
17.8	Subp. 4. Adoption of USEPA nation	nal criteria. The U	SEPA establishes aqu	uatic life
17.9	and human health-based criteria under sec	ction 304(a)(1) of th	ne Clean Water Act, U	Jnited
17.10	States Code, title 33, section 1314. The US	EPA criteria, subjec	t to modification as d	escribed
17.11	in this subpart, are applicable to Class 2 w	vaters of the state. T	The USEPA has descr	ibed the
17.12	national methods for developing aquatic li	fe criteria in "Guide	elines for Deriving Nu	umerical
17.13	National Water Quality Criteria for the Pr	otection of Aquatic	Organisms and Their	r Uses."
17.14	USEPA criteria that vary with an amb	pient water quality	characteristic such as	total
17.15	hardness or pH will be established for spec	cific waters or reacl	nes using data availab	ole to the
17.16	commissioner. Central values such as the	means or medians	for the characteristic	will be
17.17	used unless there is evidence to support us	sing different value	s. Values for water qu	uality
17.18	characteristics can be estimated for specif	ic waters or reache	s that have no data by	using
17.19	data from a nearby watershed with similar	r chemical propertie	es.	
17.20	A. The USEPA aquatic life crite	eria are adopted unc	hanged by the agency	y, unless
17.21	modified under item C, as the criteria app	licable to designate	d Class 2A waters in	parts
17.22	7050.0420 and 7050.0470.			
17.23	B. The USEPA criteria are adop	ted, subject to mod	ification as described	l in this
17.24	item or item C, for application to cool and	l warm water habita	ats and wetlands. Coc	ol and
17.25	warm water habitats (Class 2Bd and 2B) a	are defined in part 7	'050.0430 or listed in	part

	07/25/17 REVISOR CKM/EP AR4237			
18.1	7050.0470. Wetlands (Class 2D) waters are defined in part 7050.0425 or listed in part			
18.2	7050.0470.			
18.3	(1) Acute data, in the form of the ranked genus mean acute values used by			
18.4	the USEPA to determine the national criteria, are the data used to determine the Class 2Bd,			
18.5	2B, and 2D criteria.			
18.6	[For text of subitems (2) to (4), see M.R.]			
18.7	(5) If, as a result of the recalculation of the USEPA criterion for application			
18.8	to Class 2Bd, 2B, and 2D waters, the FAV for these water classes is lower than the FAV			
18.9	for Class 2A waters, the Class 2Bd, 2B, or 2D FAV will be changed to equal the Class 2A			
18.10	FAV, unless the lower Class 2Bd, 2B, or 2D FAV is justified based on the available			
18.11	toxicological data.			
18.12	[For text of subitems (6) and (7), see M.R.]			
18.13	[For text of item C, see M.R.]			
18.14	[For text of subps 5 to 8, see M.R.]			
18.15	Subp. 9. Wildlife-based criteria. The agency shall use the procedures in this subpart			
18.16	to establish wildlife-based criteria. Wildlife criteria shall protect wildlife consumers of			
18.17	freshwater aquatic organisms from adverse effects of toxic pollutants. Wildlife criteria are			
18.18	applicable to all surface waters, subject to the exceptions in subpart 10, item B, subitem (1).			
18.19	[For text of items A to C, see M.R.]			
18.20	D. A final BAF for calculating a wildlife chronic criterion (CC_w) is determined			
18.21	as in subpart 7, except that the BCFs and BAFs are adjusted to represent whole body BCFs			
18.22	and BAFs.			
18.23	[For text of subitem (1), see M.R.]			

	07/25/17 RE	EVISOR	CKM/EP	AR4237
19.1	(2) Normalized BCFs and BA	Fs are multiplied	by five percent lipid	for CC_w
19.2	applicable to Class 2Bd and 2B waters.			
19.3	[For text of subi	tem (3), see M.R.]	
19.4	(4) BCFs estimated using the	relationship betw	een BCFs and the log	g K _{ow} are
19.5	normalized by dividing the estimated BCF b	y 7.6 and then m	ultiplying by 12 for (Class 2A
19.6	waters or by five for Class 2Bd and 2B wate	ers.		
19.7	[For text of subi	tem (5), see M.R.]	
19.8	Subp. 10. Applicable criteria or hum	an health-based	standard. The final	criteria
19.9	or chronic standard for human health for tox	tic pollutants for s	surface waters must l	be the
19.10	lowest of the applicable criteria or standards	for human health	n derived under this p	part and
19.11	part 7050.0219.			
19.12	A. Applicable criteria or standards	for human health	n by use for Class 2A	v, 2Bd,
19.13	2B, and 2D surface waters are listed for each	n applicable popu	lation protected (aqu	atic life,
19.14	humans, and fish-eating wildlife). The appli	cable criteria or s	tandards for human l	nealth
19.15	must be the lowest of the CC or CS as descr	ibed in subitems	(1) to (3) :	
19.16	[For text of subitem	s (1) to (3), see N	1.R.]	
19.17	[For text of items	s B to D, see M.R	.]	
19.18	7050.0219 HUMAN HEALTH-BASED (CRITERIA AND	STANDARDS.	
19.19	[For text of subps	s 1 to 10, see M.R	L.]	
19.20	Subp. 11. Final baseline BAF by trop	hic level. Detern	nine the final baselin	e BAF
19.21	by trophic level (TL):			
19.22	A. Calculate geometric mean base	line BAF for TL ₃	and TL_4 using avail	able
19.23	species-means for each baseline BAF metho	d. For Class 2A v	water, preference is g	iven for
19.24	Salmonidae data and developed as a single r	representative TL	₄ baseline BAF.	

```
7050.0219
```

	07/25/17	REVISOR	CKM/EP	AR4237					
20.1	[For	text of items B and C, see I	M.R.]						
20.2	[For text of subps 12 to 15, see M.R.]								
20.3 20.4	7050.0220 SPECIFIC WAT CLASSES.	ER QUALITY STANDAR	DS BY ASSOCIA	ATED USE					
20.5	Subpart 1. Purpose and s	scope. The numeric and nar	rative water quality	y standards in					
20.6	this chapter prescribe the quality	ties or properties of the wate	ers of the state that	are necessary					
20.7	for the designated public uses a	and benefits. If the standard	s in this chapter are	e exceeded, it					
20.8	is considered indicative of a po	olluted condition which is ac	tually or potentiall	y deleterious,					
20.9	harmful, detrimental, or injurio	ous with respect to designate	ed uses or establish	ed classes of					
20.10	the waters of the state.								
20.11	All surface waters are pro-	tected for multiple beneficia	ll uses. Numeric w	ater quality					
20.12	standards are tabulated in this	part for all uses applicable to	o four common cat	egories of					
20.13	surface waters, so that all appli	icable standards for each cat	egory are listed to	gether in					
20.14	subparts 3a to 6a. The four cate	egories are:							
20.15	A. cold water aquation	c life and habitat, also protec	cted for drinking w	vater: Classes					
20.16	1B; <u>2A, 2Ae</u> or 2Ag; 3A or 3B	B; 4A and 4B; and 5 (subpar	rt 3a);						
20.17	B. cool and warm wa	ter aquatic life and habitat, a	lso protected for dr	inking water:					
20.18	Classes 1B or 1C; <u>2Bd,</u> 2Bde, 2	2Bdg, or 2Bdm; 3A or 3B;	4A and 4B; and 5 ((subpart 4a);					
20.19	C. cool and warm wa	ater aquatic life and habitat a	and wetlands: Clas	ses <u>2B,</u> 2Be,					
20.20	2Bg, 2Bm, or 2D; 3A, 3B, 3C,	or 3D; 4A and 4B or 4C; and	nd 5 (subpart 5a); a	and					
20.21	D. limited resource v	value waters: Classes 3C; 4A	and 4B; 5; and 7	(subpart 6a).					
20.22	Subp. 2. Explanation of	tables.							
20.23	[Fo	r text of items A to C, see N	1.R.]						

	07/25/17	REVISOR	CKM/EP	AR4237
21.1]	D. The tables of standards in subparts 3a to	6a include the following	abbreviations
21.2	and acron	iyms:		
21.3	AN	means aesthetic enjoyment and navigation	on, Class 5 waters	
21.4 21.5	*	an asterisk following the FAV and MS v 7050.0222, subpart 7, item G, applies	alues or double dashes (-	-) means part
21.6	(c)	means the chemical is assumed to be a h	luman carcinogen	
21.7	CS	means chronic standard, defined in part	7050.0218, subpart 3	
21.8	DC	means domestic consumption (drinking	water), Class 1 waters	
21.9	_	double dashes means there is no standar	d	
21.10	exp. ()	means the natural antilogarithm (base e)	of the expression in pare	enthesis
21.11	FAV	means final acute value, defined in part	7050.0218, subpart 3	
21.12	IC	means industrial consumption, Class 3 v	vaters	
21.13	IR	means agriculture irrigation use, Class 4	A waters	
21.14	LS	means agriculture livestock and wildlife	use, Class 4B waters	
21.15	MS	means maximum standard, defined in pa	art 7050.0218, subpart 3	
21.16	NA	means not applicable		
21.17	(S)	means the associated value is a secondar	ry drinking water standar	d
21.18	su	means standard unit. It is the reporting u	nit for pH	
21.19 21.20	TH	means total hardness in mg/L, which is t concentrations expressed as CaCO ₃	he sum of the calcium and	d magnesium
21.21	TON	means threshold odor number		
21.22		[For text of items E and I	F, see M.R.]	
21.23	Subp	o. 3. [Repealed, 24 SR 1105]		
21.24	Subp	o. 3a. Cold water aquatic life and habita	t, drinking water, and a	ssociated use
21.25	classes. V	Water quality standards applicable to use C	lasses 1B; <u>2A, </u> 2Ae, or 2.	Ag; 3A or 3b;
21.26	4A and 4	B; and 5 surface waters. The water quality	standards in part 7050.02	222, subpart

	07/25/17	REVISOR	CKM/EP	AR4237
22.1	2, that apply to Class 2A also apply to C	lasses 2Ae and 2Ag. I	n addition to the wate	er quality
22.2	standards in part 7050.0222, subpart 2,	the biological criteria	defined in part 7050).0222,
22.3	subpart 2d, apply to Classes 2Ae and 2	<u>Ag.</u>		
22.4	[For text of	items A to E, see M.I	٤.]	
22.5	Subp. 4. [Repealed, 24 SR 1105]			
22.6	Subp. 4a. Cool and warm water	aquatic life and hab	itat, drinking water	, and
22.7	associated use classes. Water quality s	standards applicable t	o use Classes 1B or 1	C; <u>2Bd,</u>
22.8	2Bde, 2Bdg, or 2Bdm; 3A or 3B; 4A at	nd 4B; and 5 surface	waters. <u>The water qu</u>	ality
22.9	standards in part 7050.0222, subpart 3,	that apply to Class 2E	d also apply to Class	ses 2Bde,
22.10	2Bdg, and 2Bdm. In addition to the wa	ter quality standards i	n part 7050.0222, su	bpart 3,
22.11	the biological criteria defined in part 70)50.0222, subpart 3d,	apply to Classes 2Bc	le, 2Bdg,
22.12	and 2Bdm.			
22.13	[For text of	items A to F, see M.F	t .]	
22.14	Subp. 5. [Repealed, 24 SR 1105]			
22.15	Subp. 5a. Cool and warm water	aquatic life and hab	itat and associated	use
22.16	classes. Water quality standards applic	able to use Classes <u>21</u>	<u>3,</u> 2Be, 2Bg, 2Bm, or	: 2D; 3A,
22.17	3B, or 3C; 4A and 4B; and 5 surface w	aters. See parts 7050.	0223, subpart 5; 705	0.0224,
22.18	subpart 4; and 7050.0225, subpart 2, for	Class 3D, 4C, and 5 sta	andards applicable to	wetlands,
22.19	respectively. The water quality standard	ds in part 7050.0222,	subpart 4, that apply	to Class
22.20	2B also apply to Classes 2Be, 2Bg, and	2Bm. In addition to	the water quality star	idards in
22.21	part 7050.0222, subpart 4, the biologica	al criteria defined in p	oart 7050.0222, subpa	art 4d <u>,</u>
22.22	apply to Classes 2Be, 2Bg, and 2Bm.			
22.23	A. MISCELLANEOUS SUBSTANCE	, CHARACTERISTI	C, OR POLLUTANT	,

07/25/17			REVISOR	(CKM/EP	AR42
2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
	[For text of	subitems (1) to (5), see M.1	R.]	
2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
		[For text	of subitem (6),	see M.R.]		
· · ·			es, shallow lakes sk transparency,		voirs (phosj	ohorus, total,
See part 7050.022						
subparts 4 and 4a						
	[]	For text of s	subitems (8) to (1	1), see M.	R.]	
2B&D	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
CS						
CS	dissolved,	mg/L				
CS	dissolved, a	mg/L 				
CS (12) Oxygen,		mg/L 				
CS (12) Oxygen, See part 7050.022 subparts		mg/L 				
CS (12) Oxygen, See part 7050.022			 ubitems (13) to (16), see M	 .R.]	
CS (12) Oxygen, See part 7050.022 subparts			 ubitems (13) to (3A/3B/3C	 16), see M 4A	 .R.] 4B	

	07/25/17			REVISOR		CKM/EP	AR4237
24.1	B. METALS	AND ELEN	IENTS				
24.2 24.3	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
24.4 24.5		[For text of	subitems (1) to (4	4), see M.	R.]	
24.6	(5) Cadmium	, total, μg/L					
24.7	1.1	33	67				
24.8 24.9 24.10 24.11	for a total har	dness of 100 es and equa	0 mg/L only	s are hardness de y. See part 7050.0 culate cadmium s)222, subp	oart 4, for ex	amples at other
24.12 24.13	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
24.14							
24.15	(6) Chromiun	n +3, total, µ	ug/L				
24.16	207	1,737	3,469				
24.17 24.18 24.19 24.20	shown are for	a total hardı less values a	ness of 100 n and equation	standards are hard mg/L only. See pa ns to calculate tri g/L.	art 7050.02	222, subpart	4, for examples
24.21		[H	For text of s	ubitems (7) and ((8), see M	.R.]	
24.22	(9) Copper, to	otal, μg/L					
24.23	9.8	18	35				
24.24 24.25 24.26 24.27	total hardness	of 100 mg/ es and equa	L only. See	re hardness depen part 7050.0222, culate copper sta	subpart 4	, for exampl	es at other

	07/25/17			REVISOR	(CKM/EP	AR4237
25.1	(10) Lead, tot	tal, μg/L					
25.2	3.2	82	164				
25.3 25.4 25.5 25.6	hardness of 1	00 mg/L on	ly. See part	hardness depend 7050.0222, subj d standards for a	part 4, for e	examples at	other hardness
25.7 25.8 25.9	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
25.10		[Fo	or text of su	bitems (11) and	(12), see M	1.R.]	
25.11	(13) Nickel, t	otal, µg/L					
25.12	158	1,418	2,836				
25.13 25.14 25.15 25.16	total hardness	s of 100 mg/ les and equa	L only. See	e hardness deper part 7050.0222 culate nickel sta	, subpart 4	, for examp	les at other
25.17			[For text	of subitem (14),	see M.R.]		
25.18	(15) Silver, to	otal, μg/L					
25.19	1.0	2.0	4.1				
25.20 25.21 25.22 25.23	a total hardne	ess of 100 m les and equa	g/L only. Se	are hardness de ee part 7050.022 culate silver star	2, subpart	4, for exam	ples at other
25.24 25.25	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
25.26 25.27			[For text	of subitem (16),	see M.R.]		

	07/25/17			REVISOR	REVISOR C		AR4237
26.1	(17) Zinc, tota	al, µg/L					
26.2	106	117	234				
26.3 26.4 26.5 26.6	hardness of 1	00 mg/L on	ly. See part	hardness depend 7050.0222, subj c standards for a	part 4, for	examples at	other hardness
26.7	C. ORGANIC	C POLLUTA	ANTS OR C	CHARACTERIS	STICS		
26.8 26.9 26.10	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
26.11		[For text of	subitems (1) to ((5), see M.	R.]	
26.12 26.13	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
26.14 26.15		[]	For text of s	ubitems (6) to (10), see M	.R.]	
26.16 26.17 26.18	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
26.18		[F	or text of su	ubitems (11) to ((15), see M	[.R.]	
26.20 26.21 26.22	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
26.23		[F	or text of su	ubitems (16) to ((20), see M	[.R.]	
26.24 26.25	2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN
26.26 26.27		[F	or text of su	ubitems (21) to ((25), see M	[.R.]	

07/25/17			REVISOR	(CKM/EP	AR42	37
2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN	
	[F	For text of s	ubitems (26) to ((30), see M	R.]		-
2B&D CS	2B&D MS	2B&D FAV	3A/3B/3C IC	4A IR	4B LS	5 AN	
(31) Pentach	lorophenol,	µg/L					-
5.5	15	30					
Pentachlorop	henol value	s snown are	e for a pH of 7.5	omy. See p	Dall /030.02	.22, suopart 4	L.
Pentachlorop for examples any pH value	at other pH	values and o	e for a pH of 7.5 equations to calc ubitems (32) to (ulate penta	ichlorophen	-	,
for examples	at other pH	values and o	equations to calc	ulate penta	ichlorophen	-	,
for examples any pH value 2B&D	at other pH 2. 2B&D MS	values and o For text of so 2B&D FAV	equations to calc ubitems (32) to (3A/3B/3C	(35), see M 4A IR	R.] 4B LS	ol standards f	,
for examples any pH value 2B&D	at other pH 2. 2B&D MS	values and o For text of so 2B&D FAV	equations to calc ubitems (32) to (3A/3B/3C IC	(35), see M 4A IR	R.] 4B LS	ol standards f	,
for examples any pH value 2B&D CS 2B&D	at other pH E 2B&D MS [F 2B&D MS	values and o For text of su 2B&D FAV For text of su 2B&D FAV	equations to calc ubitems (32) to (3A/3B/3C IC ubitems (36) to (3A/3B/3C	(35), see M (35), see M (40), see M (40), see M 4A IR	E.R.] 4B LS R.] 4B LS	ol standards f 5 AN 5	,
for examples any pH value 2B&D CS 2B&D	at other pH E 2B&D MS [F 2B&D MS	values and of For text of survey FAV For text of survey FAV For text of survey FAV	equations to calc ubitems (32) to (3A/3B/3C IC ubitems (36) to (3A/3B/3C IC	(35), see M (35), see M (4A) (40), see M (40), see M (43), see M	E.R.] 4B LS R.] 4B LS	ol standards f 5 AN 5	,
for examples any pH value 2B&D CS 2B&D CS	at other pH E 2B&D MS [F 2B&D MS	values and of For text of su 2B&D FAV For text of su 2B&D FAV For text of su [For text	equations to calc ubitems (32) to (3A/3B/3C IC ubitems (36) to (3A/3B/3C IC ubitems (41) to (of items D to F,	(35), see M (35), see M (4A) (40), see M (40), see M (43), see M	E.R.] 4B LS R.] 4B LS	ol standards f 5 AN 5	,
for examples any pH value 2B&D CS 2B&D CS	at other pH (F 2B&D MS [F 2B&D MS [F Temperature	values and o For text of su 2B&D FAV For text of su 2B&D FAV For text of su [For text e must not e	equations to calc ubitems (32) to (3A/3B/3C IC ubitems (36) to (3A/3B/3C IC ubitems (41) to (of items D to F,	(35), see M (35), see M (4A) (40), see M (40), see M (43), see M (43), see M.R.]	AB LS R.] 4B LS R.]	ol standards f	- -

	07/25/17	REVISOR	CKM/EP	AR4237
28.1	daily temperature, except in no case	shall it exceed the da	aily average temperat	ure of 86
28.2	degrees Fahrenheit; and			
28.3	(2) Class 2D standard	: maintain backgrou	nd as defined in part 7	['] 050.0222,
28.4	subpart 6.			
28.5	Subp. 6. [Repealed, 24 SR 110	5]		
28.6	Subp. 6a. Limited resource va	llue waters and asso	ociated use classes.	
28.7	[For text of	of items A and B, see	e M.R.]	
28.8	C. The level of dissolved of	oxygen must be main	tained at concentration	ons:
28.9	(1) that will avoid odd	ors or putrid conditio	ns in the receiving wa	ater;
28.10	(2) at not less than on	e milligram per liter	(daily average); and	
28.11	(3) above zero milligr	ams per liter at all time	mes.	
28.12	[For text of	of items D and E, see	e M.R.]	
28.13	[For t	ext of subp 7, see M.	R.]	
28.14 28.15	7050.0222 SPECIFIC WATER Q OF THE STATE; AQUATIC LIF			WATERS
28.16	[For t	ext of subp 1, see M.	R.]	
28.17	Subp. 2. Class 2A waters; aqu	atic life and recrea	tion. The quality of (Class 2A
28.18	surface waters shall be such as to pe	rmit the propagation	and maintenance of a	i healthy
28.19	community of cold water aquatic bio	ota, and their habitats	according to the defi	nitions in
28.20	subpart 2c. These waters shall be su	itable for aquatic rec	reation of all kinds, ir	cluding
28.21	bathing, for which the waters may b	e usable. This class o	of surface waters is al	so protected
28.22	as a source of drinking water. Abbrev	iations, acronyms, an	d symbols are explained	ed in subpart
28.23	1.			

07/25/17			REVIS	SOR	CKM/El	P	AR4
Substar Charac or Pollu (Class 2	teristic, Itant	Units	CS	Basis for CS	MS	FAV	Bas for MS FAV
Acenap	hthene	μg/L	20	HH	56	112	Tox
Acetoch	llor	μg/L	3.6	Tox	86	173	Tox
Acrylon	itrile (c)	μg/L	0.38	HH	1,140*	2,281*	Tox
Alachlo	r (c)	μg/L	3.8	HH	800*	1,600*	Tox
Alumin	um, total	μg/L	87	Tox	748	1,496	Tox
		-					
The usir Thu	ia un-ionized as N percent un-ionized a og the following equa irston, Aqueous amm rnal of the Fisheries I	tion taker Ionia equi Research	n from En ilibrium o	nerson, K., F calculations	R.C. Russo, ; effect of p	R.E. Lund, H and temp	and F
The usir Thu	percent un-ionized and the following equa arston, Aqueous amm rnal of the Fisheries I	ammonia tion taker nonia equi Research 1	can be can from En ilibrium o Board of	Ilculated for herson, K., F calculations; Canada 32:	R.C. Russo, ; effect of p	R.E. Lund, H and temp	pH by and I
The usir Thu	percent un-ionized and the following equators are specific to the following eq	ammonia tion taker nonia equi Research 1	can be can from En ilibrium of Board of	Ilculated for herson, K., F calculations; Canada 32:	R.C. Russo, ; effect of p	R.E. Lund, H and temp	pH by and I
The usir Thu	percent un-ionized and the following equa arston, Aqueous amm rnal of the Fisheries I	ammonia tion taker nonia equi Research 1	can be can from En ilibrium of Board of	llculated for herson, K., F calculations; Canada 32: 100	R.C. Russo, ; effect of p	R.E. Lund, H and temp	pH by and I
The usir Thu Jou	percent un-ionized and the following equa arston, Aqueous amm rnal of the Fisheries I	ammonia tion taker nonia equi Research 1 (pk _a - pH 10	can be ca n from En ilibrium o Board of x I) +	llculated for herson, K., F calculations; Canada 32: 100	R.C. Russo, ; effect of p : 2379-2383	R.E. Lund, H and temp	pH by and I
The usir Thu Jour	percent un-ionized and the following equators provide the following equators on the following equators of the Fisheries $f = $	ammonia tion taken nonia equi Research 1 (pk _a - pH 10 otal ammo	can be can n from En ilibrium o Board of x I) + onia in th	llculated for herson, K., F calculations; Canada 32: 100 1 e un-ionized	R.C. Russo, ; effect of p : 2379-2383 d state	R.E. Lund, H and temp	pH by and I
The usir Thu	f percent un-ionized a f percent un-ionized a f state following equal f state following equa	ammonia tion taken nonia equi Research 1 $(pk_a - pH)$ 10 otal ammontal	can be can n from En ilibrium of Board of x I) + onia in the ciation co	llculated for herson, K., F calculations; Canada 32: 100 1 e un-ionized onstant for a	R.C. Russo, ; effect of p : 2379-2383 d state mmonia)	R.E. Lund, H and temj 3 (1975):	pH by and I

07/25/17		R	EVISOR	ł	CKM/EP		AR42
Anthracene	μg	/L 0.0	35	Tox	0.32	0.63	Tox
Antimony, total	μg	/L 5.5		HH	90	180	Tox
Arsenic, total	μg	/L 2.0		HH	360	720	Tox
Atrazine (c)	μg	/L 3.4		HH	323	645	Tox
Benzene (c)	μg	/L 5.1		HH	4,487*	8,974*	Tox
Bromoform	μg	/L 33		HH	2,900	5,800	Tox
Cadmium, total	μg	/L equ	ation	Tox	equation	equation	Tox
The CS, MS, ar equations:	nd FAV vary w	vith total	hardnes	ss and are	calculated	using the f	ollow
The CS in µg/L	shall not exce	eed: exp.((0.7852	[ln(total h	ardness mg	g/L)]-3.490))
The MS in µg/I	shall not exc	eed: exp.	(1.128[In(total ha	ardness mg	/L)]-3.828)
							10)
The FAV in µg/	L shall not ex	ceed: exp	0.(1.128	S[ln(total b	nardness mg	g/L)]-3.134	+9)
The FAV in μg/ Where: exp. is τ		-		_ `		_ / _	
	he natural ant	ilogarith	n (base	e e) of the	expression	in parenth	esis.
Where: exp. is For hardness va	he natural ant lues greater th	ilogarithi nan 400 n	m (base ng/L, 40	e e) of the 00 mg/L s	expression shall be use	in parenth	esis.
Where: exp. is the For hardness van standard.	he natural ant lues greater th	ilogarithi nan 400 n	m (base ng/L, 40	e e) of the 00 mg/L s hardness v	expression shall be use values:	in parenth	esis.
Where: exp. is the For hardness van standard. Example of tota	he natural ant lues greater th l cadmium sta	ilogarithi nan 400 n andards fe	m (base ng/L, 40 or five 1	e e) of the 00 mg/L s hardness v	expression shall be use values:	in parenth	esis.
Where: exp. is the For hardness van standard. Example of tota	he natural ant lues greater th Il cadmium sta 50	ilogarithi nan 400 n andards fe	m (base ng/L, 40 or five 1	e e) of the 00 mg/L s hardness v	expression shall be use values:	in parenth	esis.
Where: exp. is the For hardness van standard. Example of tota TH in mg/L	he natural ant lues greater th Il cadmium sta 50	ilogarithi nan 400 n andards fe	m (base ng/L, 40 or five 1	e e) of the 00 mg/L s hardness v	expression shall be use values:	in parenth	esis.
Where: exp. is the For hardness van standard. Example of tota TH in mg/L	the natural ant lues greater th il cadmium sta 50	ilogarithi nan 400 n andards fe 100	m (base ng/L, 40 or five 1 200	e e) of the 00 mg/L s hardness v 300	expression shall be use values: 400	in parenth	esis.
Where: exp. is the For hardness van standard. Example of tota TH in mg/L Cadmium, tota CS µg/L	the natural ant lues greater th al cadmium sta 50 al 0.66	ilogarithi nan 400 n andards fa 100	m (base ng/L, 40 or five 1 200 2.0	e e) of the 00 mg/L s hardness 300 2.7	expression shall be use values: 400 3.4	in parenth	esis.

	07/25/17	REVISOR			CKM/EP		AR4237		
31.1	Carbon tetrachloride (c)	μg/I	1.9	H	H	1750*	3500*	Tox	
31.2	Chlordane (c)	ng/I	0.07	3 HI	H î	1200*	2400*	Tox	
31.3	Chloride	mg/	L 230	То	ox 8	860	1720	Tox	
31.4	Chlorine, total residual	μg/I	. 11	То	DX .	19	38	Tox	
31.5 31.6 31.7	Chlorine standard applies to conditions of continuous exposure, where continuous exposure refers to chlorinated effluents that are discharged for more than a total of two hours in any 24-hour period.								
31.8 31.9	Chlorobenzene (Monochlorobenzene)	μg/I	20	HI	H 4	423	846	Tox	
31.10	Chloroform (c)	μg/I	_ 53	H	H	1,392	2,784	Tox	
31.11	Chlorpyrifos	μg/I	0.04	1 To	ox (0.083	0.17	Tox	
31.12	Chromium +3, total	μg/I	equa	tion To	DX 6	equation	equation	Tox	
31.13 31.14	The CS, MS, and FAV equations:	/ vary wit	th total h	ardness a	and are ca	alculated us	sing the fo	llowing	
31.15	The CS in μ g/L shall	not excee	ed: exp.(0	.819[ln(total hard	dness mg/L)]+1.561)		
31.16	The MS in μ g/L shall	not excee	ed: exp.(0.819[ln	(total har	dness mg/L	.)]+3.688))	
31.17	The FAV in μ g/L shal	l not exce	eed: exp.	(0.819[lr	n(total ha	rdness mg/	L)]+4.380))	
31.18	Where: exp. is the nat	tural antil	ogarithm	(base e)) of the ex	xpression ii	n parenthe	esis.	
31.19 31.20	For hardness values g standard.	reater tha	in 400 mg	g/L, 400	mg/L sh	all be used	to calcula	te the	
31.21	Example of total chro	omium +3	standard	ls for fiv	e total ha	ardness valu	ies:		
31.22	TH in mg/L	50	100	200	300	400			
31.23							_		
31.24	Chromium +3, total								
31.25	CS µg/L	117	207	365	509	644			
31.26	MS µg/L	984	1,737	3,064	4,270	5,405			
31.27	FAV µg/L	1,966	3,469	6,120	8,530	10,797			

07/25/17]	REVISO	R	CKM/EP		AR4
Substance, Characteristic, or Pollutant (Class 2A)	U	nits C	8	Basis for CS	MS	FAV	Bas for MS FAV
Chromium +6, total	με	g/L 11		Tox	16	32	Тох
Cobalt, total	με	g/L 2.1	8	HH	436	872	Tox
Color value	Pt	/Co 30)	NA			NA
Copper, total	με	g/L eq	uation	Tox	equation	equation	Tox
The CS, MS, and a equations:	FAV vary v	with total	hardne	ess and are	calculated	using the fo	ollow
The CS in µg/L sh	nall not exc	eed: exp	.(0.620	[ln(total ha	rdness mg/	L)]-0.570)	
The MS in μ g/L sl	hall not exc	ceed: exp	0.(0.942	2[ln(total	hardness m	g/L)]-1.464	4)
The FAV in $\mu g/L$ s	shall not ex	ceed: ex	p.(0.94	22[ln(total	hardness n	ng/L)]-0.77	(03)
The FAV in µg/L s Where: exp. is the						- /-	,
	e natural an	tilogarith	ım (bas	e e) of the	expression	in parenthe	esis.
Where: exp. is the For hardness value	e natural an es greater t	tilogarith han 400	nm (bas mg/L, ²	e e) of the 400 mg/L s	expression shall be use	in parenthe	esis.
Where: exp. is the For hardness value standard.	e natural an es greater t	tilogarith han 400	nm (bas mg/L, ²	e e) of the 400 mg/L s tal hardne	expression shall be use ss values:	in parenthe	esis.
Where: exp. is the For hardness value standard. Example of total c	e natural an es greater t copper stan	tilogarith han 400 dards foi	nm (bas mg/L, ²	e e) of the 400 mg/L s tal hardne	expression shall be use ss values:	in parenthe	esis.
Where: exp. is the For hardness value standard. Example of total c TH in mg/L	e natural an es greater t copper stan	tilogarith han 400 dards foi	nm (bas mg/L, ²	e e) of the 400 mg/L s tal hardne	expression shall be use ss values:	in parenthe	esis.
Where: exp. is the For hardness value standard. Example of total of TH in mg/L Copper, total	e natural an es greater t copper stan 50	tilogarith han 400 dards for 100	nm (bas mg/L, ² five to 200	e e) of the 400 mg/L s tal hardne) 300	expression shall be use ss values: 400	in parenthe	esis.
Where: exp. is the For hardness value standard. Example of total c TH in mg/L Copper, total CS µg/L	e natural antes greater the copper stand 50	tilogarith han 400 dards for 100 9.8	nm (bas mg/L, ² five to 200	e e) of the 400 mg/L s tal hardne) 300 19	expression shall be use ss values: 400 23 65	in parenthe	esis.

	07/25/17		REVISO	R	CKM/EP		AR4237
33.1	Cyanide, free	µg/L	5.2	Tox	22	45	Tox
33.2	DDT (c)	ng/L	0.11	HH	550*	1100*	Tox
33.3	1,2-Dichloroethane (c)	μg/L	3.5	HH	45,050*	90,100*	Tox
33.4	Dieldrin (c)	ng/L	0.0065	HH	1,300*	2,500*	Tox
33.5	Di-2-ethylhexyl phthalate (c)	μg/L	1.9	HH	*	*	NA
33.6	Di-n-octyl phthalate	µg/L	30	Tox	825	1,650	Tox
33.7	Endosulfan	μg/L	0.0076	HH	0.084	0.17	Tox
33.8	Endrin	μg/L	0.0039	HH	0.090	0.18	Tox
33.9 33.10	Escherichia (E.) coli	See below	See below	HH	See below	See below	NA
33.1133.1233.13	Not to exceed 126 organis five samples representativ than ten percent of all san	ve of con	ditions with en during	thin any ca any calend	lendar mont ar month inc	h, nor sha dividually	ll more exceed
33.14 33.15	1,260 organisms per 100 i October 31.	milliliter	s. The star	idard appli	es only betw	veen April	l and
		milliliter μg/L	s. The star	ndard appli Tox	es only betw 1,859	yeen April 3,717	I and Tox
 33.15 33.16 33.17 33.18 33.19 33.20 	October 31.					-	
 33.15 33.16 33.17 33.18 33.19 	October 31. Ethylbenzene Substance, Characteristic, or Pollutant	μg/L Units	68 CS	Tox Basis for CS	1,859 MS	3,717	Tox Basis for MS,
 33.15 33.16 33.17 33.18 33.19 33.20 33.21 	October 31. Ethylbenzene Substance, Characteristic, or Pollutant (Class 2A)	μg/L Units Class 2A all ecore	68 CS lakes and	Tox Basis for CS reservoirs.	1,859 MS	3,717 FAV	Tox Basis for MS, FAV
 33.15 33.16 33.17 33.18 33.19 33.20 33.21 33.22 33.23 	October 31. Ethylbenzene Substance, Characteristic, or Pollutant (Class 2A) Eutrophication standards for C Designated lake trout lakes in	μg/L Units Class 2A all ecore	68 CS lakes and	Tox Basis for CS reservoirs.	1,859 MS	3,717 FAV	Tox Basis for MS, FAV
 33.15 33.16 33.17 33.18 33.19 33.20 33.21 33.22 33.22 33.23 33.24 	October 31. Ethylbenzene Substance, Characteristic, or Pollutant (Class 2A) Eutrophication standards for C Designated lake trout lakes in of lake trout, <i>Salvelinus namay</i>	μg/L Units Class 2A all ecore <i>vcush</i>):	68 CS lakes and a egions (lake	Tox Basis for CS reservoirs. e trout lake	1,859 MS	3,717 FAV	Tox Basis for MS, FAV
 33.15 33.16 33.17 33.18 33.19 33.20 33.21 33.22 33.23 33.24 33.25 	October 31. Ethylbenzene Substance, Characteristic, or Pollutant (Class 2A) Eutrophication standards for C Designated lake trout lakes in of lake trout, <i>Salvelinus namay</i> Phosphorus, total	μg/L Units Class 2A all ecore <i>vcush</i>): μg/L μg/L	68 CS lakes and gions (lake 12	Tox Basis for CS reservoirs. e trout lake NA	1,859 MS	3,717 FAV	Tox Basis for MS, FAV

	07/25/17		REVISOR		CKM/EP		AR4237	
34.1	Phosphorus, total	µg/L	20	NA			NA	
34.2	Chlorophyll-a	μg/L	6	NA			NA	
34.3 34.4	Secchi disk transparency	meters	No less than 2.5	NA			NA	

Additional narrative eutrophication standards for Class 2A lakes and reservoirs are found
under subpart 2a.

34.7 Eutrophication standards for Class 2A rivers and streams.

34.8 North River Nutrient Region:

34.9	Phosphorus, total	µg/L	less than or equal to 50
34.10	Chlorophyll-a (seston)	µg/L	less than or equal to 7
34.11	Diel dissolved oxygen flux	mg/L	less than or equal to 3.0
34.12	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.5
34.13	Central River Nutrient Region:		
34.14	Phosphorus, total	µg/L	less than or equal to 100
34.15	Chlorophyll-a (seston)	µg/L	less than or equal to 18
34.16	Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
34.17	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.0
34.18	South River Nutrient Region:		
34.19	Phosphorus, total	μg/L	less than or equal to 150
34.20	Chlorophyll-a (seston)	µg/L	less than or equal to 35
34.21	Diel dissolved oxygen flux	mg/L	less than or equal to 4.5
34.22	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 3.0

34.23 Additional narrative eutrophication standards for Class 2A rivers and streams are found34.24 under subpart 2b.

	07/25/17		REVISOR		CKM/EP		AR4237
5.1 5.2 5.3 5.4	Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
5.6	Fluoranthene	μg/L	1.9	Tox	3.5	6.9	Tox
5.7	Heptachlor (c)	ng/L	0.10	HH	260*	520*	Tox
5.8	Heptachlor epoxide (c)	ng/L	0.12	HH	270*	530*	Tox
5.9	Hexachlorobenzene (c)	ng/L	0.061	HH	*	*	Tox
5.10	Lead, total	μg/L	equation	Tox	equation	equation	Tox
.11 .12	The CS, MS, and FAV equations:	vary with	total hardne	ess and are	calculated u	sing the fo	ollowing
13	The CS in µg/L shall no	ot exceed:	exp.(1.273	[ln(total ha	rdness mg/L	.)]-4.705)	
4	The MS in µg/L shall n	ot exceed:	exp.(1.273	[ln(total ha	ardness mg/]	L)] - 1.460)	
5	The FAV in µg/L shall	not exceed	l: exp.(1.27	3[ln(total ł	ardness mg	/L)] - 0.764	3)
Ď	Where: exp. is the nature	ral antilog	arithm (bas	e e) of the	expression i	n parenthe	esis.
	For hardness values gre standard.	eater than 4	400 mg/L, 4	400 mg/L s	hall be used	to calcula	te the
	Example of total lead st	tandards fo	or five total	hardness	values:		
	TH in mg/L 5	0 10	00 20	300	400		
	Lead, total						
	$CS \mu g/L$ 1	.3 3.	.2 7.7	13	19		
	MS µg/L 3	4 82	2 19	7 331	477		
	FAV µg/L 6	8 1	64 39	6 663	956		
	Substance, Characteristic,	Units	CS	Basis for CS	MS	FAV	Basis for

	07/25/17		REVISO	R	CKM/EP		AR4237
6.1 6.2	or Pollutant (Class 2A)						MS, FAV
6.3							
6.4 6.5 6.6	Lindane (c) (Hexachlorocyclohexane, gamma-)	μg/L	0.0087	НН	1.0*	2.0*	Tox
5.7	Mercury, total in water	ng/L	6.9	HH	2,400*	4,900*	Tox
.8 .9	Mercury, total in edible fish	mg/kg ppm	0.2	HH	NA	NA	NA
.10 .11	Methylene chloride (c) Dichloromethane)	μg/L	45	HH	13,875*	27,749*	Tox
12	Metolachlor	μg/L	23	Tox	271	543	Tox
3	Naphthalene	μg/L	65	HH	409	818	Tox
4	Nickel, total	μg/L	equation	Tox/HH	equation	equation	Tox
5 6	The CS, MS, and FAV va equations:	ary with t	otal hardne	ess and are	calculated u	using the fo	ollowing
17 18 19	The CS shall not exceed total hardness values less exceed: exp.(0.846[ln(to	than 212	mg/L, the	CS in µg/L			
)	The MS in µg/L shall no	t exceed:	exp.(0.846	[ln(total h	ardness mg/	L)]+3.361	2)
	The FAV in µg/L shall ne	ot exceed	: exp.(0.84	6[ln(total l	nardness mg	/L)]+4.054	43)
	Where: exp. is the natura	al antiloga	arithm (bas	e e) of the	expression	in parenthe	esis.
3 4	For hardness values grea standard.	ter than 4	400 mg/L, 4	400 mg/L s	shall be used	l to calcula	te the
5	Example of total nickels	standards	for five to	al hardnes	s values:		
6	TH in mg/L 50	10	0 200) 300	400		
7							
	Nickel, total						
	CS μg/L 88	15	58 283	3 297	297		

(07/25/17			RE	VISOR	/ISOR		CKM/EP		AR4237
	MS µg/L	789	1,	418	2,549	3,5	92	4,582		
	FAV µg/L	1,578	2,	836	5,098	7,1	85	9,164		
	Substance, Characteristic, or Pollutant (Class 2A)	τ	J nits	CS		asis or CS	MS	5	FAV	Basis for MS, FAV
	Oil	μ	ıg/L	500	N	IA	5,0	00	10,000	NA
	Oxygen, dissolved	n	ng/L	See belov		IA				NA
	7.0 mg/L as a daily with the standard 5 equal to the $7Q_{10}$.							-	-	
	Parathion	μ	ıg/L	0.01	3 Т	ox	0.0	7	0.13	Tox
	Pentachlorophenol	μ	ıg/L	0.93	H	IH	equ	uation	equation	Tox
	The MS and FAV	vary with	pH ar	nd are	calcula	ted usin	ig the	e followi	ng equation	ons:
	The MS in μ g/L sh	all not ex	ceed:	exp.(1	l.005[p	H]-4.83	60)			
	The FAV in µg/L s	hall not e	xceed	: exp.([1.005[]	pH]-4.1	373)			
	Where: exp. is the	natural a	ntiloga	arithm	(base e	e) of the	exp	ression i	n parenthe	esis.
	For pH values less greater than 9.0, 9.	-							l and for p	H values
	Example of pentac	hlorophe	nol sta	andard	s for fi	ve pH v	alues	8:		
	pH su	6.5	7.	0	7.5	8.0		8.5		
	Pentachlorophene	ol								
	CS µg/L	0.93	0.	93	0.93	0.9	3	0.93		
	MS µg/L	5.5	9.	1	15	25		41		
	FAV µg/L	11	18	3	30	50		82		

07/25/17		REVIS	OR	CKM/EP		AR4237	
Substance, Characteristic, or Pollutant (Class 2A)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV	
pH, minimum	su	6.5	NA			NA	
pH, maximum	su	8.5	NA			NA	
Phenanthrene	μg/L	3.6	Tox	32	64	Tox	
Phenol	μg/L	123	Tox	2,214	4,428	Tox	
Polychlorinated biphenyls total (c)	s, ng/L	0.014	ΗH	1,000*	2,000*	Tox	
Radioactive materials	NA	See below	NA	See below	See below	NA	
Not to exceed the low environment as permi		-		-			
		-		-			
environment as permi	tted by the	appropriat	e authority	having cont	trol over th	eir use. Tox	
environment as permi Selenium, total	tted by the μg/L μg/L	appropriat 5.0 0.12	e authority Tox Tox	having cont 20 equation	40 equation	ieir use. Tox 1 Tox	
environment as permi Selenium, total Silver, total The MS and FAV var	tted by the μg/L μg/L μg/L y with total	appropriat 5.0 0.12 hardness a	e authority Tox Tox and are calc	having cont 20 equation culated using	40 equation g the follow	ieir use. Tox 1 Tox ving	
environment as permi Selenium, total Silver, total The MS and FAV vary equations:	tted by the μg/L μg/L μg/L y with total not exceed	appropriat 5.0 0.12 hardness a : exp.(1.72	e authority Tox Tox and are calc 20[ln(total ł	having cont 20 equation culated using nardness mg	40 equation g the follow /L)]-7.215	Tox Tox Tox Tox ving 6)	
environment as permi Selenium, total Silver, total The MS and FAV var equations: The MS in µg/L shall	tted by the μg/L μg/L y with total not exceed l not exceed	appropriat 5.0 0.12 hardness a exp.(1.72 d: exp.(1.7	e authority Tox Tox and are calc 20[ln(total h 20[ln(total	having cont 20 equation culated using hardness mg hardness mg	40 equation g the follow /L)]-7.215 g/L)]-6.520	Tox Tox Tox Tox Ving 6)	
environment as permi Selenium, total Silver, total The MS and FAV vary equations: The MS in µg/L shall The FAV in µg/L shall	tted by the μg/L μg/L y with total not exceed not exceed unal antilog	appropriat 5.0 0.12 hardness a : exp.(1.72 d: exp.(1.7 arithm (ba	e authority Tox Tox and are calc 20[ln(total h 20[ln(total ase e) of the	having cont 20 equation culated using hardness mg hardness mg e expression	40 equation g the follow /L)]-7.215 g/L)]-6.520 in parenth	Tox Tox Tox Tox Tox Tox Tox Tox Tox Tox	
environment as permi Selenium, total Silver, total The MS and FAV vary equations: The MS in μg/L shall The FAV in μg/L shall Where: exp. is the nat For hardness values g	tted by the a μg/L μg/L y with total not exceed l not exceed tural antilog reater than	appropriat 5.0 0.12 hardness a : exp.(1.72 d: exp.(1.7 arithm (ba 400 mg/L,	e authority Tox Tox and are calc 20[ln(total h 20[ln(total ase e) of the , 400 mg/L	having cont 20 equation culated using hardness mg hardness mg e expression shall be use	40 equation g the follow /L)]-7.215 g/L)]-6.520 in parenth	Tox Tox Tox Tox Tox Tox Tox Tox Tox Tox	
environment as permi Selenium, total Silver, total The MS and FAV vary equations: The MS in μg/L shall The FAV in μg/L shall Where: exp. is the nat For hardness values g standard.	tted by the a µg/L µg/L y with total not exceed: 1 not exceed: ural antilog reater than a ndards for fi	appropriat 5.0 0.12 hardness a exp.(1.72 d: exp.(1.7 arithm (ba 400 mg/L, ive total ha	e authority Tox Tox and are calc 20[ln(total h 20[ln(total ase e) of the , 400 mg/L	having cont 20 equation culated using hardness mg hardness mg e expression shall be use ues:	40 equation g the follow /L)]-7.215 g/L)]-6.520 in parenth	Tox Tox Tox Tox Tox Tox Tox Tox Tox Tox	
environment as permi Selenium, total Silver, total The MS and FAV vary equations: The MS in µg/L shall The FAV in µg/L shall Where: exp. is the nat For hardness values g standard. Example of silver star	tted by the s µg/L µg/L y with total not exceed: 1 not exceed: ural antilog reater than and hdards for fi	appropriat 5.0 0.12 hardness a exp.(1.72 d: exp.(1.7 arithm (ba 400 mg/L, ive total ha	e authority Tox Tox and are calc 20[ln(total h 20[ln(total ase e) of the , 400 mg/L ardness valu	having cont 20 equation culated using hardness mg hardness mg e expression shall be use ues:	40 equation g the follow /L)]-7.215 g/L)]-6.520 in parenth	Tox Tox Tox Tox Tox Tox Tox Tox Tox Tox	
environment as permi Selenium, total Silver, total The MS and FAV vary equations: The MS in µg/L shall The FAV in µg/L shall Where: exp. is the nat For hardness values g standard. Example of silver star	tted by the s µg/L µg/L y with total not exceed: 1 not exceed: ural antilog reater than and hdards for fi	appropriat 5.0 0.12 hardness a exp.(1.72 d: exp.(1.7 arithm (ba 400 mg/L, ive total ha	e authority Tox Tox and are calc 20[ln(total h 20[ln(total ase e) of the , 400 mg/L ardness valu	having cont 20 equation culated using hardness mg hardness mg e expression shall be use ues:	40 equation g the follow /L)]-7.215 g/L)]-6.520 in parenth	Tox Tox Tox Tox Tox Tox Tox Tox Tox Tox	

07/25/17		REVI	SOR	ł	CKM/EP		AR4237
MS μg/L 1.0	2.	0 6	5.7	13	22		
FAV μg/L 1.2	4.	1 1	13	27	44		
Substance, Characteristic, or Pollutant (Class 2A)	Units	CS		Basis for CS	MS	FAV	Basis for MS, FAV
Temperature	°C or °F	No materia increas	al	NA			NA
1,1,2,2-Tetrachloroethane (c)	μg/L	1.1		HH	1,127*	2,253*	Tox
Tetrachloroethylene (c)	μg/L	3.8		HH	428*	857*	Tox
Thallium, total	μg/L	0.28		HH	64	128	Tox
Toluene	μg/L	253		Tox	1,352	2,703	Tox
Toxaphene (c)	ng/L	0.31		HH	730*	1,500*	Tox
1,1,1-Trichloroethane	μg/L	329		Tox	2,957	5,913	Tox
1,1,2-Trichloroethylene (c)	μg/L	25		HH	6,988*	13,976*	Tox
2,4,6-Trichlorophenol	μg/L	2.0		HH	102	203	Tox
Total suspended solids (TSS)	mg/L	10		NA			NA
TSS standards for Class 2A may be exceeded for no more than ten percent of the time. This standard applies April 1 through September 30	;						
Vinyl chloride (c)	μg/L	0.17		HH	*	*	NA
Xylene, total m,p,o	µg/L	166		Tox	1,407	2,814	Tox
Zinc, total	μg/L	equation	on	Tox	equation	equation	Tox
The CS, MS, and FAV va equations:	ry with t	total hard	lnes	s and an	e calculated	using the f	ollowir

39.30 The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)

	07/25/17			EVISOR		CKM/EP	AR4237			
40.1	The MS in µg/L s	hall not exc	ceed: exp.	(0.8473[lı	n(total har	dness mg/L)]	+0.8604)			
40.2	The FAV in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+1.5536									
40.3	Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.									
40.4 40.5	For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.									
40.6	Example of zinc standards for five total hardness values:									
40.7	TH in mg/L	50	100	200	300	400				
40.8										
40.9	Zinc, total									
40.10	CS µg/L	59	106	191	269	343				
40.11	MS µg/L	65	117	211	297	379				
40.12	FAV µg/L	130	234	421	594	758				
40.13		[For tex	t of subps	2a and 2l	o, see M.R	Ł.]				
40.14	Subp. 2c. Benefic	cial use de	finitions f	for <u>lotic</u> c	old water	stream and	river aquatic			
40.15	<u>life and</u> habitats (Cla	ss 2A).								
40.16	A. Subitems	(1) to (4) (<u>(5)</u> apply t	o the bene	eficial uses	s in items B a	and C:			
40.17	(1) The	designation	n and attai	nment of	beneficial	uses are base	ed on the			
40.18	biological criteria in su	ıbpart 2d.								
40.19	(2) The	attributes o	of species	compositi	on, divers	ity, and funct	tional			
40.20	organization are measu	ured using:								
40.21	(a)	the fish-ba	sed_fish II	BI as defir	ned in Dev	elopment of	a Fish-based			
40.22	Index of Biological Int	tegrity for	Minnesota	's Rivers	and Stream	ns, Minnesot	a Pollution			
40.23	Control Agency (2014)	Fish Data	Collection	Protocols	for Lotic	Waters in Mir	nnesota (2017);			
40.24	or									

	07/25/17	REVISOR	CKM/EP	AR4237
41.1	(b) the macroinverte	orate IBI as defined in	n Development of a	
41.2	Macroinvertebrate-based Index of Biolo	gical Integrity for Mi	nnesota's Rivers and	Streams,
41.3	Minnesota Pollution Control Agency (2	014) Macroinvertebra	ate Data Collection I	Protocols
41.4	for Lotic Waters in Minnesota (2017).			
41.5	(3) Water body types for	streams and rivers are	e defined in the docu	iments
41.6	referenced in subitem (2).			
41.7	(4) The following docume	nts are incorporated b	y reference and are no	ot subject
41.8	to frequent change:			
41.9	(a) Calibration of the	Biological Condition	n Gradient for Strear	ns of
41.10	Minnesota, Gerritsen et al. (2012). The	document is available	e on the agency's We	b site at
41.11	www.pca.state.mn.us/regulations/minne	sota-rulemaking;		
41.12	(b) Development of a	a Fish-based Index of	Biological Integrity	' for
41.13	Minnesota's Rivers and Streams, Minne	sota Pollution Contro	l Agency (2014) <u>Fis</u>	h Data
41.14	Collection Protocols for Lotic Waters in	Minnesota, Minneso	ta Pollution Control	Agency
41.15	(2017). The document is available on the	e agency's Web site a	t	
41.16	www.pca.state.mn.us/regulations/minne	sota-rulemaking;		
41.17	(c) Development of a	a Macroinvertebrate-t	ased Index of Biolo	gical
41.18	Integrity for Minnesota's Rivers and Stre	eams, Minnesota Poll	ution Control Agenc	ey (2014)
41.19	Macroinvertebrate Data Collection Prot	ocols for Lotic Water	s in Minnesota, Min	nesota
41.20	Pollution Control Agency (2017). The d	ocument is available	on the agency's Web	o site at
41.21	www.pca.state.mn.us/regulations/minne	sota-rulemaking; and		
41.22	(d) Development of	Biological Criteria for	r Tiered Aquatic Lif	e Uses,
41.23	Minnesota Pollution Control Agency (2	016). The document i	s available on the ag	gency's
41.24	Web site at www.pca.state.mn.us/regula	tions/minnesota-ruler	<u>naking</u> .	

AR4237

42.1	(5) The beneficial use subclass designators "e" and "g" are added to the Class
42.2	2A designator as specific additional designators. The additional subclass designators do not
42.3	replace the Class 2A designator. All requirements for Class 2A cold water stream and river
42.4	habitats in parts 7050.0222 and 7052.0100 continue to apply in addition to requirements
42.5	for Class 2Ae or Class 2Ag cold water stream and river habitats in part 7050.0222. These
42.6	subclass designators are applied to lotic waters only.

B. "Exceptional cold water aquatic life and habitat" or "Class 2Ae" is a beneficial
use that means waters capable of supporting and maintaining an exceptional and balanced,
integrated, adaptive community of cold water aquatic organisms having a species
composition, diversity, and functional organization comparable to the 75th percentile of
biological condition gradient level 3 as established in Calibration of the Biological Condition
Gradient for Streams of Minnesota, Gerritsen et al. (2012).

42.13 C. "General cold water aquatic life and habitat" or "Class 2Ag" is a beneficial use 42.14 that means waters capable of supporting and maintaining a balanced, integrated, adaptive 42.15 community of cold water aquatic organisms having a species composition, diversity, and 42.16 functional organization comparable to the median of biological condition gradient level 4 42.17 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, 42.18 Gerritsen et al. (2012).

42.19 Subp. 2d. Biological criteria for lotic cold water stream and river aquatic life and 42.20 habitats (Class 2A).

42.21	Water Body Type	Tier	Class	Assemblage	Biocriterion
42.22					
42.23	Southern cold water streams	Exceptional	2Ae	Fish	82
42.24		General	2Ag	Fish	50
42.25	Northern cold water streams	Exceptional	2Ae	Fish	60
42.26		General	2Ag	Fish	35

	07/25/17	RE	VISOR	CKM/EP	AR4237
43.1	Northern cold water streams	Exceptional	2Ae	Macroinvertebrates	52
43.2		General	2Ag	Macroinvertebrates	32
43.3	Southern cold water streams	Exceptional	2Ae	Macroinvertebrates	72
43.4		General	2Ag	Macroinvertebrates	43

43.5 <u>The biological criteria for lotic cold water aquatic life and habitats (Class 2A) are applicable</u> 43.6 to perennial and intermittent waters that allow for colonization of fish or macroinvertebrates.

Subp. 3. Class 2Bd waters. The quality of Class 2Bd surface waters shall be such as
to permit the propagation and maintenance of a healthy community of cool or warm water
aquatic biota and their habitats according to the definitions in subpart 3c. These waters shall
be suitable for aquatic recreation of all kinds, including bathing, for which the waters may
be usable. This class of surface waters is also protected as a source of drinking water. The
applicable standards are given below. Abbreviations, acronyms, and symbols are explained
in subpart 1.

43.14 43.15 43.16 43.17 43.18	Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
43.19	Acenaphthene	µg/L	20	HH	56	112	Tox
43.20	Acetochlor	μg/L	3.6	Tox	86	173	Tox
43.21	Acrylonitrile (c)	μg/L	0.38	HH	1,140*	2,281*	Tox
43.22	Alachlor (c)	μg/L	4.2	HH	800*	1,600*	Tox
43.23	Aluminum, total	μg/L	125	Tox	1,072	2,145	Tox
43.24	Ammonia un-ionized as N	µg/L	40	Tox			NA

The percent un-ionized ammonia can be calculated for any temperature and pH by
using the following equation taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V.
Thurston, Aqueous ammonia equilibrium calculations; effect of pH and temperature.

43.28 Journal of the Fisheries Research Board of Canada 32: 2379-2383 (1975):

07/25/17			REVISO	R	CKM/EP	CKM/EP	
		f = 1/2	/(10 ^(pka-pH) +	- 1) x 100			
where:	f = the perces	nt of total amm	nonia in the	un-ionized	d state		
	$pk_a = 0.09 +$	(2730/T) (diss	ociation cor	istant for a	ammonia)		
	T = temperat	ture in degrees	Kelvin (273	8.16° Kelv	$vin = 0^\circ \text{Cels}$	sius)	
Substar Charac or Pollu (Class 2	teristic, Itant	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Anthrac	ene	μg/L	0.035	Tox	0.32	0.63	Тох
Antimo	ny, total	μg/L	5.5	HH	90	180	Tox
Arsenic	, total	μg/L	2.0	HH	360	720	Tox
Atrazine	e (c)	μg/L	3.4	HH	323	645	Tox
Benzene	e (c)	μg/L	6.0	HH	4,487*	8,974*	Tox
Bromof	orm	μg/L	41	HH	2,900	5,800	Tox
Cadmiu	m, total	μg/L	equation	Tox	equation	equation	Tox
	CS, MS, and ations:	FAV vary with	total hardno	ess and are	e calculated	using the fo	ollowi
The	CS in μ g/L sł	nall not exceed	: exp.(0.785	2[ln(total	hardness m	g/L)]-3.490)
The	MS in µg/L s	hall not exceed	l: exp.(1.128	8[ln(total l	hardness mg	(/L)]-1.685))
The	FAV in µg/L	shall not excee	d: exp.(1.12	8[ln(total	hardness m	g/L)]-0.991	9)
Whe	ere: exp. is the	e natural antilog	garithm (bas	se e) of the	e expression	in parenth	esis.
	hardness valu dard.	es greater than	400 mg/L,	400 mg/L	shall be use	d to calcula	ate the
Evo	mple of total of	cadmium stand	ards for five	e hardness	values:		
EXa							

	07/25/17				REV	ISOI	R		CKM/EP	AR4237	
45.1	Cadmium, total										
45.2	CS µg/L	0.6	5	1.1	l	2.0		2.7	3.4		
45.3	MS µg/L	15		33		73		116	160		
45.4	FAV µg/L	31		67		146)	231	319		
45.5 45.6 45.7 45.8	Substance, Characteristic, or Pollutant (Class 2Bd)		Unit	ts	CS		Basi for CS	S	MS	FAV	Basis for MS, FAV
45.9											
45.10	Carbon tetrachloride (c)		μg/L		1.9		ΗH		1,750*	3,500*	Tox
45.11	Chlordane (c)		ng/L	2	0.29		ΗH		1,200*	2,400*	Tox
45.12	Chloride		mg/l	L	230		Tox		860	1,720	Tox
45.13	Chlorine, total residual		μg/L	J	11		Tox		19	38	Tox
45.14 45.15 45.16	Chlorine standard ap exposure refers to ch hours in any 24-hour	lorin	ated e						-		
45.17 45.18	Chlorobenzene (Monochlorobenzene)		μg/L	<u>,</u>	20		ΗH		423	846	Tox
45.19	Chloroform (c)		μg/L		53		ΗH		1,392	2,784	Tox
45.20	Chlorpyrifos		μg/L		0.041		Tox		0.083	0.17	Tox
45.21	Chromium +3, total		μg/L	_	equati	on	Tox		equation	equation	Tox
45.22 45.23	The CS, MS, and FAV vary with total hardness and are calculated using the following										
45.24	The CS in μ g/L shall	not	excee	d: e	exp.(0.8	819[In(to	tal ha	rdness mg/	L)]+1.561))
45.25	The MS in μ g/L shal	l not	excee	ed:	exp.(0.	819	[ln(to	otal ha	ardness mg/	′L)]+3.688)
45.26	The FAV in μ g/L sha	ll no	t exce	ed:	exp.(0	.819	9[ln(t	otal h	ardness mg	g/L)]+4.380))
45.27	Where: exp. is the na	itural	antil	oga	rithm (base	e e) o	f the	expression	in parenthe	esis.

	07/25/17		RI	EVISOR	(CKM/EP		AR4237
46.1 46.2	For hardness values standard.	greater th	an 400 m	ng/L, 400 n	ng/L shall	be used	to calcula	ite the
46.3	Example of total chr	omium +:	3 standar	ds for five	total hard	ness valu	ues:	
46.4	TH in mg/L	50	100	200	300	400		
46.5 46.6	Chromium +3, tota	1					_	
46.7	CS μg/L	117	207	365	509	644		
46.8	MS μg/L	984	1,737	3,064	4,270	5,405		
46.9	FAV µg/L	1,966	3,469	6,120	8,530	10,797	,	
46.10 46.11 46.12 46.13 46.14	Substance, Characteristic, or Pollutant (Class 2Bd)	Un	its CS	Bas for CS	is Mi	8	FAV	Basis for MS, FAV
46.15	Chromium +6, total	μg/	L 11	Tox	16		32	Tox
46.16	Cobalt, total	μg/	L 2.8	HH	43	6	872	Tox
46.17	Copper, total	μg/	L equ	ation Tox	eq	uation	equation	Tox
46.18 46.19	The CS, MS, and FA equations:	V vary w	ith total h	ardness an	id are calc	culated u	sing the fo	ollowing
46.20	The CS in µg/L shall	l not exce	ed: exp.(0.620[ln(to	otal hardn	ess mg/L	.)]-0.570)	
46.21	The MS in μ g/L shall	ll not exce	eed: exp.((0.9422[ln(total hard	ness mg	/L)] - 1.464)
46.22	The FAV in μ g/L sha	all not exc	eed: exp	.(0.9422[ln	(total har	dness mg	g/L)]-0.77	03)
46.23	Where: exp. is the na	atural anti	logarithn	n (base e) o	of the exp	ression i	n parenthe	esis.
46.24 46.25	For hardness values standard.	greater th	an 400 m	ng/L, 400 n	ng/L shall	be used	to calcula	ite the
46.26	Example of total cop	oper stand	ards for f	ive total h	ardness va	alues:		
46.27	TH in mg/L	50	100	200	300	400		
46.28							_	

	07/25/17			REV	ISOI	ર		СК	M/EP		AR4237
47.1	Copper, total										
47.2	CS µg/L	6.4	9.3	8	15		19		23		
47.3	MS µg/L	9.2	18	5	34		50		65		
47.4	FAV µg/L	18	35	i	68		100		131		
47.5 47.6 47.7 47.8 47.9	Substance, Characteristic, or Pollutant (Class 2Bd)		Units	CS		Basis for CS	8	MS		FAV	Basis for MS, FAV
47.10	Cyanide, free		µg/L	5.2		Tox		22		45	Tox
47.11	DDT (c)		ng/L	1.7		ΗH		550*	:	1,100*	Tox
47.12	1,2-Dichloroethane (c)		μg/L	3.8		ΗH		45,0	50*	90,100*	Tox
47.13	Dieldrin (c)		ng/L	0.026		ΗH		1,30	0*	2,500*	Tox
47.14	Di-2-ethylhexyl phthalate	(c)	μg/L	1.9		ΗH		*		*	NA
47.15	Di-n-octyl phthalate		μg/L	30		Tox		825		1,650	Tox
47.16	Endosulfan		μg/L	0.029		ΗH		0.28		0.56	Tox
47.17	Endrin		μg/L	0.016		ΗH		0.09	0	0.18	Tox
47.18 47.19	Escherichia (E.) coli		See below	See below		ΗH		See belov	W	See below	NA
47.20 47.21 47.22 47.23 47.24	Not to exceed 126 org five samples represent than ten percent of all 1,260 organisms per 1 October 31.	tativ san	ve of con nples tak	ditions en duri	witl ng a	hin an iny ca	iy cal	lendaı ar mo	r mon nth in	th, nor sha dividually	ll more exceed
47.25	Ethylbenzene		μg/L	68		Tox		1,85	9	3,717	Tox
47.26 47.27 47.28 47.29	Substance, Characteristic, or Pollutant (Class 2Bd)		Units	CS		Basis for CS	S	MS		FAV	Basis for

REVISOR

							MS, FAV
Eutrophication sta	andards for Clas	ss 2Bd	lakes, sha	llow lakes	, and reserve	oirs.	
Lakes, Shallow L	akes, and Reser	rvoirs	in Norther	n Lakes an	d Forest Eco	oregion	
Phosphorus, total	μ	g/L	30	NA			NA
Chlorophyll-a	μ	g/L	9	NA			NA
Secchi disk trans	parency m	neters	Not less than 2.0	NA			NA
Lakes and Reserv	oirs in North C	entral	Hardwood	Forest Ec	oregion		
Phosphorus, total	μ	g/L	40	NA			NA
Chlorophyll-a	μ	g/L	14	NA			NA
Secchi disk trans	parency m	neters	Not less than 1.4	NA			NA
Lakes and Reserve	oirs in Western	Corn B	elt Plains a	and Northe	rn Glaciated	Plains Ec	oregi
Phosphorus, total	μ	g/L	65	NA			NA
Chlorophyll-a	μ	g/L	22	NA			NA
Secchi disk trans	parency m	neters	Not less than 0.9	NA			NA
Shallow Lakes in	North Central 1	Hardw	ood Forest	t Ecoregion	1		
Phosphorus, total	μ	g/L	60	NA			NA
Chlorophyll-a	μ	g/L	20	NA			NA
Secchi disk trans	parency m	neters	Not less than 1.0	NA			NA

48.25 Shallow Lakes in Western Corn Belt Plains and Northern Glaciated Plains Ecoregions

	07/25/17	REVISOR			CKM/EP	AR4237
49.1	Phosphorus, total	µg/L	90	NA		 NA
49.2	Chlorophyll-a	µg/L	30	NA		 NA
49.3 49.4	Secchi disk transparency	meters	Not less than 0.7	NA		 NA

49.5 Additional narrative eutrophication standards for Class 2Bd lakes, shallow lakes, and
49.6 reservoirs are found under subpart 3a.

49.7 Eutrophication standards for Class 2Bd rivers and streams.

49.8 North River Nutrient Region

49.9	Phosphorus, total	µg/L	less than or equal to 50
49.10	Chlorophyll-a (seston)	μg/L	less than or equal to 7
49.11	Diel dissolved oxygen flux	mg/L	less than or equal to 3.0
49.12	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 1.5
49.13	Central River Nutrient Region		
49.14	Phosphorus, total	μg/L	less than or equal to 100
49.15	Chlorophyll-a (seston)	µg/L	less than or equal to 18
49.16	Diel dissolved oxygen flux	mg/L	less than or equal to 3.5
49.17	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 2.0
49.18	South River Nutrient Region		
49.19	Phosphorus, total	µg/L	less than or equal to 150
49.20	Chlorophyll-a (seston)	μg/L	less than or equal to 35
49.21	Diel dissolved oxygen flux	mg/L	less than or equal to 4.5
49.22	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal to 3.0

49.23 Additional narrative eutrophication standards for Class 2Bd rivers and streams are found49.24 under subpart 3b.

07/25/17			REVISO	R	CKM/EP		AR4237
Substance, Characteristic, or Pollutant (Class 2Bd)	ι	U nits	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Fluoranthene	Ļ	ıg/L	1.9	Tox	3.5	6.9	Тох
Heptachlor (c)	r	ng/L	0.39	HH	260*	520*	Tox
Heptachlor epoxide	e (c) r	ng/L	0.48	HH	270*	530*	Tox
Hexachlorobenzene	e (c) r	ng/L	0.24	HH	*	*	Tox
Lead, total	Ļ	ıg/L	equation	Tox	equation	equation	Tox
The CS, MS, an equations: The CS in µg/I The MS in µg/I The FAV in µg/I Where: exp. is For hardness va standard. Example of tot TH in mg/L	L shall not ex L shall not ex /L shall not e the natural a alues greater	ceed: o ceed: exceed ntiloga than 4	exp.(1.273 exp.(1.273 exp.(1.27 writhm (bas 00 mg/L, 4 or five total	[ln(total h [ln(total] 3[ln(total e e) of th 400 mg/L hardness	hardness mg/ hardness mg hardness mg e expression shall be use values:	L)]-4.705) /L)]-1.460) g/L)]-0.764 in parenthe	3) esis.
Lead, total							
CS µg/L	1.3	3.2	2 7.7	13	19		
MS µg/L	34	82	197	33	1 477		
FAV µg/L	68	16	i 4 396	66	3 956		
Substance, Characteristic, or Pollutant				Basis for			Basis

	07/25/17	7/25/17 REVISOR		R	CKM/EP		
51.1 51.2 51.3							MS, FAV
51.5 51.4 51.5 51.6	Lindane (c) (Hexachlorocyclohexane, gamma-)	μg/L	0.032	НН	4.4*	8.8*	Tox
51.7	Mercury, total in water	ng/L	6.9	HH	2,400*	4,900*	Tox
51.8 51.9	Mercury, total in edible fish tissue	mg/kg ppm	0.2	HH	NA	NA	NA
51.10 51.11	Methylene chloride (c) (Dichloromethane)	μg/L	46	HH	13,875*	27,749*	Tox
51.12	Metolachlor	μg/L	23	Tox	271	543	Tox
51.13	Naphthalene	μg/L	81	Tox	409	818	Tox
51.14	Nickel, total	μg/L	equation	Tox/HH	equation	equation	Tox
51.15 51.16	The CS, MS, and FAV va equations:	ary with t	otal hardne	ess and are	calculated u	using the fo	ollowing
51.17 51.18 51.19	The CS shall not exceed t total hardness values less exceed: exp.(0.846[ln(to	than 212	mg/L, the	CS in µg/I			
51.20	The MS in µg/L shall no	t exceed:	exp.(0.846	[ln(total h	ardness mg/	L)]+3.361	2)
51.21	The FAV in µg/L shall no	ot exceed	: exp.(0.84	6[ln(total l	nardness mg	[/L)]+4.054	43)
51.22	Where: exp. is the natura	ıl antiloga	arithm (bas	e e) of the	expression	in parenthe	esis.
51.23 51.24	For hardness values grea standard.	ter than 4	400 mg/L, 4	400 mg/L s	shall be used	l to calcula	ate the
51.25	Example of total nickel s	standards	for five to	tal hardnes	s values:		
51.26	TH in mg/L 50	10	0 20) 300	400		
51.27	-						
51.28	Nickel, total						
51.29	CS μg/L 88	15	58 28.	3 297	297		

	07/25/17		RE	VISOR	C	CKM/EP	AR4237
52.1	MS µg/L	789	1,418	2,549	3,592	4,582	
52.2	FAV µg/L	1,578	2,836	5,098	7,185	9,164	
52.3 52.4 52.5 52.6 52.7	Substance, Characteristic, or Pollutant (Class 2Bd)	Uni	ts CS	Bas for CS	is MS	S FAV	Basis for MS, 7 FAV
52.8	Oil	μg/L	500	NA	5,000) 10,00	0 NA
52.9 52.10	Oxygen, dissolved	mg/L	See below	NA			NA
52.11 52.12 52.13 52.14 52.15	5.0 mg/L as a daily p site-specific basis ac standard shall be les Compliance with this the receiving water is	cording to s than 5 mg s standard	part 705 g/L as a d is require	0.0220, su laily avera	ubpart 7, e	except that no mg/L as a dat	site-specific ily minimum.
52.16	Parathion	μg/L	0.013	Tox	0.07	0.13	Tox
52.17	Pentachlorophenol	μg/L	1.9	HH	equat	tion equat	ion Tox
52.18	The MS and FAV va	ry with pH	I and are	calculated	l using the	e following e	quations:
52.19	The MS in µg/L sha	ll not excee	ed: exp.(1	.005[pH]	-4.830)		
52.20	The FAV in μ g/L sha	all not exce	eed: exp.([1.005[pH]-4.1373)		
52.21	Where: exp. is the n	atural antil	ogarithm	(base e) o	of the exp	ression in par	enthesis.
52.22 52.23	For pH values less th greater than 9.0, 9.0						for pH values
52.24	Example of pentach	lorophenol	standard	s for five	pH values	5:	
52.25	pH su	6.5	7.0	7.5	8.0	8.5	
52.26							
52.27	Pentachlorophenol						
52.28	CS µg/L	1.9	1.9	1.9	1.9	1.9	

07/25/17			REV	VISOF	ર		СКМ	/EP		AR423
MS µg/L	5.5	9.1		15		25	41			
FAV μg/L	11	18		30		50	82	2		
Substance, Characteristic, or Pollutant (Class 2Bd)	Uni	its	CS		Basis for CS	5	MS		FAV	Basis for MS, FAV
pH, minimum	su		6.5		NA				-	NA
pH, maximum	su		9.0		NA				-	NA
Phenanthrene	μg/L		3.6		Tox		32	6	4	Tox
Phenol	μg/L		123		Tox		2,214	4	,428	Tox
Polychlorinated biphenyl total (c)	ls, ng/L		0.029		ΗH		1,000*	2	,000*	Tox
Radioactive materials	NA		See		NA		See		ee	NA
			below				below	b	elow	
Not to exceed the low environment as perm		entra	tions	perm		to b	e dischar	ged	to an unc	
		entra he aj	tions	perm		to b rity	e dischar	ged	to an unc ol over th	
environment as perm	nitted by the	entra he aj	tions propr	perm	autho	to b rity	e dischar having c	rged t contro 4	to an unc ol over th	neir use.
environment as perm Selenium, total	nitted by th μg/L μg/L	entra he aj	opropr 5.0 1.0	perm iate a	autho Tox Tox	to b rity	e dischar having c 20 equation	rged t contro 4 e	to an unc ol over th 0 quation	neir use. Tox Tox
environment as perm Selenium, total Silver, total The MS and FAV var	hitted by th μg/L μg/L ry with to	entra he ap tal h	ppropr 5.0 1.0 ardnes	perm iate a	autho Tox Tox d are	to b rity cale	e dischar having c 20 equation culated us	e contro 4 e sing	to an unc ol over th 0 quation the follo	neir use Tox Tox wing
environment as perm Selenium, total Silver, total The MS and FAV var equations:	hitted by th μg/L μg/L ry with to ll not exce	entra he ap tal h	tions popropr 5.0 1.0 ardnes exp.(1	perm iate a ss and .720	autho Tox Tox d are [ln(to	to b rity cale	e dischar having c 20 equation culated us hardness	rged t contro 4 e sing t mg/I	to an unc ol over th 0 quation the follor (_)]-7.215	neir use Tox Tox wing 6)
environment as perm Selenium, total Silver, total The MS and FAV var equations: The MS in μg/L shal	hitted by th μg/L μg/L ry with to Il not exce Ill not exce	entra he aj tal h ced: c	exp.(1	perm iate a ss and .720 1.720	autho Tox Tox d are [ln(to)[ln(to	to b rity cald tal l	e dischar having c 20 equation culated us hardness hardness	e sing f mg/I s mg/	to an unc ol over th 0 quation the follov L)]-7.215 L)]-6.52	neir use Tox Tox wing 6) 0)
environment as perm Selenium, total Silver, total The MS and FAV var equations: The MS in μg/L shal The FAV in μg/L sha	hitted by th μg/L μg/L ry with to Il not exce all not exce atural anti	entra he ap tal h eed: o eed: loga	exp.(1 rithm	perm iate a ss and .720 [.720 (base	autho Tox Tox d are [ln(to)[ln(to e e) of	to b rity cald tal l otal f the	e dischar having c 20 equation culated us hardness hardness e express	rged to contro 4 e sing to mg/I s mg/ ion in	to an unc ol over th 0 quation the follor L)]-7.215 L)]-6.52 n parenth	neir use Tox Tox wing 6) 0) nesis.

07/25/17		RE	VISOR		CKM/EF)	AR4
TH in mg/L	50	100	200	300	400		
Silver, total							
CS µg/L	1.0	1.0	1.0	1.0	1.0		
MS µg/L	1.0	2.0	6.7	13	22		
FAV µg/L	1.2	4.1	13	27	44		
Substance, Characteristic, or Pollutant (Class 2Bd)	Unit	ts CS	Basi for CS		18	FAV	Bas for MS FA
Temperature	°F	See belov	NA				NA
5°F above natural in of the maximum dail temperature of 86°F.	y temperat						-
of the maximum dail	y temperat				l it exce		-
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan	y temperat	tures, exc	ept in no c	ase shal	l it exce 27*	ed the dail	ly ave
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c)	y temperat e μg/L	tures, exc	ept in no c HH	ase shal 1,12	l it exce 27*	ed the dail 2,253*	ly ave Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c)	y temperat e μg/L μg/L	tures, exc 1.5 3.8	ept in no c HH HH	ase shal 1,12 428 64	1 it exce 27* *	ed the dail 2,253* 857*	ly ave Tox Tox Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c) Thallium, total	y temperat e μg/L μg/L μg/L	tures, exc 1.5 3.8 0.28	ept in no c HH HH HH	ase shal 1,12 428 64	1 it exce 27* * 52	ed the dail 2,253* 857* 128	ly ave Tox Tox Tox Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c) Thallium, total Toluene	y temperat e µg/L µg/L µg/L µg/L	1.5 3.8 0.28 253	ept in no c HH HH HH Tox	ease shal 1,12 428 64 1,35 730	1 it exce 27* * 52 *	ed the dail 2,253* 857* 128 2,703	ly ave Tox Tox Tox Tox Tox Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c)	y temperat e µg/L µg/L µg/L µg/L ng/L µg/L	1.5 3.8 0.28 253 1.3	ept in no c HH HH HH Tox HH	ease shal 1,12 428 64 1,35 730	1 it exce 27* * 52 * 57	ed the dail 2,253* 857* 128 2,703 1,500*	ly ave Tox Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane	y temperat e µg/L µg/L µg/L µg/L ng/L µg/L	1.5 3.8 0.28 253 1.3 329	ept in no c HH HH HH Tox HH Tox	ease shal 1,12 428 64 1,35 730 2,95	1 it exce 27* * 52 * 57 38*	ed the dail 2,253* 857* 128 2,703 1,500* 5,913	ly ave Tox Tox Tox Tox Tox Tox Tox
of the maximum dail temperature of 86°F. 1,1,2,2-Tetrachloroethan (c) Tetrachloroethylene (c) Thallium, total Toluene Toxaphene (c) 1,1,1-Trichloroethane 1,1,2-Trichloroethylene (y temperat e µg/L µg/L µg/L ng/L µg/L µg/L (c) µg/L	tures, exc 1.5 3.8 0.28 253 1.3 329 25	ept in no c HH HH HH Tox HH Tox HH	ease shal 1,12 428 64 1,35 730 2,95 6,98	1 it exce 27* * 52 * 57 38*	ed the dail 2,253* 857* 128 2,703 1,500* 5,913 13,976*	ly ave Tox Tox Tox Tox Tox Tox

	07/25/17		REVISO	R	CKM/EI	D	AR4237
55.1 55.2	Central River Nutrient Region	mg/L	30	NA	-	-	NA
55.3 55.4	South River Nutrient Region	mg/L	65	NA	-	-	NA
55.5 55.6	Red River mainstem - headwaters to border	mg/L	100	NA	-	-	NA
55.7 55.8 55.9 55.10 55.11 55.12 55.13 55.14 55.15	TSS standards for the Class 2Bd North, Central, and South River Nutrient Regions and the Red River mainstem may be exceeded for no more than ten percent of the time. This standard applies April 1 through September 30						
55.16 55.17	Total suspended solids (TSS), summer average						
55.18 55.19 55.20 55.21	Lower Mississippi River mainstem - Pools 2 through 4 Lower Mississippi River	mg/L	32	NA	-	-	NA
55.22 55.23	mainstem below Lake Pepin	mg/L	30	NA	-	-	NA
55.24 55.25 55.26 55.27 55.28 55.29 55.30	TSS standards for the Class 2Bd Lower Mississippi River may be exceeded for no more than 50 percent of the time. This standard applies June 1 through September 30						
55.31 55.32 55.33 55.34	Substance, Characteristic, or Pollutant (Class 2Bd)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV

	07/25/17		REVIS	REVISOR		EP	AR4237
56.1	Vinyl chloride (c)	μg/L	0.18	HH	*	*	NA
56.2	Xylene, total m,p,o	μg/L	166	Tox	1,407	2,814	Tox
56.3	Zinc, total	μg/L	equation	n Tox	equation	equation	Tox
56.4 56.5	The CS, MS, and FA equations:	V vary wi	th total hard	ness and	are calculate	ed using the	following
56.6	The CS in µg/L shall	not excee	ed: exp.(0.84	473[ln(tot	al hardness	mg/L)]+0.76	515)
56.7	The MS in μ g/L shal	l not exce	ed: exp.(0.8	473[ln(to	tal hardness	mg/L)]+0.8	604)
56.8	The FAV in μ g/L sha	ll not exce	eed: exp.(0.	8473[ln(to	otal hardnes	s mg/L)]+1.:	5536)
56.9	Where: exp. is the na	atural antil	ogarithm (b	ase e) of	the expressi	on in parentl	hesis.
56.10 56.11	For hardness values standard.	greater tha	an 400 mg/I	., 400 mg	/L shall be u	used to calcu	late the
56.12	Example of total zine	c standard	s for five to	tal hardne	ess values:		
56.13	TH in mg/L	50	100 2	200 3	300 40	0	
56.14							
56.15	Zinc, total						
56.16	CS µg/L	59	106 1	.91 2	269 34	3	
56.17	MS µg/L	65	117 2	211 2	297 37	9	
56.18	FAV µg/L	130	234 4	21	594 75	8	
56.19		[For text of	of subps 3a	and 3b, se	e M.R.]		
56.20	Subp. 3c. Beneficial	l use defin	nitions for <u>l</u>	<u>otic</u> warn	n or cool wa	iter stream	and river
56.21	aquatic life and habitats	s (Class 21	Bd).				
56.22	A. Subitems (1)) to (4) (5)	apply to th	e benefici	al uses in ite	ems B to D:	
56.23	(1) The des	signation a	and attainme	ent of ben	eficial uses	are based on	the
56.24	biological criteria in subp	oart 3d.					
56.25	(2) The attr	ributes of	species com	position,	diversity, ar	nd functional	l
56.26	organization are measured			-	-		

CKM/EP

57.1	(a) the fish-based fish IBI as defined in Development of a Fish-based
57.2	Index of Biological Integrity for Minnesota's Rivers and Streams, Minnesota Pollution
57.3	Control Agency (2014) Fish Data Collection Protocols for Lotic Waters in Minnesota (2017);
57.4	or
57.5	(b) the macroinvertebrate IBI as defined in Development of a
57.6	Macroinvertebrate-based Index of Biological Integrity for Minnesota's Rivers and Streams,
57.7	Minnesota Pollution Control Agency (2014) Macroinvertebrate Data Collection Protocols
57.8	for Lotic Waters in Minnesota (2017).
57.9	(3) Water body types for streams and rivers are defined in the documents
57.10	referenced in subitem (2).
57.11	(4) The following documents are incorporated by reference and are not subject
57.12	to frequent change:
57.13	(a) Calibration of the Biological Condition Gradient for Streams of
57.14	Minnesota, Gerritsen et al. (2012). The document is available on the agency's Web site at
57.15	www.pca.state.mn.us/regulations/minnesota-rulemaking;
57.16	(b) Development of a Fish-based Index of Biological Integrity for
57.17	Minnesota's Rivers and Streams, Minnesota Pollution Control Agency (2014) Fish Data
57.18	Collection Protocols for Lotic Waters in Minnesota, Minnesota Pollution Control Agency
57.19	(2017). The document is available on the agency's Web site at
57.20	www.pca.state.mn.us/regulations/minnesota-rulemaking;
57.21	(c) Development of a Macroinvertebrate-based Index of Biological
57.22	Integrity for Minnesota's Rivers and Streams, Minnesota Pollution Control Agency (2014)
57.23	Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota, Minnesota
57.24	Pollution Control Agency (2017). The document is available on the agency's Web site at
57.25	www.pca.state.mn.us/regulations/minnesota-rulemaking; and

58.1	(d) Development of Biological Criteria for Tiered Aquatic Life Uses,
58.2	Minnesota Pollution Control Agency (2016). The document is available on the agency's
58.3	Web site at www.pca.state.mn.us/regulations/minnesota-rulemaking.

58.4 (5) The beneficial use subclass designators "e," "g," and "m" are added to
58.5 the Class 2Bd designator as specific additional designators. The additional subclass
58.6 designators do not replace the Class 2Bd designator. All requirements for Class 2Bd warm
58.7 or cool water stream and river habitats in parts 7050.0222 and 7052.0100 continue to apply
58.8 in addition to requirements for Class 2Bde, Class 2Bdg, or Class 2Bdm warm or cool water
58.9 stream and river habitats in part 7050.0222. These subclass designators are applied to lotic
58.10 waters only.

B. "Exceptional cool and warm water aquatic life and habitat, also protected as a source for drinking water" or "Class 2Bde" is a beneficial use that means waters capable of supporting and maintaining an exceptional and balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the 75th percentile of biological condition gradient level 3 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

58.18 C. "General cool and warm water aquatic life and habitat, also protected as a 58.19 source for drinking water" or "Class 2Bdg" is a beneficial use that means waters capable 58.20 of supporting and maintaining a balanced, integrated, adaptive community of warm or cool 58.21 water aquatic organisms having a species composition, diversity, and functional organization 58.22 comparable to the median of biological condition gradient level 4 as established in Calibration 58.23 of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

58.24 D. "Modified cool and warm water aquatic life and habitat, also protected as a 58.25 source for drinking water" or "Class 2Bdm" is a beneficial use that means waters capable 58.26 of supporting and maintaining a balanced, integrated, adaptive community of warm or cool

REVISOR CKM/EP AR4237

59.12

water aquatic organisms having a species composition, diversity, and functional organization
comparable to the median of biological condition gradient level 5 as established in Calibration
of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

- (1) To meet the definition in this item, waters must have been the subject of
 a use attainability analysis and must have been found to be incapable of supporting and
 maintaining where it is determined that attainment of the Class 2Bdg beneficial use is not
 feasible because of human-induced modifications of the physical habitat that preclude the
 potential for recovery of the fauna. These modifications must be the result of direct alteration
 to the channel, such as drainageway maintenance, bank stabilization, and impoundments.
- 59.10 (2) Examples of Class 2Bdm waters are the stream channel modification59.11 activities regulated under:
 - (a) sections 401 and 404 of the Clean Water Act; or
- 59.13 (b) Minnesota Statutes, chapter 103E.

59.14 Subp. 3d. Biological criteria for lotic warm or cool water stream and river aquatic 59.15 life and habitats (Class 2Bd).

Water Body Type	Tier	Class	Assemblage	Biocriterion
Southern rivers	Exceptional	2Bde	Fish	71
	General	2Bdg	Fish	49
Southern streams	Exceptional	2Bde	Fish	66
	General	2Bdg	Fish	50
	Modified	2Bdm	Fish	35
Southern headwaters	Exceptional	2Bde	Fish	74
	General	2Bdg	Fish	55
	Modified	2Bdm	Fish	33

	07/25/17		REVISOR	CKM/EP	AR4237
60.1	Northern rivers	Exceptional	2Bde	Fish	67
60.2		General	2Bdg	Fish	38
60.3	Northern streams	Exceptional	2Bde	Fish	61
60.4		General	2Bdg	Fish	47
60.5		Modified	2Bdm	Fish	35
60.6	Northern headwaters	Exceptional	2Bde	Fish	68
60.7		General	2Bdg	Fish	42
60.8		Modified	2Bdm	Fish	23
60.9	Low gradient	Exceptional	2Bde	Fish	70
60.10		General	2Bdg	Fish	42
60.11		Modified	2Bdm	Fish	15
60.12	Northern forest rivers	Exceptional	2Bde	Macroinvertebrates	77
60.13		General	2Bdg	Macroinvertebrates	49
60.14	Prairie and southern forest				
60.15	rivers	Exceptional		Macroinvertebrates	63
60.16		General	2Bdg	Macroinvertebrates	31
60.17 60.18	High-gradient northern forest streams	Exceptional	2Bde	Macroinvertebrates	82
60.19		General	2Bdg	Macroinvertebrates	53
60.20	Low-gradient northern				
60.21	forest streams	Exceptional	2Bde	Macroinvertebrates	76
60.22		General	2Bdg	Macroinvertebrates	51
60.23		Modified	2Bdm	Macroinvertebrates	37
60.24	High-gradient southern		2D 1.	Manage in and the star	(\mathbf{a})
60.25	streams	Exceptional		Macroinvertebrates	62
60.26		General	2Bdg	Macroinvertebrates	37
60.27	· · · ·	Modified	2Bdm	Macroinvertebrates	24
60.28 60.29	Low-gradient southern forest streams	Exceptional	2Bde	Macroinvertebrates	66

	07/25/17		REVISOR	CKM/EP	AR4237				
61.1		General	2Bdg	Macroinvertebrates	43				
61.2		Modified	2Bdm	Macroinvertebrates	30				
61.3	Low-gradient prairie								
61.4	streams	Exceptional	2Bde	Macroinvertebrates	69				
61.5		General	2Bdg	Macroinvertebrates	41				
61.6		Modified	2Bdm	Macroinvertebrates	22				
61.7	The biological criteria for l	otic warm or c	ool water aqua	atic life and habitats (Class 2	2Bd) are				
61.8	applicable to perennial and	intermittent v	vaters that allo	ow for colonization of fish o	<u>er</u>				
61.9	macroinvertebrates.								
61.10	Subp. 4. Class 2B wa	ters. The qua	lity of Class 2	B surface waters shall be su	ich as to				
61.11	permit the propagation and	maintenance	of a healthy c	ommunity of cool or warm	water				
61.12	aquatic biota, and their hab	itats according	g to the defini	tions in subpart 4c. These w	aters				
61.13	shall be suitable for aquation	e recreation of	all kinds, incl	uding bathing, for which the	e waters				
61.14	may be usable. This class of	of surface wate	er is not protec	cted as a source of drinking	water.				
61 15	The applicable standards are given below Abbreviations acronyms and symbols are								

61.15 The applicable standards are given below. Abbreviations, acronyms, and symbols are61.16 explained in subpart 1.

61.17 61.18 61.19 61.20 61.21	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
61.22	Acenaphthene	µg/l	20	HH	56	112	Tox
61.23	Acetochlor	μg/L	3.6	Tox	86	173	Tox
61.24	Acrylonitrile (c)	µg/l	0.89	HH	1,140*	2,281*	Tox
61.25	Alachlor (c)	μg/L	59	Tox	800	1,600	Tox
61.26	Aluminum, total	μg/L	125	Tox	1,072	2,145	Tox
61.27	Ammonia un-ionized as N	μg/L	40	Tox			NA

	07/25/17 R			OR	CKM/	EP	AR4237				
62.1 62.2 62.3 62.4	The percent un-ionized ammonia can be calculated for any temperature and pH by using the following equation taken from Emerson, K., R.C. Russo, R.E. Lund, and R.V. Thurston, Aqueous ammonia equilibrium calculations; effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379-2383 (1975):										
62.5	$f = 1/(10^{(pka-pH)} + 1) \ge 100$										
62.6	where: $f =$ the percent of total ammonia in the un-ionized state										
62.7	$pk_a = 0.09 +$	- (2730/T) (dissociatio	n consta	nt for ammo	onia)					
62.8	T = tempera	ture in deg	rees Kelvin	(273.16	° Kelvin =	0° Celsius)					
62.9 62.10 62.11 62.12 62.13	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV				
62.14	Anthracene	μg/L	0.035	Tox	0.32	0.63	Tox				
62.15	Antimony, total	μg/L	31	Tox	90	180	Tox				
62.16	Arsenic, total	µg/L	53	HH	360	720	Tox				
62.17	Atrazine (c)	μg/L	10	Tox	323	645	Tox				
62.18	Benzene (c)	μg/L	98	HH	4,487	8,974	Tox				
62.19	Bromoform	μg/L	466	HH	2,900	5,800	Tox				
62.20	Cadmium, total	μg/L	equation	Tox	equation	equatior	n Tox				
62.21 62.22	The CS, MS, and FAV equations:	vary with	total hardn	ess and a	are calculate	ed using the	e following				
62.23	The CS in µg/L shall	not exceed:	exp.(0.785	52[ln(tota	al hardness	mg/L)]-3.4	.90)				
62.24	The MS in µg/L shall	not exceed	l: exp.(1.12	8[ln(tota	l hardness r	ng/L)]-1.68	35)				
62.25	The FAV in µg/L shal	l not excee	d: exp.(1.12	28[ln(tot	al hardness	mg/L)]-0.9	919)				
62.26	Where: exp. is the nat	ural antilog	garithm (ba	se e) of t	the expression	on in paren	thesis.				
62.27 62.28	For hardness values g standard.	reater than	400 mg/L,	400 mg/	'L shall be u	sed to calc	ulate the				
62.29	Example of total cadn	nium stand	ards for five	e hardne	ss values:						

07/25/17		REV	ISOR	СК	M/EP	AR4237
TH in mg/L	50	100	200	300	400	
Cadmium, total						
CS µg/L	0.66	1.1	2.0	2.7	3.4	
MS µg/L	15	33	73	116	160	
FAV µg/L	31	67	146	231	319	
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
Carbon tetrachloride (c)	μg/L	5.9	HH	1,750*	3,500*	Tox
Chlordane (c)	ng/L	0.29	HH	1,200*	2,400*	Tox
Chloride	mg/L	230	Tox	860	1,720	Tox
Chlorine, total residual	μg/I	. 11	Tox	19	38	Tox
Chlorine standard app exposure refers to chl hours in any 24-hour	orinated e			-		
Chlorobenzene (Monochlorobenzene)	μg/L	20	HH	423	846	Tox
Chloroform (c)	μg/L	155	Tox	1,392	2,784	Tox
Chlorpyrifos	μg/L	0.041	Tox	0.083	0.17	Tox
Chromium +3, total	μg/L	equation	on Tox	equation	on equatio	n Tox
The CS, MS, and FAV equations	/ vary wit	th total har	dness and	l are calcul	lated using th	e following
The CS in µg/L shall	not excee	ed: exp.(0.8	819[ln(tot	al hardnes	s mg/L)]+1.5	61)
The MS in µg/L shall	not excee	ed: exp.(0.	819[ln(to	tal hardnes	ss mg/L)]+3.0	588)
The FAV in μ g/L shal	l not exce	eed: exp.(0	.819[ln(to	otal hardne	ess mg/L)]+4	.380)

	07/25/17		REV	ISOR	C	KM/EP	AR4237
64.1	Where: exp. is the na	atural antil	ogarithm ((base e) o	of the exp	ression in paren	thesis.
64.2 64.3	For hardness values standard.	greater tha	an 400 mg/	′L, 400 m	ng/L shall	be used to calc	ulate the
64.4	Example of total chr	omium +3	standards	for five	total hard	ness values:	
64.5	TH in mg/L	50	100	200	300	400	
64.6							
64.7	Chromium +3, tota	1					
64.8	CS µg/L	117	207	365	509	644	
64.9	MS µg/L	984	1,737	3,064	4,270	5,405	
64.10	FAV µg/L	1,966	3,469	6,120	8,530	10,797	
64.11 64.12 64.13 64.14 64.15	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	s MS	FAV	Basis for MS, FAV
64.16	Chromium +6, total	μg/L	11	Tox	16	32	Tox
64.16 64.17	Chromium +6, total Cobalt, total	μg/L μg/L	11 5.0	Tox Tox		32 872	Tox Tox
				Tox		872	Tox
64.17	Cobalt, total	μg/L μg/L	5.0 equatio	Tox on Tox	436 equat	872 ion equation	Tox Tox
64.17 64.18 64.19	Cobalt, total Copper, total The CS, MS, and FA	μg/L μg/L V vary wi	5.0 equation th total har	Tox on Tox dness an	436 equat d are calc	872 ion equation ulated using the	Tox Tox following
64.17 64.18 64.19 64.20	Cobalt, total Copper, total The CS, MS, and FA equations:	μg/L μg/L V vary wi l not excee	5.0 equation th total har ed: exp.(0.6	Tox on Tox rdness an 6200[ln(t	436 equat d are calc otal hardr	872 ion equation ulated using the ness mg/L)]-0.5	Tox Tox following 70)
64.17 64.18 64.19 64.20 64.21	Cobalt, total Copper, total The CS, MS, and FA equations: The CS in µg/L shall	μg/L μg/L V vary wi l not excee ll not excee	5.0 equation th total har ed: exp.(0.0 ed: exp.(0.0	Tox on Tox cdness an 5200[ln(t 9422[ln(436 equat d are calc otal hardr total hard	872 ion equation ulated using the ness mg/L)]-0.5 ness mg/L)]-1.4	Tox Tox following 70) 64)
64.17 64.18 64.19 64.20 64.21 64.22	Cobalt, total Copper, total The CS, MS, and FA equations: The CS in µg/L shall The MS in µg/L shall	μg/L μg/L V vary wi l not excee ll not exce ll not exce	5.0 equation th total har ed: exp.(0.0 ed: exp.(0.0 eed: exp.(0	Tox on Tox dness an 6200[ln(t 9422[ln().9422[ln	436 equat d are calc otal hardr total hard (total hard	872 ion equation ulated using the ness mg/L)]-0.5 ness mg/L)]-1.4 dness mg/L)]-0.	Tox Tox following 70) 64) 7703)
 64.17 64.18 64.19 64.20 64.21 64.22 64.23 	Cobalt, total Copper, total The CS, MS, and FA equations: The CS in µg/L shall The MS in µg/L shall The FAV in µg/L shall	μg/L μg/L V vary wi l not excee ll not exce all not exce atural antil	5.0 equation th total har ed: exp.(0.0 ed: exp.(0 eed: exp.(0 logarithm (Tox on Tox rdness an 6200[ln(t 9422[ln().9422[ln (base e) o	436 equat d are calc otal hardr total hard (total hard of the expr	872 ion equation ulated using the ness mg/L)]-0.5 ness mg/L)]-1.4 dness mg/L)]-0. ression in paren	Tox Tox following 70) 664) 7703) thesis.

	07/25/17		REV	/ISOR	CKN	//EP	AR4237
65.1	TH in mg/L	50	100	200	300 4	00	
65.2							
65.3	Copper, total						
65.4	CS µg/L	6.4	9.8	15	19 2	3	
65.5	MS µg/L	9.2	18	34	50 6	5	
65.6	FAV µg/L	18	35	68	100 1	31	
65.7 65.8 65.9 65.10 65.11	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
65.12	Cyanide, free	µg/L	5.2	Tox	22	45	Tox
65.13	DDT (c)	ng/L	1.7	HH	550*	1,100*	Tox
65.14	1,2-Dichloroethane (c)	μg/L	190	HH	45,050*	90,100*	* Tox
65.15	Dieldrin (c)	ng/L	0.026	HH	1,300*	2,500*	Tox
65.16 65.17	Di-2-ethylhexyl phthalate (c)	μg/L	2.1	HH	*	*	NA
65.18	Di-n-octyl phthalate	μg/L	30	Tox	825	1,650	Tox
65.19	Endosulfan	μg/L	0.031	HH	0.28	0.56	Tox
65.20	Endrin	μg/L	0.016	HH	0.090	0.18	Tox
65.21 65.22	Escherichia (E.) coli	See below	See below	HH	See below	See below	NA
65.23 65.24	Not to exceed 126 org five samples represen	-			-		

- 65.25than ten percent of all samples taken during any calendar month individually exceed65.261,260 organisms per 100 milliliters. The standard applies only between April 1 and
- 65.27 October 31.

65.28	Ethylbenzene	μg/L	68	Tox	1,859	3,717	Tox
	2				/		

07/25/17		REVISO	CKM/EP			AR42					
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	E	AV	Basis for M FAV				
Eutrophication standards for	or Class 2B	lakes, sha	llow lak	tes, and r	eservo	irs.					
Lakes, Shallow Lakes, and	Reservoirs	in Northe	rn Lake	s and For	rest Ec	oregio	ns				
Phosphorus, total	µg/L	30	NA		-	-	NA				
Chlorophyll-a	µg/L	9	NA		-	-	NA				
Secchi disk transparency	meters	Not less than 2.0	NA		-	-	NA				
Lakes and Reservoirs in North Central Hardwood Forest Ecoregion											
Phosphorus, total	µg/L	40	NA		-	-	NA				
Chlorophyll-a	μg/L	14	NA		-	-	NA				
Secchi disk transparency	meters	Not less than 1.4	NA		-	-	NA				
Lakes and Reservoirs in We	stern Corn	Belt Plains	and No	rthern Gl	aciated	Plains	Ecoregi				
Phosphorus, total	µg/L	65	NA		-	-	NA				
Chlorophyll-a	μg/L	22	NA		-	-	NA				
Secchi disk transparency	meters	Not less than 0.9	NA		-	-	NA				
Shallow Lakes in North Ce	entral Hardy	wood Fore	st Ecore	gion							
Phosphorus, total	μg/L	60		NA			NA				
Chlorophyll-a	μg/L	20		NA			NA				
Secchi disk transparency	meters	Not than		NA			NA				

66.27 Shallow Lakes in Western Corn Belt Plains and Northern Glaciated Plains Ecoregions

	07/25/17			VISOR	СК	M/EP	AR4237				
67.1	Phosphorus, total	μg/L		90	NA			NA			
67.2	Chlorophyll-a	μg/L	, -	30	NA			NA			
67.3 67.4	Secchi disk transparency	meters		Not less than 0.7	NA			NA			
67.5	Additional narrative eutrophication standards for Class 2B lakes, shallow lakes, and reservoirs										
67.6	are found in subpart 4a.										
67.7 67.8 67.9 67.10 67.11	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FA	V	Basis for MS, FAV			
67.12	Eutrophication standards fo	r Class 2B	rivers	and streams							
67.13	North River Nutrient Regio	on									
67.14	Phosphorus, total			μg/L	less than or equal to 50						
67.15	Chlorophyll-a (seston)			μg/L	less than or equal to 7						
67.16	Diel dissolved oxygen flux			mg/L	less than or equal to 3.0						
67.17	Biochemical oxygen demar	nd (BOD_5)		mg/L	less than or equal to 1.5						
67.18	Central River Nutrient Reg	ion									
67.19	Phosphorus, total			μg/L	less than or equal to 100						
67.20	Chlorophyll-a (seston)			μg/L	les	s than c	or equ	al to 18			
67.21	Diel dissolved oxygen flux			mg/L	les	s than c	or equ	al to 3.5			
67.22	Biochemical oxygen demar	nd (BOD ₅)		mg/L	les	less than or equal to 2.0					
67.23	South River Nutrient Regio	n									
67.24	Phosphorus, total			μg/L	les	s than o	or equ	al to 150			
67.25	Chlorophyll-a (seston)			μg/L	les	s than o	or equ	al to 40			

	07/25/17	REVISOR	CKM/EP	AR4237				
68.1	Diel dissolved oxygen flux	mg/L	less than or equal t	to 5.0				
68.2	Biochemical oxygen demand (BOD ₅)	mg/L	less than or equal t	to 3.5				
68.3	Site-specific standards for specified rive	er reaches or other wa	aters are:					
68.4 68.5	Mississippi River Navigational Pool 1 (Ford Dam in St. Paul)	river miles 854.1 to	847.7 reach from Frie	dley to				
68.6	Phosphorus, total	µg/L	less than or equal t	to 100				
68.7	Chlorophyll-a (seston)	μg/L	less than or equal t	to 35				
68.8 68.9	Mississippi River Navigational Pool 2 (to Hastings Dam)	river miles 847.7 to 3	815.2 reach from For	rd Dam				
68.10	Phosphorus, total	μg/L	less than or equal t	to 125				
68.11	Chlorophyll-a (seston)	μg/L	less than or equal t	to 35				
68.12 68.13	Mississippi River Navigational Pool 3 (river miles 815.2 to 796.9 reach from Hastings Dam to Red Wing Dam)							
68.14	Phosphorus, total	μg/L	less than or equal t	to 100				
68.15	Chlorophyll-a (seston)	μg/L	less than or equal t	to 35				
68.16 68.17 68.18	Mississippi River Navigational Pool 4 (river miles 796.9 to 752.8 reach from Red Wing Dam to Alma Dam). Lake Pepin occupies majority of Pool 4 and Lake Pepin site-specific standards are used for this pool.							
68.19 68.20	Mississippi River Navigational Pools 5 to 8 (river miles 752.8 to 679.1 Alma Dam to Genoa Dam)							
68.21	Phosphorus, total	μg/L	less than or equal t	to 100				
68.22	Chlorophyll-a (seston)	µg/L	less than or equal t	to 35				
68.23	Lake Pepin							
68.24	Phosphorus, total	μg/L	less than or equal t	to 100				
68.25	Chlorophyll-a (seston)	μg/L	less than or equal t	to 28				

07/25/17	REVIS	REVISOR CKM			AR4237			
Crow Wing River from confluence of Long Prairie River to the mouth of the Crow Wing River at the Mississippi River								
Phosphorus, total			μg/L	less th	an or equa	l to 75		
Chlorophyll-a (seston)			μg/L	less tł	less than or equal to 13			
Diel dissolved oxygen flux	х		mg/L	less th	less than or equal to 3.5			
Biochemical oxygen dema	and (BOD	0 ₅)	mg/L	less th	an or equa	l to 1.7		
Crow River from the conf he Crow River to the mou						h Fork of		
Phosphorus, total			μg/L	less th	nan or equa	l to 125		
Chlorophyll-a (seston)		μg/L	less tł	less than or equal to 27				
Diel dissolved oxygen flux		mg/L	less tł	less than or equal to 4.0				
Biochemical oxygen dema	0 ₅)	mg/L	less th	less than or equal to 2.5				
Additional narrative eutrop subpart 4b.	phication	standards fo	or Class 2	B rivers and	l streams ai	re found in		
Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV		
Fluoranthene	μg/L	1.9	Tox	3.5	6.9	Tox		
Heptachlor (c)	ng/L	0.39	HH	260*	520*	Tox		
Heptachlor epoxide (c)	ng/L	0.48	HH	270*	530*	Tox		
Hexachlorobenzene (c)	ng/L	0.24	HH	*	*	Tox		
Lead, total	μg/L	equation	Tox	equation	equation	Tox		
The CS, MS, and FAV	vary wit	h total hardı	ness and a	are calculate	d using the	f - 11 in -		

69.27 The CS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-4.705)

	07/25/17			REVISOR				CKM/EP		AR4237	
70.1	The MS in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-1.460)										
70.2	The FAV in μ g/L shall not exceed: exp.(1.273[ln(total hardness mg/L)]-0.7643)										
70.3	Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.										
70.4 70.5	For hardness values standard.	For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.									
70.6	Example of total lead	Example of total lead standards for five total hardness values:									
70.7	TH in mg/L	50	1	.00	200		300	400			
70.8 70.9	Lead, total										
70.10	CS µg/L	1.3	3	8.2	7.7		13	19			
70.11	MS µg/L	34	8	32	197		331	477			
70.12	FAV µg/L	68	1	.64	396		663	956			
	~ -										
 70.13 70.14 70.15 70.16 70.17 	Substance, Characteristic, or Pollutant (Class 2B)	τ	Units	CS	f	Basis Tor CS	MS		FAV	Basis for MS, FAV	
70.14 70.15	Characteristic, or Pollutant		U nits µg/L	CS 0.036	f	or			FAV 8.8*	for MS,	
 70.14 70.15 70.16 70.17 70.18 70.19 	Characteristic, or Pollutant (Class 2B) Lindane (c) (Hexachlorocyclobenzen				f	or CS	4.4*			for MS, FAV	
 70.14 70.15 70.16 70.17 70.18 70.19 70.20 	Characteristic, or Pollutant (Class 2B) Lindane (c) (Hexachlorocyclobenzen gamma-)		μg/L	0.036	f	for CS HH	4.4* 2,400		8.8*	for MS, FAV Tox	
 70.14 70.15 70.16 70.17 70.18 70.19 70.20 70.21 70.22 	Characteristic, or Pollutant (Class 2B) Lindane (c) (Hexachlorocyclobenzen gamma-) Mercury, total in water Mercury, total		μg/L ng/L mg/kg	0.036	f	for CS НН НН	4.4* 2,400 NA	*	8.8* 4,900*	for MS, FAV Tox Tox	
 70.14 70.15 70.16 70.17 70.18 70.19 70.20 70.21 70.22 70.23 70.24 	Characteristic, or Pollutant (Class 2B) Lindane (c) (Hexachlorocyclobenzen gamma-) Mercury, total in water Mercury, total in edible fish tissue Methylene chloride (c)		μg/L ng/L mg/kg ppm	0.036 6.9 0.2	f	or CS HH HH HH	4.4* 2,400 NA 13,87	*	8.8* 4,900* NA	for MS, FAV Tox Tox NA	
 70.14 70.15 70.16 70.17 70.18 70.19 70.20 70.21 70.22 70.23 70.24 70.25 	Characteristic, or Pollutant (Class 2B) Lindane (c) (Hexachlorocyclobenzen gamma-) Mercury, total in water Mercury, total in edible fish tissue Methylene chloride (c) (Dichloromethane)		μg/L ng/L mg/kg ppm μg/L	0.036 6.9 0.2 1,940	f	оr CS HH HH HH	4.4* 2,400 NA 13,87 271	*	8.8* 4,900* NA 27,749	for MS, FAV Tox Tox NA Tox	

	07/25/17		RE	VISOR	C	KM/EP	AR4237			
71.1 71.2	The CS, MS, and Fa	AV vary wit	h total ha	urdness an	d are calcu	lated using th	e following			
71.3	The CS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+1.1645)									
71.4	The MS in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/L)]+3.3612)									
71.5	The FAV in μ g/L shall not exceed: exp.(0.846[ln(total hardness mg/l)]+4.0543)									
71.6	Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.									
71.7 71.8	For hardness values greater than 400 mg/L, 400 mg/L shall be used to calculate the standard.									
71.9	Example of total ni	ckel standa	ds for fiv	e total ha	rdness val	ues:				
71.10	TH in mg/L	50	100	200	300	400				
71.11										
71.12	Nickel, total									
71.13	CS µg/L	88	158	283	399	509				
71.14	MS µg/L	789	1,418	2,549	3,592	4,582				
71.15	FAV µg/L	1,578	2,836	5,098	7,185	9,164				
71.16 71.17	Substance, Characteristic,			Basi	s		Basis			
71.17	or Pollutant			for			for MS,			
71.19	(Class 2B)	Units	CS	CS	MS	FAV	FAV			
71.20										
71.21	Oil	µg/l	500	NA	5,000	10,000	NA			
71.22 71.23	Oxygen, dissolved	mg/I	See below	NA			NA			

71.245.0 mg/L as a daily minimum. This dissolved oxygen standard may be modified on a71.25site-specific basis according to part 7050.0220, subpart 7, except that no site-specific71.26standard shall be less than 5 mg/L as a daily average and 4 mg/L as a daily minimum.71.27Compliance with this standard is required 50 percent of the days at which the flow of71.28the receiving water is equal to the $7Q_{10}$. This standard applies to all Class 2B waters71.29except for:

	07/25/17		REVI	SOR	CKM/E	ΕP	AR4237			
72.1	(1) those portion	(1) those portions of the Mississippi River from the outlet of the Metro Wastewater								
72.2	Treatment Work	Treatment Works in Saint Paul (River Mile 835) to Lock and Dam No. 2 at Hastings								
72.3	(River Mile 815). For this reach of the Mississippi River, the standard is not less									
72.4	than 5 mg/L as	than 5 mg/L as a daily average from April 1 through November 30, and not less								
72.5	than 4 mg/L at	than 4 mg/L at other times; and								
72 ((2) the partian of	f the Minn	acota Divar	from the	outlat of the D	Dha Laka wa	atomator			
72.6		(2) the portion of the Minnesota River from the outlet of the Blue Lake wastewater $(D_{1}^{2}, \dots, D_{n}^{2})$								
72.7	treatment works (River Mile 21) to the mouth at Fort Snelling. For the specified reach of the Minnesota River, the standard is not less than 5 mg/L as a daily average									
72.8			er, me stand			g/L as a daily	average			
72.9	year round.									
72.10	Parathion	μg/L	0.013	Tox	0.07	0.13	Tox			
72.11	Pentachlorophenol	μg/L	equation	Tox/H	H equation	equation	Tox			
72.12	The CS, MS, and FA	V vary wit	h pH and a	re calculat	ted using the	following ed	quations:			
72.13 72.14	For waters with pH health-based standar	-		95, the CS	shall not exc	ceed the hum	nan			
72.15 72.16	For waters with pH toxicity-based stand				μg/L shall no	ot exceed the	;			
72.17	The MS in µg/L sha	The MS in μ g/L shall not exceed: exp.(1.005[pH]-4.830)								
72.18	The FAV in µg/L sha	all not exce	ed: exp.(1.	005[pH]-4	4.1373)					
72.19	Where: exp. is the natural antilogarithm (base e) of the expression in parenthesis.									
72.20	For pH values less th	an 6.0, 6.0	shall be use	ed to calcu	late the stand	ard and for p	H values			
72.21	greater than 9.0, 9.0	shall be us	ed to calcu	late the sta	andard.					
72.22	Example of pentachlorophenol standards for five pH values:									
72.23	pH su	6.5	7.0	7.5 8	8.0 8.5					
72.24										
72.25	Pentachlorophenol									
72.26	CS µg/L	3.5	5.5	5.5 5	5.5 5.5					

0)7/25/17		RE	VISC	OR		CKM/I	EP	AR4237
8.1	MS µg/L	5.5	9.1	15		25	41		
3.2	FAV µg/L	11	18	30		50	82		
3.4 3.5	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS		Basis for CS	1	MS	FAV	Basis for MS, FAV
-	pH, minimum	su	6.5		NA				NA
3.9	pH, maximum	su	9.0		NA				NA
B.10	Phenanthrene	μg/L	3.6		Tox		32	64	Tox
.11	Phenol	μg/L	123		Tox		2,214	4,428	Tox
	Polychlorinated biphenyls, total (c)	ng/L	0.029		ΗH		1,000*	2,000*	Tox
14] 15	Radioactive materials	NA	See below		NA		See below	See below	NA
16 17	Not to exceed the low environment as perm			-			-		
18	Selenium, total	μg/L	5.0		Tox		20	40	Tox
9	Silver, total	μg/L	1.0		Tox		equation	equation	n Tox
0 1	The MS and FAV van equations:	ry with tot	al hardne	ess a	nd are	cal	culated usi	ng the foll	owing
2	The MS in μ g/L shall	l not exce	ed: exp.(1	1.72	0[ln(to	tal	hardness n	ng/L)]-7.2	156)
3	The FAV in μ g/L sha	ll not exce	eed: exp.((1.72	20[ln(to	otal	hardness	mg/L)]-6.5	520
ļ	Where: exp. is the na	tural antil	ogarithm	(ba	se e) o	f th	e expressio	on in parer	thesis.
	For hardness values g standard.	greater tha	ın 400 mş	g/L,	400 m	g/L	shall be u	sed to calc	sulate the
	Example of total silv	er standar	ds for fiv	e tot	al harc	dne	ss values:		

	07/25/17		RE	VISOR	C	CKM/EP	AR4237
74.1	TH in mg/L	50	100	200	300	400	
74.2							
74.3	Silver, total						
74.4	CS µg/L	1.0	1.0	1.0	1.0	1.0	
74.5	MS µg/L	1.0	2.0	6.7	13	22	
74.6	FAV µg/L	1.2	4.1	13	27	44	
74.7 74.8 74.9 74.10 74.11	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	s MS	FAV	Basis for MS, FAV
74.11 74.12 74.13	Temperature	°F	See below	NA			NA

5°F above natural in streams and 3°F above natural in lakes, based on monthly average
of the maximum daily temperatures, except in no case shall it exceed the daily average
temperature of 86°F.

74.17	1,1,2,2-Tetrachloroethane (c)	µg/L	13	HH	1,127	2,253	Tox
74.18	Tetrachloroethylene (c)	µg/L	8.9	HH	428	857	Tox
74.19	Thallium, total	µg/L	0.56	HH	64	128	Tox
74.20	Toluene	µg/L	253	Tox	1,352	2,703	Tox
74.21	Toxaphene (c)	ng/L	1.3	HH	730*	1,500*	Tox
74.22	1,1,1-Trichloroethane	µg/L	329	Tox	2,957	5,913	Tox
74.23	1,1,2-Trichloroethylene (c)	µg/L	120	HH	6,988	13,976	Tox
74.24	2,4,6-Trichlorophenol	μg/L	2.0	HH	102	203	Tox
74.25	Total suspended solids (TSS)						
74.26	North River Nutrient Region	mg/L	15	NA			NA
74.27	Central River Nutrient Region	mg/L	30	NA			NA
74.28	South River Nutrient Region	mg/L	65	NA			NA

	07/25/17		REVIS	OR	CKM/	EP	AR4237
75.1 75.2	Red River mainstem - headwaters to border	mg/L	100	NA			NA
75.3 75.4 75.5 75.6 75.7 75.8 75.9 75.10	TSS standards for the Class 2B North, Central, and Sout River Nutrient Regions and the Red River mainstem ma be exceeded for no more tha ten percent of the time. This standard applies April 1 through September 30	th y nn					
75.11 75.12	Total suspended solids (TSS summer average	5),					
75.13 75.14	Lower Mississippi River mainstem - Pools 2 through	4 mg/L	32	NA			NA
75.15 75.16	Lower Mississippi River mainstem below Lake Pepir	n mg/L	30	NA			NA
75.17 75.18 75.19 75.20 75.21 75.22	TSS standards for the Class 2B Lower Mississippi River may be exceeded for no more than 50 percent of the time. This standard applies June 1 through September 30	r re					
75.23 75.24 75.25 75.26 75.27	Substance, Characteristic, or Pollutant (Class 2B)	Units	CS	Basis for CS	MS	FAV	Basis for MS, FAV
75.28	Vinyl chloride (c)	μg/L	9.2	HH	*	*	NA
75.29	Xylene, total m,p,o	μg/L	166	Tox	1,407	2,814	Tox
75.30	Zinc, total	μg/L	equation	Tox	equation	equation	n Tox
75.31 75.32	The CS, MS, and FAV vequations:	vary with	ı total hardı	ness and a	are calculate	ed using the	e following
75.00	The CS in ug/L shall no	t avaaa	1. arm (0.01)	72[1m(+++	albordnass	$m_{\alpha}/(I) = 0$	7615)

The CS in μ g/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.7615)

	07/25/17		R	EVISOR		CKM/EP	AR4237
76.1	The MS in µg/L s	The MS in µg/L shall not exceed: exp.(0.8473[ln(total hardness mg/L)]+0.8604)					
76.2	The FAV in µg/L	shall not ex	ceed: exp	.(0.8473[]	ln(total ha	rdness mg/L)]+1.5536)
76.3	Where: exp. is the	e natural an	tilogarithi	n (base e)	of the exp	pression in p	arenthesis.
76.4 76.5	For hardness valu standard.	es greater t	han 400 n	ng/L, 400	mg/L sha	ll be used to	calculate the
76.6	Example of total z	zinc standa	rds for fiv	e total har	dness val	ues:	
76.7	TH in mg/L	50	100	200	300	400	
76.8							
76.9	Zinc, total						
76.10	CS µg/L	59	106	191	269	343	
76.11	MS µg/L	65	117	211	297	379	
76.12	FAV µg/L	130	234	421	594	758	
76.13		[For tex	t of subps	4a and 4l	o, see M.F	R.]	
76.14	Subp. 4c. Benefic	cial use def	finitions f	or <u>lotic</u> w	arm or co	ool water str	eam and river
76.15	<u>aquatic life and</u> habit	ats (Class	2B).				
76.16	A. Subitems	(1) to (4) (<u>5)</u> apply t	o the bene	eficial uses	s in items B	to D:
76.17	(1) The	designatior	and attain	nment of b	eneficial	uses are base	d on the criteria
76.18	in subpart 4d.						
76.19	(2) The	attributes c	of species	compositi	on, divers	ity, and func	tional
76.20	organization are measu	ured using:					
76.21	(a)	the fish-ba	sed_fish II	BI as defir	ned in Dev	velopment of	a Fish-based
76.22	Index of Biological Int	tegrity for l	Minnesota	's Rivers	and Stream	ns, Minneso	ta Pollution
76.23	Control Agency (2014)	Fish Data	Collection	Protocols	for Lotic	Waters in Mi	nnesota (2017);
76.24	or						

	07/25/17	REVISOR	CKM/EP	AR4237
77.1	(b) the macroinve	ertebrate IBI as defin	ed in Development of	a
77.2	Macroinvertebrate-based Index of B	iological Integrity for	r Minnesota's Rivers ar	1d Streams,
77.3	Minnesota Pollution Control Agency	y (2014) Macroinver	tebrate Data Collection	n Protocols
77.4	for Lotic Waters in Minnesota (2017	<u>/)</u> .		
77.5	(3) Water body types	for streams and river	s are defined in the do	cuments
77.6	referenced in subitem (2).			
77.7	(4) The following docu	uments are incorporat	ed by reference and are	not subject
77.8	to frequent change:			
77.9	(a) Calibration of	f the Biological Conc	lition Gradient for Stre	eams of
77.10	Minnesota, Gerritsen et al. (2012). T	The document is avai	lable on the agency's V	Veb site at
77.11	www.pca.state.mn.us/regulations/mi	nnesota-rulemaking;	,	
77.12	(b) Development	of a Fish-based Inde	ex of Biological Integri	i ty for
77.13	Minnesota's Rivers and Streams, Mi	nnesota Pollution Co	mtrol Agency (2014) I	Fish Data
77.14	Collection Protocols for Lotic Water	rs in Minnesota, Min	nesota Pollution Contr	ol Agency
77.15	(2017). The document is available of	n the agency's Web s	site at	
77.16	www.pca.state.mn.us/regulations/mi	nnesota-rulemaking;)	
77.17	(c) Development	of a Macroinvertebr	ate-based Index of Bio	logical
77.18	Integrity for Minnesota's Rivers and	Streams, Minnesota	Pollution Control Age	ncy (2014)
77.19	Macroinvertebrate Data Collection I	Protocols for Lotic W	aters in Minnesota, M	innesota
77.20	Pollution Control Agency (2017).	he document is avail	able on the agency's W	leb site at
77.21	www.pca.state.mn.us/regulations/mi	nnesota-rulemaking;	and	
77.22	(d) Development	of Biological Criter	ia for Tiered Aquatic L	life Uses,
77.23	Minnesota Pollution Control Agency	y (2016). The docum	ent is available on the	agency's
77.24	Web site at www.pca.state.mn.us/reg	gulations/minnesota-	rulemaking.	

07/25/17

REVISOR CKM/EP

AR4237

78.1	(5) The beneficial use subclass designators "e," "g," and "m" are added to
78.2	the Class 2B designator as specific additional designators. The additional subclass designators
78.3	do not replace the Class 2B designator. All requirements for Class 2B warm or cool water
78.4	stream and river habitats in parts 7050.0222 and 7052.0100 continue to apply in addition
78.5	to requirements for Class 2Be, Class 2Bg, or Class 2Bm warm or cool water stream and
78.6	river habitats in part 7050.0222. These subclass designators are applied to lotic waters only.

B. "Exceptional cool and warm water aquatic life and habitat" or "Class 2Be" is
a beneficial use that means waters capable of supporting and maintaining an exceptional
and balanced, integrated, adaptive community of warm or cool water aquatic organisms
having a species composition, diversity, and functional organization comparable to the 75th
percentile of biological condition gradient level 3 as established in Calibration of the
Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

C. "General cool and warm water aquatic life and habitat" or "Class 2Bg" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 4 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

D. "Modified cool and warm water aquatic life and habitat" or "Class 2Bm" is a beneficial use that means waters capable of supporting and maintaining a balanced, integrated, adaptive community of warm or cool water aquatic organisms having a species composition, diversity, and functional organization comparable to the median of biological condition gradient level 5 as established in Calibration of the Biological Condition Gradient for Streams of Minnesota, Gerritsen et al. (2012).

(1) To meet the definition in this item, waters must have been the subject of
a use attainability analysis and must have been found to be incapable of supporting and

7050.0222

	07/25/17	REVISOR	CKM/EP	AR4237
79.1	maintaining where it is determined th	at attainment of the	class 2Bg beneficia	al use <u>is not</u>
79.2	feasible because of human-induced m	nodifications of the	physical habitat that	preclude the
79.3	potential for recovery of the fauna. The	ese modifications m	ust be the result of di	rect alteration
79.4	to the channel, such as drainageway r	maintenance, bank s	stabilization, and imp	poundments.
79.5	(2) Examples of Class	2Bm waters are the	stream channel mod	dification
79.6	activities regulated under:			
79.7	(a) sections 401 ar	nd 404 of the Clean	Water Act; or	

79.8 (b) Minnesota Statutes, chapter 103E.

79.9 Subp. 4d. Biological criteria for lotic warm or cool water stream and river aquatic 79.10 life and habitats (Class 2B).

79.11	Water Body Type	Tier	Class	Assemblage	Biocriterion
79.12					
79.13	Southern rivers	Exceptional	2Be	Fish	71
79.14		General	2Bg	Fish	49
79.15	Southern streams	Exceptional	2Be	Fish	66
79.16		General	2Bg	Fish	50
79.17		Modified	2Bm	Fish	35
79.18	Southern headwaters	Exceptional	2Be	Fish	74
79.19		General	2Bg	Fish	55
79.20		Modified	2Bm	Fish	33
79.21	Northern rivers	Exceptional	2Be	Fish	67
79.22		General	2Bg	Fish	38
79.23	Northern streams	Exceptional	2Be	Fish	61
79.24		General	2Bg	Fish	47
79.25		Modified	2Bm	Fish	35
79.26	Northern headwaters	Exceptional	2Be	Fish	68

	07/25/17		REVISOR	CKM/EP	AR4237
80.1		General	2Bg	Fish	42
80.2		Modified	2Bm	Fish	23
80.3	Low gradient	Exceptional	2Be	Fish	70
80.4		General	2Bg	Fish	42
80.5		Modified	2Bm	Fish	15
80.6	Northern forest rivers	Exceptional	2Be	Macroinvertebrates	77
80.7		General	2Bg	Macroinvertebrates	49
80.8 80.9	Prairie and southern forest rivers	Exceptional	2Be	Macroinvertebrates	63
80.10		General	2Bg	Macroinvertebrates	31
80.11 80.12	High-gradient northern forest streams	Exceptional	2Be	Macroinvertebrates	82
80.13		General	2Bg	Macroinvertebrates	53
80.14 80.15	Low-gradient northern forest streams	Exceptional	2Be	Macroinvertebrates	76
80.16		General	2Bg	Macroinvertebrates	51
80.17		Modified	2Bm	Macroinvertebrates	37
80.18 80.19	High-gradient southern streams	Exceptional	2Be	Macroinvertebrates	62
80.20		General	2Bg	Macroinvertebrates	37
80.21		Modified	2Bm	Macroinvertebrates	24
80.22 80.23	Low-gradient southern forest streams	Exceptional	2Be	Macroinvertebrates	66
80.24		General	2Bg	Macroinvertebrates	43
80.25		Modified	2Bm	Macroinvertebrates	30
80.26 80.27	Low-gradient prairie streams	Exceptional	2Be	Macroinvertebrates	69
80.28		General	2Bg	Macroinvertebrates	41
80.29		Modified	2Bm	Macroinvertebrates	22

	07/25/17	REVISOR	CKM/EP	AR4237		
81.1	The biological criteria for lotic war	m or cool water aquatic lif	fe and habitats (Class	2B) are		
81.2	applicable to perennial and intermit	ttent waters that allow for	colonization of fish o	<u>or</u>		
81.3	macroinvertebrates.					
81.4	Subp. 5. [See repealer.]					
81.5	[For tex	t of subps 6 to 9, see M.R	.]			
81.6 81.7	7050.0227 SPECIFIC WATER OF THE STATE; LIMITED RES	QUALITY STANDARDS SOURCE VALUE WATE		ATERS		
81.8	[For	text of subp 1, see M.R.]				
81.9	Subp. 2. Class 7 waters; limit	ed resource value waters.	The quality of Class	7 waters		
81.10	of the state shall be such as to prote	ect aesthetic qualities, seco	ondary body contact u	ise, and		
81.11	groundwater for use as a potable water supply. Standards for substances, characteristics, or					
81.12	pollutants given below shall not be	exceeded in the waters:				
81.13 81.14	Substance, Characteristic, or Pollutant	Class 7 Standard				
 81.15 81.16 81.17 81.18 81.19 81.20 81.21 	Escherichia (E.) coli	Not to exceed 630 organi geometric mean of not le representative of condition nor shall more than ten p during any calendar mon organisms per 100 millili only between May 1 and	ss than five samples ns within any calendar ercent of all samples th individually exceed ters. The standard ap	r month, taken d 1,260		
81.22 81.23	Oxygen, dissolved	The level of dissolved ox concentrations:	ygen must be mainta	ined at		
81.24 81.25		i. that will avoid odors or receiving water;	putrid conditions in	the		
81.26		ii. at not less than 1 mg/L	(daily average); and	L		
81.27		iii. above 0 mg/L at all ti	mes.			
81.28	pH, minimum value	6.0				

	07/25/17	REVISOR	CKM/EP	AR4237
82.1	pH, maximum value	9.0		
82.2 82.3	Toxic pollutants	Toxic pollutants shall or concentrations that		-
82.4	7050.0430 UNLISTED WATER	RS.		
82.5	Subpart 1. Statewide surface	e waters. Except as pro	vided in subparts 2	and 3, all
82.6	surface waters of the state that are	not listed in part 7050.0	470 and that are not	wetlands as
82.7	defined in part 7050.0186, subpart	a la, are hereby classifie	d as Class 2Bg_2B , 3	3C, 4A, 4B,
82.8	5, and 6 waters. Unlisted lotic wate	rs are also assigned the b	eneficial use subclas	ss designator
82.9	"g" to the Class 2B designator.			
82.10	Subp. 2. Boundary Waters	Canoe Area Wildernes	s.	
82.11	A. All streams in the Bo	undary Waters Canoe A	rea Wilderness [11/5	5/84P] not
82.12	listed in part 7050.0470 are classif	ied as Class 1B, 2Bdg,	3B.	
82.13	B. All lakes in the Bound	lary Waters Canoe Area	Wilderness [11/5/84	P] not listed
82.14	in part 7050.0470 are classified as	Class 1B, 2Bd, 3B.		
82.15	C. All wetlands in the B	oundary Waters Canoe	Area Wilderness [11]	/5/84P] are
82.16	classified as Class 2D.			
82.17	Subp. 3. Voyageurs Nationa	l Park.		
82.18	A. All streams in Voyage	ours National Park [11/5/	[84P] not listed in par	rt 7050.0470
82.19	are classified as Class 2Bg, 3B.			
82.20	B. All lakes in Voyageur	s National Park [11/5/8	4P] not listed in part	7050.0470
82.21	are classified as Class 2B, 3B.			
82.22	C. All wetlands in Voyag	geurs National Park [11/	^{(5/84P]} are classified	l as Class
82.23	2D.			

07/25/17

CKM/EP

83.1 7050.0460 WATERS SPECIFICALLY CLASSIFIED; EXPLANATION OF 83.2 LISTINGS IN PART 7050.0470.

Subpart 1. Explanation of listings. The waters of the state listed in part 7050.0470 83.3 are classified as specified. The location of lakes, wetlands, calcareous fens, and scientific 83.4 and natural areas are described by township, range, and section. Specific stream stretches 83.5 are described by township, range, and section; stream confluence; geographic coordinates; 83.6 road crossing; some other recognizable landmark; or a combination of these descriptors. 83.7 Streams and rivers are listed by the eight-digit hydrologic unit code (HUC) of the major 83.8 watersheds in part 7050.0469 in which the streams and rivers are located. The tables that 83.9 specify the applicable beneficial uses for the stream and river reaches are incorporated by 83.10 reference in part 7050.0470. Any community listed in part 7050.0470 is the community 83.11 nearest the water classified, and is included solely to assist in identifying the water. Most 83.12 waters of the state are not specifically listed in part 7050.0470. See parts 7050.0425 and 83.13 7050.0430 for the classifications of waters not listed. 83.14

83.15

[For text of subps 2 and 3, see M.R.]

CKM/EP

84.1 **7050.0469 MAP: MINNESOTA'S MAJOR WATERSHEDS.**

Major Watersheds in Minnesota

84.2 7050.0470 CLASSIFICATIONS FOR SURFACE WATERS IN MAJOR DRAINAGE 84.3 BASINS.

Subpart 1. Lake Superior Basin. The water use classifications for the stream reaches
within each of the major watersheds in the Lake Superior Basin listed in item A are found
in tables entitled "Beneficial Use Designations for Stream Reaches" published on the Web
site of the Minnesota Pollution Control Agency at

CKM/EP

85.1	www.pca.state.mn.us/regulations/minnesota-rulemaking. The tables are incorporated by
85.2	reference and are not subject to frequent change. The date after each watershed listed in
85.3	item A is the publication date of the applicable table. The water use classifications for the
85.4	other listed waters in the Lake Superior Basin are as identified in items B to D. See parts
85.5	7050.0425 and 7050.0430 for the classifications of waters not listed. Designated use
85.6	information for water bodies can also be accessed through the agency's Environmental Data
85.7	Access (http://www.pca.state.mn.us/quick-links/eda-surface-water-data).
85.8	A. Streams (by eight-digit hydrologic unit code):
85.9	(1) 04010101 Lake Superior - North (August 9, 2016);
85.10	(2) 04010102 Lake Superior - South (August 9, 2016);
85.11	(3) 04010201 St. Louis River (August 9, 2016);
85.12	(4) 04010202 Cloquet River (August 9, 2016); and
85.13	(5) 04010301 Nemadji River (August 9, 2016).
85.14	B. Lakes:
85.15	[For text of subitems (1) to (151), see M.R.]
85.16	(152) White Pine Lake, 16-0369-00, [WR] (T.61, R.3W, S.19, 20, 29, 30):
85.17	2B, 3B; and
85.18	(153) *Winchell Lake, 16-0354-00, [11/5/84P] (T.64, R.2, 3): 1B, 2A, 3B.
85.19	[For text of items C and D, see M.R.]
85.20	Subp. 2. Lake of the Woods Basin. The water use classifications for the stream
85.21	reaches within each of the major watersheds in the Lake of the Woods Basin listed in item
85.22	A are found in tables entitled "Beneficial Use Designations for Stream Reaches" published
85.23	on the Web site of the Minnesota Pollution Control Agency at

CKM/EP

86.1	www.pca.state.mn.us/regulations/minnesota-rulemaking. The tables are incorporated by
86.2	reference and are not subject to frequent change. The date after each watershed listed in
86.3	item A is the publication date of the applicable table. The water use classifications for the
86.4	other listed waters in the Lake of the Woods Basin are as identified in items B to D. See
86.5	parts 7050.0425 and 7050.0430 for the classifications of waters not listed. Designated use
86.6	information for water bodies can also be accessed through the agency's Environmental Data
86.7	Access (http://www.pca.state.mn.us/quick-links/eda-surface-water-data).
86.8	A. Streams (by eight-digit hydrologic unit code):
86.9	(1) 09030001 Rainy River - Headwaters (August 9, 2016);
86.10	(2) 09030002 Vermilion River (August 9, 2016);
86.11	(3) 09030003 Rainy River - Rainy Lake (August 9, 2016);
86.12	(4) 09030005 Little Fork River (August 9, 2016);
86.13	(5) 09030006 Big Fork River (August 9, 2016);
86.14	(6) 09030007 Rapid River (August 9, 2016);
86.15	(7) 09030008 Rainy River - Lower (August 9, 2016); and
86.16	(8) 09030009 Lake of the Woods (August 9, 2016).
86.17	B. Lakes:
86.18	[For text of subitems (1) to (182), see M.R.]
86.19	(183) *Wisini Lake, 38-0361-00, [11/5/84P] (T.64, R.7): 1B, 2A, 3B; and
86.20	(184) Woods, Lake of the, 39-0002-00, (see Lake of the Woods).
86.21	[For text of items C and D, see M.R.]

87.1	Subp. 3. Red River of the North Basin. The water use classifications for the stream
87.2	reaches within each of the major watersheds in the Red River of the North Basin listed in
87.3	item A are found in tables entitled "Beneficial Use Designations for Stream Reaches"
87.4	published on the Web site of the Minnesota Pollution Control Agency at
87.5	www.pca.state.mn.us/regulations/minnesota-rulemaking. The tables are incorporated by
87.6	reference and are not subject to frequent change. The date after each watershed listed in
87.7	item A is the publication date of the applicable table. The water use classifications for the
87.8	other listed waters in the Red River of the North Basin are as identified in items B to D.
87.9	See parts 7050.0425 and 7050.0430 for the classifications of waters not listed. Designated
87.10	use information for water bodies can also be accessed through the agency's Environmental
87.11	Data Access (http://www.pca.state.mn.us/quick-links/eda-surface-water-data).
87.12	A. Streams (by eight-digit hydrologic unit code):
87.13	(1) 09020101 Bois de Sioux River (August 9, 2016);
87.14	(2) 09020102 Mustinka River (August 9, 2016);
87.15	(3) 09020103 Otter Tail River (August 9, 2016);
87.16	(4) 09020104 Upper Red River of the North (August 9, 2016);
87.17	(5) 09020106 Buffalo River (August 9, 2016);
87.18	(6) 09020107 Red River of the North - Marsh River (August 9, 2016);
87.19	(7) 09020108 Wild Rice River (August 9, 2016);
87.20	(8) 09020301 Red River of the North - Sandhill River (August 9, 2016);
87.21	(9) 09020302 Upper/Lower Red Lake (August 9, 2016);
87.22	(10) 09020303 Red Lake River (August 9, 2016);
87.23	(11) 09020304 Thief River (August 9, 2016);

	07/25/17 REVISOR	CKM/EP	AR4237						
88.1	(12) 09020305 Clearwater River (Aug	gust 9, 2016);							
88.2	(13) 09020306 Red River of the North	h - Grand Marais Creek (Augu	st 9,						
88.3	2016);								
88.4	(14) 09020309 Snake River (August 9	Э, 2016);							
88.5	(15) 09020311 Red River of the North	(15) 09020311 Red River of the North - Tamarac River (August 9, 2016);							
88.6	(16) 09020312 Two Rivers (August 9	, 2016); and							
88.7	(17) 09020314 Roseau River (August	t 9, 2016).							
88.8	[For text of items B to D	, see M.R.]							
88.9	Subp. 4. Upper Mississippi River Basin (hea	dwaters to the confluence wit	th the						
88.10	St. Croix River). The water use classifications for	the stream reaches within each	of the						
88.11	major watersheds in the Upper Mississippi River Basin	n from the headwaters to the con	nfluence						
88.12	with the St. Croix River listed in item A are found in	n tables entitled "Beneficial Us	e						
88.13	Designations for Stream Reaches" published on the	Web site of the Minnesota Poll	lution						
88.14	Control Agency at www.pca.state.mn.us/regulations/	/minnesota-rulemaking. The ta	bles are						
88.15	incorporated by reference and are not subject to freq	juent change. The date after ea	ch						
88.16	watershed listed in item A is the publication date of	the applicable table. The water	r use						
88.17	classifications for the other listed waters in the Uppe	er Mississippi River Basin fron	n the						
88.18	headwaters to the confluence with the St. Croix Rive	er are as identified in items B to	D. See						
88.19	parts 7050.0425 and 7050.0430 for the classification	ns of waters not listed. Designa	ited use						
88.20	information for water bodies can also be accessed thr	rough the agency's Environmen	tal Data						
88.21	Access (http://www.pca.state.mn.us/quick-links/eda	-surface-water-data).							

- 88.22

A. Streams (by eight-digit hydrologic unit code):

(1) 07010101 Mississippi River - Headwaters (August 9, 2016); 88.23

(2) 07010102 Leech Lake River (August 9, 2016); 88.24

	07/25/17		REVISOR	CKM/EP	AR4237				
89.1		(3) 07010103 Mississippi	River - Grand Rapid	s (August 9, 2016);					
89.2		(4) 07010104 Mississippi	River - Brainerd (Au	igust 9, 2016);					
89.3	(5) 07010105 Pine River (August 9, 2016);								
89.4		(6) 07010106 Crow Wing	g River (August 9, 20	16);					
89.5		(7) 07010107 Redeye Riv	ver (August 9, 2016);						
89.6		(8) 07010108 Long Prairi	ie River (August 9, 20)16);					
89.7		(9) 07010201 Mississippi	River - Sartell (Augu	ıst 9, 2016);					
89.8		(10) 07010202 Sauk Rive	er (August 9, 2016);						
89.9		(11) 07010203 Mississipp	oi River - St. Cloud (A	August 9, 2016);					
89.10		(12) 07010204 North For	k Crow River (Augus	t 9, 2016);					
89.11	(13) 07010205 South Fork Crow River (August 9, 2016);								
89.12		(14) 07010206 Mississip	oi River - Twin Cities	(August 9, 2016); a	nd				
89.13		(15) 07010207 Rum Rive	er (August 9, 2016).						
89.14			tems B to D, see M.R	.]					
		_			1				
89.15		. Minnesota River Basin.							
89.16		of the major watersheds in th							
89.17	in tables ent	itled "Beneficial Use Design	nations for Stream Re	aches" published on	the Web				
89.18	site of the M	Innesota Pollution Control	Agency at						
89.19	www.pca.sta	ate.mn.us/regulations/minne	sota-rulemaking. The	tables are incorpora	ted by				
89.20	reference an	d are not subject to frequent	t change. The date aft	er each watershed lis	sted in				
89.21	item A is the	e publication date of the app	licable table. The wa	ter use classification	s for the				
89.22	other listed w	waters in the Minnesota Riv	er Basin are as identif	ied in items B to D.	See parts				
89.23	7050.0425 a	nd 7050.0430 for the classic	fications of waters no	t listed. Designated u	ise				

	07/25/17	REVISOR	CKM/EP	AR4237
90.1	information for water bodies can also be ac	cessed through the a	agency's Environme	ntal Data
90.2	Access (http://www.pca.state.mn.us/quick	-links/eda-surface-v	water-data).	
90.3	A. Streams (by eight-digit hydro	logic unit code):		
90.4	(1) 07020001 Minnesota Ri	ver - Headwaters (A	August 9, 2016);	
90.5	(2) 07020002 Pomme de Te	erre River (August 9), 2016);	
90.6	(3) 07020003 Lac qui Parle	River (August 9, 20	016);	
90.7	(4) 07020004 Minnesota Ri	ver - Yellow Medic	ine River (August 9	, 2016);
90.8	(5) 07020005 Chippewa Riv	ver (August 9, 2016);	
90.9	(6) 07020006 Redwood Riv	ver (August 9, 2016));	
90.10	(7) 07020007 Minnesota Ri	ver - Mankato (Aug	gust 9, 2016);	
90.11	(8) 07020008 Cottonwood I	River (August 9, 20	16);	
90.12	(9) 07020009 Blue Earth Ri	ver (August 9, 2010	6);	
90.13	(10) 07020010 Watonwan F	River (August 9, 201	16);	
90.14	(11) 07020011 Le Sueur Riv	ver (August 9, 2016); and	
90.15	(12) 07020012 Lower Minn	esota River (Augus	st 9, 2016).	
90.16	[For text of iter	ms B to D, see M.R	.]	
90.17	Subp. 6. Saint Croix River Basin. T	he water use classifi	cations for the stream	n reaches
90.18	within each of the major watersheds in the	Saint Croix River	Basin listed in item	A are
90.19	found in tables entitled "Beneficial Use De	signations for Strea	m Reaches" publishe	ed on the
90.20	Web site of the Minnesota Pollution Contr	ol Agency at		
90.21	www.pca.state.mn.us/regulations/minneso	ta-rulemaking. The	tables are incorpora	ted by
90.22	reference and are not subject to frequent c	hange. The date afte	er each watershed lis	sted in

	07/25/17	REVISOR	CKM/EP	AR4237
91.1	item A is the publication date of the appl	icable table. The wa	ter use classifications	s for the
91.2	other listed waters in the Saint Croix Rive	er Basin are as identif	fied in items B to D. S	See parts
91.3	7050.0425 and 7050.0430 for the classifi	ications of waters no	t listed. Designated u	ise
91.4	information for water bodies can also be a	accessed through the	agency's Environmer	ntal Data
91.5	Access (http://www.pca.state.mn.us/quic	k-links/eda-surface-v	water-data).	
91.6	A. Streams (by eight-digit hydr	rologic unit code):		
91.7	(1) 07030001 Upper St. C.	roix River (August 9	, 2016);	
91.8	(2) 07030003 Kettle River	: (August 9, 2016);		
91.9	(3) 07030004 Snake River	: (August 9, 2016); a	nd	
91.10	(4) 07030005 Lower St. C	roix River (August 9	9, 2016).	
91.11	[For text of it	ems B to D, see M.R]	
91.12	Subp. 7. Lower Mississippi River	Basin (from the cor	ufluence with the St	. Croix
91.13	River to the Iowa border). The water u	use classifications for	the stream reaches	within
91.14	each of the major watersheds in the Low	er Mississippi River	Basin from the confl	uence
91.15	with the Saint Croix River to the Iowa bo	order listed in item A	are found in tables	entitled
91.16	"Beneficial Use Designations for Stream	Reaches" published	on the Web site of th	ne
91.17	Minnesota Pollution Control Agency at			
91.18	www.pca.state.mn.us/regulations/minnes	sota-rulemaking. The	tables are incorpora	ted by
91.19	reference and are not subject to frequent	change. The date aft	er each watershed lis	sted in
91.20	item A is the publication date of the appl	icable table. The way	ter use classifications	s for the
91.21	other listed waters in the Lower Mississi	ppi River Basin from	the confluence with	the St.
91.22	Croix River to the Iowa border are as ide	entified in items B to	D. See parts 7050.04	425 and
91.23	7050.0430 for the classifications of water	rs not listed. Designa	ted use information f	or water
91.24	bodies can also be accessed through the a	agency's Environmer	ntal Data Access	

91.25 (http://www.pca.state.mn.us/quick-links/eda-surface-water-data).

	07/25/17	REVISOR	CKM/EP	AR4237
92.1	A. Streams (by eight-digit hyd	drologic unit code):		
92.2	(1) 07040001 Mississipp	i River - Lake Pepin	(August 9, 2016);	
92.3	(2) 07040002 Cannon Ri	ver (August 9, 2016));	
92.4	(3) 07040003 Mississipp	i River - Winona (A	1gust 9, 2016);	
92.5	(4) 07040004 Zumbro Ri	ver (August 9, 2016);	
92.6	(5) 07040006 Mississipp	i River - La Crescen	t (August 9, 2016);	
92.7	(6) 07040008 Root River	· (August 9, 2016);		
92.8	(7) 07060001 Mississipp	i River - Reno (Aug	ust 9, 2016); and	
92.9	(8) 07060002 Upper Iow	a River (August 9, 2	016).	
92.10	[For text of	items B to D, see M.	R.]	
92.11	Subp. 8. Cedar-Des Moines River	s Basin. The water u	se classifications for t	he stream
92.12	reaches within each of the major waters	heds in the Cedar-D	es Moines Rivers Ba	sin listed
92.13	in item A are found in tables entitled "E	Beneficial Use Desig	nations for Stream Re	eaches"
92.14	published on the Web site of the Minner	sota Pollution Contro	ol Agency at	
92.15	www.pca.state.mn.us/regulations/minne	esota-rulemaking. Th	e tables are incorporation	ated by
92.16	reference and are not subject to frequen	t change. The date a	fter each watershed li	isted in
92.17	item A is the publication date of the app	blicable table. The w	ater use classificatior	ns for the
92.18	other listed waters in the Cedar-Des Mo	ines Rivers Basin ar	e as identified in item	ns B to D.
92.19	See parts 7050.0425 and 7050.0430 for	the classifications o	f waters not listed. D	esignated
92.20	use information for water bodies can also	so be accessed throug	gh the agency's Envir	onmental
92.21	Data Access (http://www.pca.state.mn.u	ıs/quick-links/eda-su	ırface-water-data).	
92.22	A. Streams (by eight-digit hyd	drologic unit code):		
92.23	(1) 07080102 Upper Wap	osipinicon River (Au	gust 9, 2016);	

	07/25/17	REVISOR	CKM/EP	AR4237				
93.1	(2) 07080201 Cedar Rive	er (August 9, 201	6);					
93.2	(3) 07080202 Shell Rock River (August 9, 2016);							
93.3	(4) 07080203 Winnebago	o River (August 9	, 2016);					
93.4	(5) 07100001 Des Moine	es River - Headwa	aters (August 9, 2016));				
93.5	(6) 07100002 Lower Des	s Moines River (A	August 9, 2016); and					
93.6	(7) 07100003 East Fork	Des Moines Rive	r (August 9, 2016).					
93.7	[For text of	items B to D, see	M.R.]					
93.8	Subp. 9. Missouri River Basin.	The water use clas	ssifications for the str	eam reaches				
93.9	within each of the major watersheds in	the Missouri Rive	er Basin listed in item	A are found				
93.10								
93.11	site of the Minnesota Pollution Control	Agency at						
93.12	www.pca.state.mn.us/regulations/minne	esota-rulemaking	The tables are incorp	porated by				
93.13	reference and are not subject to frequen	t change. The dat	e after each watershe	d listed in				
93.14	item A is the publication date of the app	plicable table. The	e water use classificat	tions for the				
93.15	other listed waters in the Missouri Rive	r Basin are as ide	ntified in items B to I	D. See parts				
93.16	7050.0425 and 7050.0430 for the classi	ifications of water	rs not listed. Designat	ed use				
93.17	information for water bodies can also be	e accessed through	the agency's Environ	mental Data				
93.18	Access (http://www.pca.state.mn.us/qui	ick-links/eda-surf	ace-water-data).					
93.19	A. Streams (by eight-digit hy	drologic unit cod	e):					
93.20	(1) 10170202 Upper Big	Sioux River (Au	gust 9, 2016);					
93.21	(2) 10170203 Lower Big	Sioux River (Au	gust 9, 2016);					

- 93.22 (3) 10170204 Rock River (August 9, 2016); and
- 93.23 (4) 10230003 Little Sioux River (August 9, 2016).

7050.0470

	07/25/17			REVISC	PR	CKM/F	EP	AR4237	
94.1	[For text of items B to D, see M.R.]								
94.2	7052.0100 WATER QUALITY STANDARDS.								
94.3			[For text o	f subps 1 to	o 4, see M	.R.]			
94.4	Subp. 5. Water	[.] quali	ty standar	ds applica	ble to Cla	ss 2B and	2D water	'S.	
94.5 94.6 94.7 94.8 94.9 94.10	Substance	Units	Aquatic Life Chronic Standard	Aquatic Life Maximum Standard	Aquatic Life Final Acute Value	Human Health Chronic Standard	Wildlife Chronic Standard	Applicable Chronic Standard	
94.11	Arsenic, total	ug/l	148	340	680	53†		53	
94.12	Benzene	ug/l	114†	4487†	8974†	237		114	
94.13 94.14	Cadmium, total (TH)	ug/l	subp 6	subp 6	subp 6			subp 6	
94.15	Chlordane	pg/l				225		225	
94.16	Chlorobenzene	ug/l	10†	423†	846†	2916		10	
94.17 94.18	Chromium III, total (TH)	ug/l	subp 6	subp 6	subp 6			subp 6	
94.19	Chromium VI, total	ug/l	11	16	32			11	
94.20	Copper, total (TH)	ug/l	subp 6	subp 6	subp 6			subp 6	
94.21	Cyanide, free	ug/l	5.2	22	44	30240		5.2	
94.22	DDT	pg/l				142	11	11	
94.23	Dieldrin	pg/l	56000	240000	480000	6.5		6.5	
94.24	2,4-Dimethylphenol	ug/l	21	137	274	7182		21	

	07/25/17			REVISO	٤	CKM/EP		AR4237
95.1	2,4-Dinitrophenol	ug/l	71	379	758	1982		71
95.2	Endrin	ug/l	0.036	0.086	0.17	0.016†		0.016
95.3	Hexachlorobenzene	e pg/l				419		419
95.4	Hexachloroethane	ug/l				6.2		6.2
95.5	Lindane	ug/l		0.95	1.9	0.46		0.46
95.6	Mercury, total	ug/l	0.91	1.7	3.4	0.00153	0.0013	0.0013
95.7	Methylene Chloride	e ug/l	1561†	9600†	19200†	1994		1561
95.8	Nickel, total (TH)	ug/l	subp 6	subp 6	subp 6			subp 6
95.9	Parathion	ug/l	0.013	0.065	0.13			.013
95.10	PCBs (class)	pg/l				25.2	122	25.2
95.11 95.12	Pentachlorophenol (pH)	ug/l	subp 6	subp 6	subp 6	5.5†		subp 6
95.13	Selenium, total	ug/l	5.0	20†	40†			5.0
95.14	2,3,7,8-TCDD	pg/l				0.0080	0.0031	0.0031
95.15	Toluene	ug/l	253†	1352†	2703†	45679		253
95.16	Toxaphene	pg/l				62		62
95.17	Trichloroethylene	ug/l				330		330
95.18	Zinc, total (TH)	ug/l	subp 6	subp 6	subp 6			subp 6
95.19	†this standard or FA	V was	derived und	er chapter '	7050.			
95.20	Subp. 6. Wate	r quali	ty standard	ls that vary	y with wa	ter quality	characte	ristics.

95.21 [For text of items A and B, see M.R.]

	07/25/17 REVISOR			CKM/EP			AR4237			
96.1	C. Standards that vary with pH applicable to Class 2B and 2D waters in the Lake									
96.2	Superior Basin are listed in this subpart. Exp. is the base e exponential function.									
96.3			Ex	kample	standa	rds at p	H of:			
96.4	Pentachlorophenol	Formula, results in ug/l	6.5	7.0	7.5	8.0	8.5			
96.5										
96.6 96.7	Chronic standard	exp.(1.005[pH]-5.134) not to exceed 5.5 ug/l	4.0	5.5	5.5	5.5	5.5			
96.8	Maximum standard	exp.(1.005[pH]-4.869)	5.3	8.7	14	24	39			
96.9	Final acute value	exp.(1.005[pH]-4.175)	11	17	29	48	79			
96.10 96.11		ODOLOGIES FOR DEVELOP BIOACCUMULATION FACTO		GOF S	TAND	ARDS	AND			
96.12		[For text of subps 1 and 2,	see M.	R.]						
96.13	Subp. 3. Bioac	cumulation factors. Bioaccumu	lation f	actors ((BAFs)	for cal	culating			
96.14	human health and w	ildlife standards were developed a	nd BAI	Fs for ca	alculati	ng crite	eria must			
96.15	be developed using	the methodology provided by Coo	de of Fe	ederal F	Regulat	ions, ti	tle 40,			
96.16	part 132, Appendix	B, entitled "Great Lakes Water Qu	uality N	/lethodo	ology f	or Deri	ving			
96.17	Bioaccumulation Fa	ctors," as amended through Marc	h 12, 19	997, wł	nich is	adopted	l and			
96.18	incorporated by refe	rence in part 7052.0015, item B, ex	xcept th	hat for h	uman l	nealth s	tandards			
96.19	and criteria, the base	eline BAF is multiplied by the foll	lowing	lipid fr	actions	which	apply to			
96.20	fish in both trophic	levels 3 (TL ₃) and 4 (TL ₄), except	as note	ed in ite	em C:					
96.21		[For text of items A and B,	see M.	R.]						
96.22	C. 0.015 f	for TL_4 and 0.020 for TL_3 for Class	s 2B, 2	Bd, and	d 2D w	aters.				
96.23		[For text of subps 4 and 5,	see M.I	R.]						
96.24	REPEALER. Mini	nesota Rules, part 7050.0222, sub	part 5,	is repea	aled.					