Prioritizing Agricultural Nonpoint Source Management Areas through the use of LiDAR and GIS

Watershed Professionals Network
April 25th, 2013

Stephanie Johnson, Ph.D., P.E.
Zach Hermann, PE
Light Detection and Ranging (LiDAR)

- Highly accurate elevation data (within ~15 cm)
- Allows us to make extremely accurate digital elevation models (DEM)
- Useful in looking at how water moves over the landscape
- Becoming more widely available
LiDAR Derived DEM
Cell Size: 1 meter sq
Vertical Error: 15 cm
1.5 million points / sq mile

USGS Standard DEM
Cell Size: 30 meter sq
1600 points / sq mile

1 Varies based on project specifications
2 http://edc.usgs.gov/guides/dem.html
Tim Loesch, MNDNR
Terrain Analysis: Approach

- DEM Reconditioning
- Non-Contributing Analysis
- Hydrologically Reconditioned DEM
 - Stream Power Index
 - RUSLE Spatial Analysis
 - Watershed Ranking

Adjust raw LiDAR data to remove inaccuracies and show how water moves over landscape
Removing ‘Digital Dams’
Impacts of Reconditioning

![Map showing waterway and culvert location](image_url)
Impacts of Reconditioning

Point of Interest
Impacts of Reconditioning

13.5 Acre Watershed

Culvert not accounted for
Impacts of Reconditioning

6.6 Sq. Mile Watershed
Terrain Analysis: Approach

DEM Reconditioning

Non-Contributing Analysis

Hydrologically Reconditioned DEM

Stream Power Index

RUSLE Spatial Analysis

Watershed Ranking

Accounting for areas of landscape that do not contribute to flow during certain events (e.g., 10-year, 24-hour storm)
Contributing vs. Non-Contributing Areas

Drainage area under 100-year event
Terrain Analysis: Approach

DEM Reconditioning

Non-Contributing Analysis

Hydrologically Reconditioned DEM

Stream Power Index

RUSLE Spatial Analysis

Watershed Ranking

Very accurate representation of how water moves over landscape (field scale; under certain hydrologic event)
Hydrologically Reconditioned DEM

Yellow - Field Scale Catchment

Green - Field Scale Pour Point
Terrain Analysis: Approach

- DEM Reconditioning
- Non-Contributing Analysis
- Hydrologically Reconditioned DEM
 - Stream Power Index
 - RUSLE Spatial Analysis
- Watershed Ranking
Stream Power Index (SPI)

Measurement of potential energy of water as it flows over bare ground

\[SPI = \ln[(\text{flow accumulation}) \times (\text{slope})] \]

- Amount of water expected
- Slope of flow path

Purpose: Identify locations with high potential for gully erosion

Photo credit: http://www.flickr.com/photos/soilscience
SPI Example
Revised Universal Soil Loss Equation (RUSLE)

- Developed by USDA
- Estimate soil erosion from fields due to raindrop impact and surface runoff

Where,
- R = Rainfall and Runoff Factor
- K = Soil Erodibility Factor
- LS = Length-Slope Factor
- C = Cover and Management Factor
- P = Support Practice Factor

Photo credit: http://www.flickr.com/photos/soilscience
RUSLE Inputs

Assume P Factor = 1
Results:
Averaged Across Subwatersheds

Subwatersheds with Most Erosive Flows

Subwatersheds with Most Erodible Landscape
Combined Results

Reported at the Subwatershed Scale

Mean Score
- High: 0.87
- Low: 0.093

Ranked Flowpaths
- Extremely Low
- Low
- Moderate
- High

Reported by Flowpath
Contact info:
Stephanie Johnson, Ph.D., P.E.
sjohnson@houstoneng.com
763.493.4522

Thank you.

Questions?