Sweeney Lake Total Phosphorus TMDL

FINAL

Prepared for

Bassett Creek Watershed Management Commission

Minnesota Pollution Control Agency

June 21, 2011

Multidisciplined. Single Source. Trusted Solutions.

Sweeney Lake Total Phosphorus TMDL - FINAL

Prepared for

Bassett Creek Watershed Management Commission

Minnesota Pollution Control Agency

June 21, 2011

Funding for Phase 1 of this project was provided by the Minnesota Pollution Control Agency from the Section 319 NonPoint Source Management Fund of the Federal Water Pollution Control Act, 33 USC 1329, CFDA66.460

Funding for Phase 2 of this project was provided by the Minnesota Pollution Control Agency from the State of Minnesota, Clean Water Legacy Act Funds.

Prepared By:

Short Elliott Hendrickson Inc. 3535 Vadnais Center Drive St. Paul, MN 55110-5196 Ph. 651.490.2000 SEH Project: A-BCWMC070100 **Barr Engineering Company** 4700 West 77th Street Minneapolis, MN 55435-4803 Ph. 952.832.2600 Barr Project: 23/27-051

TMDL Summary

This Total Maximum Daily Load (TMDL) study addresses a nutrient impairment in Sweeney Lake (Lake ID 27-0035-01). The goal of this TMDL is to quantify the pollutant reductions needed to meet State water quality standards for nutrients and allocate total maximum daily loads for the identified loading sources and load categories.

Sweeney Lake is a 67 acre water body located in the City of Golden Valley, Hennepin County, Minnesota, in the Bassett Creek watershed. Sweeney Lake is a recreational water body with an active fishery and provides other aesthetic values as well. The drainage area to the lake is approximately 2340 acres of almost fully developed urban land. The drainage area is split between the cities of Golden Valley and St. Louis Park. Sweeney Lake has a natural outlet that discharges from the northeast end portion of the lake into the Bassett Creek system. Water quality is noted as Non-supporting (NS) for Aquatic Recreation Use Support on the MPCA's Lake Water Quality Assessment website.

Wasteload and Load Allocations to meet State standards indicate that a combination of external load reductions (wasteload) and internal load reductions (load) of 15 percent external and 55 percent internal would be needed to meet State water quality standards. An evaluation of external (wasteload) reductions was completed and indicated that a 70 percent reduction be required to consistently meet standards under average precipitation conditions if only watershed-based (external) practices were implemented. A combined approach to internal load management and reduction of phosphorus from throughout the watershed by retrofitting Best Management Practices (BMPs) and improving management activities would have the most impact on reducing phosphorus load and improving water quality in Sweeney Lake.

An important aspect of this TMDL study was to better understand the contribution that aeration has on the internal loading to Sweeney Lake. Except for the two years of monitoring under this study in 2007 and 2008, the lake had been aerated since the early 1970's. Based on the 2007-2008 monitoring, the data are not sufficient to conclude if the aeration system is increasing the internal loading to the lake or not. The water quality was better in 2007 and 2008, but insufficient data is available to conclude what portion relates to reduced watershed load from the lower than normal precipitation and what portion relates to reduced internal loading from stratification of the lake

and trapping phosphorus in the bottom layer. The dissolved oxygen levels in the surface water (roughly the top 3 to 4 meters) of the lake in 2007 and 2008 were adequate to fully support fish, with levels in 2008 ranging from 16 mg/L in the spring to 8 mg/L in the fall. In either case, the recommended action is to conduct future years of monitoring with the aeration system off to see how the lake responds to a normal year of precipitation. Continued winter aeration is not a concern and likely is a good long-term management strategy for the lake.

The table on the following pages provides a summary of the key elements of this TMDL and the corresponding page(s) where more detailed discussion is provided within the report.

EPA/MPCA Required Elements	Summary			TMDL Page #
Location	City of Golden Valley in Hennepin County, Minnesota in the Upper Mississippi River Basin. Sweeney Lake is within the North Central Hardwood Forest (NCHF) Ecoregion.			2
303(d) Listing Information	Sweeney 27-0035-0 Sweeney Lake was added excess nutrient concentra recreation, as set forth in was targeted to start in 20	list in 2004 due to mpaired aquatic 50.0150. This TMDL pleted by 2010.	1	
Applicable Water Quality Standards/ Numeric Targets	Criteria set forth in Minn 7050.0222. For the NCH total phosphorus concer a chlorophyll-a concentr disk transparency of nor	13 - 15		
Loading Capacity (expressed as daily load)	The loading capacity is th critical condition. The cri summer growing season. Table 6.4. <u>Total Maximum Daily L</u> Sweeney Lake	37		
Wasteload Allocation	Portion of the loading cap future point sources.	to existing and	31 - 37	
	Source	Permit #	WLA (lbs/day)	
	Permitted Stormwater MN (MS4) R 040000 4.66		37	
	Permitted Stormwater (Industrial) None 0			37
	Permitted Stormwater MN (Construction) R 100001 Included in MS4			37
	Reserve Capacity (and related discussion in report)	32		

TMDL Summary Table

EPA/MPCA Required Elements	Summary		TMDL Page #
Load Allocation	The portion of the loading capacity allocated to existing and future non-permitted sources and to natural sources.		37
	Source	Load Allocation (lbs/day)	
	Atmospheric Load	0.07	37
	Internal Load	1.17	37
Margin of Safety	The margin of safety (MOS) computations using five perce the 40 ug/L criteria. A summ ug/L was the target. The MO due to the conservative assur worst case loading year 2004	32	
Seasonal Variation	Seasonal variation is account on the summer critical period severity of nuisance algal gro critical period is the summer sensitive to short term chang	33	
Reasonable Assurance	Reasonable assurance is prov of the Bassett Creek Watersh (BCWMC), a joint powers o responsibility to protect and water resources in the Basset lake is located, and by the m In addition, the entire contrib regulated under the NPDES General NPDES MS4 Permi Stormwater Pollution Preven months following adoption o meet the TMDL waste load a proceeding in a good faith ef parties on how to implement	49	
Monitoring	The BCWMC periodically m continue to do so through the Monitoring the in-lake condi conditions is recommended t aeration on internal loading.	49 - 50	

TMDL Summary Table

EPA/MPCA Required Elements	Summary	TMDL Page #
Implementation	This TMDL sets forth an implementation framework and general load reduction strategies that will be expanded and refined through the development of an Implementation Plan. The implementation program will follow an adaptive management approach towards implementing the most cost effective and ecologically sound means of achieving the in- lake water quality goals.	40 – 48
Public Participation	The project involved two formal public meetings at Golden Valley City Hall. One public meeting took place at the start of the project in March 2007 and one following the second year of data collection and initial modeling work on June 3, 2009. Several written project updates and periodic meetings were also held with the BCWMC. A resident meeting was held in 2008 to discuss first-year monitoring results; a Technical Team (including permitted MS4s) meeting was held on April 23, 2009, and a project webpage was created and updated on a regular basis at <u>www.sehinc.com/online/sweeney/</u> . The webpage maintains information on all public information	38 – 39
	 meetings and contact information for the project team members. Comments received: Some preliminary comments were received during Public Meeting #2 relating to the implementation strategy and potential load reduction Best Management Practices (BMPs). Residents requested that two additional BMPs be added to the possible improvements list: Schaper Pond dredging and an inflow chemical treatment system. These were added to the implementation framework. 	

TMDL Summary Table

TMDL Summary

Table of Contents

		P	age
1.0	Intro	oduction	1
	1.1	Purpose	1
	1.2	Problem Statement	1
2.0	Wat	ershed and Lake Characteristics	2
	2.1	Watershed Characteristics	2
		2.1.1 Climate and Precipitation	7
		2.1.2 Land Use	7
		2.1.3 Soils	7
	2.2	Lake Characteristics	7
		2.2.1 Recreational Uses	9
		2.2.2 Aquatic Life	9
		2.2.3 Aquatic Habitat	.10
		2.2.4 Aeration System	.11
	2.3	Historical Water Quality Data	.11
3.0	Wat	er Quality Standards	.15
	3.1	Impaired Waters	.15
	3.2	Water Quality Standards And Endpoints	.15
	3.3	Endpoint Used For This TMDL	.15
	3.4	Natural Background Loads	.16
4.0	Sou	rce Assessments	.18
	4.1	Permitted Sources	.18
		4.1.1 Wastewater	.18
		4.1.2 Stormwater	.18
	4.2	Non-Permitted Sources	.19
		4.2.1 Atmospheric Deposition	.19
		4.2.2 Groundwater Contributions	.20
		4.2.3 Internal Phosphorus Loading	.20
5.0	Loa	ding Analysis	.22
	5.1	Selection of Models and Tools	.22
		5.1.1 Watershed Modeling	.22
		5.1.2 Lake Response Modeling	.23
	5.2	Watershed Loads	.26
	5.3	Internal Loads	.26
		5.3.1 Temperature and Dissolved Oxygen	.26
		5.3.2 Phosphorus	.29
		5.3.3 Chlorophyll-a and Secchi Depth	.32

Table of Contents (Continued)

6.0	TMDL Allocations			
	6.1	Load Allocation Components	34	
		6.1.1 Wasteload Allocations	34	
		6.1.2 Load Allocations	35	
		6.1.3 Margin of Safety	35	
		6.1.4 Reserve Capacity	36	
	6.2	Critical Condition	36	
	6.3	Allocations	36	
7.0	Publ	lic Involvement	41	
8.0	Implementation		43	
	8.1	Implementation Strategy	43	
	8.2	Load Reduction Alternatives	44	
		8.2.1 Loading Reductions	44	
		8.2.2 Internal Loading	45	
		8.2.3 External Loading	47	
	8.3	Implementation Program	48	
9.0	Reas	sonable Assurance	52	
	9.1	Introduction	52	
	9.2	Monitoring	53	
10.0	Liter	ature Cited	54	

List of Appendices

- Appendix A Finite Difference Lake Response Model Summary
- Appendix B BATHTUB Model Summary
- Appendix C ERDC Sediment Core Analysis Report

Table of Contents (Continued)

List of Tables

Table 2.1	Sweeney Lake Drainage Districts	5
Table 3.1.	Numeric Targets for Lakes in the North Central Hardwood	
	Forest Ecoregion	
Table 3.2.	Pre-settlement total phosphorus concentrations based on water	
	quality reconstructions from fossil diatoms	16
Table 4.1.	Permitted MS4 Contribution to Watershed Phosphorus Load	19
Table 6.1.	TP Load in Pounds for Needed to Reach In-Lake TP Standard	
Table 6.2.	TP Load Reductions Needed to Meet Standard	
Table 6.3.	TP Removal of Existing Watershed BMPs	
Table 6.4.	TP Daily Loads for the Major Sources	40
Table 6.5.	TP Daily Loads for the Source Categories	40
Table 8.1.	Load Phosphorus Reductions by Source	
Table 8.2.	Sweeney Lake Management Plan	50-51

List of Figures

Location Map and Monitoring Locations	3
Sweeney Lake Watershed (Modeling Map)	4
Golden Valley 2006 Storm Sewer Base Map	6
Bathymetry and Water Quality Monitoring Locations	8
Macrophyte Survey June 2005	
Historical Water Quality in Sweeney Lake	
TP Calibration for the P8 Model at Schaper Pond	23
TP Lake Model Calibration for 2007	
TP Lake Model Calibration for 2008	
2008 Growing Season Temperature Profile	27
2008 Growing Season Dissolved Oxygen Profile	
2005 Growing Season Dissolved Oxygen Profile	
2008 Total Phosphorus Profile – No Aeration	
2005 Total Phosphorus Profile – Aerated	
2004 Growing Season Modeled versus Monitored TP	
Internal and External TP Loading Comparisons	
Existing BMPs in the Watershed	
	Location Map and Monitoring Locations Sweeney Lake Watershed (Modeling Map) Golden Valley 2006 Storm Sewer Base Map Bathymetry and Water Quality Monitoring Locations Macrophyte Survey June 2005 Historical Water Quality in Sweeney Lake TP Calibration for the P8 Model at Schaper Pond TP Lake Model Calibration for 2007 TP Lake Model Calibration for 2008 2008 Growing Season Temperature Profile 2008 Growing Season Dissolved Oxygen Profile 2005 Growing Season Dissolved Oxygen Profile 2005 Total Phosphorus Profile – No Aeration 2004 Growing Season Modeled versus Monitored TP Internal and External TP Loading Comparisons Existing BMPs in the Watershed

Sweeney Lake Total Phosphorus TMDL

INTRODUCTION

1.0 Introduction

1.1 Purpose

The purpose of this Total Maximum Daily Load (TMDL) study is to quantify the total phosphorus (TP) load reduction required to meet State water quality standards for nutrients in Sweeney Lake (DNR Lake #27-0035-01). In accordance with 303(d) of the Clean Water Act, TMDL studies are required for assessed waters that exceed the State water quality standards.

This TMDL provides waste load allocations (WLAs) and load allocations (LAs) for Sweeney Lake. Based on the current State standard for nutrients, the TMDL establishes a numeric target of $38 \ \mu g/L$ total phosphorus concentration and incorporates a five percent (2 $\mu g/L$) margin of safety to meet the 40 $\mu g/L$ state standard for deep lakes in the North Central Hardwood Forest (NCHF) ecoregion.

1.2 Problem Statement

In 2004, the lake was designated as an "impaired water body" by the Minnesota Pollution Control Agency (MPCA) for total phosphorus for aquatic recreation based upon its water quality history. Sweeney Lake has been subject to fairly extensive previous study including a *Watershed and Lake Management Plan* completed for the Bassett Creek Watershed Management Commission (WMC) (Barr Engineering, 1994) and water quality monitoring dating back to 1972. The quality of the data available through the MPCA's Lake Water Quality Assessment website is listed as excellent and the Lake is noted as Non-supporting (NS) for Aquatic Recreation Use Support. The primary reason for Sweeney being listed as impaired is the monitored total phosphorus levels in the Lake. Data summarized on the MPCA website show that the mean TP concentration is $51 \ \mu g/L$ (as of February 2011). In 2008, the mean TP concentration was listed as $55 \ \mu g/L$. The upper limit for a Partial Support designation for lakes in the North Central Hardwood Forest (NCHF) region is $45 \ \mu g/L$.

Sweeney Lake Total Phosphorus TMDL

WATERSHED AND LAKE CHARACTERISTICS

2.0 Watershed and Lake Characteristics

This section describes the characteristics of the Sweeney Lake watershed and of the Lake itself. Much of this information is taken from the *Sweeney Lake Watershed and Lake Management Plan* prepared by the Bassett Creek Watershed Management Commission (Barr Engineering, January 1994) and the *2008 Lake Water Quality Study: Sweeney Lake and Twin Lake* (Barr Engineering, 2009). A summary of the historic monitoring and results is included, with the more detailed information provided in the reference reports.

2.1 Watershed Characteristics

Sweeney Lake is within the Upper Mississippi River Basin in the Bassett Creek Watershed as shown in the inset in Figure 1. Sweeney Lake is oriented in a north-south direction with two deeper basins, one in each of the north and south ends of the Lake as shown in Figure 1 (see also Figure 4). Surface inflow to the Lake comes from three general areas: direct drainage from the surrounding residential and commercial areas; inflow from the Schaper Pond outlet; and limited inflow from Twin Lake. A peninsula separates Sweeney Lake from Twin Lake with a small connection through a culvert/bridge between the two lakes allowing flow from Twin into Sweeney Lake. During some storm event conditions, Sweeney Lake may flow into Twin Lake. Specific information relating to the conditions under which Sweeney flows into Twin and Twin flows into Sweeney are currently not available.

Sweeney Lake is located in Golden Valley, Minnesota; with contributing watershed areas within the City of Golden Valley and St. Louis Park as illustrated in Figure 2. The contributing watershed area is approximately 2,340 acres, excluding the lake surface area and 91 acres of land-locked area within the southern-most portion of the Spring Pond Drainage District. The landlocked area is generally north of I-394 and in south of County Road 40, just east of Drainage area SL-26. The area routes to a basin in a residential area just northeast of the TH100 and I-394 interchange.

SWEENEY LAKE WATERSHED

The 1994 Sweeney Lake Management Plan defined seven drainage districts which are listed in Table 2.1 below. More detailed descriptions of each area are available in the 1994 Sweeney Lake Management Plan. Five of the districts listed contribute to the Schaper Pond system. Outflow from Sweeney Lake is through a weir structure located in the northeast corner of the Lake. After passing over the outlet weir, outflow enters Bassett Creek through a pipe and channel to the east, ultimately entering the Mississippi River in Minneapolis. Sweeney Lake has six storm sewer outfalls discharging into the lake in addition to the inlet from Schaper Pond. These outfalls are shown on Figure 3, taken from the City of Golden Valley's Storm Sewer Base Map for 2006.

Surface Inflow Point/Area	Drainage District	Area (acres)
Direct	Sweeney Lake Direct	205
Twin Lake Outlet	Twin Lake	75
Schaper Pond	West Breck	1,076
	South Breck	402
	Spring Pond*	112
	Railroad	312
	DNR	158
Total		2.340

Table 2.1 Sweeney Lake Drainage Districts

* Does not include 91 acres of land-locked area within the Spring Pond District.

2006 PMP STORM SEWER BASE MAP

Storm Sewer

- Storm pipes (with size, as-built ID #)
- Catch Basins
- Sump Catch Basins
- Manholes
- Sump Manholes

Sub-Watershed Districts

District Boundaries

Sump Pump Discharge

- ▲ Sump Connection to Sanitary Sewer
- ▲ Sump Connection to Sanitary Sewer
- Legal Discharge (1, 2 or 3 pumps)
- Not Known if Legal or Illegal

Print Date: 07/13/05 Sources: Hennepin County Surveyors Office for Property Lines (2005) and Aerial Photo (2002). City of Golden Valley for all other layers.

2.1.1 Climate and Precipitation

The climate in Minnesota is considered to be a humid continental-type climate which is characterized by large seasonal temperature variance and moderate precipitation typically occurring during the summer season. The average annual precipitation for the area is approximately 30 inches.

2.1.2 Land Use

The Sweeney Lake watershed is almost fully developed, with a mix of residential, commercial, institutional and open space land uses. More detailed descriptions of land uses within each drainage district are available in the *1994 Sweeney Lake Management Plan*. Since the writing of the 1994 Sweeney Lake Management Plan, the most significant change in land use has been the development of the peninsula between Twin and Sweeney Lake with low-density residential land use. For the purposes of this study, the land use within the watershed is not expected to change and, therefore, no reserve capacity is needed or provided for in the TMDL computations.

2.1.3 Soils

Soils in the Sweeney Lake watershed were classified into Hydrologic Soils Group (HSG) to indicate the runoff characteristics of the watershed and of the ability of the land to accommodate infiltration practices that can serve to reduce runoff volumes and loading to a given water body. Soils within the Sweeney Lake watershed range from HSG A to D soils, with much of the watershed being identified in the Soil Survey Manual for Hennepin County as having HSG A and B soils. However, much of the land is highly urbanized and, conditions are highly variable. The experience of City engineering staff and representatives of the Bassett Creek WMC indicates that much of the watershed is underlain by soils with high clay contents. Therefore, soil conditions along with the fully-developed nature of the watershed, result in somewhat limited opportunities for infiltration within the watershed.

2.2 Lake Characteristics

Sweeney Lake has a watershed-to-lake ratio of about 35:1, with a lake surface area of 67 acres. The Lake has a maximum depth of 27 feet and a mean depth of 12 feet. The littoral zone covers roughly 41 acres, which is 61 percent of the basin. The littoral zone is that portion of the lake that is less than 15 feet in depth, and is where the majority of the aquatic plants grow. Bathymetric information for Sweeney Lake is illustrated in Figure 3. Figures 1 and 4 show the in-lake monitoring locations.

2.2.1 Recreational Uses

Sweeney Lake provides water-based recreational opportunities including boating and fishing. There is a boat landing at the north end of the lake in Sweeney Park with a gated access point. The access is open to the public that use boats and canoes that do not need a trailer to launch.

2.2.2 Aquatic Life

Minnesota Department of Natural Resources (DNR) fish survey conducted in 1991 for Sweeney Lake revealed bluegill was the most abundant species, followed by black bullhead and pumpkinseed sunfish. Northern Pike were the most abundant predator species with a few largemouth bass also sampled. While not present in the 1991 survey results, recent reports indicate that some walleye have been caught by local anglers. A fish consumption advisory is currently in effect for all sizes of Largemouth Bass, recommending no more than 1 meal per week.

The fish species collected during the 1991 survey include:

•	Yellow Perch	Yellow Bullhead	White Sucker
•	Smallmouth Buffalo	Pumpkinseed Sunfish	Northern Pike
•	Largemouth Bass	Hybrid Sunfish	Green Sunfish
•	Common Carp	Bluegill	White Crappie
•	Black Crappie	Black Bullhead	

Fish kill was an important consideration during the work plan development for this TMDL study. The artificial aeration system has been operating year around for more than 30 years and the focus of the monitoring was to evaluate the lake during the summer growing season under non-aerated conditions. Several lake residents own, and are responsible for, operation and maintenance of the aerators.

Fish kills occur when dissolved oxygen (DO) levels are so low that fish begin to die from the lack of oxygen. Fish kills commonly occur during the summer or winter. Summer kills are the result of high productivity (algae and macrophyte) that eventually senesce, and are subsequently broken down by bacteria. The breakdown by bacteria demands oxygen, which depletes DO in the water column. These conditions can result in a summer fish kill. Winter fish kills are the result of snow-covered ice that shades out photosynthesis under the ice. These conditions, coupled with a high sediment oxygen demand can deplete the DO under the ice and result in a fish kill. There are no known historical records of fish kills in Sweeney Lake dating back to at least the installation of the original artificial aeration system in about 1973.

Common carp have both direct and indirect effects on aquatic environments. Carp can uproot aquatic macrophytes during feeding and spawning that resuspends bottom sediments and nutrients. These activities can lead to increased nutrients in the water column ultimately resulting in increased nuisance algal blooms. There are carp and other rough fish present in Sweeney Lake and the population as of the 1991 survey was close to average for both numbers and size compared to area lakes. Given the depth and bathymetry of the lake, and the fact that the lake is destratified by aeration, it seems unlikely that carp would significantly enhance the transport of phosphorus from bottom waters to the lake surface.

2.2.3 Aquatic Habitat

The littoral zone is defined as that portion of the lake that is less than 15 feet in depth and is where the majority of the aquatic plants are found. The littoral zone of the lake also provides the essential spawning habitat for most warm water fishes (e.g. bass, walleye, and panfish). Sweeney Lake is approximately 61 percent littoral and should support a healthy aquatic plant community.

Aquatic plants are beneficial to lake ecosystems providing spawning and cover for fish, habitat for macroinvertebrates, refuge for prey, and stabilization of sediments. However, in excess they limit recreation activities such as boating and swimming and reduce aesthetic value. Changes in nutrient loading to lakes can result in changes in the type and density of aquatic plant communities. Some non-native, invasive aquatic plants can lead to special problems in lakes. For example, Eurasian watermilfoil can reduce plant biodiversity in a lake because it grows in great densities and outcompetes all the other plants. Ultimately, this can lead to a shift in the fish community because these high densities favor panfish over larger game fish. Species such as curly-leaf pondweed can cause very specific problems by changing the dynamics of internal phosphorus loading. All in all, there is a delicate balance within the aquatic plant community in any lake ecosystem.

In the 2007 and 2008 monitoring seasons with the aeration system turned off, observations of lake residents indicated some new aquatic plants present that were not observed in the past. These plants were identified as typical vegetation and the presence may be attributed to improved water clarity in 2007 and 2008. The 2008 Lake Water Quality Study: Sweeney Lake and Twin Lake (Barr, 2009) indicates that two undesirable plant species, curlyleaf pondweed and purple loosestrife, have been observed in the lake in 2005 and 2008.

While not part of this TMDL work plan, macrophyte surveys have been conducted on Sweeney Lake. Figure 5 summarizes the results of the June 2005 Macrophyte Survey completed by the Bassett Creek WMC.

2.2.4 Aeration System

Sweeney Lake has had an aeration system installed and operational for more than 30 years. The system began with lake residents installing aeration at a few locations and has expanded over the years to some 18 aerators currently distributed throughout the lake. The intent of the residents in installing the aeration system was to improve the quality of the water in Sweeney Lake by aerating the bottom of the water column and trapping phosphorus in the sediments. The aerators function as diffusers, which pump air to the bottom of the lake, just above the sediment. The system is permitted by the Minnesota Department of Natural Resources (MnDNR) and operates fully during the summer months from about May through October of each year. Winter aeration occurs on a limited basis, typically with three aerators operating from ice-on in the fall to ice-out in the spring.

2.3 Historical Water Quality Data

The water quality of Sweeney Lake has been monitored for a range of parameters dating back to 1972. Since that first monitoring, Sweeney Lake has been monitored in 1977, 1982, 1985, 1992, 1996 and 2000-present. Secchi depth, chlorophyll-a and total phosphorus have been monitored every 4 to 5 years from 1972 through 2005, with greater frequency in recent years due in part to

the work on this Sweeney Lake TMDL. As part of the Sweeney Lake TMDL work plan, more detailed in-lake monitoring was conducted bi-weekly during the 2007 and 2008 growing seasons. This monitoring included collecting temperature, dissolved oxygen, pH and conductivity at roughly one meter increments throughout the lake profile at the two locations shown in Figures 1 and 4. In addition, water samples were taken and analyzed for total phosphorus, soluble reactive phosphorus, total nitrogen and chlorophyll-a at selected depths. Results of this historical monitoring are summarized in Figure 6, and represent average annual values.

• No Macrophytes Found in Water > 9.0' to 10.0'

Macrophyte Densities Estimated as Follows: 1 = light; 2 = moderate; 3 = heavy

Nymphaea tuberosa-**Common Name** Scientific Name Potamogeton natans Potamogeton zosteriformis 1 Submerged Aquatic Plants: Curlyleaf pondweed Potamogeton crispus Ceratophyllum demersum 2-3 Potamogeton crispus 2-3 Floating leaf pondweed Potamogeton natans Potamogeton pusillus 1 Narrowleaf pondweed Potamogeton sp. (narrowleaf) Najas spp. 2-3 Zosterella dubia 1-2 Small pondweed Potamogeton pusillus Potamogeton pectinatus 1 Variable pondweed Potamogeton gramineus Ceratophyllum demersum, 3 Flatstem pondweed Potamogeton zosteriformis Potamogeton crispus 2-3 -Sago pondweed Potamogeton pectinatus Coontail Ceratophyllum demersum Nuphar variegata -Elodea Elodea canadensis Potamogeton natans 1 Muskgrass Chara sp. Potamogeton natans 1 Najas flexilis Bushy pondweed and naiad Potamogeton zosteriformis 1-2 Ceratophyllum demersum 2-3 Bushy pondweed and naiad Najas sp. Potamogeton crispus 1-3 Zosterella dubia Water star grass Potamogeton pusillus 1 Najas sp. 1-3 Zosterella dubia 1 Potamogeton pectinatus 1 Floating Leaf: Spadderdock Nuphar variegata Nuphar variegata Small yellow waterlily Potamogetan natans 1 Nuphar microphyllum White waterlily Nymphaea tuberosa Potamogeton zosteriformis 1 Potamogeton pusillus 2 Ceratophyllum demersum 2-3 Potamogeton crispus 1-3 Nuphar variegata Potamogetan natans 1-2 Nuphar variegata Najas flexilis 1 Emergent: Typha sp. Typha sp. Cattail Potamogeton crispus 2 Potamogeton pectinatus 1 Potamogeton pectinatus 1 Potamogeton pusillus 2 Chara sp. 1 Ceratophyllum demersum 2-3 Najas sp. 1-3 Chara sp. 2-3 Water/Quality Elodea canadensis 1-3 Monitoring Potamogeton pusillus 3 Location Nuphar variegata Potamogeton crispus 1 Zosterella dubia 1 Nuphar variegata -Potamogeton gramineus 1 Potamogeton crispus 1-2 Potamogeton zosteriformis 1 No Aquatic Vegetation Found: Typha sp.-Nuphar variegata Potamogeton zosteriformis 1-2 Ceratophyllum demersum 2-3 Potamogeton crispus 1 Nuphar variegata Potamogeton zosteriformis 1 Nymphaea tuberosa Potamogeton natans 1 (very light density Ceratophyllum demersum 2-3 inside shaded area) Typha sp. Scirpus sp.

Nymphaea tuberosa — Nuphar microphyllum

Parameters monitored and sampled as part of this TMDL work plan are listed on Figure 1. A more detailed description of the parameters sampled for and analyzed is available in the 2008 *Lake Water Quality Study: Sweeney Lake and Twin Lake* (Barr, 2009). The key conclusions in that report include:

- In 2008, Sweeney Lake water quality (32 ug/L summer average concentration) met the state standard of 40 ug/L total phosphorus concentration during the critical summer period.
- As illustrated in Figure 6, Sweeney Lake water quality has improved when compared to 2007 and 2005 with chlorophyll-a and total phosphorus decreasing and Secchi depth increasing. The water quality is the best observed since 1972.

Figure 6. Historical Water Quality in Sweeney Lake

- Phosphorus buildup in the lake's bottom waters during 2008 resulted from internal loading. Because the aeration system was not in operation during 2008, lake mixing did not occur and phosphorus was trapped in the lake's bottom waters during the summer.
- A comparison of 2005 (year with aeration) and 2008 (year with no aeration operation) data indicate that the lake's aeration system causes mixing of the phosphorus from the

lake's bottom waters into the surface waters. These years were chosen for this evaluation because full phosphorus profile data were available.

The impact of aeration on the lake's water quality has been a key point of discussion throughout this TMDL study. While the data for 2007 and 2008 were collected with the aeration system not in operation, the historical data collected and analyzed to date do not provide sufficient basis to conclude if the aeration is reducing the internal load or increasing the internal load. The improved water clarity in these two years may relate to not having the aeration system in operation. However, 2007 and 2008 were lower than average precipitation years and the improved water quality may also be a result of the reduced external loading resulting from the lower precipitation. Additional monitoring of the lake under non-aerated conditions is a key recommendation of the 2008 Water Quality Study and of this TMDL. Additional discussion on this topic is contained in Section 8 of this report.

Sweeney Lake Total Phosphorus TMDL

WATER QUALITY STANDARDS

3.0 Water Quality Standards

3.1 Impaired Waters

The MPCA first included Sweeney Lake on the 303(d) impaired waters list for Minnesota in 2004. The lake is impaired for aquatic recreation by excess nutrients. The MPCA's projected schedule for TMDL completions, as indicated on the 303(d) impaired waters list, implicitly reflects Minnesota's priority ranking of this TMDL. The project was originally scheduled to be started in 2009 and completed in 2012. These dates were modified to 2006 and 2010, respectively, following initiation of the project by the City of Golden Valley and the Bassett Creek Watershed Management Commission (BCWMC).

Ranking criteria for scheduling TMDL projects include, but are not limited to: impairment impacts on public health and aquatic life; public value of the impaired water resource; likelihood of completing the TMDL in an expedient manner, including a strong base of existing data and restorability of the water body; technical capability and willingness locally to assist with the TMDL; and appropriate sequencing of TMDL studies within a watershed or basin.

3.2 Water Quality Standards And Endpoints

Minnesota's standards for nutrients limit the quantity of nutrients which may enter waters. In accordance with Minnesota Rules 7050.0150(5), to evaluate whether a water body is in an impaired condition the MPCA developed "numeric translators" for the narrative standard for purposes of determining which lakes should be included in the section 303(d) list as being impaired for nutrients. The numeric translators established numeric thresholds for phosphorus, chlorophyll-a, and clarity as measured by Secchi depth.

3.3 Endpoint Used For This TMDL

The numeric target used to list this lake was the phosphorus standard for Class 2B waters in the North Central Hardwood Forest ecoregion (40 μ g/L). This TMDL includes a five percent (2 μ g/L)

explicit margin of safety which establishes aTMDL endpoint of 38 μ g/L for the in-lake TP concentration.

One of the two other eutrophication standards must be met: chlorophyll-a and Secchi depth (see Table 3.1). All three of these parameters were assessed in this TMDL to assure that the TMDL will result in compliance with State standards. As shown in Table 3.1 numeric standards for chlorophyll-a and Secchi depth are 14 μ g/L and 1.4 meters, respectively.

Table 3.1. Numeric Targets for Lakes in the North CentralHardwood Forest Ecoregion.

Doromotors	North Central Hardwood Forest		
i arameters	Shallow ¹	Deep	
Phosphorus Concentration (µg/L)	60	40	
Chlorophyll-a Concentration (µg/L)	20	14	
Secchi disk transparency (meters)	>1	>1.4	

1 Shallow lakes are defined as lakes with a maximum depth of 15 feet or less, or with 80% or more of the lake area shallow enough to support emergent and submerged rooted aquatic plants (littoral zone).

3.4 Natural Background Levels

Another consideration when evaluating nutrient loads to lakes is the natural background level. Ultimately, the background level represents the load the lake would be expected to receive under natural, undisturbed conditions. This load can be determined using ecoregion pre-settlement nutrient concentrations as determined by diatom fossil reconstruction. Diatom inferred total phosphorus concentrations are presented in Table 3.2.

Table 3.2. Pre-settlement total phosphorus concentrations basedon water quality reconstructions from fossil diatoms.

Davamatar	North Central Hardwood Forest		
r ai ametei	Shallow ¹	Deep	
Phosphorus concentration (µg/L)	47	26	

1 Shallow lakes are defined as lakes with a maximum depth of 15 feet or less, or with 80% or more of the lake area shallow enough to support emergent and submerged rooted aquatic plants (littoral zone).

The 2002 MPCA study reconstructed pre-settlement lake conditions based on diatom assemblages in soil cores from many different representative lakes across the state (Heiskary and Swain, 2002). Sweeney Lake was not included in the study. Based on the diatom fossils, pre-

settlement concentrations were approximately 26 μ g/L for deep lakes in the North Central Hardwood Forests ecoregion.

Sweeney Lake Total Phosphorus TMDL

SOURCE ASSESSMENTS

4.0 Source Assessments

Understanding the sources of nutrient loading to a water body is a critical component of developing a TMDL for nutrient impairment. A summary of the potential sources of nutrient loading to the lake is provided in this section.

4.1 Permitted Sources

4.1.1 Wastewater

Permitted wastewater sources can range from industrial effluent to municipal wastewater treatment plants. No known permitted wastewater sources are present in the Sweeney Lake subwatershed.

4.1.2 Stormwater

Phosphorus transported by stormwater represents one of the largest contributors of phosphorus to lakes in Minnesota. Phosphorus export from urban watersheds can often rival that of agricultural watersheds. Impervious surfaces in the watershed improve the efficiency of water moving to streams and lakes resulting in increased transport of phosphorus into local water bodies. Phosphorus in stormwater is a result of transporting organic material such as leaves and grass clippings, fertilizers, and sediments to the water body. All of these materials contain phosphorus which can impair local water quality. Consequently, stormwater is a high priority pollution concern in urban and urbanizing watersheds.

There are permitted stormwater sources in the Sweeney Lake subwatershed. National Pollution Discharge Elimination System (NPDES) permits for small municipal separate storm sewer systems (MS4) have been issued to the cities of Golden Valley and St. Louis Park, as well as to Hennepin County and the Minnesota Department of Transportation (Mn/DOT). All four of these MS4s are covered under the General NPDES MS4 Permit No. MN R040000. Each of these MS4 communities developed a Stormwater Pollution Prevention Program (SWPPP) in 2003 after issuance of the original MS4 permit, then updated their SWPPPs and obtained coverage under the

revised permit in 2006. Table 4.1 summarizes the annual phosphorus load and relative percent contribution of these MS4s to Sweeney Lake. Loads in Table 4.1 were taken from the calibrated P8 model created for the Sweeney Lake watershed.

		Portion of Annual Load		
MS4	Permit #	TP Load (lb/year)	Percent of Total	
Golden Valley	MS400021	1,132	77	
St. Louis Park	MS400053	132	9	
MnDOT	MS400170	206	14	
Hennepin County	MS400138	insignificant	<1	
Totals		1,470	100	

Table 4.1. Permitted MS4 Contribution to Watershed Phosphorus Load

4.2 Non-Permitted Sources

4.2.1 Atmospheric Deposition

Precipitation contains phosphorus that can ultimately end up in the lakes as a result of direct input on the lake surface or as a part of stormwater running off of impervious surfaces in the watershed. Although atmospheric inputs must be accounted for in development of a nutrient budget, direct inputs to the lake surface are impossible to control.

Atmospheric inputs of phosphorus from wet and dry deposition are estimated using rates set forth in the MPCA report "Detailed Assessment of Phosphorus Sources to Minnesota Watersheds" (Barr Engineering, 2004), and are based on annual precipitation. The values used for dry (< 25 inches), average, and wet precipitation years (>38 inches) for atmospheric deposition are 0.222, 0.239, and 0.259 pounds/acre-year for dry, average, and wet years, respectively. The atmospheric load (lb/year) for Sweeney Lake was calculated by multiplying the lake area (acre) by the atmospheric deposition rate (lb/acre-year). For example, in a wet precipitation year the atmospheric load to Sweeney Lake would be 0.259 lb/acre-year times the lake surface area (67 acre), which is 17.4 lb/year. Atmospheric loading for the 122 day summer critical period for the 2004 monitoring period was calculated using the following equation:

Precipitation for the 122–Day Dummer Deriod Annual Precipitation for 2004 * Annual Atmospheric Loading

where:

Precipitation during the 122 day period = 16.7 inches of rainfall

Annual precipitation for 2004 = 36.02 inches of rainfall

Annual atmospheric loading (for 2004) = 17.4 lb/year

Inserting the above values into the above equation gives approximately 8 lbs of atmospheric load.

4.2.2 Groundwater Contributions

Groundwater contributions were evaluated and determined to be negligible due to the large watershed-to-lake ratio and rapid lake level response to storm events. Based on a 2010 study of groundwater-surface water interaction completed by Barr Engineering, Sweeney Lake is a flow-through water-table lake with no net groundwater gain or loss (Barr 2010).

4.2.3 Internal Phosphorus Loading

Internal phosphorus loading from lake sediments has been demonstrated to be an important aspect of the phosphorus budgets of lakes. However, measuring or estimating internal loads can be difficult. Large internal loads are the result of significant amounts of phosphorus in lake-bottom sediments that are released under specific conditions. Phosphorus can build up in lake-bottom sediments as part of the eutrophication process which can be accelerated and exacerbated by an increase in phosphorus load export from developing watersheds.

Internal loading is triggered by sediment anoxia whereby poorly bound phosphorus is released in a form readily available for phytoplankton production. Internal loading can also result from sediment resuspension that may result from rough fish activity or prop wash from boat activity. These factors may all affect internal phosphorus cycling in Sweeney Lake.

Internal loading from the lake sediments was estimated using sediment release rates determined from sediment cores collected from the lake in 2007 by the US Army Corps of Engineers, ERDC Eau Galle Aquatic Ecology Laboratory. Internal loading of phosphorus from sediments was determined from sediment cores collected in the north and south hypolimnetic basins of Sweeney Lake (see Figure 1). Lake water was collected for incubation with the collected sediment. Six cores were collected at these stations for analysis of P release from sediment under oxic and under anoxic conditions using methods outlined in James and Barko (1991). The full report, *Internal Phosphorus Loading and Sediment Characteristics, Sweeney Lake, Minnesota* (ERDC, 2007), is available on the project webpage and is included as Appendix C.

Sediments at both stations exhibited a high moisture content and low sediment density, indicative of fine-grained particles. Sediment Phosphorus concentrations were very high in comparison to levels in other Minnesota metropolitan lakes. Results overall suggested the potential for high rates

of Phosphorus release under anoxic conditions and that sediments might contribute (although to a much lesser degree) to the Phosphorus budget even under highly oxidized conditions. Rates of Phosphorus release from the sediments were 5 to 10 times greater under anoxic conditions and very high relative to other systems. These results suggested the potential for soluble Phosphorus accumulation in the hypolimnion during periods of summer anoxia.

Internal loading data based on the sediment core analyses, results in an estimated 574 lb of internal load over the summer critical period evaluated. This result is based on applying the oxic release rate to the littoral zone of the lake (less than 15 feet in depth) and the anoxic rate to the area deeper than 15 feet. This result represents the maximum potential internal load and, therefore, is slightly higher than the internal load computed during the lake response modeling of 319 lb. The lake response model estimate is reasonable when compared to results of the maximum potential value from the sediment core analysis, recognizing that the extent of oxic and anoxic conditions in the lake vary over the growing season and the length of thermal stratification varies in a given year. Section 6.1.2 identifies the internal load component.

Sweeney Lake Total Phosphorus TMDL

LOADING ANALYSIS

5.0 Loading Analysis

The TMDL work plan identified the need to assess all significant sources of nutrient loading to Sweeney Lake. External loading sources including stormwater run-off, direct overland flow from riparian areas, and groundwater contributions were monitored and/or estimated and used to update a previously developed watershed loading model. An overall nutrient budget was developed using both internal and external loading sources to quantify the relative contribution of internal load and external load.

One of the key elements of this project was to evaluate the lake response under non-aerated conditions. While this was completed by monitoring the lake for two years without the aeration system in operation during the growing season, these years also had lower than normal precipitation during this critical loading period. Therefore a clear conclusion on the effect of aeration on internal loading could not be reached.

5.1 Selection of Models and Tools

5.1.1 Watershed Modeling

An existing P8 model (Program for Predicting Polluting Particle Passage through Pits, Puddles and Ponds), developed previously for a Sweeney Lake Management Plan for the Bassett Creek Watershed Management Commission, was updated and calibrated with flow and water quality monitoring data from 2004 and 2005. Flow data was collected by the Minnesota Department of Transportation (MnDOT) and consisted of continuous level measurements and a rating curve. The water quality data was collected using an auto-sampler programmed to take composite water samples during storm events. The water quality calibration was validated using total phosphorus data collected at the Schaper Pond outfall in 2007 and 2008. The P8 model was calibrated using flow and water quality (phosphorus) data that were collected at two points in the Sweeney Lake watershed, one at the north end of Schaper Pond where it discharges into Sweeney Lake and the other at the MnDOT monitoring station between Turners (west of TH100) and Breck Pond (east of TH100 just north of Glenwood Avenue and west of Breck School). Figure 7 shows the water quality (total phosphorus) calibration fit at the Schaper Pond monitoring station. This calibration primarily consisted of changing the build-up and wash-off functions provided in P8. Calibration was performed per storm event in which several sets of total phosphorus samples were collected throughout the storm event.

Figure 7. TP Calibration for the P8 Model at Schaper Pond

The P8 model was selected because it was easily updated and calibrated with flow and water quality data that was collected during the study. The calibrated P8 model is well suited to predict flow conditions and phosphorus loads to Sweeney Lake considering the Best Management Practices (BMPs) already in place within the watershed and those that are being evaluated for possible implementation projects to achieve the load reductions identified in the TMDL. P8 can evaluate load reductions for physical practices like ponds and rain water gardens as well as management practices like street sweeping frequency. The details of the P8 modeling can be found in Appendix A.

5.1.2 Lake Response Modeling

Two models were used to estimate changes in external and internal phosphorus loading on phosphorus levels in Sweeney Lake: (1) US Army Corps of Engineer's BATHTUB Model and (2) a finite difference spreadsheet model based upon equations published in Pilgrim et al. 2007, A Method for Comparative Evaluation of Whole-lake and Inflow Alum Treatment. Water Research. 41: 1215-1224 and equations published in Thomann and Mueller. 1987. Principles of Surface Water Quality Modeling.

The BATHTUB model predicts eutrophication-related water quality conditions (e.g., phosphorus, nitrogen, chlorophyll- a, and transparency) using empirical relationships previously developed and tested for reservoir applications. Physical lake characteristics and measured water quality of lake and inflow samples were used to set-up and calibrate a BATHTUB model representing Sweeney Lake for the 2007 and 2008 monitoring years. The Second Order Decay model was used from the menu of BATHTUB relationships as it gave the best fit to the monitored data assuming no internal load (meaning, phosphorus loss in Sweeney Lake was best simulated with the loss kinetics provided by a second order rate, however, even with this approach internal loading could not be accurately quantified). An attempt was made improve the modeling results with the use of the Canfield-Bachmann natural lake model, which was developed for northern temperate lakes. However, the Canfield-Bachman model did not fit the monitored data as well as the Second Order Decay model. The BATHTUB modeling details can be found in Appendix B. Because of poor results with the BATHRUB model, a different modeling approach was taken.

The spreadsheet model created by Barr (described above) was used to develop load allocations for Sweeney Lake because the BATHTUB model was unable to accurately capture the rapid changes in phosphorus in Sweeney Lake. This is largely due to frequent large inflows, which can reach upwards of 40 cfs, and significant internal phosphorus loads. Sweeney Lake is small and has a very short residence time (1 to 2 months), and hence phosphorus flushes in and out the lake rapidly. The finite difference lake model developed by Barr was used to capture the rapid changes in phosphorus and determine internal phosphorus loading during the mid to late summer months.

Figures 8a and 8b show the results of lake calibration using the 2007 and 2008 lake monitoring data (averaged for both bays, surface samples). The results demonstrate that the model can be used to evaluate the response of Sweeney Lake to external and internal phosphorus load reductions.

Figure 8A. TP Finite Difference Lake Model Calibration for 2007

5.2 Watershed Loads

Watershed total phosphorus loads were estimated from the calibrated P8 model. From that model annual loads contributed by each MS4 were estimated and are presented in Table 4.1. The percent of the total load contributed by each MS4 also roughly corresponds to the percent of the watershed area each entity is responsible for. These relative portions are the basis for allocating the individual load to MnDOT and the categorical load to Golden Valley and St. Louis Park.

5.3 Internal Loads

Internal phosphorus loading is a process where phosphorus releases from lake bottom sediments during low oxygen concentrations. This begins to occur typically in early summer when oxygen in bottom waters directly above the lake bottom drop to 4 mg/L and below. Typically, the degree of internal loading is a result of the magnitude of external loading. High internal loading is usually the result of several decades of excessive external loading.

Even though internal loads for a lake may be high, they may not affect surface water phosphorus levels if the internal loads cannot reach the surface. Monitoring data discussed below demonstrate several important functions in Sweeney Lake that relate to internal loading and transport of internal loading to the surface. The 2008 data demonstrate that oxygen levels are very low and promote phosphorus release from lake sediments. The data also show that phosphorus released from lake sediments mixes in the lake and transports to the surface. Hence, internal loading affects surface levels of total phosphorus. The 2005 data demonstrate that dissolved oxygen levels in bottom waters, although higher because of aeration, are low enough to allow phosphorus release from bottom sediments in the summer. The 2005 monitoring data demonstrate that due to aeration the lake is completely mixed and phosphorus released from sediments is rapidly transported to the lake surface. Hence, internal loading is important with and without aeration. The precise difference in internal loading with and without aeration is difficult to evaluate with existing data and would require more sophisticated modeling approaches.

5.3.1 Temperature and Dissolved Oxygen

Understanding lake stratification is important to the development of both the nutrient budget for a lake as well as ecosystem management strategies. Lakes that are dimictic (mix from top to bottom in the spring and fall) can have very different nutrient budgets than lakes that are completely mixed all year. Typically, temperature drives the stratification of a lake because water density changes with water temperature. However, the larger impact usually lies with the dissolved oxygen profile. As cooler, denser water is trapped at the bottom of a lake, it can become devoid of oxygen affecting both aquatic organisms and the sediment biogeochemistry.
Figures 9A and 9B show how Sweeney Lake functions in the non-aerated condition during 2008. Figure 9A shows the temperature over the summer monitoring period which is generally stratified with the colder water trapped at the bottom except during the early spring and late fall.

Figure 9A. 2008 Growing Season Temperature Profile

Figure 9B. 2008 Growing Season Dissolved Oxygen Profile

Figure 9B shows the dissolved oxygen (DO) over the same period and illustrates that the bottom waters become anoxic early in the growing season under non-aerated conditions. Figure 9C shows the DO under aerated conditions and illustrates that the oxygen levels are still low enough to have internal loading from the sediments. The bottom waters stay anoxic until the fall turnover when the lake mixes in early to mid October.

Figure 9C. 2005 Growing Season Dissolved Oxygen Profile

5.3.2 Phosphorus

Lake algal production is typically limited by phosphorus and nitrogen availability. Minnesota lakes are almost exclusively limited by phosphorus; however excessive phosphorus concentrations can lead to nitrogen limiting conditions. Phosphorus and nitrogen are measured to determine the availability of the nutrients for algal production. Dissolved and orthophosphorous are the most readily available forms of phosphorus while total phosphorus is a measure of all the phosphorus, bound and unbound.

Figure 10A shows the total phosphorus concentration in Sweeney Lake during the 2008 summer growing season (darker red areas are higher concentrations). Without aeration, a thermocline develops at approximately the 5.5 meter depth; however, the plot demonstrates that there is some mixing of bottom phosphorus with surface waters (see mixing in mid-August and subsequent increase in surface phosphorus during a period of limited or no rainfall). Figure 10A also shows that the lake is mixed in the early spring prior to development of the thermocline. Figure 10B shows the total phosphorus in Sweeney during 2005 while the lake was being aerated throughout the summer growing season (darker areas are lower concentrations). The lake remains mixed for the entire year, with fairly constant TP concentrations throughout the profile.

Figure 11 shows a comparison of modeled versus monitored phosphorus in Sweeney Lake surface waters in 2004. It shows how phosphorus levels are affected by large storm events and

how fairly high phosphorus levels are maintained even when large storm events are not occurring (i.e. internal phosphorus loading is keeping phosphorus levels elevated).

Figure 11. 2004 Growing Season Finite Difference Model versus Monitored TP

Figure 12 shows a comparison of external and internal loading during two years (2004, 2005) when the aeration system was operating and two years of this study with the aeration system turned off. There is a significant portion of internal loading under

Figure 12. Internal and External TP Loading Comparisons

both conditions and the external loading is dependent on the total rainfall during the monitoring period, which was higher in 2004 and 2005 as compared to 2007 and 2008.

5.3.3 Chlorophyll-a and Secchi Depth

Algal biomass can be measured directly by developing cell-by-cell counts and volumes. However, this is time intensive and often expensive. Chlorophyll-a has been shown to be a representative estimation of algal biomass and is inexpensive and easy to analyze.

Secchi depth is also a predictor of algal production by measuring the clarity of lake water. This is accomplished by lowering a round disk shaded black and white over the shady side of the boat and recording the depth at which the disk is no longer visible.

Figure 6 in Section 2.3 shows the historical water quality in Sweeney Lake dating back to the first monitoring in 1972. Sweeney Lake's water quality was improved in 2008 when compared to 2007 and 2005 with chlorophyll-a and total phosphorus decreasing and Secchi depth increasing. In 2008, Sweeney Lake's water quality (32 ug/L summer average concentration) met the state standard of 40 ug/L total phosphorus concentration during the critical summer period. The water quality overall in 2008 was the best observed since 1972 and met the State standards for all three parameters (TP, chloropyhll-a, Secchi depth). A regression analysis of the in-lake monitoring conducted in 2005, 2007 and 2009, and assuming a total phosphorus (TP) concentration of 40 ug/L, results in a Secchi depth (SD) reading of 1.6 meters and a chlorophyll-a (chl-a) level of approximately 12 to 14 ug/L. From this analysis, we can conclude that when the TP standard of 40 ug/L is met, the standard for one or both of the other two parameters is generally also met.

As stated previously, data for 2007 and 2008 were collected with the aeration system not in operation. However, the historical data collected and analyzed to date do not provide sufficient basis to conclude if the aeration is reducing the internal load or increasing the internal load. The improved water clarity in 2007 and 2008 may relate to not having the aeration system in operation. However, data for 2005 when the aeration system was in operation also shows relatively good water quality compared to historical conditions. 2007 and 2008 were lower than average precipitation years and the improved water quality is also a result of the reduced external loading resulting from the lower precipitation. Additional monitoring of the lake under non-aerated conditions is a key recommendation of the 2008 Water Quality Study and of this TMDL.

Precipitation data was obtained from the Minnesota Climatology Office from the closest site to Sweeney Lake (Site 215437 named ACHENBECK located in Minneapolis, MN). For the analysis, the daily precipitation data from this site was converted to hourly data using the storm distribution characteristics for the recording station located at the Minneapolis-St. Paul International Airport.

Sweeney Lake Total Phosphorus TMDL

TMDL ALLOCATIONS

6.0 TMDL Allocations

The TMDL, or phosphorus loading capacity, must be allocated among several sources to achieve the numeric target of 40 μ g/L of total phosphorus. This TMDL presents load and wasteload allocations and estimated load reductions to achieve this endpoint. The TMDL equation is shown below; with WLA representing the wasteload allocation (4.66 lbs/day), LA the load allocation (1.24 lbs/day), MOS the margin of safety (0 lbs/day with a 5% MOS applied to the in-lake concentration target) and RC is the reserve capacity (0 lbs/day).

TMDL = WLA + LA + MOS + RC

5.90 lbs/day TP = 4.66 lbs/day + 1.24 lbs/day + 0 lbs/day + 0 lbs/day

As described in Section 6.3 and previously in Section 3.0, this TMDL has an explicit MOS of five percent which results in a TMDL endpoint of 38 μ g/L TP. This five percent lowering of the endpoint also translates into a mass-based MOS that is slightly greater than five percent.

6.1 TMDL Components

6.1.1 Wasteload Allocations

Stormwater discharges regulated under the NPDES permit program are considered wasteloads. There are no industrial dischargers in the watershed. The Wasteload Allocations for all permitted stormwater sources except the MnDOT are combined in this TMDL as Categorical Wasteload Allocations (WLA) assigned to all permitted dischargers in the contributing watershed. As stated earlier in the TMDL, the Categorical approach is well suited to situations like Sweeney Lake where there exists a local commitment to implement the improvements in a cooperative manner through an entity like the Bassett Creek WMC. The pollutant load from construction stormwater is considered to be less than 1 percent of the TMDL and is difficult to quantify. Consequently, pollutant loading from construction activities and industrial stormwater sources are included in the WLA. Each permittee has agreed to implement BMPs to the maximum extent practicable. This collective approach allows for greater reductions for some permit holders with greater opportunity and less for those with greater constraints. The collective approach is to be outlined in an implementation plan. Construction stormwater activities are considered in compliance with provisions of the TMDL if they obtain a Construction General Permit under the NPDES program and properly select, install, and maintain all BMPs required under the permit, or meet local construction stormwater requirements if they are more restrictive than requirements of the State General Permit. Industrial stormwater activities are considered in compliance with provisions of the TMDL if they obtain an industrial stormwater general permit or General Sand and Gravel general permit (MNG49) under the NPDES program and properly select, install and maintain all BMPs required under the permit. BMPs required under the permit (MNG49) under the NPDES program and properly select, install and maintain all BMPs required under the permit (MNG49) under the NPDES program and properly select, install and maintain all BMPs required under the permit.

6.1.2 Load Allocations

The Load Allocation includes atmospheric deposition and internal loading. The atmospheric load was calculated by the method described in Section 4.2.1., resulting in an atmospheric load of 8.4 lb over the 122 day summer period.

Internal loading was computed as part of the lake response modeling and was also compared to rates obtained from the sediment cores taken from the lake and analyzed in 2007. Internal loading for the 2004 baseline condition is 319 lb over the 122 day critical summer period. The 2004 monitoring year was chosen for several reasons, which include good flow monitoring data, high quality in-lake monitoring data, an average level of internal loading, a high level of external loading, and high overall phosphorus loading compared to other years with monitoring data. This resulted in an overall conservative and accurate load allocation.

6.1.3 Margin of Safety

A margin of safety (MOS) has been incorporated into this TMDL using conservative assumptions in the analysis. The two primary assumptions that provide this margin of safety are: using the worst case total loading year in recent history as the basis for the analysis and load allocations (2004 monitoring year); and applying a five (5) percent MOS to the in-lake concentration needed to meet the state standard. This approach used an in-lake average summer concentration of 38 μ g/L TP as the target concentration as the target to meet for the three load reductions scenarios that were evaluated.

6.1.4 Reserve Capacity

The Sweeney Lake watershed is essentially fully developed as discussed previously in this TMDL report. The vast majority of projects that are expected to occur in the future are redevelopment projects which will be subject to treatment standards of the Bassett Creek WMC and the cities of Golden Valley and St. Louis Park. Therefore, the reserve capacity for this TMDL is zero.

6.2 Critical Condition

The critical condition for these lakes is the summer growing season. Minnesota lakes typically demonstrate impacts from excessive nutrients during the summer recreation season (June 1 through September 30) including excessive algal blooms and fish kills. Lake goals have focused on summer-mean total phosphorus, Secchi transparency and chlorophyll-a concentrations. Consequently, the lake response models have focused on the summer growing season as the critical condition. Additionally, Sweeney Lake tends to have a relatively short residence time and therefore responds directly to summer growing season loads delivered to the lake.

6.3 Allocations

The maximum allowable loads were computed using the finite difference model (as described in Section 5.1.2) for three scenarios (external load reduction only; internal load reduction only; and a combination or external and internal load reductions) to evaluate what reductions would be needed to achieve an in-lake concentration of 40 μ g/L TP. An in-lake concentration of 38 μ g/L was used to incorporate a five (5) percent margin of safety during the modeling efforts. The total loads shown in Table 6.1 represent the current loading (2004) and the Maximum Future Loading levels (in pounds) that would need to be met to reach a 38 μ g/L in-lake concentration during the critical summer period.

	Phosphorus Loading (lbs – 122 days)				
Loading Scenario	WLA	LA			
Loading Scenario	External TP Load	Internal TP Load	Atmos- pheric Load	Total Load	
Current Loading (2004)	667	319	8	994	
Maximum Future Loading	568	143	8	719	

These numbers are the result of simulating the three scenarios in the finite difference lake response model. The Maximum Future Loading scenario represents a combination of wasteload and load allocation reductions that will achieve the desired endpoint.

Table 6.2 shows the corresponding load reductions (in pounds) that would be needed under the three modeled scenarios to reach a 38 ug/L in-lake concentration during the critical summer period. Data in Table 6.2 are taken from the lake response modeling discussed in Section 5.1.2.

	Phosphorus Load Reduction (lbs – 122 days) Includes 5% Margin of Safety					
Loading	WLA		LA			
Reduction Scenario	External TP Load (%)	External TP Load (lb)	Internal TP Load (%)	Internal TP Load (lb)	Total Reduction (lb)	
External Reduction Only	70	460	0	0	460	
Internal Reduction Only	0	0	85	270	270	
Combined Internal and External Load Reductions	15	99	55	175	274	

Table 6.2. TP Load Reductions Needed to Meet Standard

As shown in Tables 6.1 and 6.2, a 70 percent reduction in the wasteload would be needed within the watershed to achieve the in-lake standard if only watershed-based (external) BMPs were pursued. This reduction represents a very significant load reduction relative to how much phosphorus can be removed by traditional BMPs (i.e., based on the P8 model data about 50 percent of the phosphorus at the Schaper pond outlet is in an unsettlable dissolved or fine particulate form). The BMP network currently in place results in an inflow concentration of TP at the primary inlet to Sweeney on the order of 120 μ g/L TP. This level is already in the lower end of the range that could be expected from a typical urban watershed with treatment systems in place throughout the watershed.

There are a number of BMPs (e.g., ponds, sump manholes, rain water gardens) already in-place throughout the watershed that are removing sediment, phosphorus and other pollutants. As shown in Table 6.3, an estimated 34 percent of the watershed TP load to Sweeney Lake is being removed by these existing BMPs. Figure 13 shows the locations of many of these in-place BMPs

(calculated by running the P8 model with the existing BMPs and without the existing BMPs and taking the difference of the phosphorus loads generated by the two model runs). Therefore, achieving an additional 460 pounds of reduction from a fully developed watershed that has limited opportunity to install significant new treatment systems would be costly and would be a long-term implementation program on the order of 20 to 30 years.

Modeling Results – Seasonal Loads (122 Days)	TP Load Conditions
2004 Lake Model – Total Watershed Loading (lbs)	667 lbs
Total Watershed Loading Untreated (lbs)	1004 lbs
Existing Treatment Device Removal (lbs)	337 lbs
Existing BMP Performance (% TP removal)	34 %

Table 6.3. TP Removal of Existing Watershed BMPs

The recommended approach used as the basis of this TMDL is to achieve a combination of external and internal loads as shown in Table 6.2. We evaluated several alternative internal and external load combinations. Starting with an internal load reduction of 55 percent (175 lbs) the resulting external load reduction would be 15 percent (99 lbs) TP reduction in the contributing watershed. This internal load reduction assumption of 55 percent is based on evaluating what would reasonably be achieved with a 1-time chemical application (in-lake alum dosing) in Sweeney Lake. The corresponding external load reduction is then established as 15 percent or 99 lbs TP during the critical summer period. The total watershed TP load reduction, considering existing BMPs already in the watershed will approach 50 percent.

Combined with the external load reductions, an internal load reduction of 55% (175 lbs) provides more than the necessary reduction to meet the standard. In practice, the internal load reduction for an in-lake chemical treatment would be on the order of 85% as shown for the Internal Reduction Only scenarios in Table 6.2. This additional internal load reduction represents an additional margin of safety.

Based on this combined approach to internal and external loads, and converting the seasonal loads from Table 6.1 to daily loads, the total maximum daily loads for the major sources are showing in Table 6.4.

Source		Total Maximum Daily TP Load (lbs/day)	Percent of Total Load
Wasteload	Watershed Load	4.66	79.0%
Load	Atmospheric Load	0.07	1.2%
	Internal Load	1.17	19.8%
TOTAL LOAD		5.90	100%

Table 6.4. TP Daily Loads for the Major Sources

Converting the total wasteload allocation among the permitted sources result in the loads established in Table 6.5. MnDOT is allocated 14 percent of the waste load allocation as an individual source and the cities of Golden Valley and St. Louis Park are allocated the remaining 86 percent of the wasteload as a categorical source. The resulting load reductions during the 122 day growing season are 14 lbs for MnDOT and 86 lbs for the combined categorical sources.

 Table 6.5. TP Daily Loads for the Source Categories

Sourc	e	Existing TP loads (lbs/122 days)	TMDL (average lbs/122 days)	% Reduction
Wasteload Allocation MS4 Categorical Golden Valley	<u>Permit #</u> MS400021			
St. Louis Park Hennepin County	MS400053 MS400138	574	488	15
Construction Stormwater Industrial Stormwater	Various None			
MS4 Individual MnDOT	MS400170	93	79	15
Load Allocation Atmospheric Internal		8 319	8 143	0 55
TOTAL		994	718	28

Sweeney Lake Total Phosphorus TMDL

PUBLIC INVOLVEMENT

7.0 Public Involvement

The work plan for this study included a comprehensive stakeholder involvement effort. The public participation process was completed in close cooperation with the Bassett Creek WMC, the City of Golden Valley and surrounding municipalities and MS4s. The focus of the early public involvement efforts were to inform stakeholders of the proposed work plan, address and incorporate their concerns, and seek input into the TMDL process. This was initiated at Public Meeting #1 held in March 2007, at which an overview of the technical work plan, an explanation of the goals of each work plan component and how the data collected in the field will be used to complete the analyses, was presented. Additionally, the TMDL process as a whole was explained using information from the MPCA, as well as informing the public on ways they can track the results and become involved.

One of the key issues discussed at Public Meeting #1, and for the project overall, was the need to turn off the aerators for one or two summer growing seasons to monitor the water quality and internal loading without the systems in operation. A project webpage was created that includes periodic project updates as well as meeting information for all stakeholder meetings help over the course of the project. The webpage is available as a link from the BCWMC and Golden Valley web pages (http://www.sehinc.com/online/sweeney/index.htm).

Public Meeting #2 held in June 2009 as part of the Phase 2 work plan, following the completion of analysis of two years of monitoring data and prior to completion of the initial draft report. Between Public Meeting #1 and Public Meeting #2, several technical team meetings and key stakeholder meetings were held and are summarized in the list below. Additional information on each of the meetings is available on the project webpage.

- Public Meeting #1 March 29,
 Lake Resident Meeting August 21,
- BCWMC Update Meeting
- Dewine Opdate Meeting
 Technical Team Meeting

March 29, 2007 August 21, 2007 April 17, 2008 April 23, 2009

•	Golden Valley Meeting	May 8, 2009
•	Public Meeting #2	June 3, 2009

In addition to these specific meetings, a meeting with a small group of lake residents was held in 2008, to review monitoring data collected as part of the TMDL project. Project Update summaries were posted on the project webpage on the following dates:

- April 14, 2007
- May 9, 2007
- May 29, 2007
- June 14, 2007
- July 23, 2007
- August 23, 2007
- September 26, 2007
- May 15, 2008
- October 9, 2008
- March 23, 2009

Additional public comment and input was taken as the TMDL progressed through the MPCA and EPA review and comment periods. The following stakeholders were invited to participate in this project:

- Bassett Creek Watershed Management Commission (including all member cities)
- City of Golden Valley
- City of St. Louis Park
- Minneapolis Parks and Recreation Board
- Minnesota Department of Transportation
- Hennepin County
- Minnesota Pollution Control Agency
- Minnesota Department of Natural Resources
- Sweeney lake Homeowners Association
- Metropolitan Council Environmental Services
- Minnesota Board of Soil and Water Resources

The final public comment period was noticed by MPCA and was open from March 13, 2011

through April 13, 2011. All comments received during the comment period were responded to by BCWMC and the MPCA.

Sweeney Lake Total Phosphorus TMDL

IMPLEMENTATION

8.0 Implementation

8.1 Implementation Strategy

A preliminary framework of potential implementation projects and activities has been developed as part of this TMDL. The overall approach will involve the BCWMC taking a lead role in implementation efforts for the categorical wasteload allocations and the (internal) load reductions and in working directly with the member cities in identifying funding sources and prioritizing capital projects and management activities. MnDOT will be responsible for achieving their individual wasteload allocation, but may also realize benefits of working with the Commission on mutually beneficial projects and activities. If MS4 permittees are not demonstrating progress, the TMDL may be re-opened and individual wasteload allocations may be assigned to the MS4s.

The BCWMC is committed to improving water quality within its watershed and to working with the member cities in implementing the improvements necessary to achieve the BCWMC water quality goals and the water quality standards established in state and federal regulations. The BCWMC has a long history of working with the member cities in a cooperative manner to establish goals and policies, implementation activities and ongoing monitoring programs. The BCWMC will continue to work in this cooperative manner and intends to take a lead role in implementation efforts resulting from this TMDL.

The wasteload allocations in this TMDL represent very aggressive goals for nutrient reductions. Consequently, implementation will be conducted following adaptive management principles. Adaptive management is appropriate because it is difficult to predict with certainty the lake's response that will occur from implementing the strategies outlined in the implementation plan. In addition, a significant load reduction is established for the internal loading using treatment technologies that are widely accepted. However, each water body is unique and the response of this lake to practices that have been applied elsewhere may be more or less effective as assumed in this analysis.

Future technological advances may alter the course of actions detailed here, especially when looking at the wasteload portions in the fully-developed watershed. Continued monitoring and "course corrections" responding to monitoring results are the most appropriate strategy for attaining the water quality goals established in this TMDL.

Based on this understanding of the appropriate standards for lakes, this TMDL has been established with the intent to implement all the appropriate activities that are not considered greater than extraordinary efforts. It is expected that it may take 10 or more years to implement BMPs and load-reduction activities. It is expected that multiple (NPDES MS4) permit cycles will be needed to reach the wasteload reduction targets. If all of the appropriate BMPs and activities have been implemented and the lake still does not meet the current water quality standards, the TMDL will be reevaluated and the Bassett Creek Watershed Management Commission will begin a process with the MPCA to evaluate additional BMP options. If needed, the process may result in developing a more appropriate site-specific standard for the lake. This process would be based on the MPCA's methodology for determining site-specific standards.

The Implementation approach will emphasize a hierarchy of strategies, prioritizing first, sourcereduction options (street sweeping; implementation, construction and maintenance of BMPs); regulatory controls, such as runoff quality and volume-retention requirements; second, in-lake management; third, lake-inflow treatment and other in-lake treatment methodologies.

It is important to understand that regulatory controls imposed on MS4s as part of the TMDL program are not the only means to achieving the goals. Improving water quality in Sweeney Lake will require all stakeholders to participate in the efforts, including BCWMC, residents, lakeshore homeowners and other interested parties.

8.2 Load Reduction Alternatives

A number of load reduction strategies and actions were considered during development of this TMDL including discussions at the Technical Team meeting on April 23, 2009, and Public Meeting #2 on June 3, 2009. Information on the range of load reduction approaches is summarized in the following section for internal and external load reduction actions.

8.2.1 Loading Reductions

The focus of implementation efforts will be on reducing the annual phosphorus loads to the lake through structural and nonstructural BMPs as well as evaluating the feasibility of reducing

internal loads using chemical treatment methods. The Total Maximum Daily Load over the critical summer period by source established for Sweeney Lake is shown in Table 8.1.

	Source	TMDL TP (lb - 122 days)	Reduction TP (lb -122 days)	Percent Reduction
Wasteload	Watershed Load	568	99	14.9%
Load	Atmospheric Load	8	0	0
	Internal Load	143	175	55.2%
LOAD RED	DUCTION	719	274	27.7%

 Table 8.1. Phosphorus Reductions by Source.

As discussed in Section 6 of this report, MnDOT is allocated 14 percent of the waste load allocation as an individual source and the cities of Golden Valley and St. Louis Park are allocated the remaining 86 percent of the wasteload allocation as a categorical source. The resulting seasonal load reductions to achieve the targeted 99 lbs of reduction are 14 lbs for MnDOT and 85 lbs for the combined categorical sources.

8.2.2 Internal Loading

Several options were discussed with members of the Technical Team and stakeholders overall to manage internal sources of nutrients.

- *Hypolimnetic withdrawal.* This option would require pumping nutrient-rich water from the hypolimnion to an external location where it could be chemically treated and discharged through a constructed wetland treatment system that would discharge into the lake. Input from the technical team members suggested that this approach has problems with odors, relatively high costs and significant problems with some local examples. Therefore this option was eliminated from further consideration.
- *Hypolimnetic aeration.* This option uses a specialized pump to circulate water from the hypolimnion to keep it aerated and thereby reducing the potential for anoxic conditions that lead to higher phosphorus release rates from the bottom sediments. Again input from the technical team referred to some local problems and, therefore, this option was eliminated from further consideration.
- *Chemical treatment. In-Lake Dosing.* Concurrent with or following implementation of BMPs to reduce external nutrient load sources, it may be feasible to chemically treat the

lake with alum to remove phosphorus from the water column as well as bind it in sediments. Such a treatment is estimated to cost on the order of \$150,000 to \$200,000. Several options in addition to alum including Phoslock, activated zeolite and others to bind phosphorus in lake sediments and not allow phosphorus release during summer months or when oxygen is low in bottom waters. Some issues with dosing rates and need to control the pH, but lots of data and experience available to make sure it meets the criteria.

- *Chemical treatment. In-Flow Dosing.* Some discussions on costs related to the preferred approach of in-lake treatment to inflow treatment, with in-flow treatment being on the order of five times the cost of in-lake. Comments during Public Meeting #2 suggested that further evaluation of an inflow treatment system should be considered. Potential problems with and inflow system include available land for the treatment plant and the difficulty in dosing the variable flows that would occur at the primary inlet at Schaper Pond.
- *Vegetation management*. Curly-leaf pondweed has been observed recently in Sweeney. Chemical treatment could be applied to limit growth of this phosphorus source but this was not identified as a significant source of internal loading.
- Aeration system management. The general consensus was that the existing aeration system should be evaluated further to see if modifications can be made to better manage the system to avoid circulating nutrient-rich water. Discussions also related to the advantages and disadvantages to aeration during the growing season and the overall conclusion was that, based on the 2007-2008 data, the aeration system may or may not be increasing the internal loading to the lake. The water quality was better, but insufficient data is available to conclude what portion relates to reduced watershed load from the lower than normal precipitation and what portion relates to reduced internal loading from stratification of the lake and trapping phosphorus in the bottom layer. In either case, the recommended action is to conduct future years of monitoring with the aeration system off to see how the lake responds to a normal year of precipitation. The Technical Team members generally agreed that in any case continued winter aeration is not a concern and likely is a good long-term management strategy for the lake.
- *Fish population management* [e.g., carp, bullheads]. Discussed recent work in area lakes related to carp effects on internal loads. While this approach may result in some limited

improvements, it is not expected to be a significant factor in the TMDL implementation plan.

• *Barley straw/corn meal applications*. This practice was discussed briefly but determined to be fairly expensive and requires significant efforts for annual application and maintenance.

8.2.3 External Loading

Restoration options for lakes are numerous with varying rates of success. Consequently, each technology must be evaluated in light of our current understanding of physical and biological processes in that lake. The watershed draining to Sweeney Lake is almost fully developed, and options for reducing external nutrient loads are somewhat limited and will likely be costly to implement. The following is a description of potential actions for controlling nutrients in the watershed that will be further developed in the Sweeney Lake Implementation Plan.

Small, incremental reductions are possible through retrofit as redevelopment occurs and through the implementation of BMPs throughout the subwatershed.

- *Maximize load reduction through redevelopment*. As redevelopment occurs, areas with little or no treatment will be required to meet current water quality standards of providing a pond volume based on the runoff volume from a 2.5 inch rainfall over the contributing watershed. It may be possible to "upsize" water quality treatment BMPs to increase treatment efficiency beyond the minimum required by city and Commission requirements to maximize the amount of load reduction achieved. Incorporating BMPs to bring a redevelopment site to these standards would be at the developer's cost. The public cost of upsizing to provide additional treatment (e.g., over sizing a treatment pond) would be dependent on the specific BMPs, negotiations with developers, and the availability of funding. Regulatory changes are another option to address redevelopment loading reductions.
- *Increase infiltration and filtration.* Encourage the use of rain gardens, native plantings, and reforestation as a means to increase infiltration or filtration and evapotranspiration and reduce runoff conveying pollutant loads to the lake. The cost of this strategy varies depending on the BMP, and may range from a single property owner installing an individual rain garden to retrofitting parks and open space with native vegetation rather than mowed turf. Because of the extent of clay soils throughout much of the Sweeney Lake watershed, filtration systems would be more likely than true infiltration systems.

The City of Golden Valley offered this approach in a local street reconstruction project in 2005 and while some residents were interested in learning more about the approach, no residents committed to having a rain water garden installed as part of the street project.

- *Target street sweeping.* The City of Golden Valley and St. Louis Park are currently conducting aggressive street sweeping programs. The discussions on this approach focused on identify key areas and targeting those areas for more frequent street sweeping, which again Golden Valley is currently doing. Additional improvements in load reductions would include replacing mechanical street sweepers with more efficient regenerative air sweepers which can cost significantly more than a traditional broom sweeper. As the drainage area to Sweeney Lake encompasses both Golden Valley and St. Louis Park, each city should evaluate if it's feasible to realize improvements within the context of their street sweeping program. The City of Golden Valley has the purchase of a vacuum or regenerative air sweeper identified in its Capital Improvement Plan for 2011.
- *Retrofit BMPs.* As opportunities arise, retrofit water quality treatment through a variety of BMPs including detention ponds, native plantings, sump manholes, swirl separators, and trash collectors. These small practices are effective in removing debris, leaf litter, and other potential pollutants. Depending on the type of BMP, location, easement requirements, and other factors, costs can range from \$2,000 for a sump manhole to \$30,000 for a mechanical manhole device to \$250,000 or more for a detention pond. Removal estimates for several specific BMPs have been calculated and are identified in Table 8.2.
- *Encourage shoreline restoration*. Many property owners maintain a mowed grass edge to the shoreline. Property owners should be encouraged to restore their shoreline with native plants to reduce erosion and capture direct runoff. The City and local business have already installed buffers in portions of the Sweeney Lake shoreline.
- *Conduct education and outreach awareness programs.* Educate property owners in the subwatershed about proper fertilizer use, low-impact lawn care practices, and other topics to increase awareness of sources of pollutant loadings to Sweeney Lake and encourage the adoption of good individual property management practices.

8.3 Implementation Program

A number of BMPs are already in-place throughout the watershed that are removing an estimated 34 percent of the TP load to Sweeney Lake as shown previously in Table 6.3. When factoring the

additional 15 percent TP reduction established in the TMDL, the total watershed removal will approach 50 percent.

Table 8.2 provides a list of BMPs that were evaluated for external and internal load reductions. The list is intended as the basis of the implementation program that will be established as a separate document from this TMDL report. TP removal estimates for most of the listed BMP are provided and are based on a combination of modeling using the P8 model that served as the basis of this study and published literature. Quantifying the true removal rates for these practices is quite difficult. However, these estimates represent the best available data for the practices listed, and the practices will provide reductions in the loading of phosphorus to Sweeney Lake. The list represents the recommended implementation activities for the permitted sources over approximately the next 20 years.

In all cases, the partners associated with the load reduction responsibilities under this program will need to work together to maximize the extent of these BMPs that can be implemented given the available resources. They must also identify and access available funding methods towards implementation actions. Funding options may include, but not be limited to, local, state and federal grant funds, such as the Clean Water Legacy Act funds for water quality improvement projects. The estimated total cost of implementing these and other potential BMPs ranges from \$500,000 to \$5,000,000.

Table 8.2. Sweeney Lake Management Plan

Watershed Management Practice (Ongoing)	Potential Phosphorus Removal in Pounds (annual / seasonal)
BMPs that achieve a level of removal of phosphorus and total suspended solids equal to or greater than the level that would be achieved by a permanent pool that provides for storage of 2.5 inches of runoff volume from the entire development site will be required for all new development and redevelopment. This policy of the Bassett Creek Watershed Management Commission (BCWMD) and the City of Golden Valley has been required of all new development and redevelopment in the watershed since 1994.	30 / 14 ¹
The program to promote the development of shoreline buffers will be continued.	15 / 7 ²
Existing BMPs will be monitored and maintained to insure that they continue to provide the water quality benefits that they were intended to provide.	20/9
The city street sweeping program will continue and as new technology and new techniques are developed they will be evaluated to determine if they would provide a water quality benefit to the Lake and implemented if found to be reasonable and practicable.	18 / 18
The water quality education program will continue to work with watershed residents to increase their understanding of practices that would reduce the amount of pollutants entering the Lake	10/5
Total Estimated Potential External (Watershed) Load Reductions	93 / 53

¹Load reduction estimate based on an estimated 300 acres of redevelopment over the next 20-year period. Since the mid 1980's more than 35 new BMPs have been constructed or existing BMPs have been improved in the watershed. The load reduction that resulted from the construction or improvement of those BMP's is calculated to be approximately 260 pounds of phosphorous on an annual basis.

²Assumes 5,000 feet of shoreline buffer restoration

Watershed Management Practice (Under Consideration)	Potential Phosphorus Removal in Pounds (annual / seasonal)
Existing BMPs will be evaluated to determine if modifications are possible to improve their TSS and phosphorus removal efficiency.	25 / 11
BMPs that infiltrate the first one inch of rainfall from all impervious surfaces will be required for all new development and redevelopment where feasible. This policy is being considered by the City of Golden Valley and the BCWMC for future adoption.	20/9
As new BMPs and water quality improvement technologies are developed they will be evaluated to determine if they can provide a water quality benefit to the Lake and they will be implemented if they are determined to be reasonable and practicable.	20/9
The feasibility of modifying the pond in Shaper Park to improve its ability to remove phosphorus will be evaluated and implemented if it is found to be reasonable and practicable.	40 / 18
Alternative: Filtration barrier to improve Shaper Park pond performance.	20 / 9
The feasibility of dredging Spring Pond and diverting low flows from the Sweeney Lake branch of Bassett Creek to the pond will be evaluated and implemented if it is found to be reasonable and practicable.	20 / 9
Alternative: Filtration barrier to improve pond performance.	20/9
Hennepin County and the Minnesota Department of Transportation are MS4s in the watershed and it is assumed that they will implement a load reduction program for untreated highway runoff.	50 / 22 ³
Total Estimated Potential External (Watershed) Load Reductions	155-175 / 69-78

Table 8.2. Sweeney Lake Management Plan (continued)

³Assumes 50% load reduction of untreated highway runoff and sweeping program

Possible Chemical Treatment Management Practices	Potential Phosphorus Removal in Pounds (annual / seasonal)
The feasibility of chemically treating stormwater from the Sweeney Lake branch of Bassett Creek will be investigated and implemented if it is found to be reasonable and practicable.	200 / 90
The feasibility of in-lake treatment to limit the internal phosphorus load from bottom sediments will be evaluated and implemented if it is found to be reasonable and practicable.	175 / na (for 85% Internal Load Reduction)

Sweeney Lake Total Phosphorus TMDL

9.0 REASONABLE ASSURANCE

9.0 Reasonable Assurance

9.1 Introduction

When establishing a TMDL, reasonable assurances must be provided demonstrating the ability to reach and maintain water quality endpoints. Several factors control reasonable assurance, including a thorough knowledge of the ability to implement BMPs as well as the overall effectiveness of the BMPs. This TMDL establishes realistic goals for the reduction of phosphorus waste loads to Sweeney Lake as well as significant internal load reductions.

TMDL implementation activities will be carried out on an iterative basis so that course corrections based on periodic monitoring and reevaluation can adjust the strategy to meet the standard. After the first phase of nutrient reduction efforts, reevaluation will identify those activities that need to be strengthened or other activities that need to be implemented to reach the standards.

Each stakeholder has agreed to implement BMPs to the maximum extent practicable. The collective approach to the categorical sources allows for greater reductions for some permit holders with greater opportunity and less for those with greater constraints. The collective approach with the member cities is currently in place under the direction of the Bassett Creek Watershed Management Commission. The BCWMC is proceeding in a good faith effort to coordinate with all parties on how to implement the TMDL.

Watershed BMPs will be completed in the next two permit cycles; at that time the BCWMC and member cities will evaluate internal load reduction options and implement the most reasonable and practicable options. Once the external load has been reduced to the maximum extent possible, the BCWMC will coordinate with the other stakeholders to discuss alternatives for addressing the internal load. Federal, State, and local funding sources will be explored to assist with reducing the internal load, if an internal load reduction is determined to be reasonable and practicable.

9.2 Monitoring

The BCWMC will evaluate progress toward meeting the goals and policies outlined in the Watershed Management Plan. The Commission's Annual Report is presented to the public at the Commission's annual public meeting. The findings of the Annual Report and the comments received from the member cities and the public are used to formulate the work plan, budget, CIP and specific measurable goals and objectives for the coming year as well as to propose modifications or additions to the management goals, policies, and strategies. At the end of each five year period the Commission intends to evaluate the success of BMP implementation in reducing the total phosphorus concentration in Sweeney Lake, and will reconvene the Technical Advisory Committee to determine if adjustments to the Implementation Plan are necessary.

The BCWMC monitors water quality in local lakes through the funding of special studies and citizen volunteer efforts. Sweeney Lake has been monitored annually under the Citizen Assisted Monitoring Program (CAMP) program through MCES. Citizen volunteers collect in-lake data on a biweekly basis. In addition, BCWMC has conducted more extensive monitoring of the lake at a frequency of about once every three to four years. This approximate frequency of monitoring is expected to continue for the parameters listed below.

- Vertical profiles of temperature, dissolved oxygen concentration, specific conductivity, and pH
- 0-2 meter composite samples analyzed for chlorophyll *a*, total phosphorus, soluble reactive phosphorus, and total nitrogen
- Total phosphorus above and below the thermocline and near bottom
- Secchi disc transparency
- Phytoplankton and zooplankton

Sweeney Lake Total Phosphorus TMDL

10.0 LITERATURE CITED

10.0 Literature Cited

Barr Engineering. 1994. Sweeney Lake Watershed and Lake Management Plan. Bassett Creek Watershed Management Commission, Golden Valley, Minnesota.

Barr Engineering. 2008. Lake Water Quality Study - Sweeney Lake and Twin Lake. Bassett Creek Watershed Management Commission, Golden Valley, Minnesota.

Barr Engineering. 2004. Detailed Assessment of Phosphorus Sources to Minnesota Watersheds. Minnesota Pollution Control Agency, St. Paul, Minnesota.

Barr Engineering. 2010. Evaluation of Groundwater and Surface-Water Interaction: Guidance for Resource Assessment, Twin Cities Metropolitan Area, Minnesota; prepared for Metropolitan Council, June 2010, 22 p.

Heiskary, S. A. and E. B. Swain. 2002. Water quality reconstruction from fossil diatoms: Applications for trend assessment, model verification, and development of nutrient criteria for lakes in Minnesota, USA. Minnesota Pollution Control Agency, Environmental Outcomes Division, St. Paul, Minnesota.

Pilgrim et al. 2007. A Method for Comparative Evaluation of Whole-lake and Inflow Alum Treatment. Water Research. 41: 1215-1224 and equations published in Thomann and Mueller. 1987. Principles of Surface Water Quality Modeling.

Appendix A P8 and Finite Difference Model Summary

P8 and Finite Difference Modeling Documentation

Hydrology and Watershed Loading

For TMDL development and lake modeling, a watershed runoff and water quality model called P8 (model available at <u>http://wwwalker.net/p8/</u>) was used. This model was needed to estimate hydrologic and phosphorus loads for years that lacked water quality and inflow data and for areas tributary to Sweeney Lake that were not monitored for flow or water quality as part of the TMDL work plan. Another benefit of using the P8 model is that the model can generate daily runoff and phosphorus loading data. These types of daily data are needed as inputs to a finite difference lake model.

Inputs into the model included 52 sub-watershed areas and 44 treatment devices. Using land use and soil type coverage, percent impervious area and curve numbers were calculated for each watershed. An existing P8 model and engineering drawings were used to define the dimensions (e.g., volume, area, and average depth) and the outlet configurations of the treatment devices. Climatology inputs to the model include air temperature (maximum and minimum) and precipitation (hourly). Temperature and precipitation data was provided by the Minnesota Climatology Working Group. Some general characteristics of the watershed and input to the model area are as follows:

- Total watershed area modeled was 2209 acres. This area does not include areas directly tributary to Twin Lake, or areas that are land locked.
- Watershed wide average impervious area: 36 percent
- Watershed wide average curve number: 78
- Precipitation for the 2004 (year upon which the TMDL is Based) water year: 36 inches
- Precipitation for June through September 2004: 16.7 inches

The P8 model was calibrated using flow and water quality data collected by the Minnesota Department of Transportation (MDOT) in 2004 and 2005 at the outlet of Schaper Pond. The Schaper Pond outlet is also the direct inlet to Sweeney Lake, with most of the watershed runoff directed through this pond. MDOT collected continuous flow data throughout the open water season and water quality (phosphorus and total suspended solids) samples for seven storm events. For each storm event, several samples were collected throughout the storm event to enable the calculation of a flow-weighted average storm event phosphorus concentration. Hydrologic calibration was done to by uniformly changing the runoff curve number for tributary watersheds so that the overall hydrologic yield of the monitored and modeled data was the same, and to match the modeled and monitored hydrograph of several storm events (Figure 1).

The water quality calibration of the P8 model consisted of changing the build-up and wash-off function in the P8 model (Figure 2). What this function does is determine the rate of phosphorus accumulation in each watershed, and then when a storm event occurs, the accumulated phosphorus is delivered into the stormwater runoff at a particular rate which is based primarily upon the intensity of the storm event.

Figure 1. Storm event (2004) used as part of the hydrology calibration of the P8 model.

Figure 2. Results of the water quality calibration of the P8 model.

The rate at which phosphorus is delivered "washed off" can be controlled by changing the value of certain coefficients. Coefficients used are as follows:

- Build up rate: 2 pounds/acre/day
- Decay Rate (1/d): 0.25 (limits the amount of phosphorus that can build up on the watershed)
- Wash-off Coefficient: 6
- Wash-off Exponent: 3
- Pervious Runoff Exponent: 1.6

Lake Modeling

Lake modeling to determine the concentration of phosphorus in the lake water column with a given hydrologic and phosphorus load was conducted using a finite difference model and the assumption that the lake is completely mixed. The finite difference model used is described by the following equation:

$$C = Co + \frac{(W * t - Qout * C - K * V * S) * \Delta T}{V}$$

Where: C = phosphorus concentration in the lake, Co = initial phosphorus concentration, or phosphorus concentration from the previous time step, W = phosphorus loading from external sources, internal sources, and dry or wet deposition directly on the lake, Qout = flow out of the lake, which is assumed to be equal to the seven day running average inflow rate, K = net apparent settling velocity (units of 1/y, and KVS=phosphorus mass loss by settling). The net apparent settling velocity (K) can also be expressed in units of m/y if the average lake depth is used in the settling loss equation.

The first step in developing the model was the development of a water balance for Sweeney Lake. The water balance model including modeled inflows from all tributary watersheds, direct precipitation, evaporative loss from the lake (function of lake and air temperature, relative humidity, and wind speed), and lake outflows. Using the water balance, the lake model was built using modeled phosphorus inflow concentrations, a dry deposition rate of 0.3 kg/ha/y, and initial estimates of net apparent settling velocities and internal loading rates.

Net apparent settling rate and internal loading rates were the primary calibration parameters for the model. The net apparent settling rate was calibrated by selecting different values to match the phosphorus decline rate in Sweeney Lake following a storm event (see Figure 3). The internal load rate was then changed to improve the fit between the modeled and observed concentrations of phosphorus in Sweeney Lake. The calibrated net apparent settling velocity was 4.2m/y or 17 m/y. The lake wide average internal load rate (this is the fraction of internal load that is released from the sediments to the bottom waters that reaches the top 2 meters of the lake) used to calibrate the model was 5.7 mg/m2/d. This rate was applied to the entire 67-acre surface area of the lake for simplicity. Clearly, the actual area of the lake that is anoxic and where release occurs is much less.

Figure 3. Results of the water quality calibration of the in lake water quality model for 2004.

Load Reduction Scenarios

Once the model was built, different load reduction scenarios were run to identify several different external and internal load reduction combinations that could be used to meet an in-lake phosphorus concentration of $38 \ \mu g/L$ (this concentration was used to provide a margin of safety-the water quality criterion is $40 \ \mu g/L$). The graph in Figure 4 shows the potential combinations of external and internal loads that can be used to achieve $38 \ \mu g/L$ in Sweeney Lake during June through September (defined with the calibrated model. The load allocation identified in this report includes an additional 50 pounds of external phosphorus control over what would be needed (according to the analysis presented in Figure 4). The additional 50 pounds of external load control will lead to an average summer in-lake phosphorus concentration of $35 \ \mu g/L$.

Figure 4. Combinations of external and internal load control that will lead to an in-lake phosphorus level of 38 ug/L during the June through September averaging period.

Appendix B BATHTUB Modeling Summary

MEMORANDUM

Ron Leaf	Rebecca Nestingen	February 12, 2010
TO:	FROM:	DATE:

BATHTUB Modeling Summary for Sweeney Lake SEH No. BCWMC0701.00 RE:

FLUX by Three Rivers Park District. The flow weighted mean concentrations from FLUX were used in BATHTUB as the tributary input and the PROFILE mean concentrations were used as the segment water tributary (Schaper Pond). The in-lake observed water quality data analysis and reduction was performed in PROFILE by SEH and the monitored tributary water quality and flow data analysis was performed in Sweeney Lake was modeled in BATHTUB as a two segment reservoir (South and North) with one quality input.

Other input data in BATHTUB included:

- Evaporation estimates from observed 2007 and 2008 growing season pan evaporation at the
- UMN Climatological Observatory multiplied by a pan coefficient of 0.75 Precipitation depths obtained from Three Rivers Park District during the flow monitoring period
 - Averaging period which corresponds with the duration of flow monitoring
- Atmospheric deposition estimate from "Detailed Assessment of Phosphorus Sources to •
- Tributary mean annual flow rate from Barr Engineering P8 simulated runoff volume in Sweeney Minnesota Watersheds - Atmospheric Deposition: 2007 Update" (Barr Engineering, 2007)
 - Segment morphometry measured from bathymetric map of Sweeney Lake (Minnesota DNR, 193) Lake watershed

The significant model selections used which gave the best calibration to the measured in-lake water quality data are shown in the following table

Model Options	BATHTUB Model Equation
Phosphorus Balance	2 nd order, available P
Chlorophyll-a	P, light, flushing
Secchi Depth	Total P
Phosphorus Calibration	Decay rates

rate, the additional sediment release inherent in the sedimentation model causes the model to overestimate the TP concentrations. Thus, the phosphorus decay rate calibration coefficient was increased in the model The BATHTUB model also allows users to specify internal phosphorus loading rates and the model runs were performed with and without specification of the internal loading. By specifying an internal loading with internal loading to offset the sediment P recycling inherent in the model.

the total load. The load/response curve for the model scenario with internal loading indicated that the goal When internal loading was specified, the internal phosphorus load accounted for approximately 70% of

Short Elliott Hendrickson Inc., 3535 Vadrais Center Drive, St. Paul, MN 55110-5196 SEH is an equal opportunity employer | www.sehtnc.com | 651.490.2000 | 800.225.2055 | 651.490.2150 fax
BATHTUB Modeling Summary for Sweeney Lake February 12, 2010 Page 2 in-lake total phosphorus concentration of 40 ppb, could not be reached through only reducing the external load.

rsn Attachment - Input/Output Summary

•

s:bethtewns:070108/hathtebisch.memo.doex

Sweeney Lake 2007 File: S:\AE\B\Bcwmc\0701	00\Bathtul	b\Sweene	y07.btb																
Description:	:			1															
Averacing Daried (vice)	Mean	3 3		SI S	odel Option	<u>IS</u> Publication			escription	C L									
Evolution (m)	0.430	0.0		3	IIServauve -	SUDSIANCE													
Evanoration (m)	0.761	0.0		ĒŽ	uspriorus d rocen Balai	alarice		- 0	NT COMPLET, V	ED ED									
Storage Increase (m)	0	0.0		ų į	lorophyll-a	2		2 C1 C	LIGHT, T	3									
Attest 1 2		ňö		80 9	ccrii bepin			о	S. IUIAL P										
Aurios. Loads (kg/km -yr) Conserv. Substance	<u>Mean</u> 0	200		5 f	spersion osnhorus C	alihration			SCHEH-NUN	1ERIC									
Total P	24.9	0.50		Ϋ́	rogen Calib	ration			ECAY RATES										
Total N	1000	0.50		ш	or Analysis			-	ODEL & DAT	A									
Ortho P	15	0.50		Avi	ailability Fac	ctors		0 1G	NORE										
Inorganic N	500	0.50		Ma	ss-Balance	Tables		5° - °	SE ESTIMAT	ED CONC	S								
				5	indu neering			ц Ч											
Segment Morphometry													ternal Load	its (mg/m	2-day)	¹ State and second straining	eden estadore en actuales	- Section of the sect	
	ou	utflow		Area	Depth	Length Mix	(ed Depth ((m)	/pol Depth	Ν	n-Algal Tu	rb (m ⁻¹) 6	onserv.	Ξ.	otal P	Tot	tal N	f and a second s	
Seg Name	Se	gment	Group	km²	8	<u>k</u>	Mean	3	Mean	2	Mean	2	Mean	3	Mean	2	Mean	2	in and the second s
1 South 2 North		0 0		0.179 0.097	3.963 3.301	0.85 0.52	3.543 2.883	00	00	00	0.25 0.24	1.81	00	00	00	00	00	00	
Segment Observed Water On	ality														The second second second second	A STATISTICS AND AND AND A STATISTICS	Within the second second second	And a second	
Conserv	To	ital P (ppb)) To	tal N (ppb)	ų	(qdd) e-l	Sec	cchi (m)	Org	anic N (pp	dT (d	- Ortho P	H (qdd)	sb/dqq) OC	ay) M	OD (ppb/da	y)		
Seg Mean	ୢୄ୰ୖ	Mean 53.4		Mean BOE B	*0 265	Mean %) o	202	Mean	200	<u>Mean</u>	ଧ	<u>Mean</u> *47 E	*0 0 15 0 15 0 8	Mean	ଧ୍ର	Mean	잉이		
5 .	0	e52.9	0.21	269.9	¢0.228	* 19	0.731	. .	0.205	00	00	*47.5	0.928	00	0	0	0		
Segment Calibration Factors	1		I					2											
Dispersion Rate Seg Mean	CV To	ital P (ppb) Mean	(CV To	tal N (ppb) Mean	ч С	l-a (ppb) Mean	CV Sec	ochi (m) Mean	org CV	anlc N (pp Mean	cv TP CV	- Ortho P Mean	(ppb) CV	DD (ppb/di Mean	ية) 20	OD (ppb/da Mean	رب در		
c	00		0		00	-	0 (0	-	° '	-	0		0		0		
-	5	-	5		þ	-	>	-	5	-	Ð	-	0	-	Ð	-	5		
🐲 Tributary Data			ſ	1	3.	1		I		i	:			•	:	:			
Trib Nome	50.0	tucura	T. Dr	Area Flo	w (hm²/yr) Maar	Co Co	Iserv.	0 1 2	tal P (ppb)	Tol	al N (ppb)	0	rtho P (ppt	= 20 ()	organic N	(ddd)			
1110 1111 Name 1 SchaperPond	00	Till and		Ē,	<u>mean</u> ≋6.128	3°	0 0	3 0	*114.37	0.115 10	<u>Mean</u> 240.12	0.052	<u>mean</u> _{**} 17.48	≈ 0.146	0 0	30			
Model Coefficients Dispersion Rate		<u>Mean</u> 1.000	<mark>20</mark> 20																
Total Phosphorus	Ŷ	(1:150)	0.45																
l otal Nitrogen Chi-a Model		1.000	0.55																
Secchi Model		1.000	0.10																
Organic N Model TP OD Model		1.000	0.12																
HODV Model		1.000	0.15																
MODv Model		1.000	0.22																
Secchi/Chla Stope (m ² /mg)		0.025	0.00																
Mittinuturi Qs (n/yr) Chi-a Flushina Term		0.100	0.00																
Chl-a Temporal CV		0.620	0																
Avail. Factor - Total P		0.330	0 0																
Avail Factor - Urno P Avail Factor - Total N		1.930																	
Avail. Factor - Inorganic N		0.790	0																

Sweeney Lake 2007 File: S:\AE\B\Bcwmc\070100\Bathtub\Sweeney07.btb Predicted & Observed Values Ranked Against CE Model Development Dataset

		n n n n n n n n n n n n n n n n n n n				
Segment:	а 8	rea-Wtd	Mean			
	Predicted Va	alues>		Observed V	alues>	
Variable TOTAL P MG/M3	Mean	S 5	Rank	Mean 53.0	ମହ	Rank 54 7%
TOTAL N MG/M3	793.2	0.19	35.7%	793.2	0.25	35.7%
C.NUTRIENT MG/M3	38.8	0.15	54.1%	37.8	0.24	52.8%
CHL-A MG/M3	(15.9)	0.35	75.3%	20.2	0.77	84.1%
SECCHI M	0.8	0.17	36.8%	1.3	0.21	61.0%
ORGANIC N MG/M3	538.1	0.25	59.8%			
TP-ORTHO-P MG/M3	30.0	0.32	50.1%	47.5	0.92	68.6%
ANTILOG PC-1	406.6	0.34	65.1%	395.9	0.58	64.3%
ANTILOG PC-2	7.8	0.27	64.3%	12.9	0.40	90.7%
(N - 150) / P	11.5	0.29	28.2%	12.1	0.29	30.8%
INORGANIC N / P	9.9	0.82	13.4%			
TURBIDITY 1/M	0.2	1.31	15.2%	0.2	1.31	15.2%
ZMIX * TURBIDITY	0.8	1.35	4.1%	0.8	1.35	4.1%
ZMIX / SECCHI	4.0	0.16	38.0%	2.5	0.16	13.2%
CHL-A * SECCHI	13.3	0.34	64.6%	27.0	0.60	91.5%
CHL-A / TOTAL P	0.3	0.33	72.1%	0.4	0.61	85.1%
FREQ(CHL-a>10) %	6.99	0.30	75.3%	79.5	0.31	84.1%
FREQ(CHL-a>20) %	24.8	0.72	75.3%	38.5	0.92	84,1%
FREQ(CHL-a>30) %	9.1	1.02	75.3%	17.2	1.41	84.1%
FREQ(CHL-a>40) %	3.6	1.25	75.3%	8.0	1.82	84.1%
FREQ(CHL-a>50) %	1.5	1.44	75.3%	3.9	2.15	84.1%
FREQ(CHL-a>60) %	0.7	1.59	75.3%	2.0	2.44	84.1%
CARLSON TSI-P	62.2	0.04	57.0%	61.5	0.04	54.7%
CARLSON TSI-CHLA	57.7	0.06	75.3%	60.1	0.09	84.1%
CARLSON TSI-SEC	62.6	0.04	63.2%	55.8	0.04	39.0%
Seament:	- S	outh				
	Predicted Va	senli		Observed V	alues>	
<u>Variable</u>	<u>Mean</u>	깅	<u>Rank</u>	Mean	깅	Rank
TOTAL P MG/M3	58.8	0.17	59.0%	53.4	0.23	54.8%
TOTAL N MG/M3	805.8	0.26	36.7%	805.8	0.26	36.7%
C.NUTRIENT MG/M3	40.0	0.19	55.7%	38.2	0.25	53.4%
CHL-A MG/M3	15.7	0.40	74.9%	20.9	0.79	85.1%
SECCHI M	0.8	0.16	34.9%	1.3	0.21	59.6%
ORGANIC N MG/M3	534.7	0.26	59.3%			
ТР-ОВТНО-Р МG/M3	29.8	0.32	49.8%	47.5	0.92	68.6%
ANTILOG PC-1	418.3	0.37	65.8%	417.5	0.78	65.8%
ANTILOG PC-2	7.5	0.31	61.4%	12.9	0.56	90.7%
(N - 150) / P	11.2	0.37	26.8%	12.3	0.40	31.7%
INORGANIC N / P	9.4	0.99	12.3%			
TURBIDITY 1/M	0.3	1.81	15.6%	0.3	1.81	15.6%
ZMIX * TURBIDITY	0.9	1.81	5.1%	0.9	1.81	5.1%
ZMIX / SECCHI	4.4	0.16	44.5%	2.7	0.21	16.8%
CHL-A * SECCHI	12.7	0.40	62.0%	27.2	0.82	91.7%

CHL-A / TOTAL P	0.3	0.39	68.8%	0.4	0.83	ω
FREQ(CHL-a>10) %	66.3	0.36	74.9%	81.0	0.41	œ
FREQ(CHL-a>20) %	24.3	0.84	74.9%	40.5	1.21	ö
FREQ(CHL-a>30) %	8.8	1.19	74.9%	18.6	1.86	õ
FREQ(CHL-a>40) %	3.5	1.45	74.9%	8.7	2.37	ö
FREQ(CHL-a>50) %	1.5	1.66	74.9%	4.3	2.79	ö
FREQ(CHL-a>60) %	0.7	1.84	74.9%	2.2	3.15	ö
CARLSON TSI-P	62.9	0.04	59.0%	61.5	0.05	ŵ
CARLSON TSI-CHLA	57.6	0.07	74.9%	60.4	0.13	õ
CARLSON TSI-SEC	63.1	0.04	65.1%	56.2	0.05	4
Segment:	2	lorth				
1	Predicted V	alues>		Observed Va	alues>	
Variable	Mean	С С	Rank	Mean	S	
TOTAL P MG/M3	51.3	0.19	53.0%	52.9	0.21	Ω
TOTAL N MG/M3	769.9	0.23	34.0%	769.9	0.23	õ
C.NUTRIENT MG/M3	36.4	0.17	51.0%	37.0	0.22	íO
CHL-A MG/M3	16.2	0.36	76.1%	19.0	0.73	õ
SECCHI M	0.9	0.18	40.1%	1.4	0.20	ö
ORGANIC N MG/M3	544.4	0.25	60.7%			
TP-ORTHO-P MG/M3	30.4	0.34	50.6%	47.5	0.93	õ
ANTILOG PC-1	385.1	0.37	63.5%	356.0	0.72	ò
ANTILOG PC-2	8.4	0.27	69.3%	12.8	0.51	ອ
(N - 150) / P	12.1	0.34	30.8%	11.7	0.35	સં
INORGANIC N / P	10.8	1.07	15.5%			
TURBIDITY 1/M	0.2	1.57	14.5%	0.2	1.57	÷
ZMIX * TURBIDITY	0.7	1.57	2.5%	0.7	1.57	
ZMIX / SECCHI	3.2	0.18	25.1%	2.1	0.20	
CHL-A * SECCHI	14.5	0.34	68.9%	26.6	0.76	ັດ
CHL-A / TOTAL P	0.3	0.33	77.3%	0.4	0.76	ά
FREQ(CHL-a>10) %	68.0	0.31	76.1%	76.6	0.46	8
FREQ(CHL-a>20) %	25.8	0.74	76.1%	34.7	1.25	õ
FREQ(CHL-a>30) %	9.6	1.05	76.1%	14.8	1.86	õ
FREQ(CHL-a>40) %	3.9	1.29	76.1%	6.5	2.34	õ
FREQ(CHL-a>50) %	1.7	1.49	76.1%	3.1	2.74	õ
FREQ(CHL-a>60) %	0.8	1.65	76.1%	1.5	3.08	õ
CARLSON TSI-P	60.9	0.05	53.0%	61.4	0.05	ഹ്
CARLSON TSI-CHLA	57.9	0.06	76.1%	59.5	0.12	čõ
CARLSON TSI-SEC	61.6	0.04	59.9%	55.2	0.05	ĕ

 Hank

 554.4%

 334.0%

 334.0%

 653.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 633.4%

 72.4%

 72.4%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 822.0%

 823.0%

86.2% 85.1% 85.1% 85.1% 85.1% 85.1% 85.1% 85.1% 40.4%

Sweeney Lake 2007 File: S:\AE\B\Bcwmc\070100\Bathtub\Sweeney07.btb Load / Response Tributary: All Srgment: Artea-Wtd Mean Variable: TOTAL P MG/M3

	Low	47.9	16.1	26.3	34.6	41.7	47.9	53.6	58.9	63.8	68.4	72.7
MG/M3	징	0.17	0.13	0.15	0.16	0.17	0.17	0.18	0.18	0.18	0.19	0.19
TOTAL P	Mean	56.2	18.1	30.2	40.0	48.6	56.2	63.1	69.5	75.5	81.1	86.4
Conc	mg/m ³	114.4	22.9	45.7	68.6	91.5	114.4	137.2	160.1	183.0	205.9	228.7
Load	kg/yr	700.9	140.2	280.3	420.5	560.7	700.9	841.0	981.2	1121.4	1261.5	1401.7
Flow	hm3/yr	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Scale	Factor	Base:	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00

High 65.8 65.8 20.4 46.3 56.6 65.8 65.8 82.0 88.3 88.3 96.2 102.7

	N 0 0	<u></u> 2000	<u> </u>		
	Total	o/day)	o/day)		
	<u>S</u>	D (pp	D (pp Mean	00 00 00	
	ay) I P 0 0	0 0 CC	0 0 <u>C</u>	lanic N (p <u>Mean</u> 0	
	mg/m2-da Total 0 0	opb/day) <u>ean</u> 0 0	ppb/day) <u>aan</u> 1	Inorg I 83	
	ads (1) DOH		0. (dc	
	nternal Lo Conserv. 0 0	o (ppb) 0.591 0.523	(ppb) 0 0	rtho P (p <u>Mean</u> 13.39	
	rb (m ⁻¹) - II <u>1.82</u> 2.4	- Ortho F <u>Mean</u> 48.9	- Ortho F <u>Mean</u> 1	0.038 0.038	
	n-Algal Tu <u>Mean</u> 0.15 0.13	ه د م د م	۲ ۵° ⁽ ۵	al N (ppb) <u>Mean</u> 405.56	
		N (pp	N (ppl	36 Tot	
UTED UTED UTED UMERI UMERI TES ATA ATED (Drganic Me:	Irganic Mea	000	
Description ND ONDE ND ONDE ND ONDE ND ONDE ND COMP ND COMP S. TOTAL S. TOTAL S. TOTAL S. TOTAL ND COMP ND COM	ypol Depti Mean 0	0.485 0.485	ୢଽ୲ୢୄୢ	otal P (ppb <u>Mean</u> 124.51	
ଅଟେ	ୢୢୢୢୖୄୢୄୄ	ni (m) 2.1 2.1	it (m) 1 1	ہد م	
804000000000000000000000000000000000000	oth (m	Secch	Secch		
2	lixed De <u>Mean</u> 3.543 2.883	0.728	<u></u> ରୁ ୦ ୦	onserv. <u>Mean</u> 0	
15 Substance Kalance Alance nce alifizration nration rration Tables	Length N 0.85 0.52	l-a (ppb) <u>Mean</u> 13.8 12.6	l-a (ppb) <u>Mean</u> 1	ి _ర ి	
iel Option servative sphorus E sphorus E agen Bala arrophyli-a chopthyli-a sersion sersion sersion sersion seratance s-Balance s-Balance	Depth 3.963 3.301	0.225 0.217	ମ୍ଚ _ଚ	(hm³/yr) <u>Mean</u> 4.975	
Moc Concornition Nitro Secon S	er≈_100 ►	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dqq 1	Flow	
	Are 0.17 0.09	Total N (<u>Mea</u> 72 69	Fotal N (_I	Dr Area <u>km</u>	
y08.btb	Group) 0.512 0.491	<u>ି ଧ</u> ିତ ଦ	I IVDe	CV 0.70 0.455 0.455 0.455 0.455 0.455 0.115 0.115 0.115 0.000 0.000 0.000 0.000 0.000 0.000
blSweene CV 0.0 0.50 0.50 0.55 0.55 0.55 0.55 0.55	utflow <u>gment</u> 2 0	tal P (ppb <u>Mean</u> 54.5 58	lal P (ppb <u>Mean</u> 1	ament 1	Mean 1.000 1.000 1.000 1.000 1.000 0.100 0.025 0.100 0.620 0.100 0.520 0.520 0.550
00\Bathtu <u>Mean</u> 0.526 0.5409 0.714 0.714 0 24.6 1000 15 500	ର କ୍ଷା	ality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 <mark>C</mark>	ő	
8 wmc\0701))	etry	Water Qu nserv <u>Mean</u> 0	n Factors Rate <u>1</u> 1		(jim) ⁶
E\B\Bc E\B\Bc (m) (m) (m) (m) (m) (m) (m) (m) (m) stance stance	rphom	Served	Ibratio rsion I	a lame erPonc	te trus rrus rrus rrus rrus rrus rrus rrus
rey La S:\Al S:\Al Digned Period Peri	ant Moi South North	nt Obs	nt Call Dispe	ry Dat <u>Trib N</u> Schap	Coeffic ion Ration Ration Ration Ration Ration Ration nosphoto odel Model Model Model Andel Model Model Model Model Anton Ration Ration - Chila Site and Site and S
Sweer File: Description Average Precipion Evapor Storage Conser Total P Total P Total N Total N Total N Total N	Segme 1 2	Segme Seg 1 2	Segme 2 2	Tributa <u></u>	Model C Dispers Fotal Ni Cotal Ni Secchi A Monu A Monu A Monu A Minimun Minimu
		-			

<u></u>ରୁ ୦ ୦

Sweeney Lake 2008 File:

S:\AE\B\Bcwmc\070100\Bathtub\Sweeney08.btb

Predicted & Observed Values Ranked Against CE Model Development Dataset

)				
Segment:	3	Area-Wtd	Mean			
	Predicted V	alues>		Observed \	/alues>	
Variable	Mean	S 5	Rank	<u>Mean</u>	ମ୍ବ	Rank
TOTAL N MG/M3	0.417	0.17	% / /C	00.1	00.0	% / 'nn
C.NUTRIENT MG/M3	36.3	0.14	50.8%	35.9	0.35	50.3%
CHL-A MG/M3	17,4	0.32	78.8%	13.4	0.66	67.7%
SECCHI M	0.8	0.17	36.2%	2.0	0.46	79.8%
ORGANIC N MG/M3	563.5	0.24	63.3%			
TP-ORTHO-P MG/M3	30.2	0.33	50.3%	45.7	0.57	67.1%
ANTILOG PC-1	419.9	0.32	66.0%	180.3	0.55	40.7%
ANTILOG PC-2	8.4	0.24	69.4%	13.5	0.41	92.2%
(N - 150) / P	9.9	0.27	21.5%	10.1	0.43	22.4%
INORGANIC N / P	5.7	1.18	4.8%			
TURBIDITY 1/M	0.1	1.46	5.0%	0.1	1.46	5.0%
ZMIX * TURBIDITY	0.5	1.47	0.7%	0.5	1.47	0.7%
ZMIX / SECCHI	4.0	0.16	38.8%	1.6	0.33	3.3%
CHL-A * SECCHI	14.3	0.31	68.5%	27.2	0.58	91.7%
CHL-A / TOTAL P	0.3	0.29	75.8%	0.2	0.61	62.6%
FREQ(CHL-a>10) %	71.9	0.24	78.8%	56.3	0.53	67.7%
FREQ(CHL-a>20) %	29.5	0.60	78.8%	16.9	1.16	67.7%
FREQ(CHL-a>30) %	11.6	0.87	78.8%	5.4	1.63	67.7%
FRED(CHI -a>40) %	49	1 08	78.8%	19	1 00	67 7%
	0.0	1 25	78.8%	80	2.08	67 7%
	4 C		0/ 0' 0 /0		0,1.7	0/ 1.10
	0 -	50.1	10.0%	0.0	2007	0/.1.10
CARLSON ISI-P	62.4	0.04	%/./0	02.1	60.0	%/.0C
CARLSON TSI-CHLA	58.6	0.05	78.8%	56.0	0.08	67.7%
CARLSON TSI-SEC	62.8	0.04	63.8%	49.8	0.10	20.2%
Segment:	÷	south				
	Predicted V	alues>		Observed V	/alues>	
Variable	Mean	<u>5</u>	Rank	Mean	S	Rank
TOTAL P MG/M3	60.1	0.16	59.9%	54.5	0.51	55.7%
TOTAL N MG/M3	724.0	0.22	30.6%	724.0	0.22	30.6%
C.NUTRIENT MG/M3	37.4	0.18	52.3%	36.0	0.36	50.3%
CHL-A MG/M3	17.3	0.34	78.6%	13.8	0.62	69.1%
SECCHI M	0.8	0.16	34.2%	2.0	0.44	79.1%
ORGANIC N MG/M3	562.5	0.25	63.1%			
TP-ORTHO-P MG/M3	30.2	0.33	50.3%	44.0	0.59	65.7%
ANTILOG PC-1	434.7	0.33	66.9%	188.5	0.71	42.1%
ANTILOG PC-2	8.1	0.26	66.8%	13.7	0.54	92.4%
(N - 150) / P	9.6	0.33	19.9%	10.5	0.57	24.1%
INORGANIC N / P	5.4	1.31	4.3%			
TURBIDITY 1/M	0.2	1.82	5.6%	0.2	1.82	5.6%
ZMIX * TURBIDITY	0.5	1.82	1.1%	0.5	1.82	1.1%
ZMIX / SECCHI	4.5	0.16	45.6%	1.8	0.43	4.4%
CHL-A * SECCHI	13.7	0.33	66.1%	27.6	0.76	92.0%

HL-A / TOTAL P	0.3	0.32	72.7%	0.3	0.79
:Q(CHL-a>10) %	71.7	0.25	78.6%	58.3	0.66
:Q(CHL-a>20) %	29.3	0.64	78.6%	18.2	1.46
:Q(CHL-a>30) %	11.5	0.92	78.6%	5.9	2.04
Q(CHL-a>40) %	4.8	1.14	78.6%	2.1	2.48
Q(CHL-a>50) %	2.2	1.32	78.6%	0.9	2.83
Q(CHL-a>60) %	1.0	1.47	78.6%	0.4	3.13
LSON TSI-P	63.2	0.04	59.9%	61.8	0.12
ILSON TSI-CHLA	58.6	0.06	78.6%	56.3	0.11
ILSON TSI-SEC	63.4	0.04	65.8%	50.0	0.13
ment:	2	Jorth			
	Predicted V	alues>		Observed Va	<senle< td=""></senle<>
able	Mean	깅	Rank	Mean	깅
AL P MG/M3	51.5	0.20	53.2%	58.0	0.49
ALN MG/M3	696.0	0.22	28.5%	696.0	0.22
UTRIENT MG/M3	34.1	0.17	47.7%	35.8	0.34
-A MG/M3	17.5	0.35	79.0%	12.6	0.73
CHI M	0.9	0.18	39.9%	2.1	0.49
BANIC N MG/M3	565.2	0.26	63.5%		
DRTHO-P MG/M3	30.1	0.36	50.1%	48.9	0.52
ILOG PC-1	392.7	0.37	64.1%	165.2	0.82
ILOG PC-2	9.0	0.26	73.7%	13.3	0.62
150) / P	10.6	0.34	24.4%	9.4	0.55
RGANIC N / P	6.1	1.61	5.6%		
BIDITY 1/M	0.1	2.40	4.0%	0.1	2.40
<pre>< * TURBIDITY</pre>	0.4	2.40	0.3%	0.4	2.40
<pre></pre>	3.2	0.18	25.3%	1.4	0.47
-A * SECCHI	15.5	0.33	72.4%	26.5	0.87
-A / TOTAL P	0.3	0.32	80.6%	0.2	0.87
Q(CHL-a>10) %	72.3	0.26	79.0%	52.5	0.88
Q(CHL-a>20) %	29.9	0.66	79.0%	14.6	1.86
Q(CHL-a>30) %	11.9	0.96	79.0%	4.4	2.55
Q(CHL-a>40) %	5.0	1.19	79.0%	1.5	3.08
Q(CHL-a>50) %	2.2	1.37	79.0%	0.6	3.50
Q(CHL-a>60) %	1.1	1.53	79.0%	0.2	3.86
LSON TSI-P	61.0	0.05	53.2%	62.7	0.11
ILSON TSI-CHLA	58.7	0.06	79.0%	55.5	0.13
LSON TSI-SEC	61.7	0.04	60.1%	49.3	0.14

 Hank

 558.4%

 558.4%

 558.4%

 64.9%

 80.9%

 81.7%

 81.7%

 82.8%

 81.7%

 82.8%

 83.2%

 81.7%

 83.2%

 81.7%

 83.2%

 81.7%

 91.7%

 91.7%

 91.7%

 91.7%

 91.1%

 91.1%

 91.1%

 91.1%

 91.1%

65.6% 69.1% 69.1% 69.1% 69.1% 69.1% 69.1% 69.1%

Sweeney Lake 2008 File: S:\AE\B\Bcwmc\070100\Bathtub\Sweeney08.btb Load / Response Tributary: All Segment: Area-Wtd Mean Variable: TOTAL P MG/M3

	Low	48.7	17.0	27.3	35.5	42.5	48.7	54.4	59.5	64.3	68.9	73.1
AG/M3	잉	0.17	0.12	0.14	0.16	0.16	0.17	0.18	0.18	0.18	0.19	0.19
OTAL P N	Mean	57.1	19.0	31.2	41.1	49.5	57.1	63.9	70.2	76.1	81.6	86.9
Conc T	mg/m³	124.5	24.9	49.8	74.7	99.6	124.5	149.4	174.3	199.2	224.1	249.0
Load	kg/yr	619.4	123.9	247.8	371.7	495.5	619.4	743.3	867.2	991.1	1115.0	1238.9
Flow	hm3/yr	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Scale	Factor	Base:	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00

		ibr seaschal precip. on P8 simulated	Secchi (m) 0.8 1.3 1.59 2.0 2.46 2.46	
SEH #: File #: Ot: 2		2 NOT adjusted . 2 patterns, based	Chia Con (ppb) 10.1 20.2 1.26 17.6 17.6 13.4 0.76 0.76 0.76 0.76 0.76 0.76 200 200 200 200 200 200 200 200 200 20	
Proper: Sweenaw Lake TMDL subject: BATHTUB Model Swmman Date: ClafOG (D9 by R. Nestingen theodor: Date: Office:	Assumptions:	- No Internal Loading Specified - Flow Rate = (6.128 (2007) (NWPALP) 4.975 (2008)	Calibration Factores: TP Chi-a 2007 1.23 0.89 2008 1.08 2008 1.08 2008 1.08 Results (Area-Weighted Means): Results (Area-Weighted Means): TP Conc. (ppb) 2004 Coserved 56.9 2004 Cos/Pred. Ratio 0.95 Cos/Pred. Ratio 0.95 Cos/Pred. Ratio 0.95 Cos/Pred. Ratio 0.95 Cos Predicted 56.9 Cos Predicted 56.9 Cos Pred. Ratio 0.95 Cos Load 2004001: (40 get to in-lake TPco Cos Load 2004001: (40 get to in-lake TPco Cos Load 2004001: 22007	

<u>ummary</u> <u>Nestingen</u> sh # <u>Ome: of shaff</u> of sign ² d ⁻¹ - Nerth Easin 15.6 mg m ⁻² d ⁻¹ - South Easin assumptions) ^E C. (ppb) (M-a. Corr. (ppb) Seachi (m) 3 [5,8 0.9 1.3 0.2 1.3 8 1.28 1.50 1.34 0.8 7 13.4 0.8 7 0.340 2.40	: 6 Tdal '08 Lead(Kg/km) % Tctal 104 1633 72.3 39,10 62.60 27.7	1. lake TP Cerc. of UD pape) 019 N/A* 019	ileved with external load reduction only. Ke TP conc. remains at 41.9 ppb , and & madeling years, respectively.
Assumptions: <u>Proder Burger Actual Late 7</u> subject: <u>BATHITUE Model</u> subject: <u>BATHITUE Model</u> subject: <u>BATHITUE Model</u> parts: <u>Batter Batter</u> Assumptions: Assumptions: Assuming Anaxic Cond.) Assuming Anaxic Cond.) Assuming Anaxic Cond.)	Calibration Factors & Chl- TP Chl- ZOC7 6.57 C1. ZOC8 6.32 D.5 Ang. 6.45 0.7	Results (Area. Weighted Mea Predicted Observed Costroed Costroed Observed Obs. (Predicted Obs. (Predicted Obs. (Predicted	Internal vs. External TP Loo 'D7-Lood (19/41) Internal 1084 External* 708 * Incudes procipitation load	Lead Reduction: (to get to 2007 Ches. Load Food Load Load Reduction	* Good conc. can not be c At 10 external load, in- 46.8 ppb fer 2007 and 8

Appendix C ERDC Sediment Core Analysis Report

Internal Phosphorus Loading and Sediment Characteristics: Sweeney Lake, Minnesota

7 December, 2007

William F. James ERDC Eau Galle Aquatic Ecology Laboratory W. 500 Eau Galle Dam Road Spring Valley, Wisconsin 54767

Approach

Internal loading of phosphorus from sediments was determined for sediment cores collected in the north and south hypolimnetic basins of Sweeney Lake, Minnesota (Table 1). A Wildco KB Sediment Core Sampler (Wildco Wildlife Supply Co.), equipped with an acrylic core liner (6.5-cm ID and 50-cm length), was used to collect intact sediment cores (undisturbed) at each station. The core liners, containing both sediment and overlying water, were sealed using stoppers and stored in a protective box until analysis. Additional lake water was collected for incubation with the collected sediment. Six cores were collected at these stations for analysis of P release from sediment under oxic conditions (3 replicates) and under anoxic conditions (3 replicates) using methods outlined in James and Barko (1991).

In the laboratory, the cores were drained of overlying water and the upper 10 cm of sediment was transferred intact to a smaller acrylic core liner (6.5-cm dia and 20-cm ht) using a core remover tool. Lake water was filtered through a glass fiber filter (Gelman A-E), with 300 mL then siphoned onto the sediment contained in the small acrylic core liner without causing sediment resuspension. Sediment incubation systems consisted of the upper 10-cm of sediment and filtered overlying water contained in acrylic core liners that are sealed with rubber stoppers. The sediment incubation systems were placed in a darkened environmental chamber and incubated at a constant temperature for up to 3 weeks. The incubation temperature was 20 C. The oxidation-reduction environment in each system was controlled by gently bubbling either air (oxic) or nitrogen (anoxic) through an air stone placed just above the sediment surface. Bubbling action insured complete mixing of the water column but did not disrupt the sediment.

Water samples for soluble reactive phosphorus (SRP) were collected from the center of each sediment incubation system using an acid-washed syringe and immediately filtered through a 0.45 μ m membrane syringe filter (Nalge). The water volume removed from each system during sampling was replaced by addition of filtered lake water preadjusted to the proper oxidation-reduction condition. These volumes were accurately measured

for determination of dilution effects. SRP was measured colorimetrically using the ascorbic acid method (APHA 1998). Sampling was conducted at daily intervals for 5 days, then every other day for an additional 14 days. Rates of SRP release from the sediment (mg m⁻² d⁻¹) were calculated as the linear change in concentration in the overlying water divided by time and the area of the incubation core liner.

Sediment moisture content (%) and density (g/mL) were determined gravinometrically as the change in mass of a known volume of fresh sediment after drying at 105 C. Organic matter content was estimated as loss-on-ignition (LOI) by combusting sediment at 500 C for twenty-four hours. Additional sediment subsamples were dried and ground to pass through a 2 mm mesh for analysis of phosphorus (P) and iron (Fe) using ICP spectrophotometry after microwave digestion (APHA 1998). Fresh sediment was sequentially extracted with 0.1 M ammonium chloride and 0.11 M bicarbonate-dithionate for determination of loosely-bound and iron-bound P (Psenner and Puckso 1988). These functionally-defined fractions have been linked to eH-related (i.e., redox potential) sediment diffusive P flux (Boström et al. 1982; Nürnberg 1988; Jensen and Thamdrup 1993; Petticrew and Arocena 2001; Søndergaard et al. 2003; Pilgrim et al. 2007). Thus, the sum of the concentration of these variables represents redox-sensitive P and can be used to estimate internal P loading from sediment.

Results and Interpretation

Sediments at both stations exhibited a high moisture content and low sediment density, indicative of fine-grained particles (Table 2). Sediment P concentrations were moderate but fell within ranges reported for eutrophic lakes world-wide (Barko and Smart 1986; Ostrofsky 1987; Nürnberg 1988). Sediment iron concentration was greatest in the south basin, resulting in a greater Fe:P ratio than for the north basin. The Fe:P ratio for Sweeney Lake was moderate, suggesting that there was excess iron available for phosphorus binding. Redox-sensitive P concentrations were high relative to literature values (Nürnberg 1988), and constituted 39 and 53% of the sediment P for the north and

south basin, respectively. These trends suggested the potential for high rates of P release under anoxic conditions.

Diffusive P flux occurred under oxic conditions for sediment cores collected at both stations (Table 1). These rates were moderate but within ranges reported for eutrophic lakes (Nürnberg 1988), suggesting that sediments might contribute to the P budget of the system even under oxidized conditions. Rates of P release were 5 to 10 times greater under anoxic conditions and very high relative to other systems (Figure 1). These results suggested the potential for soluble P accumulation in the hypolimnion during periods of summer anoxia as a result of diffusive P flux from sediments.

References

APHA (American Public Health Association). 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation.

Barko JW, Smart RM. 1986. Sediment-related mechanisms of growth limitation in submersed freshwater macrophytes. Ecology 67:1328-1340

Boström B, Jansson M, Forsberg C. 1982. Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergebn Limnol 18:5-59

James WF, Barko JW. 1991. Littoral-pelagic phosphorus dynamics during nighttime convective circulation. Limnol Oceanogr 36:179-187

Jensen HS, Kristensen P, Jeppesen E, Skytthe A. 1992. Iron:phosphorus ration in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. In Hart BT, Sly PG. (eds), Sediment/Water Interactions. Developments in Hydrobiology 75. Kluwer Academic Publishers, Dordrecht:731-743. Hydrobiologia 235/236.

Jensen HS, Thamdrup B. 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47-59

Nürnberg GK. 1988. Prediction of phosphorus release rates from total and reductant soluble phosphorus in anoxic lake sediments. Can J Fish Aquat Sci 44:960-966

Ostrofsky ML. 1987. Phosphorus species in the surficial sediments of lakes in eastern North America. Can J Fish Aquat Sci 44:960-966

Petticrew EL, Arocena JM. 2001. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci Tot Environ 266:87-93

Pilgrim KM, Huser BJ, Brezonik PL. 2007. A method for comparative evaluation of whole-lake and inflow alum treatment. Wat Res 41:1215-1224

Psenner R, Puckso R. 1988. Phosphorus fractionation: Advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Biel Erg Limnol 30:43-59

Søndergaard M, Jensen JP, Jeppesen E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506-509:135-145

Table 1. Sediment core station locations. UTM coordinates are NAD83.

Station	UTM East	UTM North	Depth (ft)
North Basin	473575	4982740	24.9
South Basin	473066	4982016	24.6

Variable	North B	asin	South B	asin
	Mean	SE	Mean	SE
Moisture content (%) Sediment Density (g/mL)	78.4 0.243	0.2 0.014	81.5 0.221	0.5 0.001
Total Fe (mg/g) Total P (mg/g)	13.245 0.719	0.101 0.045	25.686 0.86 20.0	0.309 0.018
Loosely-bound P (mg/g) Iron-bound P (mg/g)	0.037	0.001	0.008 0.446 0.452	0.001 0.017 0.018
Redox-sensitive P (mg/g) Redox-sensitive P (%)	0.278 39.0	0.006 2.7	0.453 52.7	0.018 1.0
Oxic P release (mg m ⁻² d ⁻¹) Anoxic P rlease (mg m ⁻² d ⁻¹)	3.3 17.3	1.1 0.1	1.6 15.6	0.1 1.0

Table 2. Means (n=3) and standard errors for sediment characteristics in the North and South Basin of Sweeney Lake.

Figure 1. Comparison of Sweeney Lake sediments versus relationship between redoxsensitive P and the anoxic P release rate developed by Nürnberg (1988).