Hawk Creek Watershed Total Maximum Daily Load

A Total Maximum Daily Load Report compiled by the Minnesota Pollution Control Agency

September 2017

Authors and contributors:

Matthew Moon Chuck Regan Scott MacLean

Marco Graziani

Josh Stock

Nick Gervino

Benjamin Roush

Mark Hanson

Mike Weckwerth

Wayne Cords

The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and information to wider audience. Visit our web site for more information.

The MPCA reports are printed on 100% postconsumer recycled content paper manufactured without chlorine or chlorine derivatives

Contents

С	ontents		3
Li	st of Tables		5
Li	st of Figures	S	6
TI	MDL Summa	ary Table	7
Α	cronyms		9
E	xecutive Sur	mmary	11
1.	. Project (Overview	12
	1.1 Pur	oose	12
	1.2 Ider	ntification of Waterbodies	12
	1.3 Prio	rity Ranking	16
2	. Applicab	le Water Quality Standards and Numeric Water Quality Targets	16
3.	. Watersh	ed and Waterbody Characterization	18
		<u>-</u> 25	
	3.2 Stre	ams	19
	3.3 Sub	watersheds	20
	3.4 Land	d Use	20
	3.5 Curi	rent/Historic Water Quality	22
	3.5.1	Streams	22
	3.5.1.1	1 <i>E. coli</i>	22
	3.5.2	Turbidity	26
	3.5.3	Lakes	28
	3.6 Poll	utant Source Summary	29
	3.6.1	E. coli	29
	3.6.2	Turbidity (TSS)	33
	3.6.3	Nutrient Eutrophication	34
4	TMDL De	evelopment	37
	4.1 Data	a Sources	37
	4.1.1	Hydrological Simulation Program – FORTRAN (HSPF)	37
	4.1.2	Environmental Quality Information System (EQuIS)	38
	4.2 Load	ding Capacity Methodology	38
	4.2.1	Streams, E. coli	38
	4.2.2	Streams, Turbidity (TSS)	41
	4.2.3	Lakes, Nutrient Eutrophication	
	4.3 Was	steload Allocation Methodology	44

4.3.1	Wastewater Treatment Facilities	44
4.3.2	Industrial Process Wastewater	48
4.3.3	Stormwater	49
4.3.4	Straight Pipe Septic Systems	52
4.4 Lo	ad Allocation Methodology	53
4.5 Ma	argin of Safety	54
4.5.1	E. coli	55
4.5.2	TSS	55
4.5.3	Nutrient Eutrophication	55
4.6 Se	asonal Variation	56
4.6.1	Streams, E. coli	56
4.6.2	Streams, Turbidity (TSS)	56
4.6.3	Lakes, Nutrient Eutrophication	56
4.7 TM	ЛDL Summary	56
4.7.1	Bacteria Impaired Stream Reach Loading Capacities	56
4.7.2	Turbidity (TSS) Impaired Stream Reach Loading Capacities	62
4.7.3	Impaired Lake Loading Capacities	64
5 Future	Growth Considerations	65
5.1 Ne	ew or Expanding Permitted MS4 WLA Transfer Process	65
5.2 Ne	ew or Expanding Wastewater (TSS and <i>E. coli</i> TMDLs only)	66
6 Reason	nable Assurance	66
7 Monito	oring Plan	70
8 Implem	nentation Strategy Summary	71
8.1 Pe	ermitted Sources	71
8.1.1	Construction Stormwater	71
8.1.2	Industrial Stormwater	71
8.1.3	MS4	71
8.1.4	Wastewater	72
8.2 No	on-Permitted Sources	72
8.3 Co	ost	74
8.4 Ad	daptive Management	74
9 Public F	Participation	75
9.1	Hawk Creek Watershed	75
9.2	Public Meetings	76
9.3	Public Notice	77
10 Litera	ature Cited	77

Appendix B	81
Appendix C	89
List of Tables	
Table 1.1: Hawk Creek Watershed 303(d) impairments addressed in this TMDL groupe HUC12 watersheds	
Table 2.1: Surface water quality standards for Hawk Creek Watershed stream reaches TMDL	
Table 2.2: Lake water quality standards for lakes within the Hawk Creek Watershed	17
Table 3.1: Morphometry and watershed area of lakes addressed in this TMDL	19
Table 3.2: Approximate watershed areas of impaired stream reaches	19
Table 3.3: Approximate land use breakdowns of Hawk Creek Watershed HUC12 subw 2011)	•
Table 3.4: Summary of <i>E. coli</i> data from 2001-2011 for stream reaches impaired for <i>E.</i> exceedances of the <i>E. coli</i> standard as listed in Minn. R. 7050.0222, subp. 4	
Table 3.5: Summary of TSS data from 2001-2008 for stream reaches impaired for turb indicates exceedances of the TSS standard	• .
Table 3.6: Mean in-lake conditions for impaired lakes in the Hawk Creek Watershed. I samples taken June through September are listed in brackets	
Table 3.7: Number of feedlot facilities and animal units, by aggregated HUC12 subwat	tershed30
Table 3.8: Estimate of phosphorus load and the percent contribution from SSTS	35
Table 3.9: Land cover categories, ranges of relative coverage, and P load contribution catchments	
Table 4.1: Unit conversion factors used for <i>E. coli</i> load calculations	39
Table 4.2: Percent reductions for <i>E. coli</i> impaired stream reaches based on 2002-2011	monitoring data40
Table 4.3: Unit conversion factors used for TSS load calculations	41
Table 4.4: Percent reductions for turbidity (TSS) impaired stream reaches based on 20	
Table 4.5: Observed and modeled mean phosphorus conditions in Hawk Creek Water phosphorus load reduction necessary to meet the water quality standard	
Table 4.6: WWTF permitted facilities applicable to this TMDL	45
Table 4.7: Individual WWTF <i>E. coli</i> WLA calculations	46
Table 4.8: Individual WWTF Total Suspended Solids WLA calculations	47
Table 4.9: Industrial permits applicable to this TMDL	48

Table 4.10: Individual industrial facility <i>E. coli</i> WLA	48
Table 4.11: Individual industrial facility TSS WLA	48
Table 4.12: Municipal MS4 permits applicable to this TMDL	49
Table 4.13: NPDES permitted livestock CAFOs by subwatershed	50
Table 4.14: <i>E. coli</i> loading capacities and allocations for stream reaches	56
Table 4.15: Loading capacities and allocations for stream reaches	62
Table 4.16: Total phosphorus loading capacities and allocations for impaired lakes Creek Watershed	
Table 8.1: Baseline years for impaired stream reaches addressed in this report	72
Figure 1.1: Hawk Creek Watershed - HUC 07020004 and its location within Minnes	ota River Basin 15
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	15
Figure 1.1: Hawk Creek Watershed - HUC 07020004 and its location within Minnes Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries Figure 3.1: Land use of the Hawk Creek Watershed Figure 3.2: E. coli stream reach impairments	15
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	15 22
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	22 26
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	
Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries	

	TMDL Summary Table						
EPA/MPCA Required Elements	Summary	TMDL Page #					
Location	The Hawk Creek Watershed is located in southwestern Minnesota. See Figure 1.1	15					
303(d) Listing Information	There are impairments for 13 stream reaches, 13* listings for <i>E. coli</i> bacteria, and 5* listings for Turbidity (TSS). 4 lake impairments are listed for nutrient eutrophication; see Table 1.1 *Numbers are not cumulative	13					
Applicable Water Quality Standards/ Numeric Targets	See Section 2	16					
Loading Capacity (expressed as daily load)	TMDL Summary, see Section 4.7	56					
Wasteload Allocation	TMDL Summary, see Section 4.7	56					
Load Allocation	TMDL Summary, see Section 4.7	56					
Margin of Safety	<i>E. coli</i> , turbidity (TSS), and lake nutrient eutrophication impairments: Explicit MOS of 10% used; <i>See Section 4.5</i>	54					
Seasonal Variation	E. coli: Load duration curve methodology accounts for seasonal variation and the standard is developed for critical conditions; See Section 4.6.1 Turbidity (TSS): Load duration curve methodology accounts for seasonal variation and the standard is developed for critical conditions; See Section 4.6.2 Nutrient eutrophication: Standard is developed for critical conditions; See Section 4.6.3	56					
Reasonable Assurance	Changes in the landscape and hydrology will need to occur if pollutant levels are going to decrease. The source reduction strategies detailed in the implementation section have been shown to be effective in improving water quality. Many of the goals outlined in this TMDL run parallel to objectives outlined in the local water plans. Various programs and funding sources are currently being utilized in the watershed and will also be used in the future. Additionally, Minnesota voters have approved an amendment to increase the state sales tax to fund water quality improvements. See Section 6	66					

Monitoring	Intensive watershed monitoring will occur on a 10-year schedule. Long term load monitoring at the watershed outlet is currently occurring. <i>See Section 7</i>	70
Implementation	A summary of potential management measures is included with a rough approximation of the overall implementation cost to achieve the TMDL. See Section 8	71
Public Participation	Public participation in the Hawk Creek Watershed has been ongoing for the past two years. With respect to this specific TMDL: A public comment period was open from May 22, 2017 to June 21, 2017. There were four comment letters received and responded to as a result of the public comment period. See Section 9	75

Acronyms

 $\begin{array}{ll} \text{ARM} & \text{Agricultural Runoff Model} \\ \text{\mu g/L} & \text{Micrograms per Liter} \\ \text{AUID} & \text{Assessment Unit ID} \end{array}$

AWQCP Agricultural Water Quality Certification Program

BMP Best Management Practice

BWSR Board of Water and Soil Resources
CAFO Concentrated Animal Feeding Operation

cfs Cubic Feet per Second
cfu colony-forming unit
Chl-a Chlorophyll-a
CWA Clean Water Act

CWLA Clean Water Legacy Act

DNR Minnesota Department of Natural Resources
EPA U. S. Environmental Protection Agency
EQuIS Environmental Quality Information System

GW Groundwater

HSPF Hydrological Simulation Program – FORTRAN

HUC Hydrologic Unit Code kg/ha Kilograms per Hectare

LA Load Allocation

lb(s) Pound(s)

Ibs/yrPounds per YearIbs/dayPounds per DayLCLoading Capacity

m Meter

MDA Minnesota Department of Agriculture

mg Milligrams

mg/L Milligrams per Liter

mg/m²-day Milligrams per Square Meter per Day

mgd Million Gallons per Day

mL Milliliters

MOS Margin of Safety

MPCA Minnesota Pollution Control Agency
MS4 Municipal Separate Storm Sewer System

NGP Northern Glaciated Plains

NPDES National Pollutant Discharge Elimination System

NPS Nonpoint Source

NTU Nephelometric Turbidity (TSS) Unit

org Organisms RR Release Rate

SDS State Disposal System

SSTS Subsurface Sewage Treatment System SWPPP Stormwater Pollution Prevention Plan

TMDL Total Maximum Daily Load

TP Total Phosphorus
UAL Unit-Area Load

WCBP Western Corn Belt Plains WLA Wasteload Allocations

WRAPS Watershed Restoration and Protection Strategies

WWTF Wastewater Treatment Facilities

Executive Summary

Section 303(d) of the Clean Water Act (CWA) provides authority for completing Total Maximum Daily Loads (TMDLs) for impaired waters to achieve state water quality standards and/or designated uses. The TMDLs establish the maximum amount of a pollutant a waterbody can receive on a daily basis and still meet water quality standards. The TMDLs are divided into wasteload allocations (WLA) for point or permitted sources, load allocations (LA) for nonpoint sources and natural background, plus a margin of safety (MOS).

This TMDL report addresses impairments for 13 stream reaches consisting of 13 *E. coli* and 5 turbidity (total suspended solids - TSS) impairments, as well as 4 lakes for nutrient eutrophication impairments, in the Hawk Creek Watershed. Addressing multiple impairments in one TMDL report is consistent with Minnesota's Water Quality Framework that seeks to develop watershed-wide protection and restoration strategies rather than focus on individual reach impairments.

The Hawk Creek Watershed is part of the Yellow Medicine River – Hawk Creek Major Watershed, comprised of two significant watersheds that do not have a hydrological connection and enter the Minnesota River from opposite sides. Hawk Creek Watershed covers approximately 626,000 acres in the Western Corn Belt Plains (WCBP) and North Central Hardwood Forest (NCHF) ecoregions and drains portions of three counties (Chippewa, Kandiyohi, and Renville) into the Minnesota River from the north. The Yellow Medicine River Watershed drains portions of five counties into the Minnesota River from the south, and has a previously completed IMDL report addresses only the Hawk Creek portion.

This TMDL report used a variety of methods to evaluate current loading contributions by the various pollutant sources as well as the allowable pollutant loading capacity of the impaired water bodies. These methods include the Hydrological Simulation Program – FORTRAN (HSPF) model, the load duration curve approach, and the BATHTUB lake eutrophication model.

A general strategy and cost estimate for implementation to address the impairments are included. Nonpoint sources (NPSs), primarily from agricultural land use and practices, will be the focus of implementation efforts. NPS contributions are currently not regulated and will need to be addressed on a voluntary basis. Permitted point sources will be addressed through the Minnesota Pollution Control Agency's (MPCA) National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit (Permit) programs.

1. Project Overview

1.1 Purpose

The CWA Section 303(d) requires that states publish a list of surface waters that do not meet water quality standards, and therefore do not support their designated use(s). These waters are then classified as impaired and placed on the impaired waters list, which dictates that a TMDL must be completed. The TMDL calculates the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and allocates pollutant loads across the sources of pollutants.

The passage of Minnesota's Clean Water Legacy Act (CWLA) in 2006 provided a policy framework and resources to state and local governments to accelerate efforts to monitor, assess and restore impaired waters and to protect unimpaired waters. The result has been a comprehensive "watershed approach" that integrates water resource management efforts, local governments, and stakeholders to develop watershed-scale TMDLs, restoration and protection strategies, and plans for each of Minnesota's 80 major watersheds. The information gained and strategies developed in the watershed approach are presented in major watershed-scale Watershed Restoration and Protection Strategy (WRAPS) reports, which guide restoration and protection of streams, lakes, and wetlands across the watershed, including those for which TMDL calculations are not made.

The watershed approach started in the Hawk Creek Watershed in 2010 with intensive watershed monitoring and subsequent assessment, which resulted in 13 stream reaches and 4 lakes being listed as impaired for one or more water quality parameters (Table 1.1).

This document addresses Hawk Creek Watershed impairments identified in the 2010 monitoring and assessment cycle that have not been addressed in prior TMDLs, have an approved water quality standard, and have sufficient data for assessment. Refer to the prior TMDL webpage for more details on previously completed TMDLs: *Long and Ringo Lakes Excess Nutrients Total Maximum Daily Load* (MPCA 2011b). Biological impairments and the stressors identified with those impairments were identified within the watershed, however, due to lack of supporting data these impairments were deferred until sufficient data can be collected.

1.2 Identification of Waterbodies

This TMDL applies to 22 separate impairment listings for 13 stream reaches and 4 lakes in the Hawk Creek and Watershed (Table 1.1). Supporting documentation for the proposed listing of the impairments can be found in:

Hawk Creek Watershed Stressor ID Report (MPCA 2012b)

Minnesota River - Granite Falls Watershed Monitoring and Assessment Report (MPCA 2012c)

Table 1.1: Hawk Creek Watershed 303(d) impairments addressed in this TMDL grouped by Aggregated HUC12 Watersheds

Aggregated HUC12 Watershed	Stream Reach Description or Lake Name	Stream Use Class or Lake Ecoregion & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
Beaver Creek	East Fork Beaver Creek to Minnesota	2B	07020004-	Aquatic Recreation	2006	Fecal coliform
	River		528	Aquatic Life	2006	Turbidity (TSS)
	Chetomba	0.0	07020004-	Aquatic Recreation	2010	Escherichia coli
Chetomba Creek	Creek to Spring Creek	2B	589	Aquatic Life	2006	Turbidity (TSS)
	Lake Olson	NGP Shallow Lake	34-0266-00	Aquatic Recreation	2014	Nutrient Eutrophication
County Ditch 11	Unnamed ditch to Hawk Creek	2B	07020004- 689	Aquatic Recreation	2014	Escherichia coli
East Fork Beaver Creek	T115 R35W S35, North Line to West Fork Beaver Creek	2В	07020004- 586	Aquatic Recreation	2014	Escherichia coli
	Spring Creek		07020004-	Aquatic Recreation	2010	Escherichia coli
Lower Hawk	to Minnesota River		587	Aquatic Life	2004	Turbidity (TSS)
Creek	Unnamed Creek to		07020004-	Aquatic Recreation	2006	Fecal coliform
	Unnamed Creek		568	Aquatic Life	2006	Turbidity (TSS)
Sacred Heart Creek	Headwaters to Minnesota River	2B	07020004- 526	Aquatic Recreation	2010	Escherichia coli

Aggregated HUC12 Watershed	Stream Reach Description or Lake Name	Stream Use Class or Lake Ecoregion & Type	Assessment Unit ID or DNR Lake #	Affected Designated Use	Year Listed	Impairment
	Headwaters to Minnesota River	2B	07020004- 525	Aquatic Recreation	2010	Escherichia coli
Sacred Heart Creek - MN River	CD 120 to Minnesota R	2 C	07020004- 615	Aquatic Recreation	2010	Escherichia coli
	T113 R35W S4, north line to Minnesota R	2C	07020004- 617	Aquatic Recreation	2014	Escherichia coli
Stony Run Creek - MN River	Headwaters to Minnesota River	2В	07020004- 534	Aquatic Recreation	2014	Escherichia coli
Tributary to Hawk	St. John's Lake	NGP Shallow Lake	34-0283-00	Aquatic Recreation	2014	Nutrient Eutrophication
Creek	West Solomon Lake	NGP Shallow Lake	34-0245-00	Aquatic Recreation	2014	Nutrient Eutrophication
Upper Hawk Creek	Swan Lake	NGP Shallow Lake	34-0186-00	Aquatic Recreation	2014	Nutrient Eutrophication
West Fork Beaver	Headwaters to East Fork 2B		07020004-	Aquatic Recreation	2006	Fecal coliform
Creek	Beaver Creek		530	Aquatic Life	2006	Turbidity (TSS)
Wood Lake Creek - MN River	Unnamed Creek to Minnesota River	2В	07020004- 648	Aquatic Recreation	2014	Escherichia coli

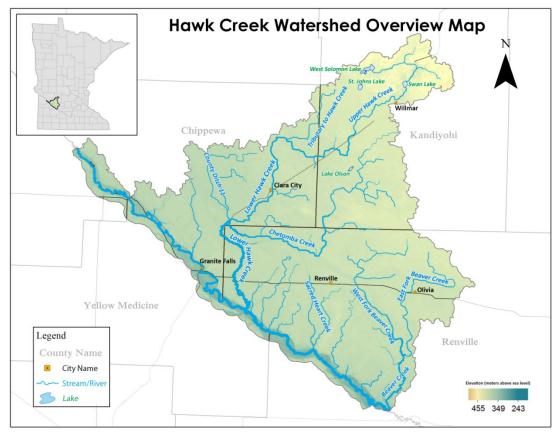


Figure 1.1: Hawk Creek Watershed - HUC 07020004 and its location within Minnesota River Basin

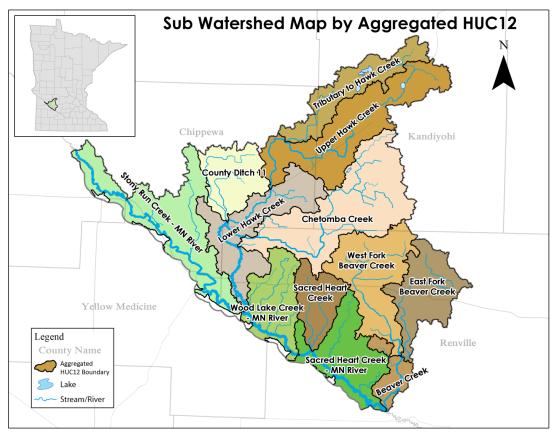


Figure 1.2: Hawk Creek Aggregated HUC12 Subwatershed boundaries

1.3 Priority Ranking

The MPCA's schedule for TMDL completions, as indicated on the 303(d) impaired waters list, reflects Minnesota's priority ranking of this TMDL. MPCA has aligned our TMDL priorities with the watershed approach and our WRAPS cycle. The schedule for TMDL completion corresponds to the WRAPS report completion on the 10-year cycle. MPCA developed a state plan Minnesota's TMDL Priority Framework Report to meet the needs of EPA's national measure (WQ-27) under EPA's Long-Term Vision for Assessment, Restoration and Protection under the Clean Water Act Section 303(d) Program. As part of these efforts, the MPCA identified water quality impaired segments that will be addressed by TMDLs by 2022. The Hawk Creek Watershed waters addressed by this TMDL are part of that MPCA prioritization plan to meet EPA's national measure.

2. Applicable Water Quality Standards and Numeric Water Quality Targets

The criteria used to determine stream and lake impairments are outlined in the MPCA's document *Guidance Manual for Assessing the Quality of Minnesota Surface Waters for the Determination of Impairment: 305(b) Report and 303(d) List* (MPCA 2014). Minn. R. ch. 7050.0470 lists waterbody classifications and Minn. R. ch. 7050.2222 lists applicable water quality standards. The impaired waters covered in this TMDL are classified as Class 2B or 2C, 3B, 3C, 4A, 5, 6 and 7. Relative to aquatic life and recreation, the designated beneficial uses for the most stringent classifications, 2B and 2C waters, are:

Class 2B waters – The quality of Class 2B surface waters shall be such as to permit the propagation and maintenance of a healthy community of cool or warm water sport or commercial fish and associated aquatic life and their habitats. These waters shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters may be usable.

Class 2C waters – The quality of Class 2C surface waters shall be such as to permit the propagation and maintenance of a healthy community of indigenous fish and associated aquatic life, and their habitats. These waters shall be suitable for boating and other forms of aquatic recreation for which the waters may be usable.

The water quality standards shown in Table 2.1 and Table 2.2 are the numeric water quality targets for each parameter shown. For more detailed information refer to the <u>MPCA TMDL Protocols</u> (MPCA 2014b).

Table 2.1: Surface water quality standards for Hawk Creek Watershed stream reaches addressed in this TMDL

Parameter	Water Quality Standard	Units	Criteria	Period of Time Standard Applies	
Fook orishin on li Class	Not to exceed 126	org/100 mL	Monthly geo mean of at least 5 samples within one calendar month	April 1 – October	
Escherichia coli; Class 2 waters	Not to exceed 1,260	11,260 org/100 mL Monthly upper percentil		31	
TSS Class 2 waters	Not to Exceed 65	mg/L	> 10% of total samples cannot exceed 65 mg/L	April 1 – September 30	

The class 2B turbidity standard (Minn. R. ch. 7050.0222) that was in place at the time of the impairment assessment for reaches in the Hawk Creek Watershed was 25 nephelometric turbidity units (NTUs). Impairment listings occur when greater than 10% of data points collected within the previous 10-year period exceed the 25 NTU standards (or equivalent values for TSS or the transparency tube).

The aforementioned 25 NTU turbidity standard had several weaknesses, including its application statewide. Since turbidity is a measure of light scatter and absorption, it is not a mass unit measurement and therefore not amenable to TMDLs and other load-based studies. Although previously recognized, these weaknesses became a significant problem when the EPA and the MPCA's TMDL program became fully realized in the early 2000s.

As a result, a committee of the MPCA staff across several divisions developed TSS criteria to replace the turbidity standards. These TSS criteria are regional in scope and based on a combination of both biotic sensitivities to the TSS concentrations and reference streams/least impacts streams as data allow. The results of the TSS criteria development were published by the MPCA in 2011, and proposed a 65 mg/L TSS standard for Class 2B waters in the southern region of the state of Minnesota that may not be exceeded more than 10% of the time over a multiyear data window. The assessment season is identified as April through September. The new TSS standards were approved by EPA in January of 2015. For the purpose of this TMDL, the newly adopted 65 mg/L standard for Class 2B waters will be used to address the turbidity impairment listings in the Hawk Creek Watershed.

Table 2.2: Lake water quality standards for lakes within the Hawk Creek Watershed

Ecoregion	Total Phosphorus Standard (µg/L)	Chlorophyll –a Standard (µg/L)	Secchi Depth (m)	Criteria	Period of Time Standard Applies
WCBP Shallow Lakes	< 90	< 30	> 0.7	Summer average of all samples	June 1 – September 30

In developing the lake nutrient standards for Minnesota lakes (Minn. R. 7050), the MPCA evaluated data from a large cross-section of lakes within each of the state's ecoregions (MPCA 2005). In addition to meeting phosphorus limits, chlorophyll-a (Chl-a), and Secchi transparency standards must also be met.

Clear relationships were established between the causal factor total phosphorus (TP) and the response variables Chl-a, and Secchi transparency. Based on these relationships it is expected that by meeting the phosphorus target in each lake, the Chl-a and Secchi standards will likewise be met.

3. Watershed and Waterbody Characterization

Located in Southwestern Minnesota, the Hawk Creek Watershed covers approximately 626,000 acres in the WCBP and NCHF ecoregions and drains portions of three counties (Chippewa, Kandiyohi, and Renville). Willmar is the largest town in this largely rural watershed. Clara City, Renville, and Olivia are small towns within the study area. Land use statistics of the Hawk Creek Watershed are shown in Table 3.3. For more information on the Hawk Creek Watershed, refer to the *Minnesota River - Granite Falls Monitoring and Assessment Report* (MPCA 2012c).

The headwaters of Hawk Creek start in the NCHF ecoregion, but the majority of the watershed is in the WCBP ecoregion, and flows into the Minnesota River from the north. The Hawk Creek Watershed includes several smaller streams that are direct tributaries to the Minnesota River, including Chetomba, Beaver, Sacred Heart, Middle, Timm's, Brafees, Smith and Palmer Creeks. The upper portion in the northeastern part of the watershed has numerous lakes and rolling hills that form the headwaters of Hawk Creek. Hawk Creek originates at Eagle Lake north of Willmar and flows approximately 65 miles to its mouth at the Minnesota River near Granite Falls. Much of the watershed was originally covered by prairie. Significant portions of the watershed have been drained to increase agricultural and non-agricultural development. The hydrology of this area has been influenced by the historical tiling of wetlands and the ditching of both wetlands and streams for agricultural drainage. More recently, there has been an increase in the number of acres that have been drained using pattern tiling, a practice that lays tile lines beneath the entire field and drains water from upland areas down into the tile outlet.

Row crop agriculture is the primary land use in the watershed. The highly manipulated hydrology within the watershed has resulted in a very effective drainage system that allows agriculture, the region's primary land use, to thrive throughout much of the watershed.

3.1 Lakes

The impaired lakes addressed in the Hawk Creek Watershed TMDL are shallow, polymictic lakes in the WCBP ecoregion (Table 3.1).

Table 3.1: Morphometry and watershed area of lakes addressed in this TMDL

Aggregated HUC12 Subwatershed	Lake Name DNR Lake #	Surface Area (acres)	Average Depth (feet)	Max Depth (feet)	Lakeshed Area (acres)	Lakeshed Area : Surface Area Ratio	Littoral Area (%)
Chetomba Creek	Olson Lake 34-0266-00	126.6	2.0	3.0	492	4:1	100
Tributary to	St. John's Lake 34-0283-00	193	4	7	19,801	103 : 1	100
Hawk Creek	West Solomon Lake 34-0245-00	561	6.9	13	17,522	31 : 1	100
Upper Hawk Creek	Swan Lake 34-0186-00	205	3.3	5	13,408	65 : 1	100

3.2 Streams

Watershed areas of impaired stream reaches addressed in this TMDL are listed in Table 3.2. These areas consist of all of the land upstream that drains into the impaired reach.

Table 3.2: Approximate watershed areas of impaired stream reaches

Aggregated HUC12	Stream Name	Reach Location Description	Assessment Unit ID #	Area (acres)
Beaver Creek	Beaver Creek	East Fork Beaver Creek to Minnesota River	07020004-528	126,801
Chetomba Creek	Chetomba Creek	Chetomba Creek to Spring Creek	07020004-589	97,683
County Ditch 11	County Ditch 11	Unnamed ditch to Hawk Creek	07020004-689	37,095
East Fork Beaver Creek	East Fork Beaver Creek	T115 R35W S35, North Line to West Fork Beaver Creek	07020004-586	47,410
	Hawk Creek		07020004-568	206,059
Lower Hawk Creek	Hawk Creek	Spring Creek to Minnesota River	07020004-587	325,094
Sacred Heart Creek	Sacred Heart Creek	Headwaters to Minnesota River	07020004-526	29,048
Sacred Heart Creek - MN River	Timms Creek	Headwaters to Minnesota River	07020004-525	15,277
Stony Run Creek - MN River	County Ditch 68	Headwaters to Minnesota River	07020004-534	21,574

Aggregated HUC12	Stream Name	Reach Location Description	Assessment Unit ID #	Area (acres)
West Fork Beaver Creek	West Fork Beaver Creek	Headwaters to East Fork Beaver Creek	07020004-530	63,548
Wood Lake Creek - MN River	County Ditch 119	Unnamed Creek to Minnesota River	07020004-648	10,716

3.3 Subwatersheds

Area within the watershed has been grouped together by aggregating Hydrologic Unit Code (HUC) 12 watersheds into subwatershed areas (See Figure 1.2). This was done in order to group together land area that drains into the individual branches and tributaries that flow into Hawk Creek and the direct tributaries of the Minnesota River. The beginning of the watershed consists of several lakes and tributaries, as well as the beginning of Hawk Creek. Hawk Creek then flows southwest toward the Minnesota River. Several smaller tributaries, such as County Ditch 11 and Chetomba Creek flow into Hawk Creek further down in the watershed. Tributaries that flow directly into the Minnesota River are also included in this TMDL. These direct tributary subwatersheds include Sacred Heart Creek, Stony Run Creek – Minnesota River, Wood Lake Creek – Minnesota River, Sacred Heart Creek – Minnesota River, and Beaver Creek.

3.4 Land Use

The land use for the entire watershed and aggregated HUC12 subwatersheds is summarized in Table 3.3 with the majority of the land being used for agricultural purposes.

Table 3.3: Approximate land use breakdowns of Hawk Creek Watershed HUC12 Subwatersheds (MRLC 2011)

Aggregated HUC-12 Subwatershed	Open Water	Developed	Barren/ Mining	Forest/ Shrub	Pasture/ Hay/ Grassland	Cropland	Wetland
Beaver Creek	0.2%	5.8%	0.2%	3.9%	6.1%	80%	3.8%
Chetomba Creek	0.1%	5.5%	0.1%	1.1%	1.1%	88.9%	3.2%
County Ditch 11	0.1%	5.1%	0.1%	0.2%	0.8%	92.4%	1.3%
East Fork Beaver Creek	0.2%	8%	0.1%	1.1%	0.8%	87.6%	2.2%
Lower Hawk Creek	0.3%	6.4%	0.1%	1.5%	2.4%	85.7%	3.6%
Sacred Heart Creek	0.2%	7.6%	0.2%	2.7%	1.2%	83.1%	5%
Sacred Heart Creek – MN River	1.1%	4.7%	0.1%	5.2%	5.1%	79.4%	4.4%
Stony Run Creek – MN River	1.6%	6%	0.1%	1.1%	6.3%	81.1%	3.8%
Tributary to Hawk Creek	12.2%	4.9%	0.1%	4.2%	8.3%	65.5%	4.8%
Upper Hawk Creek	4%	11%	0.1%	1.7%	4.9%	75.1%	3.2%
West Fork Beaver Creek	0.5%	5.5%	0.2%	1.1%	1.9%	84.5%	6.3%
Wood Lake Creek - MN River	0.8%	5.7%	0%	4.5%	3%	79.9%	6.1%

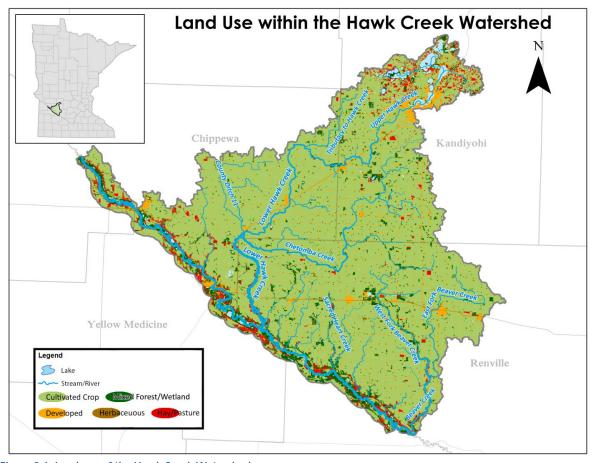


Figure 3.1: Land use of the Hawk Creek Watershed

3.5 Current/Historic Water Quality

A summary of current water quality is provided in this section related to the *E. coli*, Turbidity (TSS), and nutrient impairments addressed in this TMDL. Additional water quality data and analysis for impaired stream reaches can be found in the <u>Minnesota River – Granite Falls Watershed Monitoring and Assessment Report</u> (MPCA 2012c) and the <u>Hawk Creek Watershed Biotic Stressor Identification Report</u> (MPCA 2012b).

3.5.1 Streams

3.5.1.1 E. coli

Bacteria data has been collected for multiple years in the Hawk Creek Watershed. The summarized data is presented in Table 3.4. Geometric means were calculated using the following equation:

Geometric mean =
$$\sqrt[n]{x_1 * x_2 * \dots x_n}$$

Table 3.4: Summary of *E. coli* data from 2001-2011 for stream reaches impaired for *E. coli*. Red indicates exceedances of the *E. coli* standard as listed in Minn. R. 7050.0222, subp. 4

E. coli standard as l	isteu iii iviiii	II. K. 7000.0222, Sul	Jp. 4						
Aggregated HUC12 Subwatershed			Geometric Mean (org/mL) [# of samples]						
Stream Reach AUID #	Range of Data (org/mL)	% of samples exceeding 1260 org/100mL	Apr	May	June	July	Aug	Sep	Oct
ID									
Beaver Creek 07020004-528 S000-666	7-7270	June- 19% July-11% Aug- 14% Sep- 21% Oct- 30%	65.7 [25]	114.3 [27]	452.7 [31]	489.3 [18]	426.3 [5]	548 [19]	681.8 [10]
Chetomba Creek		April- 12% June- 14%							
07020004-589 \$002-152	1-3873	Aug- 14% Sep- 21% Oct- 20%	54.8 [26]	63.3 [27]	261.6 [29]	124.6 [18]	87.6 [21]	129.6 [19}	237.8 [10]
County Ditch									
11 07020004-689 S002-147	50-2420	-	-	-	242.5 [5]	159.5 [5]	156.4 [5]	-	-
East Fork									
Beaver Creek 07020004-586	55-1046	-	-	-	213.3 [5]	276.7 [5]	237.4 [5]	-	-
S000-404									
Lower Hawk Creek		June- 14%	38	46.5	174.1	139.2	99.1	256.5	176.2
07020004-587	1-11199	Sep- 21%	[26]	[27]	[29]	[18]	[21]	[19]	[10]
S002-012									

Aggregated HUC12						ric Mean (of sample			
Subwatershed Stream Reach AUID # EQuIS Station ID	Range of Data (org/mL)	% of samples exceeding 1260 org/100mL	Apr	May	June	July	Aug	Sep	Oct
Lower Hawk Creek 07020004-568 S002-148	4-3654	April- 12% June- 20% July- 11% Sep- 17%	60.9 [25]	62.8 [27]	310.2 [25]	270.4 [18]	257.9 [21]	273.9 [18]	192.9 [9]
Sacred Heart Creek 07020004-526 S001-341	3-2481	June- 11% July- 11% Aug- 18% Sep- 13%	37.8 [10]	82.18 [17]	294.3 [18]	261.4 [9]	493.1 [11]	335.7 [8]	1128 [2]
Sacred Heart Creek – MN River 07020004-525 S003-867	5-2481	June- 22% July- 44% Aug- 36% Sep- 50%	41.7 [12]	195.3 [15]	671.6 [18]	933.6 [9]	838.6 [11]	800.8 [8]	1117 [2]
Sacred Heart Creek – MN River 07020004-615 S004-691	68-1120	-	-	-	177.4 [5]	406.6 [5]	410.6 [5]	-	-
Sacred Heart Creek – MN River 07020004-617 S004-694	68-2420	Aug- 20%	-	-	160.3 [5]	310.2 [5]	473.9 [5]	-	·

Aggregated HUC12				Geometric Mean (org/mL) [# of samples]							
Subwatershed Stream Reach AUID # EQuIS Station ID	Range of Data (org/mL)	% of samples exceeding 1260 org/100mL	Apr	May	June	July	Aug	Sep	Oct		
Stony Run Creek – MN River 07020004-534 S002-136	5-4800	June- 31% July- 13%	35.6 [11]	149.6 [13]	622.7 [16]	265.8 [8]	274.2 [11]	263.7 [8]	1359 [2]		
West Fork Beaver Creek 07020004-530 S006-138	6-6100	June- 28% July- 18% Aug- 28% Sep- 41% Oct- 14%	51.7 [27]	143.6 [26]	627.2 [29]	675.6 [17]	861.5 [18]	954.1 [17]	551.2 [7]		
Wood Lake Creek – MN River 07020004-648 S003-866	1-2420	June- 17% Sep- 25%	19.9 [12]	65.4 [17]	418.6 [16.7]	625.3 [6]	399.4 [5]	367.3 [4]	-		

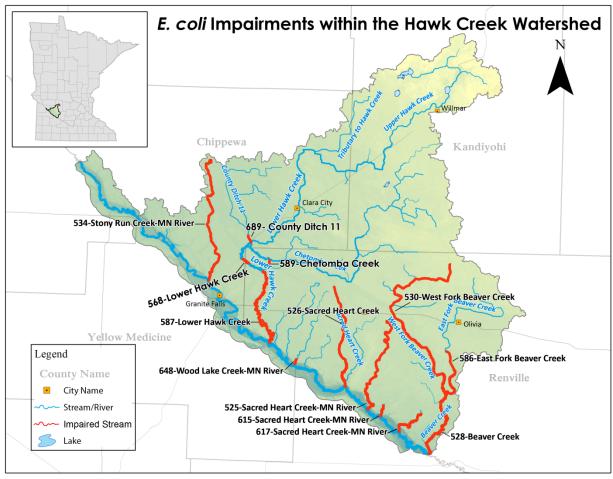


Figure 3.2: E. coli stream reach impairments

3.5.2 Turbidity

TSS data has been collected for multiple years in the Hawk Creek Watershed. The summarized data is presented in Table 3.5.

Table 3.5: Summary of TSS data from 2001-2008 for stream reaches impaired for turbidity (TSS). Red indicates exceedances of the TSS standard

Aggregated HUC12 Subwatershed	Dange of data		% of Mo	% of Total Samples				
Stream Reach AUID # Station ID	Range of data (mg/L)	Apr	May	Jun	Jul	Aug	Sep	>65/L [# of samples]
Beaver Creek 07020004-528 S000-666	2 - 793	21% [61]	19% [69]	56% [61]	13% [47]	25% [12]	23% [44]	23% [341]

Aggregated HUC12 Subwatershed					% of Monthly samples >65 mg/L [# of samples]				
AUID # Station ID	(mg/L)	Apr	May	Jun	Jul	Aug	Sep	Samples >65/L [# of samples]	
Chetomba Creek 07020004-589 S002-152	1 - 748	11% [61]	9.5% [63]	67% [21]	13% [31]	10% [20]	25% [20]	12% [318]	
Lower Hawk Creek 07020004-568 S002-148	2 - 644	20% [60]	21% [63]	41% [97]	33% [43]	21% [39]	15% [39]	30% [313]	
West Fork Beaver Creek 07020004-530 S006-138 S000-405	4 - 355	2% [60]	9.5% [63]	23% [70]	20% [41]	22% [45]	23% [30]	16% [297]	
Lower Hawk Creek 07020004-587 S002-012	3 - 680	65% [26]	25% [61]	49% [73]	23% [44]	11% [45]	19% [42]	28% [322]	

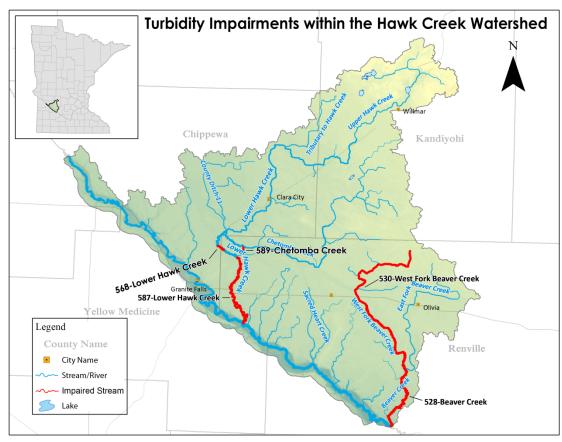


Figure 3.3: Turbidity (TSS) stream reach impairments

3.5.3 Lakes

Current lake conditions are based on monitoring completed within the last 10 years. The summarized data presented in Table 3.6 indicates that the listed lakes have exceeded the nutrient eutrophication standard as listed in Minn. R. 7050.0222, subp. 4.

Table 3.6: Summary of 2010-2011 June through September sampling for impaired lakes in the Hawk Creek Watershed. Mean value is listed in bold and the number of samples taken are listed in brackets

Aggregated HUC12 Subwatershed	Lake Name DNR #	Average Total Phosphorus (μg/L)	Average Chlorophyll-a (µg/L)	Average Secchi Disk Transparency (m)
Chetomba Creek	Olson Lake 34-0266-00	121 [12]	54 [11]	0.4 [5]
Tributary to	St. John's Lake 34-0283-00	155 [11]	60 [9]	1 [27]
Hawk Creek	West Solomon Lake 34-0245-00	113 [12]	45 [10]	0.5 [31]
Upper Hawk Creek	Swan Lake 34-0186-00	111 [17]	27.1 [16]	0.4 [25]

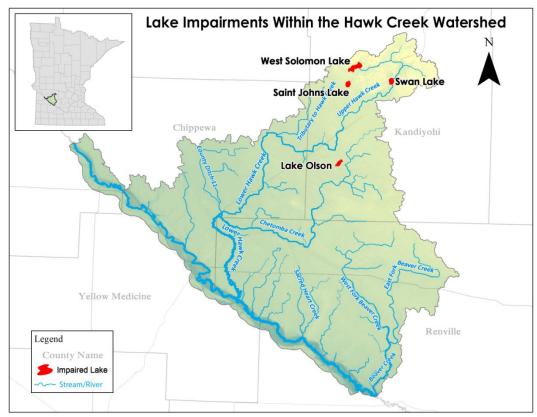


Figure 3.4: Lake nutrient eutrophication impairments as indicated from water monitoring data

3.6 Pollutant Source Summary

3.6.1 *E. coli*

Likely sources of bacteria in the Hawk Creek Watershed include feedlot facilities, wastewater treatment facilities (WWTF), subsurface sewage treatment systems (SSTS), livestock manure field application, pasture, natural reproduction, wildlife, and pets. These are described in more detail below.

Feedlot Facilities –Feedlot facilities are present in the Hawk Creek Watershed. Livestock can contribute bacteria to the watershed through runoff from these feedlot facilities. Facility and livestock numbers by subwatershed, based on the MPCA record of registered feedlot facilities, are listed in the table below. These numbers include both county permitted and NPDES permitted feedlot facilities, both of which are not allowed to discharge animal waste into surface waters. The majority of the feedlots in the watershed are less than 500 animal units. Seventy percent of the feedlots are under 300 animal units (AU) (268 facilities). These sites generally have limited manure storage so manure application occurs on a more frequent basis. In addition, these sites are not required to have a manure management plan or test their soils for phosphorus. One hundred fifty-six of these sites are under 100 AU, which have even less restrictions under feedlot rules. In the Hawk Creek Watershed, there are approximately 28 feedlots located within 1000 feet of a lake or 300 feet of a stream or river, an area generally defined as shoreland. Twenty-six of these feedlots in shoreland have open lots. Open lots present a potential pollution hazard if the runoff from the open lots is not treated prior to reaching surface water. One of the feedlots located within shoreland is operating under an Open Lot Agreement (OLA) with the MPCA.

These feedlot OLA sites have been identified as actually having a potential pollution hazard, and have or will install short-term measures to minimize untreated manure runoff until permanent measures can be installed. Manure from these feedlots is applied as fertilizer to agricultural fields and is discussed below.

Of the approximately of 383 feedlots in the Hawk Creek Watershed, there are 51 active NPDES permitted operations, 50 of which are classified as Concentrated Animal Feeding Operation (CAFOs). CAFO is an EPA definition that implies not only a certain number of animals but also specific animal types, e.g. 2500 swine is a CAFO, 1000 cattle are a CAFO, but a site with 2499 swine and 999 cattle is not a CAFO according to the EPA definition. The MPCA currently uses the federal definition of a CAFO in its permit requirements of animal feedlots along with the term AU. In Minnesota, the following types of livestock facilities are issued, and must operate under, a NPDES Permit or a state issued State Disposal System (SDS) Permit: a) all federally defined CAFOs that have had a discharge, some of which are under 1000 AUs in size; and b) all CAFOs and non-CAFOs that have 1000 or more AUs. These feedlots must be designed to totally contain runoff, and manure management planning requirements are more stringent than for smaller feedlots. CAFOs are inspected by the MPCA in accordance with the MPCA NPDES Compliance Monitoring Strategy approved by the EPA. All CAFOs (NPDES permitted, SDS permitted and not required to be permitted) are inspected by MPCA on a routine basis with an appropriate mix of field inspections, offsite monitoring and compliance assistance. Facility and livestock numbers by HUC12 subwatersheds, based on the MPCA record of registered feedlot facilities, are listed in the table below. These numbers include both county registered and NPDES or SDS permitted feedlot facilities.

Table 3.7: Number of feedlot facilities and animal units, by aggregated HUC12 Subwatershed

Aggregated HUC12 Subwatershed	# of Feedlot Facilities	Livestock Type	Animal Units
Entire Hawk Creek Watershed with Direct Tributaries	438	Birds, Bovines, Deer/Elk, Goats/Sheep, Horses, Llamas/Alpacas, Pigs, Other	145,729
Beaver Creek	17	Birds, Bovines, Pigs	2,405
Chetomba Creek	16	Birds, Bovines, Goats/Sheep, Deer/Elk, Horses, Pigs,	31,540
County Ditch 11	18	Birds, Bovines, Goats/Sheep, Horses, Pigs	7,752
East Fork Beaver Creek	21	Bovines, Goats/Sheep, Pigs	6,608
Lower Hawk Creek	24	Birds, Bovines, Goats/Sheep, Horses, Llamas/Alpacas, Pigs	8,605
Sacred Heart Creek	22	Birds, Bovines, Horses, Goats/Sheep, Pigs	17,112
Sacred Heart Creek – MN River	40	Birds, Bovines, Goats/Sheep, Horses, Pigs	11,894
Stony Run Creek – MN River	12	Bovines, Horses, Pigs	1,428
Tributary to Hawk Creek	39	Birds, Bovines, Goats/Sheep, Horses, Pigs	23,260

Aggregated HUC12 Subwatershed	# of Feedlot Facilities	Livestock Type	Animal Units
Upper Hawk Creek	67	Birds, Bovines, Goats/Sheep, Horses, Pigs	16,413
West Fork Beaver Creek	51	Birds, Bovines, Goats/Sheep, Horses, Pigs	16,855
Wood Lake Creek - MN River	21	Bovines, Horses, Pigs	1,857

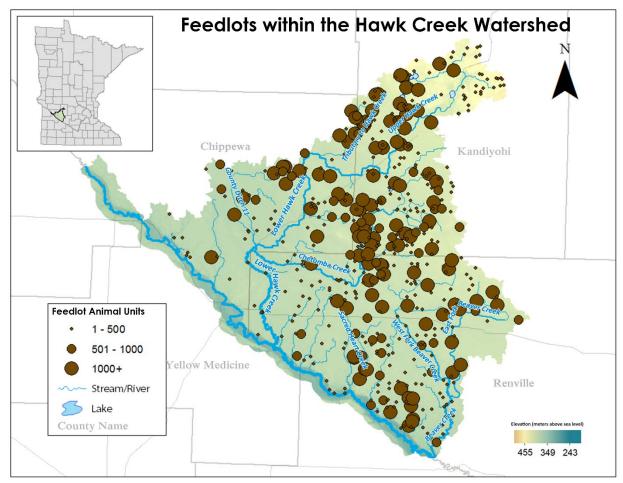


Figure 3.5: Feedlot facility locations

Wastewater Treatment Facilities (WWTF) – Human waste can be a significant source of *E. coli* during low flow periods. Twelve WWTFs discharge into the impaired stream reaches addressed in this TMDL report. These WWTFs are both controlled discharge pond systems and mechanical continuous discharge systems. There are six controlled discharge systems, which are allowed to discharge during higher flows. WWTF NPDES Permits include fecal coliform effluent limitations that require effective disinfection during the *E. coli* standard's effective period. These controlled discharge facilities are not likely to be a source during low flow periods. There are also six continuous discharge systems, which constantly release treated wastewater. WWTF NPDES Permits include fecal coliform effluent limitations, which require effective disinfection during the *E. coli* standard's effective period. These controlled

discharge facilities are not likely to be a source during low flow periods. Rarely, during extreme high flow conditions, WWTF may also be a source if they become overloaded and have an emergency discharge of partially or untreated sewage, known as a release.

SSTS – Without individual inspections, it is difficult to know for certain the rate of compliance for septic systems in the watershed. Individual County estimates from the SSTS County Annual Reports for the Hawk Creek Watershed range from 35% to 75% non-compliant. Some of these systems discharge inadequately treated wastewater into waterways and are a source, especially during low flow conditions.

Manure – Manure is a by-product of animal production and large numbers of animals create large quantities of manure. This manure is usually stockpiled and then spread over agricultural fields to help fertilize the soil. Based on MPCA feedlot staff analysis of feedlot demographics, local knowledge and actual observation, there is a significant amount of late winter solid manure application (before the ground thaws). During this time, the manure can be a source of *E. coli* in rivers and streams, especially during precipitation events. Contributing to the feedlot staff knowledge are two surveys, conducted by the Minnesota Department of Agriculture (MDA) 2010 Commercial Nitrogen and Manure Selection and Management Practices on Corn and Wheat in Minnesota

(http://www.mda.state.mn.us/protecting/cleanwaterfund/gwdwprotection/~/media/Files/protecting/cwf/2010cornnitromgmt.pdf) and Commercial Nitrogen and Manure Fertilizer Section and Management Practices Associated with Minnesota's 2012 Corn Crop

(https://www.mda.state.mn.us/sitecore/shell/Controls/Rich%20Text%20Editor/~/media/Files/protecting/cwf/2012nitrocorn.pdf). While the results are not reported by specific watershed and only by general geographic area, they provide very similar information as used in the TMDL and WRAPS process.

Short-term stockpile sites are defined in Minn. R. 7020, and are considered temporary; any stockpile kept for longer than a year must be registered with the MPCA and would be identified as part of a feedlot facility. Because of the temporary status of the short-term stockpile sites, and the fact they are usually very near or at the land application area they are included in with the land applied manure.

Pasture – Livestock can contribute bacteria to the watershed through runoff from poorly maintained pasture lands, as well as direct loading if livestock are allowed access to streams or lakes.

Natural Reproduction – *E. coli* bacteria have the ability to reproduce naturally in water and sediment. Two Minnesota studies describe the presence and growth of "naturalized" or "indigenous" strains of *E. coli* in watershed soils (Ishii et al. 2006) and ditch sediment and water (Chandrasekaran et al. 2015). The latter study was conducted in the agriculturally-dominated Seven Mile Creek Watershed located in south-central Minnesota. As much as 36% of *E. coli* strains found in the Seven Mile study was represented by multiple isolates, suggesting persistence of specific *E. coli*. While the primary author of the study suggests 36% might be used as a rough indicator of "background" levels of bacteria during this study, this percentage is not directly transferable to the concentration and count data of *E. coli* used in water quality standards and TMDLs. Additionally, because the study is not definitive as to the ultimate origins of the bacteria, it would not be appropriate to consider it as "natural" background (MPCA 2012a). Caution should be used before extrapolating the results of the Seven Mile Creek study to other watersheds.

Wildlife/Pets – E. coli bacteria comes from the digestive tracts of mammals and birds and as such, a small percentage of E. coli may be present in the water from these sources.

3.6.2 Turbidity (TSS)

Likely sources of turbidity (TSS) in the Hawk Creek Watershed include atmospheric deposition, WWTFs, overland erosion from land practices, and hydrologic changes within the watershed. These are described in more detail below.

Atmospheric Deposition– Windblown sediment is likely a source of TSS in surface waters in the Hawk Creek Watershed. Dust from industrial and construction sites, bare soils, and developed areas can all contribute TSS to surface waters.

Wastewater Treatment Facilities (WWTF) – Human waste can be a source of TSS. Eleven WWTFs discharge into the impaired stream reaches addressed in this TMDL report. These WWTFs are both controlled discharge pond systems and mechanical continuous discharge systems. There are six controlled discharge systems, which are allowed to discharge during higher flows. These controlled discharge facilities are not likely to be a source during low flow periods. There are also five continuous discharge systems, which constantly release treated wastewater. WWTF NPDES Permit effluent limits are established at levels that ensure that discharges do not contribute to exceedances of the TSS water quality standard. Rarely, during extreme high flow conditions, WWTF may also be a source if they become overloaded and have an emergency discharge of partially or untreated sewage, known as a release.

Overland Erosion – High turbidity (TSS) can occur when heavy rains fall on unprotected soils, dislodging the soil particles which are then transported by surface runoff into the rivers and streams (MPCA and MSUM 2009). First order streams, ephemeral streams, and gullies are typically higher up in the watershed and can flow intermittently, which makes them highly susceptible to disturbance. These sensitive areas have a very high erosion potential, which can be accelerated by farming practices. According to Pierce, "In low-lying areas amenable to extensive row-cropping, forests and perennial grasslands are replaced with annual crops, leaving the land unvegetated (sic) for much of the year. It is well established that removal of vegetation leads to erosion, particularly when followed by recurring conventional tillage" (Pierce 2012). The majority of unprotected soil in the watershed is on agricultural fields, but a percentage every year is unprotected for a variety of other reasons, such as construction, mining, or insufficiently vegetated pastures.

Hydrologic Changes – Hydrological changes in the landscape can all lead to increased turbidity (TSS) in surface waters. Subsurface drainage tiling, channelization of waterways, riparian land cover alteration, and increases in impervious surfaces all decrease detention time and increase flows. Draining and tiling wetlands decreases water storage on the landscape. Wetlands often form in low areas where the landscape, soils, or a combination of both create an area where water collects. When a wetland is drained, water is moved off the land at a higher velocity and in a shorter amount of time. The straightening and ditching of natural rivers, for both agricultural drainage or diversions around cities, increases the slope of the original watercourse and moves water off of the land at a higher velocity in a shorter amount of time. These changes to the way water moves through a watershed and how it makes its way into the river can lead to increases in water velocity, scouring of the river channel, and increased erosion of the river banks (Schottler et al. 2012). Figure 3.6 shows the altered hydrology within the

Hawk Creek Watershed. Velocity changes associated with unpermitted stormwater systems/drainage ditches are modeled in HSPF by partitioning runoff to surface runoff (rather than shallow or deeper groundwater) based on land use and impervious to pervious area. The surface runoff from an impervious area will arrive at the receiving waterbody sooner than shallow and deeper groundwater from pervious areas. The effects of ditching are captured in HSPF through GIS analysis during model framework development. A spatial analysis calculates the average distance from all the land area in a particular land category to the receiving waterbody. The presence of ditches reduces the average length of the overland flow plane for a land category. Therefore, the presence of ditches reduces the time it takes for watershed runoff to arrive at the receiving waterbody. The effects of agricultural tiling are modeled by shallow groundwater/interflow arriving at the receiving waterbody sooner than deeper groundwater/baseflow.

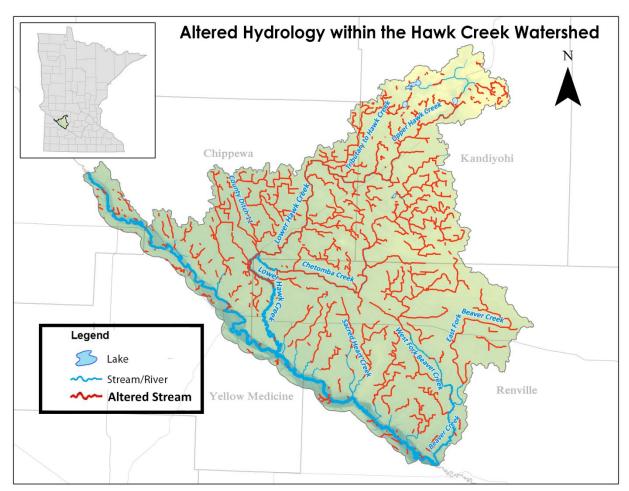


Figure 3.6: Altered hydrology of Hawk Creek Watershed

3.6.3 Nutrient Eutrophication

Phosphorus source categories, as well as runoff and phosphorus loads, were extracted from the Hawk Creek Watershed HSPF model. Likely sources of phosphorus in surface water of the Hawk Creek Watershed include atmospheric load, SSTS, manure application on agricultural fields, upland erosion, fertilizer application, streambank erosion, and internal loading. The pathways for pollutants to make their way into surface water include: overland and in-channel erosion, direct precipitation, open tile intakes, and tile lines. These are described in more detail below.

Atmospheric Load – Direct atmospheric deposition to the surface of the lakes was based on regional values (MPCA 2004). Sources of particulate phosphorus in the atmosphere may include pollen, soil erosion, oil and coal combustion and fertilizers. The atmospheric export coefficient used in the model was 0.3 kg/ha.

SSTS –The compliance rate of septic systems cannot be determined without individual inspections. County estimates range from 35% to 75% non-compliance. Phosphorus loads from septics were applied to the lake models using estimates from the HSPF model. The estimates of phosphorus load and the percent that SSTS contributes out of the total external load coming into the lake are shown in Table 3.8.

Table 3.8: Estimate of phosphorus load and the percent contribution from SSTS

Lake Name	Estimate of Phosphorus Delivered via SSTS (lbs/yr)	Total of External Phosphorus Load (%)
Olson Lake	1.94	2
St. John's Lake	5.95	1.2
West Solomon Lake	20.5	1
Swan Lake	4.2	1

Upland Erosion – Gullies and ephemeral streams are typically higher upstream in the watershed and can flow intermittently, which makes them highly susceptible to disturbance. These sensitive areas have a very high erosion potential, which can be magnified by some farming practices. The majority of unprotected soil in the watershed is on agricultural fields. Eroded soils can carry attached phosphorus to waterbodies.

Fertilizer and Manure Application – During precipitation events, runoff from fields can contain nutrients from applied fertilizer or manure. Due to overland flow runoff makes its way into open tile intakes, through a network of drainage tile, and eventually into surface waters. There is a significant amount of late winter solid manure application (before the ground thaws). High intensity precipitation often occurs during the spring, which can cause erosion of both the soil, fertilizer, and manure. During this time the runoff can be a source of phosphorus in lakes.

Streambank Erosion – The increase in both the velocity and amount of water by drainage, channel widening, and channel straightening can increase flows, which increases stream energy. This energy can cause loading of sediment through streambank erosion. Phosphorus ions can be attached to this sediment and can excessively load waterbodies. The removal of vegetation and buffers along the stream can also increase erosion and streambank instability.

Internal Load – Under anoxic conditions, weak iron-phosphorus bonds break, releasing phosphorus in a highly available form for algal uptake. Carp and other rough fish present in lakes can lead to increased

nutrients in the water column as they uproot aquatic macrophytes during feeding and spawning and resuspend bottom sediments. Over-abundance of aquatic plants can limit recreation activities, and invasive aquatic species such as curly-leaf pondweed can change the dynamics of internal phosphorus loading. Historical impacts, such as WWTF effluent discharge, can also affect internal phosphorus loading. The nutrient retention models within the BATHTUB framework already account for nutrient recycling. However, additional internal load was added to the lake models ranging from 0.29 (Olson Lake) – 2.45 (Saint John's Lake) mg*m*²*day*¹ to bring predicted phosphorus concentrations more in line with the observed. Ideally, independent measurements of internal load would be available to verify the use of additional internal loading. Such data is not available for the impaired Hawk Creek Watershed lakes. However, these internal loading values do fall within the range reported in the literature (Nürnberg 1984; Hoverson 2008). Despite the uncertainty as to the exact contribution internal loading has on phosphorus concentrations in the impaired lakes, internal processes are likely a significant source of phosphorus loading and should be addressed in a lake management plan.

Overland Erosion/Open Tile Intakes/Tile Lines – During some precipitation events, erosion can deliver phosphorus into surface waters. Phosphorus attached to soil particles and dissolved in water moves overland, which can directly discharge into surface waters or into open tile inlets and move through tile lines that discharge into surface waters.

The total external loads coming into the lakes from different land use sources were estimated using HSPF for the entire Hawk Creek Watershed, and the percent that each land use source contributes out of the total external load are listed in Table 3.9.

Table 3.9: Land cover categories, ranges of relative coverage, and P load contribution in the lake catchments

Land Use Source	Description	% Area In Lake Catchments*	External Phosphorus Load (%)
Forest	Runoff from forested land can include decomposing vegetation and organic soils.	3.4 – 10.6	<1-1
Cropland (Conventional and Conservation Tillage)	Runoff from agricultural lands can include applied manure, fertilizers, soil particles and organic material from agronomic crops.	28 – 67.8	46 – 85
Grassland/Pasture	Surface runoff can deliver phosphorus from vegetation, livestock and wildlife waste, and soil loss.	3.7 – 21.7	< 1 – 3.1
Developed (Pervious and Impervious)	Runoff from residences and impervious surfaces can include fertilizer, leaf and grass litter, pet waste and numerous other sources of phosphorus.	3.8 – 22.2	2.7 – 16.7
Wetlands/ Open Water	Wetlands and open water can export phosphorus through suspended solids as well as organic debris that flow through waterways.	1 – 47	< 1 – 4.8

^{*}Catchment area does not include area of the lake itself.

Point Sources

Potential point source contributions include construction and industrial stormwater, industrial process wastewater, and WWTF. Construction and industrial stormwater are accounted for in the model through the "Developed" land use phosphorus delivery coefficient as described above. There are no industrial process wastewater discharges or WWTF discharges in the lake watersheds.

4 TMDL Development

A TMDL for a waterbody that is impaired as a result of excessive loading of a particular pollutant can be described by the following equation:

TMDL = LC =
$$\sum$$
WLA + \sum LA + MOS + RC

Where:

LC = **loading capacity**, or the greatest pollutant load a waterbody can receive without violating water quality standards;

WLA = wasteload allocation; the portion of the TMDL allocated to existing or future permitted point sources of the relevant pollutant;

LA = load allocation, or the portion of the TMDL allocated to existing or future nonpoint sources of the relevant pollutant;

MOS = margin of safety, or an accounting of uncertainty about the relationship between pollutant loads and receiving water quality. The MOS can be provided implicitly through analytical assumptions or explicitly by reserving a portion of loading capacity (EPA 1999).

RC = **reserve capacity**, an allocation of future growth. This is an MPCA-required element, if applicable. Not applicable in this TMDL.

Per Code of Federal Regulations (40CFR 130.2(1)), TMDLs can be expressed in terms of mass per time, toxicity or other appropriate measures. For the Hawk Creek Watershed impairments addressed in this TMDL, the TMDLs, allocations and margins of safety are expressed in mass/day. Each of the TMDL components is discussed in greater detail below.

4.1 Data Sources

4.1.1 Hydrological Simulation Program – FORTRAN (HSPF)

The HSPF model was used to simulate dissolved oxygen and flows from 1996-2012 in the Hawk Creek Watershed; this output was used for analysis and TMDL calculations.

The HSPF model is a comprehensive package for simulation of watershed hydrology and water quality for both conventional and toxic organic pollutants. The HSPF model incorporates watershed-scale Agricultural Runoff Model (ARM) and NPS models into a basin-scale analysis framework that includes fate and transport in one dimensional stream channels. It is the only comprehensive model of watershed hydrology and water quality that allows the integrated simulation of land and soil contaminant runoff processes with in-stream hydraulic and sediment-chemical interactions. The result of this simulation is a time history of the runoff flow rate, sediment load, and nutrient and pesticide

concentrations, along with a time history of water quantity and quality at the outlet of any subwatershed.

The HSPF watershed model contains components to address runoff and constituent loading from pervious land surfaces, runoff and constituent loading from impervious land surfaces, and flow of water and transport/transformation of chemical constituents in stream reaches. Primary external forcing is provided by the specification of meteorological time series. The model operates on a lumped basis within subwatersheds. Upland responses within a subwatershed are simulated on a per-acre basis and converted to net loads on linkage to stream reaches. Within each subwatershed, the upland areas are separated into multiple land use categories.

4.1.2 Environmental Quality Information System (EQuIS)

The MPCA uses a system called EQuIS to store water quality data from more than 17,000 sampling locations across the state. The EQuIS contains information from Minnesota streams and lakes dating back to 1926.

All discreet water quality sampling data utilized for assessments and data analysis for this TMDL are stored in this accessible database: *Environmental Data Access* (MPCA 2014c).

4.2 Loading Capacity Methodology

The load duration curve method is based on an analysis that encompasses the cumulative frequency of historic flow data over a specified period. Because this method uses a long-term record of daily flow volumes virtually the full spectrum of allowable loading capacities is represented by the resulting curve. In the TMDL equation tables of this TMDL (Tables 4.12 through 4.14), mid-points of the five designated flow zones of the entire loading capacity curve are depicted. However, it should be understood that the entire curve represents the TMDL and is what is ultimately approved by the Environmental Protection Agency (EPA).

4.2.1 Streams, E. coli

The duration curve approach (EPA 2007) was utilized to address the *E. coli* impairments. A flow duration curve was developed using April through October 1996 through 2012 daily average flow data provided by the Hawk Creek Watershed HSPF model. All zero flows estimated from the HSPF model were converted to 0.01 cfs due to the inability of load duration curves to plot zero flows and zero loads. At or below 0.03 billion org/day on the duration curve the stream is considered dry. Flow zones were determined for very high, high, mid, low and very low flow conditions. The mid-point flow value for each flow zone was then multiplied by the standard of 126 org/100ml to calculate the load capacity (LC). For example, for the "very high flow" zone, the LC is based on the flow value at the fifth percentile. The conversion factors used to compute a flow value and pollutant sample value into a load are shown in Table 4.1. Computed load duration curve graphs are shown in Appendix A.

Table 4.1: Unit conversion factors used for *E. coli* load calculations

Load (billion/day) = Flow (cfs) * Concentration (126 organisms/100 ml) * Conversion Factor								
1	Start wi	th Flow			=	ft³/sec		
2	Multiply by 28,316.8 ml/ft³ to convert ft³ a ml				ft³	ml/sec		
3	Multiply by 7 (Standard set at 1	=	organisms/sec					
4	Divide by	y 100 ml						
5	Multiply by 60 sec/min to convert	seconds	à	minutes	=	organisms/min		
6	Multiply by 60 min/hr to convert	minutes	à	hours	=	organisms/hour		
7	Multiply by 24 hours/day to convert	hours	hours à days			organisms/day		
8	Divide by 1 Billion to convert	organisms	à	billion organisms	=	billion organisms/day		

Table 4.14 shows LCs and allocations for stream reaches impaired for *E. coli*. Mid-points of the five designated flow zones of the entire loading capacity curve are depicted. However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire curve. The load duration curve method can be used to display collected *E. coli* monitoring data and allows for estimation of load reductions necessary for attainment of the *E. coli* water quality standard. Load duration curves for the *E. coli* impaired stream reaches are contained in Appendix A.

Estimated reductions for each of the bacteria impaired stream reaches are presented in Table 4.2. Reduction values were computed using a load duration curve and collected *E. coli* sample data for each impaired reach. The above conversion shown in Table 4.1 was used to compute loads for days when samples were taken. The sample concentration (CFU/100mL) was converted into a load (billion organisms per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.1. These actual observed load values were then summed up for all days samples were collected. This observed load, calculated from actual monitoring data, was then compared to the load if the water sample concentration was equivalent to the water quality standard. The process is described further below.

Observed Load

The sample concentration (CFU/100mL) was converted into a load (billion org per day) using the daily average flow value for that day and inserting the collected sample concentration values into Step 3 in Table 4.1. These actual load values were then summed up for all sample days.

Load at Water Quality Standard

The load value if the concentration of the water was exactly at the *E. coli* standard (126 cfu/100ml) was computed using the daily average flow value for the same sample days and multiplying that value through the steps in Table 4.1 using the *E. coli* standard value of 126 cfu/100ml in Step 3. These

standard load values were then summed up for all the days a sample was collected, and represent the total maximum load that the river is able to take and still meet the water quality standards for the flows on those dates.

Percent Reduction

The sum of the observed loads was compared to the sum of the water quality standard loads. The percent difference is used for the estimated percent reduction values.

Table 4.2: Percent reductions for *E. coli* impaired stream reaches based on 2002-2011 monitoring data

Aggregated HUC12 Subwatershed Stream Reach AUID #	Observed Load (billion org) [# of samples]	Load Set at 126 org /100mL Standard (billion org)	Estimated Reduction Needed To Get < 126 org/100 mL
Beaver Creek 07020004-528	566,069 [151]	79,181	86%
Chetomba Creek 07020004-589	474,325 [150]	70,545	85%
County Ditch 11 07020004-689	6,104 [15]	1,139	81%
East Fork Beaver Creek 07020004-586	4,997 [15]	2,073	59%
Lower Hawk Creek 07020004-568	892,868 [147]	147,489	83%
Lower Hawk Creek 07020004-587	1,573,383 [150]	242,189	85%
Sacred Heart Creek 07020004-526	13,967 [75]	2,691	81%
Sacred Heart Creek – MN River 07020004-525	19,041 [75]	2,956	85%
Sacred Heart Creek – MN River 07020004-615	761,780 [15]	230,452	70%
Sacred Heart Creek – MN River 07020004-617	665,948 [15]	264,200	60%
Stony Run Creek – MN River 07020004-534	33,061 [69]	4,790	86%
West Fork Beaver Creek 07020004-530	242,765 [141]	43,656	82%

Aggregated HUC12	Observed Load	Load Set at 126 org	Estimated Reduction
Subwatershed	(billion org)	/100mL Standard	Needed To Get
Stream Reach AUID #	[# of samples]	(billion org)	< 126 org/100 mL
Wood Lake Creek – MN River 07020004-648	13,051 [62]	2,374	82%

The resulting reduction percentage is only intended as a rough approximation. Reduction percentages are not a required element of a TMDL (and do not supersede the allocations provided), but are included here to provide a starting point to assess the magnitude of the effort needed in the watershed to achieve the standard.

4.2.2 Streams, Turbidity (TSS)

The duration curve approach (EPA 2007) was utilized to address turbidity (TSS) impairments. For reasons explained in Section 2, the current southern streams region TSS standard of 65mg/L was chosen to develop the TMDL. A flow duration curve was developed using April through September 1996 through 2012 daily average flow data provided by the Hawk Creek Watershed HSPF model. All zero flows estimated from the HSPF model were converted to 0.01 cfs due to the inability of load duration curves to plot zero flows and zero loads. At or below 0.01 tons TSS/day on the duration curve the stream is considered dry. Flow zones were determined for very high, high, mid, low and very low flow conditions. The mid-point flow value for each flow zone was then multiplied by the TSS southern streams standard of 65 mg/L to calculate the loading capacity. For example, for the "very high flow" zone, the LC is based on the flow value at the 5th percentile. The conversion factors used to compute a flow value and pollutant sample value into a load are shown in Table 4.3. Computed load duration curve graphs are shown in Appendix B.

Table 4.3: Unit conversion factors used for TSS load calculations

Load (tons/day) = Concentration (mg/1000mL) * Flow (cfs) * Factor								
1	Start w	ith Flow			=	ft³/sec		
2	Multiply by 28,316.8 ml/ft ³ to convert	ft³	à	ml	=	ml/sec		
3	• •	/ by # mg et at 65 mg/L)			=	mg/sec		
4	Divide b	y 1000 ml						
5	Divide by 453,592 mg/lb to convert	mg	à	lbs	=	lbs/sec		
6	Multiply by 60 sec/min to convert	seconds	à	minutes	=	lbs/min		
7	Multiply by 60 min/hr to convert minutes a hours			=	lbs/hour			
8	Multiply by 24 hours/day to convert	hours	à	days	=	lbs/day		

Load (tons/day) = Concentration (mg/1000mL) * Flow (cfs) * Factor							
9	Divide by 2000 lbs/ton to convert	lbs	à	tons	=	tons/day	

Table 4.15 shows LCs and allocations for TSS for stream reaches impaired for turbidity (TSS). Mid-points of the five designated flow zones of the entire loading capacity curve are depicted. However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire curve. The load duration curve method can be used to display collected TSS monitoring data, and allows for estimation of load reductions necessary for attainment of the TSS water quality standard. Load duration curves for the turbidity (TSS) impaired stream reaches are contained in the Appendix.

Estimated reductions for each of the turbidity (TSS) impaired stream reaches are presented in Table 4.4. Reduction values were computed using a load duration curve and collected TSS sample data for each impaired reach. The above conversion shown in Table 4.3 was used to compute loads for days when samples were collected. The sample concentration (mg/L) was converted into a load (tons per day) using the daily average flow value for that day and inserting the sample concentration values into Step 3 in Table 4.3. These actual observed load values were then summed up for all days samples were collected. This observed load, calculated from actual monitoring data, was then compared to the load if the water sample concentration was equivalent to the water quality standard. The process is described further below.

Observed Load

The sample concentration (mg/L) was converted into a load (tons per day) using the daily average flow value for that day and inserting the collected sample concentration values into Step 3 in Table 4.3. These actual load values were then summed up for all sample days.

Load at Water Quality Standard

The load value if the concentration of the water met the TSS standard (65 mg/L) was computed using the daily average flow value for the same sample days and multiplying that value through the steps in Table 4.3 using the TSS standard value of 65 mg/L in Step 3. These standard load values were then summed up for all the days a sample was collected, and represent the total maximum load that the river is able to take and still meet the water quality standards for the flow values on those dates.

Percent Reduction

The sum of the observed loads was compared to the sum of the standard loads. The percent difference is used for the estimated percent reduction values.

Table 4.4: Percent reductions for turbidity (TSS) impaired stream reaches based on 2002-2011 TSS data

Aggregated HUC12 Subwatershed Stream Reach AUID #	Observed Load (Tons TSS) [# of samples]	Load Set at 65 mg/L Standard (Tons TSS)	Estimated Reduction Needed To Get < 65 mg/L
Beaver Creek 07020004-528	19,015 [341]	9,972	48%
Chetomba Creek 07020004-589	13,938 [341]	9,134	35%
Lower Hawk Creek 07020004-568	25,384 [339]	17,514	31%
Lower Hawk Creek 07020004-587	66,683 [353]	29,288	56%

The resulting reduction percentage is only intended as a rough approximation. Reduction percentages are not a required element of a TMDL (and do not supersede the allocations provided), but are included here to provide a starting point to assess the magnitude of the effort needed in the watershed to achieve the standard.

4.2.3 Lakes, Nutrient Eutrophication

The BATHTUB (version 6.14; Walker 1999) model framework was used to model phosphorus and water balance for lakes within the Hawk Creek River Watershed. Data used to develop the model framework included: precipitation, evaporation, lake morphometry, lake water quality, animal units, watershed area, land use, flow and water quality, septic systems and NPDES dischargers. Flow data from 1996 through 2012 generated by the HSPF model was used to populate the BATHTUB models. For more detail on the Hawk Creek sources of model data, refer to the *Granite Falls – Minnesota River Watershed Monitoring and Assessment Report* (MPCA 2012d).

BATHTUB's Canfield Bachmann lake model was used to estimate loads to the impaired lakes. The nutrient sedimentation models in BATHTUB have been empirically calibrated, so the effects of internal phosphorus loading from sediments are accounted for in the model parameter values (Walker 1999). As such, the model does not explicitly provide an estimate of the internal load. However, in the Hawk Creek Watershed, lakes required additional internal loading (0.29 – 2.45 mg·m·²*day¹) for the predicted inlake phosphorus concentrations to match the average phosphorus concentrations based on water quality samples. The additional internal load is shown in column 6 of Table 4.5. It is important to remember this does not represent the entire internal load; rather it is the additional internal P load required for the modeled predictions to match the average conditions. Internal load tends to be a significant source of phosphorus to lakes in the Hawk Creek Watershed and in-lake efforts will be important to achieve water quality standards. However, any improvements to water quality derived from in-lake efforts will be temporary if external sources are not better controlled to reduce the build-up of internal phosphorus.

To calculate the phosphorus load capacity of each lake, phosphorus loads were reduced within the model until the predicted in-lake concentration matched the appropriate standard (Columns 4 to 6 in

Table 4.5). This was achieved by reducing TP concentrations from land use categories that exceeded the river/stream eutrophication standards down to the applicable concentration standard (150 μ g/L). The land use categories most often affected by these adjustments were cropland and developed land. In addition, contribution from septic systems was reduced to zero. In cases where reducing the TP concentrations from the contributing landscape and setting the load from septic systems to zero was not sufficient to meet the lake water quality standard, the internal load was reduced until the water quality standard was achieved. Using the modeled annual loads and the annual load capacities, the load reductions were calculated (Column 8 in Table 4.5).

Table 4.5: Observed and modeled mean phosphorus conditions in Hawk Creek Watershed lakes; phosphorus load reduction necessary to meet the water quality standard

Lake Name DNR Lake #	Observed Average TP (µg/L)	Modeled TP (μg/L)	TP Standard (µg/L)	Modeled Annual TP Load (lbs/yr)	Additional Annual Internal TP Load (lbs/yr)	Modeled Annual TP Load Capacity (lbs/yr)	Load Reduction to Achieve TP Standard
Olson Lake 41-0034-00	121	121	90	214.7	116.8	132.1	38%
St. John's Lake 34-0283-00	155	155	90	2,587	1,538.8	1,287	50%
West Solomon Lake 34-0245-00	113	113	90	3,805	1,498.9	2,708.2	29%
Swan Lake 31-0171-00	111	111	90	2,240.1	735.2	1,739	22%

4.3 Wasteload Allocation Methodology

The WLAs are determined for a facility's operating permit (wastewater), or calculated in accordance with EPA guidance (EPA 2002) and presented as categorical WLAs for non-permitted sources. Categorical WLAs are pollutant loads that are equivalent for multiple permittees (several regulated Municipal Separate Storm Sewer System [MS4s]) or a group of permittees (e.g. construction stormwater).

4.3.1 Wastewater Treatment Facilities

The WWTF are NPDES/SDS permitted facilities that process primarily wastewater from domestic sanitary sewer sources (sewage). These include city or sanitary district treatment facilities, wayside rest areas, national or state parks, mobile home parks and resorts. There are no WWTF in the impaired lake watersheds. Relevant WWTF for impaired stream reaches are shown in Table 4.6.

Table 4.6: WWTF permitted facilities applicable to this TMDL

City WWTF	Permit #	Facility	System Type	Impairment	Stream Reach AUID#
Bird island	MN0020737	Municipal	•	<i>E. coli</i> /Turbidity (TSS)	07020004-528
Bira islana		WWTP	Discharge	E. coli	07020004-586
Blomkest/Svea	MN0069388	Municipal	Controlled	<i>E. coli</i> /Turbidity (TSS)	07020004-587
biolineou ovou	141140007000	WWTP	Discharge	E. coli/Turbidity (TSS)	07020004-589
Clara City	MN0023035	Municipal	Continuous	Fecal coliform /Turbidity (TSS)	07020004-568
Glara Gity	171140023033	WWTP	Discharge	E. coli/Turbidity (TSS)	07020004-587
Danube	MNG580057	Municipal	Controlled	E. coli/Turbidity (TSS)	07020004-528
Danube	WINGS60057	WWTP	Discharge	Fecal coliform /Turbidity (TSS)	07020004-530
	MN0056588	Municipal WWTP	Continuous Discharge	Fecal coliform /Turbidity (TSS)	07020004-568
Maynard				<i>E. coli</i> /Turbidity (TSS)	07020004-587
				E. coli	07020004-689
Olivia	MN0020907	Municipal	Continuous	E. coli/Turbidity (TSS)	07020004-528
Ga		WWTP	Discharge	E. coli	07020004-586
Pennock	MNG580104	Municipal	Controlled	<i>E. coli</i> /Turbidity (TSS)	07020004-568
Реппоск	WING580104	WWTP	Discharge	<i>E. coli</i> /Turbidity (TSS)	07020004-587
Dringhura	MN0063932	Municipal	Continuous	<i>E. coli</i> /Turbidity (TSS)	07020004-587
Prinsburg	IVII14UU03932	WWTP	Discharge	E. coli/Turbidity (TSS)	07020004-589
Doumand	NANIOO 45 444	Municipal	Controlled	Fecal coliform /Turbidity (TSS)	07020004-568
Raymond	MN0045446	WWTP	Discharge	<i>E. coli</i> /Turbidity (TSS)	07020004-587
Renville	MN0020737	Municipal WWTP	Continuous Discharge	E. coli	07020004-526

City WWTF	Permit #	Facility	System Type	Impairment	Stream Reach AUID#
Roseland	MN10070002	Municipal	Controlled	E. coli/Turbidity (TSS)	07020004-587
	MN0070092	WWTP	Discharge	E. coli/Turbidity (TSS)	07020004-589
Willman	MN0025259	Municipal WWTP	Continuous Discharge	E. coli/Turbidity (TSS)	07020004-568
Willmar				<i>E. coli</i> /Turbidity (TSS)	07020004-587

For the *E. coli* impaired stream reaches, controlled discharge WWTF allocations were determined by multiplying the water quality standard of 126 org/100ml by the maximum permitted discharge flow (based on a six inch per day discharge from the facility's secondary ponds). Individual *E. coli* WLA calculations and allocations are shown in Table 4.7.

Table 4.7: Individual WWTF E. coli WLA calculations

	А	В	С	A*B*C
City WWTF	Permit Limit (org/100 mL)	Max Daily Flow or Max Permitted Discharge Flow (mgd)	Conversion factor	Load (billion org/day)
Bird island		1.136		5.42
Blomkest/Svea		0.450		2.14
Clara City		0.46		2.19
Danube		0.645	0.0379	3.08
Maynard		0.153		0.73
Olivia		0.98		4.67
Pennock	126	0.652		3.11
Prinsburg		0.0545		0.26
Raymond		1.417		6.76
Renville		0.853		4.07
Roseland		0.375		1.79
Willmar		7.51		35.82

The flow contribution from each of the WWTF exceeds the designated "very low" flow for all impaired stream reaches with a WWTF discharge. The WWTF load can never exceed the stream load as it is a component of the stream load. To account for this situation, the WLA and LAs are expressed as an equation rather than an absolute number. This equation is:

Allocation = (flow contribution from a given source) x (126 billion org/100ml)

This amounts to assigning a concentration based limit to these sources. While this might be seen as overly stringent, these sources tend not to be significant contributors of bacteria under very low flow conditions.

For the turbidity (TSS) impaired stream reaches, controlled discharge WWTF allocations were determined by multiplying the permit limit of 30 or 45 mg/L by the maximum permitted discharge flow (based on a six inch per day discharge from the facility's secondary ponds). Individual TSS WLA calculations and allocations are shown in Table 4.8.

Table 4.8: Individual WWTF Total Suspended Solids WLA calculations

	Α	В	С	A*B*C
City WWTF	Permit Limit (mg/liter)	Max Daily Flow or Max Permitted Discharge Flow (mgd)	Permitted Discharge Conversion factor	
Bird island	45	1.136		0.21
Blomkest/Svea	45	0.450		0.08
Clara City	30	0.46		0.06
Danube	45	0.645		0.12
Maynard	30	0.153		0.02
Olivia	30	0.98	0.0041722	0.12
Pennock	45	0.652		0.12
Prinsburg	30	0.0545		0.01
Raymond	45	1.417		0.27
Roseland	45	0.375		0.07
Willmar	30	7.51		0.94

The flow contribution from each of the WWTF exceeds the LC designated "very low" flow for some of these streams. The WWTF load can never exceed stream loads, as it is a component of stream load. To account for this situation, the WLA and LAs are expressed as an equation rather than an absolute number. This equation is:

Allocation = (flow contribution from a given source) x (Permit Limit)

This amounts to assigning a concentration based limit to these sources. While this might be seen as overly stringent, these sources tend not to be significant contributors of TSS under very low flow conditions.

4.3.2 Industrial Process Wastewater

NPDES/SDS permitted facilities process wastewater from industrial processes. Relevant industrial facilities for impaired stream reaches are shown in Table 4.9. The LA from the Southern Minnesota Beet Sugar Plant WWTF exceeds the LC in several flow zones for stream reach 07020004-587. The discharged load can never exceed the stream load, as it is a component of the stream load. To account for this situation, the WLA and LAs are expressed as an equation rather than an absolute number. This equation is:

Allocation = (flow contribution from a given source) x (Permit Limit)

This amounts to assigning a concentration based limit to these sources. While this might be seen as overly stringent, these sources tend not to be a significant contributor of *E. coli* or TSS and actual discharge concentrations are typically well below the standard.

Table 4.9: Industrial permits applicable to this TMDL

Industrial Facility	Permit #	Facility	System Type	Impairment	Stream Reach AUID #
Southern Minnesota Beet Sugar – SD009	MN0040665	Beet Sugar Plant	Periodic/Seasonal Discharge	E. coli	07020004-526
Southern Minnesota	MN0040665 Reet Sugar Plant		Poriodic/Sossonal	Turbidity (TSS)	07020004-528
Beet Sugar – SD001		Turbidity (TSS)	07020004-530		
Granite Falls Energy LLC	MN0066800	Ethanol Plant	Continuous Discharge	Turbidity (TSS)	07020004-587

Table 4.10: Individual industrial facility E. coli WLA

rabio irror marriadar madornar rabinty 2, con trait					
Industrial Facility	Permitted Load (billion org/day)				
Southern Minnesota Beet Sugar – SD009	10.78				

Table 4.11: Individual industrial facility TSS WLA

Industrial Facility	Permitted Load (tons/day)
Southern Minnesota Beet Sugar – SD001	0.06
Granite Falls Energy LLC	0.02

4.3.3 Stormwater

Urban and suburban stormwater runoff both from developing and built-out areas carry pollutant loads that can match or exceed agricultural run-off on a per-acre basis. This runoff can increase stream flows, which contributes to channel instability and streambank erosion. Pollutants from stormwater runoff can include pesticides, fertilizer, oil, chemicals, metals, pathogens, salt, sediment, litter and other debris. The MPCA has three categories for stormwater permits: municipal, construction and industrial.

Municipal – In 1987, the CWA was amended to include provisions for a two-phase program to address stormwater runoff. In March of 2003, the second phase of the program began. Phase II includes permitting and regulation of smaller construction sites, municipality MS4 Permits, and industrial facilities. The city of Willmar's MS4 impacts two stream reaches impaired for both TSS and bacteria: 07020004-568 and 07020004-587. The upstream reach, 07020004-568, has a drainage area of 206,059 acres. Approximately 9,531 acres of the city of Willmar are within the Hawk Creek Watershed. Of these 9,531 acres, approximately 3,758.24 acres were categorized as developed (MRLC 2011), which is 1.8% of the drainage area of reach 07020004-568. The allocation to this category is made after the MOS is subtracted from the total LC. This 1.8% of the total average daily LC for stream reach 07020004-568 is the more restrictive value and is therefore used for stream reach 07020004-587.

Table 4.12: Municipal MS4 permits applicable to this TMDL

Industrial Facility	Permit #	Туре	Impairment	Stream Reach AUID#
City of Willmar	MS400272	Stormwater	TSS/ Fecal coliform	07020004-568
·			TSS/ E. coli	07020004-587

Construction and Industrial – The MPCA issues construction permits for any construction activities disturbing:

- · One acre or more of soil
- Less than one acre of soil if that activity is part of a "larger common plan of development or sale" that is greater than one acre
- Less than one acre of soil, but the MPCA determines that the activity poses a risk to water resources

TSS and phosphorus WLAs for stormwater discharges from sites where there is construction activity reflect the number of construction sites less than one acre expected to be active in the watershed at any one time, and the best management practices (BMPs) and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. Bacteria WLAs for regulated construction stormwater (permit #MNR100001) were not developed, since *E. coli* is not a typical pollutant from construction sites. Industrial stormwater receives a WLA only if the pollutant is part of benchmark monitoring for an industrial site in the watershed of an impaired water body. There are no bacteria or *E. coli* benchmarks associated with any of the industrial stormwater permits (permit #MNR050000) in these watersheds and therefore no industrial stormwater *E. coli* WLAs were assigned.

Industrial sites might contribute to stormwater pollution when water comes in contact with pollutants such as toxic metals, oil, grease, de-icing salts and other chemicals from rooftops, roads, parking lots,

and from activities such as storage and handling material. Examples of exposed materials that would require a facility to apply for an industrial stormwater permit include: fuels, solvents, stockpiled sand, wood dust, gravel, metal and a variety of other materials. As part of the permit requirements, the facilities are required to develop and implement a Stormwater Pollution Prevention Plan (SWPPP). The SWPPP uses BMPs designed to eliminate or minimize stormwater contact with significant materials that might result in polluted stormwater discharges from the industrial site. Applicable TSS and phosphorus WLAs for stormwater discharges from sites where there is industrial activity reflect the number of sites in the impaired watershed for which NPDES Industrial Stormwater Permit coverage is required, as well as BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern.

Construction Stormwater Permit application records indicate approximately 0.6% of land use in the study area has been subject to construction over the last 10 years. Industrial Stormwater Permit application records indicate approximately 0.25% of land use in the study area has been subject to permitted industrial activity over the last 10 years. To account for construction and industrial stormwater, as well as allowing for the potential of higher rates of construction and additional industrial facilities, this TMDL assumes 1% of the land area for the construction and industrial stormwater category. Therefore, 1% of the LC for applicable TSS and Nutrient Eutrophication TMDLs is apportioned to these activities through a categorical WLA. The allocation to this category is made after the MOS is subtracted from the total LC.

Livestock Facilities – NPDES livestock facilities are zero discharge facilities and therefore are given a WLA of zero and should not impact water quality in the watershed as a point source. There are 51 livestock facilities with NPDES permits located within the Hawk Creek Watershed as shown in Table 4.13. These are general feedlot permits and are covered as such under Minnesota's General Feedlot Permit, MNG440000. Discharge of phosphorus from fields where manure has been land-applied are covered under the LA portion of the TMDLs, provided the manure is applied in accordance with the permit.

Table 4.13: NPDES permitted livestock CAFOs by subwatershed

Aggregated HUC12 Subwatershed	Feedlot Permit Number	Feedlot Name	Total Animal Units
	MNG440187	Country Pork Inc	1440
Chetomba Creek	MNG440432	Gorans Bros Inc	676
	MNG440432	Gorans Bros Inc	1152
	MNG440111	Gorans Bros Inc	2378
	MNG440432	Gorans Bros Inc	100
	MNG440432	Gorans Bros Inc	2160
	MNG440535	Huisinga Farms Inc	1760

Aggregated HUC12 Subwatershed	Feedlot Permit Number	Feedlot Name	Total Animal Units
	MNG440841	J&C Swine	1920
	MNG440191	Prinsburg Farmers Co-op	1400
	MNG440889	Prinsburg Farmers Co-op	1440
	MNG440893	Prinsburg Farmers Co-op	497.5
	MNG440838	Roger Mulder	1095
	MNG440744	Willmar Poultry Co Inc	500
	MNG440745	Willmar Poultry Co Inc	600
County Ditch 11	MNG441067	Christensen Farms Midwest LLC	1344
	MNG440418	Steve Peterson	1152
East Fork Beaver Creek	MNG440520	Teri Kubesh	1248
	MNG440782	Christensen Farms Midwest LLC	2208
	MNG441055	JAM Farms Inc	1253.3
	MNG440840	Justin Ulferts	1225
	MNG440784	Kleene Farms Inc	750
Lower Hawk Creek	MNG440473	Lone Tree Farm LLC	1203.8
	MNG440925	Lone Tree Farm LLC	1200
	MNG440829	Riverview LLP	1176
	MNG440471	Ruschen Turkey Inc	820
	MNG440440	Taatjes Farms Inc	1200
	MNG441068	Christensen Farms Midwest LLC	1378
Sacred Heart Creek	MNG440491	Clay & Lisa Bryan	2850
	MNG440750	Clay & Lisa Bryan	990
	MNG440484	Christensen Family LLC	848

Aggregated HUC12 Subwatershed	Feedlot Permit Number	Hadlot Nama	
	MNG441069	Christensen Farms Midwest LLC	1378
	MNG440452	Country Pork Inc	1296
	MNG440188	Country Pork Inc	1440
	MNG440816	Kevin Rosendahl	900
	MNG440192	Rembrandt Enterprises Inc	6105.6
	MNG440488	Rosendahl Feedlots	1200
	MNG440478	Kevin & Sandra Malecek Farm – Kevin Site	1440
Sacred Heart Creek - MN River	MNG440478	Kevin & Sandra Malecek Farm – Sandra Site	1152
	MNG440913	Randall Dolezal Farm	840
	MNG440474	The Pullet Connection	1572
	MNG441065	Meadow Star Dairy LLP	8880
Tributary to Hawk Creek	MNG440116	Willmar Poultry Co Inc	2250
	MNG440117	Willmar Poultry Company Diagnostic Labra	711
	MNG440595	Jennie-O Turkey Store Inc	380
Hanar Hayak Crook	MNG440112	Sunnyside Turkeys Inc	1170
Upper Hawk Creek	MNG440743	Willmar Poultry Co Inc	625
	MNG440119	Willmar Poultry Company Diagnostic Labra	540
	MNG440433	Christensen Farms & Feedlots Inc	1248
West Fork Beaver Creek	MNG440524	Huisinga Farms Inc	1200
West fork beaver creek	MNG440483	Roger D Kingstrom	2808
	MNG440841	James Hebrink Farm	1230

4.3.4 Straight Pipe Septic Systems

Straight pipe septic systems are illegal and therefore receive a WLA of zero. According to Minn. Stat. 115.55, subd. 1, a straight pipe "means a sewage disposal system that includes toilet waste and transports raw or partially settled sewage directly to a lake, a stream, a drainage system, or ground surface".

4.4 Load Allocation Methodology

Once the WLA and MOS were determined for each watershed and subtracted from the LC, the remaining pollutant load was allocated to the LA. The LA includes nonpoint pollution sources that are not subject to NPDES Permit requirements, as well as "natural background" sources. "Natural background" is defined in both Minnesota rule and statute: Minn. R. 7050.0150, subp. 4 "Natural causes' means the multiplicity of factors that determine the physical, chemical or biological conditions that would exist in the absence of measurable impacts from human activity or influence." The Clean Water Legacy Act (Minn. Stat. § 114D.10, subd. 10) defines natural background as "characteristics of the water body resulting from the multiplicity of factors in nature, including climate and ecosystem dynamics that affect the physical, chemical or biological conditions in a water body, but does not include measurable and distinguishable pollution that is attributable to human activity or influence."

Natural background conditions refer to inputs that would be expected under natural, undisturbed conditions. Natural background sources can include inputs from natural geologic processes such as soil loss from upland erosion and stream development, atmospheric deposition, and loading from forested land, wildlife, etc. Natural background conditions were also evaluated, where possible, within the modeling and source assessment portion (Section 3.6) of this study. These source assessment exercises indicate natural background inputs are generally low compared to livestock, cropland, streambank, urban stormwater, WWTFs, failing SSTSs and other anthropogenic sources. Separate LAs were not determined for natural background sources in this report due to the factors outlined below, as well as a lack of research or data that would be required to differentiate between nonpoint and natural background sources of the pollutants.

Based on the MPCA's waterbody assessment process and the TMDL source assessment exercises, there is no evidence at this time to suggest natural background sources are a major driver of any of the water body impairments and/or affect their ability to meet state water quality standards. For all impairments addressed in this study, natural background sources are implicitly included in the LA portion of the TMDL allocation tables, and TMDL reductions should focus on the major anthropogenic sources identified in the source assessment.

E. coli natural background evaluation

The relationship between bacterial sources and bacterial concentrations found in streams is complex, involving precipitation and flow, temperature, livestock management practices, wildlife activities, survival rates, land use practices, and other environmental factors. Two Minnesota studies described the potential for the presence of "naturalized or indigenous" *E. coli* in watershed soils (Ishii et al. 2006), ditch sediment, and water (Chandrasekaran et al. 2015). Chandrasekaran et al. (2015) conducted DNA fingerprinting of *E. coli* in sediment and water samples from Seven Mile Creek, located in south-central Minnesota. They concluded that roughly 63.5% were represented by a single isolate, suggesting new or transient sources of *E. coli*. The remaining 36.5% of strains were represented by multiple isolates, suggesting persistence of specific *E. coli*. The authors suggested that 36% might be used as a rough indicator of "background" levels of bacteria at this site during the study period but results might not be transferable to other locations without further study. Although the result may not be transferable to other locations, they do suggest the presence of background *E. coli* and a fraction of *E. coli* may be present regardless of the control measures taken by traditional implementation strategies.

TSS natural background evaluation

The MPCA uses the year 1830 as a reference point for measuring the beginning of anthropogenic effects on the TSS loads, based on estimates from Lake Pepin sediment cores. This period is prior to European settlement, which introduced dramatic changes to the landscape. These changes consisted primarily of converting more than 90% of native prairie and wetlands to agriculture through tillage and artificial drainage, along with the introduction of annual row crops. From the Lake Pepin core samples an estimation for "natural background" of TSS was established for each of the river basins (Upper Mississippi, Minnesota, St. Croix and Cannon) that drain to Lake Pepin during the development of the South Metro Mississippi River TSSs TMDL (MPCA 2015). However, the method used to develop these "natural background" loads for each basin does not allow them to be extrapolated into the watersheds located in each basin. Because of the way sediment moves in the stream and the unknown river flows and stream dynamic of the Minnesota River in 1830, attempting to allocate a portion of the Minnesota River "natural background" load to the Hawk Creek Watershed will lead to a potential margin of error that in itself may be more than the estimated allocation.

The decision not to include all forms of erosion as natural background can be summed up as Schottler explains, the land form that creates the potential for high erosion rates is natural, but today's high rates of erosion and sediment concentration are not natural:

"Because of geologic history, non-field sources such as bluffs and large ravines are natural and prevalent features in some watersheds. Consequently these watersheds are predisposed to high erosion rates. However, it would be highly inaccurate to label this phenomenon as natural. Post-settlement increases in sediment accumulation rates in Lake Pepin, the Redwood Reservoir...and numerous lakes in agricultural watersheds ... clearly show that rates of sediment erosion have increased substantially over the past 150 years. Coupling these observations with the non-field sediment yields determined in this study, demonstrates that the rate of non-field erosion must also have increased. The features and potential for non-field erosion may be natural, but the rate is not." (Schottler et al. 2010, Page 32)

Nutrient Eutrophication natural background evaluation

The TMDL does not attempt to quantify the natural background load as a separate component of the LA for the impaired lakes. Natural background load is likely a very small part of the LA for lakes in the Hawk Creek Watershed. Studies indicate runoff load of nutrients and other pollutants from urban, agricultural and other developed or disturbed lands is generally at least an order of magnitude greater than runoff loads from natural landscapes (Barr Engineering 2004). Any estimate of natural background as a separate component of the LA would be very difficult to derive and would have a large potential for error without expensive, special studies such as paleolimnological analysis of sediment cores. Given the highly altered landscape in which the Hawk Creek lakes are located, it is unlikely natural background is a major component of phosphorus loading.

4.5 Margin of Safety

The purpose of the MOS is to account for uncertainty that the allocations will result in attainment of water quality standards. Appendix C shows the hydrologic calibration and validation for the Hawk Creek/Yellow Medicine HSPF model. The calibration report indicates that the HSPF model estimated storm flow values and the observed flow values for all impaired stream reaches are within the explicit

10% MOS (+/- 10%). The MPCA believes that the model is an accurate representation of the hydrologic conditions present within the watershed and that the MOS is adequate to account for the models uncertainty and variability. The use of an explicit MOS accounted for environmental variability in pollutant loading, variability in water quality data (i.e., collected water quality monitoring data), calibration and validation processes of modeling efforts, uncertainty in modeling outputs, and conservative assumptions made during the modeling efforts.

4.5.1 *E. coli*

The Hawk Creek Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from flow stations S002-12 at the Hawk Creek outlet, S002-140 near Priam, S002-148 at Maynard, S002-152 in Chetomba Creek, S000-666 in Beaver Creek at Beaver Falls, and S000-405 in the West Fork Beaver Creek, and 11 years (1999 through 2009) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological conditions in the watershed. See Appendix C of this TMDL for the HSPF model calibration and validation results. The *E. coli* Load Duration Curves were developed using HSPF modeled daily flow data from April through October. The *E. coli* TMDLs applied a MOS to each flow zone along the duration curves by subtracting 10% of the flow zones loading capacity.

4.5.2 TSS

The Hawk Creek Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from flow stations S002-12 at the Hawk Creek outlet, S002-140 near Priam, S002-148 at Maynard, S002-152 in Chetomba Creek, S000-666 in Beaver Creek at Beaver Falls, and S000-405 in the West Fork Beaver Creek, and 11 years (1999 through 2009) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological and chemical conditions in the watershed. See Appendix C of this TMDL for the HSPF model calibration and validation results. The TSS stream Load Duration Curves were developed using HSPF modeled daily flow data from April through September. The TSS TMDLs applied a MOS to each flow zone along the duration curves by subtracting 10% of the flow zones loading capacity.

4.5.3 Nutrient Eutrophication

The Hawk Creek Watershed HSPF model was calibrated and validated using 17 years (1996 through 2012) of flow data from flow stations S002-12 at the Hawk Creek outlet, S002-140 near Priam, S002-148 at Maynard, S002-152 in Chetomba Creek, S000-666 in Beaver Creek at Beaver Falls, and S000-405 in the West Fork Beaver Creek, and 11 years (1999 through 2009) of water chemistry data. Calibration results indicate that the HSPF model is a valid representation of hydrological and water quality conditions in the watershed. See Appendix C of this TMDL for the HSPF model calibration and validation results. The external phosphorus load estimates delivered to each lake from the surrounding land were developed using HSPF modeled daily flow data and loads. In some instances, the external loading estimates did not result in sufficient phosphorus load for the modeled in-lake phosphorus concentrations to match the average phosphorus concentrations. Internal load adjustments were made within the BATHTUB model until the modeled TP value matched the mean value of the observed samples. Because of the calibration and validation of the HSPF model, as well as the morphometric factors suggesting internal load is a source of phosphorus in these lakes, MPCA believes the BATHTUB models are an appropriate

representation of the natural system. Therefore, an explicit MOS of 10% was deemed appropriate for the nutrient eutrophication TMDLs.

4.6 Seasonal Variation

4.6.1 Streams, E. coli

Concentrations of *E. coli* vary throughout the summer in the Hawk Creek Watershed. The standard is based on a monthly geometric mean and must be met for the months of April through October. Exceedances of the *E. coli* standard in the impaired stream reaches occur primarily in the months June through September and vary by reach (Table 3.4). The duration curve approach was developed using April through October 1996 through 2012, daily average flow data provided by the Hawk Creek Watershed HSPF model. The applicable time period of the standard will provide sufficient water quality protection during the critical summer period.

4.6.2 Streams, Turbidity (TSS)

TSS data was collected in the Hawk Creek Watershed. Elevated TSS is prevalent throughout much of the year in all of the streams. There are likely differing sources contributing to TSS in different parts of the watershed and in different years. The duration curve approach was developed using April through September 1996 through 2012 daily average flow data provided by the Hawk Creek Watershed HSPF model. The allocations generated from the duration curve approach will provide sufficient water quality protection throughout the applicable time period.

4.6.3 Lakes, Nutrient Eutrophication

Water quality monitoring in Olson, St. John's, West Solomon, and Swan Lakes suggests the in-lake TP concentrations vary over the course of the growing season (June through September), generally peaking in mid to late summer. The MPCA eutrophication water quality guideline for assessing TP is defined as the June through September mean concentration. The BATHTUB model was used to calculate the load capacities of each lake, incorporating mean growing season TP values. TP loadings were calculated to meet the water quality standards during the summer growing season, the most critical period of the year. Calibration to this critical period will also provide adequate protection during times of the year with reduced loading.

4.7 TMDL Summary

4.7.1 Bacteria Impaired Stream Reach Loading Capacities

|--|

E. coli					
Beaver Creek	MID-POINT OF FLOW ZONE				
East Fork Beaver Creek to Minnesota River	Very High	High	Mid	Low	Very Low
AUID # 07020004-528	Billion organisms per day				
Average Daily Loading Capacity	949.4	237.2	79.4	17.1	0.03
Margin of Safety	95	23.7	8	1.7	0.003

E. coli						
	Was					
	Bird Island	1.1136	1.1136	1.1136	1.1136	**
Wastewater Treatment Facilities	Danube	0.645	0.645	0.645	0.645	**
racinties	Olivia	0.98	0.98	0.98	0.98	**
Communities Subject to Requirement		*	*	*	*	*
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Seption	Systems	0	0	0	0	0
Load Allocatio	n	851.6614	210.7614	68.6614	12.6614	#
Chetomba Cre	≥k		MID-PO	INT OF FLOV	V ZONE	
Chetomba Creek to Sp		Very High	High	Mid	Low	Very Low
AUID # 07020004	-589		Billion	organisms p	er day	
Average Daily Loading Capacity		962.1	190.1	56	11.8	0.03
Margin of Safety		96.2	19	5.6	1.2	0.003
	steload Allocation					
	Blomkest/Svea	2.14	2.14	2.14	2.14	**
Wastewater Treatment Facilities	Prinsburg	0.26	0.26	0.26	0.26	**
	Roseland	1.79	1.79	1.79	1.79	**
Communities Subject to MS4 NPDES Requirements		*	*	*	*	*
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Septio	Systems	0	0	0	0	0
Load Allocatio	n	861.71	166.91	46.21	6.41	#
County Ditch 1	1		MID-PO	INT OF FLOV	V ZONE	
Unnamed Ditch to Ha		Very High	High	Mid	Low	Very Low
AUID # 07020004	-689		Billion	organisms p	er day	
Average Daily Loading Capacity		109	23.1	4.5	1	0.03
Margin of Safety		10.9	2.3	0.5	0.1	0.003
Was		steload Alloca	ntion			
Maynard Wastewater Treatment Facility		0.73	0.73	0.73	0.73	**
Communities Subject to MS4 NPDES Requirements		*	*	*	*	*
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Septio	Systems	0	0	0	0	0

	E. coli						
Load Allocatio	n	97.37	20.07	3.27	0.17	#	
East Fork Beaver (Creek		MID-POINT OF FLOW ZONE				
T115 R35W S35, north line t Creek	to W Fk Beaver	Very High	High	Mid	Low	Very Low	
AUID # 07020004	-586		Billion	organisms p	er day		
Average Daily Loading	Capacity	259.9	95.8	35.3	10.4	0.6	
Margin of Safe	ty	26	9.6	3.5	1	0.06	
	Was	steload Alloca	ition				
Wastewater Treatment	Bird Island	5.42	5.42	5.42	**	**	
Facilities	Olivia	4.67	4.67	4.67	**	**	
Communities Subject to Requirements		*	*	*	*	*	
Livestock facilities requiring	NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic	Systems	0	0	0	0	0	
Load Allocation		223.81	76.11	21.71	#	#	
Lower Hawk Creek		MID-POINT OF FLOW ZONE					
Unnamed Creek to Unna	Unnamed Creek to Unnamed Creek		High	Mid	Low	Very Low	
AUID # 07020004	-568	Billion organisms per day					
Average Daily Loading	Capacity	1,776.2	505.7	150.5	40.4	7.2	
Margin of Safe	ty	177.6	50.6	15.1	4	0.7	
	Was	steload Alloca	ition				
	Clara City	2.19	2.19	2.19	**	**	
Westernston Treatment	Maynard	0.73	0.73	0.73	**	**	
Wastewater Treatment Facilities	Pennock	3.11	3.11	3.11	**	**	
	Raymond	6.76	6.76	6.76	**	**	
	Willmar	35.82	35.82	35.82	**	**	
City of Willmar MS4 NPDES Requirements 1.8%		31.9	9.1	2.4372	0.6552	0.117	
Livestock facilities requiring NPDES permits		0	0	0	0	0	
"Straight Pipe" Septic Systems		0	0	0	0	0	
Load Allocatio	n	1,518.09	397.39	84.09	#	#	
Lower Hawk Cre	eek		MID-PO	INT OF FLOV	V ZONE		
Spring Creek to Minne	sota River	Very High	High	Mid	Low	Very Low	
AUID # 07020004-587		Billion organisms per day					

E. coli						
Average Daily Loading	Capacity	2,934.1	762.7	218.4	46	0.03
Margin of Safe	ety	293.4	76.3	21.8	4.6	0.003
	Was	steload Alloca	ition			
	Blomkest/Svea	2.14	2.14	2.14	2.14	**
Wastewater Treatment Facilities	Prinsburg	0.26	0.26	0.26	0.26	**
r dominos	Roseland	1.79	1.79	1.79	1.79	**
City of Willmar MS4 NPDES	Requirements	31.9	9.1	2.4372	0.6552	****
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Seption	Systems	0	0	0	0	0
Load Allocatio	n	2,604.61	673.11	189.97	36.55	#
Sacred Heart Cr	eek		MID-PO	INT OF FLOV	V ZONE	
Headwaters to Minne		Very High	High	Mid	Low	Very Low
AUID # 07020004-526			Billion	organisms p	er day	
Average Daily Loading Capacity		78.2	19	5.6	1	0.03
Margin of Safety		7.8	1.9	0.6	0.1	0.003
Wa		steload Alloca	ition			
Renville Wastewater Treatment Facility		4.07	4.07	4.07	**	**
Communities Subject to MS4 NPDES Requirements		*	*	*	*	*
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Septio	: Systems	0	0	0	0	0
Southern Minnesota Beet	Sugar – SD009	10.78	10.78	***	***	***
Load Allocatio	n	55.55	2.25	#	#	#
Sacred Heart Creek –	MN River		MID-PO	INT OF FLOV	V ZONE	
Headwaters to Minne		Very High	High	Mid	Low	Very Low
AUID # 07020004	-525	Billion organisms per day				
Average Daily Loading Capacity		82.8	20.1	5.8	1.1	0.03
Margin of Safety		8.3	2	0.6	0.1	0.003
	steload Alloca	ition				
Permitted Wastewater Trea	tment Facilities	*	*	*	*	*
Communities Subject to Requirement		*	*	*	*	*
Livestock facilities requiring	NPDES permits	0	0	0	0	0
"Straight Pipe" Septio	: Systems	0	0	0	0	0

	E. coli					
Load Allocation	74.5	74.5 18.1 5.2 1 0.027				
Stony Run Creek – MN River		MID-PO	INT OF FLOV	V ZONE		
Headwaters to Minnesota River	Very High	High	Mid	Low	Very Low	
AUID # 07020004-534		Billion	organisms p	er day	-	
Average Daily Loading Capacity	153.6 31.8 6.5 1.4 0.0				0.03	
Margin of Safety	15.4	3.2	0.7	0.1	0.003	
Was	steload Alloca	ition				
Permitted Wastewater Treatment Facilities	*	*	*	*	*	
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	138.2	28.6	5.8	1.3	0.027	
West Fork Beaver Creek	MID-POINT OF FLOW ZONE					
Headwaters to East Fork Beaver Creek	Very High	High	Mid	Low	Very Low	
AUID # 07020004-530	Billion organisms per day					
Average Daily Loading Capacity	502.6	118.8	38.8	8.9	0.03	
Margin of Safety	50.26	11.88	3.88	0.89	0.003	
Was	steload Alloca	ition				
Danube Wastewater Treatment Facility	3.08	3.08	3.08	3.08	**	
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*	
Livestock facilities requiring NPDES permits	0	0	0	0	0	
"Straight Pipe" Septic Systems	0	0	0	0	0	
Load Allocation	449.26	103.84	31.84	4.93	#	
Wood Lake Creek-MN River	MID-POINT OF FLOW ZONE					
Unnamed Creek to Minnesota R	Very High	High	Mid	Low	Very Low	
AUID # 07020004-648	Billion organisms per day					
Average Daily Loading Capacity	78.5	16.1	3.3	0.6	0.03	
Margin of Safety	7.9	1.6	0.3	0.06	0.003	
Was	Wasteload Allocation					
Permitted Wastewater Treatment Facilities	*	*	*	*	*	
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*	

E. coli							
Livestock facilities requiring NPDES permits	0	0	0	0	0		
"Straight Pipe" Septic Systems	0	0	0	0	0		
Load Allocation	70.6	14.5	3	0.54	0.027		
Sacred Heart Creek-MN River	MID-POINT OF FLOW ZONE						
CD 120 to Minnesota R	Very High	High	Mid	Low	Very Low		
AUID # 07020004-615		Billion organisms per day					
Average Daily Loading Capacity	9,098	3,639	1,451	568	141		
Margin of Safety	909.8	363.9	145.7	56.8	14.1		
Was	steload Alloca	ition					
Permitted Wastewater Treatment Facilities	*	*	*	*	*		
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*		
Livestock facilities requiring NPDES permits	0	0	0	0	0		
"Straight Pipe" Septic Systems	0	0	0	0	0		
Load Allocation	8,188.2	3,275.1	1,305.3	511.2	126.9		
Sacred Heart Creek-MN River	MID-POINT OF FLOW ZONE						
T113 R35W S4, north line to Minnesota R	Very High	High	Mid	Low	Very Low		
AUID # 07020004-617	Billion organisms per day						
Average Daily Loading Capacity	31,615	12,615	5,234	2,018	571		
Margin of Safety	3,161.5	1,261.5	523.4	201.8	57.1		
Wasteload Allocation							
Permitted Wastewater Treatment Facilities	*	*	*	*	*		
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*		
Livestock facilities requiring NPDES permits	0	0	0	0	0		
"Straight Pipe" Septic Systems	0	0	0	0	0		
Load Allocation	28,453.5	11,353.5	4,710.6	1,816.2	513.9		

[#] LC exceeded by point source WLA

^{*} None located within watershed

^{**} WWTF design/discharge flow exceeds the LC, therefore allocation = (flow contribution from a given source) x (126 org/100ml). See section 4.3.1 for details.

^{***} Industrial design/discharge flow exceeds the LC, therefore allocation = (flow contribution from a given source) x (126 org/100ml). See section 4.3.2 for details.

^{****} MS4 LA exceeds the LC, MS4 storm sewer systems typically do not discharge during very low flow conditions.

4.7.2 Turbidity (TSS) Impaired Stream Reach Loading Capacities

Table 4.15: Loading capacities and allocations for stream reaches

TSS						
Pagyan Crook		MID-POINT OF FLOW ZONE				
Beaver Creek East Fork Beaver Creek to Minnesota River AUID # 07020004-528		Very High	High	Mid	Low	Very Low
AUID# 07020004-3	020		TSS	(tons per	day)	
Average Daily Loading (Capacity	57.6	14.8	5.1	1.3	0.03
Margin of Safety	1	5.8	1.5	0.5	0.1	0.003
	Wasteload	Allocation				
	Bird Island	0.21	0.21	0.21	0.21	**
Wastewater Treatment Facilities	Danube	0.12	0.12	0.12	0.12	**
	Olivia	0.12	0.12	0.12	0.12	**
Communities Subject to MS4 NPE	DES Requirements	*	*	*	*	*
Livestock facilities requiring N	IPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems		0	0	0	0	0
Construction and Industrial st	orm water 1%	0.518	0.133	0.046	0.012	0.00027
Southern Minnesota Beet Sugar – SD001		0.06	0.06	0.06	0.06	***
Load Allocation		50.772	12.657	4.044	0.678	#
Chetomba Creek Chetomba Creek to Spring Creek		MID-POINT OF FLOW ZONE				
		Very High	High	Mid	Low	Very Low
AUID # 07020004-5	089	TSS (tons per day)				
Average Daily Loading 0	Capacity	58.2	12.1	3.7	1	0.03
Margin of Safety	1	5.8	1.2	0.4	0.1	0.003
	Wasteload	Allocation				
	Blomkest/Svea	0.08	0.08	0.08	0.08	**
Wastewater Treatment Facilities	Prinsburg	0.01	0.01	0.01	0.01	**
	Roseland	0.07	0.07	0.07	0.07	**
Communities Subject to MS4 NPDES Requirements		*	*	*	*	*
Livestock facilities requiring NPDES permits		0	0	0	0	0
"Straight Pipe" Septic Systems		0	0	0	0	0
Construction and Industrial st	orm water 1%	0.524	0.109	0.033	0.009	0.00027
Load Allocation		51.716	10.631	3.107	0.731	#
Lower Hawk Creek		MID-POINT OF FLOW ZONE				

TSS						
Unnamed Creek to Unnamed Creek AUID # 07020004-568		Very High	High	Mid	Low	Very Low
		TSS (tons per day)				
Average Daily Loading 0	Capacity	109.3	30.9	9.8	2.9	0.4
Margin of Safety	,	10.9	3.1	1	0.3	0.04
	Wasteload	Allocation				
	Clara City	0.06	0.06	0.06	0.06	**
	Maynard	0.02	0.02	0.02	0.02	**
Wastewater Treatment Facilities	Pennock	0.12	0.12	0.12	0.12	**
	Raymond	0.27	0.27	0.27	0.27	**
	Willmar	0.94	0.94	0.94	0.94	**
Willmar MS4 NPDES Require	ements 1.8%	1.9	0.6	0.2	0.04	0.00648
Livestock facilities requiring N	PDES permits	0	0	0	0	0
"Straight Pipe" Septic S	ystems	0	0	0	0	0
Construction and Industrial st	orm water 1%	1.0	0.3	0.07	0.01	0.0036
Load Allocation		94.09	25.49	7.12	1.14	#
			MID-POINT OF FLOW ZONE			
Lower Hawk Creek Spring Creek to Minnesota River AUID # 07020004-587		Very High	High	Mid	Low	Very Low
AUID # 07020004-0	.07	TSS (tons per day)				
Average Daily Loading (Capacity	181.7	47.5	14.3	3.5	0.002
Margin of Safety	1	18.2	4.8	1.4	0.4	0.0002
	Wasteload	Allocation				
	Blomkest/Svea	0.08	0.08	0.08	0.08	**
Wastewater Treatment Facilities	Prinsburg	0.01	0.01	0.01	0.01	**
	Roseland	0.07	0.07	0.07	0.07	**
Willmar MS4 NPDES Upstream Requirements		1.9	0.6	0.2	0.04	****
Granite Falls Energy LLC Industrial Wastewater		0.02	0.02	0.02	0.02	***
Livestock facilities requiring NPDES permits		0	0	0	0	0
"Straight Pipe" Septic Systems		0	0	0	0	0
Construction and Industrial storm water 1%		1.6	0.4	0.1	0.1	0.1
Load Allocation		159.82	41.52	12.42	2.78	#
West Fork Beaver Creek		MID-POINT OF FLOW ZONE				

TSS					
Headwaters to East Fork Beaver Creek AUID # 07020004-530	Very High	High	Mid	Low	Very Low
		TSS	(tons per o	day)	
Average Daily Loading Capacity	30.9	7.5	2.5	0.7	0.002
Margin of Safety 3.1 0.8 0.3 0.07 0.0			0.0002		
Wasteload Allocation					
Danube Wastewater Treatment Facility	0.12	0.12	0.12	0.12	**
Communities Subject to MS4 NPDES Requirements	*	*	*	*	*
Livestock facilities requiring NPDES permits	0	0	0	0	0
"Straight Pipe" Septic Systems	0	0	0	0	0
Construction and Industrial storm water 1%	0.3	0.07	0.02	0.005	0.00002
Southern Minnesota Beet Sugar – SD001	0.06	0.06	0.06	0.06	***
Load Allocation	27.32	6.45	2	0.445	#

[#] LC exceeded by point source WLA

4.7.3 Impaired Lake Loading Capacities

Table 4.16: Total phosphorus loading capacities and allocations for impaired lakes within the Hawk Creek Watershed

Olson Lake 34-0266-00	TP lbs/day
Loading Capacity**	0.362
Margin of Safety	0.036
Wasteload Allocation*	
Construction and industrial storm water	0.003
Industrial process wastewater	0
Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0
Load Allocation	0.323

Swan Lake 34-0186-00	TP lbs/day
Loading Capacity**	4.76
Margin of Safety	0.476
Wasteload Allocation*	
Construction and industrial storm water	0.043
Industrial process wastewater	0
Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0
Load Allocation	4.24

^{*} None located within watershed

^{**} WWTF design/discharge flow exceeded low flow, therefore allocation = (flow contribution from a given source) x (65 mg/1000ml). See section 4.3.1 for details.

^{***} Industrial design/discharge flow exceeded low flow, therefore allocation = (flow contribution from a given source) x (65 mg/1000ml). See section 4.3.2 for details.

^{****} MS4 LA exceeds the LC, MS4 storm sewer systems typically do not discharge during very low flow conditions.

Watershed and internal load	0.233
Atmospheric load	0.09
St. John's Lake 34-0283-00	TP lbs/day
Loading Capacity**	3.53
Margin of Safety	0.353
Wasteload Allocation*	
Construction and industrial storm water	0.032
Industrial process wastewater	0
Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0
Load Allocation	3.145
Watershed and internal load	3.005
Atmospheric load	0.14

Watershed and internal load	4.09
Atmospheric load	0.15
West Solomon Lake 34-0245-00	TP lbs/day
Loading Capacity**	7.42
Margin of Safety	0.742
Wasteload Allocation*	
Construction and industrial storm water	0.067
Industrial process wastewater	0
Livestock facilities requiring NPDES permits	0
"Straight pipe" septic systems	0
Load Allocation	6.61
Watershed and internal load	6.2
Atmospheric load	0.41

^{*} No Communities Subject to MS4 NPDES requirements or Industrial process wastewater discharges located in the watershed

5 Future Growth Considerations

Potential changes in population and land use over time in the Hawk Creek Watershed could result in changing sources of pollutants. Overall, there is likely very little to no anticipated future growth in the watershed. Possible changes and how they may or may not impact TMDL allocations are discussed below.

5.1 New or Expanding Permitted MS4 WLA Transfer Process

Future transfer of watershed runoff loads in this TMDL may be necessary if any of the following scenarios occur within the project watershed boundaries:

- 1. New development occurs within a regulated MS4. Newly developed areas that are not already included in the WLA must be transferred from the LA to the WLA to account for the growth.
- 2. One regulated MS4 acquires land from another regulated MS4. Examples include annexation or highway expansions. In these cases, the transfer is WLA to WLA.
- 3. One or more non-regulated MS4s become regulated. If this has not been accounted for in the WLA, then a transfer must occur from the LA.

^{**}Values may be rounded

- 4. Expansion of a U.S. Census Bureau Urban Area encompasses new regulated areas for existing permittees. An example is existing state highways that were outside an Urban Area at the time the TMDL was completed, but are now inside a newly expanded Urban Area. This will require either a WLA to WLA transfer or a LA to WLA transfer.
- 5. A new MS4 or other stormwater-related point source is identified and is covered under a NPDES Permit. In this situation, a transfer must occur from the LA.

Load transfers will be based on methods consistent with those used in setting the allocations in this TMDL. In cases where WLA is transferred from or to a regulated MS4, the permittees will be notified of the transfer and have an opportunity to comment.

5.2 New or Expanding Wastewater (TSS and *E. coli* TMDLs only)

The MPCA, in coordination with the EPA Region 5, has developed a streamlined process for setting or revising WLAs for new or expanding wastewater discharges to waterbodies with an EPA approved TMDL (MPCA 2012e). This procedure will be used to update WLAs in approved TMDLs for new or expanding wastewater dischargers whose permitted effluent limits are at or below the in-stream target and will ensure that the effluent concentrations will not exceed applicable water quality standards or surrogate measures. The process for modifying any and all WLAs will be handled by the MPCA, with input and involvement by the EPA, once a permit request or reissuance is submitted. The overall process will use the permitting public notice process to allow for the public and EPA to comment on the permit changes based on the proposed WLA modification(s). Once any comments or concerns are addressed, and the MPCA determines that the new or expanded wastewater discharge is consistent with the applicable water quality standards, the permit will be issued and any updates to the TMDL WLA(s) will be made.

There are currently no unsewered communities in the Hawk Creek Watershed. All noncompliant SSTS upgrades are being addressed upon property transfer and other local ordinances, though some additional programs will be utilized if deemed necessary. The MPCA has completed a report for small community wastewater needs with the goal of eliminating these sources of pollution (MPCA 2008). It is unlikely that any new communities will develop in the future.

For more information on the overall process, visit the MPCA's TMDL Policy and Guidance webpage.

6 Reasonable Assurance

A TMDL needs to provide reasonable assurance that water quality targets will be achieved through the specified combination of point and nonpoint source reductions reflected in the LAs and WLAs. According to EPA guidance (EPA 2002b), "When a TMDL is developed for waters impaired by both point and nonpoint sources, and the WLA is based on an assumption that nonpoint-source load reductions will occur... the TMDL should provide reasonable assurances that nonpoint-source control measures will achieve expected load reductions in order for the TMDL to be approvable. This information is necessary for the EPA to determine that the TMDL, including the LA and WLAs, has been established at a level necessary to achieve water quality standards". In the Hawk Creek Watershed, considerable reductions in nonpoint sources are required.

The MPCA will adopt portions of the Chesapeake Bay Reasonable Assurance framework, with some modifications as follows:

- Evaluate existing programmatic, funding, and technical capacity to implement basin and watershed strategies.
- Identify gaps in current programs, funding, and local capacity to achieve the needed controls.
- Build program capacity for short-term and long-term goals. Demonstrate increased implementation and/or pollutant reductions.
- Commit to track/monitor/assess and report progress at set regular times.

TSS impairments in this TMDL will not include further reductions to point sources by reducing their WLAs, for permitted MS4s or permitted WWTF. These are minor sources of TSS to the Hawk Creek Watershed and reductions in their WLAs will not help to accomplish the goals of the TMDL.

Additional requirements could be implemented if nonpoint source targets are not met and will focus on nonpoint sources themselves. They could take the form of:

- Review of statewide nonpoint source control programs and policies by state agencies and their implementation by local agencies
- Requirements to comply with existing nonpoint source authorities, including but not limited to:
 - 50-foot buffer required for the shore impact zone of streams classified as protected waters (Minn. Stat. § 103F.201) for agricultural land uses
 - Protecting highly erodible land within the 300-foot shoreland district (Minn. Stat. § 103F.201)
 - Buffers on public drainage ditches (Minn. Stat. § 103E.021)
 - Excessive soil loss statute (Minn. Stat. § 103F.415)
 - Nuisance nonpoint source pollution (Minn. R. 7050.0210, subp. 2)
 - Other measures that may be identified in the WRAPS Report or the One Watershed One Plan

The targeting of BMPs and ongoing research to pinpoint sediment sources and measure the effectiveness of nonpoint source remediation measures will provide some assurance of achieving the LA of this TMDL. In addition, inter-agency work groups formed to direct the state's new Clean Water Fund will help to ensure that nonpoint source load reductions will be addressed. These groups have developed guidance related to monitoring, implementation, research, and identification of measures and outcomes. Within this framework of implementation, reasonable assurance will be provided with regard to nonpoint sources through commitments of funding, watershed planning, and use of existing regulatory authorities. The Clean Water Legacy Act (2006) provided the MPCA authority and direction for carrying out section 303(d) of the CWA, in addition to one-time funding to initiate a comprehensive 10-year process of assessment and TMDL development in Minnesota.

In November 2008, Minnesotans voted in support of the Clean Water, Land and Legacy Amendment to the state constitution. Through this historic vote, about \$5.5 billion is dedicated to the protection and restoration of water and land over 25 years. One third of the annual proceeds from sales tax revenue, an estimated \$80 to \$90 million, will be devoted to a Clean Water Fund to protect, enhance and restore water quality of lakes, rivers, streams, and groundwater. The Amendment specifies that this funding

must supplement and not replace traditional funding. Approximately two-thirds of the annual proceeds will be earmarked for water quality protection and restoration.

Reasonable assurance for permitted sources such as stormwater and wastewater is provided primarily via compliance with the respective NPDES Permit programs, which have been described in Section 3.6.

Point sources were not identified as a primary source of *E. coli*, TSS, or TP in the Hawk Creek Watershed. The permitted facilities in the watershed discharge at concentrations that meet the applicable water quality standards; therefore, no additional need for further point source reductions have been identified within the Hawk Creek Watershed. Point source permitting staff work closely with facilities to implement limits set by the MPCA's Effluent Limits Unit.

SSTS, commonly known as septic systems, are regulated by Minn. Stat. §§ 115.55 and 115.56. Counties and other local units of government (LUGs) that regulate SSTS must meet the requirements for local SSTS programs in Minn. R. ch. 7082. Counties and other LUGs must adopt and implement SSTS ordinances in compliance with Minn. R. ch. 7080 to 7083.

These regulations detail:

- Minimum technical standards for individual and mid-size SSTS;
- A framework for local units of government to administer SSTS programs and;
- Statewide licensing and certification of SSTS professionals, SSTS product review and registration, and establishment of the SSTS Advisory Committee.

Counties and other LUGs enforce Minn. R. chs. 7080 to 7083 through their local SSTS ordinances and issue permits for systems designed with flows up to 10,000 gallons per day. There are approximately 200 LUGs across Minnesota, and depending on the location, an LUG may be a county, city, township, or sewer district. LUG SSTS ordinances vary across the state. Some require SSTS compliance inspections prior to property transfer, require permits for SSTS repair and septic tank maintenance, and/or may have other requirements, which are stricter than state regulations. Minn. R. 7082.0500, requires compliance inspections by Counties and other LUGs for all new construction and for existing systems if the LUG issues a permit for the addition of a bedroom.

The MPCA has worked with counties through the SSTS Implementation and Enforcement Task Force (SIETF) to identify the most beneficial way to use funds to accelerate SSTS compliance statewide. In order to increase the number of compliance inspections, the MPCA has developed and administers several grants to LUGs for various ordinances, actions, and plans within the LUG jurisdictional boundaries. These include a base grant that all counties receive, and counties have the option to apply for additional funds for septic system upgrades. Several other grants are available to counties that have additional provisions in their ordinances above the minimum program requirements. As of 2015, total dollar amounts given to counties for these additional provisions are listed below.

- Compliance inspection for property transfer (\$123,000 awarded)
- Compliance inspection for any (all) permit-countywide (\$27,000 awarded)
- Plan to improve compliance, like records catalog or inventory (past, ongoing or future) (\$32,500 awarded)
- Plan to address unsewered Areas (\$12,500 awarded)

The MPCA Staff keeps a statewide database of known imminent threats public health and safety (ITPHS) that include "straight pipe systems". Straight pipe systems are reported to the counties or the MPCA by the public or discovered through county compliance inspections. Upon confirmation of a straight pipe system, the county sends out a notification of non-compliance, which starts a 10-month deadline to fix the system and bring it into compliance. From 2006 to 2017, 742 straight pipes have been tracked by the MPCA. 701 of those were abandoned, fixed, or were found not to be a straight pipe system as defined in Minn. Stat 115.55, subd. 1. There have been 17 Administrative Penalty Orders issued and docketed in court. The remaining straight pipe systems received a notification of non-compliance and are currently within the 10-month deadline.

Southwest Minnesota is the leader in addressing unsewered communities. Unsewered communities can be a source of nutrients and pathogens to surface waters. Since 1996, the MPCA Southwest Wastewater staff have helped seven small communities throughout the Hawk Creek Watershed: Gluek, George Lake, Henderson Lake, Roseland, Svea, Blomkest, and country courts, build soil or pond wastewater treatment systems. Five unsewered communities in the watershed: Bunde, Wegdahl, St. Johns Lake, South Long Lake, and Countryside Acres are all addressing their wastewater treatment through SSTS upgrades regulated by county ordinances.

Funding for SSTS upgrades and replacements from various sources are available and have been utilized by all three counties within the Hawk Creek watershed. The Clean Water Fund provides money to counties for low-Income SSTS upgrade grants. These grants are awarded through a competitive application process hosted by the MPCA. These funds are awarded based on issuance of a Notice of Noncompliance for systems deemed ITPHS, or for systems failing to protect groundwater. The Clean Water Partnership (CWP) State Revolving Fund (SRF) and the MDA's Ag BMP Loan Programs have money available to award low-interest loans for individual SSTS upgrades.

In order for the impaired waters to meet water quality standards the majority of pollutant reductions in the Hawk Creek Watershed will need to come from NPS contributors. Due to lack of existing state and federal regulations for NPSs and the monetary incentives for practices that can degrade water quality, agricultural drainage and surface runoff are major contributors of both nutrients and increased flows throughout the watershed. State and local agencies will need to work with landowners to identify priority areas for BMPs and practices that will help reduce nutrient runoff, as well as streambank and overland erosion. Agencies, organizations, local units of government, and citizens alike need to recognize that resigning waters to an impaired condition is not acceptable.

See Table 14A of the <u>Hawk Creek WRAPS Report</u> for the watershed-wide water quality goals and targets. This table also presents the allocations of the pollutant/stressor goals and targets to the primary sources and the estimated years to meet the goal developed by the WRAPS Workshop Team. The strategies identified and relative adoption rates developed by the WRAPS workshop team were used to calculate the adoption rates needed to meet the pollutant/stressor 10-year targets. The implementation strategies described in this plan have demonstrated effectiveness in reducing nutrient loading to lakes and streams. Table 14B of the Hawk Creek WRAPS Report presents the estimated adoption rates to meet the 10-year watershed-wide targets with information most relevant for local planning efforts including the specific strategies, actions, and responsibilities for BMP implementation.

To best assure that NPS reductions are achieved, a large emphasis has been placed on citizen engagement, where the citizens and communities that hold the power to improve water quality

conditions are involved in discussions and decision-making. The watershed's citizens and communities will need to voluntarily adopt the practices at the necessary scale and rates to achieve the 10-year targets presented in Table 14B of the *Hawk Creek WRAPS Report*. Refer to Section 9 for citizen engagement that has occurred in the Hawk Creek Watershed. In addition to citizen engagement, several government programs have been created to support a political and social infrastructure that aims to increase the adoption of strategies that will improve watershed conditions. Selection of sites for BMP implementation will be led by local units of government, the Hawk Creek Watershed Project (HCWP), county SWCDs, county planning and zoning with guidance and support from multiple state agencies (MPCA, Board of Water and Soil Resources (BWSR), Minnesota Department of Natural Resources (DNR), MDA, Minnesota Department of Health (MDH). One example of a program is the Minnesota Agricultural Water Quality Certification Program (AWQCP), which provides regulatory security and incentives to landowners who adopt conservation practices. Additional financial programs include the CWA Section 319 grant programs, BWSR implementation funding, and NRCS incentive programs. Programs and activities are also occurring at the local government level, where county staff, commissioners, and residents work together to address water quality issues.

7 Monitoring Plan

Data from three water quality monitoring programs enables water quality condition assessment and creates a long-term data set to track progress toward water quality goals. BMPs implemented by local units of government will be tracked through BWSR's e-Link system. Water quality monitoring programs will continue to collect and analyze data in the Hawk Creek Watershed as part of <u>Minnesota's Water Quality Monitoring Strategy</u> (MPCA 2011). Data needs are considered by each program and additional monitoring is implemented when deemed necessary and feasible. These monitoring programs are summarized below:

<u>Intensive Watershed Monitoring</u> (MPCA 2012a) data provides a periodic but intensive "snapshot" of water quality throughout the watershed. This program collects water quality and biological data at roughly 100 stream and 50 lake monitoring stations across the watershed in 1 to 2 years, every 10 years. To measure pollutants across the watershed the MPCA will re-visit and re-assess the watershed, as well as have capacity to visit new sites in areas with BMP implementation activity. This work is scheduled to start its second iteration in the Hawk Creek Watershed in 2020.

<u>Watershed Pollutant Load Monitoring Network</u> (MPCA 2013a) data provides a continuous and long-term record of water quality conditions at the major watershed and subwatershed scale. This program collects pollutant samples and flow data to calculate continuous daily flow, sediment, and nutrient loads. This will allow the MPCA to re-assess previously listed impairments. In the Hawk Creek Watershed, there is an annual site near the outlet of the Hawk Creek and one seasonal (spring through fall) subwatershed site.

<u>Citizen Stream and Lake Monitoring Program</u> (MPCA 2013b) data provides a continuous record of waterbody transparency throughout much of the watershed. This program relies on a network of volunteers who make weekly to monthly lake and river measurements. This will allow the MPCA to reassess previously listed impairments. Approximately 15 citizen-monitoring locations exist in the Hawk Creek Watershed.

8 Implementation Strategy Summary

8.1 Permitted Sources

8.1.1 Construction Stormwater

The WLA for stormwater discharges from sites where there is construction activity reflects the number of construction sites greater than one acre expected to be active in the watershed at any one time, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at construction sites are defined in the State's NPDES/SDS General Stormwater Permit for Construction Activity (MNR100001). If a construction site owner/operator obtains coverage under the NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, including those related to impaired waters discharges and any applicable additional requirements found in Appendix A of the Construction General Permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local construction stormwater requirements must also be met.

8.1.2 Industrial Stormwater

The WLA for stormwater discharges from sites where there is industrial activity reflects the number of sites in the watershed for which NPDES Industrial Stormwater Permit coverage is required, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at the industrial sites are defined in the State's NPDES/SDS Industrial Stormwater Multi-Sector General Permit (MNR050000) or NPDES/SDS General Permit for Construction Sand & Gravel, Rock Quarrying and Hot Mix Asphalt Production facilities (MNG490000). If a facility owner/operator obtains stormwater coverage under the appropriate NPDES/SDS Permit and properly selects, installs and maintains all BMPs required under the permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. All local stormwater management requirements must also be met.

8.1.3 MS4

The MPCA oversees all regulated MS4 entities in stormwater management accounting activities. The baseline years in the applicable reaches for implementation are listed below (Table 8.1). The years listed are the median of the data years used for development of the percent pollutant reductions (Table 4.4). The rationale for this is that projects undertaken recently may take a few years to influence water quality. Any load-reducing BMP implemented since the baseline year will be eligible to "count" toward a MS4's load reductions. If a BMP implementation occurred during or just prior to the baseline year, the MPCA is open to presentation of evidence by the MS4 permit holder to demonstrate that it should be considered as a credit.

Table 8.1: Baseline years for impaired stream reaches addressed in this report

Impaired Reach AUID #	Impairments	Data Years	Baseline Year
07020004-528	Escherichia coli	2007-2011	2009
07020004-526	Turbidity (TSS)	2007-2011	2009
07020004-589	Escherichia coli	2007-2011	2009
07020004-369	Turbidity (TSS)	1999-2012	2005
07020004-689	Escherichia coli	2010-2011	2010
07020004-586	Escherichia coli	2010-2011	2010
07020004-587	Escherichia coli	2007-2011	2009
07020004-587	Turbidity (TSS)	2002-2011	2007
07020004-568	Escherichia coli	2007-2011	2009
07020004-508	Turbidity (TSS)	2002-2011	2007
07020004-526	Escherichia coli	2007-2011	2009
07020004-525	Escherichia coli	2007-2011	2010
07020004-615	Escherichia coli	2010-2011	2010
07020004-617	Escherichia coli	2010-2011	2010
07020004-534	Escherichia coli	2007-2011	2009
07020004 520	Escherichia coli	2007-2011	2010
07020004-530	Turbidity (TSS)	2002-2011	2007
07020004-648	Escherichia coli	2007-2011	2010
34-0283-00	Nutrient Eutrophication	2010-2011	2010
34-0245-00	Nutrient Eutrophication	2010-2011	2010
34-0186-00	Nutrient Eutrophication	2010-2011	2010
34-0266-00	Nutrient Eutrophication	2010-2011	2010

8.1.4 Wastewater

The MPCA issues permits for WWTF's that discharge into waters of the state. The permits have site specific limits that are based on water quality standards. Permits regulate discharges with the goals of protecting public health and aquatic life and assuring that every facility treats wastewater. In addition, SDS Permits set limits and establish controls for land application of sewage.

8.2 Non-Permitted Sources

A group of professional water quality, planning, and conservation staff collaboratively will develop the strategies presented in the Hawk Creek WRAPS Report. These strategies, adopted at generally wide-scale and integrated in suites, are expected to bring waters in the Hawk Creek Watershed into a supporting status. Refer to Tables 14A and 14B in the <u>Hawk Creek WRAPS Report</u> for details of BMPs and adoption rates to meet interim water quality targets. Below is a summary of the recommended strategies.

No-till or strip till conservation tillage

- Cover crops and grassed waterways
- · Nutrient, manure, and animal management
- Water retention and increased evapotranspiration from the landscape (basins, wetlands, extended retention)
- Field and riparian vegetated buffers
- Drainage volume reductions by system design
- Drainage water pollutant reductions through edge-of-field treatments (bioreactors, saturated buffers, treatment wetlands)
- Citizen education and discussions
- Urban stormwater BMPs
- Changes in policy and increased funding and other support
- Protect currently higher quality areas

To fully address the widespread water quality impairments in agriculturally-dominated watersheds such as the Hawk Creek Watershed, an integrated and multi-faceted approach using suites of BMPs is likely necessary. Initial implementation strategies will focus on reducing external phosphorus loads. Any internal load reduction will be

Figure 8.1: This conceptual model to address water quality in agricultural watersheds uses 1) soil health principles as a base: nutrient management, reduced tillage, crop rotation, etc., then 2) in-field water control: grassed waterways, controlled drainage, filter strips, etc., then 3) below-field water controls: wetlands, impounds, etc., and then 4) riparian management: buffers, stabilization, restoration, etc.

short-lived unless the external inputs can be reduced. Strategies to reduce internal load could include but not be limited to rough fish control, re-establishment of native vegetation and chemical binding of phosphorus. Several models/methods have been developed and are very similar to Figure 8.1 and described in the reports: <u>Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning</u> (Tomer et al. 2013), the <u>Minnesota Nutrient Reduction</u> <u>Strategy</u> (MPCA 2013c), and the <u>"Treatment Train" approach as being demonstrated in the Elm Creek Watershed</u> (ENRTF 2013).

Additional strategies can be found by utilizing the MDA's Minnesota Agriculture Water Quality Certification Program (MAWQCP; http://www.mda.state.mn.us/awqcp), a voluntary opportunity for farmers and agricultural landowners to take the lead in implementing conservation practices that protect our water. Producers seeking certification can obtain specially designated technical and financial assistance to implement practices that promote water quality. If producers within the watershed enroll in the MAWQCP, their fields will be evaluated to determine if they are eligible to become a "certified" farm.

8.3 Cost

Estimating the cost of bringing waters in the Hawk Creek Watershed into a status of supporting beneficial water uses is more an exercise of scale than a practical dollar estimate. Specifically, the costs are highly variable and include many assumptions. Furthermore, the costs will change as progressive practices are voluntarily adopted as the new farming standard. For these reasons, a rough estimate of cost was developed using NRCS cost-share rates, an estimated land value for crops taken out of production, and with assumptions regarding the specific items needed for a practice. This number is a representation of the scale of change that is needed more so than an actual tax-payer or individual burden. The cost also does not include ecosystem benefits, which if considered, could off-set much of the cost. The costs are based on the watershed-wide adoption rates as presented in the Hawk Creek WRAPS Report.

The estimated cost of agricultural BMPs to meet the Hawk Creek WRAPS 10-year water quality targets is roughly \$160 million. The 10-year targets represent pollutant (or stressor) reductions that range from 5% to 27%. This number can be very roughly extrapolated by (considering the ratio of the total goal to the 10-year target) a factor of five to roughly \$800 million to estimate the total agricultural BMP expenditure necessary for waters to meet water quality standards. Additional costs to implement city stormwater, resident, and lake-specific BMPs are roughly estimated to total \$150 million based on the scale of reductions needed from these sources.

8.4 Adaptive Management

Adaptive management is an iterative implementation process that makes progress toward achieving water quality goals while using new data and information to reduce uncertainty and adjust implementation activities. The state of Minnesota has a unique opportunity to adaptively manage water resource plans and implementation activities every 10 years (Figure 8.2). This opportunity resulted from a voter-approved tax increase to improve state waters. The resulting interagency coordination effort is referred to as the Minnesota Water Quality Framework (Figure 8.3), which works to monitor and assess Minnesota's 80 major watersheds every 10 years. This Framework supports ongoing implementation and adaptive management of conservation activities and watershed-based local planning efforts.

Implementation of TMDL related activities can take many years, and water quality benefits associated with these activities can also take many years. As the pollutant source dynamics within the watershed are better understood, implementation strategies and activities will be adjusted and refined to efficiently meet the TMDL and lay the groundwork for de-listing the impaired stream reaches. The follow up water monitoring program outlined in Section 7 will be integral to the adaptive management approach, providing assurance that implementation measures are succeeding in attaining water quality standards.

Adaptive management does not include changes to water quality standards or loading capacity. Any changes to water quality standards or loading capacity must be preceded by appropriate administrative processes, including public notice and an opportunity for public review and comment.

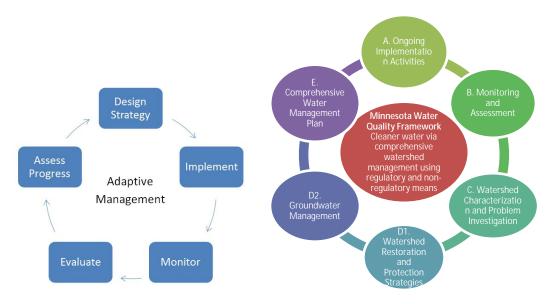


Figure 8.2: A Adaptive Management

Figure 8.3: Minnesota water quaility framework

9 Public Participation

This section summarizes civic engagement/public participation efforts sponsored by the MPCA in collaboration with local partners: 1) HCWP, 2) SWCD staff, 3) NRCS staff, 4) State agencies, 5) Citizen and farmer participants, and 6) County and township officials.

9.1 Hawk Creek Watershed

The <u>Hawk Creek Watershed Project Advisory Committee</u> is composed of watershed residents, concerned citizens and groups, and resource agency staff. Resulting from a series of meetings that started in May of 2012, an Advisory Committee suggested the following recommendations to improve water quality. The summarized recommendations of the committee include:

- Strategically placed buffers, terraces, filter strips and grassed waterways
- Upland erosion control
- Wetland restoration
- Septic system compliance
- Nutrient management/education
- Streambank and ravine stabilization
- · River channel maintenance of major snags
- Cover crops
- Controlled/reduced drainage
- Communication and education for watershed residents

9.2 Public Meetings

Several civic engagement opportunities were sponsored by the HCWP and the MPCA. The HCWP created and distributed four newsletters from 2010 to 2016 with Watershed Approach information to watershed citizens. The HCWP also hosted 15 public meetings from 2010 to 2016 to present information on and to provide opportunities for citizens to provide input on the Watershed Approach. The summarization of the meetings was:

Values that progress clean water

- Leaving a legacy for future generations
- Clean surface water for outdoor recreation
- Clean ground water for drinking
- Local pride and stewardship ethos
- Education and continual learning

Values that hinder clean water

- Fear of unknown/resistance to change
- Financial risk avoidance
- High agricultural productivity/yield
- Lack of ownership/responsibility for problem
- Lack of understanding/trust in government

Constraints to higher BMP adoption

- Policies (Farm Bill), rules, and funding that perpetuate status quo
- Inability to guarantee income when making changes
- Unwillingness to break from status quo/differ from those one trusts
- Lack of knowledge of problems and solutions
- Ineffective/conflicting communication/messaging

Opportunities to get higher BMP adoption

- · Policies (e.g. Farm Bill) need to facilitate change, flexibility, and less bureaucracy
- Funding for more practices and to prevent income loss when transitioning farms to sustainable practices
- · Identify and foster early sustainable farming BMP adopters to be leaders to community
- More/better education on sustainable practices, technologies, benefits, and progress
- Build trust to perpetuate cooperation and stewardship

Recommendations for Education and Networking

- Increased messaging and education including advertisements, social media, billboards, documentaries
- Collaboration with and education/information sharing with ag professionals: co-ops, crop consultants
- Community events/gatherings including clean-ups, banquets, citizen groups, school education
- Peer-leader and peer-to-peer networking events such as fields days and coffee klatches

9.3 Public Notice

This TMDL was published for public comments on May 22, 2017 to June 21, 2017.

10 Literature Cited

Barr Engineering. 2004. "Detailed Assessment of Phosphorus Sources to Minnesota Watersheds" Prepared for Minnesota Pollution Control Agency, by Barr Engineering Company, Minneapolis, MN. http://www.pca.state.mn.us/index.php/water/water-monitoring-and-reporting/water-quality-and-pollutants/phosphorus/detailed-assessments-of-phosphorus-sources-to-minnesota-watersheds.html.

Environmental and Natural Resources Trust Fund (ENRTF), 2013. "Project Proposal: Demonstrating Farmer Led Conservation in the Elm Creek Watershed" http://www.lccmr.leg.mn/proposals/2014/pre-presentation_by_category/047-b.pdf

Environmental Protection Agency, United States (EPA), 1999. "Protocol for Developing Sediment TMDLs, First Edition" EPA 841-B-99-004

https://owpubauthor.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/1999_12_08_tmdl_sediment_sediment.pdf

Environmental Protection Agency, United States (EPA), 2002a. "Establishing Total Maximum Daily Load Wasteload Allocations for stormwater Sources and NPDES Permit Requirements Based on Those WLAs" http://www.epa.gov/npdes/pubs/final-wwtmdl.pdf

Environmental Protection Agency, United States (EPA), 2002b. "Guidelines for Reviewing TMDLs under Existing Regulations issued in 1992" EPA 841-B-99-004

https://www.epa.gov/sites/production/files/2015-

10/documents/2002_06_04_tmdl_guidance_final520021.pdf

Environmental Protection Agency, United States (EPA), 2007. "An Approach for Using Load Duration Curves in the Development of TMDLs" EPA 841-B-07-006

https://www.epa.gov/sites/production/files/2015-

07/documents/2007 08 23 tmdl_duration_curve_guide_aug2007.pdf

Hoverson, D. 2008. Phosphorus Release from sediments in Shawano Lake, Wisconsin College of Natural resources, University of Wisconsin - Stevens Point.

http://www.uwsp.edu/cnrap/watershed/Documents/hoverson.pdf

Ishii, S., W.B. Ksoll, R.E. Hicks, M.J. Sadowsky. 2006. Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Applied and Environmental Microbiology. Vol. 72:612-621. Prairie, Y.T. and J. Kalff. 1986. Effect of catchment size on phosphorus export. Wat. Resour. Bull. 22(3) 465-470.

Minnesota Pollution Control Agency (MPCA). 2004. "Detailed Assessment of Phosphorus Sources to Minnesota Watersheds" https://www.pca.state.mn.us/sites/default/files/pstudy-2007updatememo.pdf. Prepared by Barr Engineering.

Minnesota Pollution Control Agency (MPCA), 2005. "Minnesota Lake Water Quality Assessment report: Developing Nutrient Criteria, 3rd Edition" http://www.pca.state.mn.us/index.php/view-document.html?gid=6503. September 2005.

Minnesota Pollution Control Agency (MPCA), 2007. "Statewide Mercury TMDL" http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/tmdl-projects/special-projects/statewide-mercury-tmdl-pollutant-reduction-plan.html

Minnesota Pollution Control Agency (MPCA), 2008. "Small Community Wastewater Needs in Minnesota" http://www.pca.state.mn.us/index.php/view-document.html?gid=5192

Minnesota Pollution Control Agency (MPCA), 2011. "Minnesota's Water Quality Monitoring Strategy" http://www.pca.state.mn.us/index.php/view-document.html?qid=10228

Minnesota Pollution Control Agency (MPCA), 2011b. "Long and Ringo Lakes Excess Nutrients Total Maximum Daily Load" http://www.pca.state.mn.us/index.php/view-document.html?qid=16013

Minnesota Pollution Control Agency (MPCA), 2012a. "Intensive Watershed Monitoring" http://www.pca.state.mn.us/index.php?option=com_k2&view=item&id=1197

Minnesota Pollution Control Agency (MPCA), 2012b. "Hawk Creek Watershed Biotic Stressor identification report" https://www.pca.state.mn.us/sites/default/files/wq-ws5-07020004b.pdf

Minnesota Pollution Control Agency (MPCA), 2012d. "Minnesota River – Granite Falls Watershed Monitoring and Assessment Report" http://www.pca.state.mn.us/index.php/view-document.html?gid=19934

Minnesota Pollution Control Agency (MPCA) 2012e. "Zumbro Watershed Turbidity (TSS) Total Maximum Daily Load" http://www.pca.state.mn.us/index.php/view-document.html?gid=17902

Minnesota Pollution Control Agency (MPCA), 2013a. "Watershed Pollutant Load Monitoring Network" http://www.pca.state.mn.us/index.php/water/water-types-and-programs/surface-water/streams-and-rivers/watershed-pollutant-load-monitoring-network.html

Minnesota Pollution Control Agency (MPCA), 2013b. "Volunteer Surface Water Monitoring" http://www.pca.state.mn.us/index.php/water/water-monitoring-and-reporting/volunteer-water-monitoring/volunteer-surface-water-monitoring.html

Minnesota Pollution Control Agency (MPCA), 2013c. "Minnesota Nutrient Reduction Strategy" http://www.pca.state.mn.us/index.php/view-document.html?gid=20213

Minnesota Pollution Control Agency (MPCA), 2014a. Guidance Manual for Assessing the Quality of Minnesota Surface Waters for Determination of Impairment: 305(b) Report and 303(d) List. http://www.pca.state.mn.us/index.php/view-document.html?gid=16988

Minnesota Pollution Control Agency (MPCA), 2014b. "TMDL Policy and Guidance" http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-waters-and-tmdls/project-resources/tmdl-policy-and-quidance.html

Minnesota Pollution Control Agency (MPCA), 2014c. "Environmental Data" http://www.pca.state.mn.us/index.php/data/environmental-data-access.html

Minnesota Pollution Control Agency (MPCA) and MSUM. 2009. State of the Minnesota River, Summary of Surface Water Quality Monitoring 2000-2008.

http://mrbdc.mnsu.edu/sites/mrbdc.mnsu.edu/files/public/reports/basin/state_08/2008_fullreport110_9.pdf

Multi-Resolution Land Characteristics Consortium (MRLC), 2011. "National Land Cover Database" http://www.mrlc.gov/nlcd2011.php

Nürnberg Gertrud K., 1984. "Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes" American Society of Limnology and Oceanography, 43(7), 1998, 1544-1552. http://aslo.org/lo/toc/vol_43/issue_7/1544.pdf

Pierce, Samuel C., R. Kröger, and R. Pezeshki, 2012. "Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions". Biology, 1(3), 794-856, Dec. 10, 2012. http://www.mdpi.com/2079-7737/1/3/794

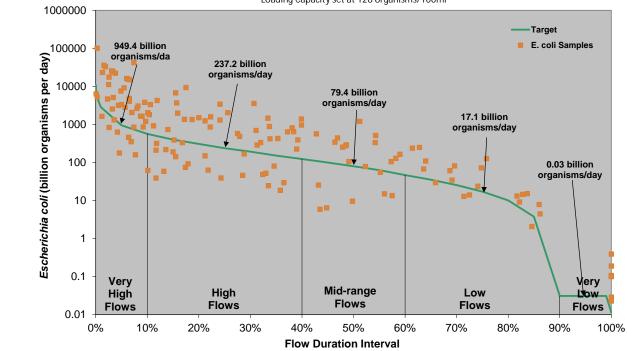
Chandrasekaran R, Hamilton MJ, Wang P, Staley C, Matteson S, Birr A, Sadowsky MJ. 2015. Geographic isolation of Escherichia coli genotypes in sediments and water of the Seven Mile Creek - A constructed riverine watershed. Sci. Total Environ. 538:78-85

Schottler, S.P, Jason Ulrich, Patrick Belmont, Richard Moore, J. Wesley Lauer, Daniel R. Engstrom, and James E. Almendinger, 2012. "Twentieth century agricultural drainage creates more erosive rivers" Hydrological Processes, 28(4):1951-1961, Feb. 15, 2014.

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_021703.pdf

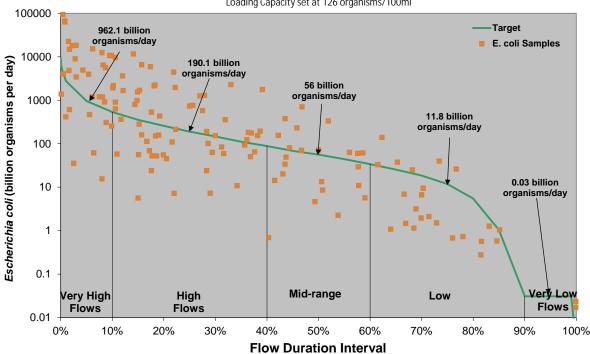
Tomer, Mark D., Sarah A. Porter, David E. James, Kathleen M.B. Boomer, Jill A. Kostel, and Eileen McLellan, 2013. "Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning" Journal of Soil and Water Conservation, 68(5):113A-120A http://www.jswconline.org/content/68/5/113A.full.pdf+html

Walker, William, 1999. "Simplified Procedures for Eutrophication Assessment and Prediction: User Manual" https://wiki.umn.edu/pub/Nieber/WebHome/FLUX-BATHTUB_MANUAL_IR-W-96_2.pdf

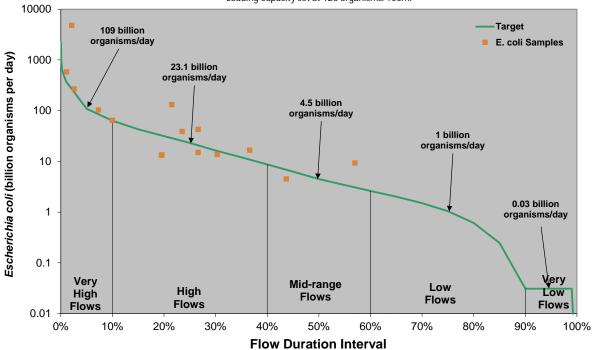

Hawk Creek Watershed District. http://www.hawkcreekwatershed.org/

Load duration curves for E. coli bacteria stream reach impairments

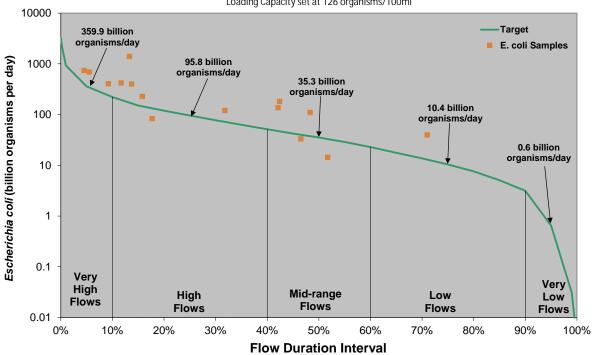
Beaver Creek AUID# 07020004-528


1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S000-666

Loading Capacity set at 126 organisms/100ml

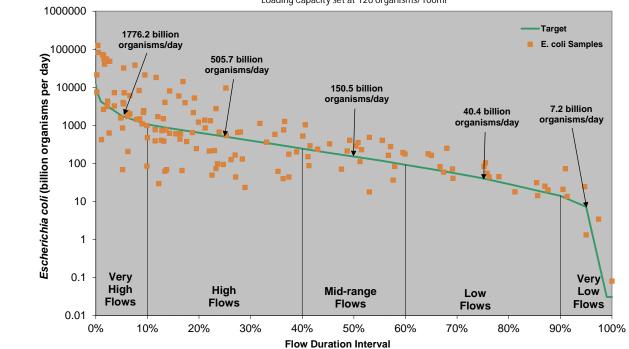

Chetomba Creek AUID# 07020004-589

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S002-152 Loading Capacity set at 126 organisms/100ml

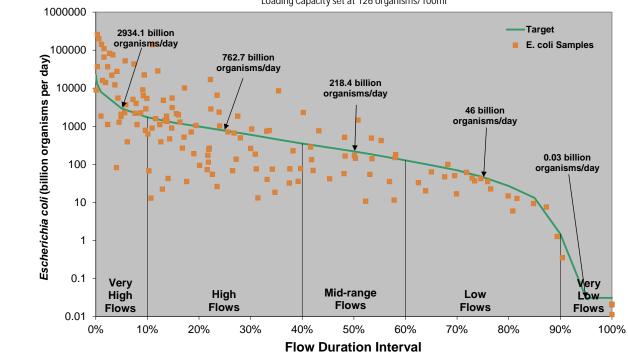

County Ditch 11 AUID# 07020004-689

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2010-2011 *E. coli* samples from EQuIS monitoring station S002-147 Loading Capacity set at 126 organisms/100ml

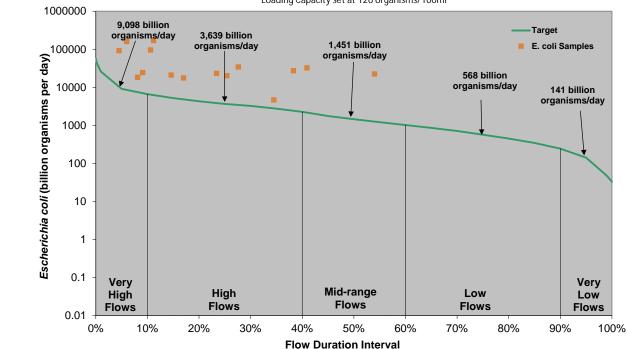
East Fork Beaver Creek AUID# 07020004-586


1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2010-2011 *E. coli* samples from EQuIS monitoring station S000-404 Loading Capacity set at 126 organisms/100ml

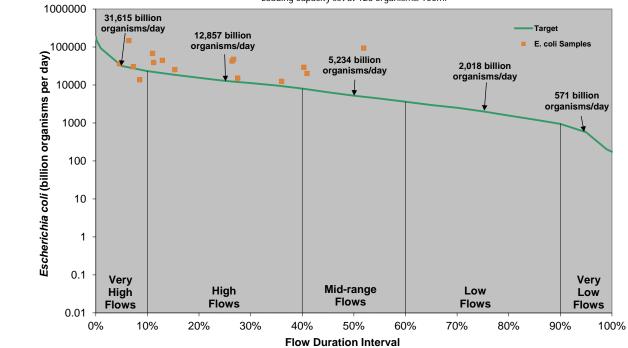
Lower Hawk Creek AUID# 07020004-568


1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S002-148

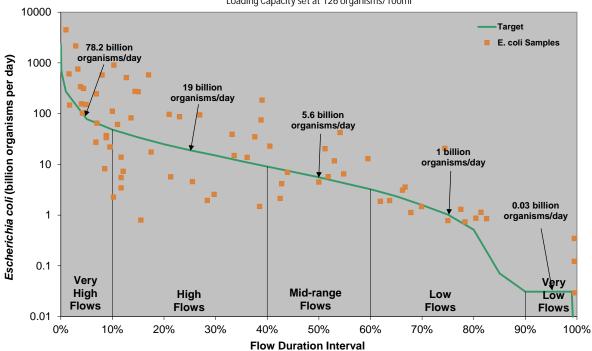
Loading Capacity set at 126 organisms/100ml


Lower Hawk Creek AUID# 07020004-587

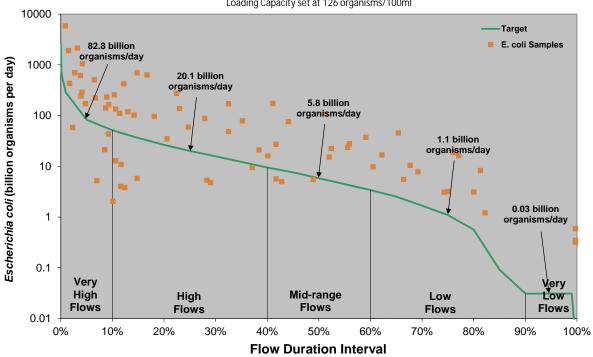
1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S002-012 Loading Capacity set at 126 organisms/100ml


Middle Creek AUID# 07020004-615

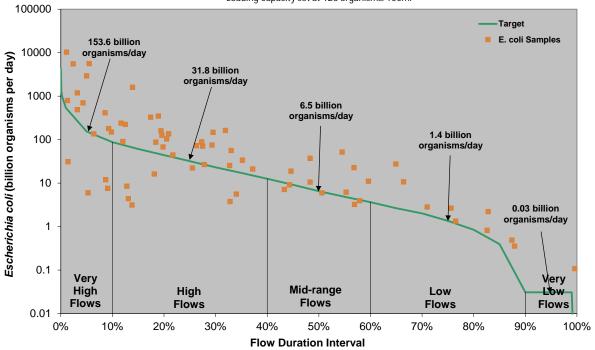
1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2010-2011 *E. coli* samples from EQuIS monitoring station S004-691 Loading Capacity set at 126 organisms/100ml


Smith Creek AUID# 07020004-617

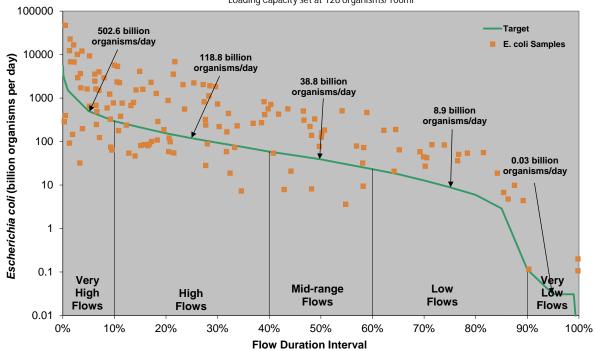
1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2010-2011 *E. coli* samples from EQuIS monitoring station S004-694 Loading Capacity set at 126 organisms/100ml


Sacred Heart Creek AUID# 07020004-526

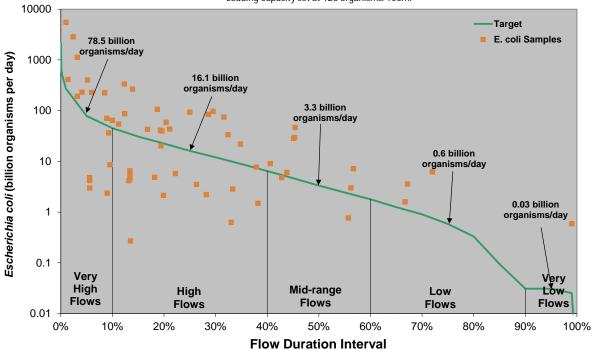
1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S001-341 Loading Capacity set at 126 organisms/100ml


Sacred Heart Creek - MN River AUID# 07020004-525

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S003-867 Loading Capacity set at 126 organisms/100ml

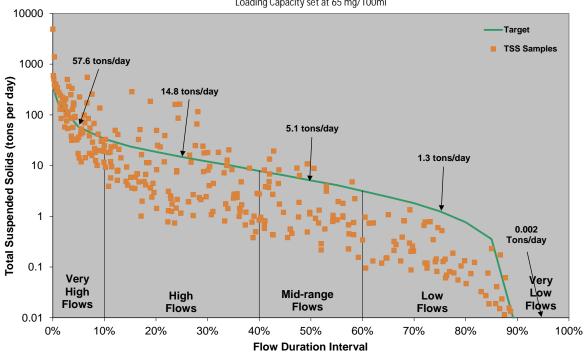

Stony Run Creek - MN River AUID# 07020004-534

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S002-136 Loading Capacity set at 126 organisms/100ml

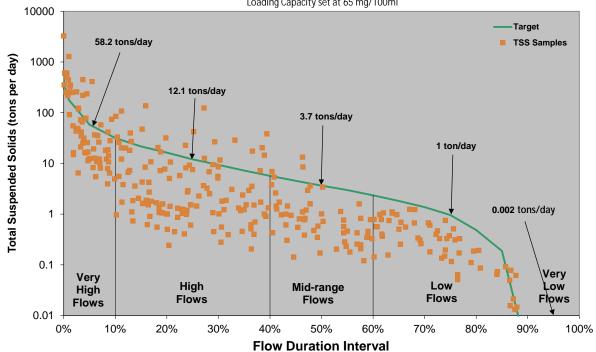

West Fork Beaver Creek AUID# 07020004-530

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring stations S006-138 and S000-405 Loading Capacity set at 126 organisms/100ml

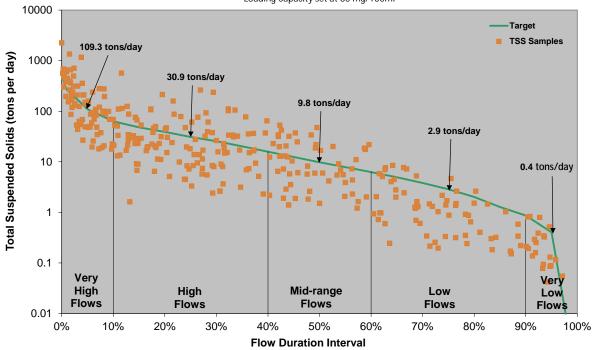
Wood Lake Creek - MN River AUID# 07020004-648


1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 *E. coli* samples from EQuIS monitoring station S003-866 Loading Capacity set at 126 organisms/100ml

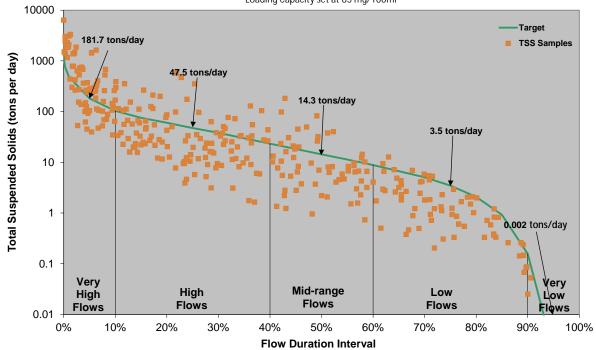
Beaver Creek AUID# 07020004-528


1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2007-2011 TSS samples from EQuIS monitoring station S000-666

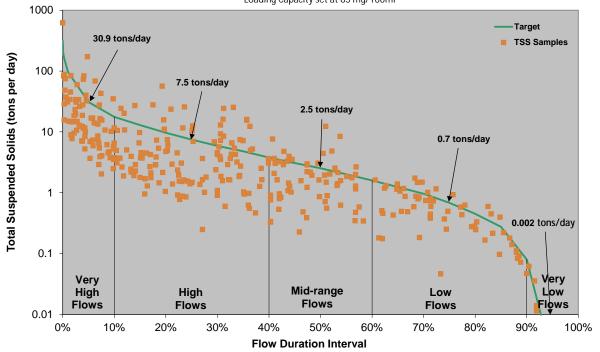
Loading Capacity set at 65 mg/100ml


Chetomba Creek AUID# 07020004-589

2007-2011 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 1999-2012 TSS samples from EQuIS monitoring station S002-152 Loading Capacity set at 65 mg/100ml


Lower Hawk Creek AUID# 07020004-568

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2002-2011 TSS samples from EQuIS monitoring station S002-148 Loading Capacity set at 65 mg/100ml


Lower Hawk Creek AUID# 07020004-587

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2002-2011 TSS samples from EQuIS monitoring station S002-012 Loading Capacity set at 65 mg/100ml

West Fork Beaver Creek AUID# 07020004-530

1996-2012 Modeled Flows from the Hawk Creek HSPF model using April-October Average Daily Flows 2002-2011 TSS samples from EQuIS monitoring stations S000-405 and S006-138 Loading Capacity set at 65 mg/100ml

Olson Lake BATHTUB Model Run – Modeled to Observed In-lake Phosphorus

Overall Water Balance					Averagin	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Olson Lake Shed		0.2	0.00E+00	0.00	
PRE(CIPITA	ΓΙΟN		0.5	0.4	0.00E+00	0.00	0.72
TRIB	UTARY	INFL	WC		0.0	0.00E+00	0.00	
NON	IPOINT	INFL	OW		0.2	0.00E+00	0.00	
***T	OTAL I	NFLO	W	0.5	0.6	0.00E+00	0.00	1.17
ADV	ECTIVE	OUT	FLOW	0.5	0.1	0.00E+00	0.00	0.23
***T	OTAL (OUTFL	LOW	0.5	0.1	0.00E+00	0.00	0.23
***E	VAPO	RATIC	N		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P						
	Load	L	₋oad Varian	ice		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m ³	kg/km²/yr
1 1 1 SSTS	0.9	0.9%	0.00E+00		0.00	88.4	
2 2 1 Olson Lake Shed	28.5	29.3%	0.00E+00		0.00	131.3	
PRECIPITATION	15.0	15.4%	5.63E+01	100.0%	0.50	41.7	30.0
INTERNAL LOAD	53.0	54.4%	0.00E+00		0.00		
TRIBUTARY INFLOW	0.9	0.9%	0.00E+00		0.00	88.4	
NONPOINT INFLOW	28.5	29.3%	0.00E+00		0.00	131.3	
***TOTAL INFLOW	97.4	100.0%	5.63E+01	100.0%	0.08	165.9	194.8
ADVECTIVE OUTFLOW	14.2	14.5%	2.86E+01		0.38	121.2	28.3
***TOTAL OUTFLOW	14.2	14.5%	2.86E+01		0.38	121.2	28.3
***RETENTION	83.2	85.5%	7.49E+01		0.10		
Overflow Rate (m/yr)	0.2	١	Nutrient Res	sid. Time (y	rs)	0.3733	
Hydraulic Resid. Time (yrs)	2.5675	Turnover Ratio				2.7	
Reservoir Conc (mg/m3)	121	F	Retention Co	oef.		0.855	

Olson Lake BATHTUB Model Run – Modeled to Phosphorus Standard

Overall Water Balance		Averagin	g Period =	1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	<u>(hm3/yr)²</u>	_=	m/yr
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Olson Lake Shed		0.2	0.00E+00	0.00	
PRECIPITATION	0.5	0.4	0.00E+00	0.00	0.72
TRIBUTARY INFLOW		0.0	0.00E+00	0.00	
NONPOINT INFLOW		0.2	0.00E+00	0.00	
***TOTAL INFLOW	0.5	0.6	0.00E+00	0.00	1.17
ADVECTIVE OUTFLOW	0.5	0.1	0.00E+00	0.00	0.23
***TOTAL OUTFLOW	0.5	0.1	0.00E+00	0.00	0.23
***EVAPORATION		0.5	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations						
Component:	TOTAL P							
	Load	L	oad Varian	ice		Conc	Export	
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr	
2 2 1 Olson Lake Shed	18.0	30.1%	0.00E+00		0.00	83.0		
PRECIPITATION	15.0	25.0%	5.63E+01	100.0%	0.50	41.7	30.0	
INTERNAL LOAD	26.8	44.8%	0.00E+00		0.00			
NONPOINT INFLOW	18.0	30.1%	0.00E+00		0.00	83.0		
***TOTAL INFLOW	59.9	100.0%	5.62E+01	100.0%	0.13	102.1	119.8	
ADVECTIVE OUTFLOW	10.5	17.5%	1.51E+01		0.37	89.9	21.0	
***TOTAL OUTFLOW	10.5	17.5%	1.51E+01		0.37	89.9	21.0	
***RETENTION	49.4	82.5%	5.91E+01		0.16			
Overflow Rate (m/yr)	0.2	N	Nutrient Res	sid. Time (y	ırs)	0.4501		
Hydraulic Resid. Time (yrs)	2.5675		Turnover Rat	.5	,	2.2		
Reservoir Conc (mg/m3)	90	F	Retention Co	oef.		0.825		

Saint John's Lake BATHTUB Model Run – Modeled to Observed In-lake Phosphorus

Ove	erall Water Balance Averaging Period =			1.00	years			
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	m/yr
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Saint John's Lake Shed		1.1	0.00E+00	0.00	
3	1	1	R:209		2.5	0.00E+00	0.00	
PRE(CIPITAT	TION		0.8	0.6	0.00E+00	0.00	0.72
TRIB	UTARY	INFL	WC		2.5	0.00E+00	0.00	
NON	IPOINT	INFL	OW		1.1	0.00E+00	0.00	
***T	OTAL I	NFLO	W	0.8	4.2	0.00E+00	0.00	5.35
ADV	ECTIVE	OUT	FLOW	0.8	3.4	0.00E+00	0.00	4.41
***]	OTAL (DUTFL	LOW	0.8	3.4	0.00E+00	0.00	4.41
***E	VAPO	RATIO	N		0.7	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	₋oad Varian	ice		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	2.7	0.2%	0.00E+00		0.00	273.5	
2 2 1 Saint John's Lake Shed	268.3	22.9%	0.00E+00		0.00	245.1	
3 1 1 R:209	181.2	15.4%	0.00E+00		0.00	72.4	
PRECIPITATION	23.4	2.0%	1.37E+02	100.0%	0.50	41.4	30.0
INTERNAL LOAD	698.0	59.5%	0.00E+00		0.00		
TRIBUTARY INFLOW	183.9	15.7%	0.00E+00		0.00	73.3	
NONPOINT INFLOW	268.3	22.9%	0.00E+00		0.00	245.1	
***TOTAL INFLOW	1173.6	100.0%	1.37E+02	100.0%	0.01	281.4	1504.6
ADVECTIVE OUTFLOW	531.3	45.3%	1.66E+04		0.24	154.6	681.1
***TOTAL OUTFLOW	531.3	45.3%	1.66E+04		0.24	154.6	681.1
***RETENTION	642.3	54.7%	1.66E+04		0.20		
Overflow Rate (m/yr)	4.4	١	Nutrient Res	sid. Time (\	ırs)	0.1336	
Hydraulic Resid. Time (yrs)	0.2950		Turnover Ra	.,	-/	7.5	
Reservoir Conc (mg/m3)	155		Retention Co			0.547	

Saint John's Lake BATHTUB Model Run – Modeled to Phosphorus Standard

Ove	rall Wa	iter B	alance		Averaging Period =		1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>=</u>	m/yr
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Saint John's Lake Shed		1.1	0.00E+00	0.00	
3	1	1	R:209		2.5	0.00E+00	0.00	
PRE(CIPITAT	ION		0.8	0.6	0.00E+00	0.00	0.72
TRIB	UTARY	INFLO	WC		2.5	0.00E+00	0.00	
NON	IPOINT	INFL	WC		1.1	0.00E+00	0.00	
***T	OTALI	NFLO'	W	0.8	4.2	0.00E+00	0.00	5.35
ADV	ECTIVE	OUT	FLOW	0.8	3.4	0.00E+00	0.00	4.41
***T	OTAL (OUTFL	OW	0.8	3.4	0.00E+00	0.00	4.41
***E	VAPOF	RATIO	N		0.7	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	.oad Varian	ce		Conc	Export
<u>Trb Type Seg Name</u>	kg/yr	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 Saint John's Lake Shed	129.7	22.2%	0.00E+00		0.00	118.5	
3 1 1 R:209	181.2	31.0%	0.00E+00		0.00	72.4	
PRECIPITATION	23.4	4.0%	1.37E+02	100.0%	0.50	41.4	30.0
INTERNAL LOAD	249.6	42.7%	0.00E+00		0.00		
TRIBUTARY INFLOW	181.2	31.0%	0.00E+00		0.00	72.2	
NONPOINT INFLOW	129.7	22.2%	0.00E+00		0.00	118.5	
***TOTAL INFLOW	583.9	100.0%	1.37E+02	100.0%	0.02	140.0	748.6
ADVECTIVE OUTFLOW	310.9	53.2%	4.18E+03		0.21	90.4	398.6
***TOTAL OUTFLOW	310.9	53.2%	4.18E+03		0.21	90.4	398.6
***RETENTION	273.0	46.8%	4.21E+03		0.24		
Overflow Rate (m/yr)	4.4	Ņ	lutrient Res	id. Time (y	yrs)	0.1571	
Hydraulic Resid. Time (yrs)	0.2950	T	urnover Rat	io		6.4	
Reservoir Conc (mg/m3)	90	F	Retention Co	oef.		0.468	

Swan Lake BATHTUB Model Run – Modeled to Observed In-lake Phosphorus

Overall Water Balance					Averagin	g Period =	1.00	years
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	Swan Lake Shed		1.1	0.00E+00	0.00	
3	1	1	R:215	46.1	4.8	0.00E+00	0.00	0.10
PRE(CIPITAT	ION		0.8	0.6	0.00E+00	0.00	0.74
TRIB	UTARY	INFL	WC	46.1	4.8	0.00E+00	0.00	0.10
NON	IPOINT	INFL	OW		1.1	0.00E+00	0.00	
***T	OTALI	NFLO	W	47.0	6.5	0.00E+00	0.00	0.14
ADV	ECTIVE	OUT	FLOW	47.0	5.7	0.00E+00	0.00	0.12
***T	OTALC	OUTFL	LOW	47.0	5.7	0.00E+00	0.00	0.12
***E	VAPOF	RATIC	N		0.8	0.00E+00	0.00	

Overall Mass Balance Based Upon	Outflow &	Reservoir (Concent	rations			
Component:	TOTAL P						
	Load	L	oad Varian	ice		Conc	Export
<u>Trb Type Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	1.9	0.2%	0.00E+00		0.00	189.0	
2 2 1 Swan Lake Shed	244.1	24.0%	0.00E+00		0.00	229.2	
3 1 1 R:215	411.7	40.5%	0.00E+00		0.00	86.3	8.9
PRECIPITATION	24.9	2.5%	1.55E+02	100.0%	0.50	40.8	30.0
INTERNAL LOAD	333.5	32.8%	0.00E+00		0.00		
TRIBUTARY INFLOW	413.6	40.7%	0.00E+00		0.00	86.5	9.0
NONPOINT INFLOW	244.1	24.0%	0.00E+00		0.00	229.2	
***TOTAL INFLOW	1016.1	100.0%	1.55E+02	100.0%	0.01	157.4	21.6
ADVECTIVE OUTFLOW	629.2	61.9%	1.14E+04		0.17	110.9	13.4
***TOTAL OUTFLOW	629.2	61.9%	1.14E+04		0.17	110.9	13.4
***RETENTION	386.9	38.1%	1.14E+04		0.28		
Overflow Rate (m/yr)	6.8	1	Nutrient Res	sid. Time (y	rs)	0.0906	
Hydraulic Resid. Time (yrs)	0.1463	T	Turnover Ra	tio		11.0	
Reservoir Conc (mg/m3)	111	F	Retention Co	oef.		0.381	

Swan Lake BATHTUB Model Run – Modeled to Phosphorus Standard

Overall Water Balance Averaging Period =				1.00	years
	Area	Flow	Variance	CV	Runoff
<u>Trb Type Seg Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_=	<u>m/yr</u>
1 1 1 SSTS		0.0	0.00E+00	0.00	
2 2 1 Swan Lake Shed		1.1	0.00E+00	0.00	
3 1 1 R:215	46.1	4.8	0.00E+00	0.00	0.10
PRECIPITATION	0.8	0.6	0.00E+00	0.00	0.74
TRIBUTARY INFLOW	46.1	4.8	0.00E+00	0.00	0.10
NONPOINT INFLOW		1.1	0.00E+00	0.00	
***TOTAL INFLOW	47.0	6.5	0.00E+00	0.00	0.14
ADVECTIVE OUTFLOW	47.0	5.7	0.00E+00	0.00	0.12
***TOTAL OUTFLOW	47.0	5.7	0.00E+00	0.00	0.12
***EVAPORATION		0.8	0.00E+00	0.00	

Predicted	d Outflow & Reservoir Concentrations					
TOTAL P						
Load	L	oad Varian	ce		Conc	Export
<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	<u>CV</u>	mg/m³	kg/km²/yr
135.5	17.2%	0.00E+00		0.00	127.3	
411.7	52.2%	0.00E+00		0.00	86.3	8.9
24.9	3.2%	1.55E+02	100.0%	0.50	40.8	30.0
216.6	27.5%	0.00E+00		0.00		
411.7	52.2%	0.00E+00		0.00	86.1	8.9
135.5	17.2%	0.00E+00		0.00	127.3	
788.8	100.0%	1.55E+02	100.0%	0.02	122.2	16.8
509.7	64.6%	6.49E+03		0.16	89.8	10.9
509.7	64.6%	6.49E+03		0.16	89.8	10.9
279.1	35.4%	6.48E+03		0.29		
6.8	1	Nutrient Res	id. Time (y	rs)	0.0945	
0.1463	Turnover Ratio 1			10.6		
90	F	Retention Co	oef.		0.354	
	TOTAL P Load kg/yr 135.5 411.7 24.9 216.6 411.7 135.5 788.8 509.7 509.7 279.1 6.8 0.1463	TOTAL P Load kg/yr 135.5 17.2% 411.7 52.2% 24.9 24.9 216.6 27.5% 411.7 52.2% 135.5 17.2% 788.8 100.0% 509.7 64.6% 509.7 64.6% 279.1 35.4%	TOTAL P Load kg/yr 7Total 135.5 17.2% 0.00E+00 411.7 52.2% 0.00E+00 24.9 3.2% 1.55E+02 216.6 27.5% 0.00E+00 411.7 52.2% 0.00E+00 411.7 52.2% 0.00E+00 135.5 17.2% 0.00E+00 788.8 100.0% 1.55E+02 509.7 64.6% 6.49E+03 509.7 64.6% 6.49E+03 279.1 35.4% 6.48E+03 Nutrient Resolution of the property of th	TOTAL P Load Load Variance kg/yr %Total 135.5 17.2% 0.00E+00 411.7 52.2% 0.00E+00 24.9 3.2% 1.55E+02 100.0% 216.6 27.5% 0.00E+00 411.7 52.2% 0.00E+00 135.5 17.2% 0.00E+00 135.5 17.2% 0.00E+00 788.8 100.0% 1.55E+02 100.0% 509.7 64.6% 6.49E+03 509.7 64.6% 6.49E+03 279.1 35.4% 6.48E+03 Nutrient Resid. Time (your note of the content of	TOTAL P Load Load Variance kg/yr %Total (kg/yr)² %Total CV 135.5 17.2% 0.00E+00 0.00 411.7 52.2% 0.00E+00 0.00 24.9 3.2% 1.55E+02 100.0% 0.50 216.6 27.5% 0.00E+00 0.00 411.7 52.2% 0.00E+00 0.00 411.7 52.2% 0.00E+00 0.00 788.8 100.0% 1.55E+02 100.0% 0.02 509.7 64.6% 6.49E+03 0.16 509.7 64.6% 6.49E+03 0.16 279.1 35.4% 6.48E+03 0.29 6.8 Nutrient Resid. Time (yrs) Turnover Ratio	TOTAL P Load Load Variance Conc kg/yr %Total (kg/yr)² %Total CV mg/m³ 135.5 17.2% 0.00E+00 0.00 127.3 411.7 52.2% 0.00E+00 0.00 86.3 24.9 3.2% 1.55E+02 100.0% 0.50 40.8 216.6 27.5% 0.00E+00 0.00 40.8 216.6 27.5% 0.00E+00 0.00 86.1 135.5 17.2% 0.00E+00 0.00 127.3 788.8 100.0% 1.55E+02 100.0% 0.02 122.2 509.7 64.6% 6.49E+03 0.16 89.8 509.7 64.6% 6.49E+03 0.16 89.8 279.1 35.4% 6.48E+03 0.29 6.8 Nutrient Resid. Time (yrs) 0.0945 0.1463 Turnover Ratio 10.6

West Solomon Lake BATHTUB Model Run – Modeled to Observed In-lake Phosphorus

Overall Water Balance				Averagin	g Period =	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	<u>-</u>	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	West Solomon Shed		4.0	0.00E+00	0.00	
3	1	1	R:210	33.9	0.3	0.00E+00	0.00	0.01
PRE(CIPITAT	ION		2.3	1.6	0.00E+00	0.00	0.72
TRIB	UTARY	INFL	WC	33.9	0.3	0.00E+00	0.00	0.01
NON	IPOINT	INFL	OW		4.0	0.00E+00	0.00	
***T	OTALI	NFLO	W	36.1	6.0	0.00E+00	0.00	0.17
ADV	ECTIVE	OUT	FLOW	36.1	3.9	0.00E+00	0.00	0.11
***T	OTAL (DUTFL	LOW WO.	36.1	3.9	0.00E+00	0.00	0.11
***E	VAPOF	RATIC	N		2.1	0.00E+00	0.00	

Overall Mass Balance Based Upon Component:	Predicted TOTAL P	Outflow & Reservoir Concentrations					
	Load	L	₋oad Varian	ce		Conc	Export
<u>Trb</u> <u>Type</u> <u>Seg</u> <u>Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
1 1 1 SSTS	9.6	0.6%	0.00E+00		0.00	960.3	
2 2 1 West Solomon Shed	955.3	55.3%	0.00E+00		0.00	237.0	
3 1 1 R:210	13.3	0.8%	0.00E+00		0.00	43.8	0.4
PRECIPITATION	68.1	3.9%	1.16E+03	100.0%	0.50	41.4	30.0
INTERNAL LOAD	679.9	39.4%	0.00E+00		0.00		
TRIBUTARY INFLOW	23.0	1.3%	0.00E+00		0.00	72.9	0.7
NONPOINT INFLOW	955.3	55.3%	0.00E+00		0.00	237.0	
***TOTAL INFLOW	1726.2	100.0%	1.16E+03	100.0%	0.02	288.2	47.8
ADVECTIVE OUTFLOW	434.2	25.2%	2.05E+04		0.33	112.6	12.0
***TOTAL OUTFLOW	434.2	25.2%	2.05E+04		0.33	112.6	12.0
***RETENTION	1292.1	74.8%	2.13E+04		0.11		
Overflow Rate (m/yr)	1.7	ľ	Nutrient Res	sid. Time (v	vrs)	0.3110	
Hydraulic Resid. Time (yrs)	1.2364		urnover Rat	13	, ,	3.2	
Reservoir Conc (mg/m3)	113	F	Retention Co	oef.		0.748	

West Solomon Lake BATHTUB Model Run – Modeled to Phosphorus Standard

Overall Water Balance				Averagin	g Period =	1.00	years	
				Area	Flow	Variance	CV	Runoff
<u>Trb</u>	<u>Type</u>	<u>Seg</u>	<u>Name</u>	<u>km²</u>	<u>hm³/yr</u>	(hm3/yr) ²	_	<u>m/yr</u>
1	1	1	SSTS		0.0	0.00E+00	0.00	
2	2	1	West Solomon Shed		4.0	0.00E+00	0.00	
3	1	1	R:210	33.9	0.3	0.00E+00	0.00	0.01
PRE(CIPITAT	ION		2.3	1.6	0.00E+00	0.00	0.72
TRIB	UTARY	INFLO	WC	33.9	0.3	0.00E+00	0.00	0.01
NON	IPOINT	INFL	OW		4.0	0.00E+00	0.00	
***T	OTALI	NFLO'	W	36.1	6.0	0.00E+00	0.00	0.17
ADV	ECTIVE	OUT	FLOW	36.1	3.9	0.00E+00	0.00	0.11
***T	OTAL (OUTFL	.OW	36.1	3.9	0.00E+00	0.00	0.11
***E	VAPOF	RATIO	N		2.1	0.00E+00	0.00	

Overall Mass Balance Based Upon	Predicted	Outflow & Reservoir Concentrations					
Component:	TOTAL P						
	Load	L	oad Varian	се		Conc	Export
<u>Trb Type</u> <u>Seg Name</u>	<u>kg/yr</u>	%Total	(kg/yr) ²	%Total	CV	mg/m³	kg/km²/yr
2 2 1 West Solomon Shed	467.0	38.0%	0.00E+00		0.00	115.9	
3 1 1 R:210	13.3	1.1%	0.00E+00		0.00	43.8	0.4
PRECIPITATION	68.1	5.5%	1.16E+03	100.0%	0.50	41.4	30.0
INTERNAL LOAD	679.9	55.3%	0.00E+00		0.00		
TRIBUTARY INFLOW	13.3	1.1%	0.00E+00		0.00	42.4	0.4
NONPOINT INFLOW	467.0	38.0%	0.00E+00		0.00	115.9	
***TOTAL INFLOW	1228.4	100.0%	1.16E+03	100.0%	0.03	205.1	34.0
ADVECTIVE OUTFLOW	346.4	28.2%	1.20E+04		0.32	89.8	9.6
***TOTAL OUTFLOW	346.4	28.2%	1.20E+04		0.32	89.8	9.6
***RETENTION	882.0	71.8%	1.28E+04		0.13		
Overflow Rate (m/yr)	1.7	N	Nutrient Res	id. Time (y	ırs)	0.3486	
Hydraulic Resid. Time (yrs)	1.2364	Т	urnover Rat	tio	•	2.9	
Reservoir Conc (mg/m3)	90	F	Retention Co	oef.		0.718	

Appendix C

HSPF Flow and Water Quality Calibration Results

Hydrologic Calibration and Validation for the Hawk Creek/Yellow Medicine HSPF Model

1 Yellow Medicine River near Granite Falls, 2001-2009

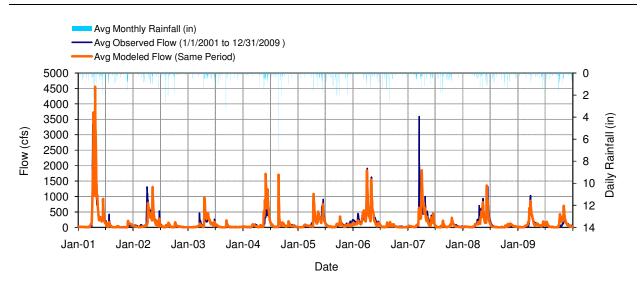


Figure 1. Mean daily flow: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

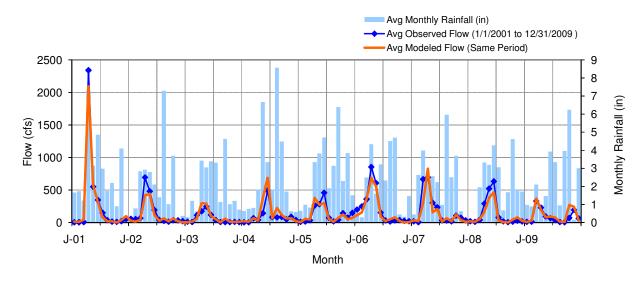


Figure 2. Mean monthly flow: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

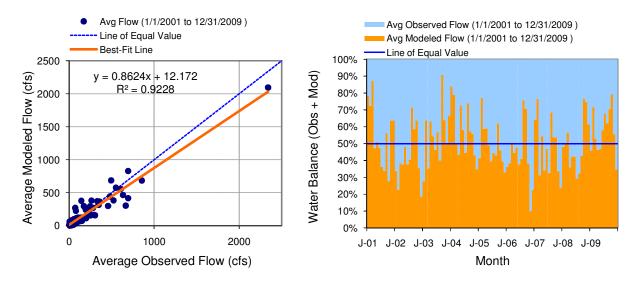


Figure 3. Monthly flow regression and temporal variation: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

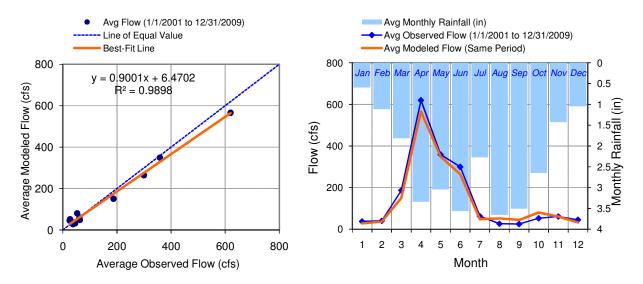


Figure 4. Seasonal regression and temporal aggregate: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

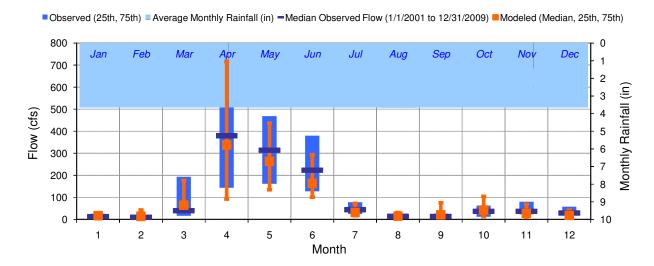


Figure 5. Seasonal medians and ranges: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

Table 1. Seasonal summary: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

MONTH	<u>OE</u>	SERVED	FLOW (CF	<u>S)</u>	MODELED FLOW (CFS)			
WOITTI	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH
Jan	37.55	13.00	7.00	26.00	27.95	17.15	7.95	29.37
Feb	40.05	9.90	5.43	20.75	36.19	14.08	10.23	43.05
Mar	186.93	40.00	16.50	193.50	150.64	64.68	39.54	177.83
Apr	619.86	380.00	143.25	681.25	565.99	337.70	93.09	716.46
May	358.79	314.00	161.50	468.50	349.39	263.51	134.21	437.17
Jun	299.69	223.50	128.00	379.75	264.07	163.64	101.26	294.75
Jul	62.77	44.00	24.50	78.50	48.51	32.38	16.94	72.69
Aug	26.48	14.00	9.95	23.00	51.81	14.86	8.34	31.32
Sep	25.19	13.50	6.53	26.75	44.80	20.86	6.00	76.06
Oct	52.79	37.00	12.00	63.00	80.60	42.80	13.53	104.88
Nov	61.25	37.00	23.00	80.75	60.76	27.70	9.71	68.95
Dec	45.34	29.00	19.00	58.00	32.17	18.17	8.58	42.50

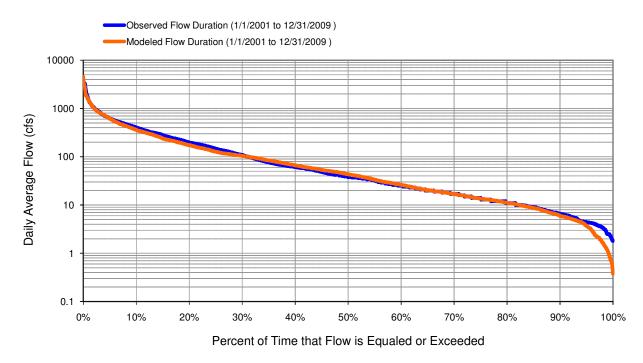


Figure 6. Flow exceedence: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

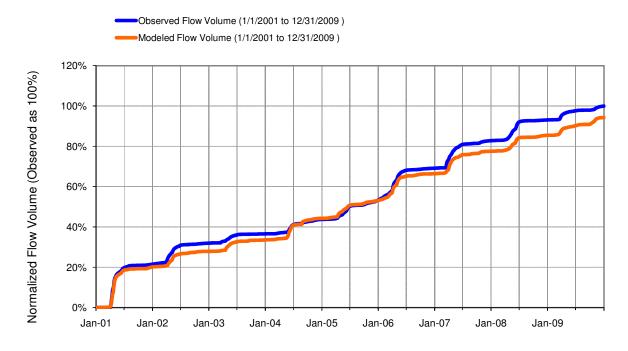


Figure 7. Flow accumulation: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

Table 2. Summary statistics: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN

HSPF Simulated Flow		Observed Flow Gage			
REACH OUTFLOW FROM DSN 100		USGS 05313500 YELLOW MEDICINE RIVER NEAR GRANITE FALLS, MN			
9-Year Analysis Period: 1/1/2001 - 12/31/2009 Flow volumes are (inches/year) for upstream drainage are	a	Hydrologic Unit Code: 7020004 Latitude: 44.72166667 Longitude: -95.5188889 Drainage Area (sq-mi): 664			
Total Simulated In-stream Flow:	2.92	Total Observed In-stream Flo	w:	3.09	
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.68 0.17	Total of Observed highest 10 st Total of Observed Lowest 50 st	1.78 0.16		
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3):	0.25 0.30 0.37	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3):		0.20 0.27 0.45	
Simulated Spring Flow Volume (months 1-3).	2.00	Observed Spring Flow Volum	2.17		
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	0.87 0.09	Total Observed Storm Volum Observed Summer Storm Vo	~~	0.81 0.05	
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria			
Error in total volume:	-5.68	10			
Error in 50% lowest flows:	1.72	10			
Error in 10% highest flows:	-5.26	15			
Seasonal volume error - Summer:	26.45	30			
Seasonal volume error - Fall: Seasonal volume error - Winter:	8.99 -18.93	30 30		-	
Seasonal volume error - Winter. Seasonal volume error - Spring:	-7.69	30			
Error in storm volumes:	7.13	20			
Error in summer storm volumes:	75.48	50			
Nash-Sutcliffe Coefficient of Efficiency, E: Baseline adjusted coefficient (Garrick), E':	0.744 0.625	Model accuracy increases as E or E' approaches 1.0			
Monthly NSE	0.911				

2 Hawk Creek at Priam

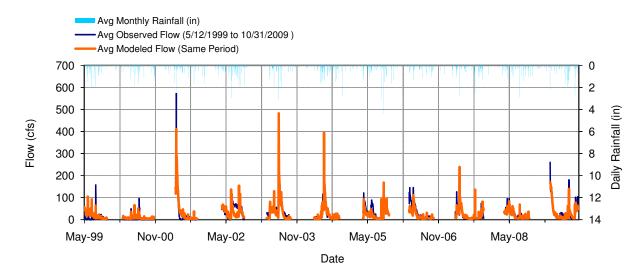


Figure 8. Mean daily flow: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

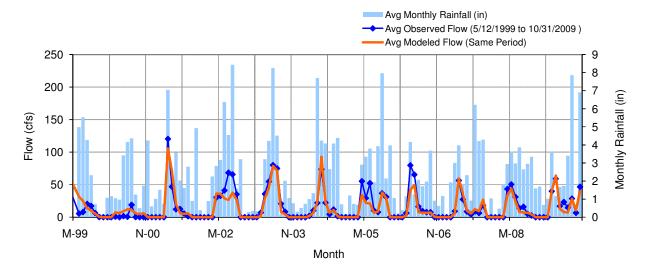


Figure 9. Mean monthly flow: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

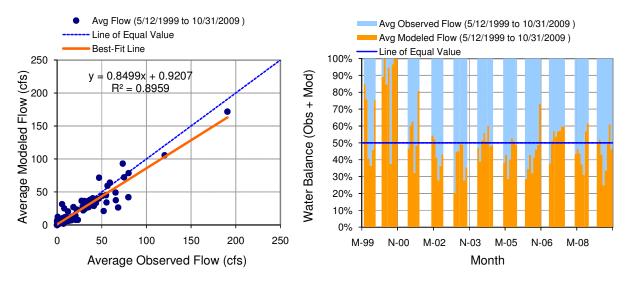


Figure 10. Monthly flow regression and temporal variation: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

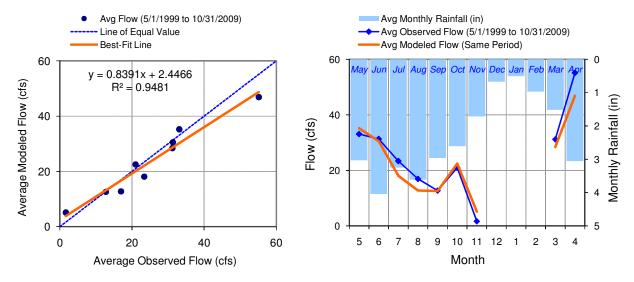


Figure 11. Seasonal regression and temporal aggregate: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

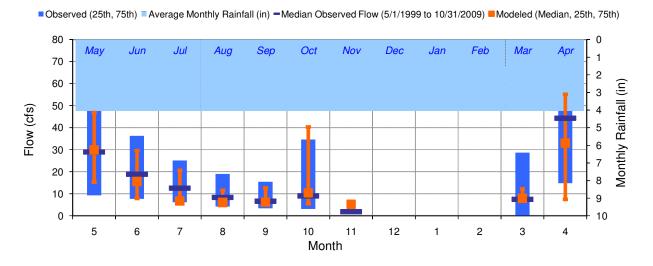


Figure 12. Seasonal medians and ranges: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

Figure 13. Flow accumulation: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

May-02

Table 3. Summary statistics: Model DSN 700 vs. Hawk Creek - Priam (S002-140)

HSPF Simulated Flow		Observed Flow Gage			
REACH OUTFLOW FROM DSN 700		Hawk Priam (S002-140)			
10.48-Year Analysis Period: 5/1/1999 - 10/31/2009					
Flow volumes are (inches/year) for upstream drainage are	a	Manually Entered Data			
		Drainage Area (sq-mi): 50.08			
Total Simulated In-stream Flow:	3.84	Total Observed In-stream Flow	:	4.20	
Total of simulated highest 10% flows:	1.60	Total of Observed highest 10%	flows:	1.69	
Total of Simulated lowest 50% flows:	0.49	Total of Observed Lowest 50%	flows:	0.40	
Circulated Common Floor Values a (countly 7.70)	1.00	Oh d O Fl V-l	- (7.0)-	4.07	
Simulated Summer Flow Volume (months 7-9):	1.03 0.25	Observed Summer Flow Volume		1.27 0.24	
Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3):	0.25	Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3):		0.24	
Simulated Writer Flow Volume (months 1-3). Simulated Spring Flow Volume (months 4-6):	2.43	Observed Writter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		2.55	
Simulated Spring Flow Volume (months 4-0).	2.43	Observed Spring Flow Volume	(4-0).	2.33	
Total Simulated Storm Volume:	0.78	Total Observed Storm Volume:	· · · · · · · · · · · · · · · · · · ·	0.89	
Simulated Summer Storm Volume (7-9):	0.24	Observed Summer Storm Volu	me (7-9):	0.33	
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria			
Error in total volume:	-8.45	10			
Error in 50% lowest flows:	20.39	10			
Error in 10% highest flows:	-5.14	15			
Seasonal volume error - Summer:	-18.42	30			
Seasonal volume error - Fall:	7.45	30			
Seasonal volume error - Winter:	-8.89	30			
Seasonal volume error - Spring:	-4.95	30			
Error in storm volumes:	-12.03	20			
Error in summer storm volumes:	-28.76	50			
Nash-Sutcliffe Coefficient of Efficiency, E:	0.744	Model accuracy increases			
Baseline adjusted coefficient (Garrick), E':	0.536	as E or E' approaches 1.0			
Monthly NSE	0.934				

Nov-03

May-05

Nov-06

May-08

Normalized Flow Volume (Observed as 100%)

40%

20%

May-99

Nov-00

3 Hawk Creek at Maynard



Figure 14. Mean daily flow: Model DSN 800 vs. Hawk - Maynard (S002-148)

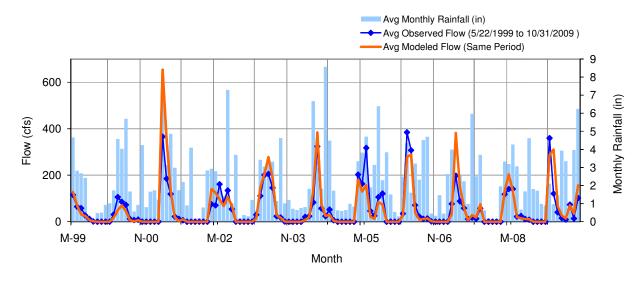


Figure 15. Mean monthly flow: Model DSN 800 vs. Hawk - Maynard (S002-148)

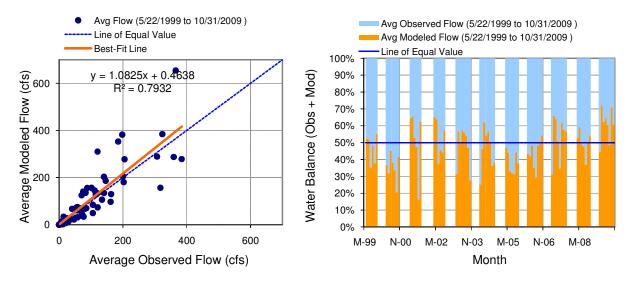


Figure 16. Monthly flow regression and temporal variation: Model DSN 800 vs. Hawk - Maynard (S002-148)

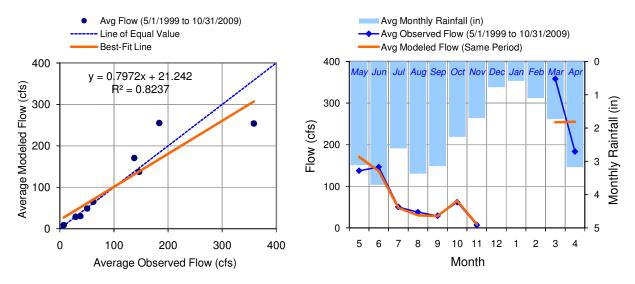


Figure 17. Seasonal regression and temporal aggregate: Model DSN 800 vs. Hawk - Maynard (S002-148)

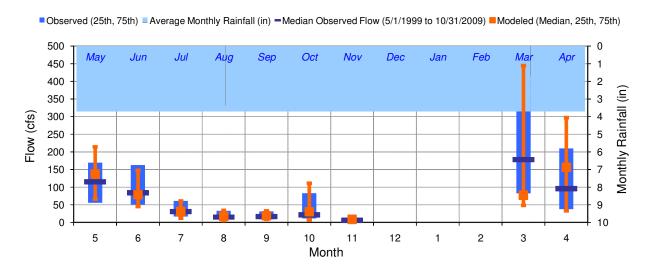


Figure 18. Seasonal medians and ranges: Model DSN 800 vs. Hawk - Maynard (S002-148)

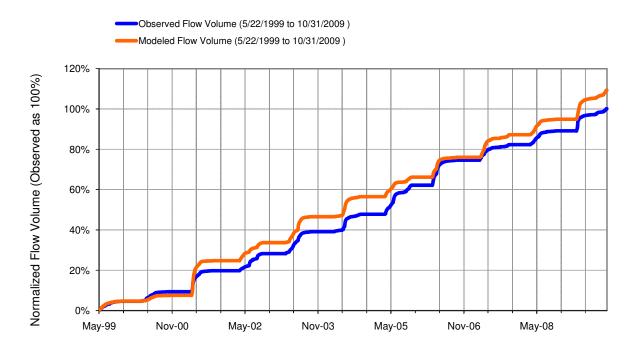


Figure 19. Flow accumulation: Model DSN 800 vs. Hawk - Maynard (S002-148)

Table 4. Summary statistics: Model DSN 800 vs. Hawk - Maynard (S002-148)

HSPF Simulated Flow	Observed Flow Gage			
REACH OUTFLOW FROM DSN 800		Hawk Maynard (S002-148)		
10.45-Year Analysis Period: 5/1/1999 - 10/31/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 321.97		
Total Simulated In-stream Flow:	2.50	Total Observed In-stream Flo	w:	2.29
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.21 0.21	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		1.09 0.22
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3):	0.40 0.11 0.13	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3):		0.44 0.11 0.18
Simulated Spring Flow Volume (months 4-6): Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	0.72 0.11	Observed Spring Flow Volume (4-6): Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		0.83 0.16
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria		
Error in total volume: Error in 50% lowest flows:	9.17 -5.68	10 10		
Error in 10% highest flows: Seasonal volume error - Summer:	10.19 -8.39	15 30		
Seasonal volume error - Summer. Seasonal volume error - Fall:	5.33	30		
Seasonal volume error - Winter: Seasonal volume error - Spring:	-29.15 18.76	30		
Error in storm volumes:	-13.29	30 20		
Error in summer storm volumes:	-29.56	50		
Nash-Sutcliffe Coefficient of Efficiency, E: Baseline adjusted coefficient (Garrick), E': Monthly NSE	0.510 0.484 0.921	Model accuracy increases as E or E' approaches 1.0		

4 Chetomba Creek

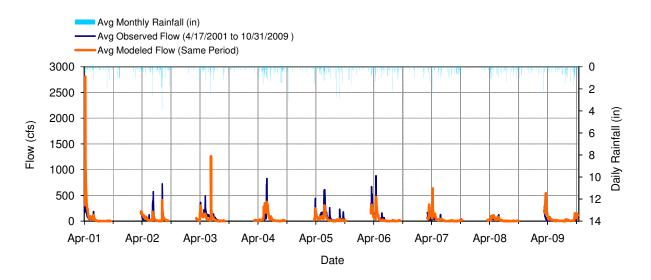


Figure 20. Mean daily flow: Model DSN 900 vs. Chetomba Creek (S002-152)

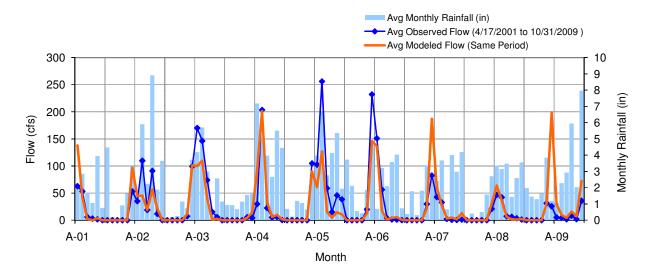


Figure 21. Mean monthly flow: Model DSN 900 vs. Chetomba Creek (S002-152)

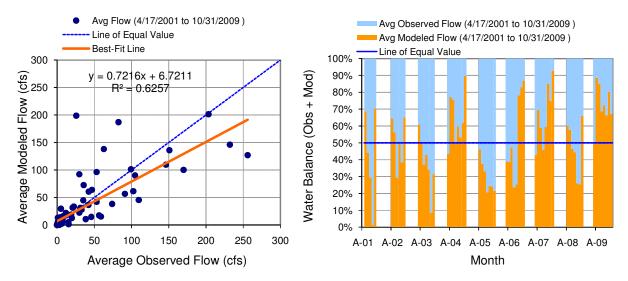


Figure 22. Monthly flow regression and temporal variation: Model DSN 900 vs. Chetomba Creek (S002-152)

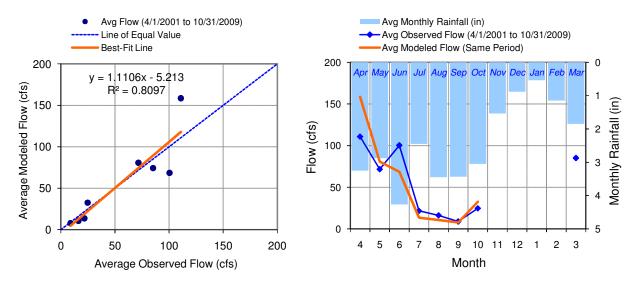


Figure 23. Seasonal regression and temporal aggregate: Model DSN 900 vs. Chetomba Creek (S002-152)

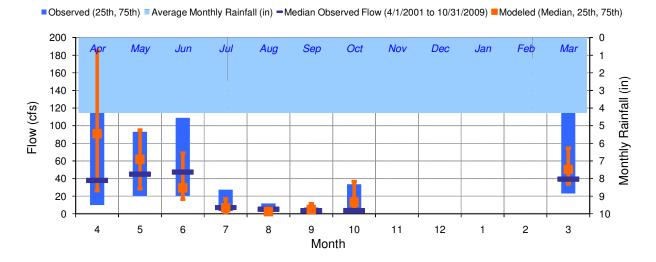


Figure 24. Seasonal medians and ranges: Model DSN 900 vs. Chetomba Creek (S002-152)

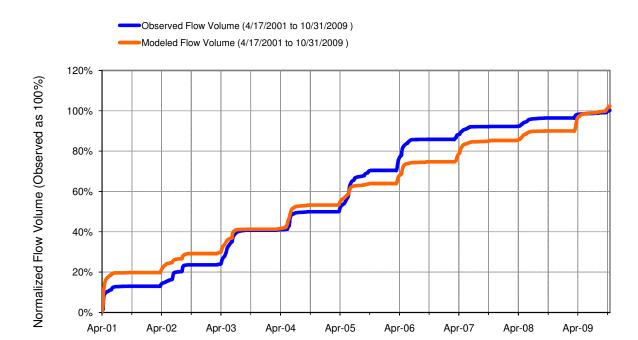


Figure 25. Flow accumulation: Model DSN 900 vs. Chetomba Creek (S002-152)

Table 5. Summary statistics: Model DSN 900 vs. Chetomba Creek (S002-152)

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 900		Chetomba (S002-152)		
8.54-Year Analysis Period: 4/1/2001 - 10/31/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 142.84		
Total Simulated In-stream Flow:	2.85	Total Observed In-stream Flo	w:	2.80
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.58 0.16	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		1.60 0.12
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	0.27 0.10 0.08 2.41	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		0.39 0.07 0.09 2.24
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	0.72 0.08	Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		0.88 0.13
Errors (Simulated-Observed) Error in total volume:	1.71	Recommended Criteria		
Error in 50% lowest flows:	26.91	10		
Error in 10% highest flows:	-1.05	15		
Seasonal volume error - Summer:	-31.59	30		
Seasonal volume error - Fall:	31.47	30		
Seasonal volume error - Winter:	-12.79	30		
Seasonal volume error - Spring:	7.17	30		
Error in storm volumes:	-17.84	20		
Error in summer storm volumes:	-38.56	50		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.483	Model accuracy increases		
Baseline adjusted coefficient (Garrick), E':	0.445	as E or E' approaches 1.0		
Monthly NSE	0.929	<u> </u>		

5 Hawk Creek at Outlet

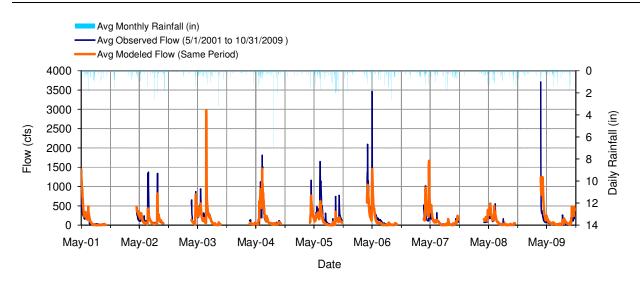


Figure 26. Mean daily flow: Model DSN 600 vs. Hawk - Outlet (S002-12)

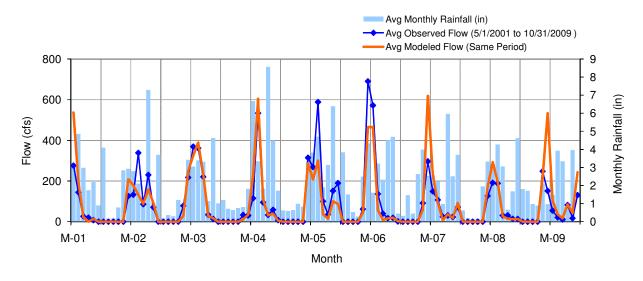


Figure 27. Mean monthly flow: Model DSN 600 vs. Hawk - Outlet (S002-12)

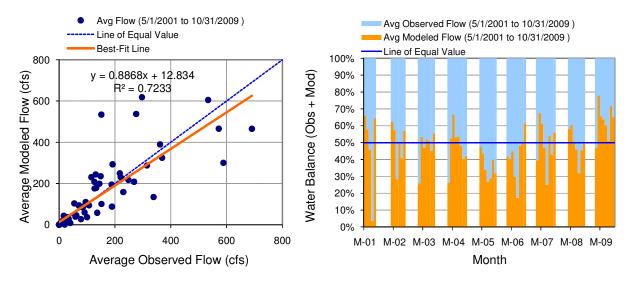


Figure 28. Monthly flow regression and temporal variation: Model DSN 600 vs. Hawk - Outlet (S002-12)

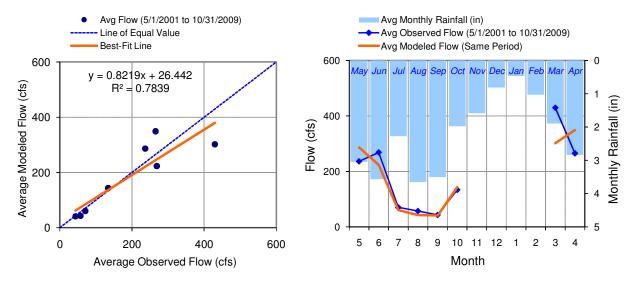


Figure 29. Seasonal regression and temporal aggregate: Model DSN 600 vs. Hawk - Outlet (S002-12)

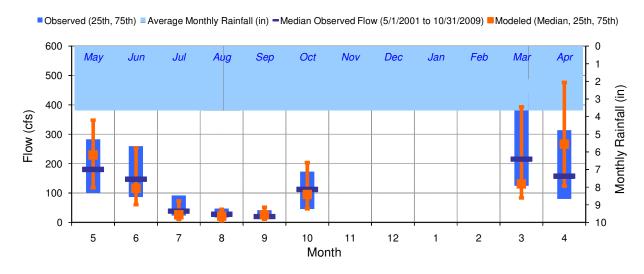


Figure 30. Seasonal medians and ranges: Model DSN 600 vs. Hawk - Outlet (S002-12)

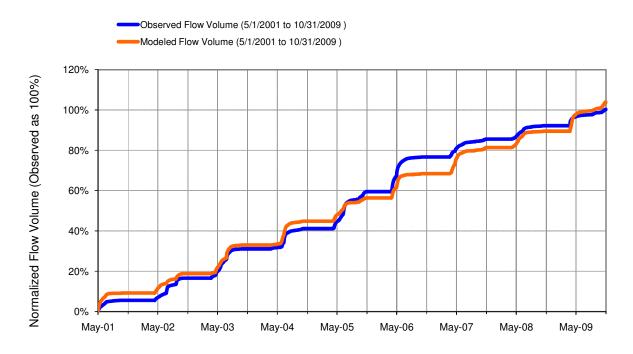


Figure 31. Flow accumulation: Model DSN 600 vs. Hawk - Outlet (S002-12)

Table 6. Summary statistics: Model DSN 600 vs. Hawk - Outlet (S002-12)

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 600		Hawk Outlet (S002-12)		
8.5-Year Analysis Period: 5/1/2001 - 10/31/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 507.96		
Total Simulated In-stream Flow:	2.43	Total Observed In-stream Flo)W:	2.35
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.10 0.20	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		1.12 0.22
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	0.34 0.12 0.10 1.87	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3):		0.40 0.11 0.14 1.70
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	0.69 0.10	Observed Spring Flow Volume (4-6): Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		0.81 0.13
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria		
Error in total volume:	3.29	10		
Error in 50% lowest flows:	-11.73	10		
Error in 10% highest flows: Seasonal volume error - Summer:	-1.44 -15.69	15 30		
Seasonal volume error - Fall:	7.15	30		
Seasonal volume error - Winter:	-29.74	30		
Seasonal volume error - Spring:	10.22	30		
Error in storm volumes:	-15.36	20		
Error in summer storm volumes:	-23.24	50	<u> </u>	
Nash-Sutcliffe Coefficient of Efficiency, E:	0.508	Model accuracy increases		
Baseline adjusted coefficient (Garrick), E': Monthly NSE	0.458 0.898	as E or E' approaches 1.0		

6 West Fork Beaver Creek

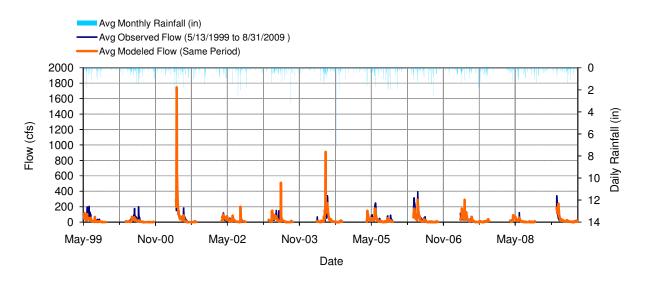


Figure 32. Mean daily flow: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

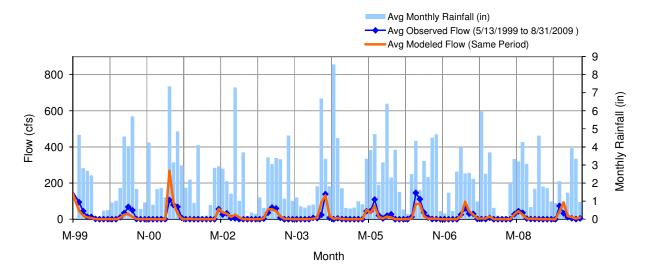


Figure 33. Mean monthly flow: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

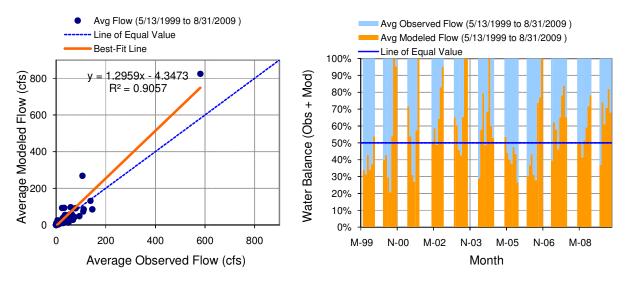


Figure 34. Monthly flow regression and temporal variation: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

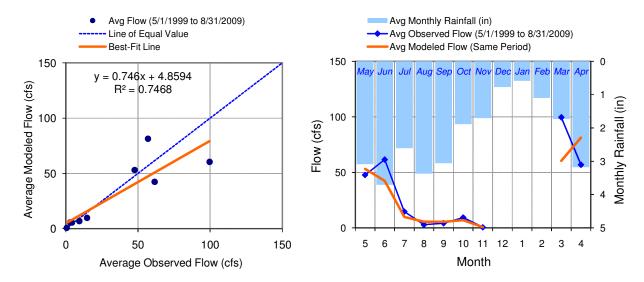


Figure 35. Seasonal regression and temporal aggregate: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

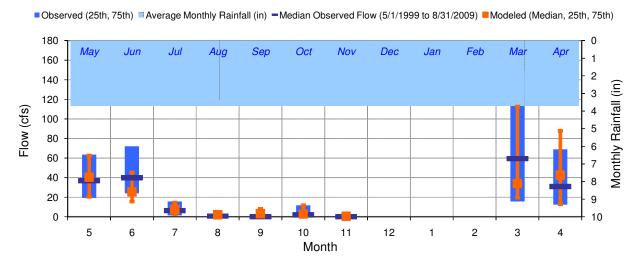


Figure 36. Seasonal medians and ranges: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

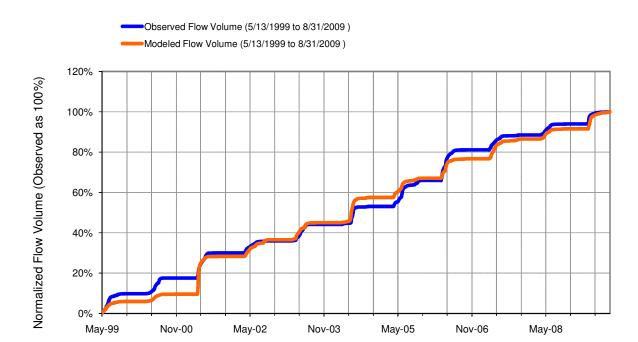


Figure 37. Flow accumulation: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

Table 7. Summary statistics: Model DSN 300 vs. West Fork Beaver Creek (S000-405)

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 300		WF Beaver (\$000-405)		
10.31-Year Analysis Period: 5/1/1999 - 8/31/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 99.29		
Total Simulated In-stream Flow:	2.32	Total Observed In-stream Flor	w:	2.32
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.25 0.15	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		1.17 0.09
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	0.25 0.03 0.08 1.96	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		0.26 0.04 0.14 1.88
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	0.60 0.07	Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		0.55 0.08
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria		
Error in total volume:	0.00	10		
Error in 50% lowest flows:	69.09	10		
Error in 10% highest flows:	7.17	15		
Seasonal volume error - Summer:	-5.61	30		
Seasonal volume error - Fall:	-25.93	30		
Seasonal volume error - Winter:	-39.36	30		
Seasonal volume error - Spring:	4.25	30		
Error in storm volumes: Error in summer storm volumes:	8.95 -17.86	20 50		
				1
Nash-Sutcliffe Coefficient of Efficiency, E: Baseline adjusted coefficient (Garrick), E':	-0.396 0.454	Model accuracy increases		
Monthly NSE	0.454	as E or E' approaches 1.0		

7 Beaver Creek at Beaver Falls

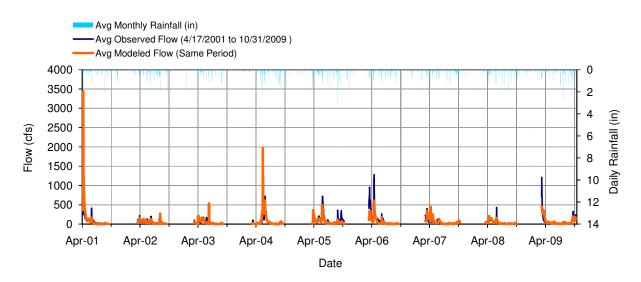


Figure 38. Mean daily flow: Model DSN 400 vs. Beaver Falls (S000-666)

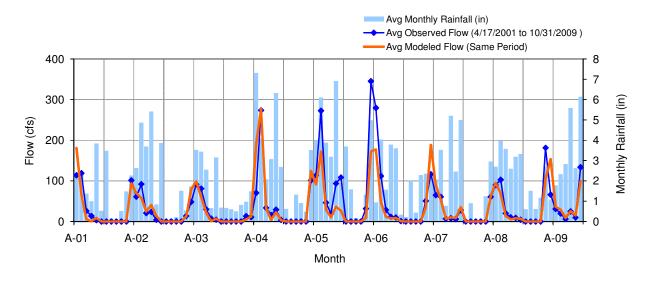


Figure 39. Mean monthly flow: Model DSN 400 vs. Beaver Falls (S000-666)

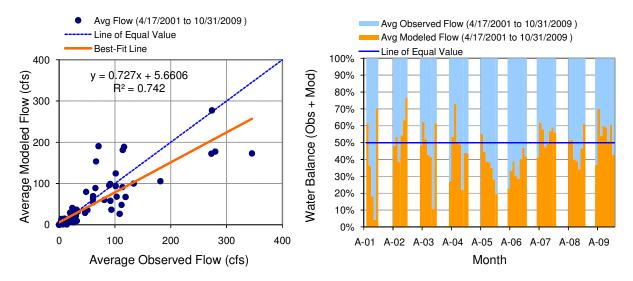


Figure 40. Monthly flow regression and temporal variation: Model DSN 400 vs. Beaver Falls (S000-666)

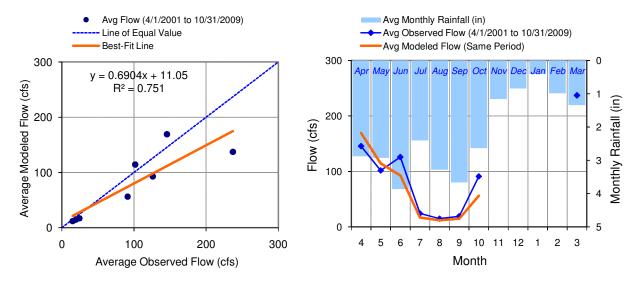


Figure 41. Seasonal regression and temporal aggregate: Model DSN 400 vs. Beaver Falls (S000-666)

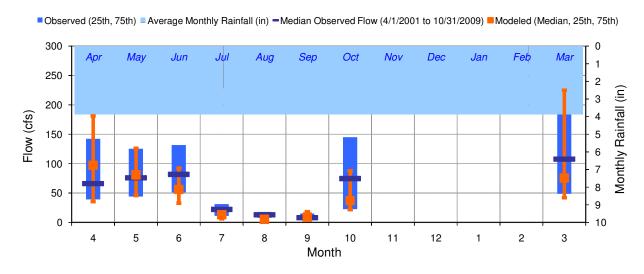


Figure 42. Seasonal medians and ranges: Model DSN 400 vs. Beaver Falls (S000-666)

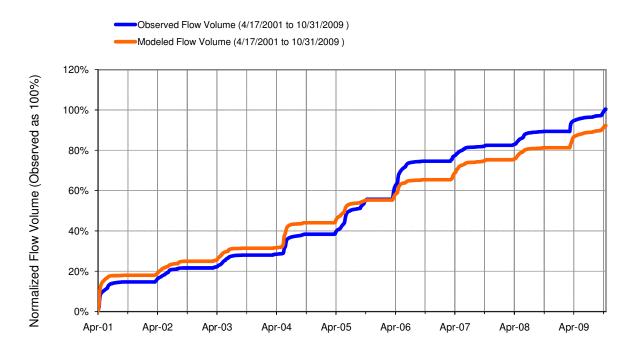


Figure 43. Flow accumulation: Model DSN 400 vs. Beaver Falls (S000-666)

Table 8. Summary statistics: Model DSN 400 vs. Beaver Falls (S000-666)

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 400		Beaver Falls (S000-666)		
8.54-Year Analysis Period: 4/1/2001 - 10/31/2009 Flow volumes are (inches/year) for upstream drainage area		Manually Entered Data Drainage Area (sq-mi): 198.13		
Total Simulated In-stream Flow:	2.66	Total Observed In-stream Flo	w:	2.90
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.38 0.21	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		1.44 0.26
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	0.26 0.12 0.11 2.17	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		0.35 0.19 0.20 2.16
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9): Errors (Simulated-Observed)	0.67 0.07 Error Statistics	Total Observed Storm Volume: Observed Summer Storm Volume (7-9): Recommended Criteria		0.72 0.08
Error in total volume: Error in 50% lowest flows:	-8.25 -20.30	10 10		
Error in 10% highest flows: Seasonal volume error - Summer:	-4.48 -25.95	15 30		
Seasonal volume error - Fall: Seasonal volume error - Winter: Seasonal volume error - Spring:	-38.37 -42.08 0.39	30 30 30		
Error in storm volumes: Error in summer storm volumes:	-7.84 -7.98	20 50		
Nash-Sutcliffe Coefficient of Efficiency, E: Baseline adjusted coefficient (Garrick), E': Monthly NSE	0.442 0.506 0.926	Model accuracy increases as E or E' approaches 1.0		

8 Yellow Medicine River near Granite Falls, 1994-2000

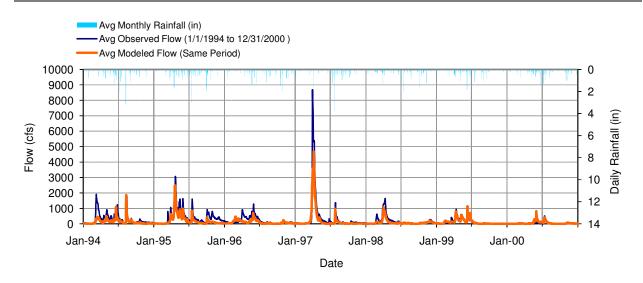


Figure 44. Mean daily flow: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

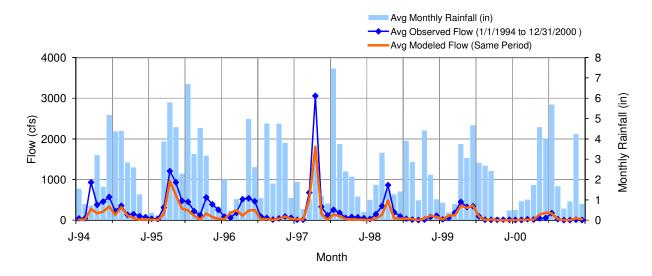


Figure 45. Mean monthly flow: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

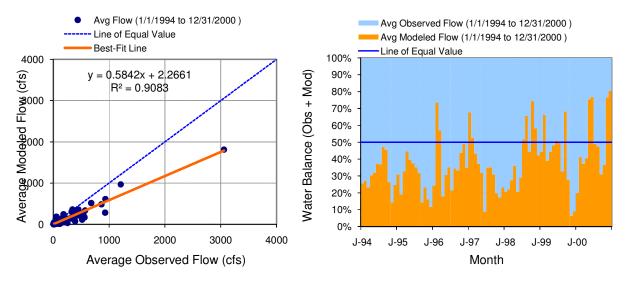


Figure 46. Monthly flow regression and temporal variation: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

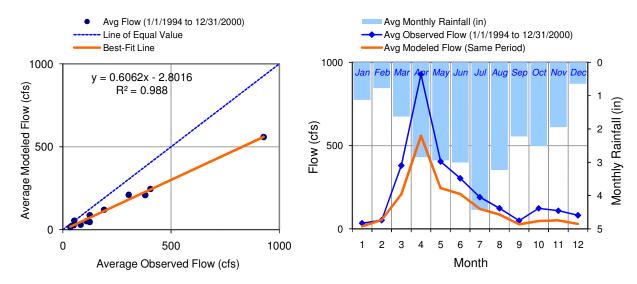


Figure 47. Seasonal regression and temporal aggregate: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

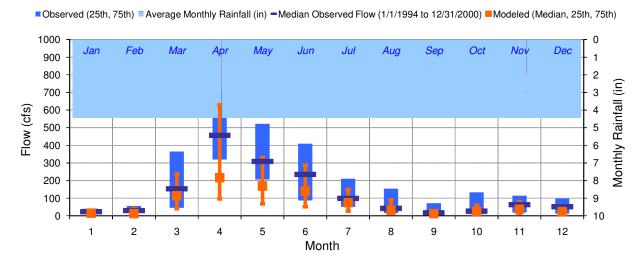


Figure 48. Seasonal medians and ranges: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

Table 9. Seasonal summary: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

MONTH	OBSERVED FLOW (CFS)			MODELED FLOW (CFS)				
WONT	MEAN	MEDIAN	25TH	75TH	MEAN	MEDIAN	25TH	75TH
Jan	34.58	24.00	11.00	41.00	15.61	14.91	8.16	20.59
Feb	52.62	29.50	17.00	56.00	54.15	12.49	6.44	44.18
Mar	380.82	153.00	45.00	365.00	208.50	114.82	40.69	239.06
Apr	927.93	456.50	320.00	938.75	558.87	216.48	95.97	629.75
May	404.75	309.00	206.00	522.00	245.42	169.38	68.59	331.26
Jun	304.28	235.00	87.25	409.25	209.97	140.47	51.21	289.52
Jul	190.51	99.00	51.00	211.00	120.04	74.52	26.72	150.06
Aug	124.41	42.00	15.00	154.00	86.70	31.60	15.76	90.20
Sep	49.95	17.00	5.60	71.25	27.36	12.50	3.55	26.92
Oct	123.88	27.00	9.00	134.00	46.74	24.87	3.62	60.68
Nov	109.32	63.00	19.25	113.75	51.30	36.99	14.09	78.23
Dec	82.10	52.00	13.00	98.00	30.20	24.04	14.15	35.29

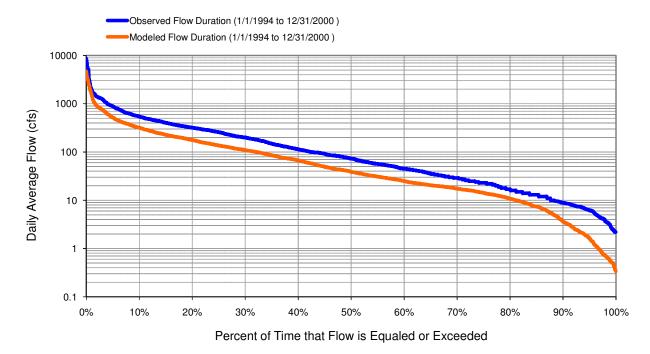
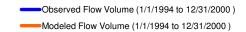



Figure 49. Flow exceedence: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

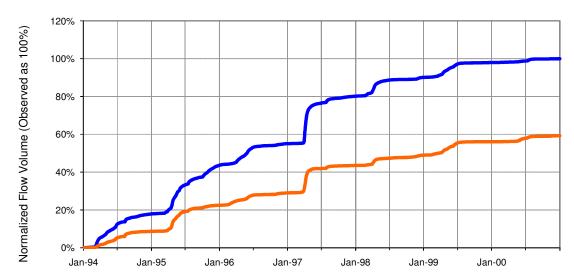
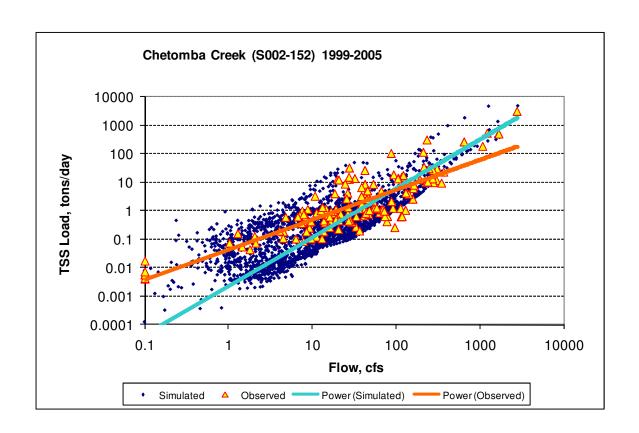
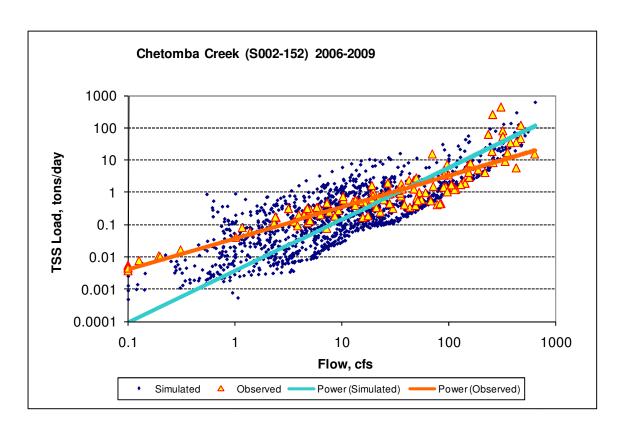
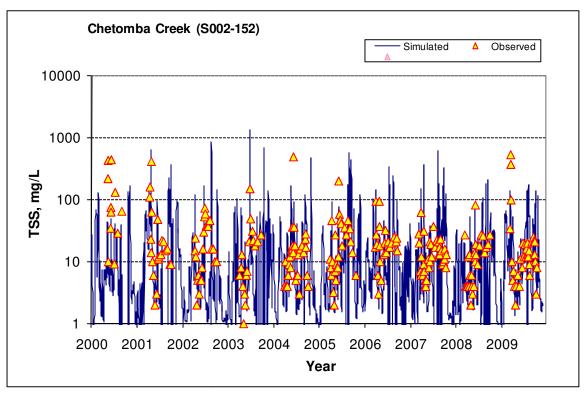


Figure 50. Flow accumulation: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

Table 10. Summary statistics: Model DSN 100 vs. USGS 05313500 Yellow Medicine River near Granite Falls, MN, 1994-2000

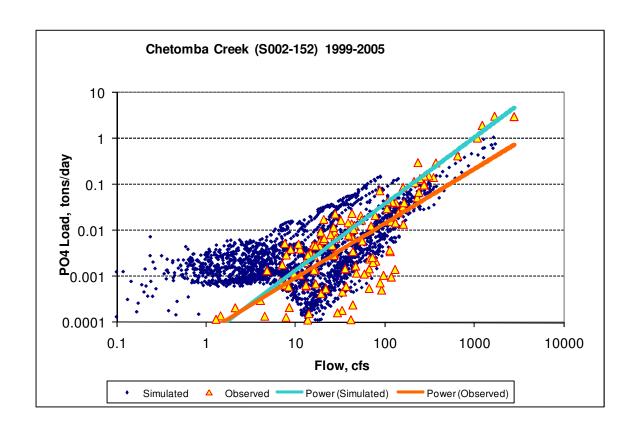

HSPF Simulated Flow		Observed Flow Gage		
REACH OUTFLOW FROM DSN 100 7-Year Analysis Period: 1/1/1994 - 12/31/2000 Flow volumes are (inches/year) for upstream drainage area		USGS 05313500 YELLOW MEDICINE RIVER NEAR GRANITE FALLS, MN Hydrologic Unit Code: 7020004 Latitude: 44.72166667 Longitude: -95.5188889 Drainage Area (sq-mi): 664		
Total Simulated In-stream Flow:	2.82	Total Observed In-stream Flo	w:	4.75
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	1.62 0.15	Total of Observed highest 10% flows: Total of Observed Lowest 50% flows:		2.61 0.28
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3): Simulated Spring Flow Volume (months 4-6):	0.40 0.22 0.47 1.72	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3): Observed Spring Flow Volume (4-6):		0.63 0.54 0.80 2.77
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9): Errors (Simulated-Observed)	0.79 0.14 Error Statistics	Total Observed Storm Volume: Observed Summer Storm Volume (7-9):		1.21 0.21
,		Recommended Criteria		
Error in total volume: Error in 50% lowest flows:	-40.68 -44.24	10 10		
Error in 10% highest flows:	-37.91	15		
Seasonal volume error - Summer:	-35.80	30		
Seasonal volume error - Fall:	-59.40	30		
Seasonal volume error - Winter:	-40.98	30		
Seasonal volume error - Spring:	-38.05	30		
Error in storm volumes:	-34.68	20		
Error in summer storm volumes:	-31.78	50		
Nash-Sutcliffe Coefficient of Efficiency, E:	0.703	Model accuracy increases		
Baseline adjusted coefficient (Garrick), E':	0.519	as E or E' approaches 1.0		
Monthly NSE	0.847			

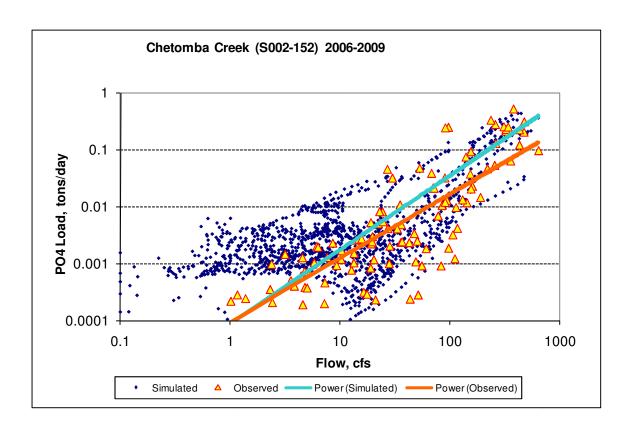

Water Quality Calibration and Validation for the Hawk Creek/Yellow Medicine HSPF Model

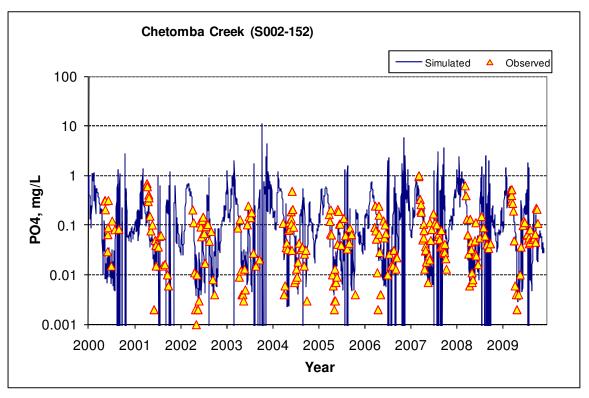

1 Chetomba Creek (S002-152)

1.1 TOTAL SUSPENDED SEDIMENT

	1999 -	2006 -
Parameter	2005	2009
Count	138	120
Conc Ave Error	-10.43%	35.93%
Conc Median Error	-9.49%	4.43%
Load Ave Error	42.73%	24.96%
Load Median Error	-0.34%	0.32%
Paired t conc	0.70	0.23
Paired t load	0.38	0.46

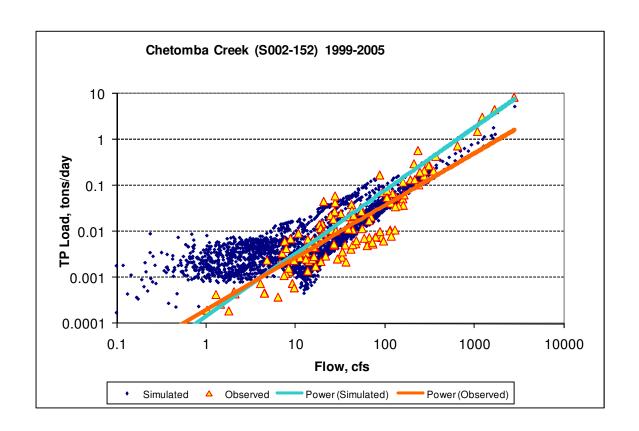


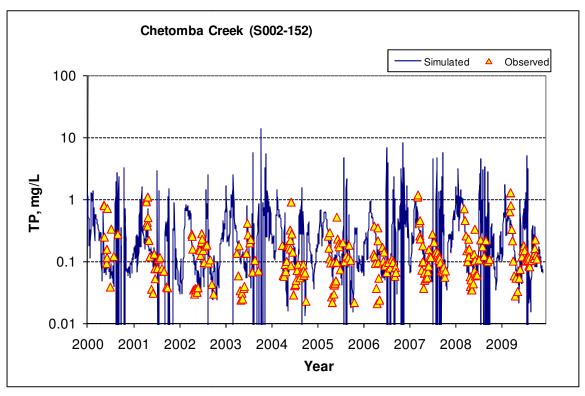




1.2 ORTHOPHOSPHATE (AS P)

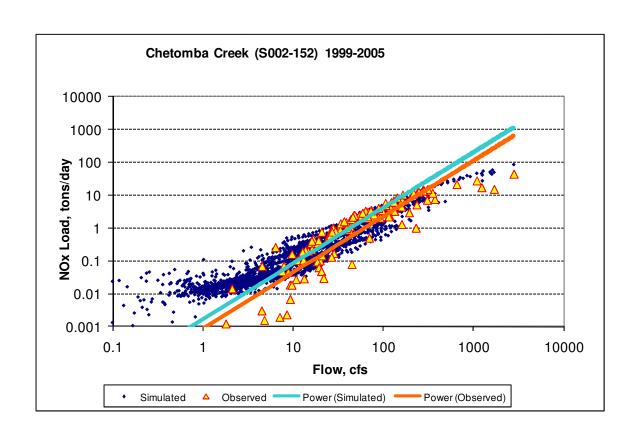
	1999 -	2006 -
Parameter	2005	2009
Count	134	114
Conc Ave Error	-11.82%	12.84%
Conc Median Error	-12.98%	4.58%
Load Ave Error	-45.46%	-21.28%
Load Median Error	-0.26%	0.51%
Paired t conc	0.77	0.70
Paired t load	0.22	0.47

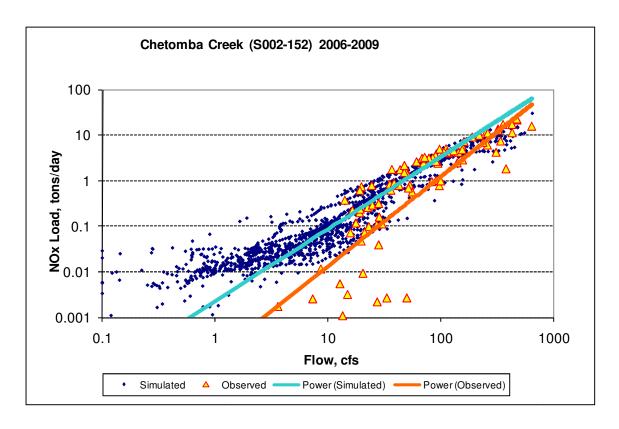




1.3 TOTAL PHOSPHORUS

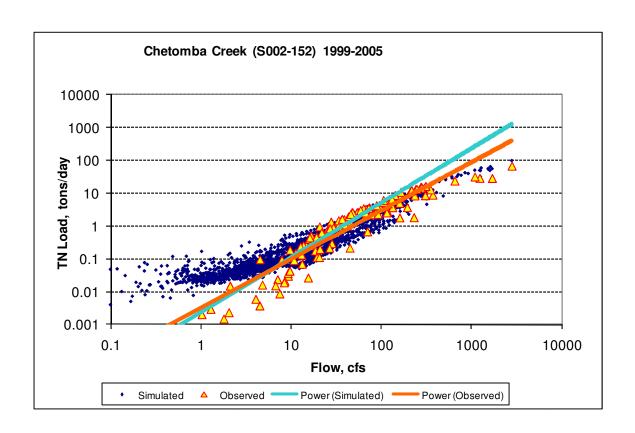
	1999 -	2006 -
Parameter	2005	2009
Count	138	121
Conc Ave Error	0.16%	28.65%
Conc Median Error	0.62%	15.42%
Load Ave Error	-40.99%	-18.55%
Load Median Error	0.10%	2.30%
Paired t conc	0.98	0.25
Paired t load	0.27	0.53

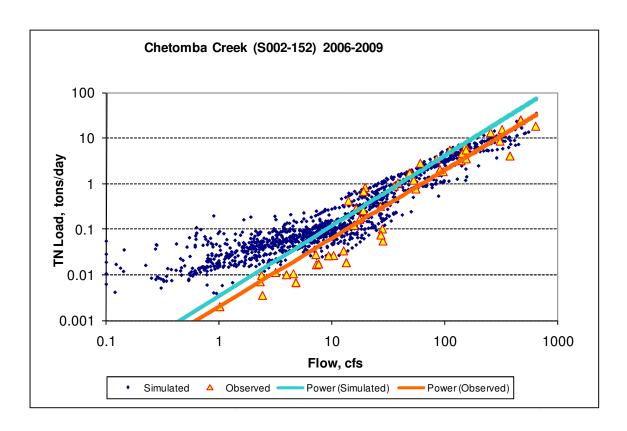


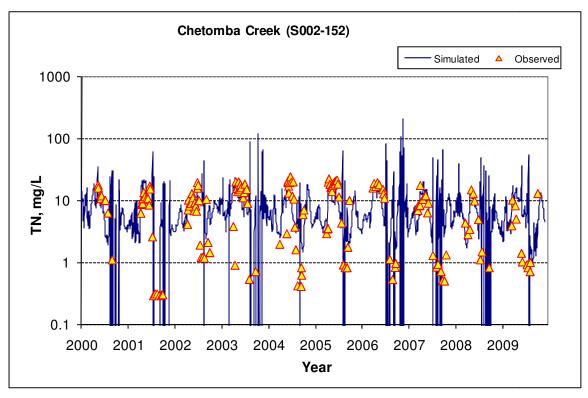


1.4 NITRATE PLUS NITRITE NITROGEN (AS N)

	1999 -	2006 -
Parameter	2005	2009
Count	129	119
Conc Ave Error	-14.05%	-2.02%
Conc Median Error	-4.32%	5.90%
Load Ave Error	19.29%	-7.98%
Load Median Error	-1.13%	0.56%
Paired t conc	0.84	0.98
Paired t load	0.51	0.77

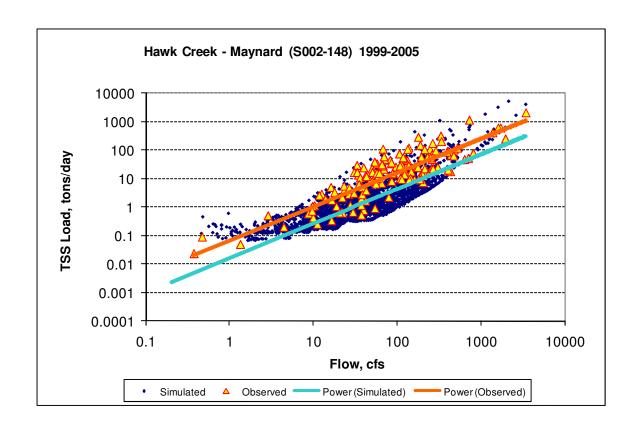


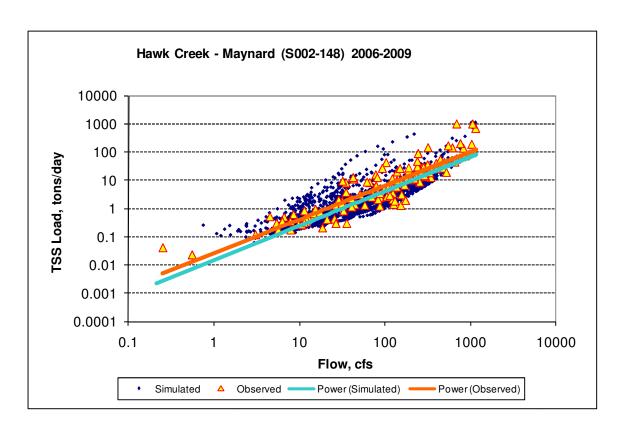


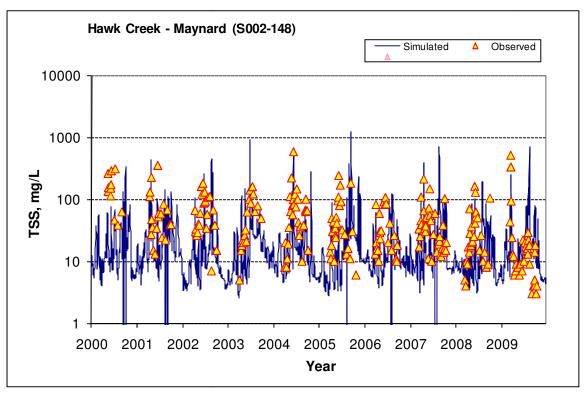


1.5 TOTAL NITROGEN

	1999 -	2006 -
Parameter	2005	2009
Count	125	51
Conc Ave Error	-11.51%	13.50%
Conc Median Error	-16.39%	17.66%
Load Ave Error	11.99%	-5.27%
Load Median Error	-3.05%	1.08%
Paired t conc	0.94	0.72
Paired t load	0.63	0.71

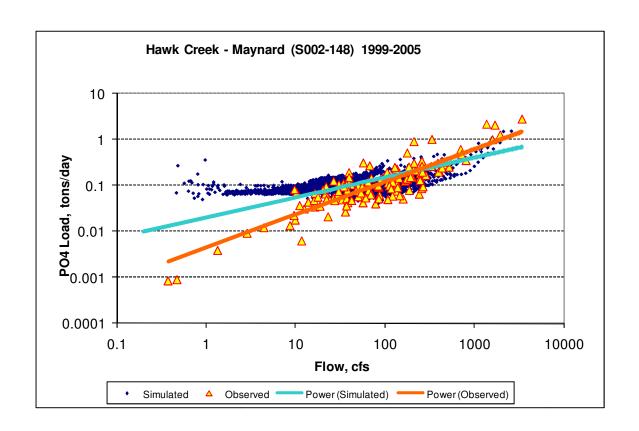


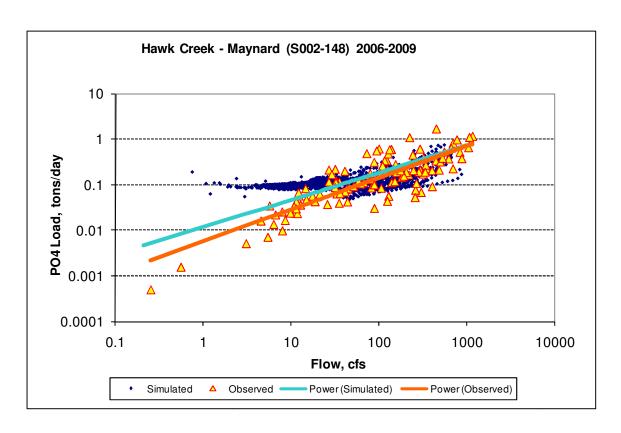


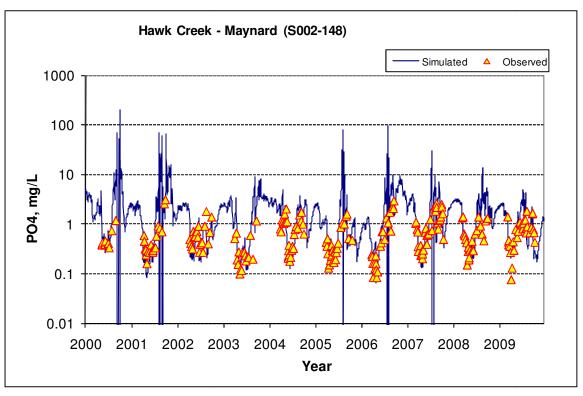

2 Hawk Creek at Maynard (S002-148)

2.1 TOTAL SUSPENDED SEDIMENT

	1999 -	2006 -
Parameter	2005	2009
Count	141	119
Conc Ave Error	-55.27%	32.12%
Conc Median Error	-35.04%	-5.42%
Load Ave Error	18.55%	14.21%
Load Median Error	-10.56%	-0.14%
Paired t conc	0.00	0.26
Paired t load	0.51	0.57

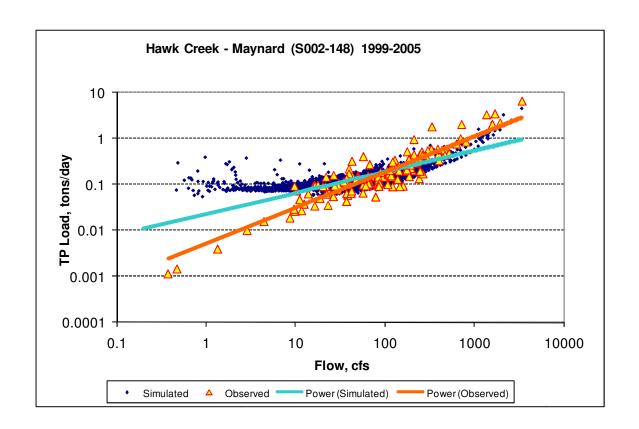


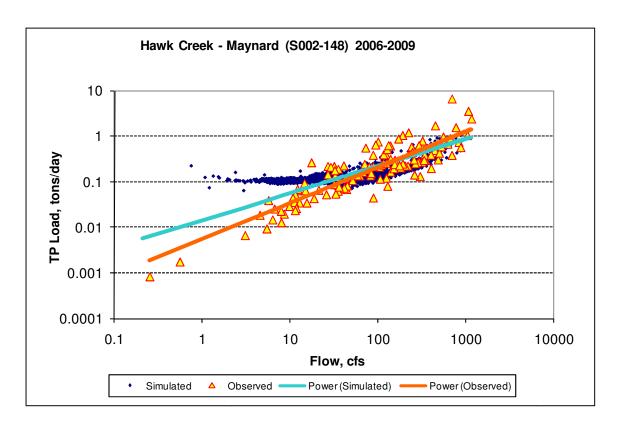


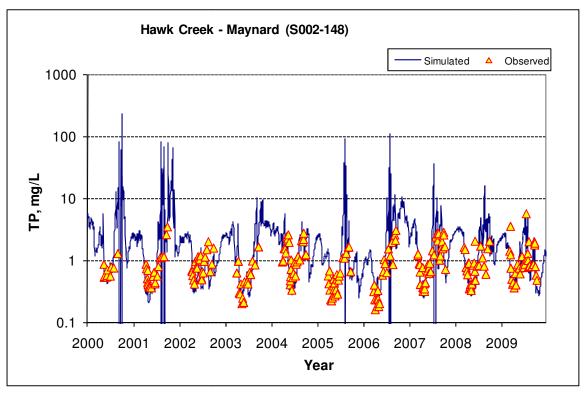


2.2 ORTHOPHOSPHATE (AS P)

	1000	0000
	1999 -	2006 -
Parameter	2005	2009
Count	137	113
Conc Ave Error	65.68%	48.84%
Conc Median Error	-3.95%	-7.00%
Load Ave Error	-21.70%	-26.09%
Load Median Error	-1.76%	-6.15%
Paired t conc	0.03	0.03
Paired t load	0.45	0.25

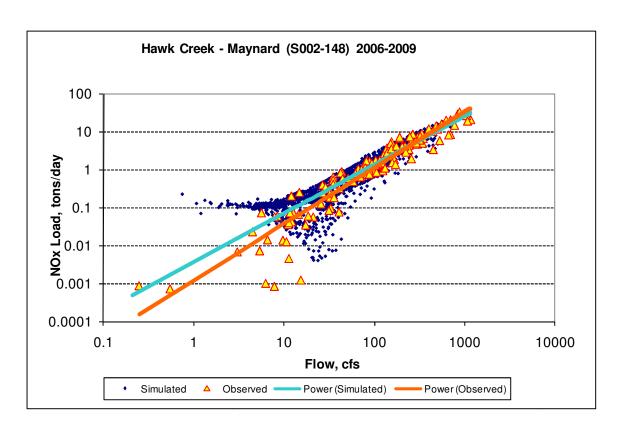


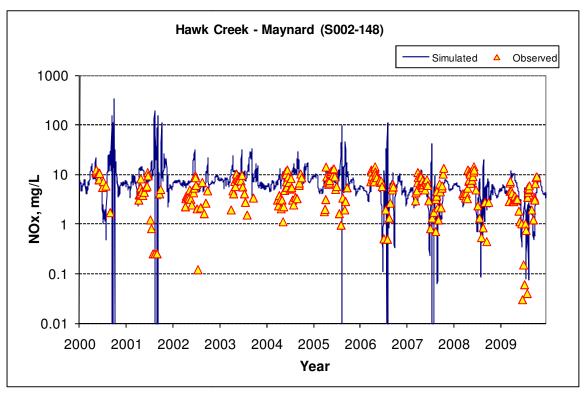




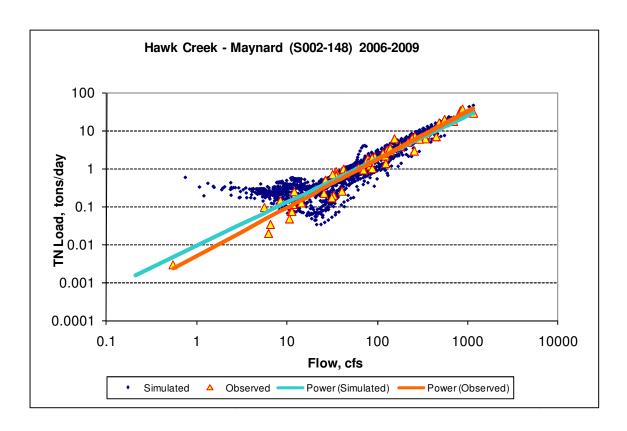
2.3 TOTAL PHOSPHORUS

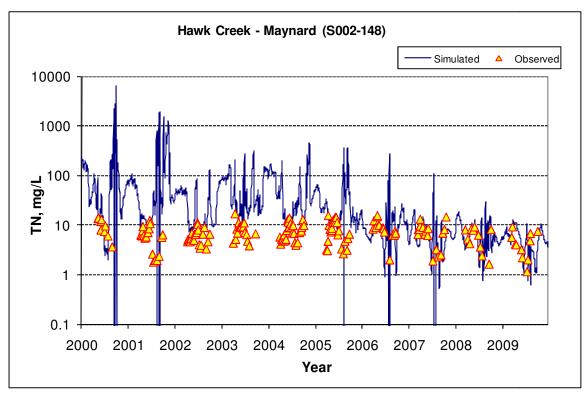
	1999 -	2006 -
Parameter	2005	2009
Count	140	120
Conc Ave Error	38.47%	28.72%
Conc Median Error	-9.78%	-9.00%
Load Ave Error	-28.93%	-38.85%
Load Median Error	-5.25%	-12.06%
Paired t conc	0.18	0.24
Paired t load	0.28	0.07



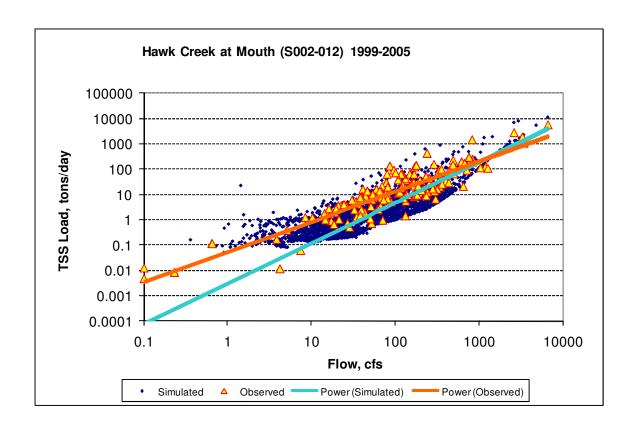


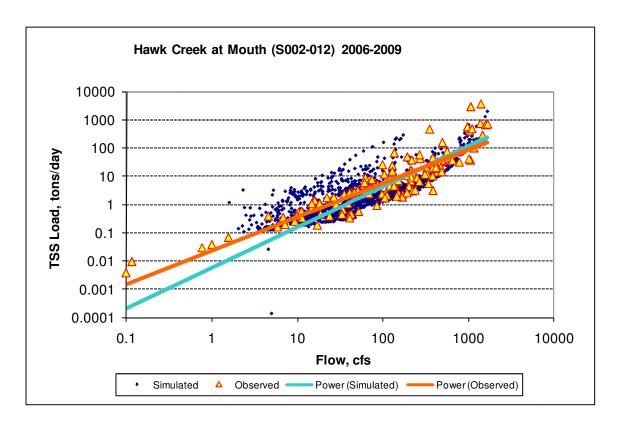

	1999 -	2006 -
Parameter	2005	2009
Count	139	120
Conc Ave Error	100.95%	-3.11%
Conc Median Error	72.67%	-9.25%
Load Ave Error	64.02%	3.79%
Load Median Error	15.14%	-0.72%
Paired t conc	0.00	1.00
Paired t load	0.04	0.85

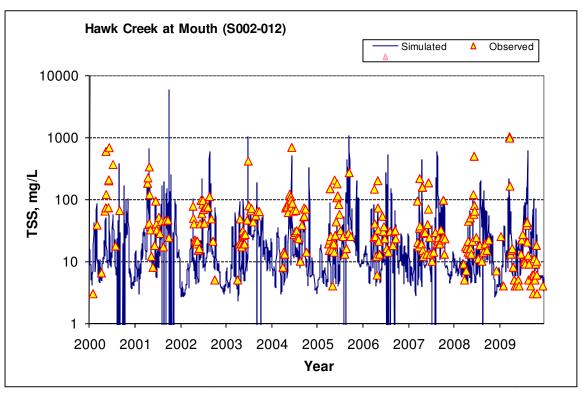




	1999 -	2006 -
Parameter	2005	2009
Count	137	53
Conc Ave Error	298.44%	-1.41%
Conc Median Error	104.03%	-8.81%
Load Ave Error	122.36%	-5.39%
Load Median Error	37.43%	-3.76%
Paired t conc	0.00	0.99
Paired t load	0.00	0.72

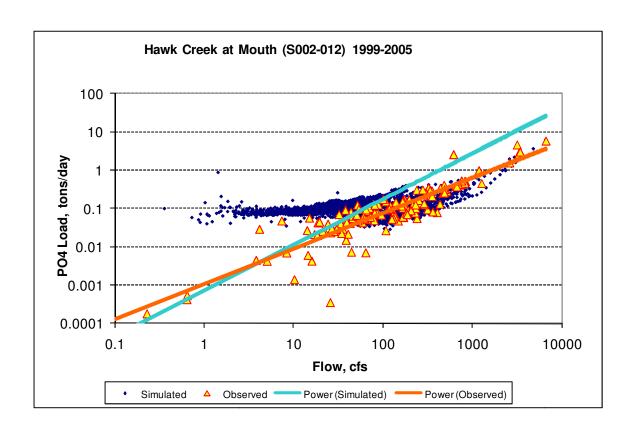


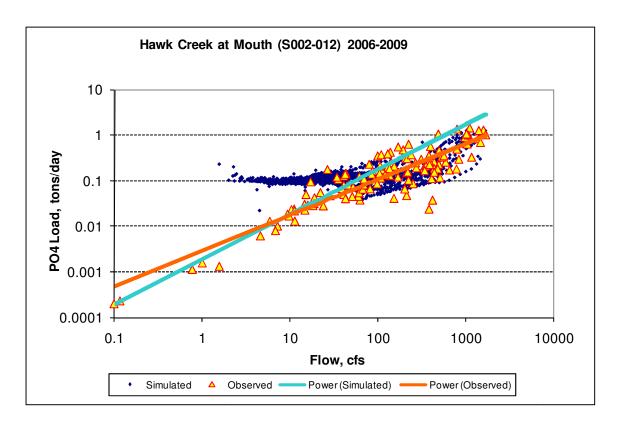


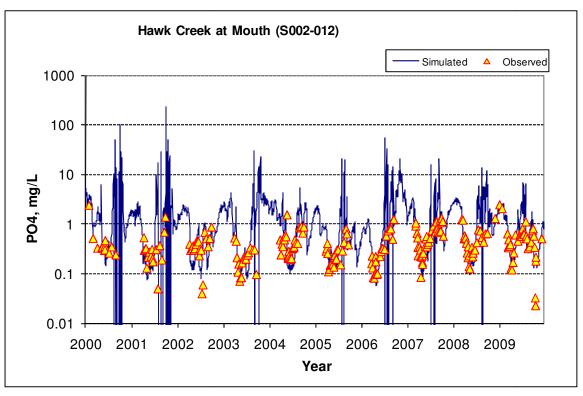


3 Hawk Creek at Mouth (S002-12)

1999 -	2006 -
2005	2009
149	127
-43.02%	-0.73%
-20.68%	-1.96%
33.89%	-36.97%
-3.16%	-0.03%
0.02	0.84
0.40	0.29
	2005 149 -43.02% -20.68% 33.89% -3.16% 0.02

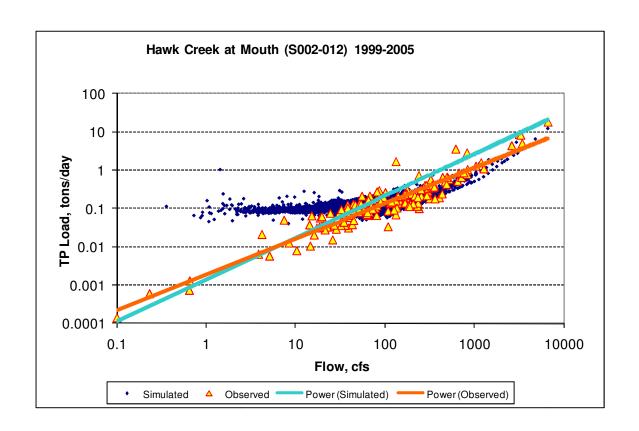


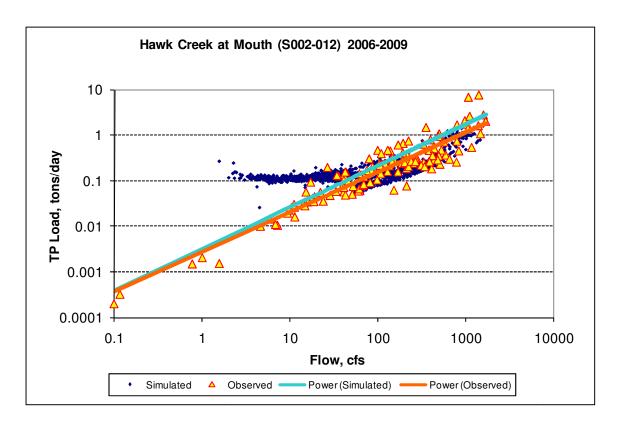


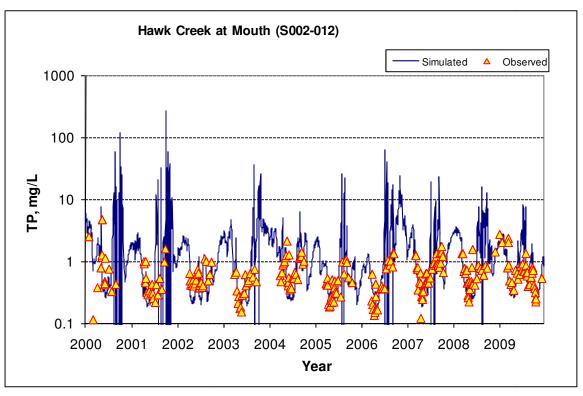


3.2 ORTHOPHOSPHATE (AS P)

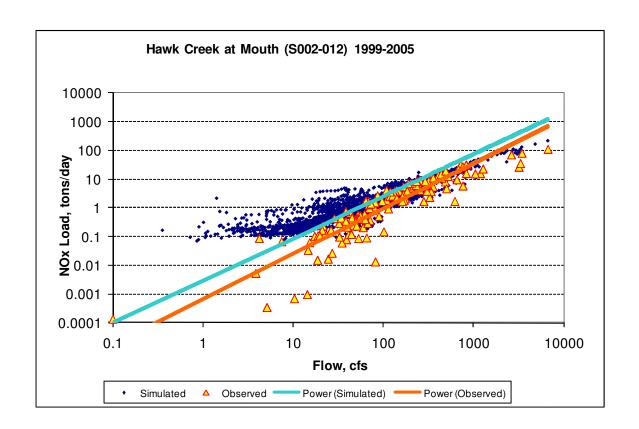
	1999 -	2006 -
Parameter	2005	2009
Count	144	121
Conc Ave Error	93.04%	148.28%
Conc Median Error	4.14%	-12.85%
Load Ave Error	-18.12%	-19.22%
Load Median Error	4.00%	-9.74%
Paired t conc	0.00	0.02
Paired t load	0.53	0.53



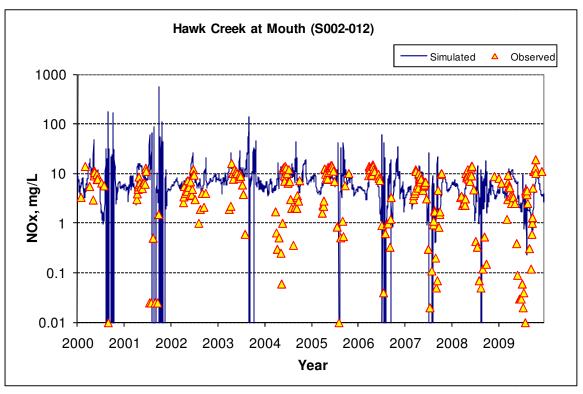


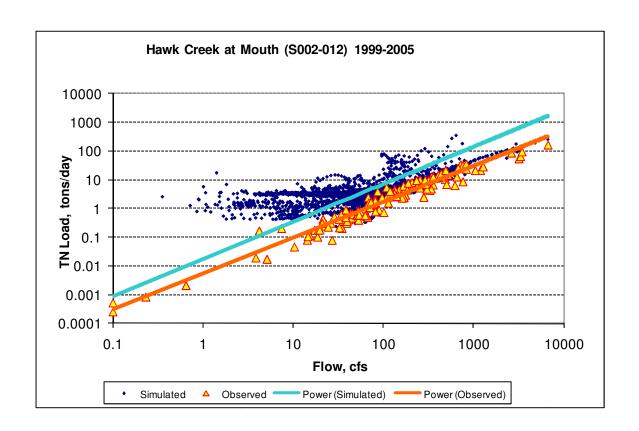


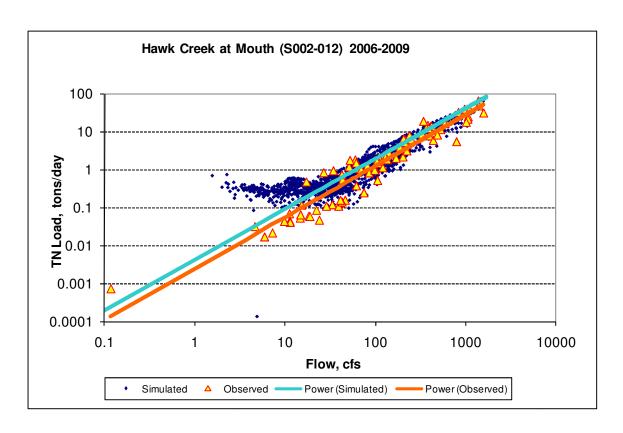
3.3 TOTAL PHOSPHORUS

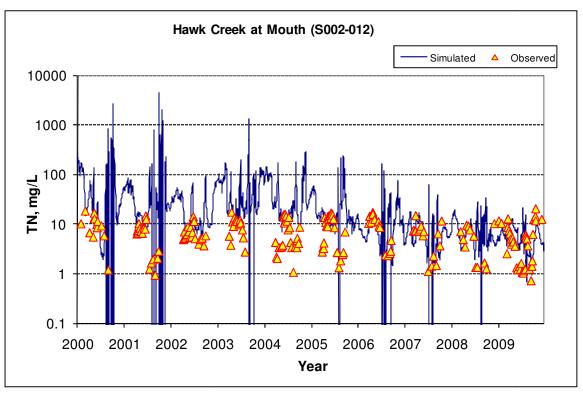

	1999 -	2006 -
Parameter	2005	2009
Count	150	128
Conc Ave Error	-38.38%	-113.82%
Conc Median Error	9.30%	13.47%
Load Ave Error	36.04%	39.19%
Load Median Error	2.43%	7.38%
Paired t conc	0.10	0.04
Paired t load	0.24	0.09



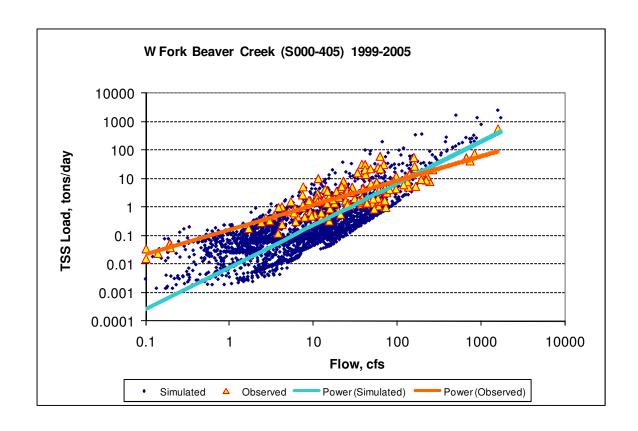


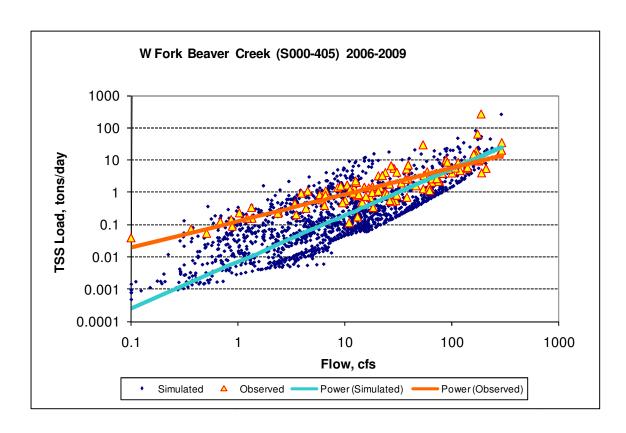

Count	142	128
Conc Ave Error	89.75%	12.74%
Conc Median Error	56.38%	3.14%
Load Ave Error	52.51%	4.07%
Load Median Error	10.92%	0.45%
Paired t conc	0.00	0.79
Paired t load	0.10	0.85

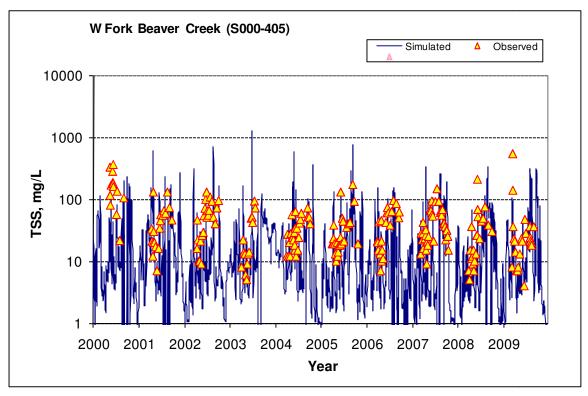




	1999 -	2006 -
Parameter	2005	2009
Count	139	81
Conc Ave Error	265.30%	8.28%
Conc Median Error	73.46%	-5.75%
Load Ave Error	79.03%	-3.10%
Load Median Error	17.56%	-0.01%
Paired t conc	0.00	0.93
Paired t load	0.01	0.81

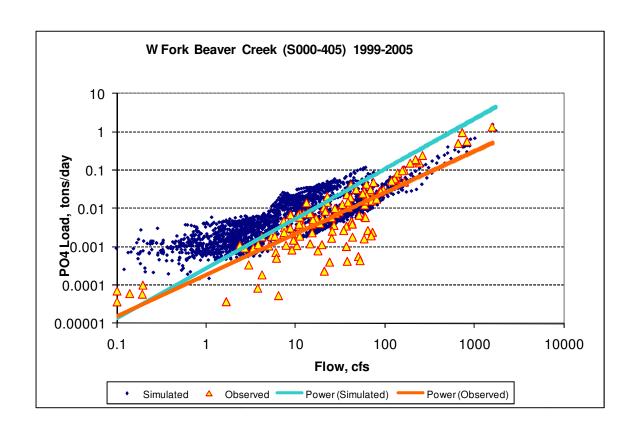


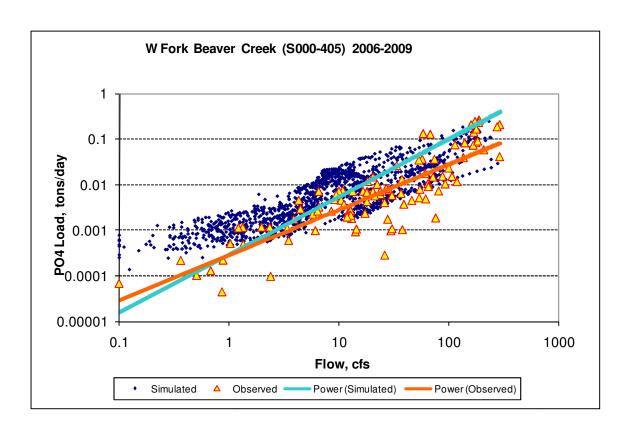


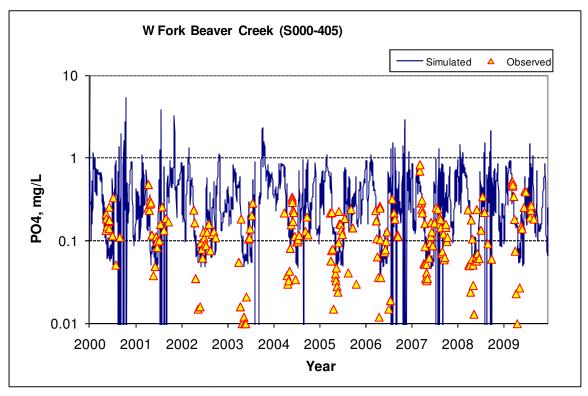


4 West Fork Beaver Creek (S000-405)

1999 -	2006 -
2005	2009
130	104
-10.71%	-1.93%
-23.48%	-13.18%
205.97%	9.58%
-5.38%	-3.13%
0.72	0.90
0.08	0.60
	2005 130 -10.71% -23.48% 205.97% -5.38% 0.72

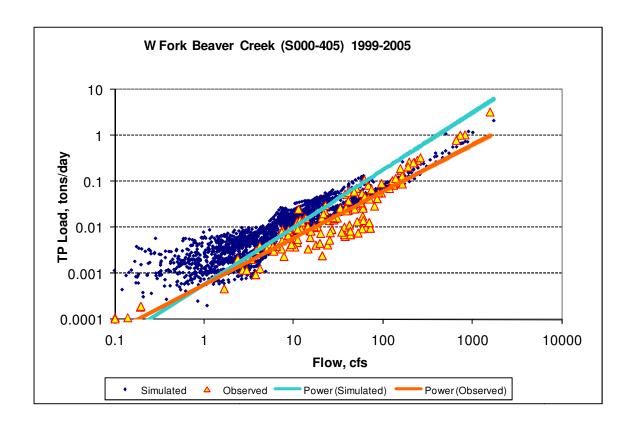


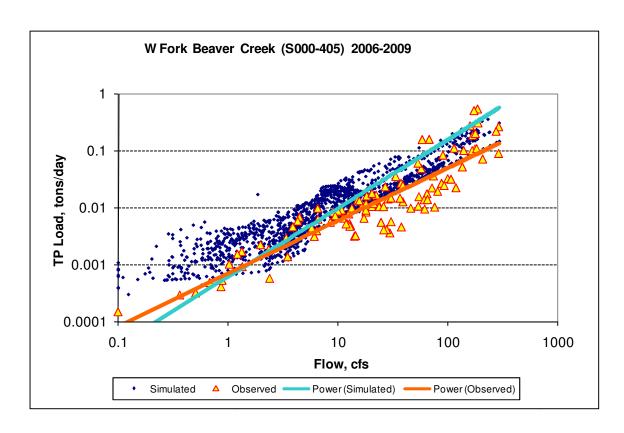


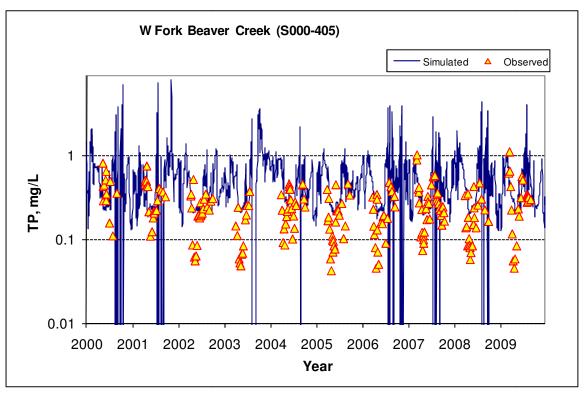


4.2 ORTHOPHOSPHATE (AS P)

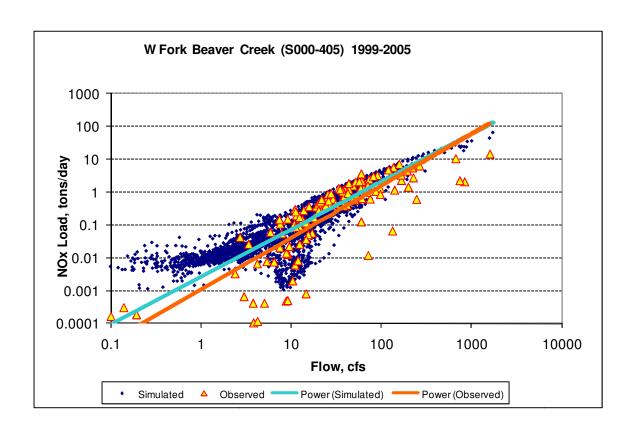
	1999 -	2006 -
Parameter	2005	2009
Count	126	100
Conc Ave Error	33.64%	40.09%
Conc Median Error	6.55%	19.08%
Load Ave Error	-20.19%	-16.36%
Load Median Error	0.58%	5.39%
Paired t conc	0.06	0.03
Paired t load	0.50	0.59

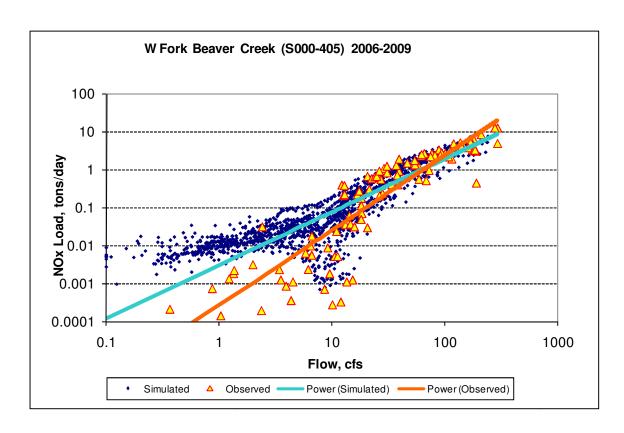


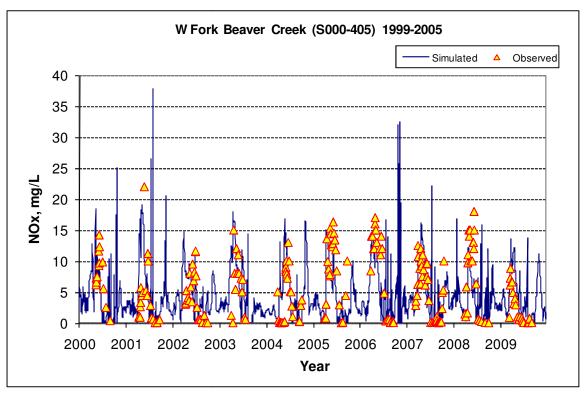


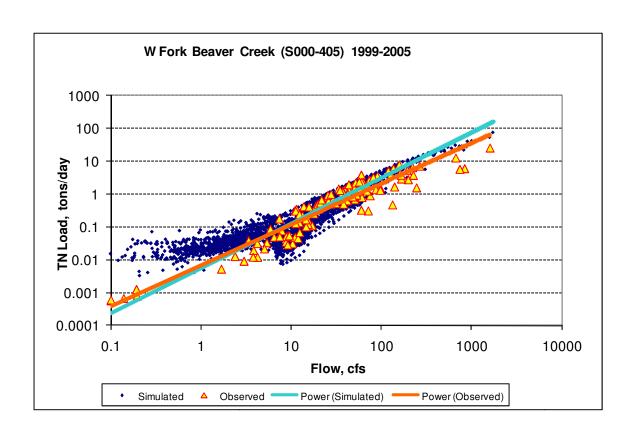


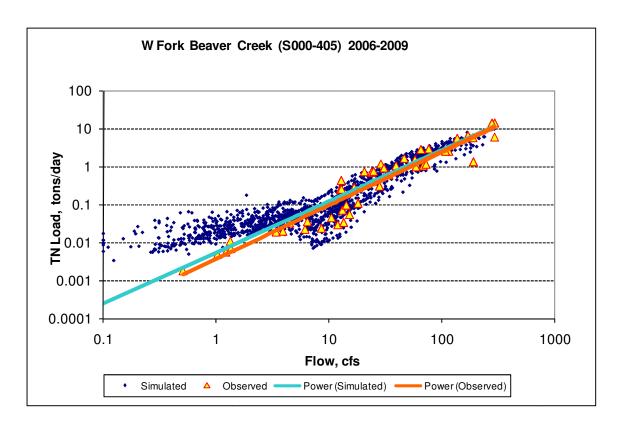
4.3 TOTAL PHOSPHORUS

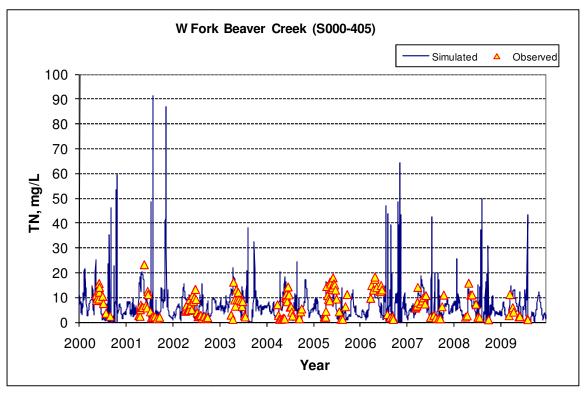

	1999 -	2006 -
Parameter	2005	2009
Count	129	105
Conc Ave Error	25.65%	57.72%
Conc Median Error	21.51%	40.73%
Load Ave Error	-10.02%	-0.19%
Load Median Error	3.94%	9.95%
Paired t conc	0.15	0.00
Paired t load	0.62	0.88



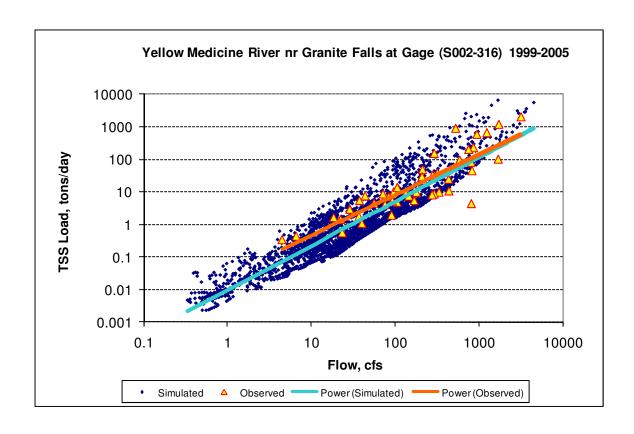


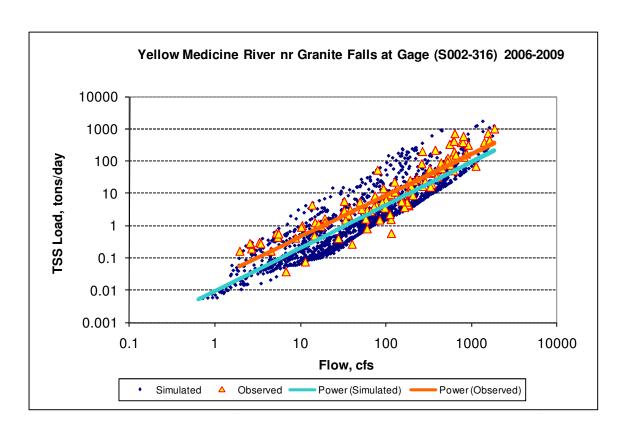

	1999 -	2006 -
Parameter	2005	2009
Count	128	105
Conc Ave Error	8.60%	-0.49%
Conc Median Error	0.48%	5.20%
Load Ave Error	96.21%	1.43%
Load Median Error	0.12%	0.41%
Paired t conc	0.94	0.99
Paired t load	0.01	0.88

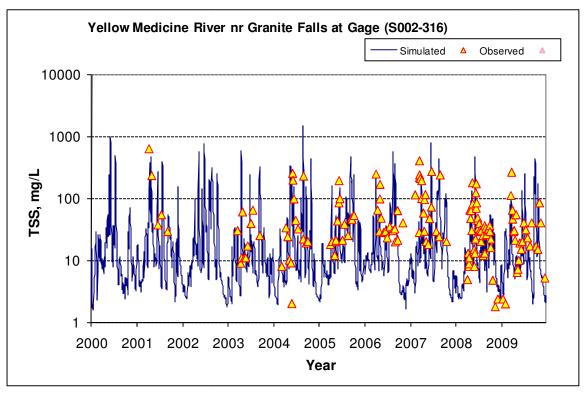




	1999 -	2006 -
Parameter	2005	2009
Count	121	47
Conc Ave Error	11.71%	12.47%
Conc Median Error	-4.58%	6.06%
Load Ave Error	75.71%	3.01%
Load Median Error	-0.04%	0.43%
Paired t conc	0.91	0.76
Paired t load	0.04	0.73

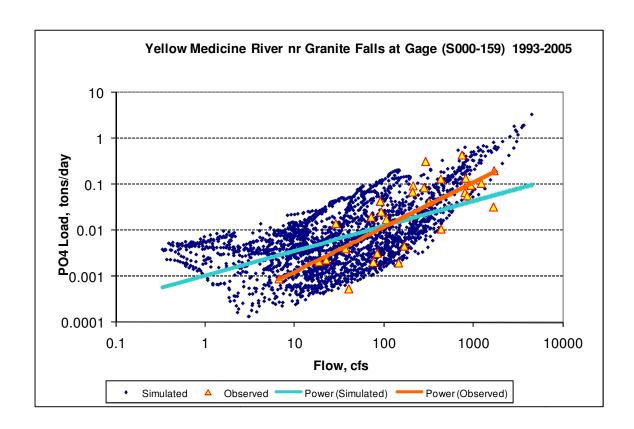


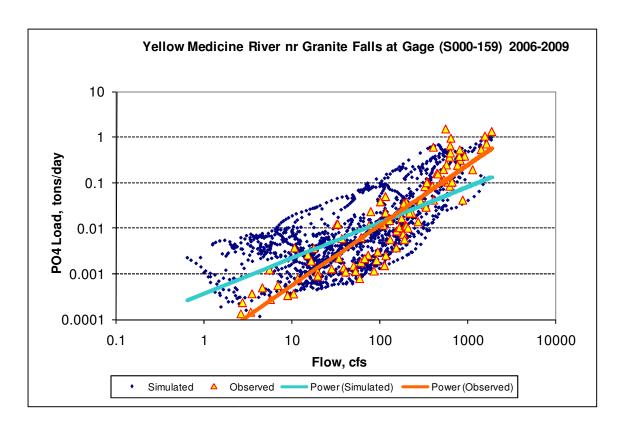


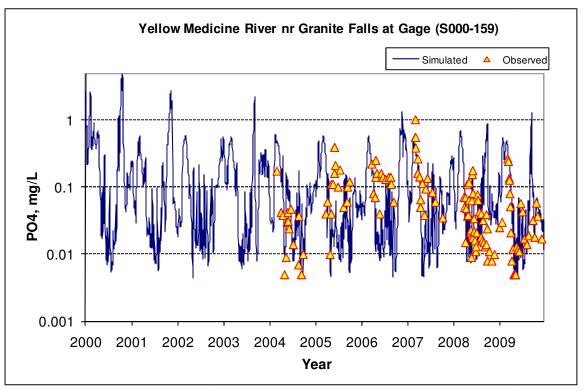


5 Yellow Medicine River at Gage (S002-316)

1999 -	2006 -
2005	2009
45	107
107.53%	-1.73%
-8.53%	-17.38%
140.15%	-1.53%
-0.28%	-0.65%
0.03	0.88
0.08	0.79
	2005 45 107.53% -8.53% 140.15% -0.28% 0.03

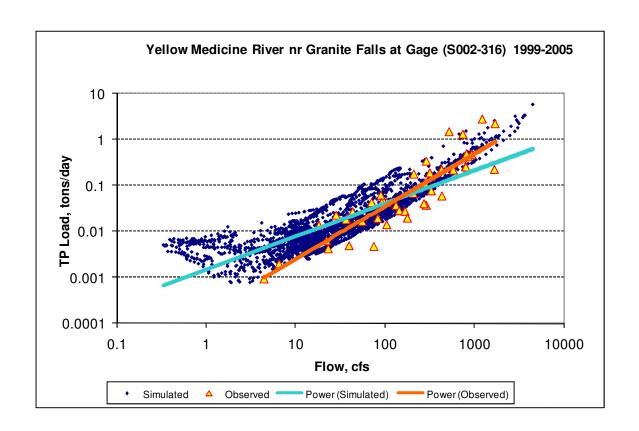


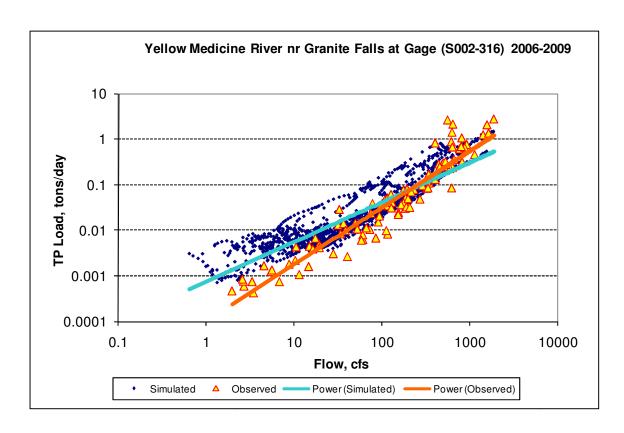


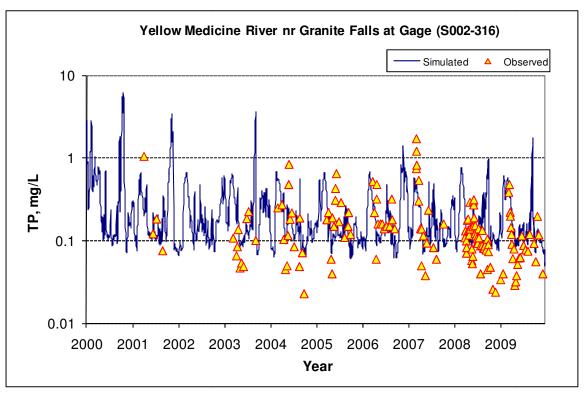


5.2 ORTHOPHOSPHATE (AS P)

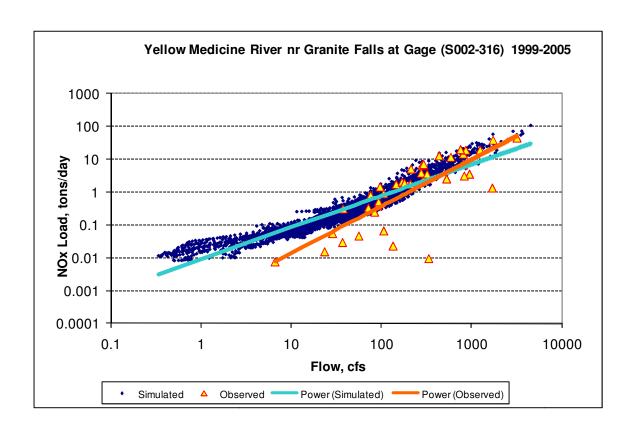
	1999 -	2006 -
Parameter	2005	2009
Count	30	98
Conc Ave Error	12.69%	3.93%
Conc Median Error	0.32%	-2.76%
Load Ave Error	76.87%	-29.90%
Load Median Error	0.29%	-0.21%
Paired t conc	0.63	0.87
Paired t load	0.10	0.29

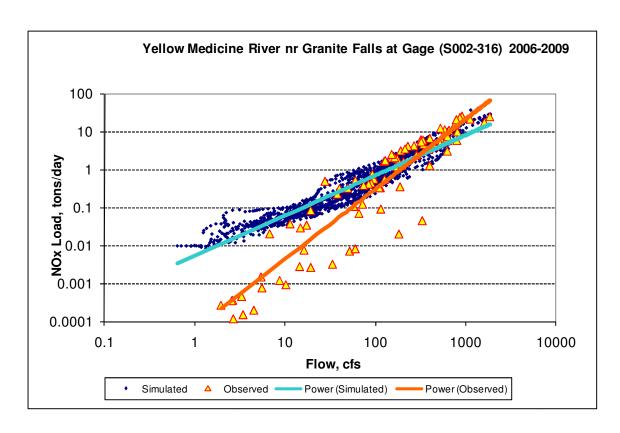


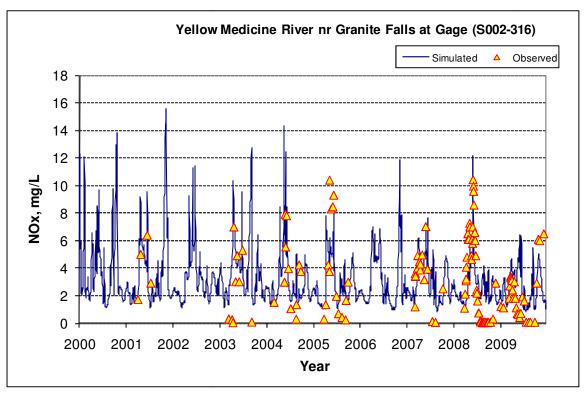


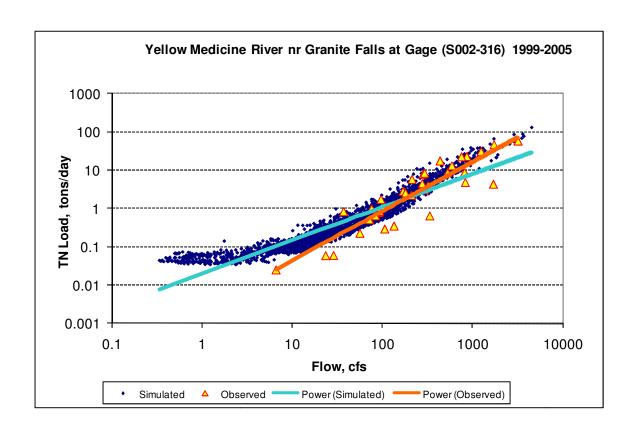


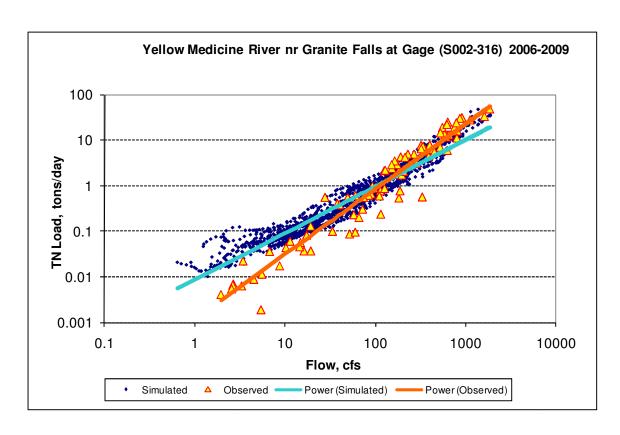
5.3 TOTAL PHOSPHORUS

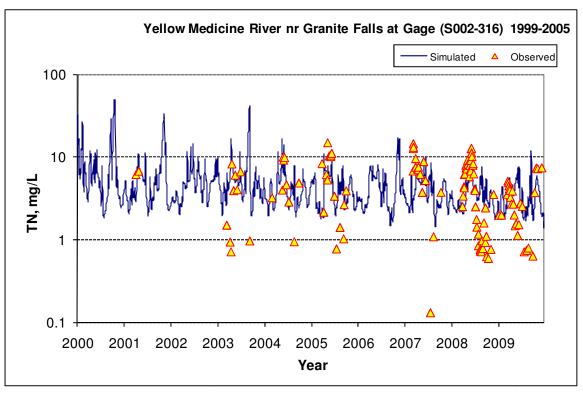

	1999 -	2006 -
Parameter	2005	2009
Count	44	100
Conc Ave Error	6.52%	-4.36%
Conc Median Error	-12.67%	-16.18%
Load Ave Error	16.84%	32.90%
Load Median Error	-1.89%	-1.06%
Paired t conc	0.85	0.93
Paired t load	0.54	0.22



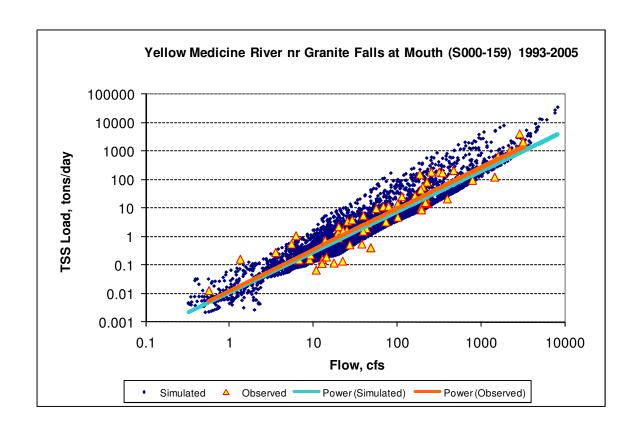


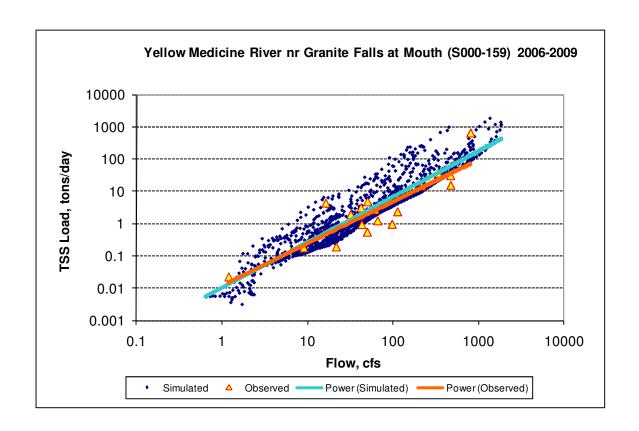

	1999 -	2006 -
Parameter	2005	2009
Count	39	86
Conc Ave Error	22.89%	11.70%
Conc Median Error	16.41%	26.56%
Load Ave Error	40.40%	-5.68%
Load Median Error	1.54%	0.76%
Paired t conc	0.41	0.84
Paired t load	0.26	0.79



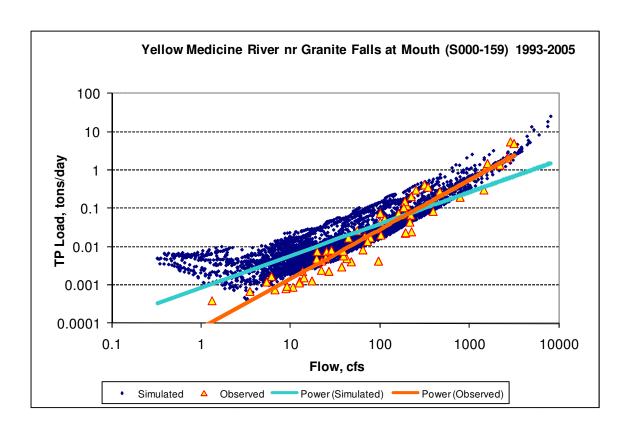


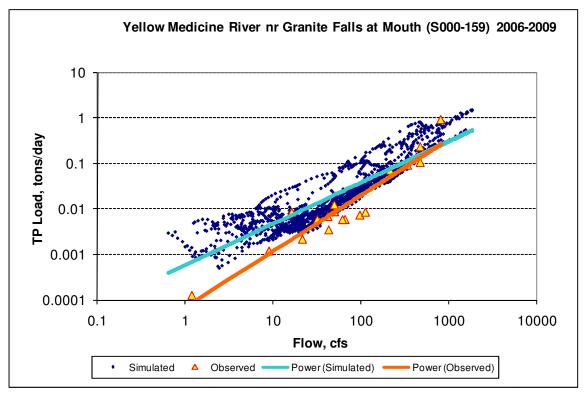
	1999 -	2006 -
Parameter	2005	2009
Count	35	86
Conc Ave Error	14.97%	-5.91%
Conc Median Error	-4.25%	-2.49%
Load Ave Error	27.51%	-25.06%
Load Median Error	-0.83%	-0.35%
Paired t conc	0.67	0.98
Paired t load	0.41	0.37

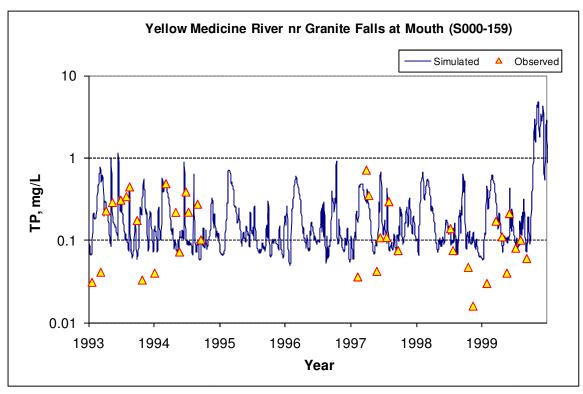


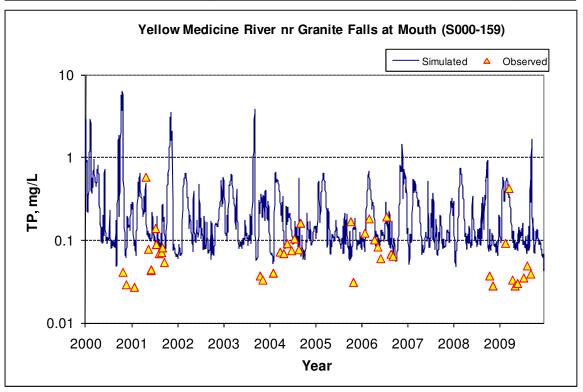


6 Yellow Medicine River at Mouth (S000-159)

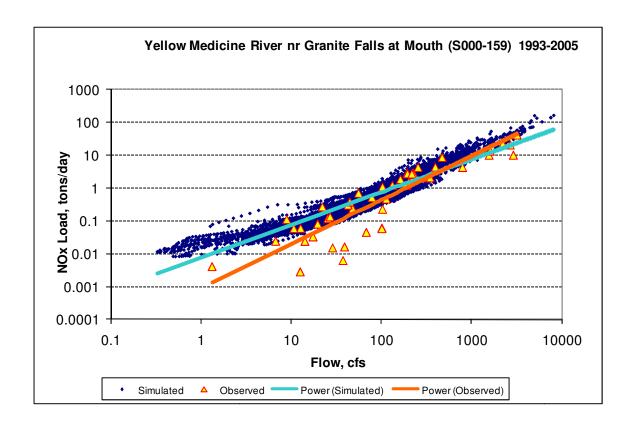

	1993 -	2006 -
Parameter	2005	2009
Count	60	18
Conc Ave Error	-14.08%	20.66%
Conc Median Error	10.93%	-9.71%
Load Ave Error	-27.50%	53.18%
Load Median Error	0.21%	-1.33%
Paired t conc	0.58	0.49
Paired t load	0.44	0.30

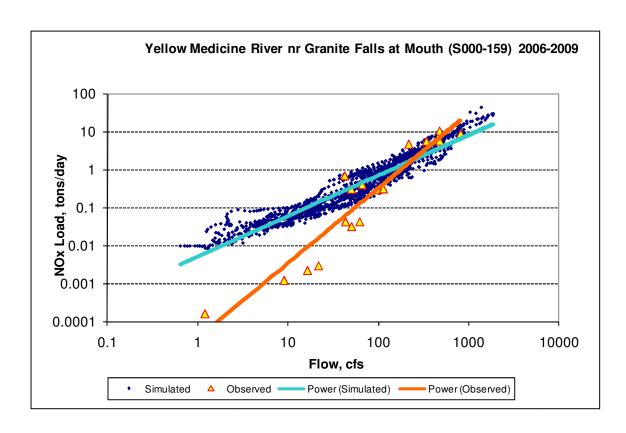


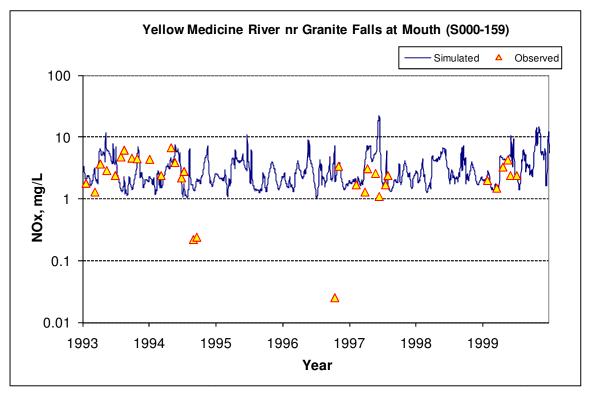


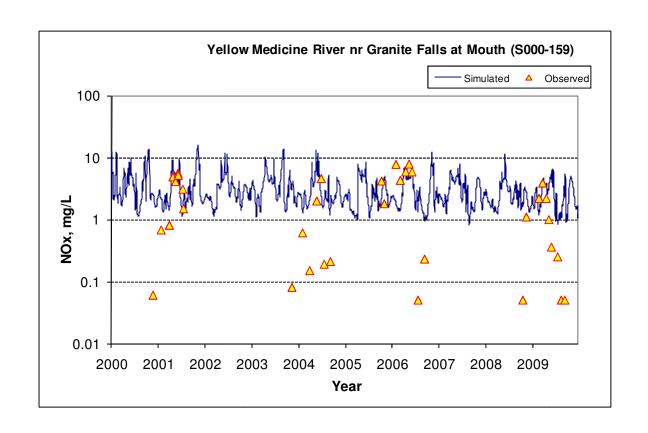

6.2 TOTAL PHOSPHORUS

	1993 -	2006 -
Parameter	2005	2009
Count	62	18
Conc Ave Error	-69.10%	-92.89%
Conc Median Error	-25.66%	-51.99%
Load Ave Error	21.50%	-36.38%
Load Median Error	-0.80%	-6.07%
Paired t conc	0.07	0.02
Paired t load	0.48	0.40









	1993 -	2006 -
Parameter	2005	2009
Count	50	17
Conc Ave Error	45.26%	13.31%
Conc Median Error	30.64%	28.83%
Load Ave Error	62.46%	-27.58%
Load Median Error	1.54%	2.66%
Paired t conc	0.04	0.61
Paired t load	0.16	0.41

