

St. Louis River Watershed Mercury Total Maximum Daily Load Study Statewide Mercury TMDL Meeting

Jennifer Brentrup | Project Lead Andrea Plevan | TMDL Lead June 10, 2025

Agenda

- Introduction to the St. Louis
 River Watershed (SLRW) mercury
 TMDL study
- Mercury trends in the SLRW: water and fish
- Mercury deposition study

Why this project?

- Human health effects of consumption of mercury in fish: neurotoxin and reproductive toxin
- Many lakes and streams with high levels of mercury in fish and water in the St. Louis River Watershed

Multiple programs to reduce mercury

Mercury impairments in St. Louis River Watershed

Refresher: Total Maximum Daily Load (TMDL)

Monitoring and assessment

303(d) list of impaired waters

TMDL development

- Lakes and streams that don't meet state water quality standards (impaired)
- TMDL: maximum amount of a pollutant a body of water can receive without exceeding WQS
- Identify sources & set reduction goals on pollutants entering impaired waters
- Planning tools for improving water quality

THE MATH AND THE PATH

Project Progress

- Developed conceptual model of mercury cycling to support TMDL approach
 - Focus on DOC, sulfate, mercury air emissions
- Watershed and Estuary Modeling
 - Collaborated with consultants, reviewed model outputs & report
- Drafting TMDL Approach & Report
- Public Engagement
- Mercury Air Deposition Study

Water Quality and Fish Tissue Mercury Standards

Jurisdiction	Total Mercury Water Quality Standard (ng/L)	Fish Tissue Mercury Standard (mg/kg)
Minnesota, Lake Superior Basin	1.3	0.2
Fond du Lac	0.77	0.3*
Wisconsin	1.3	0.22

^{*} EPA criterion used for impairment assessment; not adopted formally by Fond du Lac Band as a water quality standard

Mercury impairments and WQS

Fond du Lac Reservation border reaches

SLRW mercury impairments, Fond du Lac Reservation, and 1854 Treaty Boundary

TMDL endpoints

- For FDL WQS to be met at the FDL border reaches:
 - Load reductions need to be high (>90%) across the entire watershed
 - FDL WQS (0.77 ng/L) will be met in all impairments upstream of FDL

Project Schedule

2025

- Drafting TMDL report sections
 - TAT review
- Draft loading capacities and allocations
- Meetings with environmental groups and industry

2026

- Draft TMDL report for internal and TAT review
- Public forum and other outreach

2027

Public notice

Data Collection

- Water data: 2005-2021
 - Total mercury (Hg) in surface water
 - Methylmercury (MeHg) in surface water
 - Water Quality Standards (ng/L = parts per trillion [ppt]):
 - 1.3 ng/L (Lake Superior Basin) & 0.77 ng/L (FDL)
- Fish data: 2000-2022
 - Mercury in fish tissue standardized by fish length
 - 3 species: Channel Catfish, Northern Pike, Walleye
 - Water Quality Standard (mg/Kg = parts per million [ppm]):
 - 0.2 mg/Kg (MN)
- Data collected by MPCA, Fond du Lac, MN DNR, WI DNR, UMD, EPA, USGS

Statewide River Mercury Concentrations

- Long-term monitoring of Hg in rivers statewide from 1991-2023
- St. Louis River has 2nd highest mercury concentrations compared to other major rivers in MN

7/8/2025

13

Total Mercury

Methylmercury

Long-term Mercury Trends at Cloquet River and St. Louis River

Seasonal Changes in Mercury at Cloquet River and St. Louis River

- Cloquet River:
 decreasing trends in
 spring and summer,
 no change in fall
- St. Louis River:
 Significant
 decreasing trend in
 MeHg and Total Hg
 in spring and
 summer but
 increasing in fall

Methylmercury in Estuary

• MeHg concentrations in surface water in Upper Estuary vegetated areas are higher compared to Lower Estuary industrialized areas

Mercury Trends in Northern Pike and Walleye

Spatial Variability in Fish Mercury Concentrations

Fish Comparison by Waterbody Type

Walleye and Northern Pike Mercury Concentrations in Lakes

- Data from 40 lakes
- Cyclical changes in Northern Pike and Walleye
- Increasing trend 2015-2022

Mercury Reductions in Fish

22

Local contribution to atmospheric deposition: scenarios

 What are the potential mercury reductions that could be achieved in atmospheric deposition as a result of reductions from local point source emissions?

Why is additional research needed?

- Mercury science has improved
 - Atmospheric mercury deposition estimates to state waters are based on very limited data from over 25 years ago
 - Current estimates of natural emissions = 6% (Geyman et al. 2025)
 - Important to understand impact of local mercury emissions to deposition in SLRW

Figure 9 Sources of Mercury Deposition and Estimated Mercury Emission Sources in Minnesota

Mercury Dry Deposition

- Published studies estimate dry deposition from leaf uptake contributes 70-80% of mercury to land and downstream waterbodies
- Lack of consistent monitoring of mercury dry deposition & litterfall near emission sources
- Models underestimate dry deposition and litterfall mercury contribution especially in forested areas

St. Louis River Watershed Mercury Deposition Study

 Study Objective: quantify whether atmospheric mercury inputs to mercury emission sources

Mercury Deposition Sites

Summary

- Long-term trends in mercury and methylmercury in water have not changed but there are seasonal differences
- Fish mercury concentrations are increasing statewide and trending up in the watershed
- Additional reductions in mercury deposition beyond statewide mercury TMDL goal will be necessary to meet water quality standards in St. Louis River Watershed
- Improved estimates of mercury concentration in air and leaves will quantify impact of local deposition

Contact Information

jennifer.brentrup@state.mn.us andrea.plevan@state.mn.us

Thank you!

