Clean Water Council Meeting Agenda

Monday, February 26, 2024

9:00 a.m. to 2 p.m.

IN PERSON with Webex Available (Hybrid Meeting)

9:00 Regular Clean Water Council Business

- (INFORMATION ITEM) Introductions
- (ACTION ITEM) Agenda comments/additions and approve agenda
- (ACTION ITEM) Meeting Minutes comments/additions and approve meeting minutes
- (INFORMATION ITEM) Chair and Council Staff update
 - o Policy & Budget and Outcomes Committee Updates
 - o Staff update

9:15 (ACTION ITEM) Finalize Strategic Plan

Council staff

9:30 (ACTION ITEM) Interagency Communications Plan

- Council staff
- 10:30 BREAK

10:45 Performance Report

• Kim Laing, MPCA

11:30 Background on Watershed-Based Funding Approach

- MN Watersheds
- MN Association of Soil and Water Conservation Districts
- Association of Minnesota Counties

12:00 LUNCH

12:30 Lake De-Listing: Factors for Success

- Steve Weiss, MPCA
- The MPCA Lakes Lateral Team recently completed a retrospective of the 64 nutrient impaired lakes that have been removed ("delisted") from Minnesota's 303(d) list of impaired waters. The retrospective includes analyses of common lake and watershed features and management activities that contributed to delistings.

12:45 Watershed Health Assessment Framework (for Lakes)—WHAF-L or "Waffle"

- Beth Knudsen, DNR
- 1:45 Public Comments
- 2:00 Adjourn

Immediately after: Steering Committee

Clean Water Council

January 22, 2024, Meeting Summary

Members present: John Barten (Chair), Steve Besser, Rich Biske (Vice Chair), Gary Burdorf, Gail Cederberg, Steve Christenson, Tannie Eshenaur, Warren Formo, Brad Gausman, Kelly Gribauval-Hite, Justin Hanson, Holly Hatlewick, Rep. Josh Heintzeman, Peter Kjeseth, Annie Knight, Jason Moeckel, Ole Olmanson, Jeff Peterson, Rep. Kristi Pursell, Victoria Reinhardt, Peter Schwagerl, Glenn Skuta, Marcie Weinandt, Jessica Wilson, and Sen. Nathan Wesenberg.

Members absent: Dick Brainerd, Sen. Nicole Mitchell, and Dan Sparks.

Others present: Greg Stanley (Star Tribune), Jeff Anderson (Voyageurs project), Amy Zipko (Minnesota House staff), Chris O'Brien (Freshwater), Danielle Isaacson (MDA), Lori Cox (BWSR board member), Patrick Murray, Angelica Anderson (Nature Conservancy), Anne Nelson (MDH), Jean Wagenius, Jeff Broberg, Richard Gruenes (MDA), Jeff Broberg (MNWOO), Amy Adrihan (MPCA), Amy Bishop, Alexander Keilty, Jen Kader (Met Council), Myra Kunas (MDH), Margaret Wagner (MDA), Annie Felix-Gerth

To watch the Webex video recording of this meeting, please go to <u>https://www.pca.state.mn.us/clean-water-council/meetings</u>, or contact <u>Brianna Frisch</u>.

Regular Clean Water Council Business

- Introductions
- Approval of the January 22nd meeting summary by Steve Besser, seconded by Victoria Reinhardt. Motion carries.
- Approval of the December 18th meeting summary, motion by Steve Christenson, and seconded by Annie Knight. Amendment by Rep. Kristi Pursell change Representative Bjorn Olson (not Wilson). Motion carries with amendment.
- Chair and Council staff update:
 - o Policy & Budget and Outcomes Committee (BOC) updates
 - o Staff update

Supplemental Clean Water Fund Requests (Webex 00:19:30)

- The BOC has provided a memo on the Supplemental Clean Water Council Recommendations. The November 2023 revenue estimate and budget forecast showed an additional \$18,056,000 in the Clean Water Funds (CWFs) for FY24-25. The December 2023 Council meeting provided suggestions for the BOC to review. The BOC trimmed these suggestions and has brought them back to the full Council for consideration. The late February forecast will be used to lock in final numbers. There may need to be a continency plan for that time since there is little time to adjust.
 - o MDA:
 - Nitrate in Groundwater (\$1,000,000) would help accelerate progress with the Nitrogen Fertilizer Management Plan. This additional funding would focus on the eight counties included in the EPA's correspondence.
 - Agricultural Best Management Practices Loan Program (AgBMP) (\$1,402,000). This request includes \$402,000, which is the difference between the MDA's past request for \$10 million and what was appropriated for FY24-25. The Council made this program a top priority for backfilling if a surplus was available. The additional \$1,000,0000 would help meet a large backlog of requests for low-interest loans for water quality-related loans.
 - Board of Water and Soil Resources (BWSR):
 - Critical Shoreland Protection Permanent Conservation Easements (\$2,000,000). This program has a backlog of requests. It protects sensitive shorelands on privately owned lands. Protecting these acres supports the drinking water supply for Minneapolis and St. Paul.
 - Great Lakes Restoration Initiative Lakewide Action and Management Program (\$1,000,000). This
 request had been pulled back from the FY24-25 appropriation due to funding constraints. It would
 support soil and water conservation district (SWCD) capacity to leverage federal funds from the Great

Lakes Restoration Initiative (GLRI). It would apply to the five SWCDs along the Lake Superior Basin for protection and restoration activities affecting lake water quality.

- Working Land and Floodplain Easements (\$2,000,000). The program goal is to restore and protect riparian, wellhead, and floodplain areas across the state to improve and enhance water quality and wildlife habitat. The land targeted for this program is sensitive agriculture land within a riparian floodplain or well head area that is a priority drinking water protection area. This will be accomplished through long-term, limited use contracts and perpetual easements.
- Watershed Partners Legacy Grants (\$2,000,000). This is the small grants program that the Council advocated for, which involves new partners. Half of the funding goes to tribal governments and the other half to nonprofit organizations.
- o Minnesota Department of Health (MDH):
 - Southeast Minnesota Nitrate Response (\$6,354,000). This funding would support a public health
 response on nitrate in private wells in eight counties in southeast Minnesota. This would include
 conducting a well inventory and offering free well testing and mitigation for water quality issues.
 Most of the appropriation would go to the <u>TAP-IN</u> Collaborative headed by Olmstead County that was
 created in a pilot project two years ago. See additional document in meeting packet for more details.
 - Drinking Water Contaminants of Emerging Concern (\$384,000). The MDH would use this additional appropriation to develop health-based guidance for per- and polyfluoroalkyl substances (PFAS) compounds and fish consumption.
- Minnesota Department of Natural Resources (DNR):
 - Fish Contamination Assessment (\$90,000). The DNR received additional funds in FY24-25 to monitor PFAS in fish. It requested additional fund to accomplish this task.
- Minnesota Pollution Control Agency (MPCA):
 - Enhanced County Inspection/SSTS Corrective Actions (\$1,000,000). The current appropriation for FY24-25 is \$7.1 million, which includes enhanced inspections by counties and assistance for qualified low-income households to replace their septic system to avoid imminent threats to human health. These additional recommendations would support approximate additional 70 low-income households.
 - River and Lake Monitoring and Assessment (\$326,000). The Red River Watershed Management Board has regularly lobbied for a direct legislative appropriation from the Clean Water Fund to support the River Watch program.
- o University of Minnesota (UMN):
 - Stormwater BMP Performance Evaluation and Technology Transfer (\$500,000). The FY24-25 appropriation for this program was \$2,000,000. Additional funding would support research on emerging issues in urban stormwater pond operations and maintenance, including pond cleanout and disposal. Research in this program ahs been scaled up for water quality efforts statewide, such as enhanced street sweeping.
- The February forecast will likely not match the November forecast, and there will not be a lot of time for the Council to meet and approve final changes. Therefore, a contingency plan would be a good idea. So, the Council can share what they would like to do if there is more or less remaining in the supplemental budget. It makes things go faster if the Council has an opinion when the Legislature reaches out to Paul Gardner for a response.
- Discussion:
- Steve Christenson: In our current opinion, the supplemental budget will likely be around the \$18 million? *Answer:* Typically, the number is not off by a million or two. The predictions are hard to estimate at this time.
- Warren Formo: Thank you for the information. We have this surplus to work with. The BOC had a great discussion on where to adjust items. For what happens next, I'm not sure how to create a true contingency plan. I think we should wait to see what the February number is at, because predictions are only predictions. The Legislature will already have convened. They get the final decision. We should proactively recommend in a timely manner. I hope we could get the information to them at that time.
- Senator Nathan Wesenberg: I was at the DNR roundtable meeting on Friday. Who said we have a public health crisis? My wife is a medical doctor, and she has been asking others in her area, but it is not happening in the system. They are not seeing people dying or blue baby syndrome. I will probably be the minority saying

this, but where are these issues at? We are talking about spending this money on something that doesn't exist. Farmers are already doing best management practices. We are saying we need to be below ten parts per million. Let's do what's best for the environment. I think it is inappropriate to say we have a health crisis unless it is true. I am not seeing this science to back it up. We need proof, otherwise we are scaring people.

- *Representative Kristi Pursell:* I would like to hear from the MDH on the words used before I chime in.
- Tannie Eshenaur, MDH: One, regarding the ten milligrams per liter is the federal primary drinking water standard for public water systems. For reference, we have adopted it as a state high risk limit. The number is very strong in scientific research, because there was a natural experiment in southwestern Minnesota where there were 145 babies who had blue baby syndrome, and they new exactly what those nitrate levels were in those wells, including 14 deaths. This occurred in the 1940s, and today we could not conduct an experiment like that because it would be unethical to dose babies. Regarding the link to colorectal cancer, it is from epidemiological studies. The MDH has not made efforts to change the ten milligrams per liter because it is looking at correlations, not causation. We do not know exactly how much nitrates people are being exposed to through their drinking water, or other exposure pathways. The ten is strong for the occurrence of blue baby syndrome. There has been a lot of outreach and education about blue baby syndrome. It is not a reportable disease in the state of Minnesota (so it does not get tracked by the state), so we don't know how many cases there might be, or even subclinical cases.
- Senator Nathan Wesenberg: I will respectfully disagree with the blue baby syndrome. I understand those wells were updated from that study. We have not seen that many cases. If this came in, it would likely be reported. So, I am frustrated in hearing this, because we don't want to be saying it is causing something to happen when it is not. There are no reported cases, and if there are a few cases we need to address these on those case-by-case issues. People need to be responsible for updating their wells. Also, anything under ten is not impacting to pregnant women. I need to see more proof for spending this money.
- *Tannie Eshenaur, MDH:* Regarding the language of the use of eminent public health threat came from the Safe Drinking Water Act. In the EPA letter, it reveals "...Section 1431 of the Safe Drinking Water Act (SDWA) to address groundwater nitrate contamination that presents a risk to the health of the residents in eight counties of the Southeast Karst Region2 (Karst Region) of Minnesota. Section 1431 authorizes EPA to act upon receipt of information that a contaminant is present in or is likely to enter a public water system (PWS) or an underground source of drinking water (USDW), which may present an imminent and substantial endangerment to the health of persons, and that appropriate state and local authorities have not acted to protect the health of such persons." That is where the language comes from.
- *Representative Kristi Pursell:* This is part of my area of the state. I have been tracking this topic. I have been having many conversations, formally and informally. We know this is a problem. The EPA letter has identified it as a high priority. The state of Minnesota has adopted the federal level for nitrates (ten milligrams per liter). However, because there is a lot of new science and research on nitrate pollution and drinking water particularly, the reports I have read, think that the number should be significantly lower than ten. I wanted to share that as a counterpoint. I think rural people should have access to state's drinking water, not just folks a part of municipal systems. In that framework, I am dedicated and passionate for people with private wells to have affordable, safe, drinking water. If there is one house on fire on the block, that is where the fire department should focus its energy, and not just making sure we put water on each house of the block. I appreciate the BOC did allocate funds to this area. It is not a budget year, and the MDH is trying to provide for families in the state impacted by this issue. It is important to look at the short-term and long-term impacts, to make sure we are funding appropriately. The Council has an opportunity to be impacting to this issue, and I understand the constitutionality of it has come forward, but I wanted to share these thoughts with the Council. Thank you.
- Steve Christenson: Is there funding in this proposal for creating incentives for fully funding the capping and closure of wells? Those are pathways to contaminate the water and would protect the aquifers. *Answer:* There is no funding to conduct the well sealing. This is an activity that is permissible under BWSR's project and practices grants in the drinking water category, to One Watershed One Plan to do this work.
- Warren Formo: There is no requirement to cap an old well, unless you are not using it anymore. There are
 wells being used across the state, including in southeast Minnesota, that do not meet up to code. There have
 been a lot of meetings, helping to replace some of the old wells (which have been identified). Most of the
 time, when the well is the source of contamination, well replacement is the most effective. However, they can

impact neighboring wells too! It is important to identify them and encourage them to be replaced. Many wells have been replaced since the well code came into being. There is a bit of an equity issue when people receive funding for replacement, when a few years ago they spent their own money to replace the well. We need to deal with these old wells. I struggle for help with the fairness of it when others struggled in the past regarding this issue. A case-by-case study can help too. However, it is eliminating a serious source of contamination, and so is constitutional.

- Paul Gardner: If you have a private well, the well is your source of drinking water. There are non-human contaminants like manganese and arsenic. Can a properly constructed well protect against manganese and arsenic? Is that a constitutional protection of a drinking water source? *Answer:* Through some research, funded by CWFs, the MDH looked at arsenic to see if there are different ways to construct wells to help protect against arsenic. There are some slight differences that can be made where the well is finished, with where the screen is and how far below certain layers are at, but we cannot seal it out.
- Glenn Skuta, MPCA: The landscape of the karst region is porous. If we could find and seal all wells that should be sealed, how much of the problem would we have addressed? It is a very small part of the problem. The direct conduits you would want to seal up as much as possible. However, due to this porous landscape, sealing up these wells is a small part of the problem.
- Paul Gardner: Talking with Legislative staff, they said if the Council wants to recommend well mitigation funding that they encouraged the Council to make it a constitutional case in case their strict reading is being correct. There is at least an opportunity for persuasion. I hope it will not turn the county public health folks and SWCD folks into having to make constitutional decisions on the ground. They would need clear directions.
- Rich Biske: I am not struggling with the constitutionality of it, but rather the scope of it. I previously lived in the area. If we seal wells, what about the sinkholes? In so many ways, every one of those sinkholes are conduits as well (i.e., drive through Fountain, Minnesota). I don't want us to get distracted by one thing, because there are many things here. It would be good to pause and put together a better understanding of what are some cost-effective measures that can have an impact for people in public health. Then, the overall resource. It will be a combination of things, and we don't want a few items to blind us from the issue of long-term. Nitrates have been a long-time issue in the area. Due to the complex groundwater, it will continue to be a long-term issue to remedy it. If there are measures that can make an impact now, it seems like a good step to take. As we look at this moving forward, there may be a way to set the stage for future recommendations. There may be some cost-benefit analysis too. We can make a recommendation today, but there are more complex things to consider moving forward. We should use this as an outcome-based approach, focusing on the outcomes. Also, to be time bound (like outcomes at five years and ten years), maximize those returns.
- Myra Kunas, MDH: Equity in who has clean water in the state of Minnesota is not a privilege. It is a right. It is something that people in this region, and throughout the state, need to have. We need to be there for them. This proposal is trying to get this to them. We have piloted it in Olmsted County, and have been successful there, and are just getting started. The data from agriculture was used to put this together. We are not trying to say that every well is going to be tested in that region. We are trying to have a measured approach to help support the community in the regions. Private wells are on their own, so by putting these funds forward, we are trying to protect 94,0000 people. Our proposal is not going to take action now, so as the MDA and other agriculture go down their long-term path, we put a proposal together for the EPA to address their public health concerns. We can be protecting the citizens of that area. There is a lot of work to be done.
- Peter Schwagerl: There is a distinction between a reverse osmosis system and a well replacement, repair, or sealing work on others. There was a strong constitutional argument there, that the well repair/replacement can certainly fall within our scope. However, looking at the alternate water supply of the supplemental budget request, following their estimates, about twelve percent of the 36,000 tested wells will be estimated to have high nitrates. Of those, seventy-five percent will be best remedied by a reverse osmosis treatment system. So, that would be about \$842,000. So, I think the distinction is important to discuss. Are there other programs where the CWFs are providing funding to public water treatment options. It may help clarify that question, or past work. *Answer:* There are huge disparities in the public dollars that are available to community public water systems versus private wells. Public water systems can get dollars though the state revolving fund. Part of those dollars come from US EPA, and part from the state bonding dollars. There are two line items from the CWFs that go to the Public Facilities Authority. They provide dollars for public water systems. The state

revolving fund does have some equity components built into it, which look a community's median household income, based on that there is a balance of loan funds that repaid at one percent. There are also grant funds (called principal forgiveness). So, there are state and federal dollars for public water systems, which are not available to private well owners. Regarding the cost of reverse osmosis systems, they estimate \$2,200 plus one year of maintenance at \$400 a year (totaling \$2,600).

- Steve Christenson: The Legislature desires the Council's response to the supplemental budget, so I think we should move forward with something. We are spending a lot of time on the MDH Southeast Minnesota Nitrate Response. I am torn on many elements of it. I think of this as an emergency response to provide seed money to create the staff to build the long-term solutions. This funding will fund five people, as well as a project manager focused on all this work. I think this response is warranted. I am against funding this forever, but it is a public health crisis emergency now, and provides a practical solution at this time.
- Steve Christenson moved to adopt the BOC supplemental budget recommendations with the amendment that the four items that were cut be added in as ranges. For example, the critical shoreland protection, at the \$2 million range becomes \$2 million to \$4 million, and so forth with the other three items. Seconded by Warren Formo.

Public Comments: (Webex 01:47:00)

- Dan Wilson: As someone who lives in southeast Minnesota, farms down here, and gets their water from down here, this issue is incredibly important! Given the severity and immediacy of the public health crisis, I would recommend shifting monies spent on public outreach be shifted to hiring community health workers that could go to each home and do the testing themselves. I recently completed a well test in my county and am thankful or that service. I have worked in a lab for a few years, but still found the water testing initially confusing and intimidating. Families may see this as a barrier as well. Boots on the ground will help illuminate things, provide more robust testing, and get more buy-in from the community. From the agricultural side, more money is good for conservation. I am new to farming. I started farming because I really wanted to improve water quality and land quality. It took me three years working with three different offices to finally enroll in a CSP program, which reveals some significant barriers. Olmsted County is doing well as a model and have increased farmer participation and is making sure they are spending that funding wisely. I am in Winona County, in Wiscoy Township.
- Jeff Broberg: I live in Winona County, in Elba Township. There is a lot of missing information, mixed messages, and misdirection. We can solve all of those if there is a clear understanding and narrative. I was upset about the conversation regarding the medical physician this morning. There are a lot of things physicians do not know. I have been working with the Mayo Clinic here, as they have been surveying their physicians, and revealed that seventy-five percent do not have any training about drinking water risks, and seventy-five percent want to know more. We have the tools to do that but need current information. There is a report from Nebraska, from a study published in January of 2023. It shares that the problem with nitrates in drinking water in Nebraska is huge. The national average of birth defects is 3.3 percent. In the highest nitrate counties, that number jumps up closer to 9 to 12 percent. That is about one in ten kids that have a birth defect. The average birth defect across the state it is 5.8 percent. They link it to nitrates and pesticides in groundwater. The data is clear. We are seeing the epidemiology of contaminated groundwater. We are not alerting people to this issue, so people really need to test their water, and take appropriate action.
- Aaron Bishop: I am from Harmony Township in Fillmore County. Last year (2023) was a severe drought year in Southeastern Minnesota and across the state. We were seeing a lot of drought-induced crop lines. They are lines of crops that survive the driest of time, whereas the surrounding vegetation goes dormant because of the lack of soils and moisture. For example, alfalfa, which stretches in two directions (sometimes three) of joints of crisscrossing fractures that exist in the bedrock. Sinkholes are conduits, but these fractures allow for more soils and clays to get deeper to allow for more moisture (creating conduits too). They are invisible until they appear in drought years.

Discussion (Webex 01:56:00)

• John Barten: I want to make an amendment to the motion, so that it include a cover letter to the Legislature to address the constitutionality issue, where bad wells can be a pollutant source. Additionally, that the Clean Water Fund is not a long-term solution for mitigation for contaminated well water.

- Brad Gausman: If we were to go ahead with this recommendation, is there a way to codify that idea that we
 are not going to set a precedent within the Council's Strategic Plan? Could this be included in the Strategic
 Plan if other areas of the state come forward with an EPA petition regarding nitrate levels? To formalize it
 moving forward. The precedent setting is important. Also, thinking about the enormity of this problem. This
 issue deserves a bigger stage than this meeting and this Council.
 - Answer from Paul Gardner: In appropriation language, there is rider language with expiration dates.
 Occasionally, legislators will say it is a part of the base funding. We could include language in the cover letter including it. However, the Legislature can do anything.
 - Tannie Eshenaur, MDH: In the Council's Strategic Plan you include language on private wells, and how private wells should be addressed. Three years ago, the Council ask the MDH to develop a plan for free testing, which is included in the Strategic Plan. The MDH took this seriously, and it was the guidelines for how they offered the private well grants. It was part of the plan sent back to the EPA, reflecting on the work from those two pilot programs (funded by CWFs). There are sideboards on the private wells work already built into the Strategic Plan.
 - Brad Gausman: I am thinking more about the reverse-osmosis system and immediate alternative water remedy funding for those issues. I think the well testing provides more information for around that state and would exclude that.
 - *Rich Biske:* Perhaps, have the request that the Legislature take additional action.
- Final motion: Motion is to adopt the BOC surplus budget recommendations, with ranges added to
 accommodate changes in final budget amount with the February forecast, which also includes a cover letter
 addressing constitutionality and the necessity of requesting the Legislature take additional actions, as well as
 encouraging some monitoring and assessment of what is happening with the funding moving forward. Motion
 carries unanimously. It will be sent to the Legislature.

Election of Chair and Vice-Chair for 2024-2025 (Webex 02:10:30)

- John Barten and Rich Biske have requested to serve another two-year term.
 - Open the floor to nominations for the Chair and Vice Chair
 - Victoria Reinhardt nominates John Barten as Chair and Rich Biske as Vice Chair.
 - No other nominations presented.
- Motion to close nominations by Warren Formo, seconded by Holly Hatlewick. Motion carries.
- Motion to elect John Barten as Chair and Rich Biske as Vice Chair. Motion carries.
- John Barten re-elected for Chair and Rich Biske re-elected for Vice Chair.

Strategic Planning: Review of Public Comments & Possible Approval/Inclusion (Webex 02:19:00)

A document is provided in the meeting packet regarding public comments. The Council's Strategic Plan is open for further discussion after reviewing the public comments.

Discussion:

•

- Marcie Weinandt: I am hearing the urge to get funds to implement the work. I am pleased to see almost half
 of the money goes to implementation. Things are planned, prioritized, and now the funding is what is needed.
 As I have been reporting to the watershed boards, there is funding going to these areas, and we are seeing
 many more actions on the ground. In doing so, hopefully the public will notice this work too. There is support
 to keep sending funding to the local folks to implement the plans.
- Holly Hatlewick: Getting the information out there, to show that success, is important. Everywhere we can try to get these stories out can be impactful and keep this work going.
- Glenn Skuta, MPCA: To be accurate with our language, it has always been more than half of the funding is going to implementation. That has always been an emphasis of this funding. Hearing others, you want that implementation to be well informed. This work is all knowledge in the service of good decisions. At the same time, the planning money is declining. That funding is available for implementation now. Most of the watersheds have gotten their allocation to develop their watershed plans. These will need to be updated eventually, but at fraction of the cost of the original work. We all want more implementation to fix what is going on. We also want to make sure the money is well spent, well prioritized, and going to the right places.
- John Barten: I am not hearing a lot of changes being suggested to the group, based on the public comments.

- Paul Gardner: Regarding groundwater, Freshwater was suggesting supporting conservation strategies on permits and the like. I want to confirm that based on deliberate conversations that we have had that the Council does not want to get into the permitting lane, with a few exceptions (enhanced plans like SSTS and buffer law). We can let the permits speak for themselves. However, some CWFs help with the data and planning of these. I wanted to confirm that people are comfortable with this choice.
 - Steve Christenson: As I read the Freshwater comments. Two areas stood out to me. One was the
 resources and talent comment, and the shortages of talent in wastewater and drinking water facilities.
 There is a need there, but I am not sure it is the need we need to help fill. Additionally, circular water
 policy, going into water shortages, thinking about water reuse. We don't talk about it at the Council very
 much. Both those resonated as a gap. I thought those maybe warranted further discussion.
 - John Barten: We have had conversations with water reuse. It has its challenges, especially with pathogens.
 - Tannie Eshenaur, MDH: There was CWFs appropriations for water reuse, which involved an interagency report (back in 2018). It had eight recommendations. One was for the MDH to develop a white paper on how to mitigate risk with water reuse. The MDH did get that out during Covid-19 (in 2020). Then, the Interagency Coordination Team (ICT) met together and put together a charter for a design team to take water reuse to the next step to take those next seven steps. We have an outside consultant who is facilitating a process with a large group of stakeholders. They have meet to look specifically at stormwater capture and use. They have made some recommendations, which has been handed of to an interagency team. They are rather new but are putting together some guidance. They will take it back to the engagement core for review. Water reuse is nobody's baby and everyone's baby. Looking at it from all sides is important and challenging. We are due to be done with that in June 2024.
 - Jason Moeckel, DNR: Water reuse also needs to deal with salt. Water softeners are very impacting to this area. It has more limited uses available, and will be a massive effort, especially in the metro area. There is only so much we can do.
- Rich Biske: I think this plan represents what we are asking of the state agencies. It provides direction for them. It is what we are going to want to hear about over the next few months.
 - o John Barten: This is accurate based on what we want the state agencies to present.
- John Barten: To the state agency representatives, do you feel like this is adequate to help direct you for the next funding cycle?
 - Answer from Glenn Skuta, MPCA: From the MPCA, I will say yes. It captures almost everything we have. It points to the higher-level goals. We appreciate it.
 - Jason Moeckel, DNR: I will echo that. One caveat is that going line by line there are programs that do not show up as explicitly as a part of the action plan, but you can make a connection. If there is a goal and a strategy where it lines up, we can move forward with it.
 - o Paul Gardner: For this second round, we also tried to avoid that much specificity, for that reason.
 - Tannie Eshenaur, MDH: It is good that we list the goal and strategy when we make our presentations, so we can see how it all works together.
 - Jen Kader (Met Council): Equity and climate change resilience were previously talked about, but I do not see those referenced here.
 - Glenn Skuta, MPCA: Equity is mentioned briefly at the bottom of page eight, the third last bullet. I do not see climate resilience.
 - Rich Biske: I think it is an underlying principle or lens, that needs to be applied to everything. Both the equity and climate resilience. To set an expectation that this will be revisited in the future.
 - John Barten: In our discussions, during the budget cycle, often mentions climate change. How it is affecting many parts of the state. A lot of funding is addressing the climate change, it is underlying.
 - Jen Kader: It is something that does not get measured, both equity and climate change, and how are we thinking about it. How do you weave it in, to check in with it? Application of the principles maybe could home in on it.
- Jessica Wilson: I like that we are keeping it at the scale it is at, so people can read themselves into it. We are at a good place, that threads the needle between the two pieces.
- Motion by Holly Hatlewick to approve the Strategic Plan with the following amendments: add circular water principles (versus water reuse), calling out watershed-based implementation as an action step, and revisiting

adding in equity and climate resiliency to the principles in the introduction. Seconded by Marcie Weinandt. Motion carries.

• Victoria Reinhardt: Ramsey County does have a relationship with a non-profit firm (IBTS) that has put together a craft tool equitable climate resilience for the framework for climate resiliency. It is specifically related to equity. If there is anything needed from Ramsey County on that, please reach out to her.

Public Comments (Webex 03:19:00)

• No public comment for this item.

Adjournment (Webex 03:21:32)

Draft Clean Water Council Strategic Plan for 2024-2028 26 February 2024

The Clean Water Council is a state advisory council created as part of the Clean Water Legacy Actⁱ (CWLA) in 2006. The Council's purpose is to advise on the implementation of the CWLA, and to foster coordination and cooperation among state agencies and other stakeholders and partners. In addition, in 2009, the Council was assigned the task of recommending how to use the Clean Water Fund, which is one-third of the dedicated sales tax revenue generated from the Clean Water, Land and Legacy Amendment.

This strategic plan is not a comprehensive plan for all water activities in Minnesota. It focuses on activities within the Council's statutorily defined roles for the Clean Water Legacy Act and the Clean Water Fund. Purposely left out of the plan are most point source activities that are governed by permits or other requirements or are supported by other major funding sources (landfills, large feedlots, manure management plans, leaking storage tanks, PFAS work funded by 3M settlement, etc.) <u>Therefore, the strategies and actions listed under each goal in the plan</u> below will not be the only activities in Minnesota to meet the goals.

Several previous efforts provide the foundation for this plan, including Minnesota's <u>Nutrient Reduction Strategy</u> (NRS), the <u>2014 Clean Water</u> <u>Road Map</u>, the <u>2011 Minnesota Water Management Framework</u>, and the <u>Nonpoint Priority Funding Plan</u> produced by the Board of Water and Soil Resources, and others.

Much of the plan focuses on priorities for using the Clean Water Fund (CWF). In January of odd-numbered years, the Council must submit recommendations for the use of the CWF to the Legislature.

<u>Statutory guidance and planning</u> since 2008 have outlined several criteria for prioritizing the use of the CWF. Primary among them is <u>constitutional language</u> that the CWF must *supplement* existing funding and not *supplant* it.

The Clean Water Council also requests that all agencies incorporate their stated principles for diversity, equity, inclusion, and/or environmental justice into Clean Water Fund-supported programs. In addition, the Council also requests that these programs indicate any interaction between Clean Water Fund-supported programs and the state's Climate Action Framework.

Groundwater Vision: Groundwater is clean and available to all in Minnesota.

Goal 1: Protect groundwater from degradation and support effective measures to restore degraded groundwater.

- Strategy: Develop baseline data on Minnesota's groundwater quality, including areas of high pollution sensitivity.
 - Action: Complete groundwater atlases for all Minnesota counties.
 - Measure: All Part B atlases completed by 2038.
 - Action: Monitor ambient groundwater quality throughout the state.
 - Measure: Updates from MPCA Groundwater Monitoring Program.
 - Action: Characterize nitrate and pesticide contamination in vulnerable aquifers.
 - Measure: Vulnerable aquifers mapped via Township Testing Program, Central Sands Private Well Network, and Southeast Minnesota Volunteer Nitrate Monitoring Network.
 - Action: Characterize natural and synthetic contaminants in groundwater.
 - Measure: Locations with high concentrations of natural contaminants mapped.
 - Measure: Groundwater monitoring performed as appropriate for contaminants of emerging concern.
- Strategy: Develop and carry out strategies that will protect and restore groundwater statewide.
 - o Action: Complete plans and fund activities for protection and restoration of groundwater statewide using a major watershed scale
 - Measure: Groundwater Restoration and Protection Strategies (GRAPS) completed for all 60 One Watershed One Plan boundaries.
 - Action: Reduce risk of bacteria in groundwater.
 - Measure: 80 percent compliance rate maintained for subsurface septic treatment (SSTS) systems with a stretch goal of 90 percent, as recorded in MPCA's annual SSTS report.
 - Measure: Financial assistance provided for low-income households to replace and repair individual SSTSs.
 - Measure: Demand met for under-sewered or unsewered small communities for long term solutions using Small Community Wastewater Treatment Program's intended use plan.
 - Action: Reduce nitrate contamination of groundwater.
 - Measure: Nitrogen Fertilizer Management Plan implemented in priority townships with vulnerable groundwater by
 assessing agricultural practices, forming local advisory teams, and publishing recommended practices that are adopted
 on 80% of row crop acres excluding soybean by year 2030, and implemented in all remaining townships by year 2034.
 - Measure: Alternative land management activities supported that protect groundwater such as easements, perennials, and market-based continuous living cover.

- Measure: Guidelines regularly updated to understand impacts of nitrogen application.
- Measure: Support provided for irrigation management outreach, update to state irrigation BMPs, and irrigation water management endorsement from Minnesota Agricultural Certification Program (MAWQCP).
- Measure: No additional wells exceed maximum concentration levels.
- Measure: Nitrate levels declining in private well testing by 2034.
- Measure: Nitrate levels declining in 100% of public water wells by 2030.
- Action: Reduce risk of pesticide contamination in groundwater.
 - Measure: Ambient groundwater quality wells maintained through MDA pesticide monitoring program.
 - Measure: Outreach, demonstration sites, and technical assistance provided for recommended pesticide BMPs.
- Action: Reduce risk of stormwater contaminants entering groundwater.
 - Measure: Stormwater research that is protective of groundwater supported, with findings scaled to meet state needs.
 - Measure: Assistance provided to NPDES/MS4 permittees to enhance compliance.
 - Measure: Priority unused groundwater wells that present a risk to drinking water aquifers are sealed.

Goal 2: Ensure groundwater use is sustainable and avoid adverse impacts to surface water features due to groundwater use.

- Strategy: Support ongoing monitoring of groundwater quantity.
 - Action: Maintain network of long-term groundwater monitoring wells and add wells as needed.
 - Measure: 50 monitoring wells installed annually.
 - Action: Identify groundwater-dependent lakes; streams; calcareous fens, and wetland complexes.
 - Measure: Data provided to water planners for development of WRAPS, GRAPS, and comprehensive watershed management plans.
- Strategy: Develop a cumulative impact assessment and support planning efforts to achieve a sustainability standard for groundwater.
 - Action: Prioritize areas of high water use intensity.
 - Measure: Groundwater Management Areas (GWMA), highly sensitive areas, and areas of high water use intensity from agricultural irrigation are designated.

- Action: Implement water efficiency BMPs, water use reduction, and irrigation water management in areas of high water use intensity by agricultural irrigators, highly sensitive areas, Groundwater Management Areas (GWMAs), and highly vulnerable Drinking Water Source Management Areas (DWSMAs).
 - Measure: DNR has tools needed to address conflicts on use of groundwater for economic and ecological purposes.
 - Measure: Monitoring wells have upward trend or no change in all six groundwater provinces.
- Strategy: Identify options that will accelerate progress to achieving a sustainable groundwater standard in line with circular water economy principles.
 - Action: Clean Water Council Policy Committee biennial policy recommendations.
 - Action: Research and foster support for circular water economy practices.

Drinking Water Source Protection Vision: Drinking water is safe for everyone, everywhere in Minnesota.

Goal 1: Public Water Systems--Ensure that users of public water systems have safe, sufficient, and equitable drinking water.

- Strategy: Identify and reduce risks to drinking water sources by investing in technical training, planning, coordination, and source water protection grants.
 - Action: Assist public water suppliers in completing Drinking Water Source Protection Plans (DWSPPs) and support implementation projects listed in the plans.
 - Measure: All 900+ DWSPPs complete for groundwater public water systems.
 - Measure: All source water assessments for 23 surface water systems complete.
 - Measure: Source water protection plans complete for non-community public water systems.
 - Measure: Funding available for half of budget requests in DWSPPs.
 - Action: Provide goals for drinking water protection.
 - Measure: Statewide drinking water plan complete.

- Strategy: Support the Ground Water Protection Rule (GPR).
 - Action: Support implementation funding and technical assistance to reduce nitrate in DWSMAs that are Level 1 and Level 2 under the GPR.
 - Measure: Public water suppliers at Level 1 or Level 2 under the GPR do not exceed the drinking water standard for nitrate by 2034.
- Strategy: Support prevention efforts to protect groundwater in DWSMAs.
 - Action: Fund protective actions that assist public water suppliers in meeting safe drinking water levels.
 - Measure: Approximately 400,000 acres of vulnerable land surrounding drinking water wellhead areas statewide are protected by 2034.
 - Measure: Landowner adoption of practices that protect drinking water through technical assistance, conservation equipment support, financial assistance, easements, drinking water protection/restoration grants, targeted wellhead protection grants, market-based living cover, soil health grants, etc.
- Strategy: Support prevention and management of newly identified contaminant risks.
 - Action: Fund Contaminants of Emerging Concern (CEC) program.
 - Measure: At least 20 chemicals are screened each biennium.
 - Action: Fund adequate monitoring and assessment activities to examine emerging risks.
 - Measure: River and lake monitoring assessment, ambient groundwater and drinking water monitoring supported, with enough contingency for rapid response.
- Strategy: Identify policy options that will accelerate progress to achieving federal safe drinking water standards.
 - Action: Clean Water Council Policy Committee will make annual policy recommendations.

Goal 2: Private Water Supply Wells—Ensure that private well users have safe, sufficient, and equitable access to drinking water.

- Strategy: Identify risks to and fund testing of private well water.
 - Action: Support a ten-year effort to give every private well user the opportunity to test for five major contaminants, with an initial focus on areas most vulnerable to contamination.
 - Measure: Private well testing offered for 10 percent of private well users each year for 10 years.

- Strategy: Support selected mitigation activities for private well users.
 - Action: Assist all well users with information on how to achieve safe drinking water.
 - Measure: All private well users offered education on mitigation options as needed.
 - Action: Assist qualifying low-income households and households with vulnerable populations to mitigate contaminants, such as well replacement, water treatment systems, etc.
 - Measure: Grant program reports from MDH.
 - Action: Provide favorable financing to qualified households to mitigate contaminants.
 - Measure: Loan program report from Agricultural Best Management Practices Loan Program from MDA.
- Strategy: Identify policy options that will accelerate the reduction in the number of unsafe private wells.
 - Action: Clean Water Council Policy Committee will make annual policy recommendations.

Surface Water Protection and Restoration Vision: Minnesotans will have fishable and swimmable waters throughout the state.

Goal 1: Monitor, assess, and characterize Minnesota's surface waters.

- Strategy: Maintain consistent funding for a statewide monitoring system.
 - Action: Continue to monitor and assess on 10-year cycle and for emerging contaminants.
 - Measure: Completion of second monitoring and assessment cycle.
 - Measure: Reports on contaminants of emerging concern as needed or requested.
 - Action: Complete Total Maximum Daily Load (TMDL) reports as needed.
 - Measure: Publication of TMDL reports by the MPCA.

Goal 2: Protect and restore surface waters to achieve 70% swimmable and 67% fishable waters by 2034ⁱⁱ via by prioritizing and targeting resources by major watershed.

- Strategy: Identify and refine strategies required to meet water quality standards in each HUC-8 watershed.
 - Action: Review and revise previously completed Watershed Restoration and Protection Strategies (WRAPS)
 - Measure: Completion of second generation of WRAPS.
 - Action: Quantify water storage needs and opportunities within each HUC 8 watershed.

- Measure: Acre feet storage goals are set for each watershed by 2026.
- Measure: Storage opportunities and hydrograph estimates are complete by 2028.
- Strategy: Prioritize waters for protection and restoration using comprehensive watershed management plans (One Watershed One Plan or other approved plans)ⁱⁱⁱ updated every ten years.
 - Action: Support local efforts to support those impaired waters that are closest to meeting state water quality standards.
 - Measure: Lists of "barely impaired" waters shared with local watersheds as they prepare comprehensive watershed management plans or other approved plans.
 - Measure: List of "barely impaired" waters that show improving trends on an annual basis.
 - Measure: Percentage of lakes meeting goal for recreation activities reaches 70 percent by 2034.
 - Measure: Percentage of rivers and streams meeting healthy fish community values reach 67 percent by 2034.
 - Action: Use the Watershed-Based Implementation Funding (WBIF) model to fund protection and restoration in watersheds that have an approved comprehensive watershed management plan or other approved plan.
 - Measure: Annual BWSR WBIF grant cycle.
 - Measure: Occasional review of allocation formula.
 - Action: Support efforts to protect those high-quality unimpaired waters at greatest risk of becoming impaired.
 - Measure: Comparison of "nearly impaired" waters from across the state identified by WRAPS.
 - Measure: Comparison of "nearly impaired" waters list with prioritized waters in comprehensive watershed management plans or other approved plans.
 - Measure: List of "nearly impaired waters" as well as healthy waters that see no change or no degradation on an annual basis.
 - Action: Restore and protect water resources for public use and public health, including drinking water.
 - Measure: List of waters with high public use that show improving trends or no degradation over time.
 - Measure: List of projects that show connection to Drinking Water Supply Management Areas (DWSMAs).
 - Action: Track completion of activities for priorities in each comprehensive watershed management plan
 - Measure: Pilot tracker tool developed to show implementation progress against goals, followed by regional and then statewide deployment.

Goal 3: Protect and restore surface waters to achieve 70% swimmable and 67% fishable waters by 2034 via through statewide, regional, or issue-specific programs that help meet water quality goals but are not necessarily prioritized and targeted according to geography.

- o Strategy: Enhance compliance for regulatory programs to accelerate progress
 - Action: Maintain compliance rates for subsurface sewage treatment systems (SSTS) at 80 percent with a stretch goal of 90 percent.
 - Measure: MPCA Annual SSTS Report.
 - Action: Reduce risk of stormwater contaminants entering surface water.
 - Measure: Point source discharge permits incorporate gains from stormwater pollutant reductions.
 - Measure: Minnesota Stormwater Manual updated regularly.
 - Action: Support small unsewered or under-sewered communities for long-term wastewater solutions.
 - Measure: Small or no backlog for Small Community Wastewater Treatment.
 - Action: Support wastewater treatment plants and stormwater projects seeking to meet tighter Total Maximum Daily Load requirements.
 - Measure: Adequate support of Point Source Implementation Grant (PSIG) program.
 - Action: Ensure adequate monitoring of NPDES permits.
- Strategy: Support competitive grants for protection and restoration activities.
 - Action: Provide opportunities for competitive grants that meet statewide priorities.
 - Measure: Annual grant funding round by BWSR for competitive grants to address statewide priorities.
- Strategy: Identify policy options that will accelerate the protection and restoration of surface waters.
 - Action: Clean Water Council Policy Committee will make annual policy recommendations.
 - Measure: Biennial policy recommendations.

Vision: All Minnesotans value water and take actions to sustain and protect it.

Goal 1: Build capacity of local communities to protect and sustain water resources. Goal 2:

- Strategy: Maintain and increase capacity of Minnesotans to improve water quality.
 - Action: Support local efforts to engage farmers in water quality efforts.
 - Measure: Number of farmers and acres enrolled in Minnesota Agricultural Water Quality Certification Program, with a target of 5,100 farms and 6.5 million acres by 2030.
 - Measure: Number of acres with continuous living cover, with a target of five million acres by 2034.
 - Measure: Targets for nutrients in the state's Nutrient Reduction Strategy.
 - Measure: Number of acres enrolled in permanent easements.
 - Measure: Increasing number of renters and non-operating landowners participating in water quality efforts.
 - Measure: Net increase in number of structural conservation practices.
 - Action: Engage private well users to test their wells for five major contaminants.
 - Measure: Higher percentage of private well users choose to test their wells and mitigate any issues.
 - Action: Engage non-traditional audiences with water planning and implementation.
 - Measure: Collaborations with state agencies and their equity efforts.
 - Measure: Evaluation of We Are Water exhibit and its outreach.
 - Measure: Non-state or local government interested parties participating in local water management planning and watershed implementation funding requests.
 - Action: Support local efforts to engage lakeshore property owners and private landowners.
 - Measure: Number of property owners enrolled in Lake Steward program.
 - Measure: We Are Water annual report.
 - Measure: Additional in-lake treatment and restoration projects proposed and funded for competitive grants.
 - Measure: Protection of 100,000 acres and restoration of 100,000 acres in the Upper Mississippi River headwaters basin by 2034.
 - Measure: Council recommends shoreline protection policy.
 - Action: Engage chloride users.
 - Measure: Number of snow removal contractors and public works departments who are Smart Salting certified and make measurable reductions in chloride use.
 - Measure: Number of communities educating their residents about inefficient water softeners increases.
 - Measure: No increase in chloride concentration in metro rivers and streams over time.

- Action: Engage water managers statewide.
 - Measure: SWCDs, WDs, WMOs, drainage authorities, highway departments, municipalities, and counties have the skills necessary to carry out programs to meet water quality goals.
- Action: Support innovative efforts that accelerate progress toward clean water goals.
 - Measure: Acres of income-generating continuous living cover planted.
 - Measure: Stormwater research identifies scalable solutions for pollutant reduction to assist MS4 permittees.
- Action: Plan for funding resilience after expiration of Legacy Amendment in 2034.
 - Measure: New funding sources (e.g., fees, bonding, general fund) identified that would be required to maintain support
 of critical programs.

ⁱ Minn. Stat. 114D.30.

ⁱⁱ The 2014 Clean Water Road Map is the source of these targets.

^{III} While most watersheds in the state now use One Watershed One Plan, there are also approved plans used under previous statutes, especially in the metro area. "Comprehensive local water management plan," "comprehensive water plan," "local water plan," and "local water management plan" mean the plan adopted by a county under sections 103B.311 and 103B.315. "Watershed management plan" is defined in sections 103D.401.

CLEAN WATER FUND Communications Plan

February 2024

Table of contents

Executive summary	3
Purpose and background	4
Communications audit and recommendations	5
Key messages	6
Communication goals	6
Five-year action plan	14

Executive summary

The purpose of this inter-agency Clean Water Fund communications plan is to streamline strategic communication actions across all administering agencies to deliver clear, consistent messaging about fund outcomes and achievements.

The Minnesota Legislature has tasked the Clean Water Council (via Minnesota § 114D.35 Subd. 3) with developing strategies for informing, educating, and encouraging the participation of residents, stakeholders, and others. State agencies are responsible for implementing these strategies. In 2021, a work team comprised of representatives from the Minnesota Pollution Control Agency (MCPA), Minnesota Board of Water and Soil Resources (BWSR), and the Clean Water Council (CWC) worked with a vendor to audit existing communications actions and products related to the Clean Water Fund. This audit established a framework for a collaborative, action-based communications plan.

This plan identifies key messages and inter-agency goals, plus best practices, strategies, and tools to assist with plan implementation.

Key messages

- Minnesotans value clean and healthy water for our way of life, our health, vibrant communities, and strong economy.
- Activities supported by the Clean Water Fund make Minnesota a national leader in protecting healthy waters and restoring impaired rivers, lakes, or streams.
- **Continued investments in water quality are** critical to preserve Minnesota's most important natural resource and protect against threats caused by population growth, increased pollution, and climate change.

Inter-agency goals

- **Goal 1 (internal):** Create structures that ensure consistency in communications and access to information about Clean Water Fund outcomes.
- **Goal 2:** Clearly demonstrate how Clean Water Fund investments improve water quality in Minnesota.
- **Goal 3:** Increase participation in Clean Water Fund work and opportunities.

Purpose and background

Minnesota's Clean Water Fund supports efforts to protect, enhance, and restore water quality in the state's lakes, rivers, and streams and to protect drinking water sources.

Thirty-three percent of the sales tax revenue generated by the Clean Water, Land, and Legacy amendment is allocated to the Clean Water Fund. The fund has supported over 3,300 projects using \$1.23 billion in appropriations between 2010 and 2021. The existence of this funding source — and the successful programs and projects it has funded — makes Minnesota a national leader on water quality improvements.

The Clean Water Fund is administered by seven partner agencies:

- Minnesota Board of Water and Soil Resources (BWSR)
- Metropolitan Council (MC)
- Minnesota Department of Agriculture (MDA)
- Minnesota Department of Health (MDH)
- Minnesota Department of Natural Resources (DNR)
- Minnesota Pollution Control Agency (MPCA)
- Public Facilities Authority (PFA)
- University of Minnesota

These agencies collaborate on fund goals and initiatives through the Interagency Coordinating Team (ICT). This team strives to coordinate clean water activities to achieve outcomes, leverage funding opportunities, enhance institutional knowledge for future water management activities, and provide consistent information to the public. The Clean Water Council (CWC) recommends how to spend the Clean Water Fund every two years during the Minnesota legislature's budget cycle.

Each contributing agency approaches fund administration with its own mission, goals, and strategies. While this provides a well-rounded approach, it also creates challenges.

The **purpose** of this inter-agency Clean Water Fund communications plan is to streamline strategic communication actions across all administering agencies to deliver clear, consistent messaging about fund outcomes and achievements.

This plan maps a vision to improve Clean Water Fund communications over the next five years by identifying best practices, defining core audiences, refining key messages, providing shared assets and templates, and outlining concrete action steps.

Communications audit and recommendations

Background

This communications audit* provides a foundation for developing a comprehensive communications plan. The audit's goal is to provide information about attitudes, perceptions, and the effectiveness of the Clean Water Fund's current communication efforts among different stakeholder groups.

The audit process involved:

- Analyzing existing communications and outreach materials to identify opportunities for improvement
- Virtual listening sessions with Clean Water Fund stakeholders to gather input on current actions
- One-on-one interviews with Clean Water Fund stakeholders to determine what's working, and what needs work

Key findings and recommendations

- Strengthen communications systems
- Centralize access
- Create consistency
- Broaden audience base
- Communicate with perceptions and core messages in mind

* Full audit report available upon request.

Key messages

Overarching theme:

The Clean Water Fund helps protect and restore Minnesota's drinking water sources, lakes, streams, and groundwater.

Key messages:

Key messages

- (Water is important): Minnesotans value our drinking water, lakes, streams, and groundwater and choose to invest in their protection through the Clean Water Fund. Water is a part of our identity and is essential to our health, environment, culture, and economy.
- (CWF is making a difference): The Clean Water Fund enhances the protection of our pristine waters as well as the restoration of our degraded waters.
 - Agency and legislative audience: The Clean Water Fund enhances our water programs, which support protection of our pristine waters as well as the restoration of our degraded waters.
- (*This will take a long time*): We have degraded our waters over the last century. It will take a long time to restore our waters, but we are making faster progress because of Clean Water Fund.

Secondary messages

- (Everyone plays a role): Every Minnesotan has a role in ensuring our waters are safe and healthy for future generations.
 - We cannot pay our way out of our water problems. We need to make sustainable, systems-level changes in our decisions and actions to protect our waters.
- (Work is science-based): The Clean Water Fund supports strategic, long-term solutions that are grounded in science to offer the greatest impact.
 - The Clean Water Fund supports programs that assess the health and safety of our waters, identify threats to water quality and quantity, and implement research-based solutions.
- (CWF is maximizing the investment): Clean Water Fund programs extend across all of Minnesota's watersheds, aquifers, and communities. The Clean Water Fund leverages investments and partnerships at state, regional, and local levels to maximize their impacts.

Taglines

- Your Clean Water Funds at work
- Swimmable, fishable, drinkable
- Create your legacy
- Keep water clean, Minnesota
- Every drop counts

Communication goals

Goal 1 (internal)

Create structures that ensure consistency in communications and access to information about Clean Water Fund outcomes.

Key strategies

Build the CWF brand

Tactics:

- Common boilerplate language and taglines
- Common social templates and hashtags
- Non-traditional media platforms (Tiktok, Facebook, video, photography other platforms)

Centralize assets

Tactics:

- Create storytelling templates for Intra-agency use (email, social, newsletter/print)
- Website: Identify primary external location for info about Clean Water Council and success stories funded by the fund. Answer question about standalone website or maximizing existing online content.
- Communications gatekeeper: Identify individual leading the charge
- Create and implement processes and for interagency sharing of information/communications
 - Microsoft Teams?
 - o Contact list for comms contacts
- Make agency photo galleries accessible to relevant staff (i.e. MPCA flickr, DAM?)

Coordinate efforts

Tactics:

- Annual calendar to establish regular cadence of CWF successes
- Media events to publicize projects (launch and completion)
- Public relations campaigns in markets statewide
- Targeted and timely communications efforts during the legislative session

Goal 2

Raise the visibility of the Clean Water Fund by clearly demonstrating how investments improve water quality in Minnesota.

Key Strategies

Regularly share stories about CWF-funded projects and outcomes.

Tactics:

- A. Geographic Make it local.
- Identify places in the state where water quality has gotten worse and where it has gotten better (such as a lake being delisted from the Impaired Waters List)? Show residents there are direct impacts in "their backyard."
- Find examples of successful projects by legislative district.

B. Allies and key partners – Use the right messenger.

- Who is going to help sell the success of the CWF? These are the groups of people we want to supply with information and stories, and ask for their help to get it to their networks to their legislators etc. Groups such as:
 - Pheasants Forever (and other hook and bullet groups)
 - The Nature Conservancy (and other conservation groups)
 - Minnesota Corn Growers (and other Ag groups)
 - Land Stewardship Project (and other environmental groups)
 - League of Women Voters (civic groups)
 - Chamber of Commerce
 - Association of Minnesota Counties
 - MASWCD/MAWD (local government groups)
 - Minnesota Soil Health Coalition (farmer-led)

C. Attitudes/Values – Make it connect to what matters.

- Target informed residents who find value in clean water activities and identify where they get their information.
- Identify new 'customers' people to 'sell' on the importance of the Clean Water Fund and
 investing in water quality and identify where they get their information. This includes voters
 who weren't around in 2008 to vote for the 1st Legacy amendment such as young adults;
 immigrants (from other countries or other states)? Where do they get their information?
- Focus on connection of clean water to health, family, safety, climate.
- Consider when and with what audiences more thorough background information may be necessary about the history of the CWF. (Without the funding we could do.....)
- What does your research tell us about how messages are best receive? Who are the best messengers? What are different types of communications modes weren't available in 2008? Modes not available in 2008:

- Social channels (available but not widespread/used by professional organizations as commonly as today) – focus on infographics
- Blogs (medium of similar format)
- Digital billboards?
- **D.** Linking work of agencies Create stories that link work of multiple agencies. Highlight and brainstorm story ideas that achieve this.

Identify and execute interagency opportunities for communications/public relations/events.

Tactics:

- A. Create significant, proactive, positive media opportunities that tell the agency's story.
- B. Host at least four annual media events in various areas of the state to showcase success stories.

Goal 3

Increase participation in Clean Water Fund work and opportunities.

Key Strategies

Tactics

Geographic: make it familiar

Show examples of CWF-funded programs that a variety of Minnesotans would recognize in their communities.

- **Suburban homeowners:** The CWF funds Met Council grants for making irrigation systems and water appliances and fixtures more efficient, which reduces groundwater needs.
 - Examples: "Snapshot" of a homeowner who saved tens of thousands of gallons of water annually for their sprinkler system; case study of city that saved a large quantity of groundwater through appliance and fixture replacements (Woodbury, New Brighton)
 - Outlets: Suburban newspapers, Patch, realtor networks, MN Water Stewards listserv/Facebook groups (cities w/ grants already advertise for applications)
- **Metro city dwellers**: The CWF supports water quality projects that restore many degraded lands into recreational assets, green space, and habitat.
 - Examples: Daylighting of Trout Brook on St. Paul's east side; "Eco-Mosque" in Minneapolis; Rice Creek restoration in Arden Hills/Shoreview

- Outlets: Neighborhood newspapers; faith community networks; MN Water Stewards; parks and trails organizations
- **Small town residents**: The CWF supports safe public water supplies by identifying where contaminants could get in the water supply well(s) and working with surrounding landowners and property owners to reduce or eliminate the use of those contaminants (like nitrogen fertilizer)
 - Examples: Hazardous spill training for volunteer firefighters and sorbent materials in City of Dassel to address road and rail risks to DWSMA; City of Bovey for removal of underground storage tanks and remediate well casing issues
 - Outlets: Coalition of Greater MN Cities; League of Minnesota Cities; Regional/local newspapers; publications focused on rural small towns
- Non-farming/Non-operating landowners (NOLO): People who rent farmland to producers and ultimately have control over land use and conservation practices.
 - Examples: SWCDs working with NOLOs on ag BMPs; MAWQCP promoting a conservation lease
 - Outlets: Land Stewardship Project, Women in Ag Network, SWCD newsletters, MAWQCP networks
- **Farmers**: The CWF funds a wide variety of services for farmers that improve water quality and quantity, reduce weather/climate risks, and enhance cash flow. Programs include irrigation efficiency workshops, Minnesota Agriculture Water Quality Certification Program, nitrogen and pesticide testing, technical assistance, cost-share opportunities, and more.
 - **Examples**: Ask MDA and BWSR for the best examples (lots of good BWSR Snapshots)
 - Outlets: Producer groups (MN Farmers Union, MN Farm Bureau, Sustainable Farming Association of MN, Land Stewardship Project, MN Soil Health Association, NorthHarvest Bean Growers Association, MN Corn Growers Association, MN Soybean Growers Association, MN Sunflower Council, MN Association of Wheat Growers, MN Crop Production Retailers, Irrigators Association of MN, MN Milk Producers Association, Red River Valley Sugarbeet Growers Association, MBOLD, MDA's Emerging Farmers network); rural radio stations
- Lakeshore property owners: The CWF supports easements that protect untouched shoreline, and grants to local governments to restore degraded shoreline.
 - Examples: Chisago Lakes area (Chisago County), Serpent Lake (Crow Wing County), Lake Emily/Lake Minnewaska (Pope County)
 - Outlets: Lakeshore owners' newsletter via MN Lakes & Rivers Association; MN Coalition of Lake Associations; Conservation Volunteer; Cabin Life magazine; rural radio stations
- **Municipal employees**: The CWF funds training for local governments to use road salt more efficiently to keep chloride out of our lakes. The CWF also supports enhanced compliance with stormwater regulation to keep bad stuff out of storm drains.
 - Examples: Smart Salting training; water softener grants for chloride reduction; credit trading; support for new MS4 permit; stormwater research projects at U of M
 - Outlets: League of MN Cities; Coalition of Greater MN Cities; Minnesota Municipal Utilities Association; MN Association of Small Cities; MN Cities Stormwater Coalition; American

Water Works Association-MN Chapter; MN Wastewater Operators Association, American Public Works Association-MN Chapter

- **Businesses**: The CWF helps save businesses money on reduced salt use on pavement, puts degraded properties back into the economy, creates and enhanced habitat for fish and game, and helps water-based tourism.
 - Examples: Mayo Clinic de-icer reduction cost savings; hotel on pier in Duluth harbor due to St. Louis River AOC program; rock riffles replacing low head dams
 - Outlets: MN Realtors, MN Hospitality Association, MN Resort & Campground Association; hunting and fishing organizations
- Septic system owners: The CWF funds county inspections of septic systems, resulting in very high compliance rates, and provides grants to low-income households to upgrade their systems. This protects local drinking water and surface waters from bacteria.
 - **Examples**: Enhanced SSTS county inspection and low-income grant program
 - Outlets: MN Township Association, Cabin Life magazine, rural radio
- **Rural private well owners**: The CWF supports private well testing in priority areas of the state where water supplies are most vulnerable to contamination from nitrogen and pesticides. Agencies then advise landowners how to protect their drinking water.
 - Examples: Pilot testing programs in three western counties and through Olmsted/Goodhue Counties in 2021
 - **Outlets**: MDH has a network of partners; MN Well Owners Association
- **Sports fans**: Recognizable venues like Allianz Field have used the CWF to collect and treat stormwater on the site to use for irrigation. This helps the Mississippi River and reduces the need for treated public water. Public golf courses and ballfields have also used this stormwater for irrigation.
 - **Examples**: Allianz Field rainwater harvesting and irrigation reuse system
 - Outlets: Professional soccer fan chat groups/web site/magazines/talk radio, MN State High School League
- Water recreation people (anglers, hunters, boaters, skiiers, etc.): The CWF creates more fishable and swimmable water statewide
 - **Examples**: Rock riffles projects or other fish passage projects; CREP parcels
 - Outlets: Seeking out ideas from Council members; MN Deer Hunters Association; Pheasants Forever; Isaak Walton League; etc.
- Environmental group members: The CWF supports clean water in general
 - **Examples**: Forever Green Initiative; general benefits of all programs
 - Outlets: Conservation MN; MN Environmental Partnership; The Nature Conservancy; Freshwater; etc.

Behaviors: make them desirable

For all of the groups above, we can suggest to Minnesotans how they can complement CWF programs to help create their own legacy and make the value of the CWF go further.

- Homeowners using less chloride de-icer and replacing inefficient water softeners
- Farmers contacting the state or local SWCD about technical assistance opportunities or to consider water storage or easement
- Septic system owners getting their system inspected
- Private well owners getting their well water tested at MDH-recommended intervals
- Homeowners with in-ground sprinkler systems upgrade controllers to reduce waste
- Non-operating landowners contact MDA or an SWCD about conservation leases or enrolling in MAWQCP
- Homeowners becoming better stewards of their urban and suburban yards by keeping leaves and grass out of the storm sewer, installing rain gardens, or using rain barrels
- Lakeshore property owners taking action to protect shorelines and reduce stormwater runoff
- Snow removal contractors and public works departments enrolling in Smart Salting training
- Municipalities enacting ordinances and/or educating residents on water softeners, irrigation, water-friendly landscaping, chloride use, etc.

Five-year action plan

Expectations for agencies

Each member agency of the ICT is expected to participate in advancing the goals of this communications plan in the following ways:

- Designate one staff member to lead coordination with the ICT and its communications subcommittee and oversee execution of communications tactics outlined in this plan on behalf of the member agency.
- Actively participate in the ICT's communications subcommittee, with regular attendance at quarterly meetings.
- Contribute to centralized asset storage location, by sharing visual assets, success stories, and stakeholder names and contacts.
- Include boilerplate about Clean Water Fund (CWF) in all communications materials about projects and activities funded by the CWF.
- Utilize provided newsletter templates, social graphics/overlays, and other branded assets regularly in agency communications.
- Regularly harvest and identify stories from within the member agency that clearly demonstrate successful outcomes of CWF projects.
- Lead at least one public/media event each calendar year that promotes a success story for the individual member agency. These events can be combined to include more than one agency, but each agency should take the lead in at least one event.

Actions and deliverables

Actions and deliverables produced with the guidance of this plan will include efforts by individual agencies and inter-agency collaborative projects. This plan is written to be flexible and meet agency communications goals as new laws are written and new policies are drafted.

This plan defines the terms as follows:

- Actions: This term refers to both individual agency communications work and collaborative efforts among participating agencies.
 Examples include:
 - Events highlighting the importance of the CWF
 - Social media campaigns that raise the fund's public profile
 - Plan implementation actions such as incorporating key messages and goals into individual agency communication plans and strategies
- **Deliverables:** This term refers to concrete communication products produced by individual or collaborating agencies using guidance provided in this plan.

Examples include:

- Fact sheets describing the cumulative benefits of the CWF
- Web pages that offer a plain-language entry point for voters and the informed public

• Reports, such as the Clean Water Fund Performance Report

Agencies should work together to produce several joint actions and deliverables during each year of plan implementation. The Interagency Coordinating Team (ICT) will identify priority communication needs and provide guidance to agency communication directors to guide this work.

Opportunities for collaboration

Many natural opportunities for collaboration exist throughout the calendar year. CWF partner agencies should collaborate to identify annual dates/weeks of recognition that are logical instances in which our work overlaps. By leveraging these opportunities, we can maximize the impact by simultaneously sharing messaging promoting Clean Water Fund success and impact.

- First day of legislative session: Every other year there will be a class of newly elected legislators who likely have limited or no familiarity with the Clean Water Fund. This is a prime opportunity to shape the perspectives and priorities of important decision makers. The beginning of session is also a great chance to reconnect with Clean Water Fund "champions". CWF agencies can also use this as a chance to tease new legislative proposals that leverage previous or existing CWF investments.
- National groundwater awareness week: This is a great time for CWF agencies to partner to share success stories that show impact of CWF investments in protecting and enhancing groundwater quality. Agencies can also highlight ongoing challenges and barriers to additional progress.
- Earth Day/Week/Month: People from all walks of life view Earth Day as a chance to engage in environmentally geared (trash pick-up near a stream, tree planting, etc.). CWF agencies should use this as a chance to highlight an activity that agency staff or community partners and stakeholders are engaging in an activity that advances and promotes water quality. For example, agency staff could organize a clean-up a lake or stream that was aided by investments from the CWF. This activity could be photographed and used for social media content. (Typically, MPCA has led development of social graphics/overlays for Earth Month and shared with other agencies.)
- Landmark milestones of note (I.e. 50th anniversary of the federal Clean Water Act) : From time to time, notable anniversaries and milestones emerge as ideal times for collaboration. These offer opportune space for agencies to talk about how the CWF builds up or leverages other existing policies and resources that support clean water activities.
- **Fishing opener**: For many Minnesotans, the fishing opener represents an exciting changing of the seasons and beginning of the outdoor fishing and boating season. Investments from the Clean Water Fund make these recreational activities possible. Agencies should partner with the Governor's office and DNR to use this platform to tell the CWF story.
- **Climate week**: Annually, the MPCA plans a series of events during climate week. Partner agencies should use this time talk about how our changing climate further demonstrates the need to make ongoing investments to preserve, protect and enhance water quality. Highlighting the risks that more frequent and more severe storms pose to water quality. Also, a potential chance to showcase successful efforts to manage stormwater and mitigate impacts of climate change.

Opportunities Calendar

Event/Opportunity	Date (2022 Example)
MN Legislature 1 st Day of Session	January 31
DNR Water Roundtable	TBD
World Wetland Day	February 2
National Groundwater Awareness Week	March 6-12
International Day of Action for Rivers	March 14
1 st Day of Spring	March 20
International Day of Forests	March 21
Arbor Day	April 10
Tax Day	April 15
Earth Day	April 22
Soil and Water Stewardship Week	April 25- May 2
Statehood Day	May 11
Fishing Opener	May 14
MN Pollinator Week	June 19-25
World Conservation Day	July 28
Labor Day	September 5
First Day of Fall	September 22
MN Climate Week	September 18-24
World Water Monitoring Day	September 18
World Habitat Day	October 3
Pheasant Opener	October 16
Halloween	October 31
Election Day	November 8
Thanksgiving	November 24

2024 (Year 1):

Launch: Launch this plan in collaboration with a statewide campaign to promote the 50th anniversary of the Clean Water Act. Assets are being developed by MPCA; will be shared in ICT and distributed to all partner agencies. This can begin a steady cadence of strategic communications outlined in this document. This campaign will be central to a longer-term campaign that will evolve over time to focus on CWF and activities rather than the Clean Water Act.

2025 (Year 2):

Agencies should work together to implement this plan's first goal: Create structures that ensure consistency in communications and access to information about Clean Water Fund outcomes.

Each participating agency should strive to use key messages where applicable in their agency's communications products and outreach materials. In addition to this implementation work by individual agencies, agencies should communicate with each other and via the Interagency Coordinating Team (ICT) to hone opportunities for collaboration, including joint social media campaigns and events.

2026 (Year 3)

Agencies should work together to implement this plan's second goal: Clearly demonstrate how Clean Water Fund investments improve water quality in Minnesota.

With internal structures established in the plan's second year, agencies should shift their focus to collaborative efforts to demonstrate the benefits of investing in clean water. This may include a focus on inter-agency deliverables such as joint fact sheets and webpages showing the cumulative benefits of all agencies work leveraging the Clean Water Fund (e.g. total number of projects, total number of delisted water bodies since the CWF became available, etc.). Agencies should work together to leverage existing data to paint a statewide picture of how the Clean Water Fund has improved Minnesotan's lives.

2027 (Year 4)

Agencies should work together to implement this plan's third goal: Increase participation in Clean Water Fund work and opportunities.

Participating agencies should focus on engagement in the plan's fourth year. This may include joint events and social media campaigns that leverage common hashtags and taglines, such as:

- Hashtags: #CreateYourLegacy #MNCleanWaterFund #CleanWater4MN
- Taglines: Your Clean Water Funds at Work; Create Your Legacy

Agencies can use the stakeholder groups and strategies identified in Goal #3 to tailor the plan's key messages to specific audiences.

2028 (Year 5)

The plan's final year should focus on sustained implementation, inter-agency collaboration and evaluation of plan successes. Evaluation may take the form of focus groups, stakeholder surveys, and opportunities for implementers (agency communications staff, ICT members, CWC members) to provide feedback on the plan's user-friendliness and outcomes produced. This evaluation will help inform future communications plans and next steps for inter-agency communications work related to Minnesota's Clean Water Fund.

2024 CLEAN WATER FUND PERFORMANCE

February 2024

More information about the measures summarized in this publication can be found on the Minnesota's Legacy website at www.legacy.leg. mn/funds/clean-water-fund.

Project Team

Reid Christianson (MDA) Bill Dunn (MPCA) Annie Felix-Gerth (BWSR) Mary Juhl (BWSR) Steve Kloiber (DNR) Kim Laing (MPCA) David L. Miller (MPCA) Alycia Overbo (MDH) Gabriel Posteuca (MPCA) Paul Putzier (DNR) Lanya Ross (MCES) Jen Schaust (MDA) Udai Singh (BWSR) Azra Thakur (MDH) Brad Wozney (BWSR)

Clean Water Fund Interagency Coordination Team

Tannie Eshenaur (MDH) Andrea Fish (BWSR) Jeff Freeman (PFA) John Jaschke (BWSR) Peder Kjeseth (MDA) Jason Moeckel (DNR)

Sam Paske (MCES) Richard Jess (DNR) Glenn Skuta (MPCA) Judy Sventek (MCES) Margaret Wagner (MDA)

Designers

Vicki Heagerty (MDA) Kabao Her (MDA)

This can be made available in other formats, including Braille, large type, computer disk or audio tape, upon request.

Minnesota Board of Soil and Water Resources (BWSR) Minnesota Department of Natural Resources (DNR) Minnesota Department of Agriculture (MDA) Minnesota Pollution Control Agency (MPCA) Minnesota Department of Health (MDH) Minnesota Public Facilities Authority (PFA)

CLEAN WATER FUND PERFORMANCE

2024 CLEAN WATER FUND REPORT CARD
INVESTMENT MEASURES 10
Total dollars appropriated 1
Total dollars invested by watershed
or statewide
Total dollars awarded15
Dollars leveraged12
SURFACE WATER QUALITY MEASURES 19
SURFACE WATER QUALITY MEASURES 19 Major watersheds monitored 20
Major watersheds monitored 20
Major watersheds monitored20Watersheds monitored by local partners22
Major watersheds monitored20Watersheds monitored by local partners22Nonpoint source BMP implementation26
Major watersheds monitored.20Watersheds monitored by local partners22Nonpoint source BMP implementation26Municipal infrastructure project implementation29
Major watersheds monitored20Watersheds monitored by local partners22Nonpoint source BMP implementation26Municipal infrastructure project implementation29Surface water health3
Major watersheds monitored.20Watersheds monitored by local partners21Nonpoint source BMP implementation26Municipal infrastructure project implementation29Surface water health.3Lake and stream water quality34

DRINKING WATER AND
GROUNDWATER MEASURES 49
Source water protection plans
and implementation
Source water protection grants
Nitrate monitoring and reduction by local partners . $\ 54$
Contaminants of emerging concern 58
County geologic atlases
Long-term monitoring network wells 63
Unused groundwater wells sealed 65
Land use in Drinking Water Supply
Management Areas
Groundwater quality
Source water quality for community
water systems
Nitrate and arsenic concentrations in new wells $\ 76$
$Groundwater \ levels \ \ldots \ \ldots \ \ldots \ . \ . \ . \ . \ . \ . \ .$
Water efficiency
SOCIAL MEASURES AND EXTERNAL DRIVERS

	• •			-	•	•	•	•			•	•	•	•	•	•	•	•	•	•	• •
Social measures	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85
External drivers	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	88

INTRODUCTION

Water is part of our Minnesota identity. Minnesota is known as the Land of 10,000 Lakes, is home to Lake Superior, features many streams and wetlands, and has extensive regional aquifers. Minnesotans value their drinking water, lakes, streams, and groundwater highly, and showed their commitment when they supported the Clean Water, Land and Legacy Amendment in 2008. The Clean Water Fund enables protection of our pristine waters, the restoration of our degraded waters, and the protection of our groundwater and drinking water sources.

The Clean Water Fund enhances our water programs and accelerates our progress in meeting clean water goals. Between 2010 and 2023, Minnesota's Clean Water Fund:

- Awarded more than 4,271 grants to protect and restore Minnesota's water resources.
- Delisted 81 lakes and streams from Minnesota's impaired waters list due to restoration activities.
- Led to many more lakes having improving water quality trends than declining trends and maintained the quality of unimpaired waters.
- Issued more than 2,253 loans to landowners to prevent nonpoint source water pollution or solve existing water quality problems.
- Secured more than 941 easements that will permanently protect approximately 31,164 acres along riparian corridors and within wellhead protection areas, of which 23,830 acres were supported by Clean Water Funds.
- Repaired 881 subsurface sewage treatment systems that posed an imminent threat to human health.
- Upgraded 52 municipal wastewater treatment facilities, which reduced phosphorus discharges by over 316,000 pounds per year.
- Developed plans for nearly 800 out of the approximately 970 community water systems in Minnesota to protect their drinking water sources and awarded approximately 1,300 grants supporting local source water protection actions.

- Engaged 84,000 visitors in the We Are Water MN exhibit at 30 sites statewide since 2016. Of those surveyed in 2022, 88% indicated an increased awareness of threats to our water resources.
- Incentivized the replacement and assessment of water-using devices with nearly 15,000 water-efficient alternatives through city and township programs, when implemented save an estimated 204 million gallons of water each year.
- Offered free nitrate testing to over 90,000 well owners in areas vulnerable to nitrate contamination and 32,000 of those well owners ultimately participated in the program.
- Certified nearly 1,000,000 acres of Minnesota farmland across more than 1,400 farms through the state's Agricultural Water Quality Certification Program.
- Added pesticide water quality monitoring for approximately 140 additional pesticide compounds in vulnerable groundwater and surface water resources statewide.
- Cooperated with tribal governments on monitoring and assessment programs, strategy development for meeting water quality standards, detection of unregulated contaminants, and comprehensive planning.
- Supported statewide testing for PFAS in drinking water, which covered over 99% of Minnesotans that drink water from a community water system.

The Clean Water Fund leverages investments and partnerships at state, regional, and local levels to maximize their impacts. The Clean Water Fund is often the funding source for science, planning, and public engagement that leads to larger investment from other sources. In fiscal years 2010-2023, each dollar in Clean Water Fund spending leveraged another \$1.06 in additional funding. In addition, the Clean Water Fund supports programs that provide multiple benefits other than just water quality, such as improved habitat, reduced financial risk for farmers, climate resiliency, greater household affordability for drinking water and sewage treatment, flood reduction, and more.

In 2023, Minnesota completed a major milestone with the completion of the final Watershed Restoration and Protection Strategy (WRAPS) for all 80 watersheds. The WRAPS resembles a "to-do list" or blueprint for activities that must happen for waters in a major watershed to meet water quality standards. The state continues to scale up its program for Groundwater Restoration and Protection Strategies (GRAPS). These strategies form a "to-do" list for each watershed to use to meet water quality standards over time. Clean Water Fund initiatives have helped characterize our groundwater resources that allowed for sound science-based policy and regulation during recent droughts. Finally, the Fund recently supported pilot projects to two groups of rural counties to offer free private well testing, one for nitrate and one for arsenic, and options for alternative water for income-qualified households. These pilots form the basis for the state's upcoming response to recent federal requirements to support drinking water needs for private well users with high nitrate levels in southeastern Minnesota.

As Minnesota looks back at the progress in water protection over the last two years, and looks ahead to current and future challenges, we also celebrate the landmark legislation that supports our work with the 50th anniversaries of the passage of the Clean Water Act and Safe Drinking Water Act. This historic legislation is a cornerstone of our work, and through the collaborative and collective actions under the Clean Water Fund, Minnesotans are working to ensure water is safe and healthy for future generations.

Minnesota's Clean Water mission and goals

The Clean Water Council developed the mission, goals, and objectives with stakeholder involvement in an effort to align activities implemented with Clean Water Fund dollars to the Clean Water Legacy Act. For the 2020 Performance Report and subsequent reports, we began to better align measures with the mission, goals, and objectives the Clean Water Council developed (shown below).

Mission

Protect and restore Minnesota's waters for generations to come.

Goals and objectives

- Drinking water is safe for everyone, everywhere in Minnesota
- Protect public water supplies
- Ensure private well users have safe water

Groundwater is clean and available

- 2
- Improve and protect groundwater quality
- Ensure sustainable long-term trends in aquifer levels
- Avoid adverse impacts to surface water features due to groundwater use

Surface waters are swimmable and fishable

- Prevent and reduce pollution of surface waters
- Maintain and improve the health of aquatic ecosystems
- Protect and restore hydrologic systems

Minnesotans value water and take actions to sustain and protect it

- Build capacity of local communities to protect and sustain water resources
- Encourage systems and approaches that support, protect, and improve water
- Provide education and outreach to inform Minnesotans' water choices
- Encourage citizen and community engagement on water issues

About this report

This report provides a high-level overview of Minnesota's performance so far in restoring and protecting the quality of the state's surface water, groundwater and drinking water resources using Clean Water Fund dollars. Published every two years, the report highlights:

- Action measures to track where agency and partner activities are occurring with Clean Water Fund dollars to protect surface, groundwater, and drinking water, including how effectively agencies are completing the work to achieve clean water goals.
- Investment measures to track where Clean Water Fund money is spent and how spending patterns are changing, including tracking where other funds are leveraged to extend the work done to meet clean water goals.
- Outcome measures to track progress on improving the quality of our surface, groundwater, and drinking water.

The report is not a complete assessment of all work achieved with Clean Water Legacy funds, either at the state or local level, but shows key activities that represent the overall Clean Water Fund investment. All of the water agencies have other performance measures, but the measures included in this report are chosen to represent progress over the 25 years of the amendment and concerns known to be of public interest.

Report organization

Measure profiles provide a snapshot of how Clean Water Fund dollars are being spent and what progress has been made. These profiles are organized into three sections: investment measures, surface water quality measures, and drinking and groundwater protection measures. The report displays how spending and progress are occurring across Minnesota, to the extent that statewide data are available. Each measure profile includes the following:

The measures used in this report are designed to remain constant over time to make it easy to identify where change is occurring. However, at times, measures may need to be modified as our scientific knowledge expands and new, more effective approaches are developed. The procedures used to produce the measures in this report and how they have changed over time, are documented in a separate metadata document available on the Legacy website.

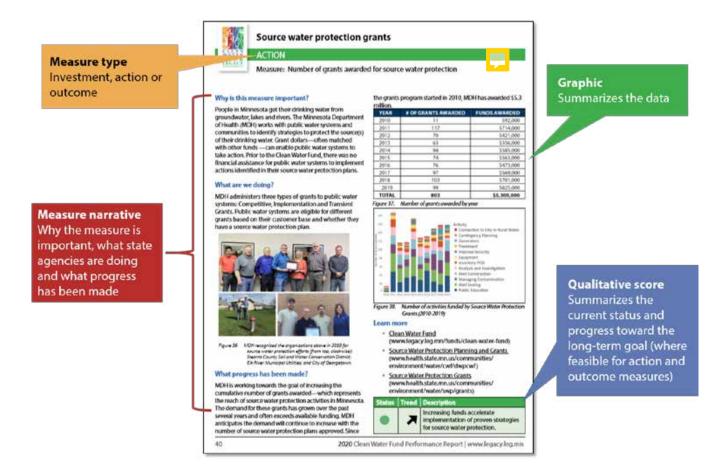


Figure 1. Each measure profile includes measure type, measure narrative, a graphic, and a qualitative score.

2024 CLEAN WATER FUND REPORT CARD

Minnesotans care deeply about the state's natural resources and cultural heritage. In 2008, we voted to increase our sales tax and pass the Clean Water, Land and Legacy Amendment, providing 25 years of constitutionally dedicated funding for clean water, habitat, parks and trails, and the arts.

The following report card highlights work done using Clean Water, Land and Legacy Amendment dollars for Minnesota's many water resources. The Report Card tracks a suite of performance measures that are described in the full report that follows. It provides a qualitative assessment of how well actions are being implemented and what outcomes are being achieved.

Measures are scored according to their status as of the end of fiscal year 2023 (FY23) and for their trend over time. Scores were developed using data-informed professional judgment of agency technical staff and managers. The legend shows the symbols used to describe how measures were scored.

Act	ion Status Legend	C	Outcome Status Legend	Trend Lengend			
SYMBOL	MEANING	SYMBOL	MEANING	SYMBOL	MEANING		
	We are making good progress/ meeting the target		Water quality is high – we are on track to meet long-term water resource needs		Improving trend		
	We anticipate difficulty; it is too early to assess; or there is too much variability across regions to assess		and citizen expectations Water quality needs improvement or it is too early to assess – it is unclear if we will meet long-term water resource needs	•	No change Declining trend		
_	Progress is slow/we are not meeting the target; or		and citizen expectations; and/or water quality varies greatly between regions		Not enough		
	the activity or target is not commensurate with the scope of the problems		Water quality is under intense pressure – long-term water resource needs and/ or citizen expectations exceed current	NEI	information to determine trend at this time		
			efforts to meet them				

Investment	Measures
------------	----------

	MEASURE	STATUS	TREND	DESCRIPTION
	Total Clean Water Fund dollars appropriated by activity	\$1.8B has been appropriated to the Clean Water Fund from FY10-25, ranging from \$157M in FY10-11 to \$318M in FY24-25.	FY16-17: \$228M FY18-19: \$212M FY20-21: \$261M FY22-23: \$257M FY24-25: \$318M	For FY10-25, all 80 watersheds benefited from Clean Water Fund supported activities. Implementation activities comprise the largest portion of spending in watersheds statewide.
MEASURE	Total Clean Water Fund dollars per watershed or statewide by activity	All watersheds in the state are benefiting from local and statewide projects.		For FY10-25, all 80 watersheds benefited from Clean Water Fund supported activities. Implementation activities comprise the largest portion of spending in watersheds statewide.
2	Total Clean Water Fund dollars awarded in grants and contracts to non-state agency partners	\$777M was awarded in grants and contracts to non-state agency partners in FY10-23.		About 84% of grant and contract awards are for implementation activities; 43% of total FY10-21 appropriations were awarded to non-state agency partners.
	Total dollars leveraged by Clean Water Fund	\$630M was leveraged by Clean Water Funds in FY10-23, or \$1.06 for every implementation dollar invested.		Required Clean Water match funds were exceeded.

	MEACHDE	STATUS	TREND						
	MEASURE	STATUS	TREND	DESCRIPTION					
JRE	Percent of monitoring addressing state & local needs.		•	Nearly 40% of watersheds met goals for addressing state and local needs for monitoring. Ongoing program development is aimed to ensure local needs are identified for monitoring.					
MEASURE	Local partner participation in monitoring efforts.		•	As of 2023, all programs are meeting participatory goals.					
WE	Number of nonpoint source best management practices implemented with Clean Water Funding and estimated pollutant load reductions.			Although funding has increased and there is a continued increase in practices and projects being implemented, the total request for projects has remained significantly greater than available funds.					
	Number of municipal point source construction projects implemented with Clean Water Funding and estimated pollutant load reductions.		⇒	Pace of awards is linked to permit cycles, compliance schedules, and available Clean Water Funds. Applications exceed currently available funds even after significant infusion of bond funds over the past several cycles.					
	MEASURE	STATUS	TREND	DESCRIPTION					
	Rate of impairment/unimpairment of surface water statewide and by watershed: Stream aquatic life.		NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality poor.					
	Rate of impairment/unimpairment of surface water statewide and by watershed: Stream swimming		NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality is poor.					
	Rate of impairment/unimpairment of surface water statewide and by watershed: Lake swimming		NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality is poor.					
	Changes over time in key water quality parameters for lakes and streams: Lake clarity		NEI	Water quality varies greatly by region. There are more improving trends for lake clarity than there are declining trends. 60% of lakes with data, are either no trend or no change.					
	Changes over time in key water quality parameters for lakes and streams: Sediment in large rivers.		NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. There are more improving trends than declining trends in total suspended solids concentrations.					
	Changes over time in key water quality parameters for lakes and streams: Nitrate in large rivers.		NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. Concentrations in nitrate area increasing in major rivers.					
OUTCOME	Changes over time in key water quality parameters for lakes and streams: Phosphorus in large rivers.		NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. There are more improving trends than declining trends in phosphorus concentrations.					
0 0	Changes over time in key water quality parameters for lakes and streams: Pesticides in streams.		NEI	Detections in streams vary greatly as a result of hydrologic and agronomic conditions; exceedances of pesticide water quality standards are rare. Some "surface water pesticides of concern" are showing increasing detection frequency and concentrations.					
	Changes over time in key water quality parameters for lakes and streams: Pesticides in lakes.		•	Except for detecting chlorpyrifos in two lakes, and diuron in one lake, pesticide detections have been low relative to water quality reference values and generally stable since 2007.					
	Changes over time in key water quality parameters for lakes and streams: Chloride in streams and rivers.		\$	Concentrations are increasing in almost all metro area rivers and streams.					
	Number of previous impairments now meeting water quality standards due to corrective actions.		•	Although funding has increased and there is a continued increase in practices and projects being implemented, the total request for projects has remained significantly greater than available funds.					
	Mercury in fish.		•	Mercury in game fish is not yet responding to decreases in local mercury emissions, although these reductions likely have prevented a steeper upward trend. Global emissions have increased. The time lag between emission reductions and response is likely several decades. It is too soon to see a measurable response in fish mercury levels. Long-term and consistent monitoring is necessary to track changes in fish tissue.					
	Mercury emissions.			Significant progress has been made reducing mercury emissions from power plants. Emissions from mercury use in various products saw a decrease in emissions for the 2022 emission inventory, continuing a general downward trend since 2014. Conversely, emission from the mining sector have remained relatively steady since 2017 with a notable decline in 2020 of about 150 pounds as a result of an overall production decrease across the industry due to the COVID-19 pandemic. To meet Minnesota's 2025 emissions goal, significant reduction of mercury emission from the mining sector and further reduction of mercury use in various products will be necessary.					
	Municipal wastewater phosphorus discharge trend.			Significant phosphorus load reductions have been achieved through regulatory policy, infrastructure investments, improved technology, and optimization of operations.					

	MEASURE	STATUS	TREND	DESCRIPTION
	Number of community water supplies assisted with developing source water protection plans.			On track to meet goal of protecting all vulnerable systems under Source Water Protection Plans by 2020.
	Number of grants awarded for source water protection.			Increasing funds accelerate implementation of proven strategies for source water protection.
	Number of local government partners participating in groundwater nitrate-nitrogen monitoring and reduction activities.			New partnerships continue to be established for nitrate-nitrogen monitoring and reduction activities.
MEASURE	Number of new health-based guidance values for contaminants of emerging concern.	•	•	Completed 1 re-evaluation and 1 full evaluation, updated water guidance for 2 CECs, established a partnership with EPA to create a contaminant screening tool, provide technical assistance to understand and use water guidance values, authored 3 scientific publications.
ME	Number of counties completing a county geologic atlas for groundwater sustainability.	•		County atlases (including the geologic & groundwater atlases) are being completed at the planned rate, and counties continue to step up to participate. With continued and consistent funding, completion of geologic atlases for all counties is expected around 2035, and completion of groundwater atlases for all counties around 2040.
	Number of long-term groundwater monitoring network wells.			Many areas of the state still lack important groundwater information. Long-term ramp up in monitoring accelerated by Clean Water Fund investments is filling gaps.
	Number of unused groundwater wells sealed.		•	This initiative is completed.
	Land use in Drinking Water Supply Management Areas.		•	There is increasing research, engagement and activity to protect vulnerable areas in DWSMAs.
	MEASURE	STATUS	TREND	DESCRIPTION
	Changes over time in pesticides, nitrate-nitrogen, and other key water quality parameters in groundwater: Pesticides.		•	Variable trends for five common pesticides indicate a mixed signal. Low levels are frequently detected in vulnerable groundwater.
	Changes over time in pesticides, nitrate-nitrogen, and other key water quality parameters in groundwater: Nitrate-nitrogen statewide.		NEI	In many agricultural areas, drinking water supplies are not vulnerable to surficial contamination and most wells have low levels of nitrate-nitrogen. However, in vulnerable groundwater areas (the southeast, Central Sands and southwest), nitrate contamination is a significant concern.
	Changes over time in pesticides, nitrate- nitrogen, and other water quality parameters in groundwater: Nitrate-nitrogen southwest region.	•	NEI	In areas where groundwater is vulnerable, nitrate levels can be high. Of the 21 vulnerable townships tested in southwest Minnesota (2013-2019), 100% of them were determined to have 10% or more of the wells over the nitrate-nitrogen 10 mg/L standard.
ME	Changes over time in pesticides, nitrate-nitrogen, and ther key water quality parameters in groundwater: Nitrate-nitrogen Central Sands.		•	Trend data from the Central Sands Private Well Network shows a slight downward trend in the 90th percentile . However, township testing data show a high level of nitrate in some vulnerable areas in the Central Sands.
OUTCOM	Changes over time in pesticides, nitrate-nitrogen, and other key water quality parameters in groundwater: Nitrate-nitrogen southeast region.		•	Trend data from the Southeast Minnesota Volunteer Nitrate Monitoring Network shows no change. However, township testing data show a high level of nitrate in some vulnerable areas in southeast Minnesota.
	Changes over time in source water quality used for community water supplies.			Current risk management approaches for unregulated contaminants are more proactive and collaborative than the project-based approach of the past.
	Nitrate concentrations in newly constructed wells.		•	Since 1992, there has been a general increase in the percent of new wells that have nitrate levels above the drinking water standard.
	Arsenic concentrations in newly constructed wells.		•	The percentage of wells with arsenic above the drinking water standard has remained steady over the past 10 years. Evaluation of ways to reduce this percentage is ongoing and may take years before significant progress is made.
	Changes over time in groundwater levels.			Most observation wells show no significant change or an upward trend; many areas of the state lack important groundwater information while some areas experience declines.
	Changes over time in total and per capita water use.			There has been a slight improvement in water efficiency in recent years, although continued tracking is needed to determine the amount of impact from annual difference in weather versus changes in management.

S	MEASURE	STATUS	TREND	DESCRIPTION
IVER	Social measures.		NEI	In recent years, state agencies have developed and piloted the Social Measures Monitoring System – integrating social science into Clean Water Fund projects.
DR	External drivers.		⇒	The external drivers identified continue to alter land-water interactions across Minnesota, impacting how Clean Water Funds need to be invested.

Total dollars appropriated
Total dollars invested by watershed
or statewide
Total dollars awarded
Dollars leveraged

Total dollars appropriated

INVESTMENT

Measure: Total Clean Water Fund dollars appropriated by activity

Why is this measure important?

This measure illustrates the overall amount of Clean Water Funds allocated in a particular biennium and provides a breakdown of that funding in specific categories to demonstrate spending over time. It is the first of four financial measures, providing context for the others. It is the primary investment that enables resources to be spent on the actions that will ultimately help achieve outcomes.

What are we doing?

State agencies, local government and nonprofit organizations are spending Clean Water Funds on hundreds of projects to protect and restore the state's surface water, groundwater and drinking water.

Project categories include water-quality monitoring and assessment, watershed restoration and protection strategies, protection and restoration implementation activities, drinking water protection activities, and applied research.

What progress has been made?

Voter approval of the Clean Water, Land and Legacy Amendment increased the sales and use tax rate by three-eighths of one percent on taxable sales, starting July 1, 2009 through 2034. Of those funds, 33 percent were dedicated to the Clean Water Fund.

Over \$1.8 billion has been appropriated since the inception of the Clean Water Fund. Figure 2 shows the dollars appropriated by biennium for all funding source categories. Appropriation levels will vary by biennium due to changes in sales tax revenue. Figure 3 shows the appropriations organized by specific categories.

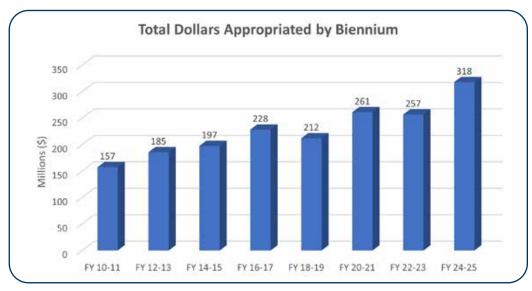


Figure 2. Total dollars appropriated by biennium

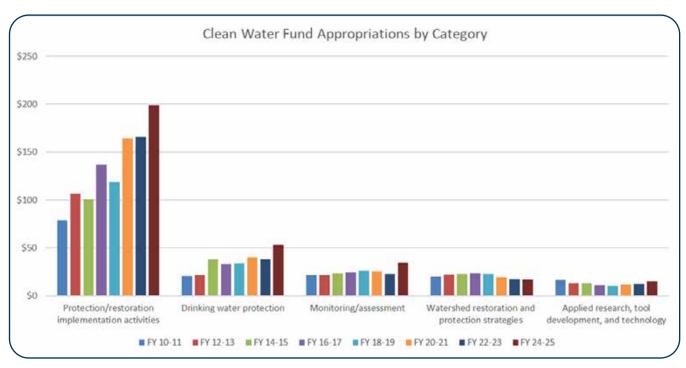


Figure 3. Clean Water Fund appropriations by category

Total dollars invested by watershed or statewide

INVESTMENT

Measure: Total dollars invested per watershed or statewide for monitoring/assessment, watershed restoration/protection strategies, protection/restoration implementation activities, and drinking water protection.

Why is this measure important?

Many Minnesotans want to know how much money from the Clean Water Fund is being invested in their backyard. There is also Clean Water Fund work that has a statewide benefit. This measure tracks Clean Water Fund investments in each major watershed in the state, as well as investments on statewide activities that benefit all watersheds. It shows how the funds are being allocated geographically to support specific activities in four major activity categories:

- Water quality monitoring/assessment
- Watershed restoration/protection strategy development
- Restoration/protection implementation activities
- Drinking water protection

What are we doing?

Thousands of Clean Water Fund-supported projects led largely by local governments are completed and underway across the state. Funded activities include:

- Implementation of practices to clean up wastewater, stormwater, and agricultural runoff
- Regular testing, assessment, and modeling of water quality in lakes and rivers to help gauge the effectiveness of clean water practices
- Strategy development and targeting of practices to guide effective watershed restoration and protection, as well as protection of drinking water and groundwater

State agencies provide technical assistance and administrative oversight for all these activities. They include: Minnesota Board of Water and Soil Resources, Department of Natural Resources, Department of Agriculture, Department of Health, Metropolitan Council, Pollution Control Agency, and Public Facilities Authority.

What progress has been made?

A total of \$641 million in completed projects has been expended for all categories of funding tied directly to specific watersheds and \$357 million connects back to statewide and regional efforts as a whole, for a total of \$998 million for this measure.

Spending varies among the watersheds, depending on the resources of concern, watershed size and complexity, and the technical and administrative capacities of partners in the watershed.

For Fiscal Years 2010-2023, Clean Water Fund allocations to surface water and drinking water projects are benefiting all 80 watersheds in Minnesota. As noted above, these activities are being implemented by local partners as well as state agencies.

Of the four activity categories, funding for implementation activities comprised the largest portion of spending statewide. However, the costs of implementation can vary significantly by watershed, depending on the type of projects and the problems being addressed.

Learn more

Find information on activities funded by the Clean Water Fund at: www.legacy.leg.mn/funds/clean-water-fund

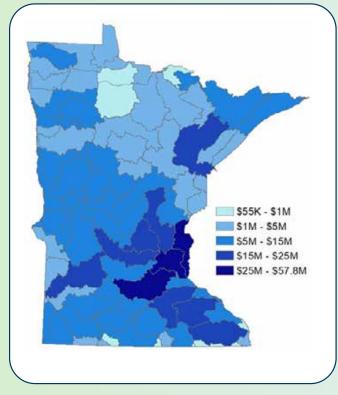


Figure 4. Combined funding for water quality monitoring, watershed restoration and protection strategies (WRAPS) development, implementation, and drinking water protection

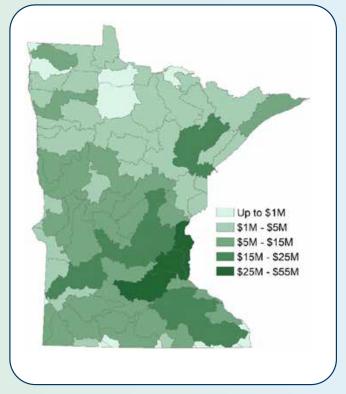


Figure 5. Funding for implementation and drinking water protection actions only

FY10-23 Clean Water Fund Dollars by Watershed

Figure 4 includes all reported financial information by major watershed for the following actions: water quality monitoring, watershed restoration and protection strategies (WRAPs) development, implementation, and drinking water protection. As illustrated in Figure 5, the majority of the funds are going towards implementation activities, which has been increasing over time.

Figure 5 shows a subset of the financial information that includes only implementation and drinking water protection actions. These maps represent projects and supporting activities that have been completed to date, as there are several active grants and contracts with prior appropriations which results are not represented in Figures 4 and 5. Smaller amounts of funds have been expended in some northern Minnesota watersheds where there is significant amount of protected public lands with relatively good water quality. Also, a few watersheds in northwestern Minnesota and along the lowa border are very small in size and as an artifact of the mapping process appear to have received less funds, but are similar in funds per unit area with adjoining watersheds.

Total dollars awarded

INVESTMENT

Measure: Total Clean Water Fund dollars awarded in grants and contracts to non-state agency partners.

Why is this measure important?

This measure tracks the amount of Clean Water Funds awarded in grants and contracts to external, non-state agency partners to conduct a wide range of clean water activities. The measure provides context on funding distribution between state, federal and local agencies to perform Clean Water Fund-supported work.

What are we doing?

Thousands of Clean Water Fund-supported projects, led largely by local government units, are underway and being implemented across the state. Non-state agency partners include cities, counties, soil and water conservation districts, watershed management organizations, federal agencies, universities, nonprofit organizations, and private consulting firms working with local and state agencies.

Funded activities include implementation of practices to clean up wastewater, stormwater and agricultural runoff. They also include testing water quality to determine the health of lakes and rivers, strategy development to guide effective watershed restoration and protection, and implementation of source water protection plans for drinking water. Groundwater monitoring is also funded through Clean Water Fund dollars and is used to ensure drinking water and groundwater protection. For all actions taken by local government units and other partners, state agencies provide monitoring activities, development of watershed protection and restoration strategies, as well as technical assistance and administrative oversight. The agencies include Minnesota Board of Water and Soil Resources, Department of Natural Resources, Department of Agriculture, Department of Health, Metropolitan Council, Pollution Control Agency, and Public Facilities Authority.

What progress has been made?

As shown in Figure 6, a total of \$777 million in Clean Water Funds were awarded to non-state agency partners from Fiscal Year 2010-23, with the largest share of that going to protection and restoration implementation activities. This represents nearly 43 percent of the total \$1.8 billion in Clean Water Fund appropriations for those years.

The balance of remaining appropriations is largely used by state agencies to provide statewide monitoring, watershed protection and restoration strategy development, technical assistance, conservation easements with private landowners, and oversight on Clean Water Fund-supported projects.

Figure 6. The percentage of total grant and contract awards (\$777 million) in FY10-23 for each major Clean Water Fund-supported activity. Allocations to implementation activities are expected to stay steady or grow in future years as more projects move from strategy development to implementation.

Learn more

Find more information about this measure and its data at www.legacy.leg.mn/funds/clean-water-fund.

STATUS	DESCRIPTION
\$777M was awarded in grants and contracts to non-state agency partners in FY10-23.	About 84 percent (\$653 million) of grant and contract awards are for implementation activities; 43 percent of the total \$1.8 billion in Clean Water Fund appropriations were awarded to non-state agency partners (FY10-23).

Dollars leveraged

INVESTMENT

Measure: Total dollars leveraged by Clean Water Fund implementation activities.

Why is this measure important?

This measure describes how many total dollars supplement the Clean Water Fund dollars invested in projects in a given year. Throughout Minnesota, the demand for funding to protect and restore the water resources far exceeds the available state dollars. The ability to use Clean Water Fund dollars to leverage local and other funds means millions more dollars are available – increasing the number of projects that are implemented and making projects more cost effective for communities.

What are we doing?

Clean Water Fund grant programs fund actions to prevent polluted runoff from fields, streets, lawns, roofs and other similar sources. They also fund improvements to municipal wastewater and stormwater treatment. Partnerships between state agencies, various local units of government, and the federal government are critical to implement these water quality improvement activities.

What progress has been made?

During Fiscal Years 2022 and 2023, more than \$125 million in state grants and loans was awarded to local governments (watershed management organizations, SWCDs, counties, etc.) for projects to reduce runoff from agricultural fields, streets, lawns and other similar sources. Local match and leveraged federal funds increased the project dollars available by \$73 million. During Fiscal Years 2022 and 2023, more than \$20 million in state grants was awarded to improve municipal treatment facilities and to help small communities invest in new infrastructure. Local match and other funding sources increased the project dollars by \$64.6 million.

As a result, during FY10-23, more than \$630 million dollars was leveraged by Clean Water Fund, or \$1.06 for every implementation dollar invested (Figure 7).

As shown in Figure 6, total dollars leveraged has remained relatively flat from FY10-17 compared to the increase of Clean Water Fund implementation funds. This is in part because BWSR has provided additional clarification to grantees on match requirements and tracking, which has resulted in more moderate amounts of leveraged funds being reported over time.

Note: In FY 18-19, changes to the Public Facility Authority grant programs resulted in a significant increase in leveraged funds for the biennium. For FY20-21, the MDA updated their formula for calculating leverage from the AgBMP Loan and the Forever Green Initiatives that more accurately calculated leveraged funds.

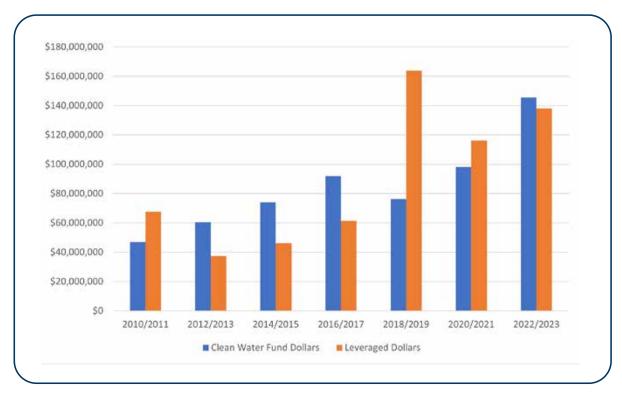


Figure 7. Total dollars leveraged by Clean Water Fund

Learn more

Clean Water Fund www.legacy.leg.mn/funds/clean-water-fund.

STATUS	DESCRIPTION
FY10-23, more than \$630 million dollars was leveraged by Clean Water Fund, or \$1.06 for every implementation dollar invested.	Required Clean Water match funds were exceeded.

SURFACE WATER QUALITY MEASURES 19

Major watersheds monitored	20
Watersheds monitored by local partners	22
Nonpoint source BMP implementation	26
Municipal infrastructure project implementation .	29
Surface water health	. 31
Lake and stream water quality $\ldots \ldots \ldots \ldots$	34
Waters restored	40
Mercury trends	42
Municipal wastewater phosphorus trend	46

Major watersheds monitored

ACTION

Measure: Percent of monitoring addressing state and local needs through surface water monitoring requests.

Why is this measure important?

Minnesotans want to know that their investments in water quality are making a difference. With the Clean Water Fund, Minnesota now has a comprehensive baseline assessment of conditions across the state. Similar to an annual visit to the doctor, this monitoring shows where work to protect or return the watersheds to healthy conditions is required. In Minnesota, the monitoring has shown that more restoration is necessary in the south and west, and more protection of resources in the north and east.

This data is essential to help develop local plans for targeted implementation activities and with time, will measure resulting changes in water quality. By returning to these watersheds to monitor after ten years, the Minnesota Pollution Control Agency (MPCA) can do a checkup and determine if the targeted implementation is resulting in changes in water quality. Without continued monitoring, there is no way to see if the rivers and lakes are meeting the goal of fishable and swimmable waters.

Figure 8. The MPCA and partner organizations evaluate water conditions, establish improvement goals and priorities, and take actions designed to restore or protect water quality on a 10-year cycle.

What are we doing?

The first round of watershed monitoring and assessment is complete. This provides the baseline for determining where waters need protection and restoration. The Watershed Restoration and Protection Strategy (WRAPS) document takes the monitoring data and turns it into the specific local strategies needed on the ground to protect and restore waters. This then feeds into local water planning and One Watershed One Plan (1W1P) to target local implementation activities in order to see improvement in water quality.

The MPCA is returning to watersheds to complete the second round of watershed-based lake and stream monitoring, which includes biological, fish contaminant, water quality, and pollutant load sampling. This monitoring is essential to measure progress in restoring and protecting lakes and streams. Additionally, the monitoring will fill gaps to guide local planning and implementation efforts and track long-term changes in water quality and biological communities over time.

As the MPCA returns to watersheds, the Agency has reduced essential core monitoring to provide monitoring capacity for other needs, such as to support permitting decisions, to address a local monitoring need, or address a gap identified in the WRAPS or 1W1P. MPCA has implemented this modified approach to planning and monitoring in watersheds for the next ten years of watershed monitoring around the state.

What progress has been made?

MPCA has developed a process to solicit other surface water monitoring requests and has worked with partners to determine monitoring needs in these watersheds. The process has been implemented in 44 watershed and adaptations have been made as the process matures. Requests vary across the state due to the unique aspects of each watershed and the needs of each watershed. For example, some watersheds are small or have few to no lakes and there are a few additional local requests. Others are very large, with extensive stream and lake networks and there are many additional local requests. In some, Agency proposed sites meet the needs and there are no additional local requests.

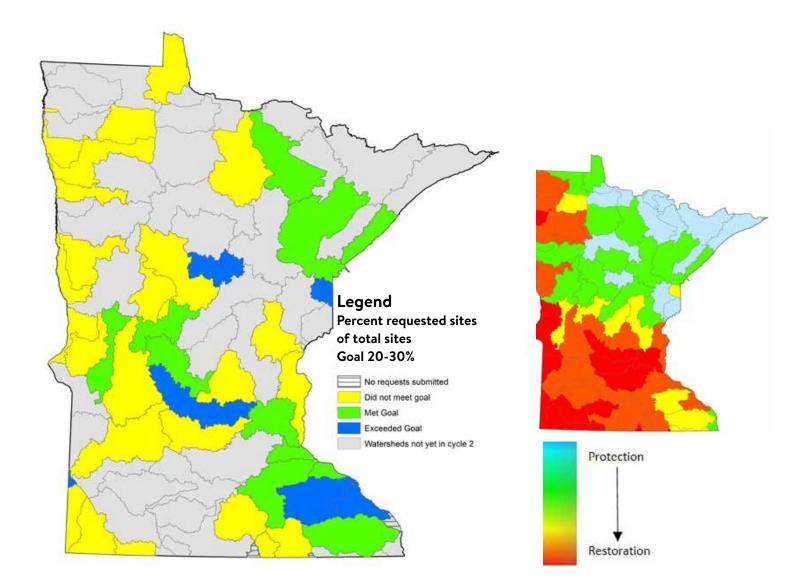


Figure 9. The entire state has completed baseline monitoring (inset map). The percentage of requested and approved surface water monitoring request sites relative to the total number of sites per monitoring year is shown on the larger map. Goal is to have 20-30% identified needs addressed through monitoring.

Learn more

- Find more information about this measure and its data at: <u>www.legacy.leg.mn/funds/clean-water-fund</u>.
- Find your watershed at: <u>www.pca.state.mn.us/business-with-us/watershed-information</u>
- Learn when the MPCA will be intensively monitoring your watershed: <u>www.pca.state.mn.us/index.php/water/water-</u> types-and-programs/surface-water/watershed-approach/index.html

STATUS	TREND	DESCRIPTION
	•	Nearly 40% of watersheds met goals for addressing state and local needs for monitoring. Ongoing program development is aimed to ensure local needs are identified for monitoring.

Watersheds monitored by local partners

ACTION

Measure: Local partner participation in monitoring efforts

Why is this measure important?

Clean Water Fund dollars enable intensive sampling and assessment of lakes and streams in all 80 major watersheds. This allows for better protection of Minnesota's clean waters and restoration of the polluted ones. As noted in statute, one of the purposes of the Clean Water Fund is to provide "...grants, loans, and technical assistance to public agencies and others testing waters..." This measure shows the participation of local partners, citizen volunteers, and students across Minnesota.

The Minnesota Pollution Control Agency (MPCA) alone cannot complete all of the monitoring necessary to comprehensively assess the waters in the state. Local partner participation is crucial to meet water monitoring strategy goals and to build a base of engaged participants for restoration and protection activities that follow the monitoring and assessment of waters.

What are we doing?

MPCA works with local organizations across the state to build capacity for monitoring efforts. Each year, MPCA prioritizes certain lake, river, and stream sites and works with local partners to award contracts to cover the costs of staff, training, equipment, and lab analysis of condition monitoring.

In this way, MPCA is ensuring that the most current and comprehensive dataset is available for assessment and for the development of protection and restoration strategies. By bolstering local capacity, expertise, and equipment inventory, these partners become well suited to carry out future monitoring efforts, such as subwatershed pollutant load monitoring to aid in restoration and protection strategies.

In addition, MPCA supports a volunteer water monitoring program for stream and lake clarity. Over 1,300 volunteers participate annually; the data supports assessment and trend development work and provides an engaged citizenry for environmental protection and restoration.

Clean Water Fund dollars also support a large environmental education effort in the Red River Basin through the Red River Watershed Management Board. This work exposes hundreds of students to local waterways, provides watershed training to teachers, curriculum development for elementary students, and engages students in biological and continuous monitoring.

What progress has been made?

MPCA has been able to maintain its goal of a minimum of 75 percent of the stream sites offered being picked up by local partners. The MPCA has seen a decline in the participation with lake monitoring through the SWAG program. This has been attributed to a lack of staff capacity at the local level to undertake the tasks associated with lake monitoring.

Figure 10. Local partners play a crucial role in assessing the health of lakes and streams in Minnesota. Lew Overhaug (Winona County) and Joe Coleman (MN Conservation Corp) collect profile measurements on Lake Winona. Image by Megan Kabele. Bethany Chaplin with the Crow Wing SWCD fills a sample bottle after collecting water from the Gull River. Image by Alicia Lang.

During 2022 and 2023, MPCA awarded 26 new SWAG contracts for monitoring activities across the state. The WPLMN monitoring program amended 16 contracts executed in the previous biennium for work through 2022 and 2024. Local partners who received contracts include a Tribal Bands, a Regional Policy Making Council, counties, educational institutions, joint powers, watershed districts, a non-profit, and soil and water conservation districts.

In the Red River Basin, the Red River Basin River Watch program continues to engage local students through programs like River of Dreams (ROD) and Red River Explorers Paddling Program. Measurable outcomes for both programs are detailed below.

ROD

- Delivery of classroom resources including books, art supplies, and canoes
- Completion of 44 classroom sessions
- Completion of 44 field sessions
- Web design and ROD database with canoe tracking information

Paddle Trips

- Completed six kayak and seven canoe ecological river excursions with 532 participants.
- Completed four observational reports.

Additional activities completed through the Red River Basin River Watch program include macroinvertebrate monitoring and Stem assistance.

In the Minnesota River Basin, the Minnesota River Basin River Watch Program was implemented in 2022 and 2023. During the 2022-2023 school year the Minnesota River Watch program worked both in the field and in the classroom with nearly 3,300 students from 22 high schools, 2 middle schools, and 10 elementary schools. Activities within the Minnesota River Basin are detailed below.

- Water quality monitoring using professional stateof-the-art electronic field meters along with collection of water and macroinvertebrate samples.
- River of Dreams workshops and day camps for elementary and middle school students.
- Student-led educational Community River Walks along the floodplain of the Minnesota River.

Volunteers through the Volunteer Water Monitoring Program provide data on over 1,500 lake and stream locations across Minnesota. These long-term networks have allowed the state to track trends and assess water quality.

Minnesotans benefit from many other local and volunteer monitoring efforts across the state. This interest in water resources has provided information to inform local action and engagement.

Learn more

- Find more information about this measure and its data at www.legacy.leg.mn/funds/clean-water-fund
- Find out when the MPCA will be intensively monitoring your watershed: <u>www.pca.state.mn.us/</u> <u>index.php/water/water-types-and-programs/</u> <u>surface-water/watershed-approach/index.html</u>
- Surface Water Assessment Grants: <u>Surface Water</u>
 <u>Assessment Grants | Minnesota Pollution Control</u>
 <u>Agency (state.mn.us)</u>
- Watershed Pollutant Load Monitoring Network: <u>Watershed pollutant load monitoring | Minnesota</u> <u>Pollution Control Agency (state.mn.us)</u>

STATUS	TREND	DESCRIPTION
	•	As of 2023; all programs are meeting participatory goals.

Nonpoint source BMP implementation

ACTION

Measure: Number of nonpoint source best management practices implemented with Clean Water funding and estimated pollutant load reductions.

Why is this measure important?

Minnesotans want their water resources protected and restored. Unfortunately, it can take many years for pollution control practices to result in clean water, particularly at the scale outlined in the Clean Water Road map. This measure helps us monitor progress toward the long-term goal of clean water by tracking the actions of people and organizations to implement best management practices, in cities and on the farm. This measure also tracks the estimated amount of pollution those management and conservation practices are expected to reduce.

What are we doing?

The Board of Water and Soil Resources (BWSR) is the primary state agency responsible for nonpoint source implementation and operates in partnership with local partners. Local governments—cities, watershed districts, counties, and soil and water conservation districts— are leading both cleanup and protection efforts across the state. They are working directly with communities, individual landowners, and various nonprofit organizations to implement best management practices. These practices include reducing polluted runoff from city streets, agricultural fields, and feedlots; stabilizing stream channels; and upgrading septic systems. See BWSR Clean Water Fund Stories site for more information [https://bwsr.state.mn.us/ your-clean-water-funds-work-0].

The Minnesota Agricultural Water Quality Certification Program (MAWQCP) is a statewide voluntary opportunity for farmers and agricultural landowners to take the lead in implementing conservation practices that protect our water. The MAWQCP brings together producers with local soil and water conservation district staff and agronomy professionals to address the risks to water quality based on a whole-farm assessment. Farmers and landowners who implement and maintain approved farm management practices are certified and in turn obtain regulatory certainty for a period of ten years. Certified producers may use their status to promote their business as protective of water quality, and producers interested in becoming certified also receive priority status for technical and financial assistance. Importantly, independent analysis from Minnesota State Agricultural Centers of Excellence shows MAWQCP-certified farms also average 20% higher net profit than non-certified farms.

Table 1. FY10-23 BWSR Grant Funded Project Outcomes

Major Basin	Number of Mapped BMPs	Sediment Reduction (T/yr)	Phosphorus Reduction (Lbs/yr)
Minnesota	5,320	77,613	99,421
Upper Mississippi	5,953	130,762	54,371
Missouri	682	17,706	14,767
Rainy River	103	1,103	1,435
Red River	6,348	111,287	89,596
St. Croix	948	27,569	15,488
Lower Mississippi	2,926	43,121	57,355
Lake Superior	155	2,653	2,512
TOTALS:	22,435	411,814	334,944

What progress has been made?

With funding from the Clean Water Fund, the implementation of practices to improve and protect Minnesota's water resources has accelerated, as has the completion of Total Maximum Daily Load (TMDL) and Watershed Restoration and Protection Strategy (WRAPS) assessments that outline water quality needs. However, funding is not keeping pace with demand.

From 2010 to 2023 the Clean Water Fund has:

- Funded more than 4,271 grants to protect and restore Minnesota water resources.
- Issued more than 2,253 loans to prevent nonpoint source water pollution or solve existing water quality problems.
- Secured more than 941 easements that will permanently protect approximately 31,164 acres along riparian corridors and within well head protection areas, of which 23,830 acres were supported by Clean Water Funds.
- Repaired 881 imminent health threat subsurface sewage treatment systems.

The MAWQCP has awarded more than 560 supplemental grants directly to producers to implement conservation practices, totaling over \$2.2 million. An additional \$16 million in federal funding has been leveraged for conservation implementation grants through the USDA NRCS Regional Conservation Partnership Program (RCPP).

• 983,942 acres and 1,347 farms have been Water Quality Certified through the MAWQCP. These certifications have added more than 2,640 new conservation practices to the landscape.

In total, more than 22,435 best management and conservation practices have been installed through BWSR grant programs, resulting in a reduction of about 334,944 pounds of phosphorus and 411,814 tons of sediment across the state.

Learn more

- Clean Water Fund <u>www.legacy.leg.mn/funds/clean-</u> water-fund
- BWSR Clean Water Fund Stories <u>bwsr.state.mn.us/</u>
 <u>clean-water-fund-stories</u>
- Agriculture Best Management Practices (BMP) Loan
 Program www.mda.state.mn.us/agbmploan
- Minnesota Agricultural Water Quality Certification
 Program www.MyLandMyLegacy.com
- Best management practices map <u>https://public.</u> tableau.com/app/profile/mpca.data.services/viz/ CWAA-Bestmanagementpracticesbywatershed/ Bestmangementpracticesbywatershed

STATUS	TREND	DESCRIPTION
		Although funding has increased and there is a continued increase in practices and projects being implemented, the total request for projects has remained significantly greater than available funds.

Connection with Minnesota's Clean Water Roadmap

Goals: An 8 percent increase in the percentage of lakes with good water quality, and a 7 percent increase in the percentage of rivers and streams with healthy fish communities. This measure will support the Roadmap goals by tracking reductions in phosphorus and sediment as a result of implementation activities. State-funded nonpoint implementation projects and associated pollutant reductions are tracked and will be analyzed on the major river basin.

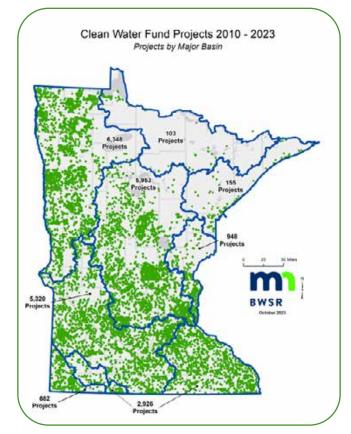


Figure 11. Clean Water Fund projects 2010-2023 (projects by major basin)

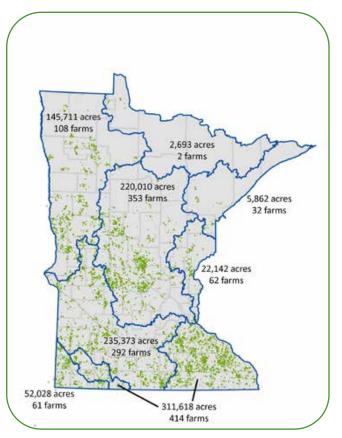


Figure 12. Minnesota Agricultural Water Quality Certification Program certified farms & acres, FY14-23.

Municipal infrastructure project implementation

ACTION

Measure: Number of municipal point source construction projects implemented with Clean Water funding and estimated pollutant load reductions

Why is this measure important?

Municipalities across Minnesota are required to upgrade treatment facilities, increase treatment of stormwater runoff, and replace failing septics in order to protect or restore our state's waters. These construction projects help meet required wasteload reductions through implementation of Total Maximum Daily Loads (TMDLs), phosphorus discharge limits and Water Quality Based Effluent Limits (WQBEL). These reductions are in addition to the major water quality benefits already achieved by municipalities through ongoing investments to replace aging wastewater infrastructure.

What are we doing?

Cities are required to implement upgrades to their wastewater and stormwater infrastructure to meet tighter discharge standards and specific water quality protection and restoration goals. Small unsewered communities are required to fix noncomplying individual sewage treatment systems or install community systems when new individual systems are not feasible. The Minnesota Public Facilities Authority (PFA) and the Minnesota Pollution Control Agency (MPCA) jointly administer programs that provide grants and loans from Clean Water Funds to help municipalities pay for these infrastructure improvements.

Figure 13. Municipal infrastructure projects by major basin, 2010-2023

What progress has been made?

Since 2010, Clean Water Fund dollars have helped 157 projects that implement wastewater and stormwater improvements, including:

- 57 wastewater construction projects to reduce phosphorus discharges to 1 milligram per liter or less, resulting in an estimated total phosphorus reduction of 190,194 pounds per year.
- 12 wastewater construction projects to reduce mercury discharges, resulting in an estimated total reduction of 5,372 milligrams per year.
- 2 wastewater construction projects that will provide treatment to reduce subsurface nitrogen discharges, resulting in an estimated total reduction of 5,818 pounds per year.
- 6 construction projects to reduce chloride discharge, resulting in an estimated total chloride reduction of 27,751 pounds per year.
- 10 stormwater construction projects that will provide treatment to reduce phosphorus discharges by an estimated 1,528 pounds per year and also result in reducing total suspended solids of 97,949 pounds per year.
- 39 small community technical assistance projects to help small unsewered communities evaluate treatment alternatives to address serious water quality and public health problems from noncomplying septic systems.
- 33 wastewater construction projects to help small unsewered communities solve their wastewater problems by connecting to existing municipal systems or building their own treatment systems such as community cluster mound systems,

resulting in estimated annual reductions in phosphorus of 5,277 pounds and nitrogen of 2,681 lbs. Over 1,000 non-compliant systems have been fixed so far.

Clean Water Funds are targeted to high priority projects based on the MPCA's Project Priority List which ranks projects based on water quality impacts and public health factors. Projects are designed to achieve specific effluent limits and wasteload reductions, and discharges are monitored to verify compliance.

The majority of projects to date have focused on reducing phosphorus discharges from wastewater treatment facilities.

Phosphorus is a nutrient which, when present in excessive amounts, is responsible for water quality impairments due to excess algal growth. River nutrient standards are being implemented across the state and Clean Water Funds are vital in helping to finance the required treatment upgrades. Continued appropriations will be needed to meet the increasing municipal demand for funding to improve treatment facilities across Minnesota.

For information on activities funded by the Clean Water Fund visit:

- www.legacy.leg.mn/funds/clean-water-fund
- Minnesota Public Facilities Authority (PFA): www.mn.gov/deed/pfa_
- Minnesota Pollution Control Agency (MPCA): https://public.tableau.com/app/profile/mpca.data. services/viz/CWAA-Wastewaterloadingbyfacility/ Wastewaterpollutantloading

STATUS	TREND	DESCRIPTION
	•	Pace of awards is linked to permit cycles, compliance schedules and available Clean Water Funds. Applications exceeds currently available funds even after significant infusion of bond funds over the past several cycles.

Surface water health

OUTCOME

Measure: Rate of impairment/unimpairment of surface water statewide and by watershed

Why is this measure important?

Many Minnesotans want to know if they can swim and fish in their favorite lake or stream. Before the Clean Water Fund, few lakes and streams had enough water quality information to determine if Minnesota's water goals were being met. In order to determine a waterbody's health, state agencies need basic water quality information that is obtained through monitoring. Without this basic information, work to develop strategies to reverse water pollution and to protect high quality lakes and streams would be delayed.

What are we doing?

Clean Water Funding significantly increased water monitoring and assessment activities. In 2008, the MPCA implemented the Watershed Approach. This is a 10-year cycle where approximately eight of Minnesota's 80 major watersheds are intensively monitored each year for stream and lake water chemistry and biology. These data from monitoring activities are then assessed to determine if goals to protect recreational activities such as fishing and swimming, as well as to safeguard fish and aquatic ecosystems, are being met. By considering all lake and stream data for a given watershed at one time, a complete picture of the watershed's overall health develops. State agency and local partners are working together to conduct the intensive monitoring, assess the resulting monitoring information, to develop restoration and protection plans, and assess progress towards water quality goals.

What progress has been made?

As of January 2024, all 80 watersheds have been assessed, and a quarter of the watersheds have had a second update. As monitoring and assessment continues across the state, the new focus is on measuring progress. The assessment results are located on the MPCA's Minnesota Watershed web page at <u>www.pca.state.mn.us/business-with-us/</u> watershed-information

Figure 14. MPCA staff sample streams and lakes across Minnesota to determine if recreation and aquatic life are supported.

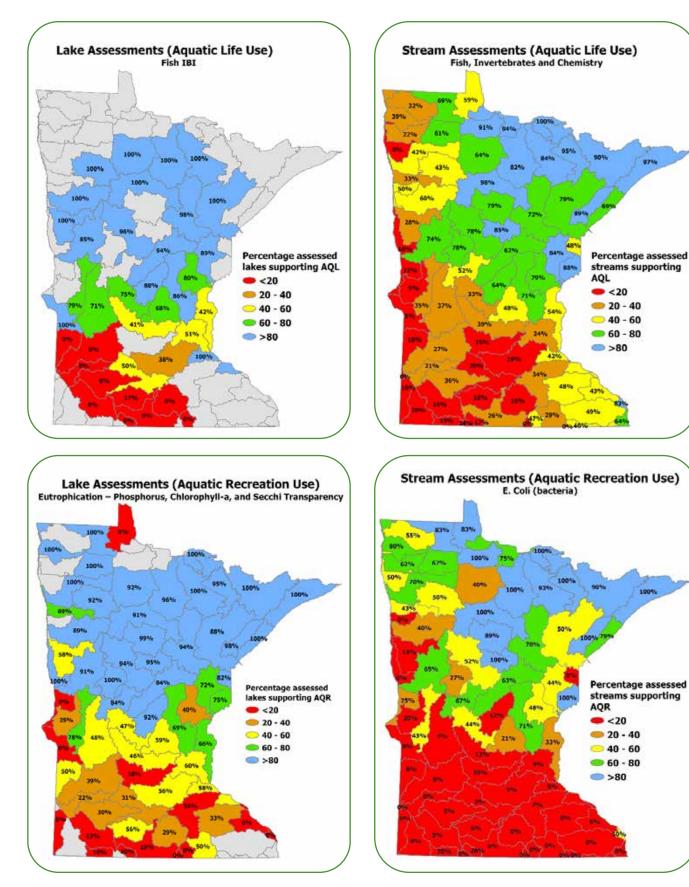


Figure 15. Streams are monitored for water chemistry, fish, and aquatic insects to determine if a stream has healthy aquatic ecosystems. Water monitoring information is also evaluated to determine if lakes and streams are suitable for swimming and other water recreation, and to determine whether consumption of fish should be limited.

Minnesota is working to increase the number of lakes meeting acceptable recreation values and the number of rivers and streams meeting their potential for a healthy fish community by 8% and 7% respectively. These goals were developed as a part of the Clean Water Fund Roadmap. This projects the estimated improvement anticipated with the funding made available for targeted implementation over the course of the Clean Water Fund.

While monitoring alone does not yield changes in environmental condition, it does provide the information necessary to target protection and restoration activities in the watershed. It also allows for progress to be measured, as practices are implemented (improvements) or as more land is developed (degradation).

Learn more

- Find more information about this measure and its data at www.legacy.leg.mn/funds/clean-water-fund.
- Find water quality assessment results for specific lakes and streams at <u>https://public.tableau.com/views/</u> <u>WaterQualityAssessmentResultsDataViewer/</u> <u>Designatedusetable?:language=en-US&:display_</u> count=n&:origin=viz_share_link
- Visit <u>www.pca.state.mn.us/index.php/water/water-</u> <u>types-and-programs/surface-water/watershed-</u> <u>approach/index.html</u> to find out when your watershed will be monitored.

STATUS	TREND	DESCRIPTION
Stream Aquatic Life	NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality is poor.
Stream Swimming	NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality is poor.
Lake Swimming	NEI	Water quality varies greatly by region. In general, good water quality remains where land is intact; where considerable alteration has occurred, water quality is poor.

Lake and stream water quality

OUTCOME

Measure: Changes over time in key water quality parameters for lakes and streams.

Why is this measure important?

Water quality in a lake or stream can change depending on a variety of factors ranging from rain quantity or temperature to runoff from agricultural areas, parking lots, roads and lawns. Because of factors like these, waters must be sampled for many years to detect water quality trends. Information gathered over the years is valuable because it gives insights into general water quality patterns and trends across the state. This helps determine where to target restoration and protection efforts and the effectiveness of current activities to restore polluted waters and protect those that have good water quality.

What are we doing?

Federal, state and local organizations have been monitoring Minnesota's lake and stream water quality for decades. Data were collected statewide, and the results of this work were widely reported to support various program goals. Taken together, Minnesota's water quality data paint a picture of general condition and changes in Minnesota's lakes and streams.

This measure tracks those water quality factors that tend to be the largest sources or indicators of pollution. Some of these parameters include:

Lakes

- Total phosphorus
- Chlorophyll-a (algae pigment)
- Secchi (transparency)
- Pesticides

Phosphorus, chlorophyll-a, and Secchi combined indicate whether lake water quality is good for recreation, such as swimming and wading. Pesticides can affect the survival rate of fish, insects, and their food sources.

Rivers and streams

- Total phosphorus
- Nitrate
- Total suspended solids (sediment)
- Chloride
- Fish and invertebrates (aquatic insects)
- Pesticides

Phosphorus, nitrate, suspended solids, chloride, and pesticides in high concentrations affect the survival rate of fish, and their food source, aquatic insects. All of these parameters combined measure the ability of the stream to support healthy fish populations and aquatic ecosystems.

Pesticides

The pesticide data will focus on the five pesticides designated as "surface water pesticides of concern" by the Minnesota Department of Agriculture (MDA), including the herbicides acetochlor and atrazine, and the insecticides chlorpyrifos, clothianidin and imidacloprid. Clothianidin and imidacloprid are neonicotinoid insecticides that were designated as "surface water pesticides of concern" in 2020. The MDA analyzed for 185 different pesticide compounds in 2022, with many compounds not detected at all and others detected infrequently.

Acetochlor, atrazine, and chlorpyrifos have MPCA water quality standards available. Currently, there is one river with an acetochlor impairment, and one lake and 12 rivers with a chlorpyrifos impairment. There are currently no atrazine impairments. The MPCA does not have water quality standards available for clothianidin and imidacloprid. To screen detections for these compounds, the MDA used the USEPA chronic aquatic invertebrate benchmarks. MPCA water quality standards are required for the determination of impaired waters.

In addition to analyzing data from existing sites, state and local partners are expanding the monitoring network to provide information in new areas or places facing new threats.

What progress has been made?

Expansion of the monitoring network is critical to evaluating water quality trends in the state of Minnesota. The following activities are key highlights:

- The Minnesota Pollution Control Agency's (MPCA) Watershed Pollutant Load Monitoring Network began in 2008 to understand long-term trends in water quality concentration and load around the state and currently includes 199 sites (see Flow corrected trends maps in Figures 17-19).
- Trend information is available in an interactive form and for download at: <u>https://public.tableau.</u> <u>com/app/profile/mpca.data.services/viz/Long-</u> <u>termStreamTrends/Pollutantconcentrations</u>

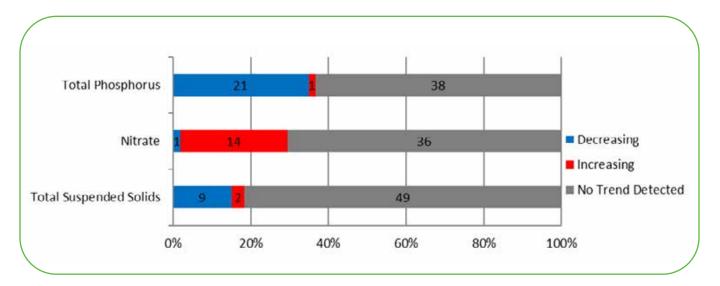


Figure 16. Where approximately ten years of streamflow and water quality data are available, phosphorus and total suspended solids concentrations in Minnesota's larger rivers are generally decreasing or staying the same, while nitrate concentrations are staying the same or increasing.

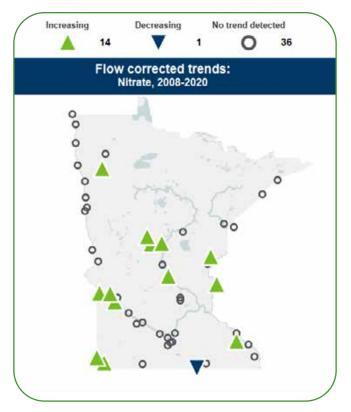


Figure 17. Nitrate trends are generally increasing throughout the state.

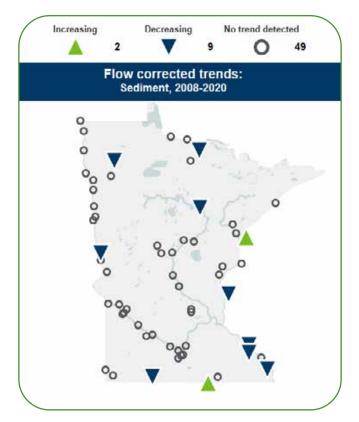


Figure 19. Where there are trends detected, the total suspended solids concentration trends across the state are generally decreasing.

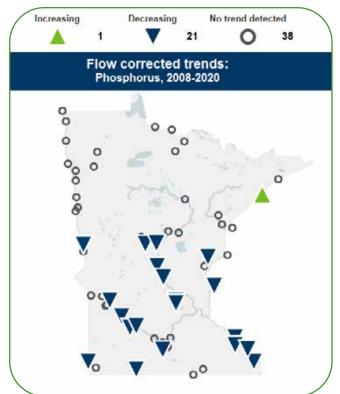


Figure 18. Phosphorus trends are generally decreasing across the state, especially in central and southern Minnesota.

The Minnesota Department of Agriculture conducts pesticide monitoring at approximately 60 agricultural and urban river and stream sites each year. Although low levels of select pesticides, and associated breakdown products, are detected frequently in some waterbodies, an exceedance of a water quality standard is rare.

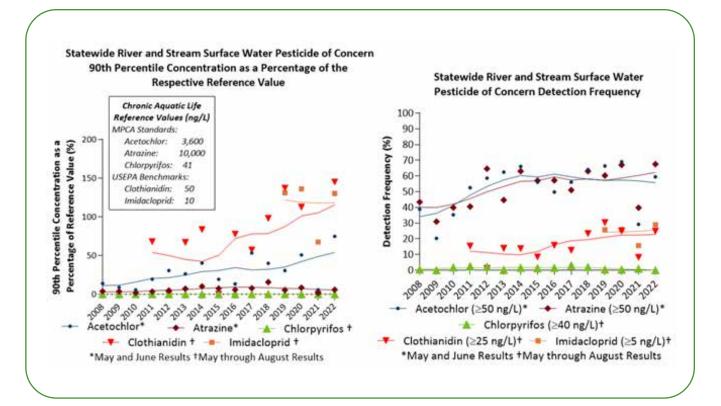


Figure 20 (left graph). Long-term pesticide monitoring is needed to assess concentrations relative to water quality reference values due to variability in climate, pesticide use, and agronomic factors. The MDA is presenting the 90th percentile concentration as a percentage of the applicable MPCA standard or USEPA benchmark to allow for comparison amongst each "surface water pesticide of concern". Clothianidin has the highest 90th percentile concentration relative to the reference value of all pesticides monitored in rivers. In recent years, the acetochlor 90th percentile concentration has been above 50% of the standard. Chlorpyrifos and imidacloprid have low detection frequencies (below 10%) however, both compounds are detected above their reference value each year. Most atrazine detections are well below their water quality standard.

Figure 21 (right graph). Long-term pesticide monitoring has allowed the MDA to assess detection frequency trends over time. The two herbicides, acetochlor and atrazine, have been detected more frequently than the three insecticide "surface water pesticides of concern".

Long-term pesticide monitoring is needed to assess concentrations relative to water quality reference values due to variability in climate, pesticide use, and agronomic factors. The MDA is presenting the 90th percentile concentration as a percentage of the applicable MPCA standard or USEPA benchmark to allow for comparison amongst each "surface water pesticide of concern". The 90th percentile concentrations of clothianidin and imidacloprid are greater than their USEPA benchmark. In recent years, the acetochlor 90th percentile concentration has been above 50% of the standard. The 90th percentile concentration of atrazine and chlorpyrifos are low relative to their appliable MPCA standards. Longterm pesticide monitoring has allowed the MDA to assess detection frequency trends over time. The two herbicides, acetochlor and atrazine, have been detected more frequently than the three insecticide "surface water pesticides of concern".

• Metropolitan Council monitors and analyzes water quality within the 7-county metropolitan area on lakes, river segments and area streams. In 2021 the Council completed an assessment of chloride in metro area streams, examining concentrations, loads, and long-term trends.

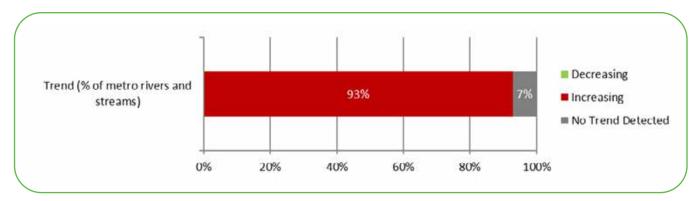


Figure 22. Among 28 rivers and streams in the Twin Cities metro area, including the Mississippi, Minnesota, and St. Croix Rivers, almost all are seeing a long-term increasing concentration trend in chloride.

• Participants in the Volunteer Water Monitoring Program have collected lake and stream water clarity information for decades. This program is vital in gathering data for long-term trend analyses. differences in water quality trends when comparing the long-term trend (more than 20 years) against the short-term trend (five to 15 years) for a given lake or stream.



Figure 23. Trends in lake water clarity between 1973 and 2022. While water clarity, in general, is poorer in southern Minnesota, increasing and decreasing lake clarity trends are fairly evenly scattered through north and south-central Minnesota.

- All of the watersheds have been comprehensively monitored, providing baseline data for assessments and a starting point for future trends. The second 10-year rotation of watershed monitoring began in 2018 and will provide information to measure progress.
- The MPCA participates in the National Aquatic Resources Surveys for lakes, including a partnership with MDA for pesticide work, and conducted state probabilistic surveys for streams, rivers, and wetlands, providing baseline information.

Though it is tempting to make sweeping statements, most often the story is a complicated mix of seeing improvements in some aspects of water quality. and declines in others. There can also be striking

Learn more

The MPCA has a rich array of graphics that can be produced for multiple combinations of waterbody types, pollutants/parameters, and monitoring approaches to provide a comprehensive picture of the state of Minnesota's water resources. See www.legacy.mn.gov/clean-water-fund.

STATUS	TREND	DESCRIPTION
Lake Clarity	NEI	Water quality varies greatly by region. There are more improving trends for lake clarity than there are declining trends. 60% of lakes with data, are either no trend or no change.
Sediment in Large Rivers	NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. There are more improving trends than declining trends in total suspended solids concentrations.
Nitrate in Large Rivers	NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. Concentrations in nitrate area increasing in major rivers.
Phosphorus in Large Rivers	NEI	Water quality varies greatly by region. Over 50% of streams have no trend detected. There are more improving trends than declining trends in phosphorus concentrations.
Pesticides in Streams	NEI	Detections in streams vary greatly as a result of hydrologic and agronomic conditions; exceedances of pesticide water quality standards are rare. Some "surface water pesticides of concern" are showing increasing detection frequency and concentrations while others are showing stable detection frequency and concentrations.
Pesticides in Lakes	•	Except for detecting chlorpyrifos in two lakes, and diuron in one lake, pesticide detections have been low relative to water quality reference values and generally stable since 2007.
Chloride in rivers and streams		Concentrations are increasing in almost all metro area rivers and streams.

SURFACE WATER QUALITY MEASURES

Waters restored

OUTCOME

Measure: Number of previous impairments now meeting water-quality standards due to restoration activities.

Why is this measure important?

This measure tracks how actions taken on the ground lead to successful restoration of impaired waters. "Impaired waters" are lakes, streams, or rivers that fail to meet water quality standards due to one or more pollutants such as nutrients, bacteria, mercury, and sediment. High levels of pollution in impaired waters can be unsafe for public health, fish and other aquatic life, as well as damaging to recreational opportunities.

Although Minnesota's impaired waters list is growing as the state monitors and assesses more watersheds, so too is the list of waters that are improving. Cleanup efforts can take several years to decades to complete, but there are many examples of impaired waters that have been restored.

What are we doing?

Pollution problems are initially identified through water quality monitoring, followed by studies and plans to determine what restoration activities are needed. Local governments – cities, watershed management organizations (WMO), counties and soil and water conservation districts (SWCDs) – are leading these cleanup efforts, working closely with organizations, landowners and citizens. These actions include upgrading wastewater treatment plants and septic systems; reducing polluted runoff from city streets, agricultural fields and feedlots; and implementing other on-the-ground best management practices (BMPs).

What progress has been made?

Ultimately, the target is to restore all impaired waters in Minnesota. The Minnesota Pollution Control Agency (MPCA) began listing impaired waters in 1992; since 2002, the agency has delisted 81 previously impaired lakes and river segments because they are now meeting water quality standards due to restoration activities.

A recent example is Bone Lake (lake id 82-0054-00) in Washington County, which was determined to be impaired for excess nutrients in 2004. A Total Maximum Daily Load (TMDL) study was developed in 2010 that set a 46% reduction goal for phosphorus needed to reach water quality standards. The Comfort Lake Forest Lake Watershed District took on the task of reducing roughly 820 pounds of phosphorus per year through an approach that included in-lake curly leaf pondweed management, as well many best management practices such as converting row crops to perennials, wetland restoration, carp barriers and carp harvesting, and other agricultural practices. In addition, upstream nutrient reductions from Moody Lake reduced the amount of phosphorus flowing into Bone Lake. Another key component of the project's success included a farmer lead council that assisted in outreach and advisory roles. When the lake was revisited in 2021 for the second cycle of assessments, total phospohorus was meeting standards and subsequently recommended for delisting with the 2024 impaired waters list.

Many other waters are improving

In most cases, the 81 success stories are the result of several years of diligent efforts at the local level both prior to and with Clean Water Funds.

Though not ready for delisting yet, many more lakes and streams are making restoration progress. Statewide, many have realized considerable improvements in recent years from work ranging from restoring wetlands and stabilizing streambanks to addressing septic system and feedlot issues. These actions result in improvements such as greater clarity and reduced algae. Although full restoration of Minnesota's waters will take time, Clean Water Fund investments are helping to accelerate the pace of these activities.

Learn more

- Clean Water Fund <u>www.legacy.leg.mn/funds/ clean-</u> water- fund
- Find your watershed and restoration projects at: Watersheds <u>www.pca.state.mn.us/water/</u> <u>watersheds</u>
- Minnesota's Impaired Waters List <u>www.pca.state.</u> mn.us/water/minnesotas-impaired-waters-list

Figure 24. Bone Lake in Washington County. Photo courtesy of the Comfort Lake-Forest Lake Watershed District.

STATUS	TREND	DESCRIPTION
	•	Although funding has increased and there is a continued increase in practices and projects being implemented, the total request for projects has remained significantly greater than available funds.

SURFACE WATER QUALITY MEASURES

Mercury trends

OUTCOME

Measure: Trends of mercury in fish and mercury emissions in Minnesota.

Why is this measure important?

Many Minnesota lakes and rivers contain contaminants, primarily mercury, which accumulate in fish and may pose a risk to humans as well as fish-eating wildlife. Because air pollution is the primary source of mercury, reducing mercury in fish requires large reductions in mercury emissions from sources in Minnesota and throughout the world. To evaluate if Minnesota waters are getting cleaner, we can track mercury emission levels over time through periodic emissions inventories and then measure how fish mercury levels respond. Because of the large variation in mercury concentrations from year to year within and among lakes, long-term trends of mercury in fish are necessary to see if pollution control efforts are sufficient.

What are we doing?

The Minnesota Department of Natural Resources (DNR) is leading efforts to track mercury levels in fish. The DNR collects fish from approximately 150 lake and river sites annually throughout Minnesota and prepares samples for testing. Each year, thousands of walleyes, northern pike, panfish, and other species are tested; Clean Water funding has expanded the number of sites tested each year. The Minnesota Pollution Control Agency (MPCA) and Minnesota Department of Health (MDH) select sites, with input from DNR, where samples should be collected; the Department of Agriculture's (MDA) laboratory analyzes the samples.

Decades of monitoring has shown that (1) most fish contain some mercury, (2) the average mercury level generally increases from south to north in Minnesota, and (3) panfish have lower mercury levels than top predator fish. This is the basis for MDH statewide guidelines for eating fish.

MPCA scientists have also evaluated whether the average concentration of mercury in walleyes and northern pike in Minnesota lakes is changing with time. The trend analysis initially focused on 1982 to the present and has been reported on in previous versions of the Clean Water Fund Performance Report. However, a re-examination of the data showed that fish sampling efforts prior to 1990 were concentrated on lakes in northern Minnesota, a region where mercury concentrations are generally higher than the state average (see #2 above), and that a long-term trend analysis could be biased if the pre-1990 samples were included. As a result, MPCA scientists are now only using walleye and northern pike collected since 1990 to determine how mercury concentrations in lakes are changing over time.

What progress has been made?

Figure 25 shows the current fish-mercury trend. Data from lakes starting with 1990 as the baseline year show an upward trend in average mercury concentration. The increase, 0.33% per year on average, is small but statistically significant from zero slope. Minnesota's water standard for mercury in edible fish tissue – 200 parts per billion (ppb) – is shown for reference on the figure, because it is the threshold above which lakes and streams are impaired. The standard protects humans for consumption of one meal per week of fish caught in Minnesota.

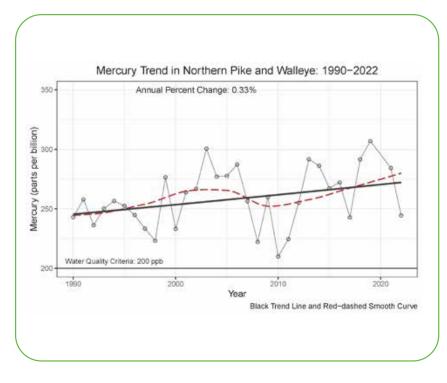


Figure 25. The current mercury in fish tissue trend from 1990 to 2022. The trend analysis focuses on Northern Pike and Walleye fish species. Lakes with at least five Northern Pike or Walleye were selected for mercury in fish tissue analysis. Trends are not evaluated for rivers because of the uncertainty of specific sample collection locations from year to year. The results of the analysis starting with 1990 as the baseline year show an upward trend in average mercury concentration. The increase of 0.33% (0.0033) per year on average, is small but statistically significant from the zero slope. Minnesota's water standard for mercury in edible fish tissue - 200 parts per billion (ppb) – is shown for reference in the figure, because it is the threshold above which lakes and streams are designated as impaired.

The fish-mercury trend is not tracking the trend in mercury emissions. Although there have been substantial decreases in mercury emissions in Minnesota (see below), the United States, and Europe, the estimated global mercury emissions between 2010 and 2015 increased 22 percent. Many monitoring studies have reported increasing mercury levels in fish and wildlife, especially at higher latitudes. It has been most commonly attributed to climatic changes in temperature and precipitation leading to increasing availability of mercury to food webs.

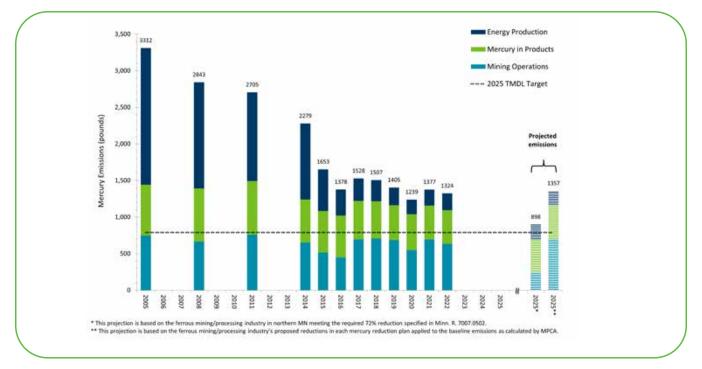


Figure 26. Mercury emissions from Minnesota sources; 2025 emission projections are based on measured and calculated inventories in previous years and the emission estimates contained in the mercury reduction plans submitted by the ferrous mining/processing facilities in northern Minnesota.

To achieve the necessary reductions of mercury in the fish, Minnesota's Statewide Mercury TMDL established a goal of a 93 percent reduction in mercury input from all human sources, both those inside and those outside Minnesota borders. Minnesota is implementing the TMDL to achieve the goal within the state by 2025. However, mercury pollution from outside the State still impacts fish and waterbodies in the State and reductions outside of Minnesota remain important. While the baseline year for Minnesota's Statewide Mercury TMDL is 1990, the year 2005 is used as the baseline year in the Implementation Plan for the TMDL. In order to apply Minnesota's reduction goals to national and regional emissions, the MPCA used 2005 as a baseline in its calculation due to the poorer quality and availability of emissions data for 1990. Within the TMDL implementation plan the final goal of 789 pounds is a 76% reduction from the 2005 baseline. There is also an interim 2018 goal of 1,464 pounds, a 56% (average) reduction from the 2005 baseline. These percentages (56% and 76% respectively) were applied to the 2005 regional and national emissions estimates to develop comparable regional and national "goals". Minnesota met our 2018 reduction goals, but more work is needed to meet the 2025 goal. Regional/ national mercury emission reductions have also surpassed the interim 2018 goal and nearly meet the 2025 goal already. Regionally, meaning the States of Minnesota, Michigan, Wisconsin, North Dakota, South Dakota, and Iowa, there has been a 75% reduction from the 2005 baseline (22,170 pounds in 2005 compared to 5,619 pounds in 2020). Nationally, there has been a 71% reduction from the 2005 baseline (225,491 pounds in 2005 compared to 64,451 pounds in 2020).

The Minamata Convention, entered into force in July 2017, provides the foundation for mercury emissions reductions globally. Rapid economic growth in Asia and India since 1990 has contributed to increased global emissions of mercury, despite mercury emissions in North America and Europe being cut in half since 1990. The United Nations Environment Program is negotiating reductions among all countries of the world through the Minamata Convention. Minnesota is doing its part and has taken significant steps towards achieving the identified mercury air emission reductions. Since 1990, removing mercury from latex paint, requiring mercury controls on municipal waste combustors, banning small onsite incinerators, mercury in batteries, and disposal of mercury-containing products has reduced mercury emissions in Minnesota by more than 85 percent.

To reach the 93 percent reduction goal, air emissions of mercury from all sources in Minnesota must be reduced to 789 pounds per year (Figure 26).

Learn more

- Mercury research and reduction initiative: <u>www.</u> <u>pca.state.mn.us/water/plan-reduce-mercury-</u> <u>releases-2025</u>
- Fish Consumption Advice: <u>www.health.state.mn.us/fish</u> (MDH) <u>www.dnr.</u> <u>state.mn.us/lakefind/index.html</u> (DNR)
- United Nations Global Mercury Assessment: www. unenvironment.org/explore-topics/chemicalswaste/what-we-do/mercury/global-mercuryassessment

STATUS	TREND	DESCRIPTION
Mercury in Fish	•	Mercury in game fish is not yet responding to decreases in local mercury emissions, although these reductions likely have prevented a steeper upward trend. Global emissions have increased. The time lag between emission reductions and response is likely several decades. It is too soon to see a measurable response in fish mercury levels. Long- term and consistent monitoring is necessary to track changes in fish tissue.
Mercury Emissions		Significant progress has been made reducing mercury emissions from power plants. Emissions from mercury use in various products saw a decrease in emissions for the 2022 emission inventory, continuing a general downward trend since 2014 Conversely, emission from the mining sector have remained relatively steady since 2017 with a notable decline in 2020 of about 150 pounds as a result of an overall production decrease across the industry due to the COVID-19 pandemic. To meet Minnesota's 2025 emissions goal, significant reduction of mercury emission from the mining sector and further reduction of mercury use in various products will be necessary.

SURFACE WATER QUALITY MEASURES

Municipal wastewater phosphorus trend

OUTCOME

Measure: Municipal wastewater phosphorus discharge trend.

Why is this measure important?

Phosphorus continues to be a significant challenge for meeting Minnesota's water quality goals. This measure shows trends in the amount of phosphorus being discharged from municipal wastewater treatment facilities. These regulated entities provide treatment for contaminated water from homes, businesses and industries. Wastewater treatment facilities are required to remove phosphorus and many other pollutants to levels that protect water quality.

What are we doing?

Regulatory policies implemented over the past 20 years (see graph next page) have resulted in the reduction of phosphorus discharged by wastewater treatment facilities. The treatment plant improvements needed to achieve these reductions are expensive, particularly for smaller cities. Clean Water Funds have helped cities make the required infrastructure investments to meet phosphorus wasteload reductions mandated through the implementation of Total Maximum Daily Loads (TMDLs) and Water Quality Based Effluent Limits.

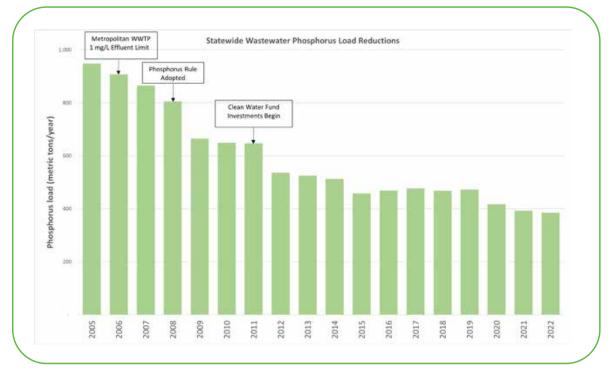


Figure 27. Reported statewide effluent phosphorus loads from wastewater sources since the year 2025. The reductions in phosphorus discharged to Minnesota waters reflect the cumulative effect of permitting policies, implementation of TMDLs, Clean Water Fund investments, and local efforts and investments for the protection and restoration of Minnesota's water resources.

Since 2010, almost \$58 million in Clean Water Fund grants have helped finance 52 municipal wastewater treatment upgrades to meet required phosphorus reductions. These grants leveraged an additional \$139 million in other funding for these infrastructure improvements. The availability of these Clean Water Fund grants help cities implement these treatment improvements on an expedited time schedule.

What progress has been made?

Over the past 10 years, municipal wastewater phosphorus discharges statewide have been reduced by 58 percent compared to the projected effluent loads that would have resulted from previous permitting policies. Overall, these combined efforts have led to a steady decline of phosphorus pollution and major improvements in water quality. Continued implementation of river nutrient standards is expected to result in further reductions in wastewater phosphorus loads in coming years. Fifty-two of those CWF awards have funded upgrades, consolidation projects or unsewered area connections affecting 50 wastewater treatment facilities. Figure 28 shows cumulative effluent phosphorus loads discharged by those 50 WWTFs. The blue columns represent phosphorus discharged by that select group of facilities in the years before the first CWF projects came online. The green columns represent phosphorus discharged by that select group of facilities in the years defore the first CWF projects came online. The green columns represent phosphorus discharged by that select group of facilities in the years after the first CWF project came online. The dotted lines represent the median cumulative effluent phosphorus load discharged by these facilities during those two respective time periods. The gap between the two dotted lines represents a cumulative effluent phosphorus reduction of 316,474 lbs per year.

In total, eighty-nine Clean Water Fund phosphorus reduction awards since 2010 have facilitated wastewater treatment facility upgrades, unsewered area improvements and municipal wastewater consolidation projects.

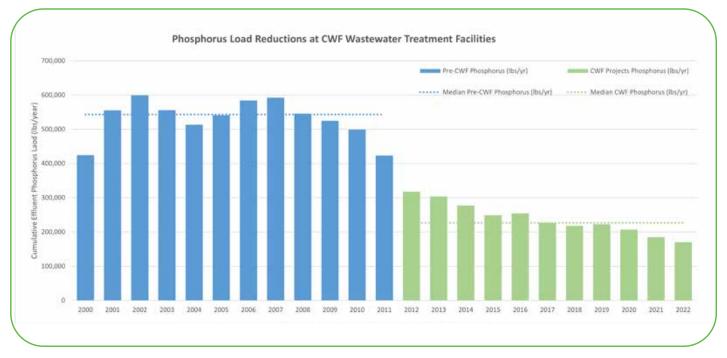
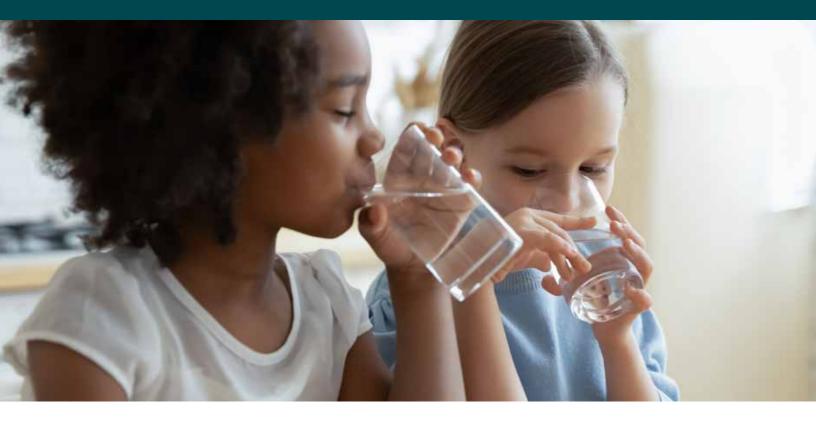


Figure 28. Phosphorus load reductions at Clean Water Funded wastewater treatment facilities.


Learn more

For information on activities funded by the Clean Water Fund visit:

- www.legacy.leg.mn/funds/clean-water-fund
- Minnesota Public Facilities Authority (PFA): www.mn.gov/deed/pfa
- Minnesota Pollution Control Agency (MPCA): www.pca.state.mn.us

STATUS	TREND	DESCRIPTION
		Significant phosphorus load reductions have been achieved through regulatory policy, infrastructure investments, improved technology, and optimization of operations.

DRINKING WATER AND GROUNDWATER MEASURES

Source water protection plans
and implementation
Source water protection grants 52
Nitrate monitoring and reduction by local partners
Contaminants of emerging concern 58
County geologic atlases 61
Long-term monitoring network wells 63
Unused groundwater wells sealed 65
Land use in Drinking Water Supply Management Areas
Groundwater quality
Source water quality for community water systems
Nitrate and arsenic concentrations in new wells 76
Groundwater levels
Water efficiency

DRINKING WATER AND GROUNDWATER MEASURES

Source water protection plans and implementation

ACTION

Measure: Number of community water supplies assisted with developing source water protection plans

Why is this measure important?

People in Minnesota obtain drinking water from groundwater, lakes, and rivers. The Minnesota Department of Health (MDH) works with public water systems and communities to protect the sources of their drinking water. Some examples of threats to drinking water sources include unused wells, urban pollutants, agricultural nutrients, storage tanks, lawn nutrients and chemicals, hazardous waste, and uncontrolled land development. Source water protection is important because it:

- Protects human health
- Keeps costs down-pollution prevention is often less expensive than remediation and treatment
- Ensures sustainable water supplies for future generationsat are we doing?

MDH requires source water protection planning for all community and noncommunity water systems that use groundwater, although the level of engagement varies based on their population. Additionally, some systems that use surface water have voluntarily developed Source Water Protection Plans. MDH is expanding the surface water program to provide more support to those systems.

Source Water Protection Plans identify the land area that supplies water, assess the vulnerability of that area to contamination, and identify actions to reduce the risk of threats. Protection areas, also known as drinking water supply management areas, cover approximately 1.2 million acres or 2 percent of the state's total land area. Within the protection areas, approximately 473,000 acres are vulnerable (at higher risk for contamination).

What progress has been made?

The program has delineated Drinking Water Supply Management Areas for all 500 community water systems in the state with vulnerable wells and is in the process of delineating areas for remaining non-vulnerable systems. An approved Drinking Water Supply Management Area is the first step on the ladder of progressive steps a system can take to protect the land area that supplies water to its source.

The Source Water Protection Program has several targets through 2034:

- Conduct ongoing source water protection planning and implementation for the state's 500 vulnerable community water systems;
- Complete first-generation Source Water Protection Plans for the remaining 420 community water systems by 2025;
- Complete revised Source Water Assessments for all 23 surface water systems by 2025;
- Complete source water intake protection planning by 2027; and
- Complete pilot source water protection planning for 10 non-community water systems with at-risk populations by 2027.

Progress towards these strategic goals can be seen in figure 29. The Source Water Protection Program has long been engaged in planning for vulnerable	Source Water Protection Plans and implementation for 500 vulnerable systems Source Water Protection Plans for 420 non-vulnerable systems	
and nonvulnerable community water systems using groundwater. Surface water planning is a newer effort and the program is gaining momentum.	Source Water Assessments for 23 surface water systems Surface Water Intake Protection Plans for 23 surface water systems	\sum
	Pilot Source Water Protection Plans for 10 noncommunity systems Figure 29. Progress on source water protecetion planning goals.	\supset

Learn more

Source Water Protection: www.health.state.mn.us/communities/environment/water/swp/index.htm

Status	Trend	Description
•	+	On track to meet planning goals for groundwater and surface water systems

Source water protection grants

ACTION

Measure: Number of grants awarded for source water protection

Why is this measure important?

People in Minnesota get their drinking water from groundwater, lakes, and rivers. The Minnesota Department of Health (MDH) works with public water systems and communities to identify strategies to protect the source(s) of their drinking water. Grant dollars – often matched with other funds – can enable public water systems to take action. Prior to the Clean Water Fund, there was no financial assistance for public water systems to implement actions identified in their Source Water Protection Plans.

What progress has been made?

MDH continues to work towards its goal of meeting community demand for Source Water Protection Grants. The demand for these grants has grown over the past several years and often exceeds available funding. MDH has leveraged other resources to meet increasing community demand for grants. MDH anticipates the demand will continue to increase with the number of Source Water Protection Plans approved. Since the grants program started in 2010, MDH has awarded \$9.1 million.

MDH recognized the community of Pipestone for its efforts to protect its source of drinking water with a Source Water Protection Award.

Year	Number of Grants Awarded	Funds Awarded
2010	11	\$92,000
2011	117	\$714,000
2012	70	\$421,000
2013	63	\$356,000
2014	94	\$585,000
2015	74	\$563,000
2016	76	\$473,000
2017	97	\$569,000
2018	103	\$701,000
2019	99	\$825,000
2020	108	\$754,000
2021	112	\$902,000
2022	118	\$973,000
2023	144	\$1,188,000
TOTAL	1,286	\$9.1 million

Table 2. Number of Grants Awarded by Year

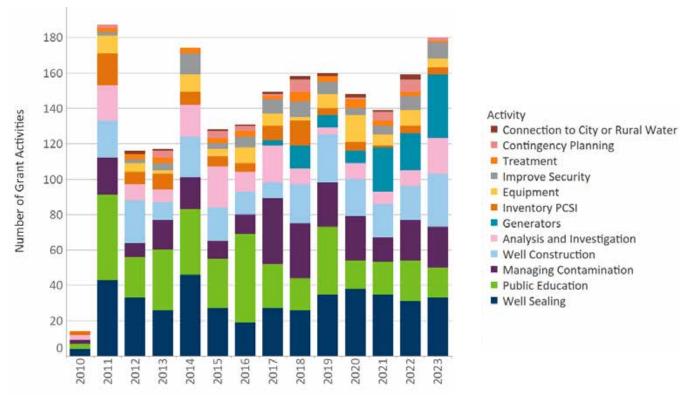


Figure 30. Number of Activities Funded by Source Water Protection Grants (2010–2023). Source Water Protection Grants may have more than one activity so the total number of grant activities may exceed the number of grants for a given year.

What are we doing?

MDH administers three types of grants to public water systems: Competitive, Implementation, and Transient Grants. Public water systems are eligible for different grants based on their customer base and whether they have a Source Water Protection Plan.

Learn more

- About source water protection grants at www.health.state.mn.us/communities/environment/water/cwf/dwpcwf.html
- Grant information for applicants at <u>www.health.state.mn.us/communities/environment/water/swp/grants.html</u>

Status	Trend	Description
		Leveraging resources helps to meet increasing demand for grants and to accelerate implementation of source water protection activities.

Nitrate monitoring and reduction by local partners

ACTION

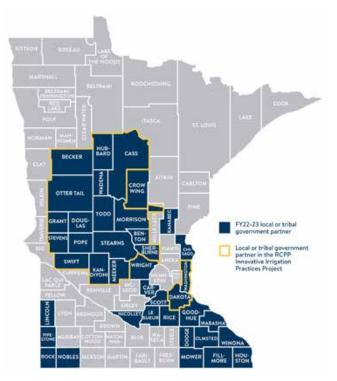
Measure: Number of local government partners participating in Clean Water Fund supported groundwater nitrate-nitrogen monitoring and reduction activitie

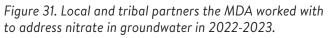
Why is this measure important?

Nitrate is one of the most common pollutants in Minnesota's groundwater. In some sensitive areas of the state, a high number of private wells have elevated nitrate levels.

Nitrate comes from many sources, including fertilizers, manure, septic systems, landfills, and natural decomposition of organic matter. Nitrate-nitrogen occurs naturally in groundwater at levels typically in the range of 0 to 3 milligrams per liter (mg/L). Human activities can raise the level of nitrate in groundwater. The drinking water standard for nitrate-nitrogen is a concentration of 10 mg/L. Nitratenitrogen above this level can have negative effects on human health, especially infants under the age of six months.

Groundwater is most vulnerable to nitrate contamination in the Central and Southeast regions of Minnesota. Areas in central Minnesota are vulnerable because of widespread sandy soil. Southeastern Minnesota is vulnerable because of shallow bedrock, sinkholes, and underground caves (referred to as karst geology). Also, certain types of wells – shallow wells, hand-dug wells, tile wells, and improperly grouted wells – are vulnerable to nitrate contamination.


Minnesota's Clean Water Fund is being used for activities that help identify the severity and magnitude of nitrate contamination. Funds are also used to evaluate and implement practices at the local level to reduce nitrate in groundwater. State agencies work closely with many partners on nitrate monitoring and reduction activities. Building and maintaining these partnerships is essential to effectively address groundwater concerns.


What are we doing?

The Minnesota Department of Agriculture (MDA) focuses its work in areas where there is elevated nitrate-nitrogen in groundwater. The MDA has worked with more than 50 local partners on nitrate monitoring and reduction projects, a total of 36 in the last two years. In general, the MDA provides technical support, and the local partners provide coordination and contribute knowledge, skills, and expertise about local conditions and issues.

The goal of our partnerships is to increase knowledge and awareness about nitrate issues and foster a greater willingness by farmers to adopt and maintain best management practices to reduce nitrate leaching loss from cropland. These partnerships continue to grow and offer new opportunities to further the work addressing nitrate in groundwater.

This profile focuses on four current activities —the progress of implementing the Groundwater Protection Rule, private well testing, research and demonstration at the Rosholt Farm, and a local partnership.

Groundwater Protection Rule

The Groundwater Protection Rule (GPR), effective in 2019, minimizes potential sources of nitrate pollution to the state's groundwater and protects our drinking water. The rule restricts the application of nitrogen fertilizer in the fall and on frozen soils in areas vulnerable to contamination, and it outlines steps to reduce the severity of the problem in areas where nitrate in public water supply wells is already elevated.

In areas where Drinking Water Supply Management Areas (DWSMA) have elevated nitrate the MDA is working with local partners to form local advisory teams with farmers, agronomists, and other community members. The teams are involved in reviewing and advising the MDA on appropriate farm management practices to reduce nitrate leaching losses in the DWSMA.

Long-term Private Well Monitoring Networks

The MDA is working with two volunteer long-term private well monitoring networks to determine the trend of nitrate levels in regional drinking water over time. The networks were established in the Southeast and West Central ("Central Sands"), regions of the state where groundwater is most vulnerable.

This work is done in partnership with local governments and individual private well owners. A total of 23 counties are included in the networks (9 in Southeast, 14 in Central Sands). Selection of individual wells was random, and each participant is encouraged to submit a water sample each year. Participants receive a sample kit from a certified lab with instructions on how to collect and submit the sample. Sampling began in 2006 in the Southeast network, and 2011 in the Central Sands network.

Rosholt Farm

The MDA partners with the Pope Soil and Water Conservation District (SWCD) and University of Minnesota (U of M) to support on-farm research, educational outreach, and increase adoption of nitrogen fertilizer best management practices (BMPs) in the Central Sands region of Minnesota.

The Rosholt Farm is dedicated to agricultural research and education that addresses regional issues and agricultural practices that are typical in the area. The farm's coarse-textured soils and need for supplemental irrigation typifies the crop production system in this area. The Pope SWCD owns the farm and coordinates day-to-day activities, weekly sampling and analysis of water samples, crop and soil moisture monitoring, and management of the irrigation system.

There are currently two studies at the Rosholt Farm supported by Clean Water Funds:

Nitrogen, Cover Crop, and Water Quality Research led by Dr. Fabian Fernandez, U of M

Variable Irrigation and Nitrogen Research led by Dr. Vasu Sharma, U of M

Local partnership with Dakota County SWCD

The MDA began working with Dakota County SWCD on the Nitrogen Fertilizer Management Plan in 2017. Initial work focused on coordination of the local advisory team (LAT) for the Groundwater Protection Rule, but tasks have evolved over the years to include irrigation water management and best management practices for reducing nitrate in groundwater. The MDA has provided funding for Dakota County SWCD staff to assist with the implementation of the Groundwater Protection Rule, including promoting the use of best management practices and alternative management practices to reduce nitrate leaching.

What progress has been made?

Groundwater Protection Rule

There are currently 17 active local advisory teams in DWMAs where nitrate-nitrogen exceeds 8.0 mg/L in the community water supply wells. In consultation with the local advisory teams, the MDA has approved a list of nitrogen fertilizer best management practices (BMPs) and alternative management tools (AMTs) to protect groundwater in three of the DWSMAs. These practices will need to be adopted on at least 80% of cropland within the DWSMA. The MDA works closely with local partners to raise awareness about required practices and encourage adoption of BMPs. The MDA will conduct a follow-up survey in no less than three growing seasons and if practices are not adopted the DWSMA could move to a regulatory phase under the Groundwater Protection Rule.

Long-term Private Well Monitoring Networks

Although there can be variability in the sampled population and nitrate-nitrogen concentration in individual wells from year to year, on a regional scale most wells have water that is below the health risk limit of 10 mg/L. In 2022, 282 private wells were tested in the Central Sands network, 90.4% of the results were less than 3 mg/L, 7.4% were between 3 and less than 10 mg/L, and 2.1% were greater than 10 mg/L. In the Southeast network, 376 private wells were sampled, 69.4% were less than 3 mg/L, 22.3% were between 3 and less than 10 mg/L, and 8.2% were greater than 10 mg/L. Results are shared directly with well owners and summarized in a regional report.

Rosholt Farm-Nitrogen and Water Quality

Rosholt Farm in Pope County is a local "educational hub" for providing technical information to area farmers, crop advisors, and agronomists about nitrogen BMPs, new fertilizer recommendations, irrigation frequency and timing, cover crop management, emerging crop production technologies, and their water quality impacts. To quantify nitrogen balances and losses, the research has been expanded to include the collection of greenhouse gas emissions from the soil for different treatments including cover crops and fertilizer treatments. Data from this research is used in the process to revise and update nitrogen fertilizer best management practices by the U of M Extension.

In 2022 and 2023, the Pope SWCD hosted four annual events (two field days and two workshops) reaching more than 200 participants, including farmers, crop advisers, and other local government partners.

Working Together to Deliver Technical and Financial Assistance

The partnership with Dakota County SWCD has built capacity to incentivize practices to protect groundwater and surface water in the area. The highlights listed below will be ongoing in the next biennium.

Cover crop and harvestable cover incentives programs:

Discussions related to nitrate and drinking water led to the development of local policy for an incentive program for practices that reduce nitrate in groundwater. Dakota County SWCD leverages local, state, and federal funding to provide incentive payments to landowners and operators.

Working with the MDA and sharing information with

farmers: Funding has allowed staff the time to coordinate and participate on the LAT in the Hastings DWSMA. It has also allowed staff to stay up-to-date on the Groundwater Protection Rule (GPR). SWCD staff serve as a local point of contact for questions related to the GPR, nutrient management, and groundwater issues.

Work on the RCPP grant: SWCD staff in 20 SWCDs, including the Dakota County SWCD, and staff from other partner groups helped the MDA secure \$3,510,000 through the USDA Regional Conservation Partnership

Figure 32. Dakota County SWCD and MDA staff installing an ag weather station. Access to current weather is critical for growers to efficiently schedule irrigation and reduce nitrate leaching.

Program (RCPP) for irrigation practices that reduce water use and nitrate leaching. Partners are using their local relationships to help recruit interested landowners and implement these practices.

"Dakota County SWCD is glad to have these new partnerships as we move forward to address nitrate in groundwater and work towards innovative solutions. We have a new level of understanding in the complexity of groundwater issues. We're excited about new programs for farmers and the conversations we're having about continuous living cover and alternative crops. We're adding to our traditional conservation practices to protect both surface water and groundwater."

Ashley Gallagher
 Senior Resource Conservationist

Learn more

Clean Water Fund www.legacy.leg.mn/funds/clean-water-fund

Township Testing Program www.mda.state.mn.us/townshiptesting

Water Quality and Irrigation Research at Rosholt Farm www.mda.state.mn.us/rosholtfarm

Local Weather Data and Irrigation Scheduler www.mda.state.mn.us/ag-weather-irrigation-

management-resources

Nutrient Management Initiative www.mda.state.mn.us/nmi

Irrigation Partnerships to Protect Groundwater (RCPP Project)

agcentric.org/rcpp-precision-irrigation

Status	Trend	Description
		New local partnerships continue to be established for nitrate-nitrogen monitoring and reduction activities.

Contaminants of emerging concern

ACTION

Measure: Number of new health-based water guidance values and advance methodology for contaminants of emerging concern

Why is this measure important?

Water is especially susceptible to contamination from human activities. Whether it is household products, personal care products, pharmaceuticals washed down the drain, or chemicals released to the environment through manufacturing, contaminants are found across Minnesota. Monitoring of water sources finds contaminants from products or sources we never suspected in places we never expected, like our lakes, rivers, groundwater, and drinking water.

Contaminants of emerging concern (CECs) are chemicals released into the environment, often from consumer products and personal care products, that may not have been previously assessed for risk to human health. Understanding the risk from these types of chemicals when they are present in Minnesota's waters is critical to preventing health effects in people and for removing contamination from the environment. The CEC Initiative staff in the Health Risk Assessment Unit at the Minnesota Department of Health study CECs in water and develop risk assessments and health-based water guidance values. These values aid state agencies in their work to protect and maintain clean water for all Minnesotans, and to provide context for private well owners and the general public for CEC exposures through water. Very few states have similar programs.

The development of water guidance values represents a meaningful indicator of public health protection. Hundreds of CECs have been found in Minnesota waters. The vast majority of these CECs have no healthbased water guidance values to understand any health risks associated with exposures to these compounds. Without this toxicological and risk assessment information, Minnesotans may not be informed of these new risks. The need for new guidance is enormous and ongoing as there are tens of thousands of chemicals in commerce and the vast majority have little or no toxicology information publicly available. These chemicals find their way into Minnesota waters and are more frequently being detected there, in part because new analytical capabilities can measure them at very low concentrations. Historically, approximately 70% of all health-based guidance values developed by the CEC Initiative lack federal water guidance values.

What are we doing?

Chemical nominations are accepted on an ongoing basis from agency staff and the general public. The nominations are evaluated to determine which chemicals pose the largest threat to Minnesotans based on both toxicological and exposure concerns.

Staff toxicologists and exposure scientists research nominated chemicals with a goal to develop CEC healthbased water guidance. Staff calculate levels of a chemical in water that does not pose a risk to human health, even for sensitive populations such as fetuses, infants, pregnant women, and children. We are enhancing the chemical review process to include concerns about health equity and environmental justice to ensure that the guidance is protective of all populations in Minnesota.

What progress has been made?

The CEC initiative focused on per- and polyfluoroalkyl substances (PFAS) family chemicals during the 2022-2023 Fiscal Years (FY22-23). PFAS are a family of human-made chemicals that have been widely used for decades and do not breakdown in the environment. The CEC initiative is a nationally respected leader in the

development of the first health-based guidance values for PFAS in the nation due to their historical use in Minnesota.

In addition to developing guidance for PFAS family chemicals, the CEC initiative provides toxicological and risk assessment support for communities, private well owners, MDH and other state agencies, and the general public affected by water contamination. The CEC initiative also regularly presents their work at scientific meetings across the country and participates in CECrelated state and federal workgroups.

The CEC team pioneered important developments for PFAS risk assessment, contributing to scientific knowledge production through their authorship in the following publications:

- Bogdan AR, Fossen Johnson S, Goeden H. Estimation of Serum PFOA Concentrations from Drinking and Non-Drinking Water Exposures. Environ Health Perspect. 2023 Jun;131(6):67701.
- Post GB, Birnbaum LS, DeWitt JC, Goeden H, Heiger-Bernays WJ, Schlezinger JJ. Letter to the editors regarding "The conundrum of the PFOA human half-life, an international collaboration". Regul Toxicol Pharmacol. 2022 Oct;134:105240.
- Isaacs KK, Wall JT, Paul Friedman K, Franzosa JA, Goeden H, Williams AJ, Dionisio KL, Lambert JC, Linnenbrink M, Singh A, Wambaugh JF, Bogdan AR, Greene C. Screening for drinking water contaminants of concern using an automated exposure-focused workflow. J Expo Sci Environ Epidemiol. 2023 May 17.

From the CEC Initiative's inception through the FY22-23 biennium, 224 contaminants were nominated for review, of which 165 were screened for toxicity and exposure information. Some nominated contaminants were ineligible for CEC review, typically because the nomination did not identify a specific contaminant or because a different program within the unit reviewed it. In the last biennium, MDH screened 38 new or renominated contaminants. MDH also reviewed the updated EPA water intake rates for CECs, and updated TDCPP and venlafaxine (these updates did not result in changes to their health-based guidance values)

MDH completed a full review of PFHxA and a reevaluation of PFBS during FY22-23. In addition to this, the CEC team began re-evaluations of PFOS and PFOA. Re-evaluations for PFOA and PFOS were developed using

Table 3. MDH health-based guidance values for contaminants in FY22-23 (micrograms per liter (μg/L) in water)

Contaminant	MDH Guidance
PFHxA PFAS family	0.2 (noncancer)
PFBS PFAS family	0.1 (noncancer)

newly-available human health data from epidemiological studies, making them more similar to full reviews than simpler re-evaluations. Evaluating human epidemiological studies for the PFOA and PFOS re-evaluations this way has been time-intensive, as past guidance values were developed using animal data. Re-evaluating existing health-based guidance ensures Minnesota guidance is up to date with the latest risk assessment methodology and includes the most recent available scientific data.

The CEC team also regularly provides expert technical assistance to risk managers to aid in proper application of health-based guidance values in their work and to the general public to support safer and better choices for chemical use and disposal. During the FY 22-23 biennium, the CEC team completed more than 40 expert technical assists for external partners including presentations, emails, phone conversations, and technical documents.

A major obstacle in developing full chemical reviews each biennium is lack of publicly available toxicity information. The CEC Initiative is meeting this obstacle head on by partnering with U.S. Environmental Protection Agency (EPA) scientists. We are working to identify and develop new tools and nontraditional sources of data to identify and screen chemicals for both toxicity and exposure risk. This is a multi-year project focusing on emerging contaminants that lack data typically used in standard risk assessments. This partnership has already created an automated workflow to perform exposure screenings much faster than can be done manually, which resulted in a scientific publication.

One accomplishment of the CEC Initiative in the last biennium was to partner with other programs within the Environmental Health (EH) Division at MDH to help better understand and communicate health risk from elevated levels of chemicals in Minnesota drinking water, especially for formula-fed infants.

Learn more

Find more information about this measure and its data at www.legacy.leg.mn/funds/clean-water-fund.

Status	Trend	Description
	→	Completed 1 re-evaluation and 1 full evaluation, updated water guidance for 2 CECs, established a partnership with EPA to create a contaminant screening tool, provide technical assistance to understand and use water guidance values, authored 3 scientific publications

DRINKING WATER AND GROUNDWATER MEASURES

County geologic atlases

ACTION

Measure: Number of counties completing a county geologic atlas for groundwater sustainability

Why is this measure important?

Approximately 75% of Minnesotans get their water for drinking and other needs from groundwater. A stable, long-term and reliable source of high quality groundwater is an economic benefit to communities. County Atlases provide detailed information about an area's geology and groundwater that helps communities find reliable water sources and manage them to maintain availability and quality for generations. Without informed water supply planning, groundwater pumping or land-use changes could impact public water quality and availability and degrade surface waters (wetlands, lakes, rivers and unique resources, such as trout streams and fens).

The County Atlases are routinely used to make informed decisions related to water, natural resources and landuse planning. Typical applications include:

- long-term water supply planning and well construction design
- wellhead protection planning
- groundwater modeling
- identification of valuable natural resources and planning for their use and protection
- planning for landfills, septic systems, industrial sites and feedlots
- emergency response to contaminant releases
- research and community education

When completed, the County Atlases are an economic benefit for a county and communities within the county. This measure tracks the extent to which county atlases are available in Minnesota.

What are we doing?

The Minnesota Geological Survey (MGS) and the Department of Natural Resources (DNR) prepare

the County Atlases to convey valuable geologic and groundwater information and interpretations to private organizations, agriculture, industry, academia, citizens and government units at all levels, particularly to local governments. The County Atlases provide "information infrastructure". MGS focuses on the county geology, and DNR focuses on county groundwater resources.

The Clean Water Fund supports enhanced research to improve the quality of county atlases and to accelerate their completion. Local participation is a primary factor in determining which counties are chosen for this work, while groundwater sensitivity, water demand and the size of the population served are also considerations. The counties are asked to provide in-kind services in support of the atlas.

What progress has been made?

In total, MGS County Geologic Atlases are complete or underway for 77 counties and Groundwater Atlases are complete or underway for 46 counties.

The completion of special high-quality drilling and coring to obtain detailed geologic information was most recently supported in Lake of the Woods, Waseca, Faribault, and Ramsey counties (FY23).

The long-term goal is to complete an atlas (both geologic and groundwater) for every county in Minnesota. Approximately four atlases are being completed each year. The Clean Water Fund supports expanded data collection for atlases, such as the use of sophisticated geological coring.

DNR County Groundwater Atlas staff used Clean Water support to conduct specialty groundwater dye tracing in collaboration with the Minnesota Department of Health, Olmsted County, and the University of Minnesota. Work was completed in support of a Groundwater Protection and Restoration Grant (Grant Agreement 193947) at Bear Spring in Olmsted County, with final project deliverables expected June 2024. Groundwater Atlas staff also completed final reporting in support of a Minnesota Department of Health pathogen study to identify sources of biological contaminants in water-supply wells.

Clean Water Funds also supported analysis for an ultralow tritium pilot project to determine the value of using ultra-low tritium analysis instead of enriched tritium analysis for future groundwater residence time projects.

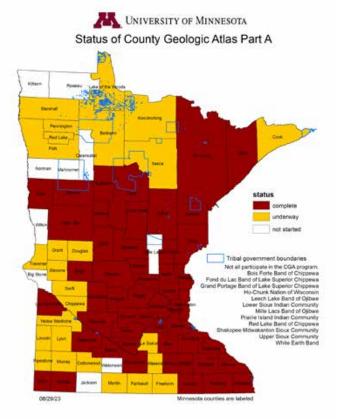


Figure 32. Map of Minnesota counties showing the status of progress on county geologic atlases (used with permission from the Minnesota Geological Survey).

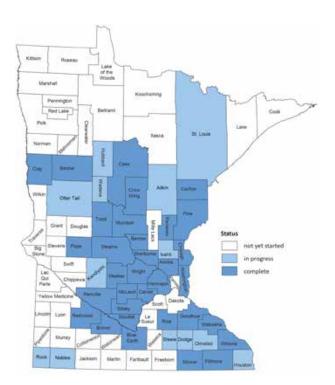


Figure 33. Map of Minnesota counties showing the status of progress on county groundwater atlases.

Status	Trend	Description
•	↑	County atlases (including the geologic & groundwater atlases) are being completed at the planned rate, and counties continue to step up to participate. With continued and consistent funding, completion of geologic atlases for all counties is expected around 2035, and completion of groundwater atlases for all counties around 2040.

Long-term monitoring network wells

ACTION

Measure: Number of long-term groundwater monitoring network wells in Minnesota

Why is this measure important?

About 75 percent of Minnesota's drinking water comes from groundwater, which is pumped from the state's many and varied aquifers. Groundwater also supports agriculture, industry, and natural resources that define Minnesota's quality of life. Minnesota is relying more and more on groundwater to meet its growing needs, but many parts of the state lack basic information about the availability and quality of groundwater.

Since it is underground, people can't see groundwater to observe its condition. Monitoring wells provide a "window" into aquifers, providing a way to see groundwater levels and measure water quality. This information is essential to better inform investments in water supply infrastructure and efforts to protect public health and natural resources.

To provide a safe and reliable drinking water supply at the lowest cost, well drillers and well owners should know the depth of the closest safe-quality groundwater. They should also know how much groundwater levels and quality fluctuate during wet and dry seasons, to ensure that pumps in wells don't go dry and to understand potential health risks. Groundwater monitoring information is also important for protecting wetlands, developing Total Maximum Daily Loads (TMDLs) for streams, and for preventing the migration of contamination plumes.

This measure tracks the number of wells used for long- term monitoring of groundwater conditions. Well installation, water quality sampling, and water level measurement are coordinated among state agencies, and wells are used for multiple purposes whenever feasible. Other monitoring wells exist, but they are used for short-term contamination or remediation events.

What are we doing?

While Minnesota's groundwater monitoring network is still inadequate for understanding groundwater conditions in portions of the state, it is improving. Clean Water Fund investments accelerate efforts to fill gaps in understanding aquifer conditions across the state, and improve local capacity to improve private and public drinking water supply infrastructure development.

The Minnesota Department of Natural Resources manages a statewide network of water level observation wells, in partnership with Soil and Water Conservation Districts and various volunteers. Data from these wells are used to determine long-term trends, interpret impacts of pumping and climate, plan for water conservation, and otherwise manage the water resource. DNR monitors aquifer levels in 1,234 wells with an ultimate goal of 1,500 total wells monitored. The Minnesota Pollution Control Agency manages a statewide network of about 262 groundwater quality monitoring wells to determine whether non-agricultural pollutants are present and to track trends in pollutant concentrations. These wells are primarily installed in urban aquifers that are most susceptible to pollution from human activities. Water samples are collected annually to determine the concentrations of more than 100 regulated and unregulated chemicals, including nitrate, chloride, and volatile organic compounds. The agency is still adding wells to the network, which will have about 275 wells when complete.

The Minnesota Department of Agriculture (MDA) manages a network of about 141 groundwater quality monitoring wells across the state, primarily in agricultural areas, with the purpose of determining the impacts of pesticides and fertilizers on vulnerable groundwater. Additionally, the MDA network also includes 13 domestic wells and 13 springs, not illustrated on the map. The MDA added an additional 25 monitoring wells between 2020 and 2022 for the purpose of monitoring nitrate in Drinking Water Supply Management Areas with high nitrate concentrations.

What progress has been made?

The current statewide groundwater monitoring network includes approximately 1,583 monitoring wells. The

ultimate goal is a network of approximately 2,000 stateowned and managed long-term groundwater monitoring wells.

The DNR continues to increase the number of wells that are installed for determining water levels. While the MDA has added wells to determine the impacts of pesticides and fertilizers on vulnerable groundwater.

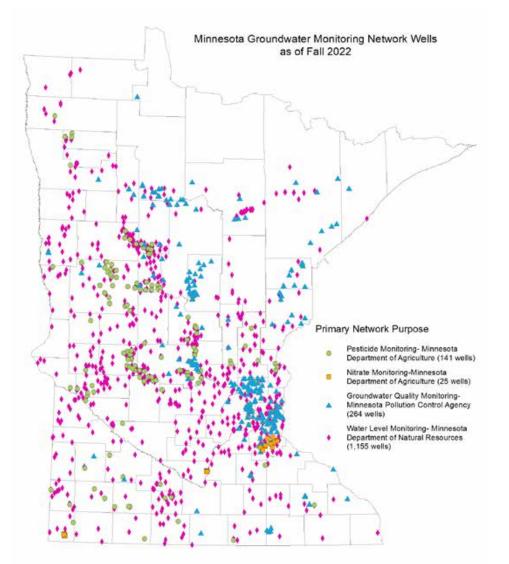


Figure 34. Map showing Minnesota groundwater monitoring network wells as of October 2023.

Status	Trend	Description
	↑	Many areas of the state still lack important groundwater information. Long-term ramp up in monitoring accelerated by Clean Water Fund investments is filling gaps.

Unused groundwater wells sealed

ACTION

Measure: Number of unused groundwater wells sealed

Why is this measure important?

Unused wells that are not properly sealed can be a source of groundwater contamination, potentially affecting nearby drinking water wells. They may threaten water quality in municipal wells, private business wells, and residential wells. Groundwater is the main source of drinking water for three out of four Minnesotans.

A well may be taken out of service for a variety ofreasons:

- It no longer operates properly or provides enough water;
- It became contaminated; or
- It was replaced by extension of public water supplies.

A well may be "lost" or abandoned when:

- New buildings or additions are constructed;
- Property changes hands; or
- When use of the land changes, such as from agricultural to industrial or residential.

The layers of rock and soil that lie between an aquifer and the land surface or between aquifers typically act as natural barriers against the spread of contamination. However, an unused, unsealed well can provide an open pathway between the surface and an aquifer or between a shallow aquifer and a deeper aquifer. This open pathway allows surface water runoff, contaminated water, and improperly disposed waste to reach an aquifer.

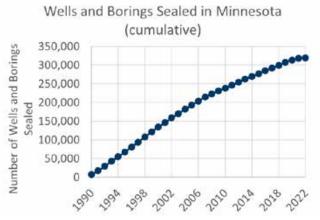


Figure 35. Wells and borings sealed in Minnesota (cumulative)

What are we doing?

Clean Water Funds provided an incentive for sealing unused wells. Funds for sealing private wells were made available as part of the Board of Water and Soil Resources (BWSR) Clean Water Fund Competitive Grant program for FYs 2012, 2014, 2017, 2019, and 2021. These funds were awarded to local governments, who could provide a 1:1 matching grant to well owners to seal their unused wells. Priority was given to sealing: wells in areas near public water supply wells; large diameter, multi-aquifer wells; and wells in areas with known groundwater contamination.

Clean Water Funds were made available through the Minnesota Department of Health to seal unused public water supply wells for FYs 2013, 2015, 2016, and 2018. These wells tend to be larger and deeper than private wells and can be much more expensive to seal. They also pose a significant threat to public water supplies because they are typically near active public water supply wells.

What progress has been made?

A total of 95 unused public water supply wells and 1,370 private wells were sealed with Clean Water Funds since 2010.

Forty-three different public water supply owners were awarded funds across Minnesota. Thirty-four local governments were awarded funds through BWSR's Competitive Grant program.

Although this initiative is completed, well sealing activities are also funded through Source Water Protection Grants.

Ultimately, the goal is to seal all unused wells in Minnesota to protect public health and groundwater resources. Unused wells continue to be identified on a regular basis through property transfers and other activities. While Minnesota has sealed over 315,000 wells since 1990, continued effort is needed to address the estimated 250,000 to 500,000 unused unsealed wells remaining.

Learn more:

Find information on this measure at Sealing of Wells and Borings (<u>www.health.state.mn.us/communities/</u> environment/water/wells/sealing).

Status	Trend	Description
	1	This initiative is completed.

DRINKING WATER AND GROUNDWATER MEASURES

Land use in Drinking Water Supply Management Areas

ACTION

Measure: Land use changes over time in Drinking Water Supply Management Areas

Why is this measure important?

In many parts of Minnesota, public water systems can pump and deliver water to households with minimal treatment. However, activities or features on the land can affect the quality of drinking water sources. Certain land uses, such as forested land or wetlands, are more protective of water quality than others.

Protection of drinking water sources is particularly important within Drinking Water Supply Management Areas (DWSMAs), areas that contribute groundwater used for drinking water. There are approximately 1.2 million acres of land in DWSMAs in Minnesota, and about 40% (487,600 acres) is vulnerable to contamination. The total number of vulnerable acres changes over time as community DWSMAs are delineated and amended.

Land use within DWSMAs is a useful indicator to assess risks to drinking water sources and their level of protection. Yet MDH and public water systems have limited ability to influence land use in DWSMAs, since much of the land within DWSMAs is privately owned and outside of municipal jurisdiction.

MDH has a long-term goal to promote land use that is beneficial to water quality in DWSMAs. This measure reports on the amount of land in protective land use in DWSMAs.

What are we doing?

MDH works with communities, public water systems, and other state and local partners to promote land use that is mutually beneficial. MDH helps communities identify vulnerable areas within their DWSMAs and plan and implement activities that prevent contamination. Strategic partnerships with other stakeholders in DWSMAs, such as private landowners, can also create opportunities to protect drinking water sources. The Source Water Protection program at MDH has created a framework defining four levels of protection: 1) Delineating a DWSMA; 2) Preparing a SWP Plan; 3) Implementing the Plan; and 4) Securing longterm protection of the DWSMA. Most public water systems progress through these levels sequentially. By encouraging protective land use in DWSMAs, MDH and public water systems can prevent or mitigate contamination of drinking water sources.

Figure 36. Levels of protection and completion by vulnerable community water systems.

What progress has been made?

MDH provides direct programmatic support to communities through Levels 1 and 2 of the framework but relies on communities and partners to implement Level 3 and 4 activities. MDH is currently able to report on Levels 1 and 2 and is developing metrics and processes to track systems' and partners' progress through Levels 3 and 4.

MDH is assessing available data sources to measure and evaluate long-term protection of the vulnerable areas within DWSMAs. MDH will work with state and local partners to create the tools and plan needed to advance this initiative. These resources will allow MDH, public water systems, and other stakeholders to identify and prioritize appropriate protection measures for the diverse DWSMAs in the state, and measure progress accordingly.

Existing land use across vulnerable DWSMAs provides a glimpse of the opportunities and challenges associated with achieving long-term protection measures for these areas. Approximately 29% of land in DWSMAs statewide has protective use that benefits water quality (i.e., lands that are forested or used for low impact agriculture like pasture and hay production). Planning and implementing land use changes with decision-makers is a locally led process that takes time. MDH seeks to work with local decision makers as well as state and regional partners to tailor implementation towards protective activities that are appropriate based on the land uses in a DWSMA. For example, in rural areas where DWSMA acres are dominated by agricultural lands, partners at the federal Natural Resource Conservation Service (NRCS) and at MDA seek to incentivize practices that are protective of water quality.

Table 4. Examples of partner interventions and land usesto protect drinking water.

Partner interventions to protect drinking water	Total acres in vulnerable acres (N=487,600)			
MDA Water Quality Certification Program	(Analysis pending)			
Groundwater protection practices enrolled in NRCS	34,100			
Conservation easements	6,200			
Existing land uses that are generally protective of drinking water				
Publicly owned forested lands	6,200			
Privately owned forested lands	52,400			
Publicly owned land in Twin Cities Metropolitan Area	18,700			

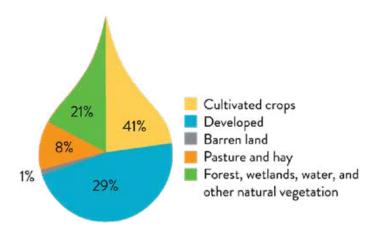


Figure 37. Land use in vulnerable DWSMAs.

What are the challenges and limitations?

A challenge in tracking changes in land use over time is the availability of data. Statewide data on land use is available through the National Land Cover Database (NLCD). These data show generalized land uses such as forestry, wetlands, agriculture, and urban development. These land use categories are an insufficient indicator for drinking water protection since they do not account for the array of best management practices (BMPs), activities, and programs that safeguard drinking water sources. For example, conservation practices can mitigate contamination in agricultural areas but may not change land use classification in the NLCD. This is also true for stormwater BMPs that can reduce contamination from runoff in urban areas. Additionally, updated NLCD data is typically released every five years.

This measure is expected to change over time as partnerships are made and different sources of data become available. While MDH is working with partners to develop reporting metrics, a recommendation is to support policy initiatives among Minnesota Executive Branch agencies and their partners to share data on land use protections in DWSMAs. Making these data available would help local implementers plan activities to protect Minnesota drinking water now and in the future.

Learn more

Protecting vulnerable drinking water sources (www.health.state.mn.us/communities/environment/ water/cwf/protecting.html)

Status	Trend	Description
	→	There is increasing research, engagement, and activity to target and protect vulnerable areas in DWSMAs

DRINKING WATER AND GROUNDWATER MEASURES

Groundwater quality

OUTCOME

Measure: Changes over time in pesticides, nitrate-nitrogen, and other key water quality parameters in groundwater

Why is this measure important?

Chemicals are commonly used to control pests, support food production, manage lawns, protect human health, and keep our roadways free of ice and snow. People also use many chemicals for cleaning clothes, maintaining cars and homes, and improving lives.

Unfortunately, the benefits of pesticides, fertilizers, and other chemicals are balanced against potential impacts to the state's sensitive groundwater resources. It is only with highly detailed and sophisticated monitoring that the impacts of chemical use to groundwater resources can be understood and managed.

What are we doing?

The Minnesota Department of Agriculture (MDA) samples groundwater wells in urban and agricultural settings. The MDA water samples are analyzed for many pesticides (185 in 2022) as well as nitrate. Results are used as feedback in the fertilizer and pesticide management process and are reported to farmers and the general public. The MDA and advisory committees use monitoring results to inform management decisions.

The Minnesota Pollution Control Agency (MPCA) samples a network of wells, primarily in urban settings, that measure ambient (or background) conditions for a large number of non-agricultural chemicals, including nitrate, chloride, volatile organic compounds, and emerging contaminants. The network is focused on two aquifers that are especially vulnerable to man-made contamination — the sand and gravel and Prairie du Chien-Jordan aquifers.

The Minnesota Department of Health (MDH) has many roles in protecting groundwater from contamination. The MDH's primary roles include ensuring wells are properly constructed and sealed, monitoring drinking water to ensure the state's public water systems meet federal and state guidelines, monitoring for emerging contaminants, evaluating contaminated sites to ascertain what chemicals are present, and determine whether exposure to those chemicals may pose risks to human health.

What progress has been made?

The MDA began its monitoring program in 1985 and currently samples more than 167 monitoring wells, naturally occurring springs, and private drinking water wells throughout the state. Pesticide concentrations in groundwater rarely exceed drinking water standards in monitoring wells or private drinking water wells. Five pesticides have been detected frequently enough to be placed in the "common detection" category: acetochlor, alachlor, atrazine, metolachlor, and metribuzin. These pesticides are being tracked and best management practices are promoted to minimize environmental impacts.

The MDA's groundwater monitoring program was not designed to determine nitrate concentration status and trends in drinking water. Nitrate concentrations in the very shallow, highly sensitive groundwater monitoring wells sampled adjacent to agricultural fields in this program frequently exceed health risk levels. However, this is not the situation with every well or all the regions monitored. The MDA's groundwater monitoring program was designed as an early detection system. To more accurately determine nitrate trends across the state, the MDA relies on regional and township monitoring programs.

In 2008, the Southeast Minnesota Water Resources Board and the MPCA, MDA and MDH established the Southeast Minnesota Volunteer Nitrate Monitoring Network. This region was selected because of its sensitive and complex geology. This network of 675 private drinking water wells, representing nine counties and several aquifers, was designed to provide nitrate concentration data. Through 2022, 6,913 samples have been analyzed for nitrate, and an average of 9.3% of the wells exceeded the drinking water standard of 10 milligrams per liter (mg/L). The percentage of wells exceeding the drinking water standard for each sampling round ranged between 7.5% and 14.6%. This work continues as an ongoing effort.

In 2011, homeowners in 14 counties in central Minnesota (an area of the state with sandy soil that is vulnerable to nitrate contamination) participated in a monitoring project, and a subset of these wells has been sampled annually since that time. Through 2022, 4,652 samples have been collected as part of the annual monitoring, and an average of 2.9% of wells have water with a nitrate concentration equal to or greater than the drinking water standard of 10 mg/L. There is a slight downward trend in the 90th percentile of this network.

In 2013, the MDA began sampling private wells on a township scale as part of the Township Testing Program. Through 2020, the MDA has sampled private wells in 344 townships in 50 counties in cooperation with local partners. The goal of the project is to sample wells throughout the state in areas where groundwater is most vulnerable to contamination. Through 2020 about 32,217 wells have been sampled, and 9.1% of the wells have nitrate exceeding the drinking water standard, although this percentage can be much higher in some townships.

The Private Well Pesticide Sampling (PWPS) Project is a follow-up program to the Township Testing Program. The primary goal of the PWPS Project is to provide information to homeowners and the general public about the presence of pesticides in private drinking water wells. Homeowners who had nitrate detections in their wells as part of the Township Testing Program may have had their wells sampled for nitrate and pesticides as part of the PWPS Project Phase 1 (2014 – 2020), when about 6,350 wells in 50 counties were sampled. Concentrations were generally low and were typically below drinking water standards. However, 3% of the 1,841 wells that were sampled during Phase 1 were found to have a pesticide concentration above the human health reference value for total cyanazine. Cyanazine is a corn herbicide that has not been registered for use in Minnesota since 2002, cyanazine degradates were not able to be added to the analytical list until 2019. In the summer of 2021, the MDA began revisiting counties sampled prior to 2019, through targeted sampling based upon previous results, to evaluate private drinking water wells in these areas for atrazine and cyanazine degradates as part of Phase 2. Of the 1,095 wells that were sampled between 2021-2022 during Phase 2, it was found that 62 wells had a concentration that exceeded the health reference value for total cyanazine.

The MPCA continues to track chloride concentration trends in groundwater. The agency's continued commitment to annual monitoring has increased its ability to determine whether groundwater quality has changed. The number of wells that have enough data to determine trends in the MPCA's monitoring network increased from 35 in 2011 to 120 in 2022. Analysis of data from 2012-2022 continued to show that chloride contamination is seeping into the aquifers used for drinking water. Chloride concentrations increased in 23% of the sampled water wells. Most of the water wells with upward trends were located in the Twin Cities metropolitan area.

In addition to ensuring state and federal standards for drinking water are met, the MDH has led various efforts to characterize emerging contaminants and PFAS in public drinking water, including the Unregulated Contaminants Monitoring Project (UCMP) and the Statewide PFAS Monitoring Project. 95% of community water systems have been sampled for PFAS, covering 99% of Minnesotans that receive drinking water from a community water system. The MDH is working towards establishing permanent program capacity to sample for contaminants of emerging concern and other chemicals in public and private drinking water on an annual basis through the Drinking Water Ambient Monitoring Program (DWAMP). Water quality data collected through these various monitoring efforts will be used to characterize aguifer systems and vulnerable drinking water sources.

Groundwater Human Health Reference Values

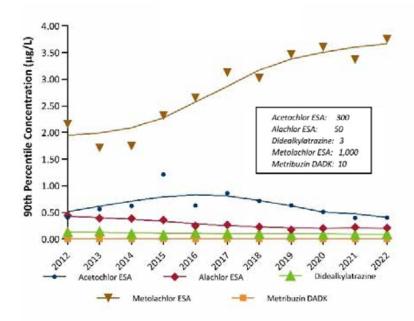


Figure 38. Statewide groundwater common detection pesticides degradates 90th percentile concentration.

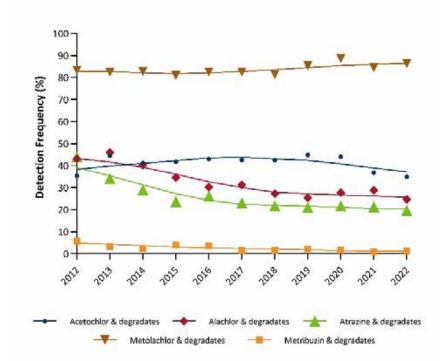


Figure 39. Statewide groundwater common detection pesticides and degradates detection frequency.

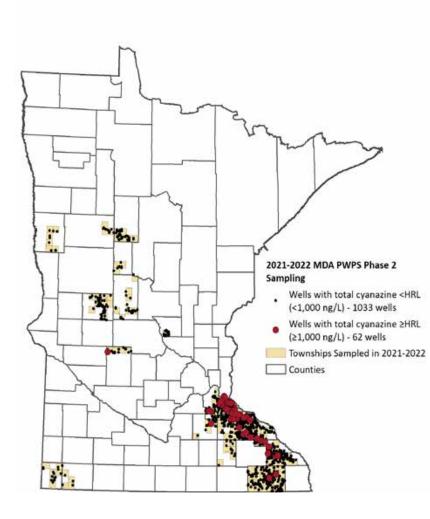


Figure 40. Private Well Pesticide Sampling (PWPS) Project Phase 2 results (2021-2022).

Learn More

Clean Water Fund www.legacy.leg.mn/funds/clean-water-fund

The MDA Pesticide Monitoring Programs www.mda.state.mn.us/environmentsustainability/ water-monitoring-programs

Southeast Minnesota Volunteer Nitrate Monitoring Network www.mda.state.mn.us/ southeast- minnesota-volunteer-nitatemonitoring-network

Central Sands Private Well Network www.mda. state.mn.us/central-sands-privatewell-network

Township Testing Program www.mda.state.mn.us/township-testingprogram

The MDA groundwater data through the Water Quality Portal www.waterqualitydata.us

Private Well Pesticide Sampling Project www.mda.state.mn.us/pesticide-fertilizer/ privatewell-pesticide-sampling-project

PFAS Testing of Public Water Systems at MDH www.health.state.mn.us/communities/ environment/water/pfas.html

Status	Trend	Description
Pesticides		Variable trends for five common pesticides indicate a mixed signal. Low levels are frequently detected in vulnerable groundwater.
Nitrate-nitrog statewide	en NEI	In many agricultural areas, drinking water supplies are not vulnerable to surficial contamination and most wells have low levels of nitrate-nitrogen. However, in vulnerable groundwater areas, nitrate contamination is a significant concern.
Nitrate-nitrog southwest reg	NEL	In areas where groundwater is vulnerable, nitrate levels can be high. Of the 21 vulnerable townships tested in southwest Minnesota (2013-2019), 100% of them were determined to have 10% or more of the wells over the nitrate-nitrogen 10 mg/L standard.
Nitrate-nitrog Central Sands		Trend data from the Central Sands Private Well Network shows a slight downward trend in the 90th percentile. However, Township Testing data show a high level of nitrate in some vulnerable areas in the Central Sands.
Nitrate-nitrog southeast regi		Trend data from the Southeast Minnesota Volunteer Nitrate Monitoring Network shows no change. However, Township Testing data show a high level of nitrate in some vulnerable areas in southeast Minnesota.

Source water quality for community water systems

OUTCOME

Measure: Changes over time in source water quality used for community water systems

Why is this measure important?

Minnesotans use both surface water and groundwater as drinking water sources. When untreated source water does not meet the standards of the Safe Drinking

Water Act (SDWA), community water systems (CWSs) add treatment to make the water safe to drink.

Testing the source water before it goes through a treatment process is one measure of our efforts to protect drinking water at the source, whether it's surface water or groundwater. Understanding source water quality and chemistry also improves our understanding of groundwater aquifers, variables that might affect the treatment process, and the pollutants that can contaminate source water.

What are we doing?

Minnesota Department of Health (MDH) has several projects to supplement routine SDWA monitoring that are supported by Clean Water Fund. Under the federal SDWA, EPA establishes drinking water quality standards. These are called Maximum Contaminant Levels (MCLs). MCLs are enforceable limits for water delivered by public water systems. EPA has established MCLs for approximately 100 contaminants.

Thousands of other chemicals are used in our modern, industrial world. Some end up in the environment and in drinking water sources. Contaminants that do not have MCLs are unregulated contaminants. There are no enforceable standards for unregulated contaminants under the SDWA. Many of these unregulated contaminants have not been evaluated for the risks they pose to human health or the environment. MDH has several programs and activities to support partners with risk management for unregulated contaminants. These include the Contaminants of Emerging Concern (CEC) Framework, which provides guidance on CEC detections in drinking water, as well as the CEC Initiative, which investigates the health risks of CECs in water.

Unregulated Contaminant Monitoring Project

The Unregulated Contaminant Monitoring Project began in 2019 and tested for CECs in drinking water sources across the state.

This project helped us understand where unregulated contaminants occur and at what levels. We also learned how treatment affects some CECs detected in source water. The project was funded by the Environment and Natural Resources Trust Fund (ENRTF) and supported by Clean Water Fund.

Approximately 100 CWSs participated in this project. MDH selected a set of CECs to sample for based on detection in previous studies and public health interest. MDH sampled for perfluoroalkyl substances (PFAS), pharmaceuticals, wastewater indicators, benzotriazoles, and pesticides.

What progress has been made?

MDH completed the Unregulated Contaminant Monitoring Project in 2022. The samples were analyzed for

over 500 distinct CECs across different contaminant classes. The majority of CECs were not detected.

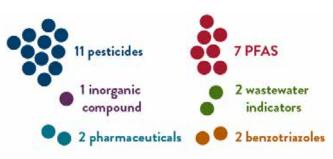
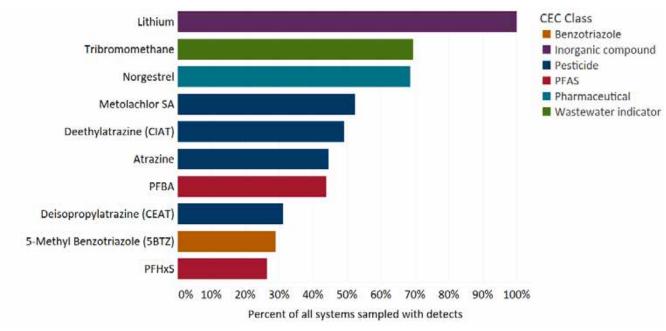



Figure 41. Contaminants detected in at least 20% of samples.

Contaminants detected in at least 20% of samples

The ten most frequently detected contaminants in the project included a wastewater indicator, a pharmaceutical, an inorganic compound, pesticides, PFAS, and a benzotriazole. Benzotriazoles are chemicals used in a wide variety of industrial, commercial, and consumer products. Most detects were at very low levels.

Ten most frequently detected CECs

Figure 42. Contaminants detected in community water systems.

Statewide PFAS Monitoring Project

MDH also undertook a project to test for PFAS, or "forever chemicals," in community water systems across the state. The goal of this project was to evaluate whether Minnesotans are exposed to PFAS at levels above guidance values in drinking water. Sampling results are available on the MDH Interactive Dashboard for PFAS Testing in Drinking Water (www.health.state.mn.us/communities/environment/ water/pfasmap.html).

Drinking Water Ambient Monitoring Program

MDH is creating a new program to advance scientific study of contaminants in drinking water sources. The Drinking Water Ambient Monitoring Program will proactively test for CECs and other priority contaminants in drinking water sources such as aquifers, lakes, and rivers. The Drinking Water Ambient Monitoring Program builds upon MDH's past CEC monitoring and is administered through the Source Water Protection Program. The monitoring program will have overarching goals to:

- 1. Proactively test drinking water sources for CECs and other contaminants of public health interest.
- 2. Evaluate data to assess potential public health risks and coordinate with partners to limit exposures to acute and chronic contaminants from drinking water.
- 3. Identify monitoring priorities for drinking water sources following consistent processes that can be flexible in responding to emerging threats but prioritize public health needs.

Information about CEC detections in drinking water sources will help inform MDH priorities for: future drinking water monitoring; development of healthbased guidance; risk management; and management of aquifers at a watershed-scale for Drinking Water Supply Management Areas and private well users.

Additionally, data from this program will be used to assess water quality concerns at an aquifer or watershed scale, rather than a system-by-system approach. Regional analyses of water quality data can yield tools and information that better help water resource professionals manage drinking water quality for public water system customers and private well users.

The Drinking Water Ambient Monitoring Program will coordinate with other state agency programs on CECs in water resources to best target, prioritize, and maximize its efforts.

Learn more

Visit the MDH website for the data summary report and additional information: Unregulated Contaminants Monitoring Project (www.health.state.mn.us/communities/environment/water/unregcontam.html)

Status	Trend	Description
٠	1	Current risk management approaches for unregulated contaminants are more proactive and collaborative than the project-based approach of the past.

Nitrate and arsenic concentrations in new wells

OUTCOME

Measure: Nitrate and arsenic concentrations in newly constructed wells

Why is this measure important?

Groundwater is the main source of drinking water for three out of four Minnesotans. About one in five Minnesotans (1.2 million people) get their drinking water from a private well. Both arsenic and nitrate are found in Minnesota groundwater at levels that can cause shortterm and long-term health effects.

Consuming water high in nitrate can affect how blood carries oxygen and can cause a condition called methemoglobinemia (also known as blue baby syndrome). This condition can result in serious illness or death. Bottle-fed babies under six months old are at the highest risk of getting methemoglobinemia. Drinking water with arsenic in it over many years can increase the risk of cancer and other serious health effects.

Nitrate is a naturally occurring compound made of nitrogen and oxygen. Natural levels of nitrate in Minnesota groundwater are usually below 3 milligrams per liter milligrams (mg/L). Levels of nitrate greater than 3 mg/L are associated with human-made sources of nitrate. Sources include fertilizers, animal wastes, and human sewage. These sources can contaminate the groundwater. Shallow wells in areas with sandy soils or karst geology are more vulnerable to nitrate. Improper well construction or a damaged well can also allow nitrate to reach otherwise protected groundwater sources.

Arsenic occurs naturally in rocks and soil across Minnesota and can dissolve into groundwater. The way glaciers moved across Minnesota affects where arsenic is found in sediment and groundwater. Because of the complex nature of arsenic occurrence, it is very difficult, and in some cases impossible, to avoid arsenic when constructing a new well. Radium is a naturally occurring radionuclide in rocks and soil that can get into groundwater. Radium is found in public water supply wells, commonly in the Mount Simon and Jordan aquifers. The drinking water standard for Radium is 5 pCi/L. Radium in well water puts private well users in contact with low doses of radiation that can lead to a higher cancer risk over many years.

What are we doing?

Nitrate

Current laws require that wells are located and constructed in a way that provides a sanitary source of drinking water and protects groundwater quality. In addition, Minnesota Department of Health (MDH), Minnesota Department of Agriculture (MDA), and other partner agencies help well owners and farmers properly manage nitrate sources (such as fertilizers and septic systems) to help reduce input of nitrate into groundwater. Each time a new well is drilled, nitrate levels (along with arsenic and coliform bacteria) are measured to verify that the water is safe to use. If nitrate levels are higher than the drinking water standard of 10 mg/L, MDH informs the well owner of options to reduce their risk. MDA and local governments occasionally offer clinics for residents to have their well water tested for nitrate.

With Clean Water Funds, the MDA Township Testing Program tests for nitrate in townships that have vulnerable geology and a large percentage of row crop agriculture. The results of this testing will guide efforts to reduce nitrate in groundwater through the Nitrogen Fertilizer Management Plan. Other activities funded by the Clean Water Fund, including the Agriculture Water Quality Certification Program, nutrient management assistance and funding for cover crops, and other best management practices reduce input of nitrate to groundwater.

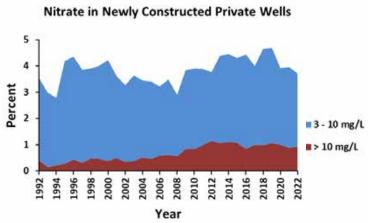
Arsenic

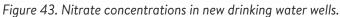
If arsenic is detected in the initial water sample after a well is constructed, MDH informs the well owner of options to reduce their risk. Clean Water Funds made it possible for MDH to collaborate with the U.S. Geological Survey (USGS) to better understand the occurrence and distribution of arsenic in groundwater. The project helps identify the best approach for collecting the initial well water sample to get an accurate measure of long-term arsenic concentrations. Understanding how the arsenic concentration changes over time helps homeowners plan water treatment options.

Radium

MDH is working on a final report and developing guidance on how to protect homeowner health from radiation exposure.

Education and outreach

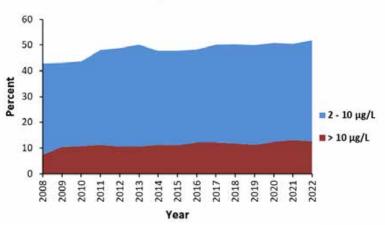

MDH is also using Clean Water Funds to improve education and outreach to private well owners. The goal is to increase private well testing and help private well owners take action to reduce their exposure to unsafe levels of contaminants, such as arsenic and nitrate.


What progress has been made?

Nitrate

The goal is that all new wells have nitrate levels below 3 mg/L. About 3% of new wells in Minnesota have nitrate levels above level of 3 mg/L and below the drinking water standard of 10 mg/L. About 1% of new wells have a nitrate level above the drinking water standard. However, the MDA Township Testing Program, which tests wells that are vulnerable to groundwater contamination, found a much higher percentage of wells in the central and southeastern regions of the state that have elevated levels of nitrate. The townships tested had a high percentage of land in row crop agriculture and the geology in these regions make it easier for nitrate to travel into groundwater.

The low statewide percentages of new wells with nitrate show that the well code is effective in reducing nitrate contamination risks for most wells. However, it is important that the owners of wells with elevated nitrate take actions to reduce their risk. Because concentrations of nitrate can change over time, well owners should periodically test their water, even if their water had a low level of nitrate initially. There are also many older wells that may have never been tested. As shown below, there has been a general upward trend in the percent of new wells with nitrate levels higher than the drinking water standard over the past 18 years.



It is not clear if there is a relationship between this trend and actual nitrate levels in groundwater since new well construction is not uniformly distributed across the state and the number of new wells is not consistent from year to year. This measure cannot tell us the specific causes of nitrate contamination. However, through Clean Water Fund activities that address and manage nitrate sources, nitrate concentrations in groundwater across the state should eventually decline. This measure should reflect that decline.

Arsenic

The goal for this measure is to reduce the percentage of new wells exceeding the drinking water standard for arsenic by 50%. Fifty one percent of new wells in Minnesota drilled since 2008 have arsenic. About 11% of new wells have arsenic levels above 10 micrograms per liter (μ g/L)—the drinking water standard for community

Arsenic in Newly Constructed Private Wells

Figure 44. Arsenic concentrations in new drinking water wells.

water systems.

In 2014, MDH and USGS started collaborating to better understand the occurrence and distribution of arsenic in groundwater. No activities to date have had a direct influence on reducing the percentage of new wells with arsenic. As we learn more about arsenic in groundwater, MDH will develop guidance for well contractors to reduce the likelihood that arsenic is in a new well.

Radium

In 2018-2021, MDH sampled 97 wells for gross alpha, an indicator of naturally-occurring radiation, at five sites across southeastern and central Minnesota. Wells that had some level of gross alpha were resampled for combined radium 226/228. Of the 48 resampled wells, 25% had elevated combined radium 226/228 above the drinking water standard of 5 pCi/L.

Learn more

About this measure and data: Clean Water Fund (www. legacy.mn.gov/clean-water-fund).

Nitrate in Drinking Water (www.health.state.mn.us/nitrate)

Arsenic in Drinking Water (www.health.state.mn.us/communities/environment/ water/contaminants/arsenic)

Status	Trend	Description
Nitrate	→	Since 1992, there has been a general increase in the percent of new wells that have nitrate levels above the drinking water standard.
Arsenic	+	The percentage of wells with arsenic above the drinking water standard has remained steady over the past 10 years. Evaluation of ways to reduce this percentage is ongoing and may take years before significant progress is made.

DRINKING WATER AND GROUNDWATER MEASURES

Groundwater levels

OUTCOME

Measure: Changes over time in groundwater levels

Why is this measure important?

Approximately three out of every four Minnesotans rely on groundwater for their drinking water. Minnesota's numerous aquifers also support agriculture, industry, and the natural resources (streams, wetlands, and lakes) that define Minnesota's quality of life. While the state's reliance on groundwater increases, many areas of the state lack basic information about the availability of groundwater.

This information supports the evaluation of water supply planning efforts to protect natural resources, prevent well interference, and sustain drinking water sources for future generations.

Groundwater levels are affected by both nature and man-made stresses. Climate change is affecting precipitation patterns, tiling and development modify local recharge and runoff, while pumping wells can impact the flow of groundwater. Changes in groundwater levels cause changes in the streams, fens and wetlands, springs, and lakes connected to them. Wells are also affected. When groundwater levels decline, well interferences may occur causing local water supply emergencies and costing private and public well owners money.

Decisions about water supply development and appropriation, watershed management, and land use are made daily. The success of management decisions relies in part on understanding how weather and man-made stresses impact groundwater levels on both a seasonal and long-term basis.

What are we doing?

To monitor this "hidden" resource the Minnesota Department of Natural Resources (DNR) manages a statewide network of groundwater-level observation wells. Traditionally water levels were measured monthly by Soil and Water Conservation Districts and other volunteers, however this network is being converted to continuous monitoring using automated sensors that measure levels every hour and then store the data until retrieved by staff, Figure 45 illustrates the difference between manual readings and continuous monitoring). The statewide network of groundwater level

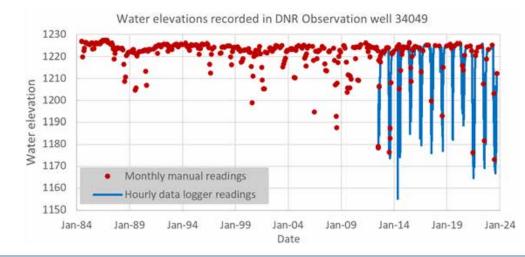


Figure 45: Hydrograph illustrating monthly manual readings versus hourly data logger readings. Note data logger consistently captures lower levels during summer months. observation wells provides information about seasonal water level fluctuations and long-term water level changes (Figure 45). Data from these wells are used to determine long-term trends, interpret impacts of pumping and climate, plan for water conservation, and manage the water resource. The water level data are available online and are used by hydrologists and water managers evaluate water supply questions at local and regional scales.

Data are insufficient to assess Minnesota's groundwater conditions in portions of the state, but the number of monitoring wells is being expanded to enhance our ability to detect trends. Since 2022, through a combination of Clean Water Funds and other state and federal sources, an additional 140 wells have been added to the network bringing the total wells in the DNR network to 1,234.

What progress has been made?

To evaluate progress, the DNR compiled water level data from observation wells with sufficient measurements in at least 15 out of each 20year period. An analysis is then completed that uses the annual minimum water level, i.e., the lowest water level recorded for the year in an observation well, for determining trends. The latest analysis, covering the period from 2003-2022, includes 328 DNR monitored wells. This year's analysis incorporates water level data from an additional 76 wells that are monitored by permittees, bringing the total wells included in the analysis to 404 statewide. The wells monitored by permittees are usually installed in close proximity to their active production wells. While DNR observation wells are designed to monitor "back-ground" water levels, the data collected by permittees allow DNR hydrologists to compare both the local and regional aquifer response to high volume pumping. Incorporating these permittee wells into the analysis broadened the geographic coverage and allows monitoring of aquifers pumped by high-capacity users. Statewide, 93% of the 404 observation wells exhibited upward or no clear trend while only 7% showed a downward trend (Figure 46).

This analysis has now been completed four times and cover the following periods: 1993-2012, 1997-2016, 2000-2019 and 2003-2022. A comparison of the four periods offers a view of how groundwater trends have changed over

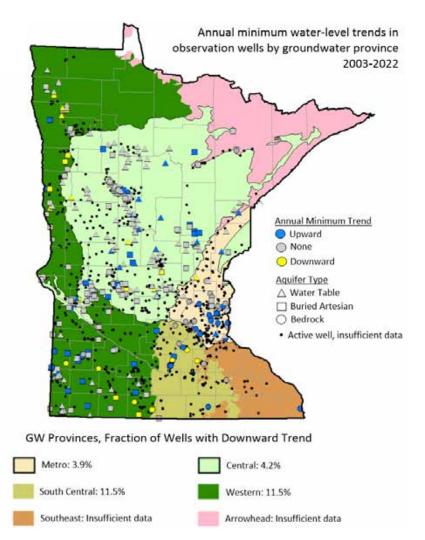


Figure 46. Water level trends in DNR and permittee observation wells for the period 2003-2022.

time. The original analysis, completed for the period from 1993- 2012, indicated that statewide, water levels in 63% of the 295 wells selected for analysis showed rising or no clear trend, while 37% indicated a downward trend. Analysis of water levels from 1997-2016 showed water levels in 81% of the 341 sampled observation wells showing no clear or an upward trend, while 19% exhibited a downward trend. The 2000-2019 analysis showed a continuing improvement with 94% of the 310 wells showing rising or no trends and only 6% of the wells with a downward trend. This year's analysis (2003-2022) showed 93% of the 404 sampled wells continued to trend upward or show no clear trend. Table 5 highlights the trends calculated for both Statewide and by Groundwater Province during the four periods of analysis. Generally, water level trends have been rising statewide, resulting in a significant drop in the percentage of wells showing a downward trend. Downward trends can result from a variety of factors. Analysis periods that start during years of high-water levels or

Table 5. Comparison of water level trend data by analysis period and location. Arrowhead and Southeast Provinces not displayed due to insufficient data.

Period (dates) of analysis	Number of wells with 20 year record included in the analysis	Statewide percent of wells with upward or no clear trend	Metro province percent of wells with upward or no clear trend	Central province percent of wells with upward or no clear trend	Western province percent of wells with upward or no clear trend	South-Central province percent of wells upward or no clear trend
1993- 2012	295	63%	44%	66%	76%	Insufficient data
1997- 2016	341	81%	73%	86%	74%	Insufficient data
2000- 2019	310	94%	100%	97%	83%	Insufficient data
2003- 2022	404	93%	96%	96%	88%	88%

periods that incorporate drier climate conditions in the later years of the analysis period will likely exhibit downward trends. An increase in groundwater use, a drop in surface water levels, and land use changes may all result in downward trends.

Year over year the majority of the wells exhibit no clear trend, however with the analysis now in its fourth iteration it is possible to look back at the earlier analyses and compare the past trends of the current 28 wells with downward trending water levels. While 10 of the wells are new to the "downward" trend, 18 of the wells have exhibited downward trends one, two or three times in the past. DNR hydrologists have identified probable causes for the downward trends in several wells located in the northwest part of the state and are working with local partners to address the trend. DNR staff will be investigating the source of the water level declines in those wells with multiple years of downward trends.

Groundwater-level information is becoming better integrated into water supply planning, which supports work to reduce the environmental, economic, and public-health risks created by unsustainable aquifer decline. In the Twin Cities metropolitan area, regional planning policies are being revised to address declining aquifer levels.

Statewide, the DNR has established Groundwater Management Areas (GWMAs) where additional planning and monitoring is needed to ensure that growing water demands do not cause unsustainable seasonal or long-term groundwater declines. Clear standards for sustainability of aquifers and the surface water features they support are being established and implemented in the near future. The emerging GWMA program is creating new partnerships between DNR, Pollution Control Agency, Department of Health, Department of Agriculture, Board of Water and Soil Resources, Metropolitan Council, and many local stakeholders.

Statewide, the DNR has established Groundwater Management Areas (GWMAs) where additional planning and monitoring is needed to ensure that growing water demands do not cause unsustainable seasonal or long-term groundwater declines. Clear standards for sustainability of aquifers and the surface water features they support are being established and implemented in the near future. The emerging GWMA program is creating new partnerships between DNR, Pollution Control Agency, Department of Health, Department of Agriculture, Board of Water and Soil Resources, Metropolitan Council, and many local stakeholders.

Status	Trend	Description
	+	Most observations wells with a sufficient period of record show no significant change or an upward trend.

DRINKING WATER AND GROUNDWATER MEASURES

Water efficiency

OUTCOME

Measure: Changes in total and per capita water use

Why is this measure important?

This measure describes how much water (groundwater and surface water) is used in Minnesota – as an annual statewide total and per person. As Minnesotans, we get much more from our water than drinking and washing. Water also helps to provide power, irrigate crops, run industrial processes, service health care facilities, and support our state's rich natural environment. And every drop of water that people move from one place to another for a variety of uses comes with a cost—such as the energy to move it, the infrastructure to treat it, and the impact to the source from which it was taken. Being good stewards means getting the most value out of the water we use, taking care not to waste it, and putting it back into the environment sustainably.

What are we doing?

The Minnesota Department of Natural Resources (DNR) is responsible for managing water withdrawal (appropriation) permits in Minnesota. Current laws require those who use large amounts of water to take practical actions to use water efficiently. Various water efficiency targets have been established since the Clean Water, Land and Legacy Amendment was passed. The following metrics and results are from the DNR Water Conservation Reporting System for public water suppliers statewide. To ensure meaningful trend analysis, the DNR uses a "Gold Club" of 132 utilities (out of 342 utilities serving over 1,000 people) that have reported reasonable data through the Water Conservation Reporting System each year:

- In 2022, for the Gold Club utilities, unaccounted for water loss was 10%, compared to 9% in 2020.
- In 2022, 87% of the cities reporting reasonable information met the goal of residential water use less than 75 gallons per capita daily (GPCD). For Gold Club

utilities, 90% met the goal in 2020 and 88% met the goal in 2022.

- The statewide aggregate GPCD was 56. For the Gold Club utilities, GPCD was 54 in both 2020 and 2022.
- In 2022, 70.6% of all utilities reporting reasonable data met the goal of maximum daily use being less than 2.6 times that of average daily use. 77% of Gold Club utilities met this goal, compared to 78% in 2020.

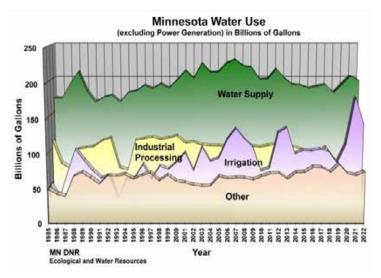


Figure 47. Minnesota water use in billions of gallons per year, excluding power generation.

In the Twin Cities metropolitan area, the Metropolitan Council (Met Council) has identified a regional target for total per person water use of 90 gallons/day, on average, for community water systems. The DNR, the Minnesota Department of Agriculture (MDA), the University of Minnesota (U of M), and the Met Council are using the Clean Water Fund to accelerate the implementation of water efficiency measures and progress toward these goals.

Examples:

- U of M Technical Assistance Program Water Conservation Program
- U of M Extension Turfgrass Science Program
- Freshwater Society Water Stewards Program (with resources for water conservation)
- Met Council Water Efficiency Grant Program

What progress has been made?

Between 2010 and 2022, while population increased, total water use has decreased by approximately 22%. This is likely due to a combination of factors including more efficient appliances and technology for commercial processes as well as suppliers' focus on leak detection and maintenance.

Year	Total MN Water Use (gallons per day)	Total MN Population	Gallons per person per day
2010	3,704,591,268	5,303,925	69.8
2012	3,682,228,800	5,368,972	68.5
2014	3,474,456,459	5,453,218	63.7
2016	3,372,221,158	5,528,630	60.9
2018	3,178,799,171	5,629,416	56.4
2019	2,904,713,342	5,680,337	51.1
2020	2,776,064,658	5,706,494	48.7
2022	2,902,092,877	5,801,769	50.0

Table 6. Total Minnesota water use from 2010-2022

Learn more:

Clean Water Fund (www.legacy.leg.mn/funds/clean-water-fund)

Minnesota Water Use Data (<u>www.dnr.state.mn.us/waters/</u> watermgmt_section/appropriations/wateruse.html)

Great Lakes Compact (<u>www.dnr.state.mn.us/waters/</u> watermgmt_section/great_lakes_compact/index.html)

Irrigation Outreach & On-Farm Nitrogen Management in Central Minnesota (<u>www.mda.state.mn.us/ag-weather-</u> <u>irrigation-management-resources</u>)

Freshwater Society Water Stewards Program (https://freshwater.org/minnesota-water-stewards/)

U of M Technical Assistance Program Water Conservation (www.mntap.umn.edu/focusareas/water/conservation/)

Met Council Water Efficiency Grant Program (<u>metrocouncil.org/Wastewater-Water/Funding-Finance/</u> Available-Funding-Grants.aspx)

Status

Trend

Description

There has been a general trend of improving water use efficiency from 2010 through 2022. Continued tracking is needed to assess the relative contributions of weather patterns versus changes in management.

SOCIAL MEASURES AND EXTERNAL DRIVERS

Social Measures	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85
External Drivers		•												•		•		88

SOCIAL MEASURES AND EXTERNAL DRIVERS

Social Measures

Building local capacity to support and engage in water restoration and protection

What are social measures?

Social measures track how Clean Water Fund investments affect people and communities, specifically their ability to support and engage in local projects. Tracking social measures provides valuable information about how well education, outreach, and civic engagement strategies are working.

Social measures are a way of integrating social science into Clean Water activities. They can help answer questions about what motivates people and communities to take positive actions as well as the barriers and constraints that prevent or limit action. Understanding and measuring these factors helps state agencies and their partners be more strategic when engaging and partnering with the public to address water quality and quantity, and evaluating the success of those efforts. Previous reports (2016, 2018, and 2020) provide a description of the Social Measures Monitoring System (SMMS) and how state agencies have worked together to pilot the application of this framework to Clean Water Fund projects. For this report we have highlighted We Are Water MN.

Below is a graphic that illustrates the four main components of social measures – individual, relational, organizational, and programmatic capacity.

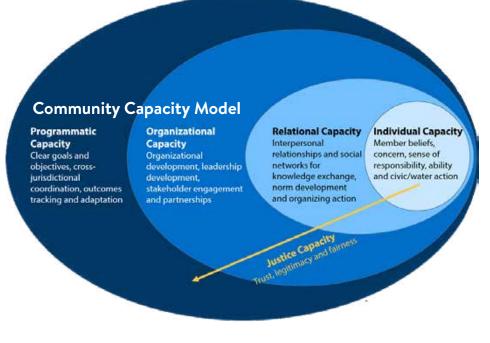


Figure 48. Four main components of social measures: Individual, relational, organizational, and programmatic capacity

We Are Water MN is the Clean Water Fund's only dedicated community capacity-building program. Communities are also connecting to protect water resources and plan for the future through local water management plans and the One Watershed, One Plan process. The Clean Water Council's vision is to increase the number of Minnesotans who understand their own role in achieving and maintaining healthy lakes, rivers, and wetlands and act accordingly. Early engagement provides opportunity to influence policy decisions, implementation plans, and increase ownership, or buy-in to actions needed to meet water quality goals.

We Are Water MN

Why is this measure important?

We Are Water MN is dedicated to building community capacity. It builds individual and relational capacity for participation in clean water through education and network building at the local level.

The program is built upon the theory that building community capacity to protect water requires building relationships between community members, organizations, and sectors. We Are Water MN achieves these goals through three key activities:

- Building a network of partnerships
- Hosting a traveling exhibit
- Designing public events

The program is a partnership of the Minnesota Humanities Center, Minnesota Pollution Control Agency, Minnesota Historical Society, University of Minnesota Extension, and the Minnesota Departments of Agriculture, Board of Water and Soil Resources, Health, and Natural Resources. It is hosted by local organizations that participate in 6-12 months of support and planning before the traveling exhibit arrives in their location.

We Are Water MN began in 2016 and uses the Minnesota Humanities Center's (MHC's) equity-based approach to community engagement, the Absent Narratives Approach[™], that increases partnerships with communities and fosters equitable practices within systems. Practicing the Absent Narratives Approach[™] as a framework for building relationships leads to the outcomes for water protection and restoration described in the Social Measures Monitoring System (SMMS), such as:

- Positive interpersonal relationships within communities that promote information exchange, build trust, foster shared identity, and promote common awareness, concern, and sense of responsibility for water.
- Networks that can promote positive social norms and share a vision for and participate in water stewardship.
- An increased and broadened community awareness of local water issues because visitors to the exhibit and public programming come from more diverse backgrounds than one host organization could convene on its own.

What are we doing?

In 2022, the state partners worked with five local organizations, located in diverse regions of the state:

- Winona: City of Winona
- Lake Pepin: Lake Pepin Legacy Alliance
- Alexandria: Legacy of the Lakes Museum
- Fergus Falls: Otter Tail County
- Hastings: Dakota County

What progress is being made?

There has been consistent delivery and statewide reach with this capacity building and water education program.

Host communities - Building relational capacity

While in the program, the host organizations focus on developing their own local networks. The program encourages them to connect with organizations outside their existing partnerships and with individuals or organizations representing traditionally absent narratives. A robust network of over 100 partnerships were engaged in 2022, 63% of which were new partnerships.

"I think we created a lot of really deep and meaningful partnerships and have continued on with the partnerships we have." -Legacy of the Lakes, Alexandria host site

Together, these local networks design a minimum of four public events that build people's relationship with and responsibilities to water. In 2022, there were 69 events, an average of nearly 14 events per host site.

The relationships formed through We Are Water MN provide opportunity for future work.

"I had never worked with the Hastings Environmental Protectors. They're awesome, and now I know about them and can go to them for a future partnership. Our collective awareness of each other's connections has grown tremendously." – Dakota County

Visitors – Building individual capacity

More than 28,000 visitors attended the exhibit in 2022. In addition, 4,600 attended one of the 69 host site events. Visitors to the exhibit are asked to complete a survey describing how their awareness of water issues changed after viewing the exhibit and their willingness to adopt pro-environmental behaviors. For both questions, visitors could select all responses that applied to them.

Overall, the traveling exhibit provides a way to engage visitors and increase knowledge and awareness about

local water resources. Survey results indicate that the vast majority of visitors learned something new and reported they are going to take action for water resources.

We are Water MN Survey Results

Awareness of water issues response options	% of respondents
I learned something new about our water resources	78%
I increased awareness regarding threats to our water resources	88%
I was exposed to a perspective different from my own regarding water resources	85%
Willingness to adopt pro-environmental behaviors	% of respondents
l will change how l personally use water	80%
l will share what I learned with others	77%
I will get involved with local organizations working to protect water resources	47%

We Are Water MN 2016-2022

Since 2016, We Area Water MN has visited 25 communities, involved 554 community organizations, reached 84,000 visitors, and strengthened 8 state agencies' relationships with each other and their ability to do meaningful community engagement.

Figure 49. We Are Water MN host locations, 2016-2022

Figure 50. Most of those surveyed at the exhibit report they've learned something new and will act for water resources. Visitors are encouraged to write their action on a water drop and post it in the exhibit.

Figure 51. Photo from the Winona County Historical Society, March 2022

SOCIAL MEASURES AND EXTERNAL DRIVERS

External Drivers

Important land use, population, and climate trends

The trends outlined in this section represent important land use, population, and climate-related changes that may influence the quality and quantity of water in Minnesota's lakes, rivers, wetlands, and aquifers. Because these factors are changing in ways that may impact our ability to achieve our Clean Water goals, they are referred to as external drivers. The external drivers highlighted in this report track changes occurring within Minnesota as a result of regional, national, or even international activities. The broad scale at which these external drivers operate means that they cannot be solely managed through the Clean Water planning process, yet they can have a significant impact on the quality and quantity of Minnesota's water resources.

External driver categories

Climatic changes:

- Average Minnesota temperature
- Average Minnesota precipitation

Demographic changes:

• Population size and proportion in urban/suburban counties

Land use changes:

- Agricultural land use
- Impervious surface urban/suburban communities
- Wetland coverage

Understanding how external drivers are changing over time provides important context for many of the Clean Water outcome measures highlighted in this report because those trends may increase or hamper Minnesota's ability to achieve its Clean Water goals. Tracking external drivers can also provide important information to help enhance the effectiveness of protection and restoration actions that are implemented. By understanding how Minnesota's landscape and climate are changing, Clean Water partners can fine-tune where money is invested and what actions are taken to enhance successful outcomes (see figure below). Tracking external drivers will help Clean Water partners adapt their actions over time, enhancing water quality and drinking water outcomes.

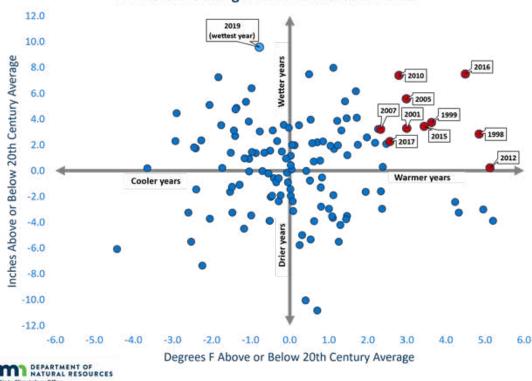
It is important to note that the relationship between the external driver and the water quality or drinking water outcome of interest is often complex and may vary from location to location. Just because one of the external driver categories highlighted in this section increases over time does not mean that water resource quality will decline. For example, increased adoption of best management practices or other actions by state and local governments may more than offset the change.

Of the many categories of external drivers that could be highlighted, this section focuses on a few selected land use, population, and climate changes. The specific trends represented on the following pages were chosen because they represent major external driver categories and are reliably and routinely updated at a statewide scale.

Figure 52. Expected relationships of external drivers to investments, actions, and outcomes.

Climate

Changing hydro-climatic patterns


Minnesota's climate exhibits large season-to-season, and year-to-year variations that influence the condition of the state's water resources, as well as the strategies that Minnesotans will need to employ to achieve restoration and protection goals. The amount and timing of precipitation influences how much water soaks into the ground —changing whether it can be taken up by plants, replenish soil and groundwater resources, or runs off directly into the nearby lakes, rivers and wetlands.

Precipitation patterns also control water demand for outdoor uses such as agricultural and residential irrigation. Likewise, Minnesota's temperature patterns affect the length of Minnesota's winter - controlling the period when lakes and streams are covered by ice, the length of the summer growing season, how warm surface waters become, as well as many of the chemical, physical, and biological processes that shape how the state's aquatic resources behave.

Minnesota is becoming both wetter and wetter, even when accounting for the dry early 2020s and for cool years in 2019 and 2022. The top ten combined wettest and warmest years between 1895 and 2022 all occurred since 1998. (See "wetwarm graph")

Average annual precipitation has increased at a rate of 0.28 inches per decade, or by a total of 3.6 inches since 1895. Part of this increase was the natural rebound expected after the major drought episode of the 1920s and 1930s, when annual precipitation decreased to the lowest levels on record. However, in the past few decades, precipitation has continued increasing beyond what would be expected from typical wet/dry variations. The period from the 1990s through the 2010s was the most consistently wet period on record, and the 2010s finished as Minnesota's wettest decade back to the 1890s. (see "P_trends_2023")

The wetter conditions have coincided with increases in heavy and extreme precipitation. The Minnesota State Climatology Office has noted that from 1990 to 2022, days with one, two, and three inches of precipitation were 18%, 30%, and 60% more common, respectively, than in the entire record up to that point.

Minnesota Getting Much Warmer and Wetter

Figure 53. Combined temperature and precipitation departures from 20th century averages for Minnesota for all years, 1895-2022, highlighting the 10 combined warmest and wettest years on record, all of which occurred since 1998.

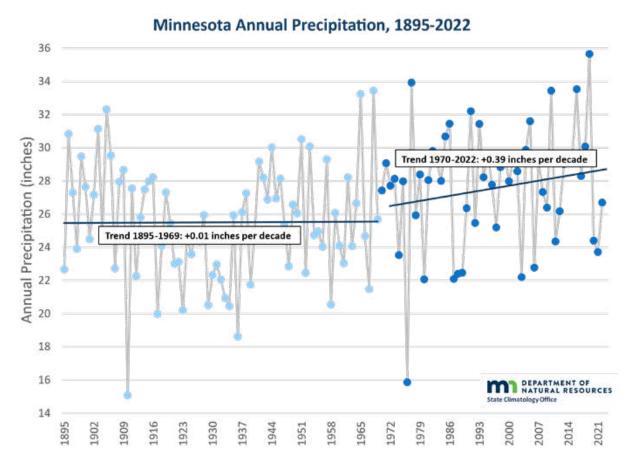
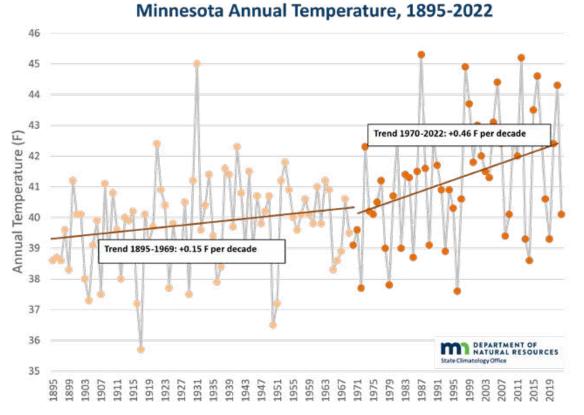
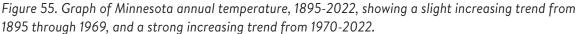


Figure 54. Minnesota annual precipitation, 1895-2022, showing no trend from 1895 through 1969, and a trend towards overall precipitation increase from 1970-2022.


In the early 2020s, steep declines in warm-season precipitation (May through September) led to three distinct major drought episodes covering all or part of Minnesota. These dry periods represent short-term variations that have not changed the trends towards increased precipitation. In fact, cool-season precipitation (October - April) has continued increasing during this time, with record-breaking winter and spring precipitation in northern Minnesota during 2022 leading to historic flooding on the Rainy River. The drought episodes have been substantial, but near-record wetness during the cool season has made the early 2020s the "wettest dry period" on record in Minnesota.


Minnesota has warmed by approximately 3° F since the beginning of statewide records in 1895, but warming rates have increased sharply in the past several decades. For instance, Minnesota's average annual temperature increased at a rate of + 0.15° F per decade from 1895 through 1969, but has tripled from 1970 through 2022, to a rate of 0.46° F per decade. (see "T_trends_2023")

This sharp uptick in warming since 1970 has been driven by milder winters, fewer cold weather extremes and higher daily minimum temperatures. Average daily low temperatures have increased 68% faster than average daily high temperature since 1970, while winter has warmed 42% faster than fall, four times faster than summer, and 6-7 times faster than spring. Warming rates in all seasons have been faster in northern Minnesota than southern Minnesota. (see "MN_T_change_thru_Aug_23")

Although summertime daily high temperatures have been the slowest to respond to changing climate conditions in Minnesota, they now exhibit some long-term increases (warming) in northern and central Minnesota, but not yet in southern Minnesota.

In 2018, the Minnesota Department of Natural Resources created a climate trend analysis tool that allows resource managers and planners to examine these statewide climatic changes in more detail, both seasonally and geographically. In 2021, a new version of the tool was updated to include the use of future climate projections. Using these tools can

help inform the development of protection and restoration strategies, and the selection of implementation projects to anticipate changes in climatic patterns. The new tool, the Minnesota Climate Explorer, is available at: arcgis.dnr.state. mn.us/climateexplorer/main/historical, and the previous tool, Minnesota Climate Trends, is still available at arcgis.dnr.state. mn.us/ewr/climatetrends.

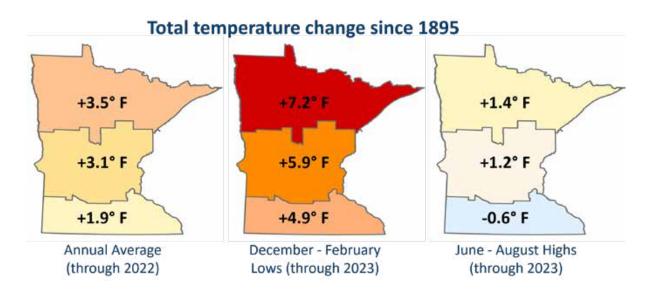


Figure 56. Maps showing total temperature change in Minnesota since 1895 for the annual average (left), average of winter daily lows (middle), and average of summer daily highs (right)

Demographic (Population)

Demographic changes

The size and makeup of Minnesota's population can stress water resource quality in terms of demand for water and how those uses impact the quality and quantity of water that is returned to the environment. As shown in Figure 57, Minnesota's population has increased steadily since 1950, and nearly all of that growth can be attributed to urban or suburban counties. This shift reflects more impervious surface that has the potential to impact surface water quality and quantity, increased water demand and associated impacts to groundwater and surface water supplies and an expanded volume of treated wastewater being discharged back into the environment. As Minnesota's population continues to increase, so too will the demands placed on the state's water resources. These changes may require modifications to current water quality actions and strategies.

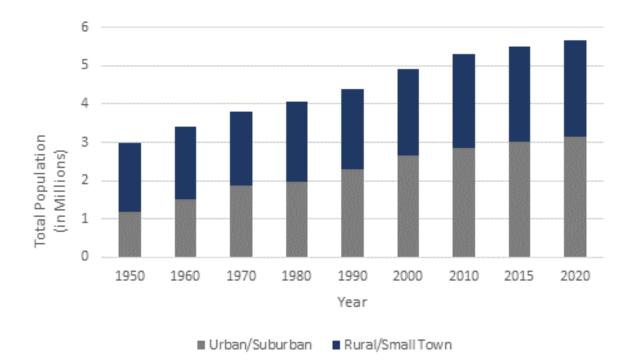


Figure 57. Changes in Minnesota's urban/suburban and rural population from 1950 through 2020.

Land Use: Agricultural Land Use

Though the total area of agricultural land use in Minnesota has remained relatively constant over time, the crops grown (land cover) have undergone a significant transformation. There have been major shifts in land cover in Minnesota over the last 70 years (Figure). The number of acres planted in small grains or hay has declined and been replaced by increases in corn and soybean acreage. The roughly nine million acres where agricultural land use has changed represents about 16% of the state. These cropping changes have altered the time of year and extent to which the land is covered by a growing crop. This impacts soil erosion, fertilizer use, nutrient uptake, and soil moisture. These crop cover changes may increase nutrient and sediment discharge to surface waters and leaching into groundwater.

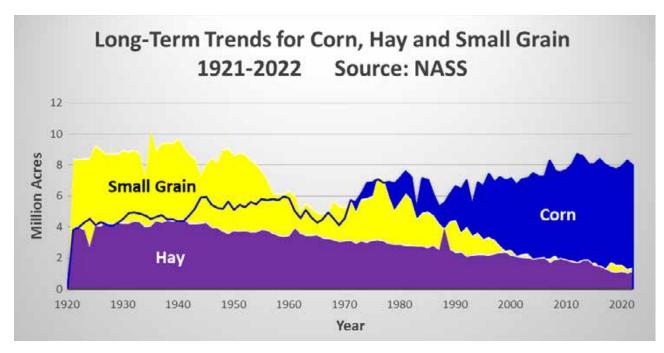


Figure 58. Long-term trends for corn, hay, and small grain (1921-2022) - Source NASS

Land Use - Wetlands

Change in wetland acreage

Wetlands are critical to Minnesota's water quality because they provide water storage, hold back runoff and reduce the intensity of flood peaks, reduce the concentration of various pollutants in runoff water, and contribute to groundwater recharge. The abundance of wetlands has changed significantly in many parts of Minnesota. Since the 1800s, it has been estimated that about half of the state's wetlands have been lost. In many parts of southern Minnesota, well over 90% of the original wetlands have been drained. Because of the benefits associated with wetlands, Minnesota adopted a "no net loss" of wetland policy in 1991, and in 2006 initiated a rigorous, long-term monitoring programs to track changes in wetland quality (MPCA) and quantity (DNR) over time. Between 2006 and 2008, the DNR's monitoring effort assessed wetland and deepwater area in 4,990 plots across Minnesota to serve as a baseline. Those same plots are reassessed every three years to track changes in wetland and deepwater area. In 2017, the program reduced the number of plots to 3,750. Data have been collected through 2023 and analyzed through 2020. Because these plots are a random sample of the state, they allow us to estimate statewide values, but note that we have not conducted a complete inventory of the state's wetlands for these data.

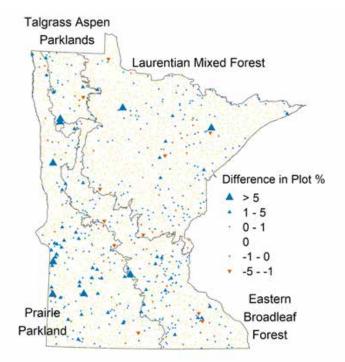


Figure 59: Change in wetland and deepwater area to or from upland and artificially flooded wetland between the baseline and 2020, displayed as the difference in percent plot area (final percent - initial percent). The ecological provinces, as defined by MN DNR's ecological land classification system, are outlined and labelled. Minnesota had the following estimated changes in statewide wetland/deepwater between 2006 and 2020:

- A gain of 50,737 acres, which is a 0.39% increase from baseline acreage,
- A loss of 7,348 acres, which is a 0.06% decrease from baseline acreage, and
- A net change of 43,389 acres, which is a 0.33% increase from baseline acreage.

The most recent monitoring cycle (2018-2020) captured the greatest gains and smallest losses in wetland area so far in the monitoring program.

In spite of nominally achieving the state's no-net loss goal with respect to wetland quantity, the data suggest important reasons to be concerned about the state of wetlands in Minnesota.

- Much of the observed gains have been unconsolidated bottom type wetlands (ponds) that typically have limited wildlife habitat value.
- Large areas of wetlands have been converted between different types between 2006 and 2020, including approximately 89,632 acres of forested wetlands statewide that have become emergent wetland, and approximately 23,298 acres of emergent wetlands statewide that have become cultivated wetland. While these changes are not considered a loss of wetland area; they undoubtedly represent a loss of wetland function.

Restoring wetlands may be an important practice in Minnesota to slow down runoff and trap pollutants before they reach downstream lakes and streams. Results from the wetland tracking effort described above suggest that historical patterns of outright wetland loss may be leveling off, but there is a need to focus on restoring and maintaining wetland functional quality.

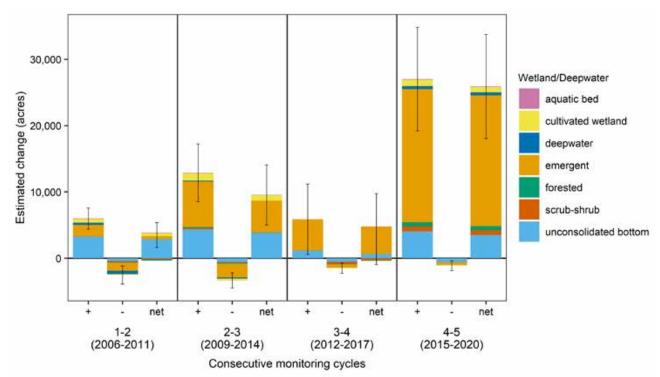
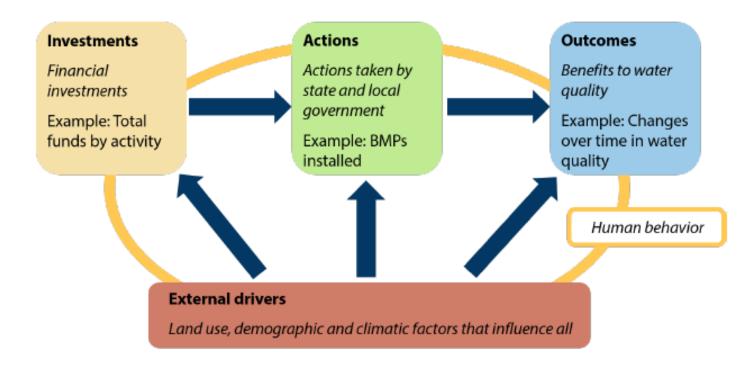


Figure 60: Change in wetland area between consecutive monitoring cycles, estimated for the entire state of Minnesota, color-coded by wetland class/deepwater.

Status	Trend	Description
	→	External drivers interact in a complex manner impacting how Clean Water Funds need to be invested.

2024 Clean Water Fund Performance Report TRACKING MINNESOTA'S CLEAN WATER FUND INVESTMENTS

7th Edition of Clean Water Fund Performance Report In Development



Scope of Clean Water Fund Efforts and Report

Clean Water Fund investments are an important part of water resource management in Minnesota, but we also rely on the dedication and partnership of citizens, communities, and businesses to implement strategies that improve water quality.

Clean Water Fund Performance Report

GOAL: Clarify the connections between Clean Water Fund investments, actions taken, and outcomes achieved in Minnesota's water resources.

Performance Report Measures

Action Status Legend

SYMBOL

MEANING

We are making good progress/ meeting the target

We anticipate difficulty; it is too early to assess; or there is too much variability across regions to assess

Progress is slow/we are not meeting the target; or the activity or target is not commensurate with the scope of the problems

Outcome Status Legend

SYMBOL

Water quality is high – we are on track to meet long-term water resource needs and citizen expectations Water quality needs improvement or it is

MEANING

too early to assess – it is unclear if we will meet long-term water resource needs and citizen expectations; and/or water quality varies greatly between regions

Water quality is under intense pressure – long-term water resource needs and/ or citizen expectations exceed current efforts to meet them

Trend Lengend

SYMBOL

Improving trend

NEI

No change

Declining trend

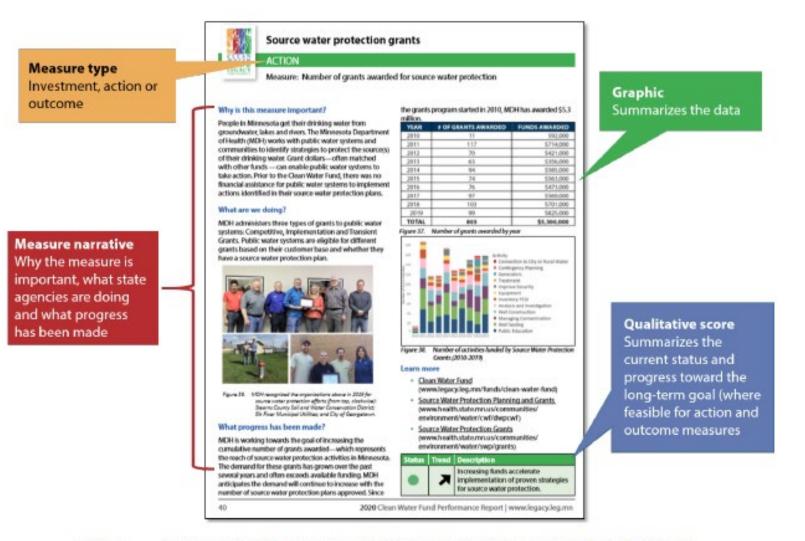
Not enough information to determine trend at this time

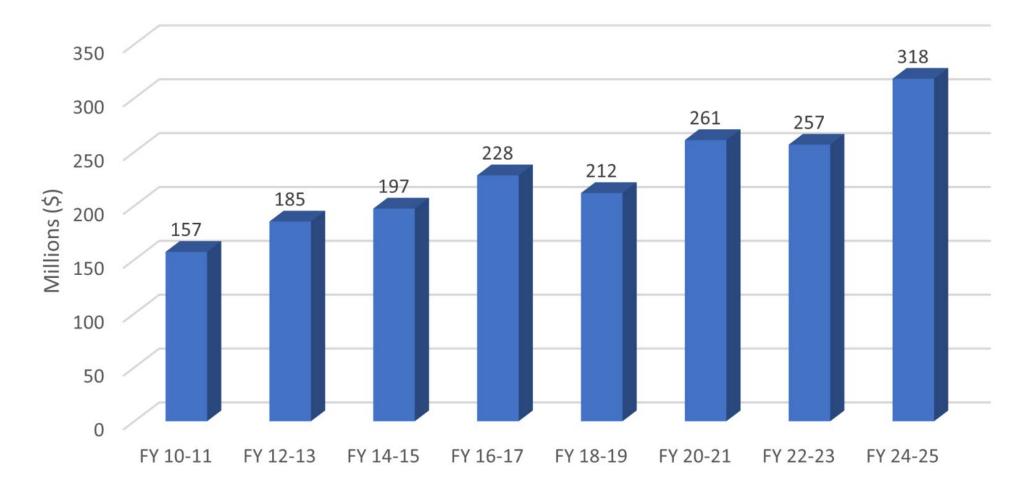
Performance Report Measures

Report card gives an overview of the status and trend of each measure

				Sur	fac	e Water	Measure	5						
	MEAS	SURE		STATU	US	TREND			DESCRIPTION					
UKE	Percent of monitoring ad needs.	ng state & local			💼 mo			goals for addressing state and lo development is aimed to ensure						
MEA SURE	Local partner participa	Drinking water and groundwater measures												
٤	Number of nonpoint si practices implemented		MEASURE STATUS TREND DESCRIPTION											
	and estimated pollutar		Number of comm	unity wat	er su	pplies assisted			On track to meet goal of prot	ecting all vulnerable sys	stems under Source Water			
	Number of municipal p projects implemented and estimated pollutar		with developing s Number of grants protection.		ter pr	otection plans.		•	Protection Plans by 2020.					
	ME		Number of local g						Investmer	nt Measures				
	Rate of impairment/un water statewide and by		participating in gr monitoring and re	aduct		MEA	SURE		STATUS	TREND	DESC	RIPTION		
	life. Rate of impairment/un water statewide and by swimming	M EAS URE	Number of new h contaminants of e Number of count	emer ies c		Total Clean V dollars appro activity		to the FY10-2	has been appropriated Clean Water Fund from 25, ranging from \$157M in 1 to \$318M in FY24-25.	FY16-17: \$228M FY18-19: \$212M FY20-21: \$261M FY22-23: \$257M FY24-25: \$318M	For FY10-25, all 80 wat from Clean Water Fund Implementation activiti portion of spending in v	supported activities. es comprise the larges		
	Rate of impairment/un water statewide and by Changes over time in k parameters for lakes at		atlas for groundw		EASURE	Total Clean V dollars per w statewide by	atershed or	are be	tersheds in the state nefiting from local and ide projects.		For FY10-25, all 80 wat from Clean Water Fund Implementation activiti portion of spending in v	supported activities. es comprise the larges		
	Changes over time in k parameters for lakes at large rivers.	D	Number of long-term network wells. Number of unused gro		W		ed in grants s to non-state	and co	was awarded in grants intracts to non-state y partners in FY10-23.		About 84% of grant an implementation activiti appropriations were aw	d contract awards are f es; 43% of total FY10-		
	Changes over time in k parameters for lakes ar rivers.		Land use in Drinki Areas.	ng V Total do		agency parts Total dollars Clean Water	everaged by	\$630M was leveraged by Clean Water Funds in FY10-23, or			partners. Required Clean Water r exceeded.	d Clean Water match funds were		
5	Changes over time in k parameters for lakes at			ME				\$1.06 dollar	for every implementation invested.					
	large rivers. Changes over time in k parameters for lakes at	. Change and oth		ter quality	cides, / para	, nitrate-nitroge meters in	۲	•	Variable trends for five comm frequently detected in vulner	on pesticides indicate a able groundwater.	mixed signal. Low levels are			
	streams. Changes over time in k		Changes over time in pestici and other key water quality p groundwater: Nitrate-nitrog		/ para	meters in	×	NEI	In many agricultural areas, dri contamination and most wells vulnerable groundwater areas nitrate contamination is a sign	have low levels of nitra (the southeast, Centra	ste-nitrogen. However, in			
	parameters for lakes at lakes. Changes over time in k parameters for lakes at streams and rivers.		Changes over time in pesticides, nitrogen, and other water quality groundwater: Nitrate-nitrogen sc			y parameters in		NEI	In areas where groundwater is vulnerable townships tested in were determined to have 10% mg/L standard.	n southwest Minnesota	(2013-2019), 100% of them			
	Number of previous in water quality standard:	WE	Changes over time in pesticides, nitrate-nitroge and ther keywater quality parameters in groundwater: Nitrate-nitrogen Central Sands.					•	Trend data from the Central S trend in the 90th percentile . nitrate in some vulnerable are	However, township test	s. Nitrate Monitoring Network			
	Mercury in fish.	OUTCO	Changes over time in pesticides, nitrate-nitrogen and other key water quality parameters in groundwater: Nitrate-nitrogen southeast region.				•	Trend data from the Southeas shows no change. However, to some vulnerable areas in sout	winship testing data sh					
			Changes over tim for community wa			ter quality used			Current risk management app proactive and collaborative th					
	Mercury emissions.		Nitrate concentrations i		newty	constructed we	в. 🔺	-	Since 1992, there has been a g have nitrate levels above the	general increase in the p drinking water standard	percent of new wells that			
			Arsenic concentrations in newly constructed wells.				•	The percentage of wells with arsenic above the drinking water standard has remained steady over the past 10 years. Evaluation of ways to reduce this percentage is ongoing and my take years before significant progress is made.						
			Changes over time in groundwa			ter løvels.				no significant change or an upward trend; many areas oundwater information while some areas experience				
	Municipal wastewater p		Changes over tim use.	e in total	and p	oer capita water			There has been a slight impro- continued tracking is needed difference in weather versus of	to determine the amou	nt of impact from annual			
						Soc	ial Meas	ures <u>a</u> r	nd External Drive	rs				
				MEAS				TREND		DESCRIPTION				

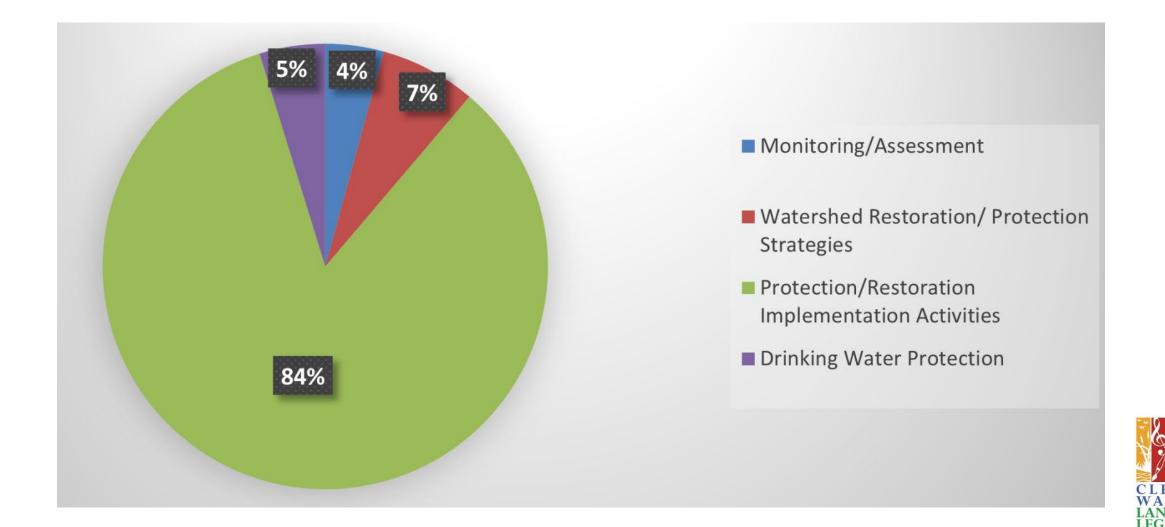
Performance Report Measures

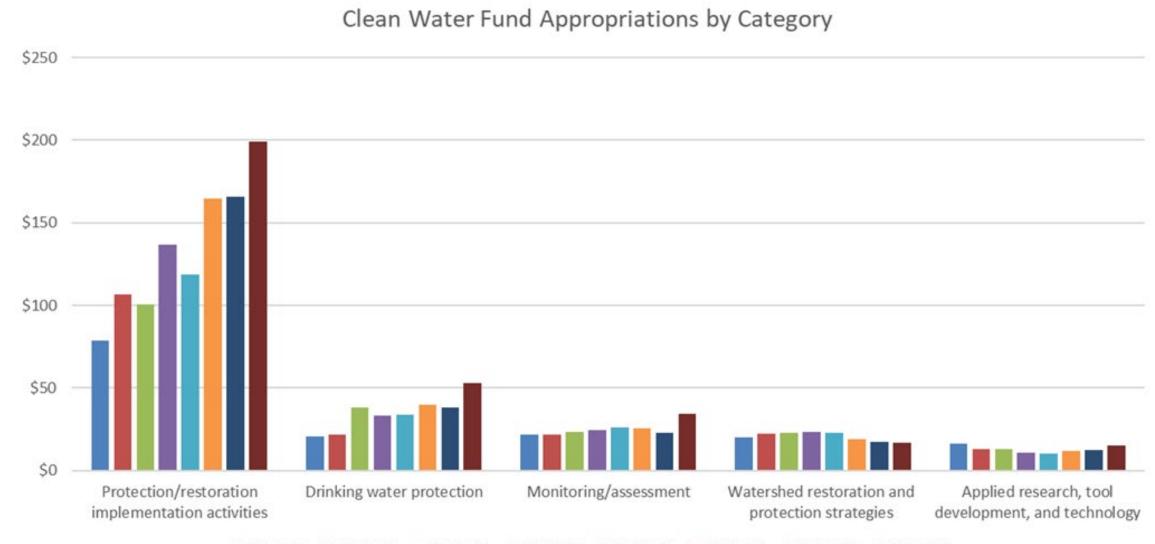



Figure 1.

Each measure profile includes measure type, measure narrative, a graphic and a qualitative score.

Investment

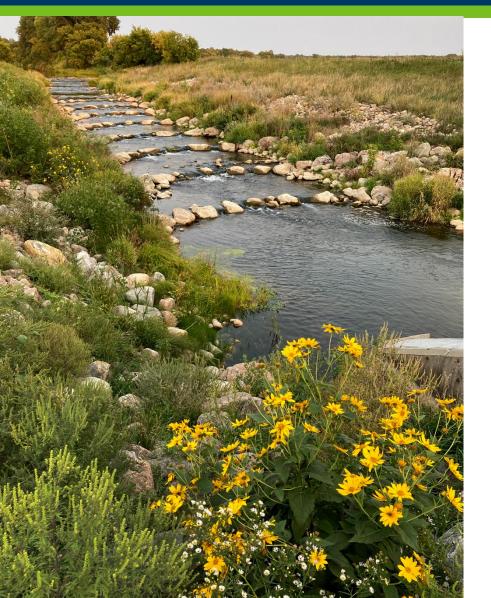

Total Dollars Appropriated by Biennium



Appropriations by category

Appropriations by category

■ FY 10-11 ■ FY 12-13 ■ FY 14-15 ■ FY 16-17 ■ FY 18-19 ■ FY 20-21 ■ FY 22-23 ■ FY 24-25



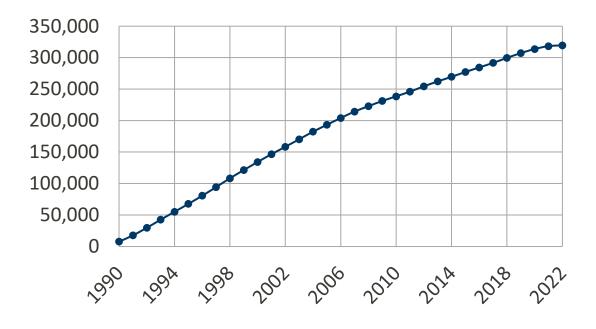
Highlights: Partnership and Collaboration

- Awarded more than 4,271 grants to protect and restore Minnesota's water resources
- Issued more than 2,253 loans to prevent nonpoint source water pollution or solve existing water quality problems

A Clean Water Fund grant from BWSR supported the rock riffle project on the Sand Hill River

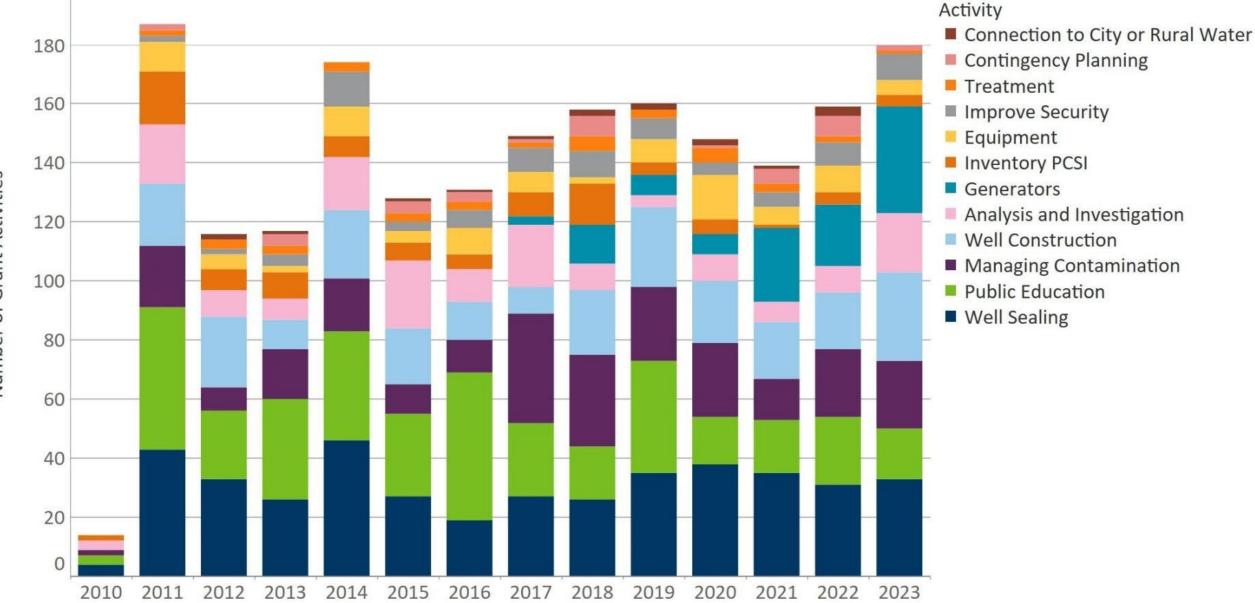
- "The fish are back, and that's huge," said West Polk SWCD Manager Nicole Bernd. "We were able to restore the fish habitat, the fish life in that stretch of river."
- "I hear people talking about how they themselves, or their family members

 their children, grandchildren, nieces, nephews are going out fishing on
 the river, in places where you couldn't catch fish previously. And they're
 having success and having fun fishing on the Sand Hill River, which they
 couldn't have done (previously) because of the old drop structures," MPCA
 Environmental Specialist Scott Schroeder said.
- "That project opened the door for our legislators, our partners, the state. There is some really outstanding work going on up in northwest Minnesota.
 ... The SWCDs up here are fairly small, but the partnerships are huge." — Nicole Bernd, West Polk SWCD manager

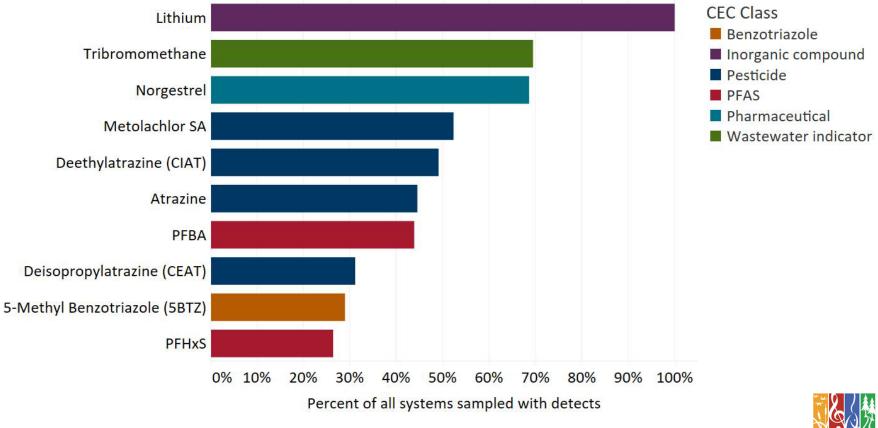

Highlights: Protection

- Secured more than 941 easements that will permanently protect approximately 31,164 acres along riparian corridors and within wellhead protection areas, of which 23,830 acres were protected using Clean Water Funds
- 800 out of the approximately 970 community water systems plans developed to protect drinking water sources.

Sealing unused groundwater wells


- Unused, unsealed wells can be a source of groundwater contamination and can also pose physical hazards
- **95** unused public water supply wells and **1,370** private wells were sealed with Clean Water Funds since 2010
- Continued effort is needed to address the estimated 250,000 to 500,000 unused unsealed wells remaining
- This activity continues to be funded through Source Water Protection Grants

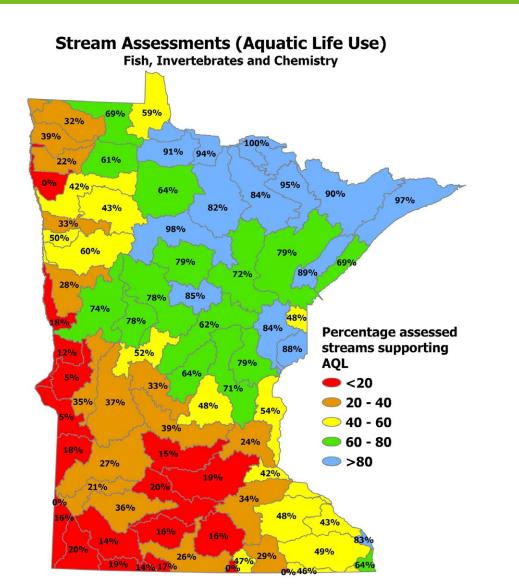
Wells and Borings Sealed in Minnesota (cumulative)

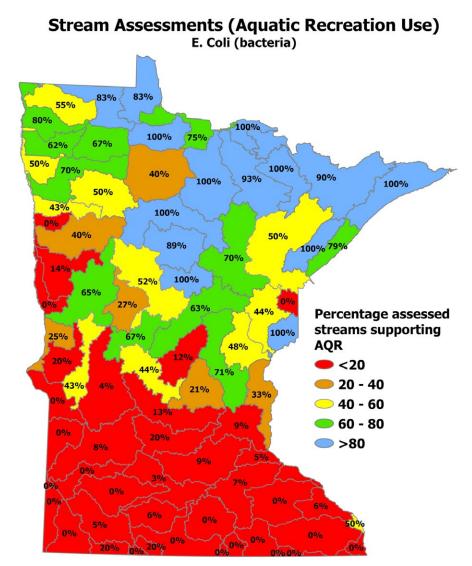


EGAC

Source water quality for community water systems

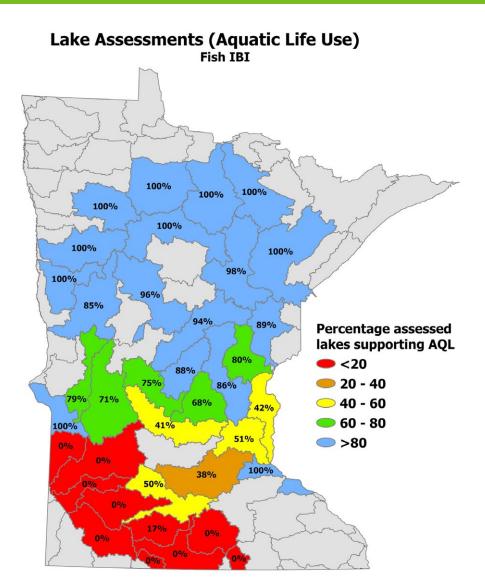
- MDH sampled about 100 community water systems for contaminants of emerging concern (CECs)
- Very few samples exceeded health guidance and only a fraction of CECs were detected
- The Drinking Water Ambient Monitoring Program at MDH will continue CEC sampling

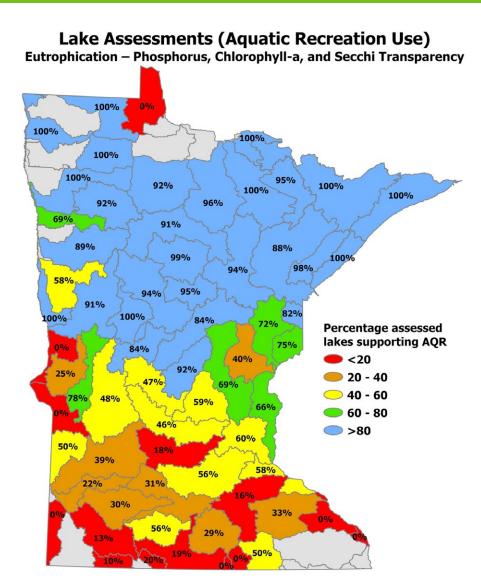


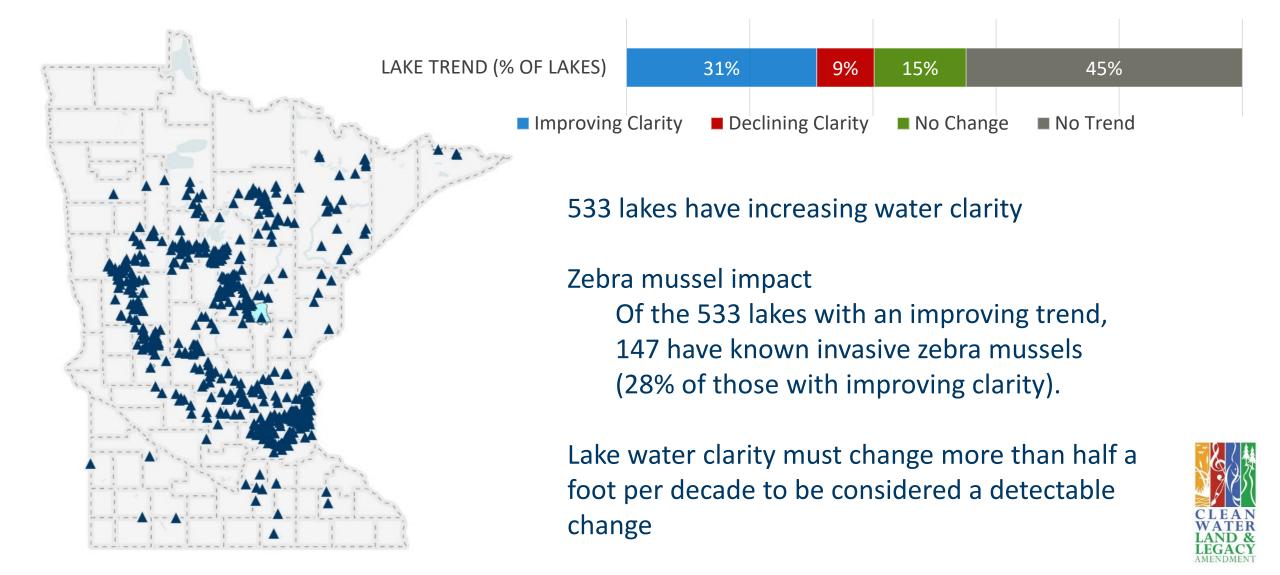

Highlights: Reducing Pollutants and Documenting Successes

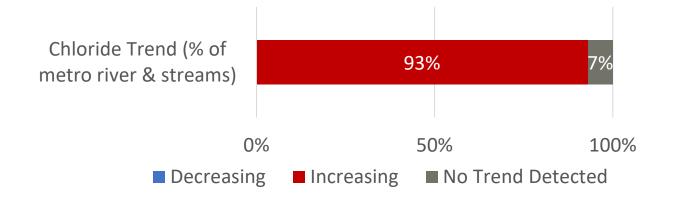
 In 2023, Minnesota completed a major milestone with the completion of the final Watershed Restoration and Protection Strategy (WRAPS). The WRAPS resembles a "to-do list" or blueprint for activities that must happen for waters in a major watershed to meet water quality standards.

Stream Condition Assessments



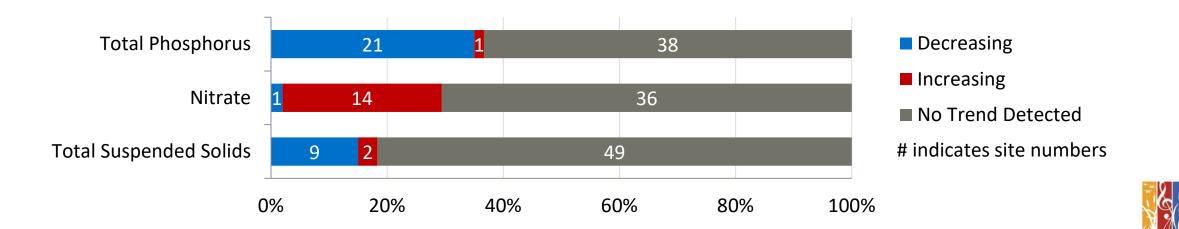



Lake Condition Assessments



Lake and stream water quality

- Nearly all locations are seeing a long-term increasing concentration trend in chloride.
- Chloride reduction grant and Clean Water Partnership loans to fund chloride reduction.



Lake and stream water quality

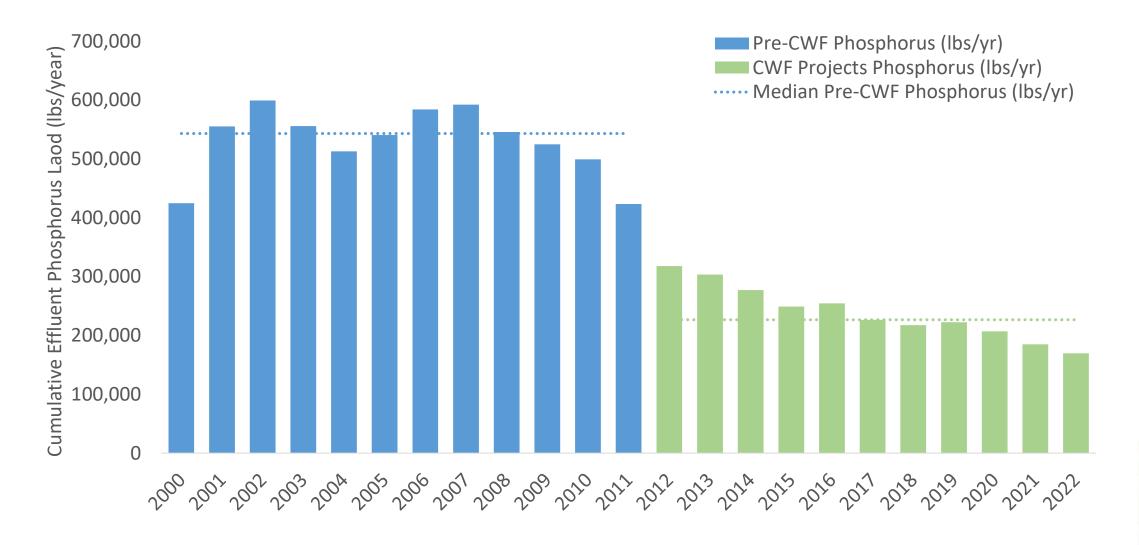
- Water quality varies greatly by region. Over 50% of streams have no trend detected.
- Total Phosphorus and Total Suspended Solids are generally decreasing or have no trend detected.
- Nitrate trends are generally showing no trend or increasing throughout the state.

Highlights: Reducing Pollutants and Documenting Successes

- Delisted 81 lakes and streams from Minnesota's impaired waters list
- Upgraded 52 municipal wastewater treatment facilities, which reduced phosphorus discharges by over 316,000 pounds per year via municipal wastewater treatment upgrades
- Repaired **881** imminent health threat subsurface sewage treatment systems

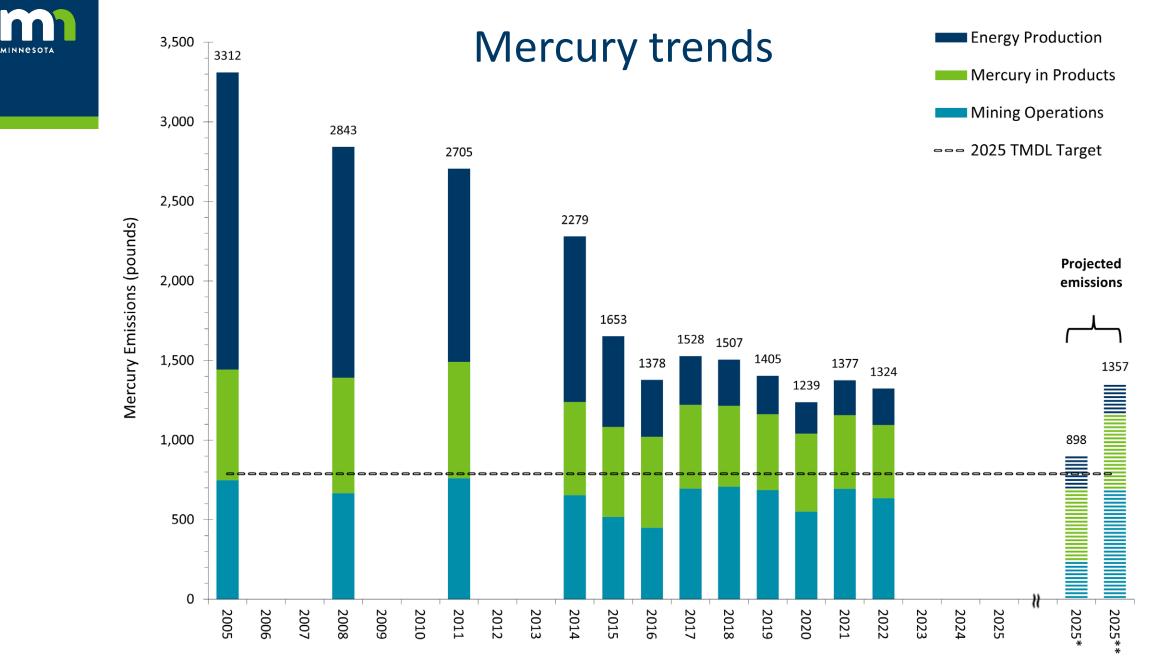
Bone Lake – removal from the impaired waters list

- Bone Lake in Washington County, impaired for excess nutrients in 2004.
- A Total Maximum Daily Load (TMDL) study was developed in 2010 that set a 46% reduction goal for phosphorus needed to reach water quality standards.



Bone Lake – removal from the impaired waters list

- The Comfort Lake Forest Lake Watershed District took on the task of reducing roughly 820 pounds of phosphorus per year through an approach that included:
 - in-lake curly leaf pondweed management,
 - converting row crops to perennials,
 - wetland restoration,
 - carp barriers and carp harvesting,
 - upstream nutrient reductions from Moody Lake, and
 - included a farmer lead council that assisted in outreach and advisory roles.
- When the lake was monitored and revisited in 2021, total phosphorus was meeting standards and subsequently recommended for delisting with the 2024 impaired waters list.



Phosphorus Load Reductions at CWF Wastewater Treatment Facilities

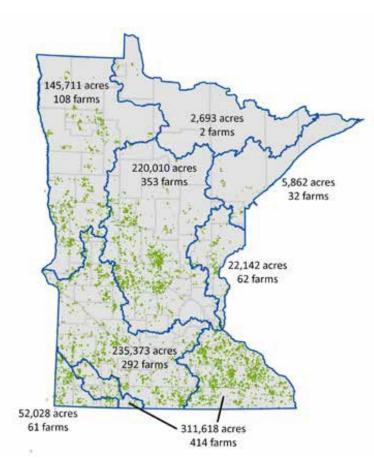
MINNESOTA

* This projection is based on the ferrous mining/processing industry in northern MN meeting the required 72% reduction specified in Minn. R. 7007.0502.

** This projection is based on the ferrous mining/processing industry's proposed reductions in each mercury reduction plan applied to the baseline emissions as calculated by MPCA.

Highlights: Reducing Pollutants and Documenting Successes

- CWF supported pilot projects to two groups of rural counties to offer free private well testing, one for nitrate and one for arsenic, and options for alternative water for income-qualified households. These pilots form the basis for the state's upcoming response to recent federal requirements to support drinking water needs for private well users with high nitrate levels in southeastern Minnesota.
- Added pesticide water quality monitoring for approximately 140 additional pesticide compounds in vulnerable groundwater and surface water resources statewide.


Minnesota Agricultural Water Quality Certification Program (MAWQCP)

Certified nearly 1,000,000 acres of Minnesota farmland across more than 1,400 farms through the state's Agricultural Water Quality Certification Program.

An independent analysis from Minnesota State Agricultural Centers of Excellence shows MAWQCP-certified farms also average 20% higher net profit than non-certified farms.

"With the cover crops and reduced tillage alone, we have seen better yields during droughts and have reduced our waiting time to resume planting and harvesting after a heavy rain event due to the increased soil aggregation and water infiltration within our fields. Plus, we have also cut out a third of our fuel use."

- Glenn Hjelle, Grant County Farmer

Project Team: Reid Christianson (MDA), Bill Dunn (MPCA), Annie Felix-Gerth (BWSR), Mary Juhl (BWSR), Steve Kloiber (DNR), Kim Laing (MPCA), David L. Miller (MPCA), Alycia Overbo (MDH), Gabriel Posteuca (MPCA), Paul Putzier (DNR), Emily Resseger (MCES), Lanya Ross (MCES), Jen Schaust (MDA), Udai Singh (BWSR), Azra Thakur (MDH), Brad Wozney (BWSR)

Clean Water Fund Interagency Coordination Team: Tannie Eshenaur (MDH), Andrea Fish (BWSR), Jeff Freeman (PFA), John Jaschke (BWSR), Peger Kjeseth (MDA), Jason Moeckel (DNR), Sam Paske (MCES), Richard Jess (DNR), Glenn Skuta (MPCA), Judy Sventek (MCES), Margaret Wagner (MDA)

Designers: Vicki Heagerty (MDA), Kabao Her (MDA)

Thank You!

The 2024 Clean Water Fund Performance Report will be available at:

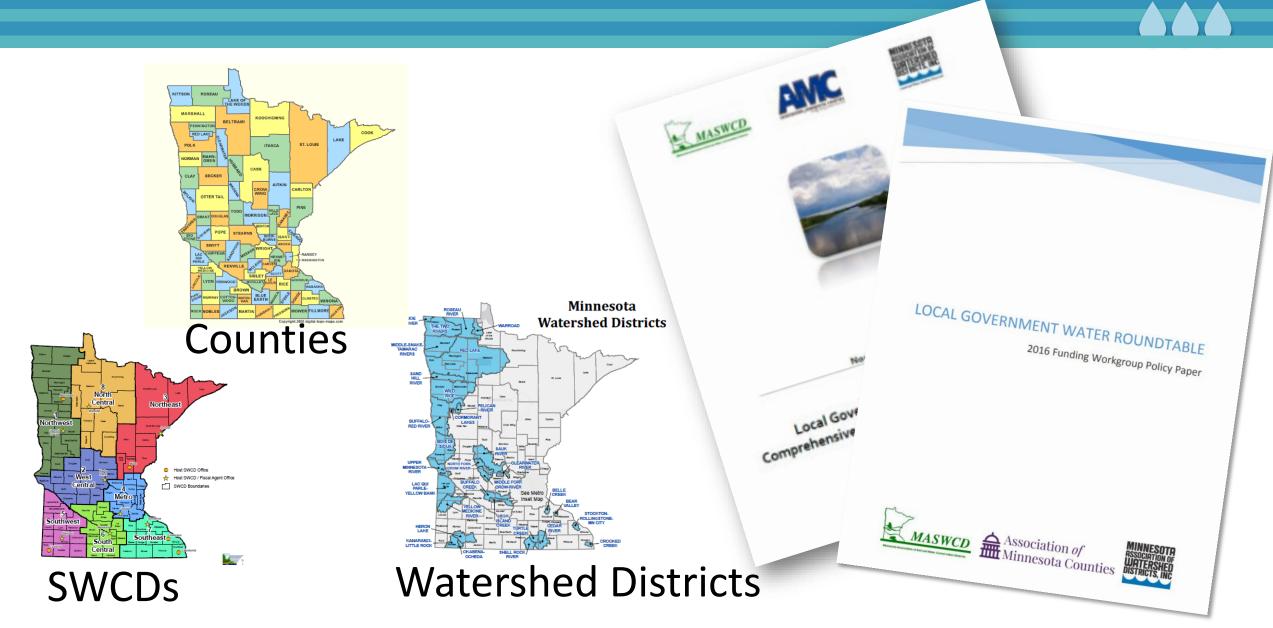
http://www.legacy.leg.mn/funds/clean-waterfund/clean-water-fund-performance-reports

LOCAL GOVERNMENT WATER ROUNDTABLE

Association *of* Minnesota Counties

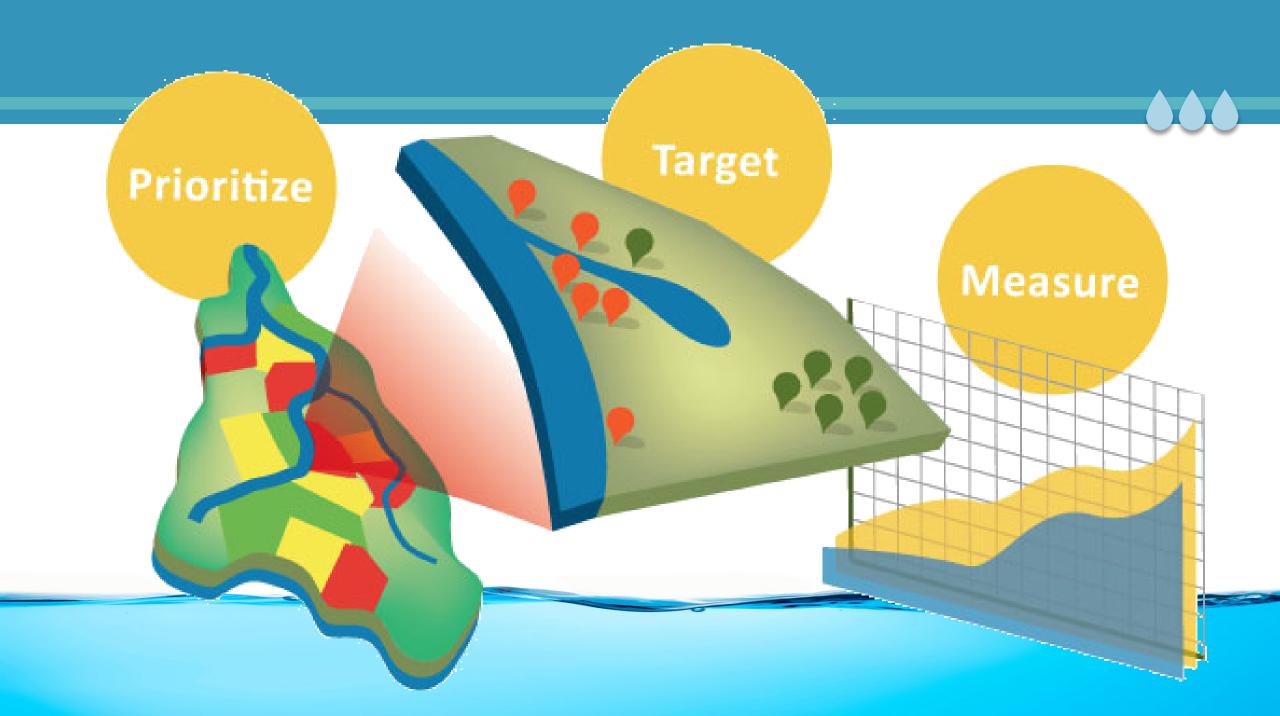
Winnesota Association of son and Water Conservation Districts

The Watershed-Based Funding Approach

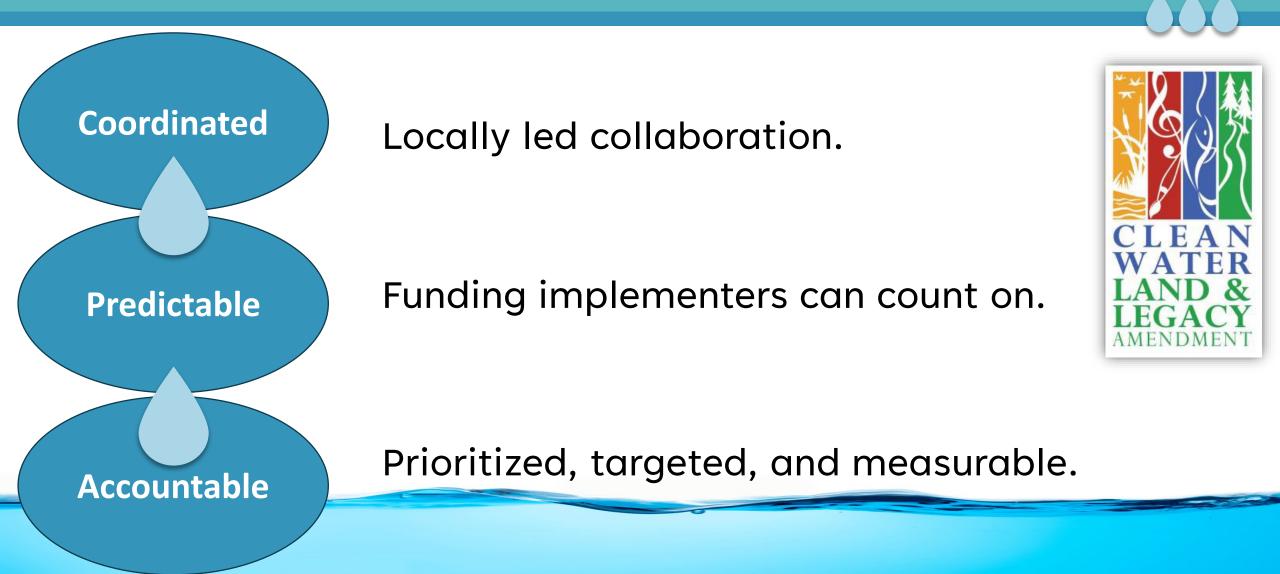

Clean Water Council Presentation

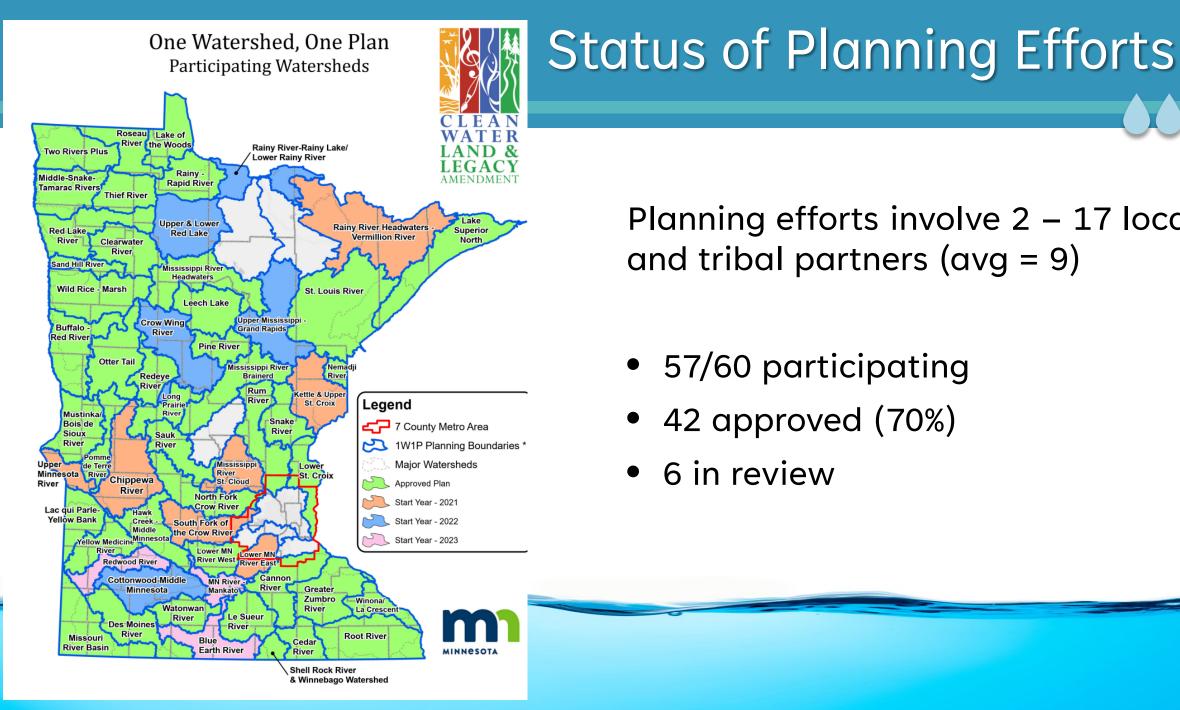
February 26, 2024

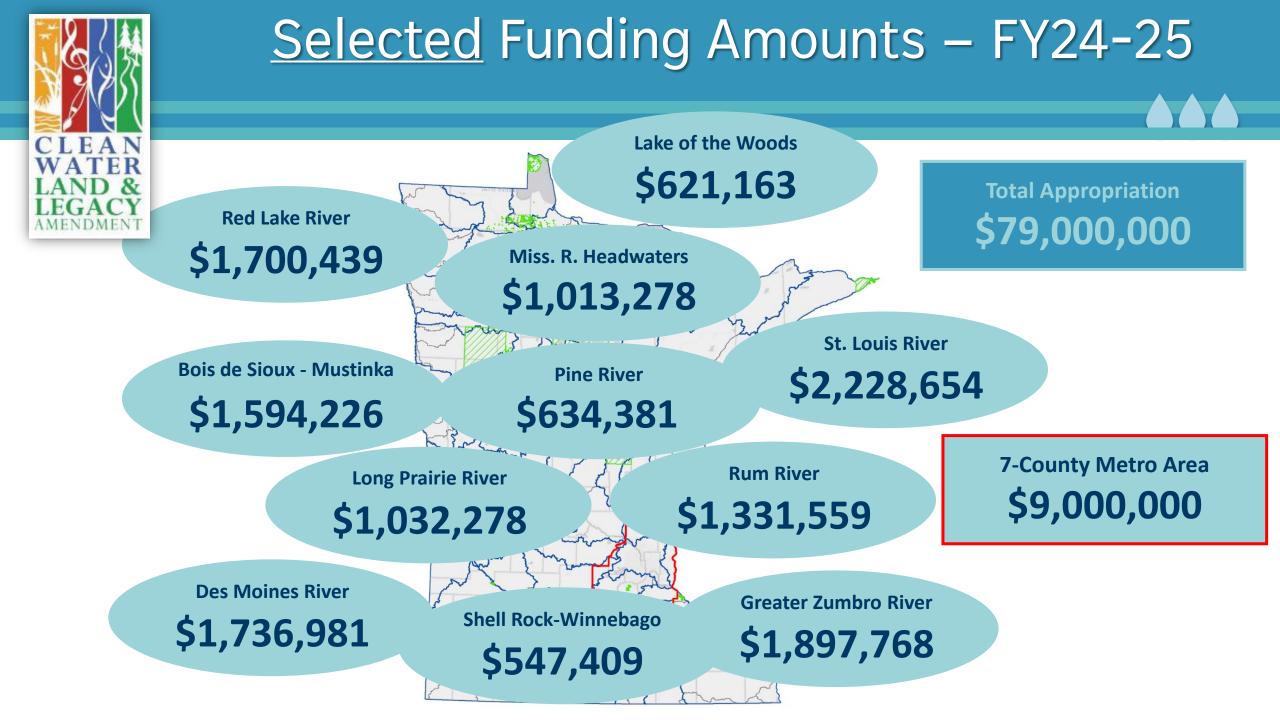
The Minnesota Water Management Framework



Local Government Water Roundtable




Linking Data to Local Action


Vision: Watershed Based Implementation

Planning efforts involve 2 – 17 local and tribal partners (avg = 9)

- 57/60 participating
- 42 approved (70%)
- 6 in review

Clean Water Council Strategic Plan

Groundwater Vision: Groundwater is clean and available to all in Minnesota.

• 2 Goals, 5 Strategies, and 14 Actions

Drinking Water Source Protection Vision: Drinking water is safe for everyone, everywhere in Minnesota.

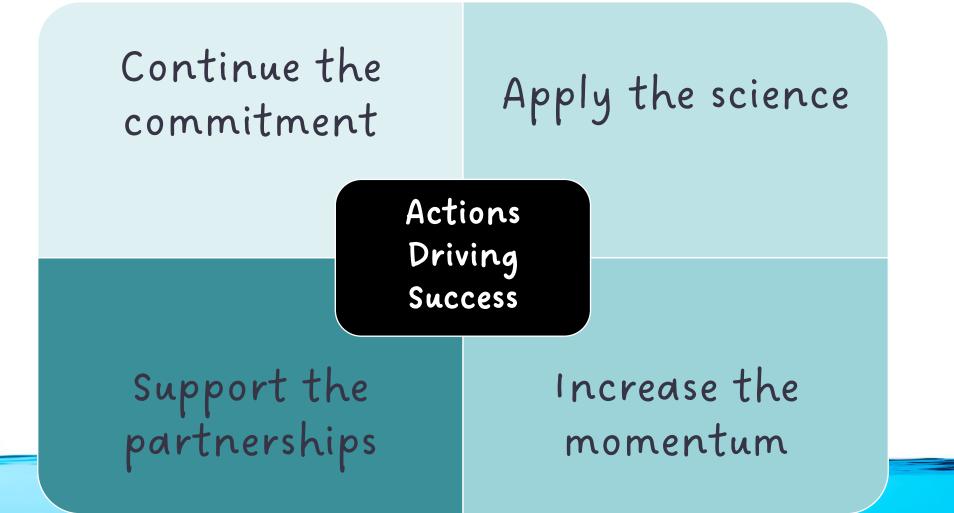
• 2 Goals, 8 Strategies, and 12 Actions

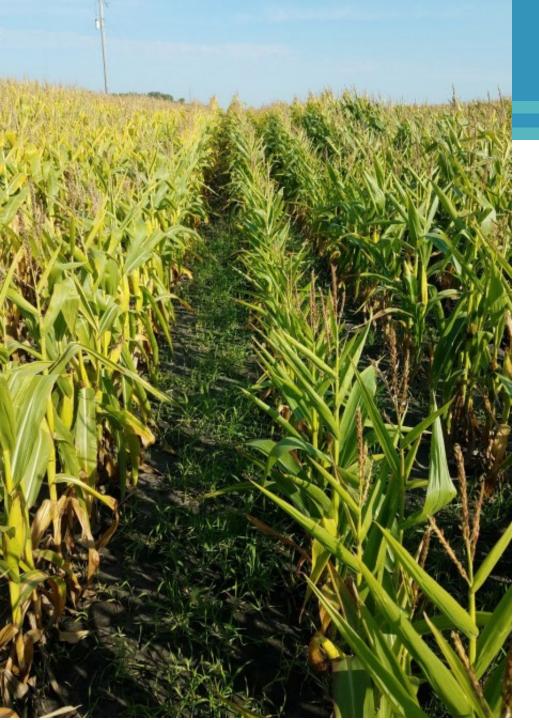
Surface Water Protection and Restoration Vision: Minnesotans will have fishable and swimmable waters throughout the state.

• 3 Goals, 6 Strategies, and 16 Actions

Vision: All Minnesotans value water and take actions to sustain and protect it.

• 1 Goal, 1 Strategy, and 8 Actions


Clean Water Council Strategic Plan


WBIF will be used to implement many actions in the CWC strategic plan

- Protect and restore surface waters to achieve 70% swimmable and 67% fishable waters by 2034.
- Prioritize waters for protection and restoration using comprehensive watershed management plans (One Watershed One Plan or other approved plans updated every ten years.
- Support local efforts to support those impaired waters that are closest to meeting state water quality standards.
- Use the Watershed-Based Implementation Funding (WBIF) model to fund protection and restoration in watersheds that have an approved comprehensive watershed management plan or other approved plan.
- Support efforts to protect those high-quality unimpaired waters at greatest risk of becoming impaired.
- Restore and protect water resources for public use and public health, including drinking water.
- Track completion of activities for priorities in each comprehensive watershed management plan
- Build capacity of local communities to protect and sustain water resources.
- Maintain and increase capacity of Minnesotans to improve water quality.
- Support local efforts to engage farmers in water quality efforts.
- Support innovation to accelerate progress toward clean water goals
- Engage water managers statewide.

- Complete plans and fund activities for protection and restoration of groundwater statewide using a major watershed scale
- Reduce risk of bacteria in groundwater.
- Reduce risk of stormwater contaminants entering groundwater.
- Prioritize areas of high water use intensity.
- Implement water efficiency BMPs, water use reduction, and irrigation water management in areas of high water use intensity by agricultural irrigators, highly sensitive areas, (GWMAs), and highly vulnerable (DWSMAs).
- Support implementation funding and technical assistance to reduce nitrate in DWSMAs that are Level 1 and Level 2 under the GPR.
- Fund protective actions that assist public water suppliers in meeting safe drinking water levels.
- Assist all well users with information on how to achieve safe drinking water.
- Assist qualifying low-income households and households with vulnerable populations to mitigate contaminants, such as well replacement, water treatment systems, etc.
 - Support local efforts to engage lakeshore property owners and private landowners
- Engage non-traditional audiences with water planning and implementation.

Watershed Transition Vision – Moving Forward

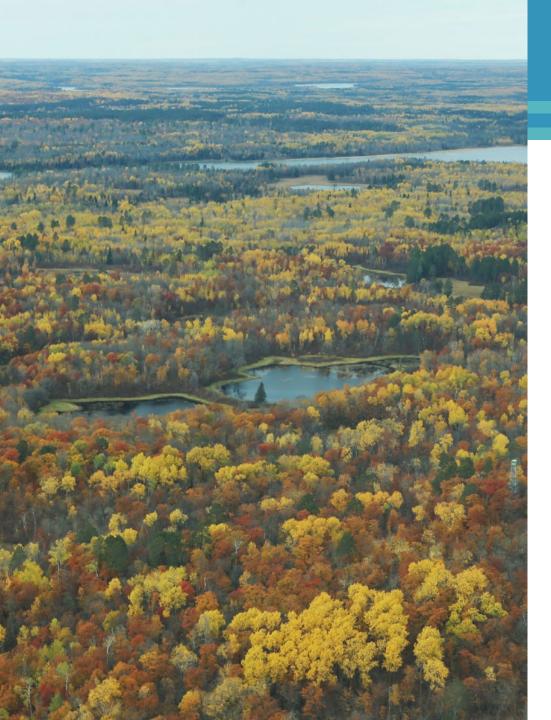
WBIF in Action: Wilkin County

- \$12,000 WBIF
- \$1.45 million Cargill and General Mills
- \$45,000 MBOLD
- Incentives to implement one or more soil health practices: cover crops, nutrient management, crop rotation and reduced tillage

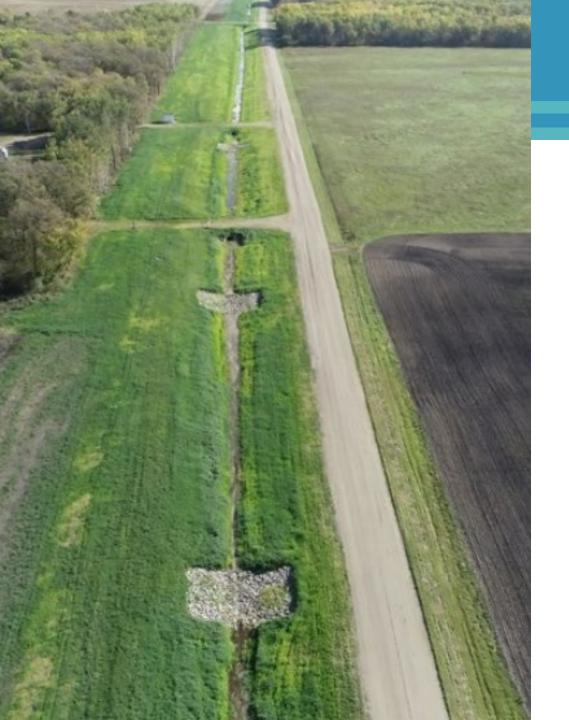
WBIF in action – Scott WMO

- \$84,900 WBIF
- \$155,794 WMO match
- Applicators training, purchase of chloride reduction equipment, smart salting webinars

BOARD OF WATER AND SOIL RESOURCES


2023 December Snapshots Subscribe to Snapshots

Watershed-Based Implementation Funding at work in the metro area



Plan Implementation: Leech Lake and Pine River

Forest Protection: A High Priority strategy for water quality protection in both plans Parcel – based prioritization

• WBIF funded:

- Forest Stewardship Plans on 5274 acres
- Enrollment in voluntary forest protection programs
- Related projects: OHF\$ for permanent protection in Mississippi River headwaters (>\$1.9 M leveraged)

Plan Implementation: Red Lake River

- WBIF funded:
 - 200 grade stabilization structures to reduce soil loss and gully erosion
 - Channel stabilization work
 - 2077 tons/year of sediment reduced
- 2 WBIF grants leveraged >\$1M
- Related project: Black River Impoundment Flood Damage Reduction Project stores up to 4,000 acre-feet of runoff

Cover Crops

600 acres

Grassed Waterways

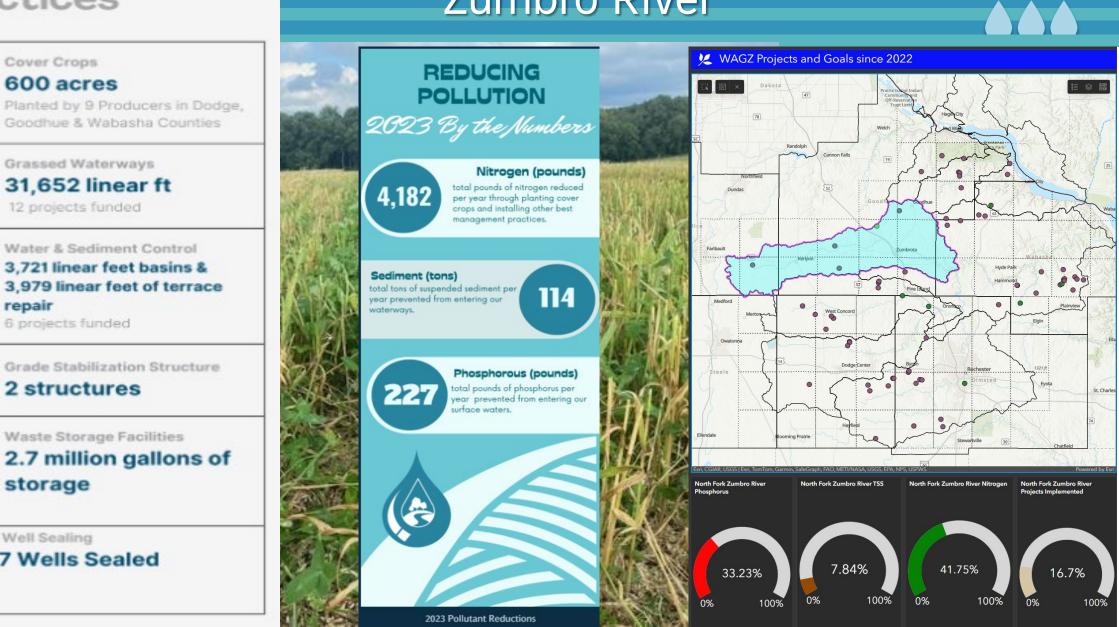
12 projects funded

6 projects funded

2 structures

storage

Well Sealing


7 Wells Sealed

Waste Storage Facilities

repair

31,652 linear ft

WBIF In Acton: Greater Zumbro River

Commitment to Implementation

Turning Plans Into Actions

Delivering Outcomes

- Historic Change Follow the Water
- Partnerships and Collaboration

- Locally led and locally implemented
- Leverages technical expertise and funding

Landowners

Water Quality Improvement Targeted Efforts

Clean Water Council

Counties

Minnesota State Agencies

Address Impairments

Every Corner of the State

Watershed Districts

Minnesota Legislature

Soil and Water Conservation Districts

Water Quality Protection

Cities and

Towns

Federal Agencies

Private Sector Partners

Questions & Discussion

Sheila Vanney

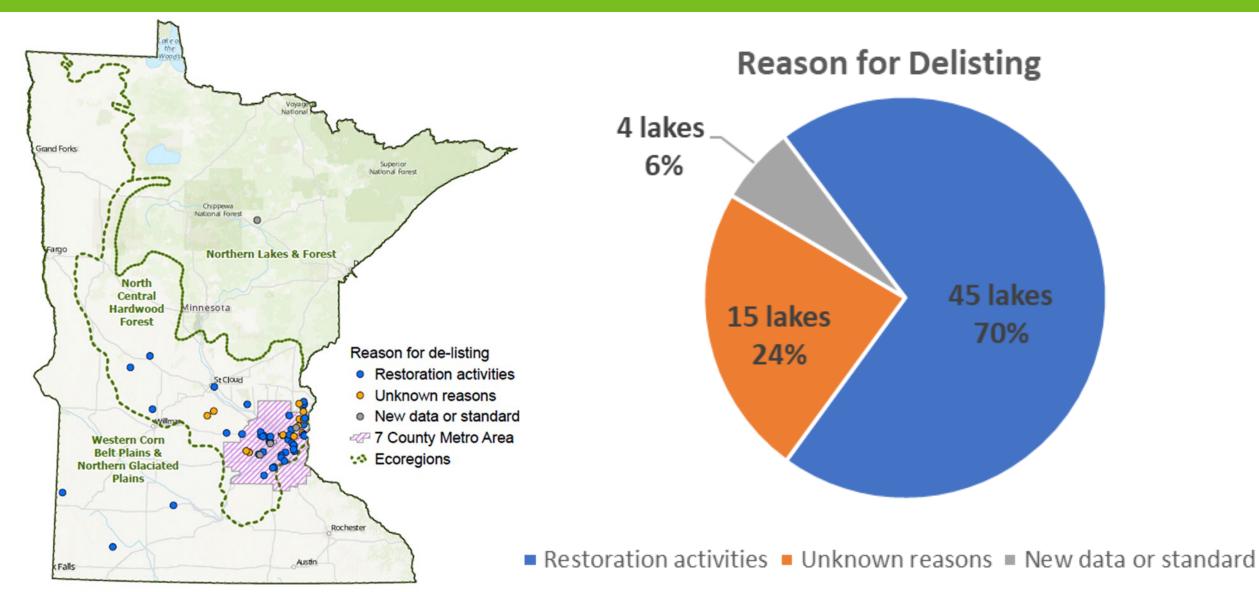
Assistant Director Minnesota Association of Soil & Water Conservation Districts

Jan Voit

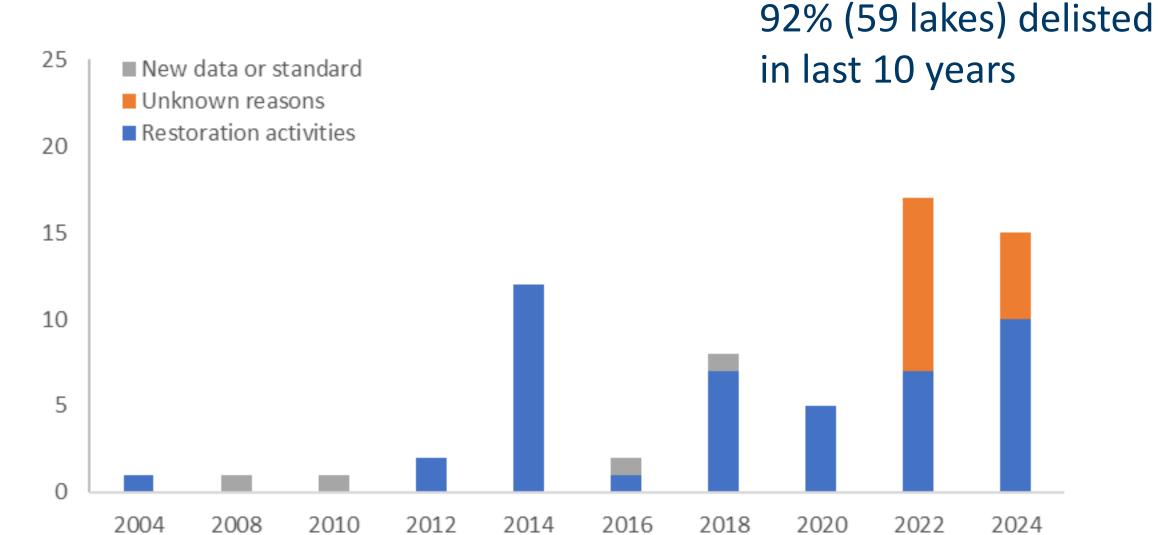
Executive Director Minnesota Watersheds

Brian Martinson

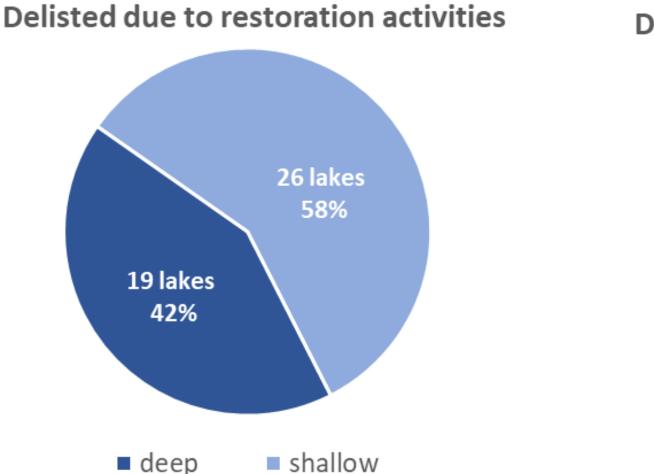
Policy Analyst Association of Minnesota Counties

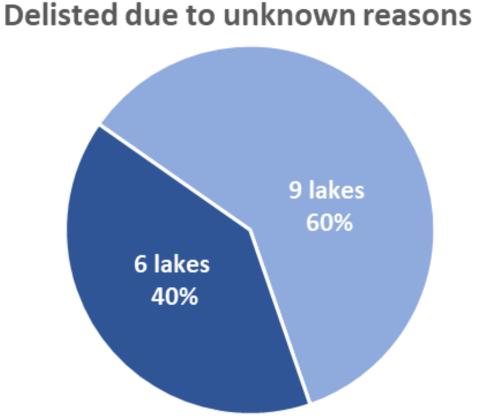

Lake Delisting: Factors for Success

Presenter | Steve Weiss work from MPCA's Lakes Lateral Team Project Sub-team: Jeff Strom, Jesse Anderson, Scott MacLean, Amy Timm


64 lakes delisted for nutrients, 2004-2024

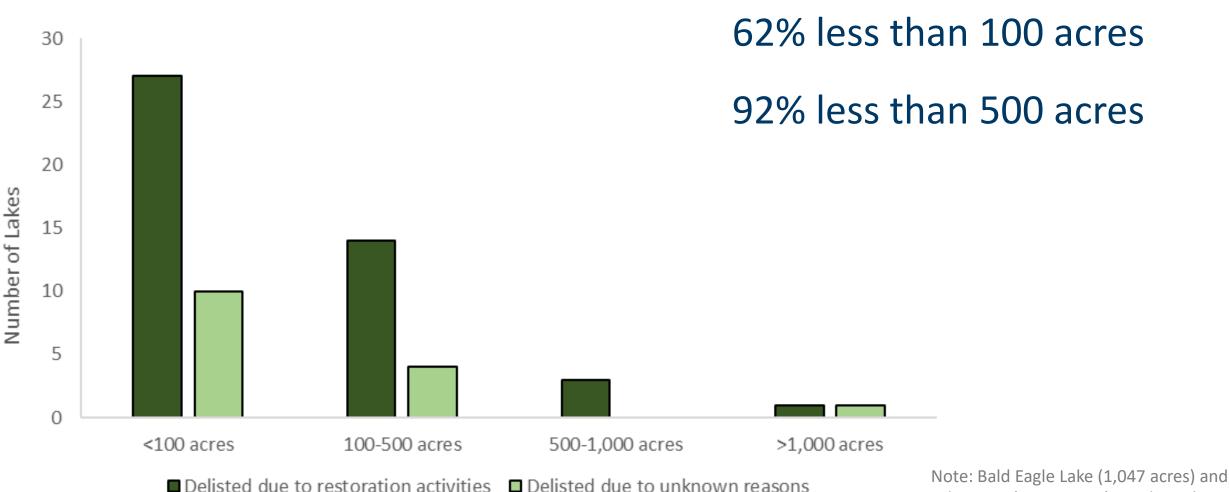
Lake delistings by location


- Of the 60 lakes delisted due to restoration activities and unknown reasons:
 - 57 (95%) are located in the North Central Hardwood Forest Ecoregion
 - 50 (83%) are within the jurisdictional boundary of a Watershed Management Organization (WMO)
 - 44 (73%) are located in the Minneapolis-St. Paul seven county metro area
 - 3 (5%) are located in the Western Corn Belt Plains & Northern Glaciated Plains Ecoregions
 - None located in the Northern Lakes and Forest Ecoregion


Lake delistings by year

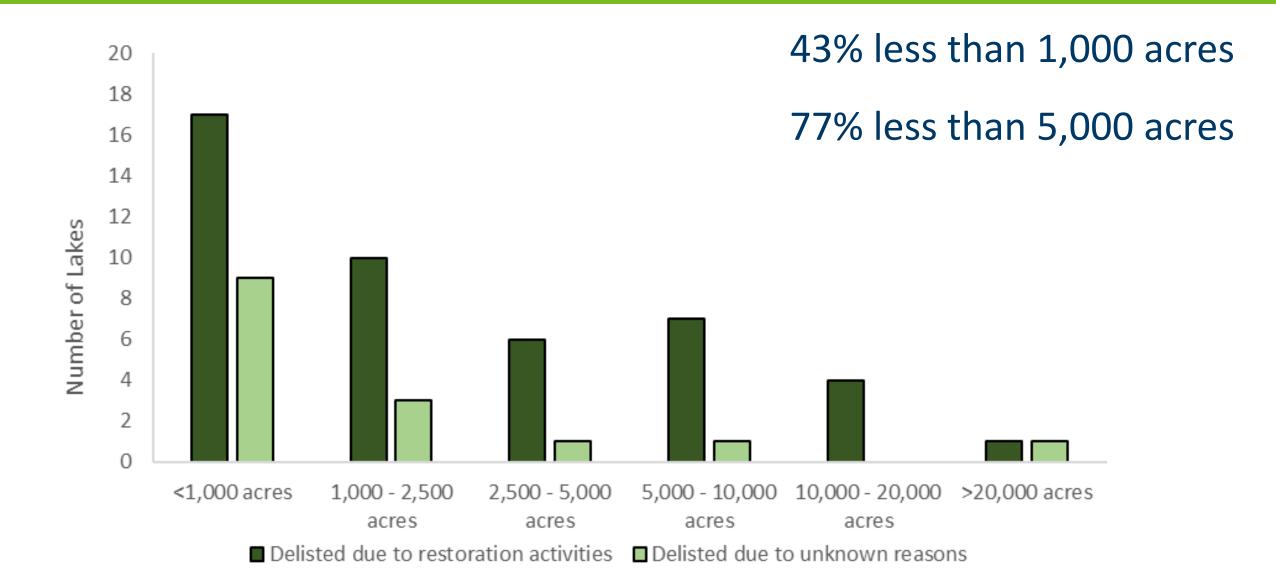
Number of Lakes

Physical characteristics of delisted lakes – lake type

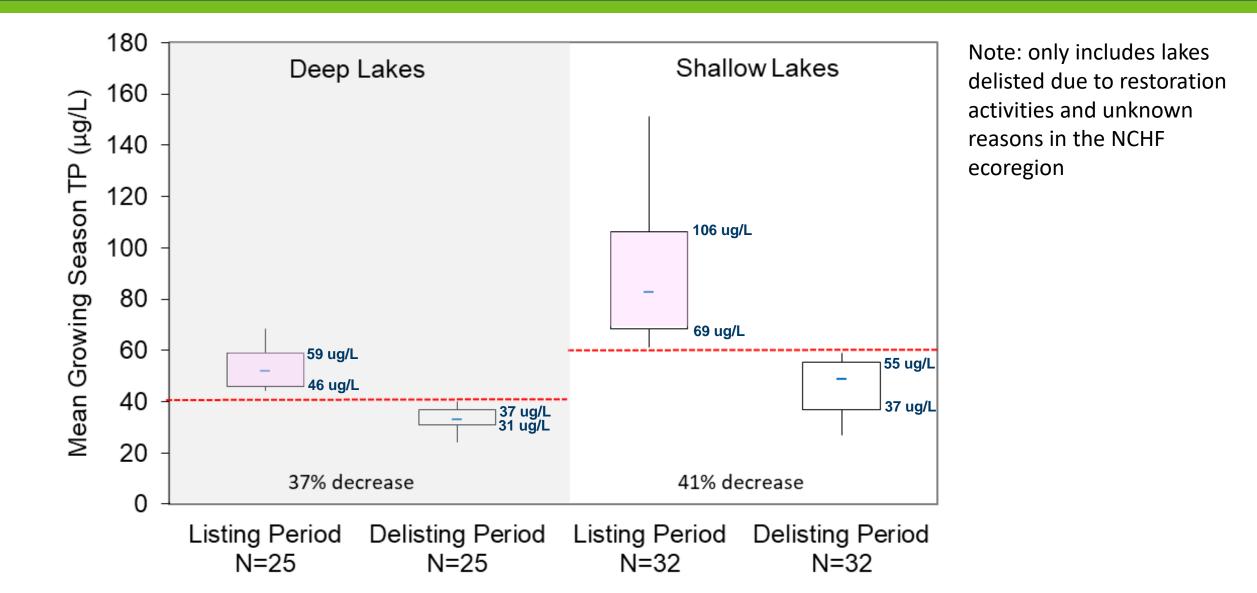


deep

shallow


Note: "shallow lakes" are typically defined as having a maximum depth of less than 15 feet and a littoral area greater than 80% of the total surface area of the lake

Physical characteristics: lake size



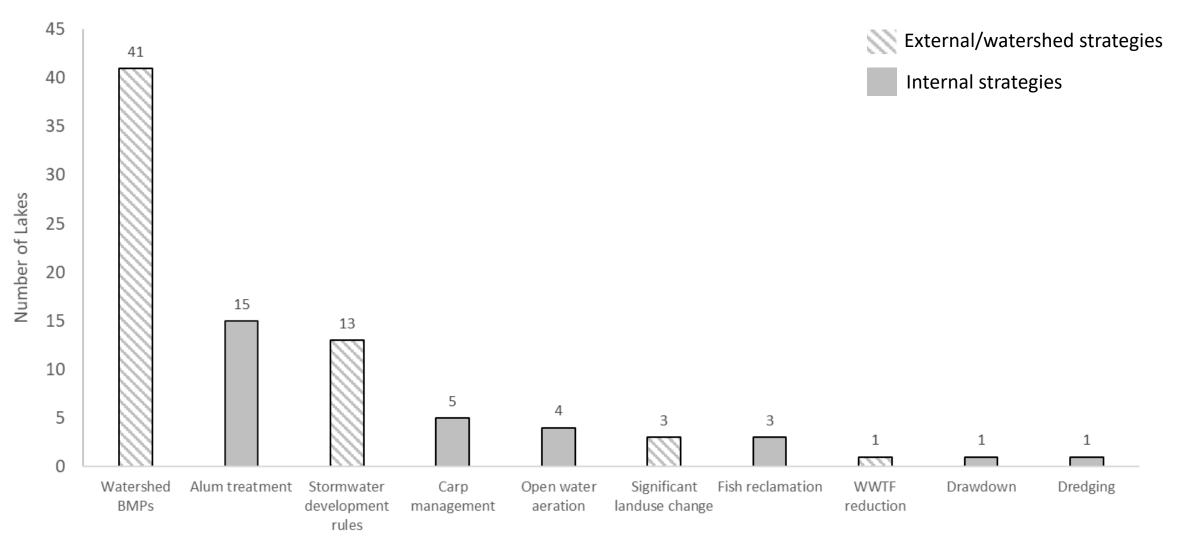
Lake Reno (3,794 acres) are the only delisted lakes >1,000 acres

Physical characteristics: watershed size

Water quality of delisted lakes - total phosphorus

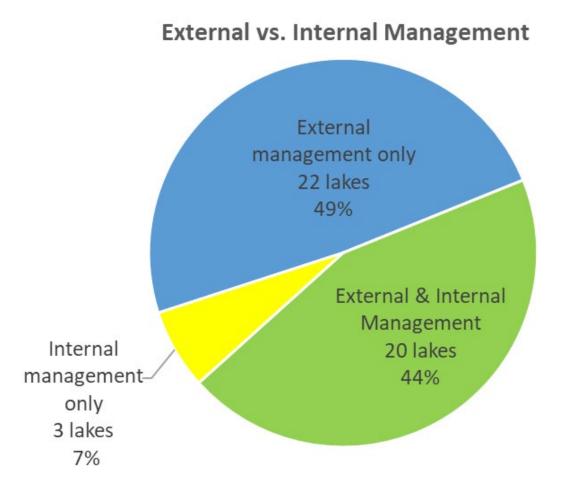
Management strategies mentioned by local partners that contributed to delistings

External/watershed strategies


- Watershed BMPs
- Stormwater development rules
- Significant land use change
- Wastewater treatment facility (WWTF) reduction

Internal strategies

- Alum treatment
- Open water aeration
- Carp management
- Fish reclamation (e.g. rotenone)
- Drawdown
- Dredging


Note: vegetation management not included in this list

Management strategies for delisted lakes

Note: only includes lakes delisted due to restoration activities (N=45)

Management strategies for delisted lakes

Note: only includes lakes delisted due to restoration activities (N=45)

Case study: Lily Lake (82-0023-00)

- 44-acre deep lake (45 feet max depth) in Stillwater, MN Washington County
- 14:1 watershed:lake area ratio (WTC class 5). 590-acre watershed predominately residential and commercial
- Showed significant TP improvement (-40%) from listing period (52 $\mu g/L)$ to delisting period (31 $\mu g/L)$
- Local partners have implemented over 40 watershed BMPs that have decreased estimated TP loading by over 100 lbs/yr. Types of BMPs include: rain gardens, filtration basins, gully stabilizations, stormwater reuse system. An alum treatment was also completed in 2022 after the lake was removed from the IWL
- More information:
 - <u>http://mscwmo.org/wp-</u> <u>content/subwatershed/LilyLake_ImpairedWatersDelistingRoadMap.pdf</u>
 - <u>https://bwsr.state.mn.us/sites/default/files/2021-</u> <u>12/Proposed%20Delistings%20for%202022.pdf</u>

Summary and Conclusions

64 lakes have been delisted since 2002, most (45) due to restoration activities

- Location
 - Nearly all (95%) are in the NCHF ecoregion
 - Most (83%) are within the jurisdictional boundary of a WMO and
 - Most (73%) are in the 7-county metro area
- <u>Physical features of delisted lakes</u>
 - 58% are considered shallow lakes
 - Most (92%) are less than 500 acres in size
 - A majority (77%) have watershed areas less than 5,000 acres
- Water quality
 - In general, listing period TP for delisted lakes were not far from meeting standards

Summary and Conclusions

- No "Silver Bullet" management strategy to delist lakes
- Success is usually achieved through a combination of factors.
- It takes time.

What's next?

Individual lake success story

Statewide analysis of factors leading to success

And maybe even some that haven't

- More lakes (larger sample size)
- Go beyond delisted lakes
- Go beyond NCHF Ecoregion/TCMA
- Compile more detailed information on actions (BMPs etc...)
- Establish process

MINNESOTA POLLUTION CONTROL AGENCY

Thank you!

Jeff Strom

jeff.strom@state.mn.us

Jesse Anderson

<u>jesse.anderson@state.mn.us</u>

MINNESOTA POLLUTION CONTROL AGENCY

Scott MacLean

scott.maclean@state.mn.us

Amy Timm

<u>amy.timm@state.mn.us</u>

Steve Weiss

<u>steven.weiss@state.mn.us</u>

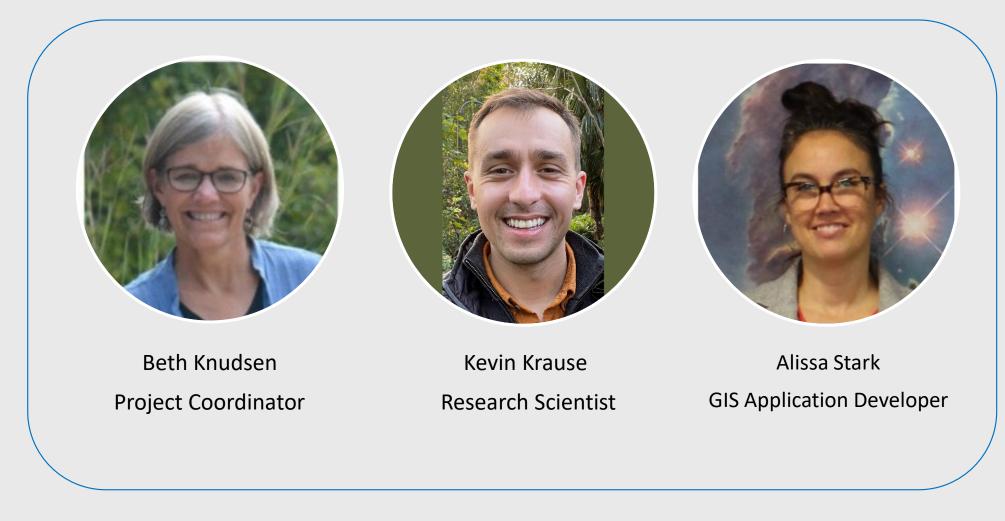
2/28/2024

CLEAN WATER ACT MINNE50TA YEARS

A clear way to clean water

A Framework for Healthier Watersheds

Clean Water Council February 26, 2024


Beth Knudsen | Watershed Health Coordinator

Division of Ecological and Water Resources | River Ecology Unit

Watershed Health Assessment Team

Watershed Health Assessment Framework

Frame

Explore

Innovate

WHAF on the Web

Watershed Health Assessment Framework

Main page

Five components Key concepts

Applications

Watershed map WHAF for lakes WHAF for land cover Application user guides

Resources

Major watershed reports About health scores WHAF use examples Literature and data Contacts Subscribe to the newsletter

RECREATION DESTINATIONS NATURE EDUCATION & SAFETY LICENSES, PERMITS & REGULATIONS Home > Assistance > Natural resource planning > Regional and state tools > >

Watershed Health Assessment Framework

DEPARTMENT OF NATURAL RESOURCES

Main page Five components Key concepts

Applications

Watershed map WHAF for lakes WHAF for land cover Application user guides

Resources

Major watershed reports About health scores WHAF use examples Literature and data Contacts Subscribe to the newsletter 🗗

Watershed Health Assessment Framework

The Watershed Health Assessment Framework (WHAF) provides an organized approach for understanding natural resource conditions and challenges, and for identifying opportunities to improve the health and resilience of Minnesota's watersheds. <u>Read more about the WHAF</u>.

Explore lake health with our new WHAF for Lakes! Learn about a particular lake or compare lake health to others nearby.

Q

ABOUT DNR

Search for...

EVENTS & SEASONS

mndnr.gov/whaf

Expanding the Framework

DEFINE HEALTH MEASURE HEALTH	DELIVER	FRAMEWORK
Online GIS Data Five Components Health Scores Spatial Scales Share Results	Suite of Applications	Watershed Map – WHAF Land Cover WHAF Lakes
	Planning Support	Watershed Reports WRAPS and GRAPS Lake Health Scores
Science Storytelling: Visualize Watershed Health for Better Planning and Implementation	Data Delivery for Partners	BWSR Implementatio MPCA Impaired Wate MDH Drinking Water
	Emerging Science	Climate Impacts Groundwater Use

Hydrologic Studies

WHAF for Lakes

THE CHALLENGE:

<u>Lake Ecology Unit:</u> Tons of data about Minnesota lakes, but the data are dispersed, not well interpreted, and are not easily viewable in one place.

<u>WHAF Team</u>: Lake data is under-represented in the WHAF, reducing our understanding of watershed systems.

PROJECT GOALS:

Connect a lake to its watershed context in an interactive application for a range of users.

Make information approachable for public audiences such as lake associations.

Support prioritization efforts and encourage better lake stewardship.

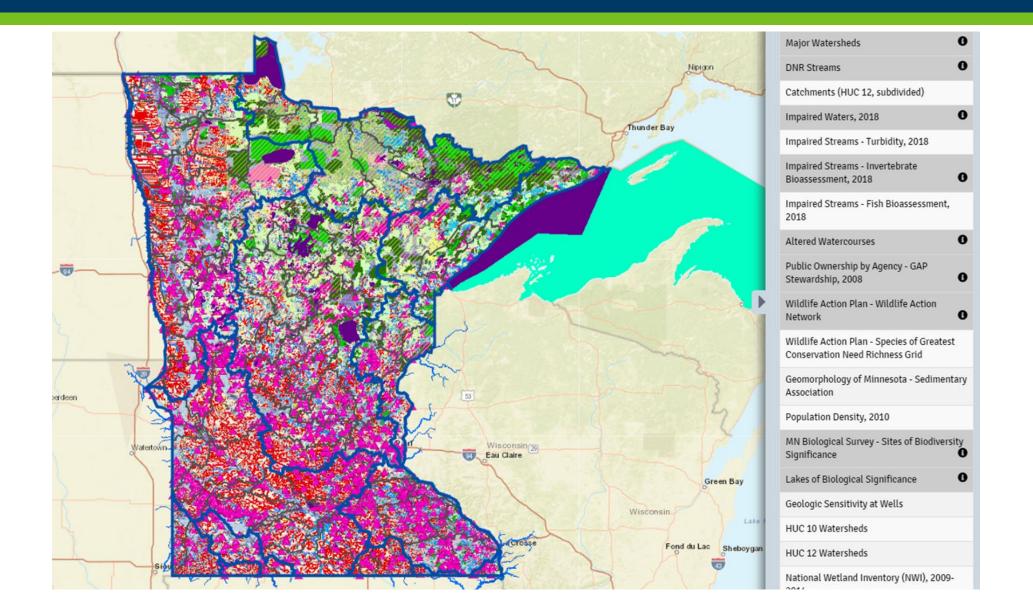
Managing for System Health

KEY CONCEPTS: HEALTH COMPLEXITY SCALE

Key Concept: Health

Defining HEALTH for a natural system:

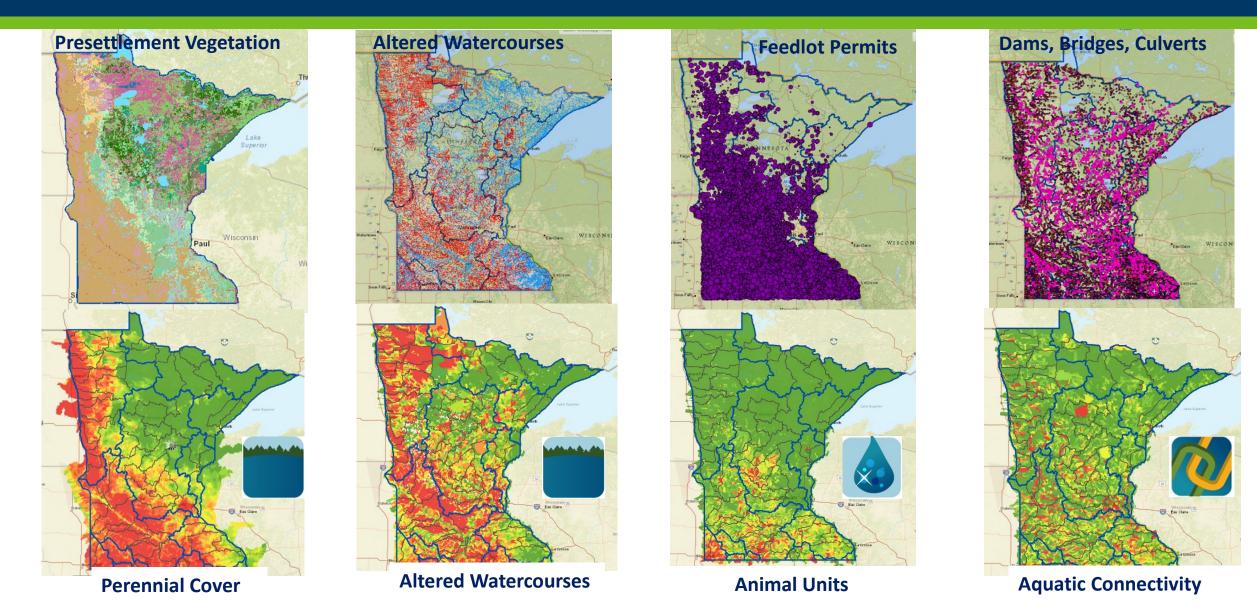
'Health is the capacity of the land for self-renewal'


- Health includes **resilience** to disturbance.
- Health is a **functional state**, not a static condition.

Managing for System Health

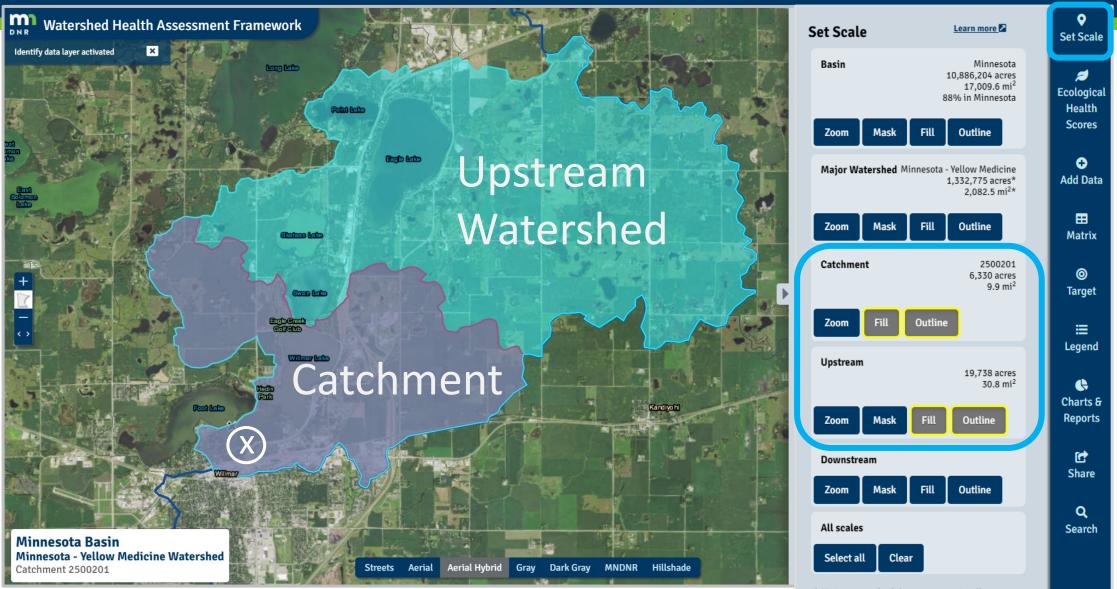


KEY CONCEPTS: HEALTH COMPLEXITY SCALE

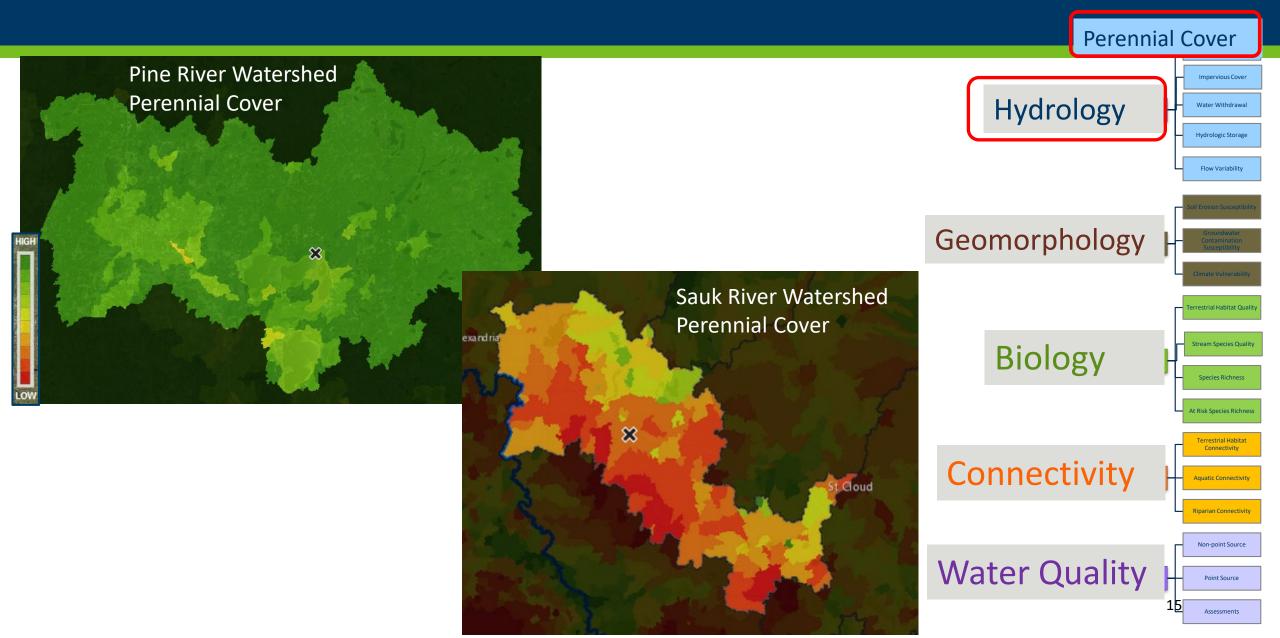

Key Concept: Complexity

Framing Complexity

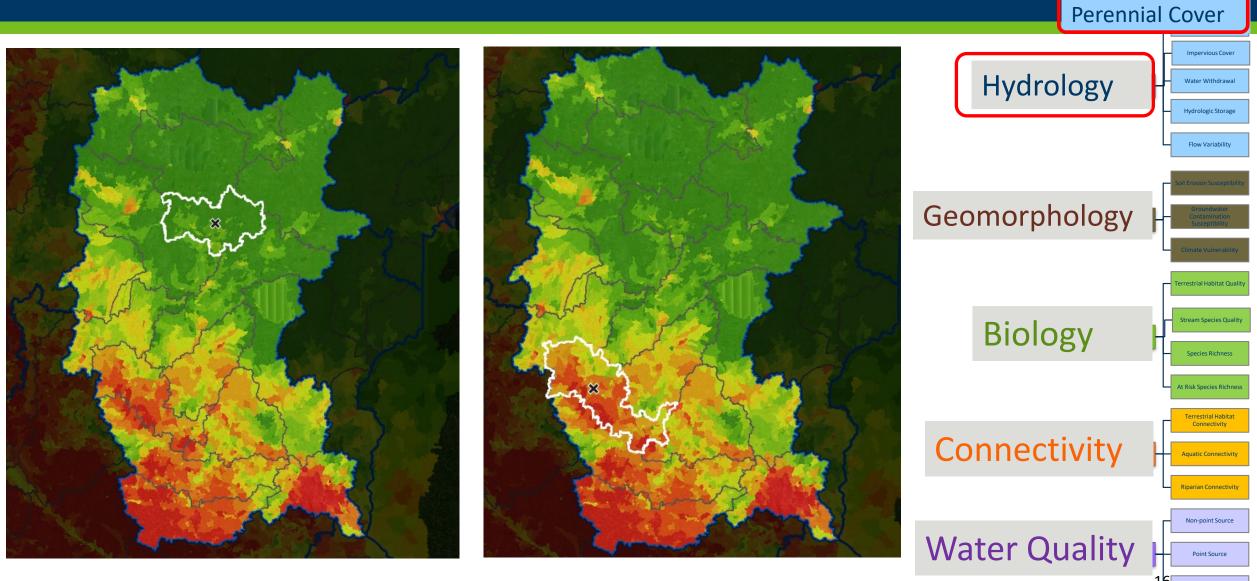
Complex Data to Information



Managing for System Health


KEY CONCEPTS: HEALTH COMPLEXITY SCALE

Scale: Watershed Boundaries



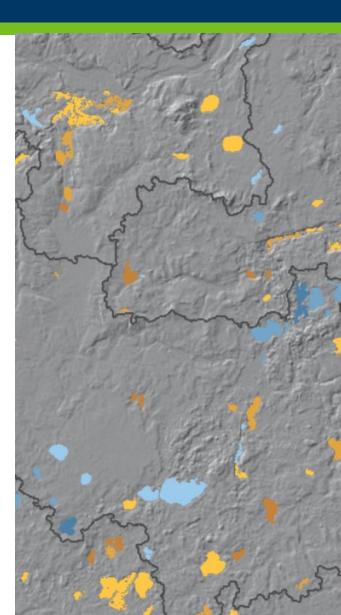
* Major watershed does not contain all

Scale: Health Scores

Scale: Health Scores

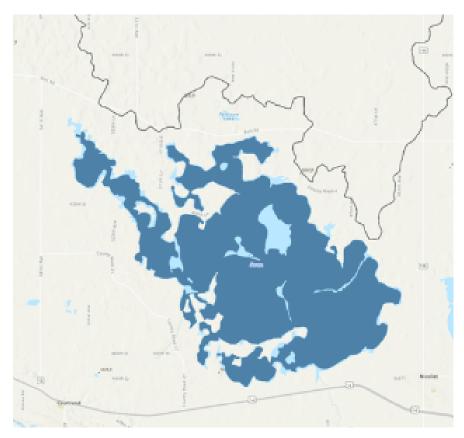
WHAF Framework For Lakes

FRAME: How do we measure the **health** of Minnesota lakes?

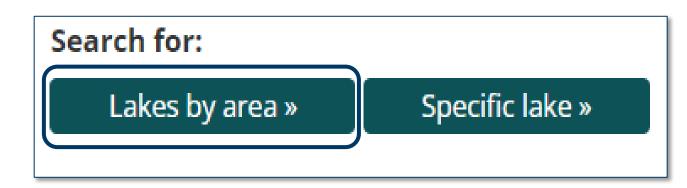

- How do we summarize **complex** data to tell the story?
- How do we compare lake health at different **scales** across Minnesota?

PLAN: How can we help partners prioritize lakes that need help? How can we share the data as information?

IMPLEMENT: How can stories we tell better target actions?

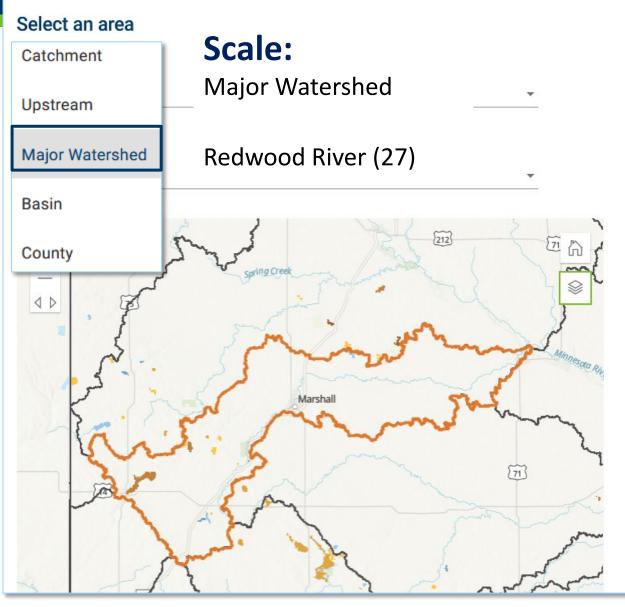

How do we engage partners and landowners to better understand their lake system?

How do we help ask the right questions, at the right scale?



Select Scale

WHAF for Lakes


This application provides lake health scores within a user selected spatial boundary. Different aspects of lake health can be easily compared, while also exploring conditions both in and near a selected lake that may influence lake health and management decisions.

Open WHAF for Lakes

M DEPARTMENT OF NATURAL RESOURCES Watershed Health Assessment Framework: Lakes

Apply Scale

Scored Lakes within Area

NAME	LakeID	Score	Grade	WQ	Biology	Hydrology
Q West Twin	42007400	65	В	68	60	65
Q Brawner	42005400	65	В	68	54	72
3 School Grove	42000200	60	C+	41	62	71
East Twin	42007000	55	C+	60	26	74
e Clear	42005500	50	С	29	31	89
२, _{Slough}	41002200	50	С	39	25	82
२ _{Wood}	42007800	45	С	37	25	67
Sanderson	42007100	45	С	32	24	74
€ Island	42009600	45	С	36	32	69
२ _{Goose}	42009300	40	D+	25	35	56
२ _{Redwood}	64005800	35	D+	16	58	26
् Benton	41004300	30	D	25	14	55

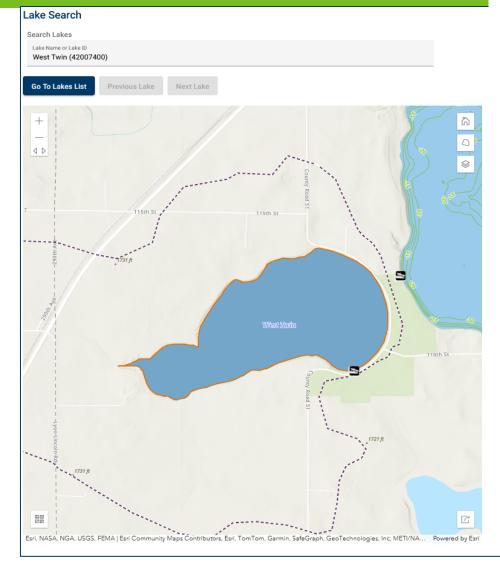
Prioritize Health

Scored Lakes within Area

NAME	LakeID	Score	Grade	e WQ	Bio	Hydro	Acres
Q West Twin	42007400	65	в	68	60	65	220
€ Brawner	42005400	65	в	68	54	72	30
Q School Grove	42000200	60	C+	41	62	71	349
€ <u>East Twin</u>	42007000	55	C+	60	26	74	357

NAME Lakeshed Acres | Shore Miles | County | Class | Impairments Q 1,196 2.9 Lake or Pond West Twin Lyon None Q 1.1 2,440 Brawner Lyon Lake or Pond None Q 1,740 5 School Grove Lake or Pond Mercury in fish, Nutrients Lyon Q 4.9 East Twin 862 Lake or Pond Fish bioassessment 1 Lyon

Download table


CSV

Sort by

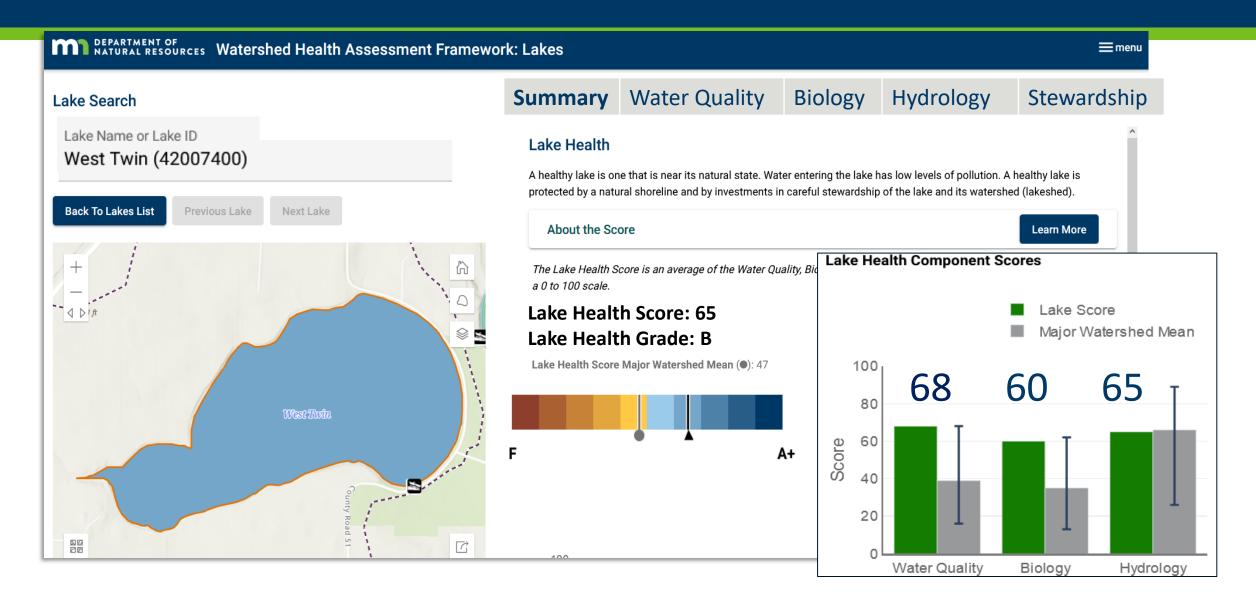
Header

Excel

West Twin Lake Summary

SUMMARY WATER QUALITY BIOLOGY HYDROLOGY STEWARDSHIP Lake Health A healthy lake is one that is near its natural state. Water entering the lake has low levels of pollution. A healthy lake is protected by a natural shoreline and by investments in careful stewardship of the lake and its watershed (lakeshed). About the Score Learn More The Lake Health Score is an average of the Water Quality, Biology, and Hydrology Lake Health Component Scores and is on a 0 to 100 scale. Lake Health Score (A): 65 Lake Health Grade: B Lake Health Score Major Watershed Mean (): 47 Lake Health Score Major Watershed Min/Max: 30/65 Summary - West Twin Lake Lake Health Component Scores Lake Score Major Watershed Mean Water Quality Score: 68 100 Water Quality Score Major Watershed Mean: 39; Min/Max: 16/68 80 Biology Score: 60 Biology Score Major Watershed Mean: 35; Min/Max: 13/62 Hydrology Score: 65 Hydrology Score Major Watershed Mean: 66; Min/Max: 26/89 Water Quality Biology Hydrology Component **Component Input Status**

Each component score is created by combining data inputs. Some of these data inputs have a target value labeled a 'goal' or 'threshold'. If an input value is:

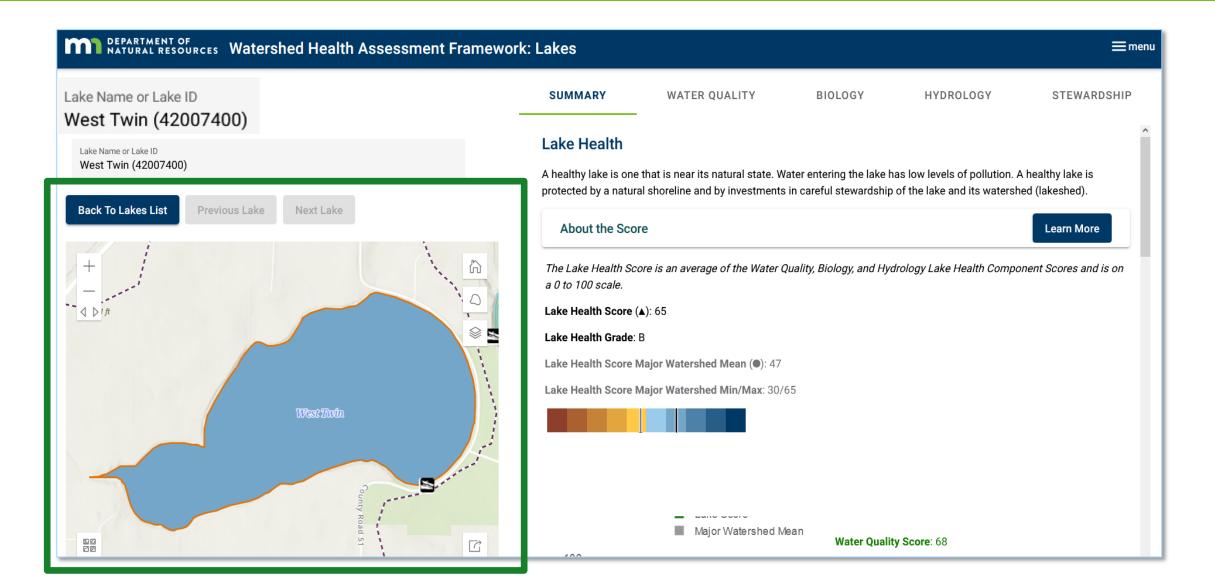

- "Below (Goal or Threshold)", the condition for the lake has degraded to the point that it may not support one or more desired outcomes (e.g., water clarity quality, natural diversity of plants and animals).
- "At or Above (Goal or Threshold)", the condition for the lake currently meets or exceeds the minimum criteria to support these desired outcomes.

Water Quality


Phosphorus: At or Above Goal

Water Clarity: At or Above Goal

West Twin Lake Components


Data as Information

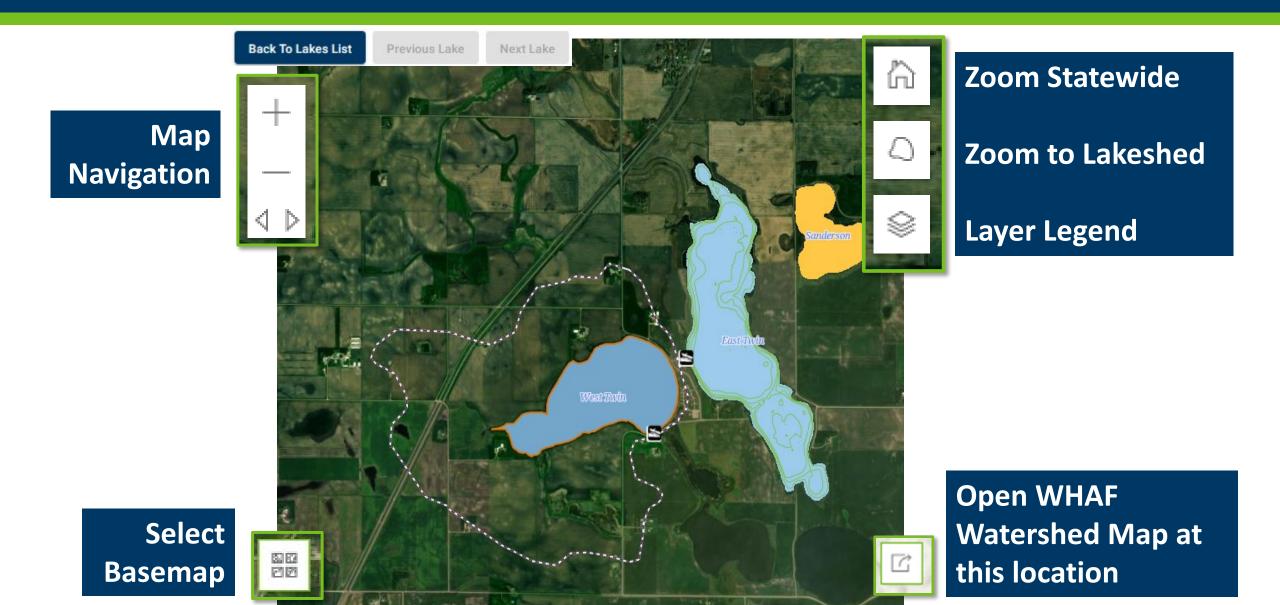
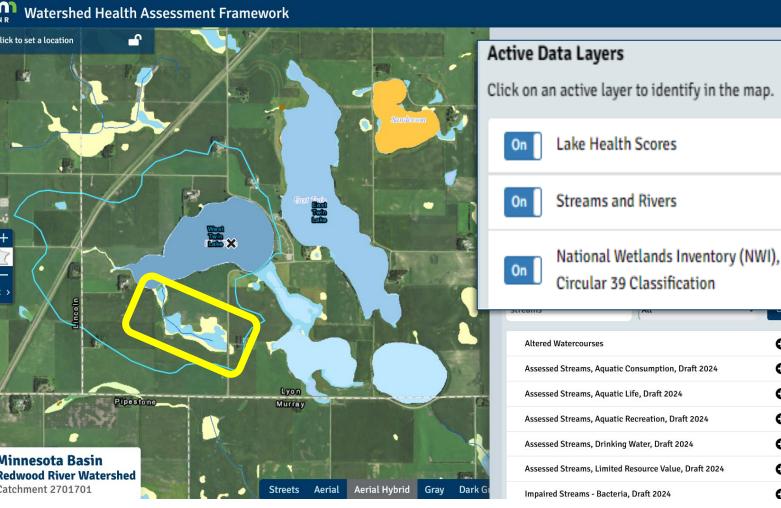

WHAF for Lakes Use Guide

Diagram showing hierarchy of data values used to create the Lake Health Score


Mapping West Twin Lake

Mapping West Twin Lake

West Twin Lake Watershed

West Twin Watershed Map

Health Scores: RISKS

- Low Perennial cover score- 7%
- High Risk for Non-Point Phosphorus
- Poor riparian connectivity

Health Scores: ASSETS

0

0

0

0

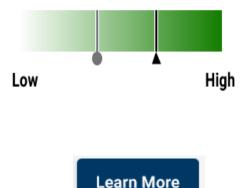
0

0

0

- Wetlands that filter & store water
- Few Well/Septic systems
- No water appropriation permits
- No registered feedlots

West Twin Lake Basics


alth Assess	ment Framework: Lakes	S				≡ menu
	Summ	ary	Water Quality	Biology	Hydrology	Stewardship
07400)	West Tw	in (420	07400) Basics			Excel
	Area (ac	res)		220		ink to DNR Lake Find
Lake Next Lake	Lakeshe	d Area (ac	res)	1,196		
	Maximur	m Depth (f	eet)	10	١	Nest Twin Lake is a 232-acre
	Maximur	m Depth (r	neters)	3.0	r	nax depth of 10.0 feet.
	Mean De	epth (feet)		Not Evaluated		
	Mean De	epth (mete	rs)	Not Evaluated	(County ordinance res
\sim		Area (acres	3)	Not Evaluated	1	notor use to protect
	Shoreline	e (miles)		2.9	ā	aquatic plant commu
West Twin	Water Bo	ody Class		Lake or Pond		
	Manageo	d Fisheries	s Lake	Yes		Nest Twin Lake managed fo
	Lake Find	der		Open Lake Find		and Yellow Perch, Bluegill an
2 2	Basin			Minnesota (070	(2)	Bass.
nty Ro	Major			Redwood River	(27)	Donular dactination f
ad 1 5 1	Catchme	ent ID		2701701		Popular destination for
1		Majority)		Lyon		pearers because of it
ary - Most Twin La	County (Percent)		Lyon: 100%	١	water during the wint

Open Summary - West Twin Lake

Water Quality Score (A): 68

Major Watershed Water Quality Score Mean (•): 39

Major Watershed Water Quality Score Min/Max: 16/68

West Twin Lake Water Quality

Biology Hydrology

Stewardship

Water Quality Score: 68

Summary Water Quality

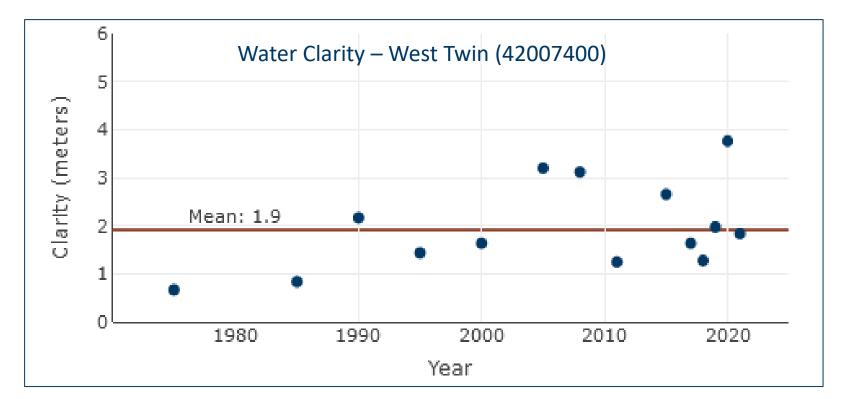
Component Score: Average of Phosphorus & Water Clarity Scores on a 0 to 100 scale.

Phosphorus Score: 67

Score based on distance of lake's Total Phosphorus measurement from the aquatic recreation goal.

- Total Phosphorus (µg/l): 42
- Total Phosphorus Regional Goal (μg/l): 90
- Total Phosphorus % Deviation from Goal: 17%

Water Clarity Score: 69


Score based on distance of the lake's Water Clarity measurement from the aquatic recreation goal.

- Water Clarity (meters): 2
- Water Clarity Regional Goal (meters): 1
- Water Clarity % Deviation from Goal: 199%

West Twin Lake Water Clarity

Summary Water Quality Biology Hydrology Stewardship

Water Clarity Additional Data: Derived from satellite spanning several decades, this longer time series can be used to understand trends in water clarity alongside other known changes affecting the lake. *Data from U of MN Lake Browser*

Water Clarity Score inputs:

- Water Clarity (meters): 2
- Water Clarity Regional Goal (meters): 1
- Water Clarity % Deviation from Goal: 199%
- Water Clarity Status: At or above Goal

What is the West Twin Lake Story?

Summary

• **Highest Lake Health Score** in Redwood River Watershed: Score 65, Grade B

Water Quality

- Total P below regional goal, but highest P Sensitivity
- Water Clarity 200% above regional goal

Biology

• Lake Floristic Quality is very high

Hydrology

- Influenced by in-lake processes more than lakeshed
- Both surface and groundwater influenced
- Presence of Shoreline and In-Lake Vegetation, lack of shoreland vegetation

Stewardship

- Small Lakeshed (1196 Acres), 75% Disturbed,
- Highest rank for protection return on investment

Lake Finder

• County ordinance restricts motor use to protect diverse aquatic plant community.

WHAF Watershed Map

- Risk for Non-Point Phosphorus inputs
- Poor riparian connectivity
- Wetlands filter and store water

What is the West Twin Lake Story?

Summary

• **Highest Lake Health Score** in Redwood River Watershed: Score 65, Grade B

Stewardship

- Small Lakeshed (1196 Acres), 75% Disturbed,
- Highest rank for protection return on

Water Quality

- Total P below r
- Water Clarity 2

Science Storytelling: Visualize Lake Health for Better

Planning and Implementation

tricts motor use to protect community.

Biology

• Lake Floristic Quality is very high

Hydrology

- Influenced by in-lake processes more than lakeshed
- Both surface and groundwater influenced
- Presence of Shoreline and In-Lake Vegetation, lack of shoreland vegetation

WHAF watersned Map

- Risk for **Non-Point Phosphorus** inputs
- Poor riparian connectivity
- Wetlands filter and store water

IMPLEMENTATION: WRAPS Report

Table 12. Lake protection and prioritization tool results for the Redwood River Watershed (data from assessment period 2009 – 2018).

HUC-10 Subwatershed	Lake Name	WID	Mean TP (µg/L)	Transparency Trend ¹	Percent Disturbed Land	Protection Priority Class
Upper	West Twin	42-0074-00	42	N/A	93%	Α
Redwood River	Sanderson	42-0071-00	82	N/A	97%	В
Coon Creek	Slough	41-0022-00	156	N/A	53%	С
Middle	Brawner	42-0054-00	32	N/A	65%	С
Redwood River	Clear	42-0055-00	125	N/A	35%	С
Upper Redwood River	East Twin	42-0070-00	83	N/A	88%	с
Three Mile Creek	Wood	42-0078-00	161	N/A	96%	с
Lower Redwood River	Redwood	64-0058-00	379	N/A	86%	с

Redwood River Watershed Restoration and Protection Strategy Report

¹ N/A = Not enough data at this time to evaluate trends

m MINNESOTA POLLUTIAN pril 2023

What Other Science Stories Do We Tell?

Climate Summaries, Data and Animations

• PARTNER: EWR Climatology

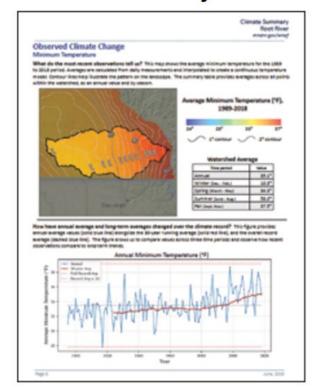
Restoration and Protection Priorities

• PARTNERS: DNR, MPCA, BWSR

Groundwater Restoration and Protection Strategies

• PARTNER: MDH

Implementation Data


• PARTNER: BWSR

Minnesota's Climate Story

Resources

Major watershed reports About health scores WHAF use examples Literature and data Contacts Subscribe to the newsletter 🖄

Major Watershed Reports

Climate summary for watersheds

Major watersheds

Historic climate trends are depicted in maps and charts that highlight the difference between current climate trends and the historic climate record.

Major Watershed Climate Summaries »

Statewide

Statewide climate history and trends provide a context for understanding the Major Watershed Summaries. Animated maps demonstrate changes in climate parameters over time.

Statewide Climate Summaries »

Animated Maps »

Supplemental information

Important climate observations help interpret the maps and charts for each Watershed.

Watershed Climate Summary

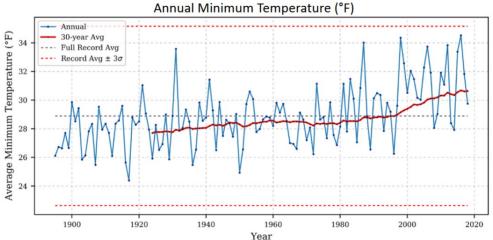
Crow Wing River

mndnr.gov/whaf

Observed Climate Change

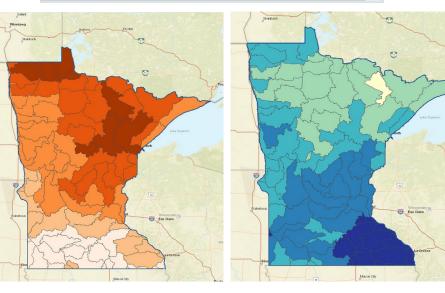
Minimum Temperature

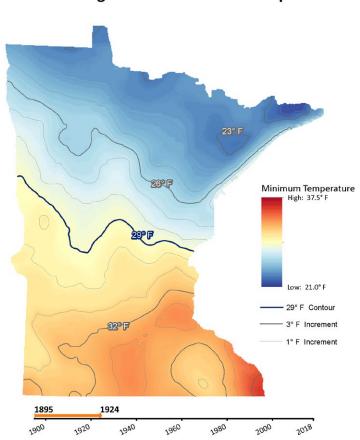
How do recent observations differ from the full climate record? This map shows the difference between the recent observations (1989-2018) and the entire climate record (1895-2018). The average of the entire climate record is subtracted from the recent 30-year average, to show where the most change has been observed. Positive cont show areas that have recently been warmer than the historic average.



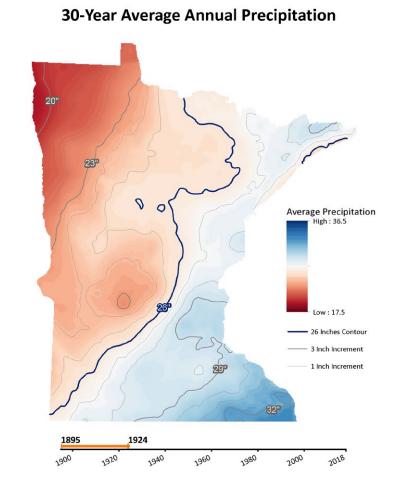
Minimum Temperature Departure from Historic Averag

Watershed Average Departure


Time period	Value
Annual	1.8°
Winter (Dec Feb.)	3.3°
Spring (March - May)	1.4°
Summer (June - Aug.)	0.9°
Fall (Sept. Nov.)	1.4°



Crow Wing Climate Summary


Interactive Climate Data

All Data Layers All Clear climate **v** | Average Temperature, 1989 to 2018 0 Maximum Temperature Departure from Historic Average 0 0 Maximum Temperature, 1989 to 2018 0 Mean Annual Precipitation, 1981 - 2010 0 Mean Annual Temperature, 1981 - 2010 Minimum Temperature Departure from Historic Average 0 0 Minimum Temperature, 1989 to 2018 Precipitation Departure from Historic Average 0

30-Year Average Minimum Annual Temperature

Link to Animated Climate Maps

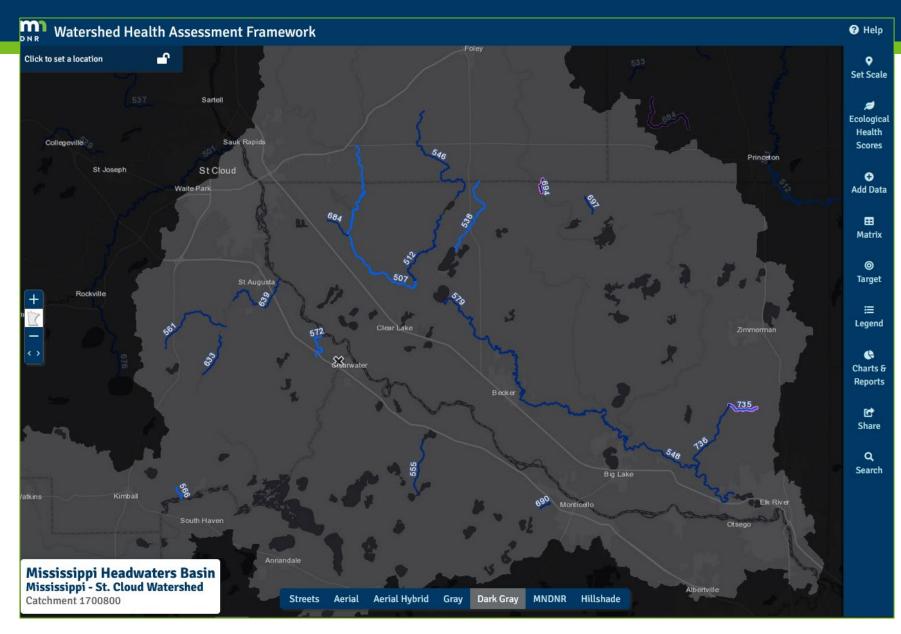
What Other Science Stories Do We Tell?

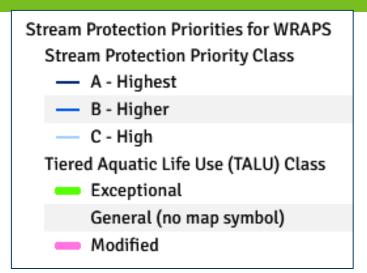
Climate Summaries, Data and Animations

• PARTNER: EWR Climatology

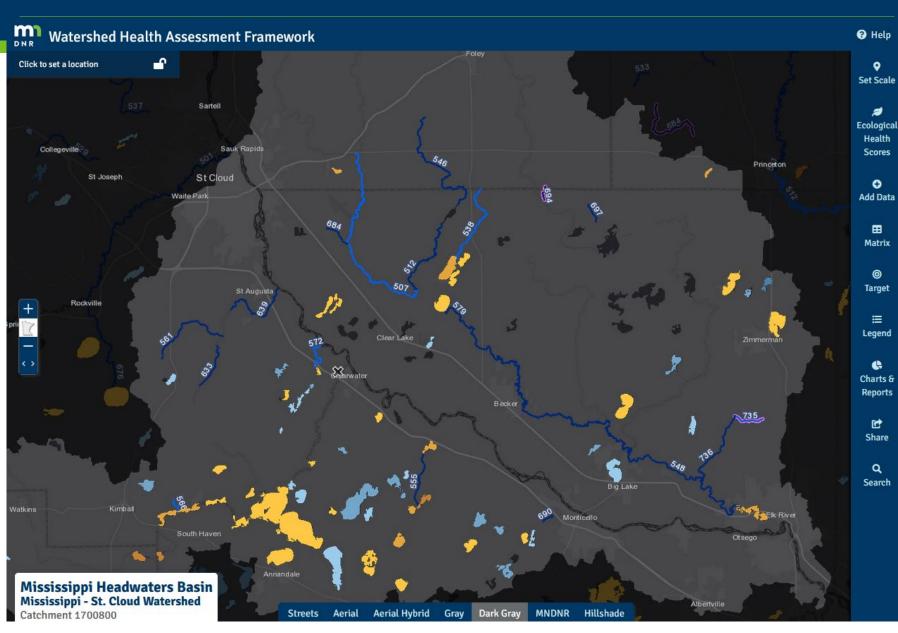
Restoration and Protection Priorities

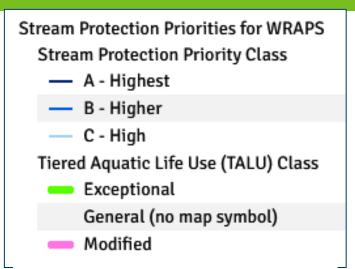
• PARTNERS: DNR, MPCA, BWSR


Groundwater Restoration and Protection Strategies

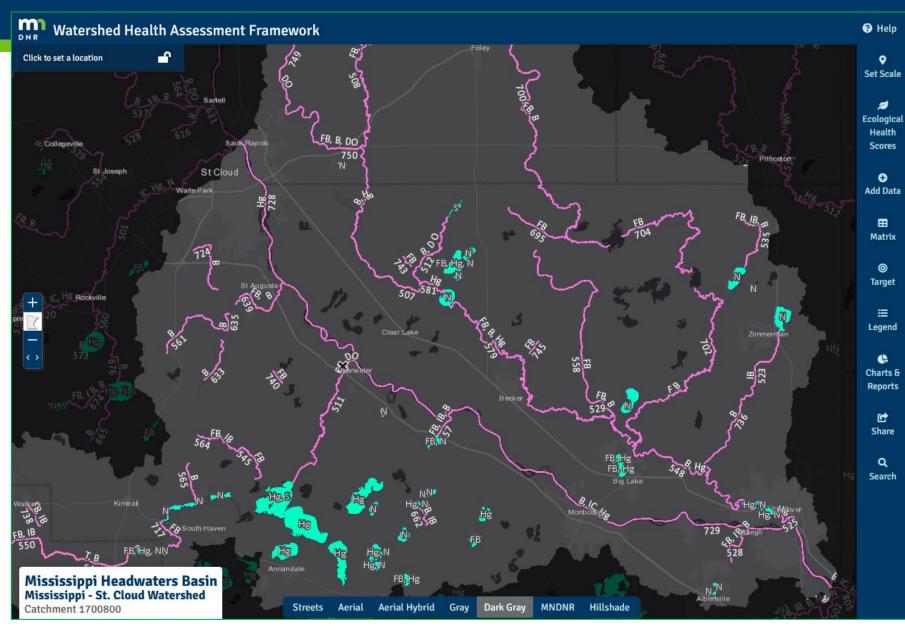

• PARTNER: MDH

Implementation Data


• PARTNER: BWSR

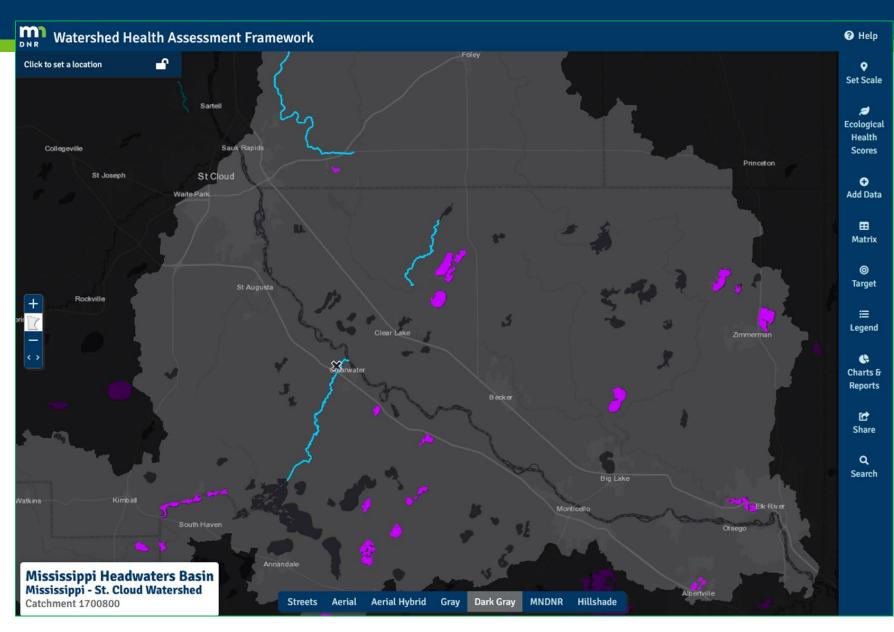

Stream Restoration and Protection Priorities

Stream Restoration and Protection Priorities



Watershed Health Assessment for Lakes Scores

 -
0 - 10
11 - 20
21 - 30
31 - 40
 41 - 50
51 - 60
51 - 70
71 - 80
81 - 90
91 - 100


Impairment Data for Planning

Impai	red Streams, Draft 2024
_	Not in tribal reservation
	Partially in tribal reservation
_	Wholly in tribal reservation
-V	Turbidity
68	Fishes bioassessment
-13	Invertebrate bioasessment
-0	Bacteria
-13	Industrial contaminants
-0	Pesticides
(D)	Dissolved oxygen
æ	Mercury
-63	Nutrients or Nitrates
0-	Chloride
-8	Sulfate
ĆŜ	Other contaminants
03	Other stressors
Impai	red Lakes, Draft 2024
	Not in tribal reservation
1 A A	Partially in tribal recorvation

- Partially in tribal reservation
- Wholly in tribal reservation Ch = Chloride
 - FB = Fishes bioassessment
 - Hg = Mercury
 - N = Nutrients
 - IC = Industrial contaminants
 - P = Pesticides
 - S = Sulfate
 - OC = Other contaminants

Impairment Data for Planning

Impaired Streams by Impairment Parameter, Draft 2024 Impairment Parameter - Dissolved Oxygen (DO) — Not in tribal reservation

- Partially in tribal reservation
- Wholly in tribal reservation

Impaired Lakes by Impairment Parameter, Draft 2024

Impairment Parameter - Nutrients

- Not in tribal reservation
- Partially in tribal reservation
- Wholly in tribal reservation

More Data for Protection Planning

Pollution Control Agency | Department of Natural Resources | Board of Soil and Water Resources

Protection and prioritization

Tools available to help prioritize waters for protection

Why protection?

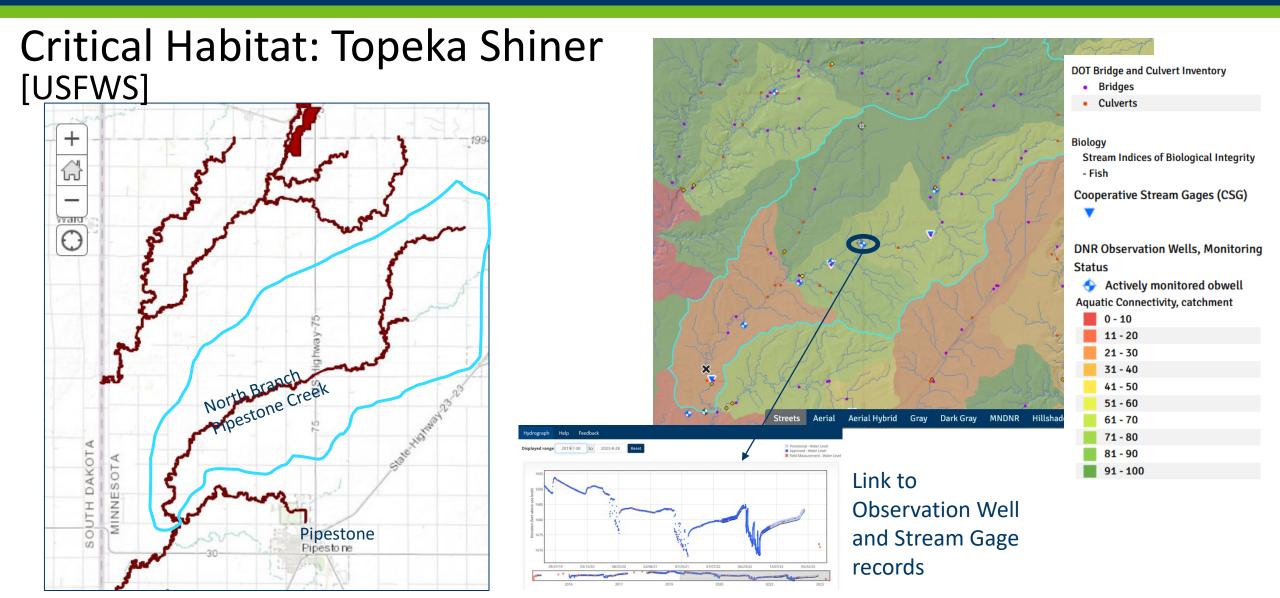
As of 2017, an estimated 60% of Minnesota surface waters are meeting wate fulfilling their beneficial uses. However, the majority of the focus of state and charged with oversight of water quality issues is on restoration of waters that clean water standards. A much smaller focus is placed on maintaining the hig still have. This perspective can be costly, as restoration of waters that do not requires much more time, money, and effort than taking the steps to preserv process that nature has used to protect water quality for thousands of years. protect water quality will also benefit wildlife, groundwater, air quality, soils, aspects of our Minnesota environment.

Interagency Guide: Protection and Prioritization

Data to Consider When Prioritizing Surface Waters:

- Land use/Land cover (NRCS)
- Groundwater depth (DNR)
- Land ownership private vs. public
- Impervious surface coverage
- National Wetland Inventory wetlands
- Flow direction
- Index of Biological Integrity scores
- State permitted sites (NPDES-CSW, MS4, IS)
- Petroleum cleanup sites
- Restorable wetlands
- Imagery
- Invasive species observations
- Cumulative forest change
- Public water supplies
- Census blocks
- Tribal lands
- DNR native plant communities
- Trout streams
- Wild rice locations
- Lakes of biological significance (DNR)

WHAF Watershed Map Links:


Links are for the St. Cloud Watershed; click map to change location.

- NLCD/Imperviousness and Land Cover
- Cropland Data Layer 2018
- Land Cover Application St. Cloud WS
 - <u>Crop Cover</u>
 - <u>Crop History</u>
- Groundwater related concerns
- Protected Areas Database (PAD-US)
- National Wetland Inventory wetlands
- Index of Biological Integrity scores (fish, inv; stream and lake)
- Mussel Site Scores
- Restorable wetlands
- Invasive species observations
- <u>Cumulative forest change</u>
- Public water supplies
- <u>Census blocks pop. Density/Change</u>
- <u>Tribal lands</u>
- SNAs and Prairies
- <u>Trout streams</u>
- Wild Rice Locations
- Lakes of Biological Significance

Additional Prioritization Data:

- Lake Health Scores
- <u>Stream Protection Priorities</u>

Connections for Restoration

What Other Science Stories Do We Tell?

Climate Summaries, Data and Animations

• PARTNER: EWR Climatology

Restoration and Protection Priorities

• PARTNERS: DNR, MPCA, BWSR

Groundwater Restoration and Protection Strategies

• PARTNER: MDH

Implementation Data

• PARTNER: BWSR

Groundwater Restoration and Protection

DEPARTMENT OF HEALTH

DEPARTMENT OF NATURAL RESOURCES

Discover GRAPS and other Groundwater Information in the Watershed Health Assessment Framework (WHAF)

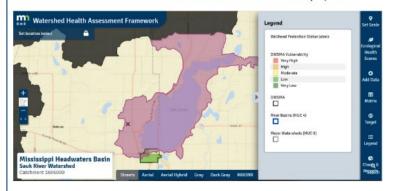
The Department of Natural Resources (DNR) now hosts groundwater and drinking water information within the <u>Watershed Health Assessment Framework (WHAF)</u> (www.dnr.state.mn.us/whaf/index.html). This framework provides an organized approach for understanding natural resource conditions and challenges. Having access to geospatial information and data allows the user to make informed land management decisions that lead to groundwater protection.

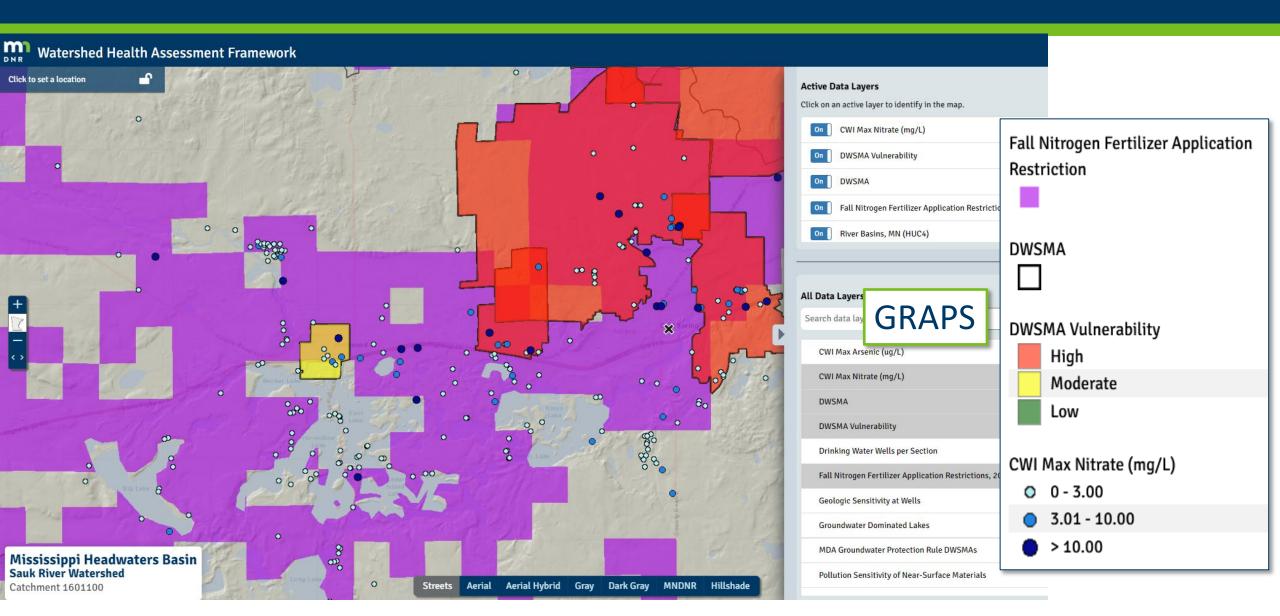
Navigating WHAF to access groundwater information


Groundwater information is found in the WHAF Watershed Map. Many of the same datasets used to create the Groundwater Restoration and Protection Strategies (GRAPS) reports are available on WHAF to better inform statewide planning and project implementation.

Getting Started

Open the WHAF Interactive Watershed Map (https://arcgis.dnr.state.mn.us/ewr/whaf2/). From this screen, click on the watershed you want to explore. An 'X' appears on your selected watershed and the location is identified on the bottom left corner of the screen. To lock the location, use 'click to set location' at the top left of the screen. This will change to 'set location locked' with the lock symbol represented. Click again to unlock and change your set location.


To get information about an Active Data Layer feature, click the layer name to activate the "Identify" function for that layer. The layer name will turn blue and you can then click on a feature from that layer to see details in a pop-up bubble.


Click on the panel arrow button to hide the Data Layers list and expose the full extent of the map.

Adding a Legend

Now add the final touches to complete your map by adding a legend. Click on the 'Legend' icon on the right panel to show the data represented on the map. In the example below, the map is zoomed in to show the '*catchment*' area with the DWSMA and its vulnerability represented.

GRAPS Data Delivery

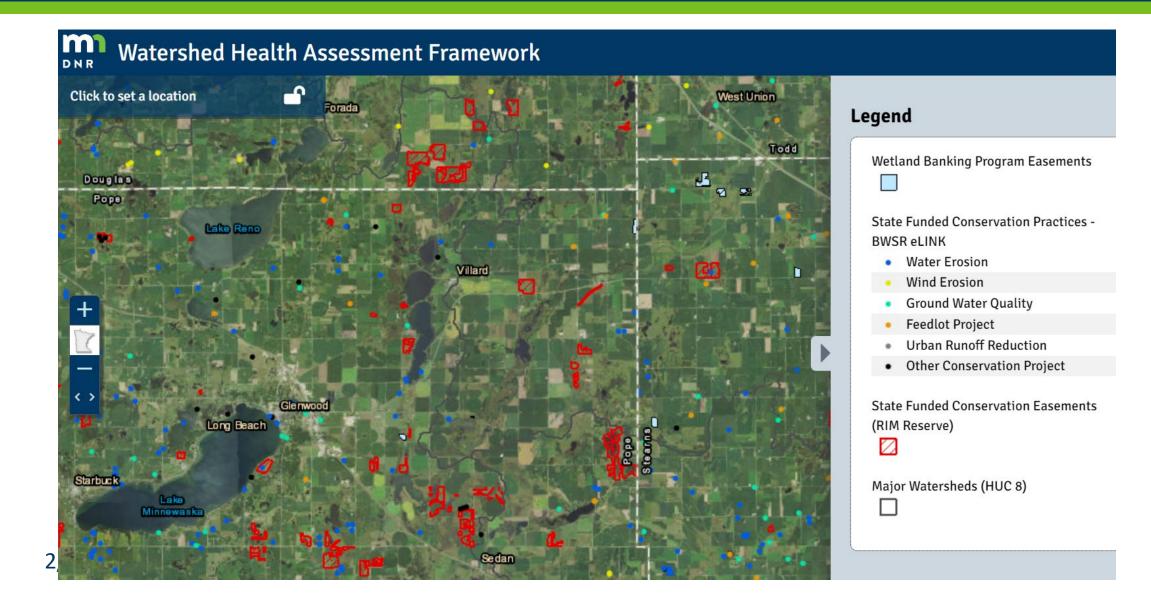
What Other Science Stories Do We Tell?

Climate Summaries, Data and Animations

• PARTNER: EWR Climatology

Stream Protection Priorities

• PARTNERS: DNR, MPCA, BWSR


Groundwater Restoration and Protection Strategies

• PARTNER: MDH

Implementation Data

• PARTNER: BWSR

BWSR – Implementation Layers

Is WHAF hitting the mark?

Science Storytelling:

Visualize Watershed Health for Better Planning and Implementation

WHAF Use is Growing

DEPARTMENT OF NATURAL RESOURCES

Watershed Health Assessment Framework

'Managing for Health'

First ice of winte

WHAF News December 2023

- Website Changes: Easier to Navigate
- Map Data Layers: Implementing Actions
- Data Updates: Stream Protection and Lake Health

Website Changes: Easier to Navigate

Watershed Health Assessment	Find exactly what you need on the WHAF website
Framework	using our new navigation. This updated navigation
Main page	panel is found on the left side of each webpage to
Five components	make it easy to move between topic areas.
Key concepts	, ,
Applications	The Framework: Get an overview of our approach,
Applications	dive into the five component framework and read
Watershed map	about our key concepts.
WHAF for lakes	

Map Data Layers: Implementing Actions

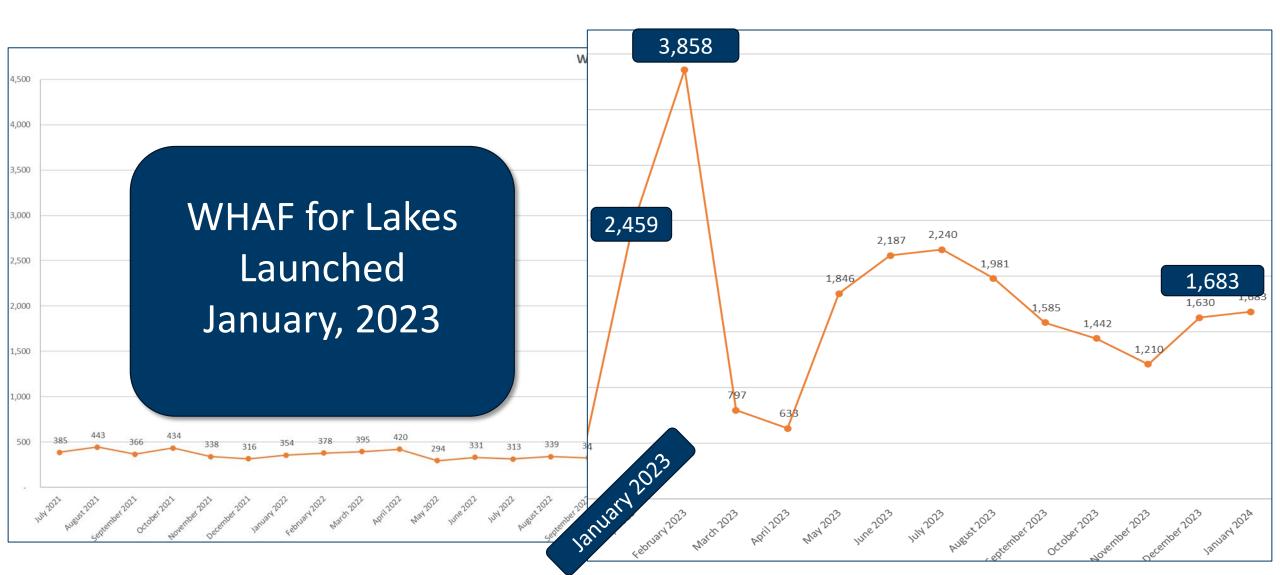
The WHAF Watershed Map now includes data layers showing some of our natural resource management actions. The data is found under the 'Implementation' category in our **Add Data** panel. Working with partners, we have added these three data resources managed by the Board of Water and Soil Resources (BWSR):

BWSR eLINK - Point locations of Best Management Practices (BMPs) implemented from 2003 to present, using a range of state funded grants including general funds, clean water funds and well sealing grants.

Reinvest in Minnesota (RIM) Reserve Easements - Approximate boundaries of State of Minnesota permanent conservation easements from 1986 to present, protecting restored wetlands, native grassland habitat complexes and permanent riparian buffers.

Wetland Banking Program Easements - Approximate boundaries of lands protected by conservation easements associated with the State's wetland banking program. These protected lands are primarily privately-owned and not accessible to the public without landowner permission.

Data Layers Assessments/Impairments Learn more Set Active Data Layers Biology Climate Ecol Click on an active layer to identify in Connectivity Ecol	♥ Scale Ø ogical
Data Layers Assessments/Impairments Learn more Set Active Data Layers Biology Climate Climate Climate Click on an active layer to identify in Connectivity Connectivity Ecol River Basing MM (HIICa) Conservation Priorities Set	Scale
Active Data Layers Climate Click on an active layer to identify in Connectivity Conservation Priorities	-
Conservation Priorities	- Isla
Health Score Change	ores
Off Hillshade Topography Imagery & Land Cover	€ I Data
	⊞ atrix
	⊚ rget
All Data Layers Wetlands	i≣ gend


2014: Invited 200 agency and LGU staff to subscribe

2024: Grown to 5,900 subscribers

(are you one?)

Subscribe to Newsletter

WHAF Use is Growing

Health is a Process, Not a Place

Restoring Health Builds Resilience

Healthy Watersheds Leave a Legacy!

Visit the WHAF website