Carver County Compost Facility Groundwater Monitoring Quality Assurance Project Plan

Submitted to: United States Environmental Protection Agency Region 5

JUNE 2017

QAPP Signature Page

The following parties have reviewed and approved the Quality Assurance Project Plan (QAPP).

Minnesota Pollution Control Agency

Mark Rys, Hydrologist, Minnesota Pollution Control Agency

William Scruton Quality Control Coordinator, Minnesota Pollution Control Agency

Tim Farnan, State Program Administrator – Planner, Minnesota Pollution Control Agency

Carver County

Marcus Zbinden Project Manager: Environmental Specialist III, Carver County

US EPA Region 5

Jerri-Anne Garl, Chief, Materials Management Branch, Land and Chemicals Division, US EPA Region 5

Thomas Crosetto, Quality Assurance Manager, Land and Chemicals Division, US EPA Region 5

Nep

Carol L. Staniec Technical Contact, Lands and Chemical Division, US EPA Region 5

6/15/17 Date

Date

6/13/2017

Date

Date

Date

Date

.

QAPP Signature Page

The following parties have reviewed and approved the Quality Assurance Project Plan (QAPP).

Minnesota Pollution Control Agency

Mark Rvs

Hydrologist, Minnesota Pollution-Control Agency

1A

William Scruton Quality Control Coordinator, Minnesota Pollution Control Agency

lin

6/13

Tim Farnan. State Program Administrator - Planner, Minnesota Pollution Control Agency

Carver County Marcus Zbinden

Project Manager: Environmental Specialist III, Carver County

US EPA Region 5

Jerri-Anne Garl, Chief, Materials Management Branch, Land and Chemicals Division, US EPA Region 5

Date

Thomas Crosetto, Quality Assurance Manager, Land and Chemicals Division, US EPA Region 5

Date

Carol L. Staniec Technical Contact, Lands and Chemical Division, US EPA Region 5 Date

Date

QAPP Distribution List

The following individuals will be provided a copy of the final, approved version of this document. Any future additions or changes will also be sent to them.

Marcus Zbinden Carver County 600 E 4th Street Chaska MN 55318 Phone: (952) 361-1806 e-mail: <u>mzbinden@co.carver.mn.us</u>

Mark Rys Minnesota Pollution Control Agency 520 Lafayette Rd N St Paul MN 55155 Phone: 651-757-2685 e-mail: mark.rys@state.mn.us

Tim Farnan Minnesota Pollution Control Agency 520 Lafayette Rd N St Paul MN 55155 Phone: 651-757-2348 <u>e-mail: timothy.farnan@state.mn.us</u>

Carol Staniec US EPA Region 5, 77 W. Jackson Blvd., LM-16J Chicago, II 60604 Phone: (312) 886-1436 e-mail: <u>staniec.carol@epa.gov</u>

Acronyms and Abbreviations

AR- Arboretum

ASTM- American Society for Testing and Materials

BTM - Bottom

- CC- Carver County
- CFR Code of Federal Regulations
- CRL- Central Regional Laboratory Chicago

D - Field Duplicate

- DQO Data Quality Objective
- LOQ Limit of Quantification
- MDL Method Detection Level
- MRL- Minimum Reporting Level
- MSL Mean Sea Level
- MPCA Minnesota Pollution Control Agency
- NRMRL- National Risk Management Research Laboratory
- QA Quality Assurance
- QAPP Quality Assurance Project Plan
- QC Quality Control
- ORD- Office of Research and Development
- R Field Replicate
- SAP Sampling and Analysis Plan
- SFC Surface
- SOP Standard Operating Procedure
- SSO Source Separated Organics
- SSOM- Source Separate Organic Materials

TSI - Trophic Status Index

USDA- United States Department of Agriculture

USEPA or EPA - United States Environmental Protection Agency

VOCs - Volatile Organic Compounds

WA- Watertown

V CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

TABLE OF CONTENTS

QAPP SIGN	IATURE PAGE	II
QAPP DIST	RIBUTION LIST	III
ACRONYM	S AND ABBREVIATIONS	IV
TABLE OF I	GURES AND TABLES	
SECTION 1	PROJECT DESCRIPTION	1
1.1	INTRODUCTION	
1.2	BACKGROUND	2
1.3 Ui	niversity of Minnesota Landscape Arboretum, Specialized Environmental Technologies Site	2
1.4 Ci	ty of Watertown Yard Waste Site	7
1.5	FIELD, LABORATORY AND WATER QUALITY OBJECTIVES	10
1.5.1	Field Analysis	
1.5.2	Laboratory Analysis	11
1.5.3	Water Quality Data	
1.6	GROUNDWATER CONTAMINANTS OF CONCERN	11
SECTION 2	PROJECT ORGANIZATION AND RESPONSIBILITIES	20
2.1	PROGRAM MANAGER	20
2.2	PROJECT MANAGER	20
2.3	PROJECT QA OFFICER	
2.4	FIELD TEAM LEADER	
2.5	ANALYSTS AND FIELD TEAM MEMBERS	20
2.6	SAMPLE CUSTODIAN/SUPPORT SERVICES COORDINATOR	
SECTION 3	QUALITY ASSURANCE OBJECTIVES	21
SECTION 4	SAMPLING PROCEDURES	22
4.1	SAMPLING SITE SELECTION	
	SAMPLING SITE DESCRIPTION	
SECTION 5	INTERNAL QUALITY CONTROL	22
	FIELD OC CHECKS	
5.1.1	Blanks	
5.1.2	Field Duplicates	
5.1.2	QC Checks on Field Measurements	
5.1.4	Assessment of Field Data Precision and Accuracy	
	IELD QC CHECKS	
5.2		
SECTION 6	PREVENTIVE MAINTENANCE	24

6.1	FIELD INSTRUMENTS	24
6.2	ROUTINE MAINTENANCE ACTIVITIES	24
APPENDIX	A: FIELD PROCEDURES	25

FIELD PROCEDURE 1
FIELD PROCEDURE 2
FIELD PROCEDURE 3
FIELD PROCEDURE 4
FIELD PROCEDURE 5
APPENDIX B: FORMS
U.S. EPA REGION 5, CRL ANALYTICAL REQUEST FORM
CRL SAMPLE SHIPPMENT GUIDELINES, CRL SAMPLE HOLDING TIME, PRESERVATION AND CONTAINER
REQUIREMENTS ERROR! BOOKMARK NOT DEFINED.
CHAIN OF CUSTODY FORMS
APPENDIX C: TEST METHODS
USEPA REGION 5 CRL PFOS METHODS
NREL SAMPLE ECOLI AND FECAL COLIFORM ANALYSES AND SHIPPMENT GUIDELINES
APPENDIX D: REPORTS
HYDROGEOLOGIC INVESTIGATION AND MONITOIRNG AND WELL INSTALLATION REPORT

Table of Figures and Tables

Figures

- Figure 1.3.5A Arboretum Monitoring Well Locations
- Figure 1.4.5A Watertown Monitoring Well Locations

<u>Tables</u>

- Table 1 Contaminants of Concern
- Table 2 Preventative Maintenance of Field Equipment
- Table 3 Preventive Maintenance Field
- Table 4 Quality Control Samples

Section 1 Project Description

1.1 Introduction

The Minnesota Pollution Control Agency (MPCA) requested assistance from the United States Environmental Protection Agency (EPA) in their efforts to evaluate the potential for ground water impacts at composting facilities. The Federal project partners include staff members from the Central Regional Laboratory (CRL-Chicago), the Land and Chemicals Division (Chicago) and the Office of Research and Development (ORD-Cincinnati). The Federal project partner's role is to ensure MPCA and their partner, Carver County, obtain representative ground water samples at the sites they selected for their study and receive appropriate analysis and results from those samples.

The MPCA's proposed project objectives-are to gather information on how the use of a gravel pad at Source Separated Organics Material (SSOM) compost facilities, may impact the ability of contaminants to reach ground water and to compare the environmental impact of an unlined yard waste site with an unlined SSOM site. MPCA stated that the collection of the data will allow them to better balance design and operational practices governing compost facilities to ensure adequate protection of the environment, but not overly onerous to the point they curtail development of new sites. Currently none of Minnesota's approximately 115-yard waste composting facilities or 10 SSOM composting facilities has monitoring wells in place. All of the ten SSOM sites currently operating have Municipal Solid Waste (MSW) permits. The MPCA established new rules for compost facilities; several facilities are pursuing permits under the new SSOM designation and may take on that classification in 2017. The Arboretum SSOM site is unique in that it has a compacted gravel pad and has been operating for several years making it ideally situated to provide useful information through installation and utilization of monitoring wells.

The Arboretum SSOM Demonstration/Research permit expired in December 2015 at which time no additional SSOM has been accepted. The County and site operator are working with the MPCA to obtain a SSOM facility permit, which will allow the site to accept SSOM in the fall of 2017. As of 2016, the site has only received yard waste.

This project involves the use of monitoring wells to sample and analyze groundwater at two compost facilities. One facility will be the SSOM facility located at the University of Minnesota Landscape Arboretum in Carver County, hereafter known as the "Arboretum SSOM". This facility collects food scraps co-mingled with yard waste, compostable paper and compostable plastics. The second site is located in the City of Watertown, hereafter known as "Watertown". This site is regulated under a permit-by-rule and only accepts yard wastes, no food scraps. The Watertown site does accept compostable Kraft bags as well as ASTM certified compostable plastic bags.

Sampling of monitoring wells will take place for an agreed period of time depending on the available budget. The EPA, Central Regional Laboratory (CRL) and Office of Research and Development (ORD) will analyze he results; in addition, ORD will develop a summary of results and provide a narrative of the potential for groundwater impacts from the Arboretum SSO and Watertown sites. The MPCA has funded the installation of eight (8) monitoring wells, four at each facility. The wells were installed in December 2016. Carver County (CC) will ensure the facilities continue to operate during the project. The County will also hire a vendor from the state sampling and analysis contract to collect and submit the samples to the EPA Chicago and ORD Cincinnati laboratories. The project partners (EPA, ORD, MPCA and Carver County) anticipate the first sampling event will take place in June of 2017. While the project involving the Arboretum SSO site and, the Watertown yard waste site, will provide valuable information, additional data will provide a more comprehensive understanding of how composting operations with unlined pads may impact the groundwater. Project partners may identify additional facilities elsewhere to collect data.

1.2 Background

With a grant from the MPCA, Carver County installed monitoring wells at both the Arboretum and Watertown sites for this project. Samples will be collected quarterly for a period of 2 years to gather information on any potential impacts to groundwater from the composting operations. The EPA's CRL in Chicago and the ORD Cincinnati, both, will provide laboratory bottles and analysis of the samples and will report the findings from that analysis to both Carver County and MPCA, while the ORD will develop a summary of the results and provide a narrative of the potential for groundwater impacts.

The Arboretum SSOM facility, located at the University of Minnesota Landscape Arboretum, in the city of Chanhassen, MN accepts SSOM and yard waste. The other facility, located in the city of Watertown, only accepts yard waste. Both facilities are located in Carver County, Minnesota. Carver County has signed a Joint Powers Agreement (JPA) with the MPCA and is a key partner in this project. The JPA provided funding from the MPCA for the installation of the monitoring wells and some detailed characterizations of the compost sites. The Arboretum SSOM facility accepts SSOM that has been comingled and co-collected with yard waste. Detailed descriptions of both facilities are outlined in sections 1.3 and 1.4 of this document.

The MPCA revised the state rules for compost facilities in 2014. During that process there was substantial public engagement on how to best ensure that compost facilities were protective of the environment especially pertaining to impacts on groundwater. Minnesota has adopted aggressive goals for organics recycling and the rule revision was intended to reduce regulatory barriers to establishing or operating compost facilities to support those goals. While the revisions were intended to expand composting, the agency also prioritized ensuring that facility design and operations remained adequately protective of the environment.

Carver County will work with private partners to ensure the continued operation of the Arboretum compost facility. County staff has been actively involved in the permitting and operations of the Arboretum SSOM facility. Carver County will also contract with a third party approved by MPCA, to gather and ship samples collected from the monitoring wells. The MPCA and Carver County have partnered on research efforts at the Arboretum SSOM facility through three previous grant funded projects. In the prior research as well as the current study, the County will assist in dissemination of the findings.

1.3 University of Minnesota Landscape Arboretum, Specialized Environmental Technologies Site

The project site is located at the University of Minnesota Landscape Arboretum and is managed by Specialized Environmental Technology (SET). Carver County who assists with staffing and technical assistance received a Demonstration project permit from the MPCA in 2010. The site began accepting material in September of 2011.

1.3.1 Description

The Carver County/(SET) Arboretum SSOM site, is located at the University of Minnesota Landscape Arboretum in Chanhassen, MN. The University of Minnesota Landscape Arboretum is part of the College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota. The Arboretum SSOM Site occupies two acres of the Minnesota Landscape Arboretum which was previously undeveloped and was utilized as the burn site for brush and wood waste generated from Arboretum operations. Figure A shows the location of the Arboretum SSOM Site on the Arboretum property. The nearest residential home not owned by the University of Minnesota Landscape Arboretum is approximately 1,800 feet away from the site.

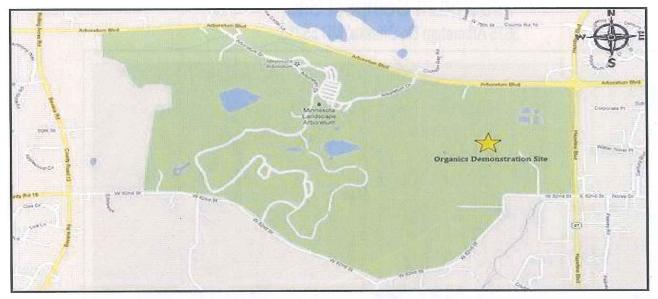
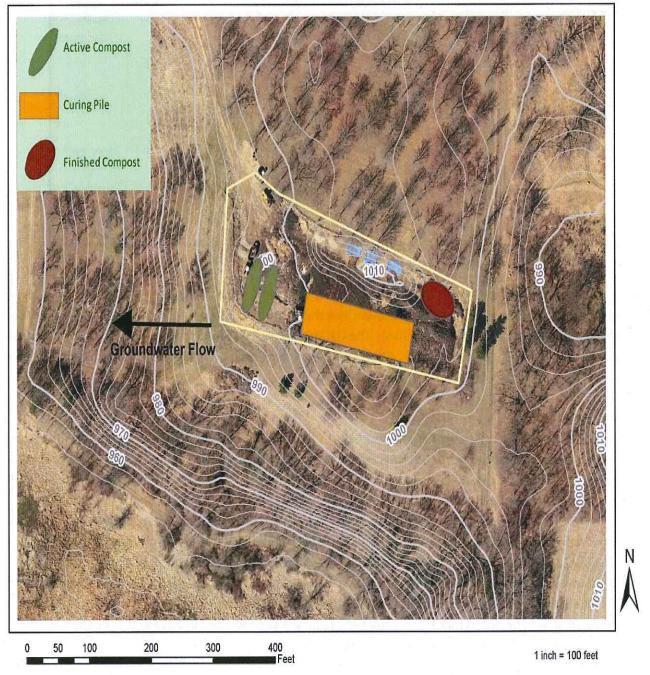


Figure A: Organics Demonstration Site Location

1.3.2 Soils

The site is constructed on Lester-Kilkenny Loam soil that has a 12% - 18% slope and a 25% - 40% slope respectively. The USDA Soil Survey for the Arboretum SSOM Site location lists the depth to the water table and the depth to any soil restrictive layer at >200 centimeters (>78.7 inches). The USDA's Soil Survey refers to the water table as "the saturated zone in the soil that occurs during specified months". The mean annual precipitation in the area is about 28 inches, and the mean annual soil temperature is about 49 degrees Fahrenheit.


1.3.3 Working Pad

The Arboretum SSOM Site naturally slopes to the southwest. The pad is graded to ensure drainage is directed toward water management berms installed at the toe of each aerated static windrow and toward compost socks installed on the site. The pad is constructed of eight inches (8") of compacted rock consisting of one and a half inch minus (1 ½-) limestone under Class 5 gravel. The gravel originally covered the tipping, processing and active composting areas of the facility. The curing and finished compost areas as well as equipment storage consisted of compacted soil when the Organics Composting Demonstration Site was originally constructed. Class 5 gravel was added to these areas to allow for year-round operations in December 2011. Braun Intertec conducted permeability testing of the pad utilizing a double ring infiltrometer, a nuclear density gage as well as laboratory testing in 2013. Testing was performed in accordance with ASTM International D2434-68. Based on these test results Braun estimated that infiltration rate of the working pad to be 1.34X10⁻⁴(cm/sec) which is considered slow. It should be noted that the permeability testing was conducted in 2013 and since then additional gravel was added and compacted. The current pad permeability is unknown.

The Arboretum SSOM Site began accepting materials on September 1, 2011. SET, the site operator, accepts materials on site from private waste haulers and from the University of Minnesota Landscape Arboretum property through prearranged

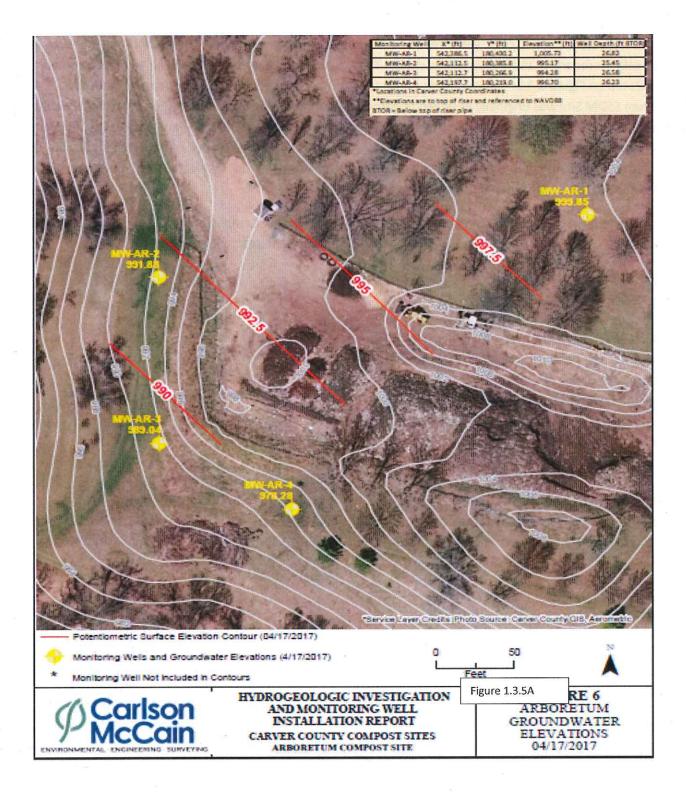
agreements. Waste haulers co-collect organics with yard waste curbside from residential customers and deliver it to the facility for composting. The Arboretum Site also accepts the Arboretum's cafeteria 's SSOM and the Arboretum's yard

Arboretum Compost Site 3675 Arboretum Dr, Chaska, MN 55318

waste. No public drop off is allowed at the site. The Arboretum SSOM Site is permitted to process 15,000 cubic yards annually, of which 20% or 3,000 cubic yards may consist of SSOM. The volume of material is recorded by material type,

(SSOM, brush and yard waste), in cubic yards (yd³) on a ticket by a gate attendant, for all loads entering and leaving the site. There is no scale for recording the weight of materials. The active composting area, curing pile and finish compost storage area are indicated on Figure 1.3.3. A mixer, front-end loader and a screener are used for processing materials. The Arboretum SSOM Site was originally designed to gather data, through the use of lysimeters, regarding the differing environmental impacts of composting yard waste by itself versus composting SSOM with yard waste. Co-collected SSOM with yard waste is transported to the composting area where it is mixed and then placed into aerated static piles using a front-end loader. Yard waste only loads are placed in a separate pile using a front end loader. Fall leaves are either used or stockpiled for future use so the optimal C/N ratio can be achieved.

Aerated static piles and stockpiles do not exceed twelve feet (12') in height. Composting materials are turned to ensure compliance with the Process to Further Reduce Pathogens (PFRP) requirements.


1.3.4 Hydrogeology

- Ice stagnation deposits
- Holocene: pe, organic debris, clay and silt
- Pleistocene: dth, loam to clay loam
- Ground water flow: surficial aquifer West trend
- Depth to Bedrock: 401-450 feet
- Estimated water table elevation: 975-1000 feet

Depth to the water table in the wells is approximately 7.5 feet. More information can be found in Appendix D the "Hydrogeologic Investigation and Monitoring Well Installation Report."

1.3.5 Monitoring Well Locations

Four monitoring wells were installed at the Arboretum SSOM site in December of 2016. The well locations and elevations are marked on Figure 1.3.5A below. The wells are designated as: AR-MW1, AR-MW2, AR-MW-3 and AR-MW4.

1.4 City of Watertown Yard Waste Site

Watertown is a city located in northwest Carver County along the South Fork of the Crow River and has a population of 4,205.

The City of Watertown coordinates residential yard waste collection services within the City by contracting with Randy's Environmental Services, Inc.. In addition to the weekly curb side yard waste and compost collection the City also offer year-round yard waste drop-off service at their yard waste site located Public Works property.

1.4.1 Description

The Watertown yard waste site, hereafter known as Watertown, is located 700 Lewis Avenue North Watertown. The site is approximately 2.5 acres in size and accepts both lawn waste, including grass clippings and leaves, as well as brush. The City of Watertown's staff, mange the composting of grass and leaves, while a private contract is utilized to manage the brush and stumps.

Feet

Yard Waste Site 700 Lewis Ave NW, Watertown, MN 53094

1.4.2 Soils

The geology encountered at the Watertown Site consists of unconsolidated fluvial deposits typical of a sandy meandering river. The alluvium is comprised of alternating layers of gravel, sand and clay material. It is comprised of thickly bedded, variably textured deposits that classify as a poorly graded gravel with sand (GP), poorly graded sand (SP), fat clay (CH), and lean clay (CL) with lesser amounts of material classifying as poorly graded sand with silt (SP-SM) and sandy silt (ML) under the USCS. The typical sequence of material indicates a massively bedded fining upward characteristic, indicating a change from high flow velocity to low flow velocity which is consistent with floodplain deposits along a meandering river.

SV—Spillville loam,

Setting

- Landform: Flood plains
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Alluvium

Typical profile

- Ap,A1,A2,A3 0 to 40 inches: loam
- *C 40 to 60 inches:* loam

Properties and qualities

- Slope: 0 to 2 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Moderately well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
- Frequency of flooding: Occasional
- Frequency of ponding: None
- Available water storage in profile: High (about 11.4 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2w
- Hydrologic Soil Group: B/D
- Other vegetative classification: Level Swale, Neutral (G103XS001MN)
- Hydric soil rating: No

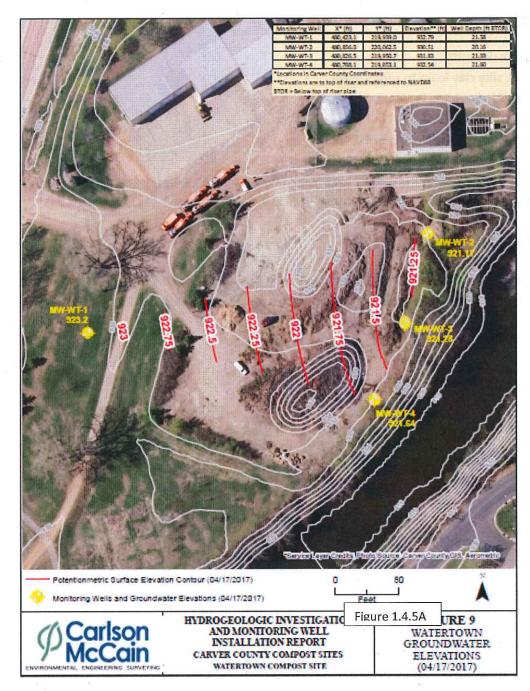
1.4.3 Hydrogeology

Ice stagnation deposits

Holocene: al, silty clay loam to sandy loam

Pleistocene: dth, loam to clay loam

Depth to bedrock: 151-200 feet


Ground water flow: surficial aquifer NE trend

Estimated water table elevation: 900-925 feet

Depth to the water table in the wells is approximately 1.5 feet. More information can be found in Appendix D the "Hydrogeologic Investigation and Monitoring Well Installation Report."

1.4.5 Monitoring Well Locations

Four monitoring wells were installed at the Watertown site in December of 2016. The well locations and elevations are marked on Figure 1.4.5A below. The wells are designated as: WA-MW1, WA-MW2, WA-MW3 and WA-MW4.

1.5 Field, Laboratory and Water Quality Objectives

1.5.1 Field Analysis

This provides rapid on-site analysis for parameters needed to evaluate well stabilization prior to sample collection. The parameters include pH, conductivity, and temperature and require no quality control other than instrument calibration. pH meters are calibrated in the lab once per week, using standard buffer. The calibration of conductivity is conducted once per month in the lab. Thermometers are checked in the lab before transport to the field. Observations are recorded in a field notebook.

1.5.2 Laboratory Analysis

This provides the highest level of data quality and is used for the purpose of evaluating the degree of aquifer contamination. All analysis is conducted using EPA recognized methodology and is evaluated using reagent blanks, duplicates, and matrix spikes. The parameters to be measured are listed in Table 1.

1.5.3 Water Quality Data

The results of all water quality measurements will be compared with applicable standards in order to evaluate the impact of composting activity. These standards are:

- USEPA Safe Drinking Water Act Primary Standards (PDW)
- USEPA Safe Drinking Water Act Secondary Standards (SDW).
- Minnesota Standards (found at this link: <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html</u>
- EPA MCLs

Parameters not included in any of these lists will be used to compare water quality trends at each sampling site. That is, new data will be compared with data generated previously to assess changes in water quality.

1.6 Groundwater Contaminants of Concern (COC)

The COCs are generalized by contaminant category; a detailed list of contaminants that will be monitored is included in Table 1. This list may be modified during the course of the filed analysis.

Table 1. Contaminants of Concern

SVOCs:		
ANALYTE	MRL	Units
2,4-Dichlorophenol	1	ug/L
1,2,4-Trichlorobenzene	1	ug/L
Naphthalene	1	ug/L
4-Chloroaniline	5	ug/L
Hexachlorobutadiene	1	ug/L
2-Methylnaphthalene	1	ug/L
4-Chloro-3-methylphenol	1	ug/L
2,4,6-Trichlorophenol	1	ug/L
2,4,5-Trichlorophenol	1	ug/L
2-Chloronaphthalene	1	ug/L
2-Nitroaniline	1	ug/L
Acenaphthylene	1	ug/L
Dimethylphthalate	1	ug/L
2,6-Dinitrotoluene	1	ug/L
Acenaphthene	1	ug/L
3-Nitroaniline	5	ug/L
Dibenzofuran	1	ug/L
2,4-Dinitrophenol	5	ug/L
2,4-Dinitrotoluene	1	ug/L

Fluorene	1	ug/L
4-Nitrophenol	5	ug/L
4-Chlorophenylphenyl		
ether	1	ug/L
Diethylphthalate	1	ug/L
4,6-Dinitro-2-methylphenol	5	ug/L
Pyridine	5	ug/L
2-Picoline	5	ug/L
Bis(1-chloroisopropyl)ether	1	ug/L
3-Methylcholanthrene	5	ug/L
3,3'-Dichlorobenzidine	5	ug/L
2-Acetylaminofluorene	1	ug/L
Chlorobenzilate	1	ug/L
p-		_
Dimethylaminoazobenzene	1	ug/L
Benzidine	5	ug/L
Isodrin	1	ug/L
Pronamide	1	ug/L
Pentachloronitrobenzene	1	ug/L
Diallate (cis or trans)	1	ug/L
Phenacetin	1	ug/L
1,3,5-Trinitrobenzene	5	ug/L
Azobenzene	1	ug/L
5-Nitro-o-toluidine	1	ug/L
2,3,4,6-Tetrachlorophenol	5	ug/L
Pentachlorobenzene	1	ug/L
Acetophenone	1	ug/L
Pentachlorophenol	5	ug/L
Phenanthrene	1	ug/L
Anthracene	1	ug/L
Carbazole	1	ug/L
Di-n-butylphthalate	1	ug/L
Fluoranthene	1	ug/L
Pyrene	1	ug/L
Butylbenzylphthalate	1	ug/L
Chrysene	1	ug/L
Aniline	5	ug/L
o-Toluidine	5	ug/L
3,3'-Dimethylbenzidine	5	ug/L
Ethyl methacrylate	5	ug/L
	5	ug/L
Caprolactam	1	ug/L
1-Methylnaphthalene	T	ug/L

Biphenyl	1	ug/L
1-Chloronaphthalene	1	ug/L
1,4-Dinitrobenzene	5	ug/L
1,2-Dinitrobenzene	1	ug/L
Diphenyl ether	1	ug/L
2,3,5,6-Tetrachlorophenol	5	ug/L
Dibenz (a,j) acridine	1	ug/L
Diphenylamine	1	ug/L
4-Nitroaniline	1	ug/L
Pentachloroethane	5	ug/L
1,3-Dinitrobenzene	5	ug/L
Isosafrole	1	ug/L
1,2,4,5-		
Tetrachlorobenzene	1	ug/L
Safrole	1	ug/L
N-Nitrosodi-n-butylamine	1	ug/L
2,6-Dichlorophenol	1	ug/L
N-Nitrosopiperidine	1	ug/L
2-Chlorophenol	1	ug/L
Benzo (a) anthracene	1	ug/L
Bis (2-ethylhexyl) phthalate	1	ug/L
Di-n-octylphthalate	1	ug/L
Benzo(b)fluoranthene	1	ug/L
Benzo(k)fluoranthene	1	ug/L
Benzo(a)pyrene	1	ug/L
Indeno(1,2,3-cd)pyrene	1	ug/L
Dibenz(a,h)anthracene	1	ug/L
Benzo(g,h,i)perylene	1	ug/L
Hexachlorobenzene	1	ug/L
Phenol	1	ug/L
Bis(2-chloroethyl)ether	1	ug/L
1,3-Dichlorobenzene	1	ug/L
4-Bromophenyl phenyl		
ether	1	ug/L
1,4-Dichlorobenzene	1	ug/L
1,2-Dichlorobenzene	1	ug/L
2-Methylphenol	1	ug/L
N-Nitroso-di-n-		
propylamine	1	ug/L
3+4-Methylphenol	1	ug/L
Hexachloroethane	5	ug/L
Nitrobenzene	1	ug/L

Isophorone	1	ug/L
2-Nitrophenol	1	ug/L
2,4-Dimethylphenol	1	ug/L
Bis(2-		
chloroethoxy)methane	1	ug/L

PFCs:

ANALYTE	MRL	Units
perfluorodecanoate	10	ng/L
perfluoroheptanoate	10	ng/L
perfluorohexyl sulfonate	10	ng/L
perfluorohexanoate	10	ng/L
perfluorononanoate	10	ng/L
perfluorooctyl sulfonate	10	ng/L
perfluorooctanoate	10	ng/L
perfluoropentanoate	50	ng/L
perfluorotetradecanoate	10	ng/L
perfluorotridecanoate	10	ng/L
perfluoroundecanoate	10	ng/L
perfluorobutyl sulfonate	10	ng/L
perfluorobutanoate	50	ng/L
perfluorododecanoate	10	ng/L
perfluoro-1-pentanesulfonate (PFPeS)	10	ng/L
perfluoro-1-octanesulfonamide (FOSA)	10	ng/L
perfluoro-1-nonanesulfonate (PFNS)	10	ng/L
perfluoro-1-heptanesulfonate (PFHpS)	10	ng/L
perfluoro-1-decanesulfonate (PFDS)	10	ng/L
N-MeFOSAA	10	ng/L
N-EtFOSAA	10	ng/L
1H,1H,2H,2H-perfluorooctane sulfonate (6:2 FTS)	10	ng/L
1H,1H,2H,2H-perfluorohexane sulfonate (4:2 FTS)	10	ng/L
1H,1H,2H,2H-perfluorodecane sulfonate (8:2 FTS)	10	ng/L

ANALYTE	MRL	Units
2,4-D	250	ng/L

Chlorinated Pesticides:

ANALYTE	MRL	Units
Alpha-BHC	0.05	ug/L
Gamma-BHC	0.05	ug/L
Beta-BHC	0.05	ug/L
Heptachlor	0.05	ug/L
Delta-BHC	0.05	ug/L
Aldrin	0.05	ug/L
Heptachlor epoxide	0.05	ug/L
4,4'-DDE	0.05	ug/L
Dieldrin	0.05	ug/L
Endrin	0.05	ug/L
4,4'-DDD	0.05	ug/L
Endosulfan II	0.05	ug/L
4,4'-DDT	0.05	ug/L
Endrin aldehyde	0.05	ug/L
Endosulfan Sulfate	0.05	ug/L
Methoxychlor	0.05	ug/L
Endrin ketone	0.05	ug/L
gamma-Chlordane	0.05	ug/L
Alpha-Chlordane	0.05	ug/L
Endosulfan I	0.05	ug/L

Metals by ICP:

ANALYTE	MRL	Units
Aluminum	0.2	mg/L
Antimony	0.02	mg/L
Arsenic	0.04	mg/L
Barium	0.003	mg/L
Beryllium	0.002	mg/L
Boron	0.05	mg/L
Cadmium	0.002	mg/L

15 | CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

Calcium	0.2	mg/L
Chromium	0.005	mg/L
Cobalt	0.006	mg/L
Copper	0.02	mg/L
Iron	0.08	mg/L
Lead	0.03	mg/L
Lithium	0.025	mg/L
Magnesium	0.2	mg/L
Manganese	0.008	mg/L
Molybdenum	0.012	mg/L
Nickel	0.012	mg/L
Potassium	0.8	mg/L
Selenium	0.05	mg/L
Silver	0.01	mg/L
Sodium	0.4	mg/L
Strontium	0.003	mg/L
Thallium	0.06	mg/L
Tin	0.02	mg/L
Titanium	0.006	mg/L
Vanadium	0.005	mg/L
Zinc	0.03	mg/L

Metals by ICP-MS:

ANALYTE	MRL	Units
Copper	2	ug/L
Lead	0.5	ug/L
Manganese	1	ug/L
Molybdenum	1	ug/L
Nickel	1	ug/L
Selenium	2	ug/L
Thallium	0.5	ug/L
Uranium	0.5	ug/L
Vanadium	1	ug/L
Zinc	10	ug/L
Thorium	5	ug/L
Antimony	1	ug/L
Arsenic	1	ug/L
Beryllium	1	ug/L
Cadmium	1	ug/L
Chromium	1	ug/L

Cobalt		0.5	ug/L
Silver		1	ug/L
Barium		10	ug/L
Hg by CVAA	٨:		
ΑΝΔΙ ΥΤΓ	MRI		Units

ANALTIE	IVINL	Units
Mercury	0.5	ug/L

General Chemistry:

ANALYTE	MRL		Units
Phosphorous	0.15		mg/L
Nitrate as N	0.125		mg/L
TKN	0.5		mg/L
TDS	20		mg/L
TSS		5	mg/L
BOD		2	mg/L

VOCs:

Dichlorodifluoromethane Ethyl Ether 1,1-Dichloroethene Dibromofluoromethane 1,2-Dichloroethane-d4 Methylene chloride Toluene-d8 4-Bromofluorobenzene 1,1,2-Trichlorotrifluoroethane Allyl Chloride trans-1,2-Dichloroethene Methyl-t-butyl ether Chloromethane 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Bromochloromethane Vinyl chloride Chloroform 2,2-Dichloropropane Tetrahydrofuran 1,2-Dichloroethane

1,1,1-Trichloroethane 1,1-Dichloropropene **Carbon Tetrachloride** Benzene Dibromomethane 1,2-Dichloropropane Bromomethane Trichloroethene Bromodichloromethane cis-1,3-Dichloropropene Methyl Isobutyl Ketone trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene Chloroethane 1,3-Dichloropropane Chlorodibromomethane 1,2-Dibromoethane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene m,p-Xylenes Dichlorofluoromethane Bromoform Styrene 1,1,2,2-Tetrachloroethane o-Xylene 1,2,3-Trichloropropane Isopropylbenzene Bromobenzene n-Propylbenzene Trichlorofluoromethane 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene

18 | CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

4-Isopropyltoluene
1,2-Dichlorobenzene
n-Butylbenzene
1,2-Dibromo-3-chloropropane
1,2,4-Trichlorobenzene
Naphthalene
Hexachlorobutadiene
1,2,3-Trichlorobenzene
Acetone

Section 2 Project Organization and Responsibilities

This portion of the QAPP addresses the project organization as it provides for QA/QC coordination and responsibilities.

The key responsibilities of each of the Carver County groundwater monitoring project participants are outlined in the following subsections.

2.1 Program Manager

The Program Manager will serve as the liaison between the MCPA project team and EPA/ORD. The Program Manager will ensure appropriate corporate resources are supplied to the Project Team in the form of technical, financial, regulatory, QA/QC and Health and Safety support. The Program Manager will maintain contact with the Project Manager and other key team members as project tasks deem appropriate, and assure appropriate coordination among all project team staff.

2.2 Project Manager

The Project Manager's responsibilities include review of work plans, schedules, costs, and technical performance, and effective day-to-day management of the project staff. The Project Manager will also be the primary technical reviewer of project deliverables. The Project Manager's responsibilities specific to QA/QC are to ensure proper implementation of the field procedures by the project team. The project manager is experienced in project staff management, as well as development and implementation of appropriate field procedures. The project manager will assist in disseminating results of the research to partner organizations.

2.3 Project QA Officer

The Project QA Officer is responsible for maintaining and overseeing an effective QA/QC organization in the laboratory and field. The Project QA Officer, in conjunction with other appropriately trained and experienced EPA personnel, audits the performance of the laboratory and field team to ensure that the requirements of the QAPP are followed in sampling and analysis activities. The Project QA Officer directs the development of the QAPP facilitates review and approval of any deviations or changes to QA/QC requirements. The QA Officer informs project management of any QAPP nonconformance, and ensures appropriate corrective actions are completed and documented. Portions of reports and other project deliverables are prepared or reviewed by the QA Officer, as appropriate, to ensure that environmental data standards of the project QA/QC standards and requirements, to ensure that they are adequately prepared for conducting their work tasks in conformance with project requirements.

2.4 Field Team Leader

The Field Team Leader is responsible for provision of accurate field data produced by sampling personnel. The Field Team Leader is responsible for ensuring that QC procedures are followed and documented. He/she will be trained and experienced in the field procedures relevant to the field activities. The Field Team Leader is responsible for contacting the Sample Custodian to ensure that samples have arrived at the laboratory on time and in good condition.

2.5 Analysts and Field Team Members

It is the responsibility of the Laboratory Analysts and Field Team Members to perform the required QA/QC procedures and to document observations and calculations in the proper notebooks or standard forms. It is the responsibility of the analysts to perform preliminary QC checks. The Field Team Member or Analyst must also bring any unusual observation or analytical problem to the immediate attention of his/her supervisor or the Project QA Officer. The Analyst or Field Team Member must ensure that instruments are properly calibrated, with completed calibrations recorded in permanent records. All analysts and field team members on the project will be experienced in their assigned tasks and familiar with the applicable requirements of this QAPP and associated project requirements.

2.6 Sample Custodian/Support Services Coordinator

The Sample Custodian/Support Services Coordinator is responsible for receiving samples from the field and checking to ensure that proper preservation, shipment, and chain-of-custody are maintained. The Sample Custodian also reports any unusual problems (e.g., sample breakage or improper temperature) to the Laboratory Manager. He/she is experienced in sample management and review of procedures relevant to the position. Various personnel fulfill this function, and all are appropriately trained prior to assuming this responsibility. The samples will be shipped to the USEPA Region 5 Chicago Regional Laboratory, 536 S. Clark St. ML-10C. 10th floor, Chicago, Illinois 60605: Attention Robert Synder.

The biological samples will be shipped to the EPA's Cincinnati Lab at:

C/O Laura Boczek US EPA – ORD 26 W Martin Luther King Dr MS 681 Cincinnati OH 45268

Before shipment of the biological samples, please contact Ron Herrmann (<u>herrmann.ron@epa.gov</u>, 513-569-7741) or Laura Boczek (<u>boczek.laura@epa.gov</u>, 513-569-7282) to ensure the laboratory is able to receive and analyze the samples in a timely fashion.

Section 3 Quality Assurance Objectives

Data obtained during the investigation of the compost facilities is intended to define the distribution, types, and concentrations of site-related constituents as a supplement to previous site investigations and for long- term monitoring. The QAPP and SAP have been prepared to detail the minimum environmental data standards, particularly for field and analytical data quality. It is anticipated that the EPA Region 5 Analytical Laboratory, located at Chicago, IL, will provide most of the required analytical services for this project except the biological analytical services. Should project-specific objectives or requirements necessitate that laboratory analyses be subcontracted, information regarding the subcontracted laboratory will be provided as an addendum to this QAPP.

It is anticipated that EPA ORD Cincinnati NRMR L will provide the biological analytical services.

Analytical data will be generated by EPA approved methods and QC criteria generated from a laboratory method validation. These procedures will result in analytical data considered generally equivalent to EPA definitive data.

The overall QA objectives are to develop and implement procedures for field sampling; chain-of-custody, laboratory analysis, and reporting that will provide results that are legally defensible in a court of law. Specific procedures for sampling, chain-of-custody, instrument calibration/preventive maintenance, chemical analysis, internal QC, reporting data, audits, and corrective actions are described in other sections of this QAPP. This section addresses the specific objectives for accuracy, precision, completeness, representativeness, and comparability.

Section 4 Sampling Procedures

4.1 Sampling Site Selection

The objective of this monitoring system is to measure the effect on groundwater from an unlined source separated organics material composting facility and an unlined yard waste composting facility. If the groundwater becomes contaminated, there is a potential for the contamination to impact both the environment and the health of the local community. Besides the potential for contaminating drinking water wells, the groundwater may also have an impact on the aquatic life in nearby lakes and streams. Fish from these lakes are a staple food for many of the local residents.

The monitoring wells at each of the two project sites were located to allow observation of the groundwater both up gradient and down gradient of the compost operations.

4.2 Sampling Site Description

Figures 1.3.5A and Figures 1.4.5A show the locations of the monitoring wells.

Section 5 Internal Quality Control

5.1 Field QC Checks

Three types of QC samples will be processed: equipment blanks, trip blanks, and field duplicates. The analytical data derived from these QC samples are useful for assessing field operations: constituent-free sample containers, preserving reagents, and equipment; potential onsite environmental contamination; personnel expertise in sample collection; and problems that may occur in sample storage and transport. Field duplicate samples are collected to ensure precision of the sampling and analytical processes.

5.1.1 Blanks

5.1.1.1 Equipment Blanks

Equipment blanks will test for the cleanliness of sampling equipment and effectiveness of field decontamination procedures. Equipment blanks are collected after field and/or laboratory decontamination by rinsing decontaminated sampling equipment (pumps, bailers, soil samplers, etc.) with laboratory-grade deionized water. The rinse water is collected in sample bottles, preserved, and handled in the same manner as the samples. Equipment blanks will be collected and analyzed at a rate of one blank or 10 percent (whichever is greater) of the samples in each analyte group for all matrices.

5.1.1.2 Trip Blanks

Trip blanks will be used to evaluate the contamination generated from sample containers and changes occurring during the shipping process. Trip blanks are collected for volatile organics and for biological analyses. Trip blanks consist of sample bottles filled in the laboratory with organic-free water and any applicable preservatives or additives. They are sent to the sampling location with sampling kits and are returned unopened from the sampling location with the samples. One trip blank should be included for shipping and analysis with every cooler containing volatile or biological samples shipped from the field.

5.1.1.3 Temperature Blanks

Temperature blanks are used to determine whether the samples have been maintained at an appropriate temperature, and thus properly preserved, during shipping. The temperature blank and trip blank may be the same sample, which is evaluated for temperature upon receipt at the laboratory, then analyzed as a trip blank. Standard temperature is expected to be 6° C.

5.1.2 Field Duplicates

Field duplicates will be used to monitor sample collection precision. These are duplicate samples collected at the same location and are sent "blind" to the laboratory for analysis as separate samples. During each independent sampling event, at least one sample or 10 percent of the samples (whichever is greater) will be collected in duplicate for analysis.

5.1.3 QC Checks on Field Measurements

Field instruments will be calibrated at the beginning of each sampling day, checked with one standard at intervals not to exceed 4 hours of consecutive instrument use, and checked again at the end of sampling day. Instruments will be recalibrated if these QC checks do not meet acceptance criteria. Field checks against knowns will be conducted as part of calibration of field instrumentation in accordance with instrument standard operating procedures. Should field QC checks fall outside the acceptable range, corrective action will be initiated per the operating procedure. QC checks will be recorded in the field notebook.

5.1.4 Assessment of Field Data Precision and Accuracy

The Project QA Officer will assess field data. The Project QA Officer will review the field results for compliance with the established QC criteria that are specified in this QAPP and in the site-specific SAP. Accuracy of the field measurements will be assessed using daily instrument calibration and calibration check. Precision will be assessed on the basis of reproducibility by multiple reading of a single sample.

5.2 Lab QC checks

5.2.1 Method Blank

A method blank, or preparation blank, is analyzed with each preparation batch as a check on analytical system contamination. A sample consisting of laboratory reagent water or analyte free laboratory sand, clean is processed through the entire analytical method including all sample preparation procedures such as extraction, digestion, and filtration. As a quality control sample, the results are used in conjunction with other control data to validate overall system performance and data quality. Client samples are associated with the method blank by sharing a common preparation workgroup number. The Laboratory will perform the necessary control, duplicates and matrix spike samples as required in the quality assurance plan.

5.2.2 Lab duplicates

Lab duplicates will be used to monitor analytical precision. These are duplicate analysis. During each analytical batch, at least one sample or 10 percent of the samples (whichever is greater) will be analyzed in duplicate. Spiked duplicates may be used if there is the possibility of non-detects in the original sample.

5.2.3 Lab Spikes

Depending on the method requirements, either laboratory control samples or matrix spikes will be used to assess analytical accuracy.

Section 6 Preventive Maintenance

To minimize the occurrence of instrument failure and other system malfunction, a preventive maintenance program for field and laboratory instruments has been implemented. The preventive maintenance performed for each major piece of field and analytical equipment is addressed in the following sections.

6.1 Field Instruments

Preventive maintenance of field instruments is performed in accordance with manufacturer's instructions. Field Team Members routinely perform preventive maintenance of field equipment before each sampling event. Manufacturers perform more extensive maintenance on the basis of hours in use. Field Team Members report on the performance of the equipment after each sampling event. Critical spare parts are kept in stock. At times, it is necessary to perform routine maintenance in the field; therefore, each field instrument is provided with an operating manual and tool kit.

The list of field instruments and their maintenance frequency are provided in Field Procedure 3 of Appendix A. Preventative maintenance procedures are recorded in the field logbooks.

6.2 Routine Maintenance Activities

Instruments undergo routine maintenance, cleaning, and inspection on a daily, weekly, or monthly basis, according to the manufacturer's recommendation, and/or the requirements of the standard methods employed. Maintenance logs and instrument maintenance checklists are kept, noting problems and the steps taken to correct them.

APPENDIX A: FIELD PROCEDURES

FIELD PROCEDURE 1	FIELD DOCUMENTATION
FIELD PROCEDURE 2	FIELD INSTRUMENT CALIBRATION
FIELD PROCEDURE 3	GROUNDWATER SAMPLING
FIELD PROCEDURE 4	SAMPLE NUMBERING, LABELS AND CUSTODY
FIELD PROCEDURE 5	MICROBIAL SAMPLING

FIELD PROCEDURE 1

FIELD DOCUMENTATION

Field notes will be recorded, in ink, on bound field notebooks with continuously numbered pages. Any supplementary information will be recorded, in ink, on standard field documentation forms appropriate for the activity involved. The supplementary information forms will be specifically referenced in the bound notebooks by date, time, page number, and content. Each form must provide a place for the Field Team Member to sign and date the entries.

Supplemental field data sheets must be reviewed and approved by the Field Team Leader and documented by his/her signing or initialing each field page. The review must be completed during the field site visit or, shortly following completion of field activities to ensure that timely corrective actions can be implemented, if necessary. At a minimum, documentation and validity of the following items will be reviewed and verified:

- 1. Correct study area designation and sample numbers,
- 2. Date and time (24-hour system recordings), and
- 3. Complete entries on each form (no blank spaces).

Field Logbooks

Data collection activities will be documented in field logbooks and/or on appropriate task-specific field data sheets. Field logbooks will be bound field survey notebooks. Logbooks will be assigned to field personnel and will be stored in the project file when not in use. The front of each logbook will show the person/organization, book number, project name, and start/end dates for the logbook. Field data sheets will be returned to the Project Management office and placed in three-ring binders or otherwise will be appropriately retained and filed. For groundwater sampling, completed field data sheets will be submitted with sample chains of custody. This will ensure field data are included in electronic data deliverables. Field personnel will reference field data sheets in field logbooks to ensure complete records are established and retained.

Entries into the field logbooks and field data sheets will be made in waterproof ink without erasures. If an incorrect entry is made, the erroneous information will be crossed out with a single strike mark and initialed.

Field logbooks and/or field data sheets will be used to record field measurements and other pertinent information necessary to reconstruct all sample collection activities without reliance on memory. Field logbooks and/or field data sheets will contain the following information at a minimum:

- Dates of sample collection;
- Detailed descriptions of sample locations that identify the area of concern;
- Name(s) of sampler(s);
- Weather and site conditions;
- Sampling equipment used, including all information related to the calibration and maintenance of
- field equipment, along with the date and person doing the calibration or maintenance;
- Field ID for each sample and components to be sampled;
- Sample sequence number;
- Time of collection;
- Preservative used;
- Field measurement data;
- Identification and types of QC samples collected;

- The number and subject of all photographs;
- Reference to any field data sheets that may be used and a summary of the field activities recorded on the field data sheets.

Photographic Records

Photographs may be digital or film photographs. Digital photographs will be maintained in digital files. Film photographs will be maintained in the project file. The number and subject of all photographs will be recorded in the field logbooks. Photographs will be identified with the following information:

- 1. The date, time, and location of the photograph, including direction facing; and
- 2. The name of the photographer.

Samples and Field Documentation Procedures

Field procedures are designed to minimize sample handling and transfers. During sampling, the field crew will record the following information in the field logbook and/or field data sheet, and on the chain-of-custody, using indelible ink:

- 1. The unique sample number,
- 2. Source of sample (including name, location, and sample type),
- 3. Date and time of sample collection,
- 4. Preservatives used,
- 5. Name(s) of collector(s), and
- 6. Field measurements (PID, pH, temperature, turbidity, specific conductance, or other).

The following data regarding sampling activities will be kept in a bound field notebook and/or field data sheets. These same data will be recorded for other field activities (i.e., storm water management, waste management) as appropriate for the task being conducted.

- 1. Task area number or location;
- 2. Date;
- 3. Time (24-hour system);
- 4. Static water level [to ± 0.0l ft., if applicable];
- 5. Depth of well;
- 6. Number of bailer volumes removed or pumping rate, if applicable;
- 7. Time of pumping, if applicable;
- 8. Total volume of water evacuated from well;
- 9. Water quality measurements such as pH, specific conductance, and temperature;
- 10. Other pertinent observations of samples (color, turbidity, odor, depth, evidence of constituents, etc.);
- 11. Fractions sampled and preservation method;
- 12. Weather conditions and/or miscellaneous observations;
- 14. Description of photographs taken at each sampling location, if applicable;
- 15. Initials of sampler

The vendor for the project was selected and is Interpol Laboratories, 4500 Ball Road NE, Circle Pines, MN 55014 (763) 786-6020.

FIELD PROCEDURE 2

FIELD INSTRUMENT CALIBRATION AND MAINTENANCE

Field Equipment

The field equipment for this project includes sampling devices and instruments used for field measurement of pH, Conductivity, Dissolved Oxygen, Turbidity, Temperature and depth. Preventative maintenance procedures recommended by the equipment manufacturers are followed as closely as possible, unless more stringent or more frequent maintenance is deemed necessary.

When not in use, individual items of field equipment are kept in their cases to protect them from contamination and physical damage during storage and transport. Items that do not have protective cases are stored in manner that minimizes exposure to contaminants. All equipment is stored in areas that inhibit tampering and unauthorized use.

Table 2 lists the maintenance procedures and schedules for field equipment, and includes a listing of critical spare parts that are available to the field crews.

Equipment	Maintenance Procedure/Schedule	Spare Parts
DO Meter	 Check battery at beginning of each day. Verify the instrument's calibration on a regular basis although optical sensors hold their calibration for many months. Replace sensor element if damaged, or if stable calibration cannot be achieved. DO optical sensor element will be changed once per year. 	 Battery or battery charger. Sensor element.
pH Meter	 Check battery at beginning of each day. Calibrate with two buffers at beginning of each day. Replace probe if damaged, if stable calibration cannot be achieved, or if response becomes slow. Probes will also be replaced when their mV readings are above YSI recommendations. 	 Battery or battery charger. pH buffers. Spare probe
Conductivity Meter	 Check battery at beginning of each day. Check calibration at beginning of each day. Clean probe if calibration is unacceptable. Calibrate conductivity once monthly. 	 Battery or battery charger. Standard 0.01 M KCl
Samplers (bailers, pumps —if applicable -and any sample tubing)	 Inspect for damage before each use. Repair or replace as necessary. Triple rinse with DI water after use and store in protective case. Avoid Teflon coated sampling material for PFC sampling. 	

Table 2. Preventative Maintenance of Field Equipment

Water Level Meter/Interface Probe

- 1. Preventive maintenance of the water level meter consists of cleaning the exterior of the equipment after use with a solution of mild detergent and rising with tap water (daily). Replace probe into the probe holder. If severe staining occurs on the probe, rinsing with a 10% solution of nitric acid (HNO₃) followed by a de-ionized water rinse may be conducted.
- 2. To prevent damage, utilize the carrying bag.
- 3. Replacement parts, such as probes and probe tips, must be available.
- * See SOP manual for more details.

In general, preventive maintenance of the field instruments is performed in accordance with manufacturer's instructions. *The manufacturer's calibration instructions must be kept on site or with the field instrument.*

Field Team Members routinely perform preventive maintenance of field equipment before each sampling event. Manufacturers perform more extensive maintenance on the basis of hours in use. Field Team Members report on the performance of the equipment after each sampling event. Critical spare parts are kept in stock. At times, it is necessary to perform routine maintenance in the field; therefore, each field instrument is provided with an operations manual and tool kit. The solutions used for field instrument testing and calibration will be audited by the Field Team Leader for expiration dates. The lot numbers for test solutions will be noted on the calibration sheets or in the instrument logbooks.

The list of field instruments and their maintenance frequency are provided below. The major components of preventive maintenance are described below for each instrument. Each piece of instrumentation will be appropriately calibrated per manufacturer's specifications. Each field instrument shall have a certificate of calibration from the supplier. Records of field equipment maintenance, including calibration, will be retained on site in a readily available location (e.g., dedicated 3-ring binder or designated files). The field equipment maintenance records will include calibration notes and frequencies, any preventive maintenance conducted, and field repairs made to the instrument.

Salinity/Conductivity/Temperature Meter and Probe

- 1. Preventive maintenance protocol for the salinity/conductivity/temperature meter involves checking the condition of the batteries and electronics for loose connections and cracked leads. These are checked daily before use and are replaced as needed.
- 2. Probe preventive maintenance involves verification of temperature readings using a calibrated mercury thermometer in an ice bath solution with an approximate temperature of 0 degrees Celsius and verification that the probe does not need cleaning. Replacement probe parts will be available.

pH Meters and Combination pH/ORP Electrodes

Preventive maintenance for the pH meter and electrodes primarily involves the proper care of the electrode. Electrodes are stored in a manufacturer's storage solution or if not available a 200 ml solution of pH7 buffer with 1 gram of potassium chloride for short term storage.

If a pH probe will not be used within a week it should be rinsed completely with distilled water to remove any crystal deposits. The probe should be dried completely and stored with a protective cap. The preventive maintenance frequency is as follows:

- 1. The instrument batteries and electronics connections and cracks are checked daily during use.
- 2. Spare parts such as a replacement probe and fresh buffer solutions will be available for the system at all times and replaced as needed.
- 3. The instrument shall be calibrated daily with fresh buffers prior to use and stored in a pH7 buffer if frequent use is anticipated.

4. If the pH or combination pH/ORP meter has a self-diagnostic check procedure, it should be conducted guarterly to determine any malfunctions with the meter.

Dissolved Oxygen Meter

The maintenance requirements for an optical sensor are less laborious then electrochemical sensors.

To clean the probe and sensing element, rinse it with clean water and a lint free cloth. If necessary, use a mild detergent. Do not use alcohols or other organic solvents that may deteriorate the sensing element.

The sensing element should be replaced about once per year but may last longer. It should also be replaced if it is cracked or damaged. While changing the sensing element, rinse the optics with clean water and then wipe the optics with a lint free cloth or lens tissue. The instruction sheet that is shipped with the replacement sensing element includes calibration coefficients specific to the sensing element. For highest accuracy, these coefficients should be entered by the user into the instrument following the instructions provided. See the instrument specific manual for detailed instruction on how to change a sensing element

Turbidity Meter and Probe

- 1. Preventive maintenance will consist of cleaning the unit with a damp cloth and rinsing the probe with deionized water following each use.
- 2. The probe shall be rinsed and dried for storage.

Water Level Meter/Interface Probe

- 1. Preventive maintenance of the water level meter consists of cleaning the exterior of the equipment after use with a solution of mild detergent and rising with tap water (daily). Replace probe into the probe holder. If severe staining occurs on the probe, rinsing with a 10% solution of nitric acid (HNO₃) followed by a de-ionized water rinse may be conducted.
- 2. To prevent damage, utilize the carrying bag.
- 3. Replacement parts, such as probes and probe tips, must be available.

Contingency Plan

In the event of an instrument failure, the Field Team Leader will notify the Project Manager and a decision for a work hold will be ascertained. An additional instrument will be acquired as soon as possible to be able to take readings and/or resume work. After coordination with the Project Manager, the decision will be made for work progression.

Instrument	Activity	Frequency
· ,		
pH meter	Battery replacement	As needed
	Probe replacement	As needed
ORP meter	Battery replacement	As needed
Salinity/ Conductivity/Temperature meter	Battery replacement	As needed
	Check loose connections	Daily
······································	Replatinization	As needed
······································	Calibrate temperature sensor w/ calibrated thermometer	Monthly

Table 3. Preventive Maintenance --- Field

FIELD PROCEDURE 3

GROUNDWATER SAMPLING

Groundwater samples will be obtained from monitor wells in accordance with a final Groundwater Monitoring Plan. The following procedures will be used in the collection of groundwater samples:

I. Low-flow Purging and Sampling

The following procedure outlines low-flow purging and sampling methods with the use of a pump. This method is the preferred sampling method and should be used whenever possible, especially during groundwater sampling events. The pumps may be dedicated to each well or non-dedicated with decontamination of the pump between sampling wells. The type of pump(s), if used, to be used has not been determined. Upon pump selection, this procedure will be updated as necessary to address specific procedures based on the equipment.

- 1. After opening the well, a water level will be taken using a steel water-level tape, electric water-level tape, or acoustic well sounder and recorded in the field notebook or supplemental field sheet. The water level must be taken prior to inserting the pump in the well.
- 2. The pump will be set within mid-point of the screen interval of the well. After setting up the pump and associated equipment (generator, compressor, tubing, etc.) a graduated collection apparatus will be used to measure the flow rate. The flow rate will be set at less than 1 liter per minute (LPM) to achieve minimal drawdown and decreased as needed. When the flow rate is stabilized (typical .1 .3 L/min), readings of groundwater parameters will be collected every 3-5 minutes until all the parameters to guarantee the flow rate stays within its range and the well is not being pumped dry.
- 3. Parameters to be measured and the corresponding stabilization readings are the following:
 - pH ± 0.1 units
 - Conductivity ± 5.0 umhos/cm for values <1000 umhos/cm
 - Temperature ± 0.1°C

Stabilization of parameters is achieved when 3 consecutive sets of readings are within the acceptable ranges listed above or within \pm 10%.

- 4. After all parameters have stabilized, the sample will be collected. Sampling equipment will be kept off potentially affected soil to prevent sample cross contamination (e.g., equipment will be placed on disposable polyethylene plastic sheeting).
- 5. Samples will be collected in the order of biological, volatiles, semi-volatiles, conventional, metals, and dissolved metals.
- 6. Following collection, each sample container will be labeled, preserved as required, unless pre- preserved, and placed in a cooler of wet ice at 6°C. The temperature inside the cooler will be measured and attainment of 6°C documented prior to sealing the cooler for transportation to the laboratory under chain-of-custody documentation.

The chain-of-custody will be placed in a waterproof container, taped to the inside of the lid of the cooler, and sealed in the cooler along with its samples. The cooler seal or lock will not be opened until the samples arrive in the analytical laboratory and are checked in by the Sample Custodian. The Field Team Leader will alert the laboratory to pertinent shipping information at the end of each sampling day.

- 7. All purged water will be disposed on the ground next to the well.
- 8. During the sampling of each monitor well, information regarding the sampling will be kept in a field notebook and transferred onto a Ground Water Sampling Field Data Sheet (an example form is included on the following pages). The following data will be collected:
 - Well number;
 - Date;
 - Time;
 - Static water level [to ± 0.01 foot];
 - Depth of well;
 - Diameter of well casing;
 - Calculated well volume;
 - Pumping rate;
 - Time (duration) of pumping, if applicable;
 - Total volume of water evacuated from well;
- 9. Water quality measurements of pH, conductivity, and temperature;
- 10. Other pertinent observations of water samples (color, turbidity, odor, etc.);
- 11. Fractions sampled and preservation method;
- 12. Weather conditions, including ambient air temperature and/or miscellaneous observations and;
- 13. Signature of sampler(s) and QC person with date

II. Purging four well volumes with a standard pump and sampling with a pump

- 1. Repeat steps 1 2 of low flow method
- 2. Following measurement of initial flow rate, pump well for desired time to remove the 4 well volumes previously calculated.
- 3. Upon pumping 4 well volumes, record final purge time, volume removed, and collect samples immediately followed by field parameters.
- 4. Record total times of purging, flow rate, and any other pertinent information on the field data sheet.

III. Purging and Sampling using a Manual Bailer

The following procedure outlines the use of manual bailers to collect groundwater samples.

- Immediately prior to collecting a sample, the depth to water below the top of the well casing will be measured with a steel water-level tape, electric water-level tape, or acoustic well sounder and recorded in the field notebook. The point from which water levels are measured (typically the high point of the casing) will be marked by the field geologist as soon as practical after well installation for future water level measurement reference.
- 2. Whenever feasible, wells expected to be unaffected will be sampled first, followed by wells with increasing levels of constituents.
- 3. Prior to collecting a groundwater sample, the volume of water in the screen, well casing, and saturated annulus will be purged. Purging is considered complete once four well volumes are removed:
 - a. Upon achieving four well volumes, collect the samples and field readings.

b. In the event of a dry purge, the groundwater sample should be collected as soon as an adequate volume of water has entered the well to meet sample requirements or within 24- hours of purging.

Monitor well purge volumes will be calculated using the attached form and information obtained from the site monitor well drilling records. Purging may be accomplished by:

- a. Using a decontaminated bailer for manual bailing,
- b. Using a decontaminated stainless steel drop pipe with a motor-driven centrifugal lift pump,
- c. Using a dedicated PVC drop pipe is allowed on a site-specific basis, or
- d. Using a decontaminated submersible pump and appropriately decontaminated tubing.

Purging should begin from just below the top of water level in a well, and the purging device lowered to follow the water level as it falls.

Wells shall be sampled within 6 hours of purging except "slow recovery" wells. "Slow recovery" wells or wells that purge completely dry may be sampled as soon as sufficient recharge water is available or up to 24 hours after purging. Wells that have not recovered sufficiently within 24 hours will not be sampled unless specified by the client and/or regulatory agency.

The amount of fluid purged will be measured and recorded by using a graduated bucket and counting the number of buckets purged, or by using a stopwatch and measuring the flow-rate of the pump versus elapsed times.

- 4. The standard well sampling technique will be through the use of a separate pre-cleaned Teflon® bailer or a disposable high density polyethylene (HDPE) bailer for each well. A new braided nylon or polypropylene cord is typically used for bailers. A separate piece of cord is used for sampling each well, and is discarded after one use. Since bottom-filling bailers are used, the bailer cord does not contact the sample. Reusable lanyards (monofilament, stainless steel, or Teflon-coated) are not typically used in any well other than as part of a dedicated bailer system. Reusable lanyards are decontaminated using the same methods described herein.
- 5. HDPE bailers will be constructed with stainless steel screws and a Teflon[®] check ball, and no glue will be used.
- 6. Sampling equipment will be kept off potentially affected soil to prevent sample cross contamination (e.g., equipment will be placed on disposable polyethylene plastic sheeting).
- 7. The bailer, as well as all sample containers (except those for oil and grease, TPH, VOCs, microbiological samples, and any pre-preserved containers), will be rinsed once with well water prior to collecting a sample. When collecting samples from the well, especially for VOC analysis, care should be taken not to drop the bailer into the well allowing it to splash into the water. The bailer should be lowered into the water gently to reduce agitation of the sample.
- 8. The first samples collected will be those for VOC analysis by decanting an aliquot into the appropriate sample jars. This will be done so as to minimize sample agitation and exposure to the sample for filtered metals should be collected last.
- 9. The turbidity of the recovered sample should be measured during the well sampling. It is recommended that turbidity be evaluated using a portion of the sample for the metals analysis, preferably the unfiltered sample. Turbidity will be measured in national turbidity units (NTUs) using a portable turbidity meter that will be calibrated at each sampling location.

10. Following collection, each sample container will be labeled, preserved as required, unless preremoved and wet ice and blue ice will be added. The temperature inside the cooler will be measured and attainment of 4°C ± 2°C documented prior to sealing the cooler for transportation to the laboratory under chain-of-custody documentation.

During the sampling of each monitor well, information regarding the sampling will be kept in a field notebook. The following data will be collected:

- Well number;
- Date;
- Time;
- Static water level [to ± 0.01 foot];
- Depth of well and depth of siltation;
- Radius of well;
- Radius of borehole;
- Calculated well volume;
- Number of bailer volumes removed or pumping rate, if applicable; temperature;
- Time (duration) of pumping, if applicable;
- Total volume of water evacuated from well;
- Water quality measurements of pH, conductivity, turbidity, and temperature;
- Other pertinent observations of water samples (color, turbidity, odor, etc.);
- Fractions sampled and preservation method;
- Weather conditions and/or miscellaneous observations;
- Signature of sampler and date, and
- Bailer inventory number, if pre-cleaned bailers are used.

List of COCs to sample is outlined in section 1.6 of this document.

FIELD PROCEDURE 4

FIELD QUALITY CONTROL SAMPLES

Field QC samples will include trip blanks, equipment blanks, and field duplicates. Field QC samples will be collected at the frequencies outlined below. In addition to these QC samples, matrix spike and matrix spike duplicate samples will be collected and submitted for analysis as outlined in table below, unless otherwise specified in the project QAPP.

Table 4. Quality Control Samples

QC Sample	Aqueous
Trip Blank	1 per cooler *
Temperature Blank	1 per cooler
Equipment Blank	10 percent
Field Duplicate	10 percent per event
Matrix Spike/Matrix Spike Duplicate	5 percent per event

Note: NR = not required

All parameters must meet QC sample type and frequency requirements.

Numbers calculated from specification will be rounded up to the nearest whole number(s). *For volatile organic samples only.

Trip Blank

Trip blanks are collected to demonstrate that no volatile compound exposure occurs during the transport of samples both to and from the sampling site, or during shipment to the laboratory. Trip blanks are required for aqueous volatile organic samples only and consist of sample bottles filled in the laboratory with organic-free water; the sample bottles are then sent to the sampling location with the sampling kits. The trip blanks are returned from the sampling location with every shipment of aqueous samples and analyzed.

Temperature Blank

Temperature blanks are used to determine whether the samples have been maintained at an appropriate temperature, and thus properly preserved, during shipping. The temperature blank and trip blank may be the same sample, which is evaluated for temperature upon receipt at the laboratory, then analyzed as a trip blank. Standard temperature is expected to be 4^o C, plus or minus 2 degrees.

Equipment Blank

Equipment blanks (rinsate blanks) are a means of proving that non-dedicated sampling equipment is thoroughly decontaminated. This demonstrates that no cross-contamination is occurring. Rinsate samples are processed by rinsing decontaminated sampling equipment (soil samplers, bailers, pumps, etc.) with laboratory grad deionized (DI) water. Equipment blanks collected from non-dedicated pumps should be collected from DI water pumped through the pump.

The rinse water is collected in sample containers, preserved, and handled in the same manner as the samples. Equipment blanks will not be collected if solely dedicated or disposable equipment is employed in a sampling event.

Field Duplicates

Collection and analysis of field duplicate samples provide an overall estimate of precision associated with sample collection and analysis.

The field duplicate samples will be identified on the labels and chain-of-custody forms as "QC DUP," without further information as to the source of the replicate.

The source information will be recorded in the field notes and the chain-of-custody by the Field Team Member at the time of collection. The identity of the duplicates will not be given to the analysts.

Matrix Spike (MS)/Matrix spike Duplicate (MSD)

Collection of a MS/MSD sample is a QC method for laboratory analysis. The MS/MSD samples should be collected for every 20 samples (or 5%) collected as extra samples from a selected well. The MS/MSD samples are collected as a typical sample and are spiked by the laboratory for QC.

FIELD PROCEDURE 5

Sample collection for Microbial Analysis

All individual microbial samples from monitoring well should be taken with sterile or sterile disposable equipment whenever possible and care needs to be taken to make sure that cross contamination between samples does not occur due to the contamination of sampling materials and equipment from one sample site to another.

Sampling Instructions: Wear gloves when collecting samples. Do not rinse the bottles. The bottles are sterile so care must be taken not to contaminate the bottle or cap. Quickly open the bottle (but do not set the cap down), hold the cap by its outside edges only, and fill the sample bottle to leaving a one-inch headspace. The 1-inch headspace is important to ensure proper mixing of entire sample prior to microbial analysis. Cap the bottle immediately and label it with appropriate sample identification, collection time, and sampler initials. Place sample bottle into gallon size Ziploc bag. Place it into a cooler with ice or blue icepacks for delivery or overnight shipment to the laboratory. Samples should be chilled to 10°C or less but should not be frozen. Frozen samples will not be analyzed. Samples should be analyzed within 30hrs of collection. Samples may be shipped to the EPA ORD laboratory in Cincinnati, OH for receipt Monday through Thursday. Because analysis for *E. coli* and total coliforms is a 24hr test no samples will be accepted on Fridays or weekends during the study.

Upon receipt in the laboratory samples will analyzed for E. coli and total coliforms using Colilert[™] (Idexx, Westbrook MA) using the Quantitray sealer (Idexx, Westbrook MA) to provide a microbial estimation using Most Probable Number format. Samples will be analyzed using Standard Methods 9223B (APHA, 2014).

Colliert[™] simultaneously detects total coliforms and E. coli in water. Commercially prepared media formulations are available in packets for presence-absence and multiple-well procedures. The use of commercially prepared media is required for quality assurance and uniformity. Incubate the sample at 35.0°C+0.5°C for 24 hours. If the response is unclear after the specified incubation period, the sample is incubated for up to an additional 4 hours at 35.0°C+0.5°C. After the appropriate incubation period, compare each bottle/tube/well to the reference color "comparator" provided by the manufacturer. A yellow color greater or equal to the comparator indicates the presence of total coliforms in the sample, and the bottle/tube/well is then checked for fluorescence under long-wavelength UV light (365-nm). The presence of fluorescence greater than or equal to the comparator is a positive result for E. coli. The concentration in MPN/100 mL.

Prior to analysis of samples each lot of Colliert[™] will be QA/QC for sterility and performance using sterile Butterfields buffer. Any lot that doesn't pass the QA/QC check will be discarded. Each lot of Quantitray Sealer Trays will also be checked for sterility using sterile Butterfields buffer. Any lot not passing the QA check will be discarded. All samples analyzed will be recorded on Bench sheets maintained by Laura Boczek. All results will be communicated to Ron Herrmann.

Sample Bench Sheet

Coli-lert Carver County Composting Groundwater Monitoring Project Total coliforms / E. coli Bench Sheet

Date/Time samples received, and processed______ Date/Time results______

Incubator Temperature______ Initials_____

Sample ID	Dilution	Number of Yellow positive wells (Big/small)	Total Coliform MPN/100 mL	Dilution	Number of MUG positive wells (Big/Small)	E. coli MPN/100 mL

APPENDIX B: FORMS

USEPA REGION 5 CHICAGO REGIONAL LABORATORY ANALYTICAL REQUEST FORM

CRL SAMPLE SHIPMENT GUIDELINESCHICAGO REGIONAL LABORATORY (CRL) SAMPLE HOLDING TIME, PRESERVATION, AND CONTAINER REQUIREMENTS

CHAIN OF CUSTODY FORMS

U.S. ENVIRONMENTAL PROTECTION AGENCY—REGION 5 CHICAGO REGIONAL LABORATORY ANALYTICAL REQUEST FORM

This analytical request form should be completed before sending samples to CRL for analysis. The requester should complete all relevant fields and email the form and electronic copy of the quality assurance project plan (QAPP) and/or sampling plan to the CRL Sample Coordinator Rob Thompson (Thompson.robert@epa.gov).

GENERAL PROJECT INFORMATION

Requester: Carol Staniec	Request Date: 04/27/2017	
Title:Engineer/Scientist	Division/Office:LCD/MMB	1

Address 77 Jackson, Chicago IL 60604

E-mail staniec.carol@epa.gov

One-time or ✓ Continuous request (check one)

A continuous request is defined as a standing request for the same analytical service (analyses and sample matrices) that may span several sites/projects/sampling events. Please note that submission of this analytical request form is only required once for a continuous request. However, QAPPs and/or sampling plans should still be submitted for every site/project.

Site Name and Location: Carver County Composting GW Sites

Expected Arrival Date at CRL: June 21, 2017; QUARTERLY SAMPLING EVENT

Turnaround Time Requested (standard TAT is 45 days): 45

CRL ANALYTICAL SERVICES

Disclaimer:

Phone: 61436

The effective versions of all Standard Operating Procedures (SOPs) are available in pdf format on the R5 Intranet. By submitting an analytical request form, the requestor is implying consent for the use of the appropriate effective SOPs. It is the responsibility of the requester to check the intranet for SOP deviations (known at CRL as Pen&Ink changes) and version updates. Should the CRL suspect that an SOP deviation affect the data, the CRL Sample Coordinator will contact the requester via email or phone to obtain a Pen&Ink consent. As defined by CRL, SOP deviations "affect the data" when there is a change in the laboratory's ability to identify or quantify the analytes in the SOP or when there is a deviation in the regulatory method.

Form Instructions:

- In the table below, select the appropriate checkbox to request an analysis and enter the proposed number of samples of each matrix type. An analysis is not currently available for a matrix where the box is shaded.
- For other/waste, briefly describe the matrix in the space provided. Additional space for a detailed matrix description is available at the end of the table, if needed.
- For multi-analyte tests, list specific classes/subsets (e.g., PAHs, RCRA metals, etc.) in the space given at the end of this table, if requested.

Page 1 of 4

CRL Form 008 Rev 3—March 2017

	Gener	al Chemistry				
Analysis Request			Sample Matrix and Number			
Analysis	Check to Requ	est soil/sediment	water/liquid	other/waste*		
acidity						
alkalinity						
ammonia-N						
anions**	\checkmark		8			
biochemical oxygen demand-5 day (BOD)	1		8			
carbonaceous BOD-5 day (CBOD)						
corrosivity by pH						
cyanide, amenable to chlorination		a retain				
cyanide, total						
dissolved organic carbon (DOC)						
fluoride						
grain size						
ignitability by flashpoint						
nitrate-nitrite-N						
paint filter liquid test						
pH						
residue, filterable (TDS)	\checkmark		8			
residue, non-filterable (TSS)	\checkmark		8			
solvent ID						
total Kjeldahl nitrogen (TKN)	1		8			
total organic carbon (TOC)						
total phosphorus (TP)	1		8			
total dissolved phosphorus (TDP)		a substantia				
total soliids (TS)			a <u></u> a			
total volatile solids (TVS)						
turbidity						
water content						

Page 2 of 4

.

CRL Form OOB Rev 3-March 2017

	Me	tals		
Analysis Request			Sample Matrix an	nd Number
Analysis	Check to Request	soil/sediment	water/liquid	other/waste*
chromium (VI)	Π			
dissolved metals** (except Hg & Cr (VI))	√		8	<u> </u>
hardness				
mercury (Hg)	✓		16	
total metals** (except Hg & Cr (VI))			16	wipe/filter

Organics

Analysis Request		Sample Matrix a	nd Number	
Analysis	Check to Request	soil/sediment water/liquid		other/waste*
air toxics**				air
1,4-dioxane, low level				<u></u>
oil & grease				
polychlorinated biphenyls (PCB) congeners				
perfluorinated compounds** (PFCs)	✓		8	
pesticides, chlorinated**	✓	<u> </u>	<u>8</u>	
PCB aroclors**				
semi-volatiles** (SVOCs)	\checkmark		8	
total petroleum hydrocarbons (TPH as DRO/ORO)		 .		-
(tri-n-butyl)-n-tetradecylphosphonium chloride (TTPC)				
volatiles** (VOCs)				

Toxicity Characteristic Leaching Procedure (TCLP)

Analysis Rec	Sample Matrix and Number			
Analysis	Check to Request	soil/sediment	water/liquid	other/waste*
TCLP Hg				
TCLP metals				
TCLP pesticides				
TCLP SVOCs			-	
TCLP VOCS				

Page 3 of 4

CRL Form 008 Rev 3-March 2017

*Additional Matrix Description

Please describe other/waste matrix, if not specified above

**Specific Analyte Class/Subset Request

Please list or attach specific class/subset for multi-analyte test, if requested TOTM. NO DIRECKED VETALE 2.40 (HERRICHE) NITRATE AR N

NON-STANDARD REQUESTS

For analyses/matrices not listed above or to obtain analyte lists, quality control limits, and/or reporting limits, please contact the CRL Sample Coordinator to discuss. (Thompson.robert@epa.gov, 312-353-9078)

CRL DATA FORMAT

The CRL standard data deliverable includes: 1) a pdf of the work order 2) a pdf of the final Level II report and 3) an electronic data deliverable (EDD) that includes batch quality control sample data. EDD typically refers to an Excel spreadsheet of the data, but EDDs are available in a variety of formats and can be customized upon request. A full data package (Level IV) is also available upon request and will be transmitted electronically via the CRL SharePoint. Contact Sylvia Griffin, CRL Data Coordinator, for additional details. (Griffin.sylvia@epa.gov, 312-353-9073)

CRL SAMPLE DISPOSAL POLICY

Due to space limitations in a controlled temperature environment, samples are relocated to secure room temperature storage six months after the analysis completion of the project. Notification of the intent to relocate the samples is given to the customer with sufficient time for the customer to respond with any objections. Samples remain in secure room temperature storage until the case/project is completed and the samples are no longer needed. Notification is given to the customer with sufficient time for customer response prior to sample disposal.

CRL SAMPLE SHIPMENT REQUIREMENTS

Before collecting samples, please refer to the attached table for sample sizes, containers, and preservatives. Notify the CRL Sample Custodian (312.353.9083, <u>Snyder.robert@epa.gov</u>) and the CRL Sample Coordinator (312.353.9078, <u>Thompson.robert@epa.gov</u>) before shipping any samples and to arrange for sample receipt.

When packing samples for shipment:

- Seal individual samples in plastic bags, preferably Ziploc bags.
- The temperature of samples requiring refrigeration during transport MUST be maintained at or below 6°C.
- Ice in a sealed plastic bag or reusable ice substitute freeze packs are acceptable cooling media.
- Chain of custody forms MUST be sealed in a large Ziploc bag and taped to the inside of the cooler lid.
- Include the address to which the cooler should be returned.

After items are packed for shipment, secure the cooler with tape and attach a custody seal across the seam of the cooler lid.

All samples MUST be shipped overnight to arrive Monday thru Friday or hand-delivered. No deliveries are accepted on weekends or Federal holidays. Exceptions may be made on a case by case basis depending on sampling priority/emergency status.

> Send all samples to: Robert Snyder US EPA Region 5 Chicago Regional Laboratory 536 S. Clark Street, 10th Floor Chicago, IL 60605

Page 4 of 4

CRL Form 008 Rev 3-March 2017

CRL SAMPLE SHIPMENT GUIDELINES

This document provides guidance in the shipment of samples to CRL for chemical analysis.

Before collecting samples, please refer to the attached table for sample sizes, containers, and preservatives.

Before shipping samples, please notify the CRL Sample Coordinator (312.353.0375, <u>wroble.amanda@epa.gov</u>) and/or CRL Sample Custodian (312.353.9083, <u>snyder.robert@epa.gov</u>) to arrange for sample receipt.

When packing samples for shipment:

- ✓ Seal individual samples in plastic bags, preferably Zip-loc bags.
- ✓ The temperature of samples requiring refrigeration during transport MUST be maintained at or below 6°C.
- ✓ Ice in a sealed plastic bag or reusable ice substitute freeze packs are acceptable cooling media.
- ✓ Chain of custody forms MUST be sealed in a large Zip-loc bag and taped to the inside of the cooler lid.
- ✓ Include the address to which the cooler should be returned.

After items are packed for shipment, secure the cooler with tape and attach a custody seal across the seam of the cooler lid.

All samples MUST be shipped overnight to arrive Monday thru Friday or hand-delivered. No deliveries are accepted on weekends or Federal holidays. Exceptions may be made on a case by case basis dependent on sampling priority/emergency status.

Send all samples to:

Robert Snyder US EPA Region 5 Chicago Regional Laboratory 536 S. Clark Street, 10th Floor Chicago, IL 60605

CHICAGO REGIONAL LABORATORY HOLDING TIME AND CONTAINER REQUIREMENTS FOR WATER / AQUEOUS SAMPLES

DISCLAIMER: This table represents The Chicago Regional Laboratory's (CRL) recommended guidelines. Additional containers may be required for laboratory quality control samples (see notes section). There are non-routine analytes (reported upon request) that may require modification to the specifications detailed in this table. It is the client's responsibility to confirm container, preservation, and holding time requirements for a project prior to initiating sampling. This includes any equipment procurements if applicable.

	CRL 5OP(s)	Reference Method	Holding Time (days)	Min. Volume (mLs)	Container		Preservation
Acidity	AIG004A	SM 2310	14	50	500 mL Poly	Î	<6 C
Alkalinity	A1G005	SM 2320 B	14	50	500 mL Poly		<6 C
Ammonia (Nitrogen, NH3)	AlG029B	SM 4500-NH ₃ B/H	28	10	500 mL Poly	1	pH<2, H2SO4, <6 C
Ammonia (Nitrogen, NH3) Distilled	AIG029B	SM 4500-NH3 B/H	28	50	500 mL Poly	1	pH<2, H ₂ SO ₄ , <6 C
Anions (Br, Cl, F, NO ₃ , NO ₂ , PO ₄ ^a , SO ₄)	AIG045A	EPA 300.0	2 ^b or 28	10	250 mL Poly		<6 C
Biochemical Oxygen Demand (BOD) 5-day	AIG006, A	SM 5210 B	2	60	1 L Poly	1	<6 C
BOD, Carbonaceous (cBOD)	AIG006, A	SM 5210 B	2	60	1 L Poly		<6 C
Corrosivity	AIG003	EPA 9040C	365	20	250 mL Amber		<6 C
Cyanide, Amenable	AlG025A	SM 4500 CN' G	14	50	500 mL Poly		dechlorinate ^c NaOH, pH>10, <6 (
Cyanide, Total	AIG025C	EPA 335,4	14	50	500 mL Poly		dechlorinate ^c NaOH, pH>10, <60
gnitability (Flashpoint)	AlGO48A, B	EPA 1010A, 1020B	365	100	250 mL Ciear		<6 C
Nitrogen, Nitrate+Nitrite	AIG031B	ASTM D7781-14	28	10	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Nitrogen, Total Kjeldahl (TKN)	AlG035B	EPA 351.2	28	10	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Organic Carbon, Dissolved (DOC)	AlG021D	EPA 5310B	28	20	500 mL Poly		field filtered ^d pH<2, H ₂ SO ₄ , <6 C
Organic Carbon, Total (TOC)	AIG021D	EPA 5310B	28	20	500 mL Poly		H2SO4
Paint Filter Liquid Test	AIG010	EPA 9095B	30	100	250 mL Amber		<6 C
pH	A[G002	SM 4500-H ⁺ B	15 min	50	250 mL Poly		<6 C
Phosphorus, Total Dissolved (TDP)	AIG034B	EPA 365.4	28	10	500 mL Poly		field filtered ^d pH<2, H ₂ SO ₄ , <6 C
Phosphorus, Total (TP)	AIG034B	EPA 365.4	28	10	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Solids, Total Dissolved (TDS)	AIG017	SM 2540 C	7	50	500 mL Poly	-	<6 C
Solids, Total Suspended (TSS)	AIG018	SM 2540 D	7	100	500 mL Poly	• •	<6 C
Turbidity	A1G054	EPA 180.1	2	30	250 mL Clear		<6 C
Water Content	AIG015A	EPA 9000	365	10	250 mL Amber		<6 C
Metals	CRL SOP(s)		Holding Time (days)		Container		Preservation
				1	container		pH 9.3-9.7, <6 C
Chromium (VI)	AlG032A	EPA 218.6	28	50	250 mL Poly		NaOH/(NH4)2SO4
Hardness	Metals026	SM 2340 B	180	50	500 mL Poly		pH<2, HNO₃
Mercury (Hg)	AIG044D, E	EPA 245.1/7470A	28	20	500 mL Poly		pH<2, HNO ₃
Metals, Total	Metals001, 003, 003A	EPA 200.7/200.8 EPA 6010D/6020B	180 -	50	500 mL Poly		pH<2, HNO3
Metals, Dissolved	Metais001, 003, 003A	EPA 200.7/200.8 EPA 6010D/6020B	180	50	500 mL Poly		field filtered ^d pH<2, HNO ₃
Organics	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Volume (mLs)	Container	MS	Preservation
1,4-Dioxane (low-level)	MS035	EPA 522/8000D	288	250	2 - 250 mL Amber	2	pH<2, Na ₂ SO ₄ , <6
Chlorothalonil	MS033	EPA 525.3/8270D	7 ^f	40	3 – 40 mL Amber VOA	2	<6 C
Oil and Grease	GC030, 32	EPA 1664B	28	11.	2 - 1L Clear wide-mouth	2	pH<2, H ₂ SO ₄ , <6 (
Polychlorinated Biphenyls (PCBs)	GC002, 003	EPA 608/8082A	7 ^{f,k} or 365 ^f	11	2 - 1L Amber	2	<6 C
DCD Commence (all and A	MS034	NA	365	1 gram	4 oz. jar	1	<6 C
PCB Congeners (oil only)							
Perfluorinated Compounds (PFCs)	OM012	NA	28	10	2 - 15 mL Polypropylene tube (preweighed)	4	<6 C
	OM012 OM019		28 ^f	10	Polypropylene	1 °	<6 C
Perfluorinated Compounds (PFCs)		NA			Polypropylene tube (preweighed) 3 - 40 mL amber		
Perfluorinated Compounds (PFCs) Pesticides (low level)	OM019	NA NA .	28 ^f	10	Polypropylene tube (preweighed) 3 - 40 mL amber VOA	2	<6 C
Perfluorinated Compounds (PFCs) Pesticides (low level) Pesticides, Chlorinated Petroleum Hydrocarbons (TPH as DRO/ORO)	OM019 GC001 GC034	NA NA EPA 608/8081B EPA 8015C	28 ^f 7 ^f 7 ^f	10 1 L 1 L	Polypropylene tube (preweighed) 3 - 40 mL amber VOA 2 - 1L Amber 2 - 1L Amber	2 2 2	<6 C <6 C <6 C
Perfluorinated Compounds (PFCs) Pesticides (low level) Pesticides, Chlorinated	OM019 GC001	NA NA EPA 608/8081B	23 ^f 7 ^f	10 1 L	Polypropylene tube (preweighed) 3 - 40 mL amber VOA 2 - 1L Amber 2 - 1L Amber 2 - 1L Amber 3 - 40 mL Amber	2	<5 C
Perfluorinated Compounds (PFCs) Pesticides (low level) Pesticides, Chlorinated Petroleum Hydrocarbons (TPH as DRO/ORO) Semi-Volatile Organic Compounds (SVOCs)	OM019 GC001 GC034 MS026, 27	NA NA EPA 608/8081B EPA 8015C EPA 625/8270D	28 ^r 7 ^t 7 ^t 30 7 (unpreserved)	10 1L 1L 1L	Polypropylene tube (preweighed) 3 - 40 mL amber VOA 2 - 1L Amber 2 - 1L Amber 2 - 1L Amber 3 - 40 mL Amber VOA 3 - 40mL VOA	2 2 2 2	<6 C <6 C <6 C <6 C
Perfluorinated Compounds (PFCs) Pesticides (low level) Pesticides, Chlorinated Petroleum Hydrocarbons (TPH as DRO/ORO) Semi-Volatile Organic Compounds (SVOCs) Tetradecylphosphonium chloride (TTPC)	OM019 GC001 GC034 MS026, 27 OM016	NA NA EPA 508/8081B EPA 8015C EPA 625/8270D NA	28 ^r 7 ^t 7 ^t 30 7 (unpreserved) 14 (Preserved)	10 1 L 1 L 1 L 1 L 1 0	Polypropylene tube (preweighed) 3 - 40 mL amber VOA 2 - 1L Amber 2 - 1L Amber 2 - 1L Amber 3 - 40 mL Amber VOA 3 - 40mL VOA no headspace	2 2 2 2 2	<6 C <6 C <6 C <6 C <6 C

^a Orthophosphate must be field filtered

^b Nitrite, nitrate, and ortho-phosphate have a 48 hour holding time

^c Dechlorinate with ascorbic acid

 d Field filtering should use a 0.45 μm filter

^e All containers must be filled completely and maintained on ice at \leq 6 C

^f40 day holding time post extraction

⁸28 day holding time post extraction

¹ Field collection->TCLP ext. (in days): 14 for organics, 28 for Hg, 180 for metals ¹ Contact CRL for additional details and/or options

 $^{\rm h}$ Can be requested for metals, Hg, Pesticides, SVOCs and VOCs

^K Applicable to method 608 only

¹Does not include amount needed for QC samples or excess needed for dilutions/reanalysis

" Extra containers needed for MS/MSD location. Frequency = 1/20 field samples

CHICAGO REGIONAL LABORATORY HOLDING TIME AND CONTAINER REQUIREMENTS FOR SOIL / SOLID SAMPLES

DISCLAIMER: This table represents The Chicago Regional Laboratory's (CRL) recommended guidelines. Additional containers may be required for laboratory quality control samples (see notes section). There are non-routine analytes (reported upon request) that may require modification to the specifications detailed in this table. It is the client's responsibility to confirm container, preservation, and holding time requirements for a project prior to initiating sampling. This includes any equipment procurements, if applicable.

procurements, il applicable.						
General Chemistry	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g)	Container	Preservation ^d
Ammonia (Nitrogen, NH3)	AIG0298, 22A	SM 4500-NH3 B/H	28	1	4 oz. jar	<6 C
Anions (Br, Ci, F, NO ₃ , NO ₂ , PO ₄ , SO ₄)	AIG039, 45A	EPA 300.0	2 ^{°,b} or 28 ^b	10	4 oz. jar	<6 C
Chemical Oxygen Demand (COD)	AIG007A, 22A	410.4	28 ^b	10	4 oz. jar	<6 C
Cyanide, Total	AIG025B, C	EPA 335.4	14	1	4 oz. jar	<6 C
Nitrogen, Total Kjeldahl (TKN)	AIG022A, 35B	EPA 351.2	28 ⁶	1	4 oz. jar	<6 C
Organic Carbon, Total (TOC)	AIG009A	ASA-SSSA	28 ^b	· 1	4 oz. jar	<6 C
Particle Size	AIG038, 38A	ASTM D2487-93	365	100	16 oz. jar	<6 C
pH	AIG008	. EPA 9045D	365	20	4 oz. jar	<6 C
Phosphorus, Total (TP)	AIG022A, 34B	EPA 365.4	28 ^b	1	4 oz. jar	<6 C
% Šolids	AIG019	5M 2540 G	7	10	4 oz. jar	<6 C
Metals	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g)	Container	Preservation
Chromium (VI)	AIG033A	EPA 7199/3060A	30	2.5	4 oz. jar	<6 C
Mercury (Hg)	AIG043C,D,E	EPA 245.5/7471B EPA 7473	28	1	4 oz. jar	<6 C
Metals, Total	Metals001, 003A, 004	EPA 200.7/200.8 EPA 6010C,D/6020B	180	100	4 oz. jar	<6 C
Organics	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g) ^l	Container	Preservation
Pesticides, Chlorinated	GC001	EPA 8081B	14	10	8 oz. jar	<6 C
Polychlorinated Biphenyls (PCBs)	GC002, 003	EPA 8082A	365	10	8 oz. jar	<6 C
PCB Congeners	MS034	NA	365	30	8 oz. jar	<6 C
Perfluorinated Compounds (PFCs)	OM013	NA	28	2	50 mL Polypropylene Tube ^k	<6 C
Petroleum Hydrocarbons (TPH as DRO/ORO)	GC034	EPA 8015C	14	30	8 oz. jar	<6 C
Polycyclic Aromatic Hydrocarbons, Alkylated	MS027	NA	14	30	8 oz. jar	<6 C
Semi-Volatile Organic Compounds (SVOCs)	MS026	EPA 8270D	14	30	8 oz. jar	<6 C
fetradecylphosphonium chloride (TTPC)	OM017	NA	NA	2	4 oz. jar	<6 C
/olatile Organic Compounds (VOCs)	MS001	EPA 8260C	2	5	3 Encores™ ^e or 3 VOA vials w/ stir bar ^{e,f,j}	<6 C
Waste Characterization	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g)	Container	Preservation
Toxicity Characteristic Leaching Procedure (TCLP) ⁸	GEN019	EPA 1311	Varies ^h	Varies ⁱ	16 oz. jar	<6 C
HOLDING TIME AN		INER REQUIRE	MENTS FOR FI		SAMPLES	,
Organics	CRL SOP(s)		Holding Time (days)	Num. of Wipes	Container	Preservation
Polychlorinated Biphenyls (PCBs)	GC002,003	EPA 8082A	365	1 wipe w/hexane	4 oz. jar	<6 C
Semi-Volatile Organic Compounds (SVOCs)	MS026	EPA 8270D	14	1 wipe w/	4 oz. jar	<6 C
HOLDING TIME A	ND CONT	AINER REQUIR	EMENTS FOR A		AMPLES	
Volatiles	CRL SOP(s)		Holding Time (days)	Pressure	Vessel	Preservation
V VIGUICA	CILC POP [3]	nerelence methou	Horonig True (ngàz)	FI C33UI C	A C33 CI	* I COCI VALIDII

Volatiles	CRL SOP(S)	Keterence Method	Holding Lime (days)	Pressure	vessei	Preservation
Air Toxics	MS005	TO-15	30	approx7 "Hg	2.7 L Summa ⁱ	Room Temp
Natar						

Notes:

^a Nitrite, nitrate, and ortho-phosphate have a 48 hour holding time

^b Holding time after extraction

^cAll jars should be wide mouthed and have a teflon lid

 $^{\rm d}$ All containers must be filled completely and maintained on ice at ≤ 6 C

^e If no additional organics are requested, a 4 oz. jar must be submitted for % solids. For MS/MSD locations, 3 extra encores/VOA vials are need. Frequency = 1/20 field samples ^fDispensed in preweighed 40 mL VOA vials with stir bar. Preferred over Encore™ or similar $^{\rm g}$ Can be requested for metals, Hg, Pesticides, SVOCs and VOCs

^h Field collection->TCLP ext. (in days): 14 for organics, 28 for Hg, 180 for metals

⁶ Contact CRL for additional details and/or options

^f Collected w/ a 5 gram coring device (e.g. Terracore™ or similar).

k Must be preweighed

Does not include amount needed for QC samples or excess needed for dilutions/reanalysis

CHICAGO REGIONAL LABORATORY

HOLDING TIME AND CONTAINER REQUIREMENTS FOR WATER / AQUEOUS SAMPLES

DISCLAIMER: This table represents The Chicago Regional Laboratory's (CRL) recommended guidelines. Additional containers may be required for laboratory quality control samples (see notes section). There are non-routine analytes (reported upon request) that may require modification to the specifications detailed in this table. It is the client's responsibility to confirm container, preservation, and holding time requirements for a project prior to initiating sampling. This includes any equipment procurements, if applicable.

procurements, if applicable.	Indiana and	In the second	and the state of the balance of the state	The second s	1.0		Land (1997) and a land
General Chemistry	CRL SOP(s)		Holding Time (days)	Min. Volume (mLs)	Container*		Preservation
Acidity	AIG004A	SM 2310	14	50	500 mL Poly		<6 C
Alkalinity	AlG005	SM 2320 B	14	50	500 mL Poly		<6 C
Ammonia (Nitrogen, NH3)	AlG029B	SM 4500-NH ₃ B/H	28	10	500 mL Poly	ŀ	pH<2, H ₂ SO ₄ , <6 C
Ammonia (Nitrogen, NH3) Distilled	AlG029B	SM 4500-NH ₃ B/H	28	50	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Anions (Br, Cl, F, NO ₃ , NO ₂ , PO ₄ ^a , SO ₄)	AIG045A	EPA 300.0	2 ^b or 28	10	250 mL Poly	—	<6 C
Biochemical Oxygen Demand (BOD) 5-day	A G006, A	SM 5210 B	2	60	1 L Poly		<6 C
BOD, Carbonaceous (cBOD)	AIG006, A	SM 5210 B	2	60	1 L Poly	· -	<6 C
Corrosivity	AIG003	EPA 9040C	365	20	250 mL Amber		<6 C
Cyanide, Amenable	AIG025A	SM 4500 CN' G	14	50	500 mL Poly		dechiorinate° NaOH, pH>10, <6 C
Cyanide, Total	AIG025C	EPA 335.4	14	50	500 mL Poly		dechlorinate" NaOH, pH>10, <6C
Ignitability (Flashpoint)	AIG048A, B	EPA 1010A, 1020B	365	100	250 mL Clear		<6 C
Nítrogen, Nítrate+Nitrite	AIG031B	ASTM D7781-14	28	10	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Nitrogen, Total Kjeldahl (TKN)	AIG035B	EPA 351.2	28	10	500 mL Poly -		pH<2, H ₂ SO ₄ , <6 C
Organic Carbon, Dissolved (DOC)	AIG021D	EPA 5310B	28	20	500 mL Poly		field filtered ^d pH<2, H ₂ SO ₄ , <6 C
Organic Carbon, Total (TOC)	AIG021D	EPA 5310B	28	20	500 mL Poly		H2SO4
Paint Filter Liquid Test	AlG010	EPA 9095B	30	100	250 mL Amber		<6 C
pH	AIG002	SM 4500-H* B	15 min	50	250 mL Poly		<6 C
Phosphorus, Total Dissolved (TDP)	AIG034B	EPA 365.4	28	10	500 mL Poly		field filtered ^d
Phosphorus, Total (TP)	ALCORAD	504 205 4					pH<2, H ₂ SO ₄ , <6 C
	AlG034B	EPA 365.4	28	10	500 mL Poly		pH<2, H ₂ SO ₄ , <6 C
Solids, Total Dissolved (TDS)	AIG017	SM 2540 C	7	50	500 mL Poly		<6 C
Solids, Total Suspended (TSS)	AlG018	SM 2540 D	7	100	500 mL Poly		<6 C
Turbidity	AIG054	EPA 180.1	2.	30	250 mL Clear	-	<6 C
Water Content	AIG015A	EPA 9000	365	10	250 mL Amber		<6 C
Metals	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Volume (mLs)	Container	100	Preservation
Chromium (VI)	Alg032A	EPA 218.6	28	50	250 mL Poly		pH 9.3-9.7, <6 C NaOH/{NH4} ₂ SO ₄
Hardness	Metals026	SM 2340 B	180	50	500 mL Poly		pH<2, HNO ₃
Mercury (Hg)	AIG044D, E	EPA 245.1/7470A	28	20	500 mL Poly		pH<2, HNO3
Metals, Total	Metals001, 003, 003A	EPA 200.7/200.8 EPA 6010D/6020B	180	50	500 mL Poly		pH<2, HNO ₃
Metals, Dissolved	Metals001, 003, 003A	. EPA 200.7/200.8 EPA 6010D/6020B	. 180	50	500 mŁ Poly		field filtered ^d pH<2, HNO ₃
Organics	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Volume (mLs) ¹	Container	MS"	Preservation
1,4-Dioxane (low-level)	M\$035	EPA 522/8000D	28 ⁸	250	2 - 250 mL Amber	2	pH<2, Na2SO4, <6 C
Chlorothalonil	MS033	EPA 525.3/8270D	7 ¹	40	3 - 40 mL Amber VOA	2	<6 C
Oil and Grease	GC030, 32	EPA 1664B	28	1L	2 - 1L Clear wide-mouth	2	pH<2, H ₂ SO ₄ , <6 C
Polychlorinated Biphenyls (PCBs)	GC002, 003	EPA 608/8082A	7 ^{f,k} or 365 ^f	1Լ	2 - 1L Amber	2	<6 C
PCB Congeners (oil only)	MS034	NA	365	1 gram	4 oz. jar	1	<6 C
Perfluorinated Compounds (PFCs)	OM012	NA	28	10	2 - 15 mL Polypropylene tube (preweighed)	4	<6 C
Pesticides (low level)	OM019	NA	28 ^f	10	3 - 40 mL amber VOA	2	<6 C
Pesticides, Chlorinated	GC001	EPA 608/8081B	7 ^f	1 L	2 - 1L Amber	2	<6 C
Petroleum Hydrocarbons (TPH as DRO/ORO)	GC034	EPA 8015C	7 ^f	1L	2 - 1L Amber	2	<6 C
Semi-Volatile Organic Compounds (SVOCs)	MS026, 27	EPA 625/8270D	7		2 - 1L Amber		
Tetradecylphosphonium chloride (TTPC)	OM016	EPA 625/82700 NA	30	1 L 10	3 - 40 mL Amber	2 2	<6 C) <6 C
Volatile Organic Compounds (VOCs)	MS023, 24	EPA 624/8260C	7 (unpreserved) 14 (Preserved)	40.	VOA 3 - 40mL VOA no headspace	2	pH<2, HCl,<6 C
Waste Characterization	CRL SOP(s)	Reference Method	 A. A. A. A. B. A. A.	NSI- 11- Comment	We have the second state of the second state of the	1967	Buccaster, and
				Min. Volume (mis) Varies	Container Varies		Preservation
Toxicity Characteristic Leaching Procedure (TCLP)	GEN019	EPA 1311	Varies'				<6 C

^a Orthophosphate must be field filtered

^b Nitrite, nitrate, and ortho-phosphate have a 48 hour holding time

^c Dechlorinate with ascorbic acid

 $^{\rm d}$ Field filtering should use a 0.45 μm filter

^eAll containers must be filled completely and maintained on ice at \leq 6 C

^f40 day holding time post extraction

⁶28 day holding time post extraction

 $^{\rm th}$ Can be requested for metals, Hg, Pesticides, SVOCs and VOCs

[†]Field collection->TCLP ext. (in days): 14 for organics, 28 for Hg, 180 for metals

⁾ Contact CRL for additional details and/or options

^K Applicable to method 608 only

¹ Does not include amount needed for QC samples or excess needed for dilutions/reanalysis ^m Extra containers needed for MS/MSD location. Frequency = 1/20 field samples

CHICAGO REGIONAL LABORATORY HOLDING TIME AND CONTAINER REQUIREMENTS FOR SOIL / SOLID SAMPLES

DISCLAIMER: This table represents The Chicago Regional Laboratory's (CRL) recommended guidelines. Additional containers may be required for laboratory quality control samples (see notes section). There are non-routine analytes (reported upon request) that may require modification to the specifications detailed in this table. It is the client's responsibility to confirm container, preservation, and holding time requirements for a project prior to initiating sampling. This includes any equipment procurements, if applicable.

procurements, if applicable.						
General Chemistry	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g) ^l	Container	Preservation
Ammonia (Nitrogen, NH3)	AIG029B, 22A	SM 4500-NH ₃ B/H	28	1	4 oz. jar	<6 C
Anions (Br, Cl, F, NO ₃ , NO ₂ , PO ₄ , SO ₄)	AIG039, 45A	EPA 300.0	2 ^{a,b} or 28 ^b	10	4 oz. jar	<6 C
Chemical Oxygen Demand (COD)	AIG007A, 22A	410.4	28 ^b	10	4 oz. jar .	<6 C
Cyanide, Total	AlG025B, C	EPA 335.4	. 14	1	4 oz. jar	<6 C
Nitrogen, Total Kieldahl (TKN)	AIG022A, 35B	EPA 351.2	28 ^b	1	4 oz. jar	<6 C
Organic Carbon, Total (TOC)	AIG009A	ASA-SSSA	28 ^b	·1	4 oz. jar	<6 C
Particle Size	A1G038, 38A	ASTM D2487-93	365	100	16 oz. jar	<5 C
рН	AlG008	EPA 9045D	365	20	4 oz. jar	<6 C
Phosphorus, Total (TP)	AIG022A, 34B	EPA 365.4	28 ^b	1	4 oz. jar	<6 C
% Solids	AIG019	SMI 2540 G	7	10	4 oz. jar	<6 C
Metals	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g)	Container	Preservation
Chromium (VI)	AIG033A	EPA 7199/3060A	30	2.5	4 oz. jar	<6 C
Mercury (Hg)	AIG043C,D,E	EPA 245.5/74718 EPA 7473	28	1	4 oz. jar	<6 C
Metals, Total	Metals001, 003A, 004	EPA 200.7/200.8 EPA 6010C,D/6020B	180	100	4 oz. jar	<6 C
Organics	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g)	Container	Preservation
Pesticides, Chlorinated	GC001	EPA 8081B	14	10	8 oz. jar	<6 C
Polychlorinated Biphenyls (PCBs)	GC002, 003	EPA 8082A	365	10	8 oz. jar	<6 C
PCB Congeners	MS034	NA	365	30	8 oz. jar	<6 C
Perfluorinated Compounds (PFCs)	OM013	NA	28	2	50 mL Polypropylene Tube ^k	<6 C
Petroleum Hydrocarbons (TPH as DRO/ORO)	GC034	EPA 8015C	14	30	8 oz. jar	<6 C
Polycyclic Aromatic Hydrocarbons, Alkylated	MS027	NA	14	30	8 oz. jar	<6 C
Semi-Volatile Organic Compounds (SVOCs)	MS026	EPA 8270D	14	30	8 oz. jar	<6 C
Tetradecylphosphonium chloride (TTPC)	OM017	NA	NA	2	4 oz. jar	<6 C
Volatile Organic Compounds (VOCs)	MS001	EPA 8260C	2	5	3 Encores ^{™^e} or 3 VOA vials w/ stir bar ^{e,f,j}	<6 C
Waste Characterization	CRL SOP(s)	Reference Method	Holding Time (days)	Min. Mass (g) ^l	Container	Preservation
Toxicity Characteristic Leaching Procedure (TCLP) ⁸	L	EPA 1311	Varies ^h	Varies ⁱ	16 oz. jar	<6 C
HOLDING TIME A	ND CONTA	INER REQUIRE		LTERS / WIPE	SAMPLES	·····
Organics	CRL SOP(s)		Holding Time (days)		Container	Preservation
Polychlorinated Biphenyls (PCBs)	GC002, 003	EPA 8082A	365	1 wipe w/hexane	4 oz. jar	<6 C
Semi-Volatile Organic Compounds (SVOCs)	MS026	EPA 8270D	14	1 wipe w/ isopropanol	4 oz. jar	<6 C
HOLDING TIME	AND CONT	AINER REQUIF	EMENTS FOR		SAMPLES	
Volatiles	CRL SOP(s)	Reference Method	Landa a succession and a succession for the	Pressure	Vessel	Preservation
	pasaansa spar t f ili T	Reserves a dependent of the	provinsi se ≂texensis texende. I			ne stand stanges den service (1999) N

Air Toxics Notes:

^a Nitrite, nitrate, and ortho-phosphate have a 48 hour holding time

⁶ Holding time after extraction

⁶All jars should be wide mouthed and have a teflon lid

^d All containers must be filled completely and maintained on ice at \leq 6 C

^e If no additional organics are requested, a 4 oz. jar must be submitted for % solids. For MS/MSD locations, 3 extra encores/VOA vials are need. Frequency = 1/20 field samples

MS005

TO-15

^f Dispensed in preweighed 40 mL VOA vials with stir bar.

Preferred over Encore™ or similar

^g Can be requested for metals, Hg, Pesticides, SVOCs and VOCs

^h Field collection->TCLP ext. (in days): 14 for organics, 28 for Hg, 180 for metals

approx. -7 "Hg

2.7 L Summaⁱ

⁴ Contact CRL for additional details and/or options

^j Collected w/ a 5 gram coring device (e.g. Terracore¹⁴ or similar).

k Must be preweighed

30

 $^{\rm L}$ Does not include amount needed for QC samples or excess needed $\,$. for dilutions/reanalysis

Room Temp

TCLP Holding Times (days)

Analytes	FROM: Field collection TO: TCLP extraction	FROM: TCLP extraction TO: Preparative extraction	FROM: Preparative extraction TO: Determinative analysis	TOTAL ELAPSED TIME
Volatiles	14	NA	14	28
Semi-volatiles (SVOC/ABN)	. 14	7	40	61
Pesticides	14	7	40	61
Mercury	28	NA	28	56
Metals (except mercury)	180	NA	180	360

47 CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

j

Carver County Compost Site | Field Data Sheet

Location:			_Site:		Initial:	M.11	
Date:	· .		Weather:				
Total Depth:			Static Wate	er Level		Calc. Vol.	+
Purge Method:		Bailer		Pump:		Other:	
Time	Cum. Vol. Purged	рН	Cond.	Temp	Con	nments	
				START			
••••••••••••••••••••••••••••••••••••••					· · · · · · · · · · · · · · · · · · ·		
			-				
<u></u>						<u> </u>	-
	· · · · · · · · · · · · · · · · · · ·					,	
						9	
· · · · · · · · · · · · · · · · · · ·	· ·	,		· · · · · · · · · · · · · · · · · · ·			
			······································				
Samples With:		Bailer		Pump:			Other:
Containers	No.	mLs	Туре	Pres. C	heck	Ice Check	
General Chem:			Plastic	None			1
Nutrients			Plastic	H ₂ SO ₄]
Metals, Filt.			Plastic	HNO₃	;		
Metals, Tot.			Plastic '	HNÓ₃			
VOC vials	·		Glass	HCL			
Appearance: (N = N		t, V = Very)			*		-
Color:	Turb:		Odo	r:	. Other	* · *	
Was Stabilization A Comments:	chieved?	,			·		
continents.	<u> </u>				,		· · · · ·

48 CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

ENVIRONMENTAL PROTECTION AGENCY Office of Enforcement		GH +	REGION 5 77 West Jackson Boulevard
			Chicago, himois boove
	Acrise Porty Canoset For 114	5	
SAMPLERS: (Print Name and Slan)		At Vo At	
		1 1 A Bartan	
STA. NO. DATE TIME	STATION LOCATION	IN ALS LARY	TAG NUMBERS
WA-MW!	IX Matertaun	IT XXXXX	
WR-MWZ-		18 XXXXXX 81	
WA-WW2	X	18 XXXXX	Try Young to the second se
wh-mut	X	R XXXXXX	A DER DE A
Ind-AN	X	18 XXXXXXX	
wh tell	X	XXXXXXX total	Metals Only
RK-WW	X Arboretum	12 XXXXX	
ACAUC	X	1 8 XXXXX	
AK-MW3	X	IN XXXXX	
AR-MW4		27 XXXXXX MS/MS/	
Actor	X	18 XXXXX	
AR-EB	X N	17 XXXXX HARI MAI	on ly
-84	X trip Blank	3 X VOCS only	
Relinquished by: (<i>Signature)</i>	Date / Time Received by: (Signature)	ship To:	
Relinquished by: <i>(Signature)</i>	Date / Time Received by: (Signature)		
D.11		AIIN: Date / Time Airhill Numher	
Helinquished by: (<i>Signature)</i>	Date / Ittine received to Lauoratory by (Signature)		
Distribution: White - A	Distribution: White - Accompanies Shipment; Plnk - Coordinator Field Files; Yellow - Laboratory File	ellow - Laboratory File	

1

 $\langle \widehat{X} , \widehat{X}
angle$ Printed on Recycled Paper/Printed with Soy-Based Ink

5-32569

.

Attach additional pages as required.

(*** *** ***	A7		Chain o	Chain of Custody Form					
Contact Information:	Site Name: watertown yard waste site Contact Information:	lie	- - - - - - - - - - - - - - - - - - -	Signature	Wiler/Collec	IOI:			
Sample ID C	Collection Date/Time (24 h)	Sample Location	ion	Sample Type (Matrix)	Grab/ Composite	Preservative(s)	No./Type of Bottles	Comments	
WA-MW1		WA-MW1		GW		Ice	journal	-	
WA-MW2		WA-MW2		GW		Ice	jana)		
WA-MW3		WA-MW3		GW	- - -	Ice	J		
WA-MW4		WA-MW4		GW		Ice	نسر	-	
WA-MW4 D		WA-MW4 D		GW		Ice	jimit.		
WA-Equip Bl				Rinse water		Ice	j 24		
WA Trip Bl						Ice	1		
									1
					-				
Matrix: DW = Dri	Matrix: DW = Drinking Water, RW = Reservoir Water, GW=Ground Water, SD = Sediment, SL = S	teservoir Water	r, GW=Ground W	/ater, SD = Sed	iment, $SL = S$	lud	SM = Misc.	Solid Material	1
Relinquished By:		Re	Received by:			Date/Time:			<u> </u>
Relinquished By:		Re	Received by:			Date/Time:			<u>.</u>
Relinquished By:		R	Received by:			Date/Time:			<u> </u>
Relinquished By:		Re	Received by:			Date/Time:			1
Relinquished By:		Re	Received by:			Date/Time:			<u> </u>
Dispatched by:		Date/Time:		Received by:	l by:		Date/Time:		
Method of Sample Transport	Transport				2		ī		<u>. </u>
Shipper:		Phone No.:			Ship	Shipper's Tracking No.:			<u> </u>

•

Sample collection directions

- Don't open bottles until it is to be filled.
- Remove cap, don't place it down on any surface as to make sure not to contaminate the lid.
- Fill bottle up to the blue fill line as labeled on the bottle.
- Take care not to touch the lid, of the bottle or cap with hands or any other materials as to not contaminated the sample container.
- Once water sample is properly taken, replace the lid tightly.
- Place the sample bottle into a ziplock bag, and seal it.
- Place sealed ziplock bag into cooler containing ice or use freezable icepacks to cool samples until they are received in laboratory. Ice should be in bags to prevent leakage of the ice during shipment.
- Ship coolers back to EPA. Over night

EPA - Ship to ATTO: Sill Hoelle 513-569-7911 26 W. Martin Luther King br. MS. 681 Cincinnati, OH 45268

0	<\					N	×.		
Pb, Cd, Se,	Dissolved Metals <u>ICP-</u>	Total Metals by ICP-AES (rest of metals)	Total Metals by ICP-MS (As, Ag, Pb, Cd, Se, Mo)	- 1	4		PFCs	Analysis	Updated on 4-10-2017
3	EPA 200.8	EPA 200.7	EPA 200.8				ASTM D-7979	Reference Method	0-2017
	Metals 001	Metals 003	Metals 001		1	и 1	OM012	CRL Method SOP	Tests to k
	<u>180 days</u>	180 days	180 days				28 days	Holding Time	be performed
	<u>1L Poly</u>	1L Poly	1L Poly		-	with 5.0 mL sample. No label on tube!	15 mL polypropylene tube, pre- weighed filled	Bottleware Per Sample	Tests to be performed at the CRL-Chicago
	<u>1 per well</u>	1 per well (Can combine with ICP-MS)	1 per well				4 per well	Quantity of Bottles per sample	go EPA Region 5
ļ	<u>PH,<2</u> 4C	HNO3, pH,<2 4C	HNO3, pH,<2 4C		E.,	2 -	4C	Preservative	
	Insert tiltering the sampling into the field procedures	2		whole method in a new Appendix C titled specific test methods.	today. Ie the tubes preweighed at CRL labs. Drop the	inserted in the field procedure 3 to include specifics in	On page 16 is the sampling protocol which should be modified and	Notes	
1	3	1	ан _{со}		3			ii.	

Conver 1	0.00	2 3/	<u>_</u>		ţ	فن					10	6		× 14		Ć	Ş			c	2			7		\propto	5	e)
Total Phosphorous	h	INN	Nitrate as N		Juite		(2,4-D only)	Herbicides	-		2) 19 11	-	Pesticides					SVOCs	VOCs	13	DYCVAA	Dissolved Hg		54	Hg by CVAA	metals)	Metals by ICP-	Dissolved
EPA 365.4		EPA 331.2	EPA 300.0			2		NA	1	15.	0	20 7	EPA 8081B		-	2		EPA 8270D	EPA 8260C		<u>24.1/14/UA</u>	EPA 17/700		24.1/7470A	EPA		1	EPA 200.7
AIG034B		ACCUDIA	AIG045A	ii.				0M019					GC001					MS026	MS023		-12	AIG044E	10 10 10 11	11	AIG044E			Metals 003
28 days		20 udys	48 hrs.					28 days					7 days		2			7 days	14-days	1	2	28 days	(12)	2	28 days			180 days
500 mL Poly		SUD THE POLY	500 mL Poly			<i>k</i>	VOA Vial	40 mL amber		ð v	8	10 10	1L Amber	1	*			1L Amber	40mL VOA vial		¥ (4)	<u>1L Poly</u>		2	1L Poly			<u>1L Poly</u>
1 per well, combine with	nitrate nitrite	L per went	1 per well					3 per well				2 ²	2 per well		0 2	3		2 per well	<u>3 per well</u>	ICP-MS)	with discolved	1 per well	with ICP-MS)	(Can combine	1 per well	WILLI ICF-IVIS		1 per well
H2SO4, pH<2	(4C	pH<2	4C					4C					4C					4C	HCl,pH<2 4C	k	AC	HNO3,	4C	pH,<2	HNO3,	ļŧ	DH,<2	HNO3,
	-	3		them in Table 1.	then then include	and RLs. MPCA will	suite of parameters	CRL to provide the	them in Table 1.	then then include	and RLs. MPCA will	suite of parameters	CRL to provide the	the COCs	incorporated into	and they will be	list of all the SVOCs	CRL to provide the	<u>Full list</u>			0					field procedures	Insert filtering the

Interpoll Laboratories, Inc.

For wells with locations with Matrix Spike/Matrix Spike Duplicate : Triple sample bottle counts for organics only.

Notes: Please add the comments

Total coliform & E Coli will be done by the National Risk Environmental Laboratory/ESMD-LRR Division in Cincinnati

4500 Ball Road NE

3

As above	(t						Total Coli
methods.						• •• •	
specific test		-					
Annendix C titled				5	R		
method in a new			an V		8		
Drop the whole					0		
field procedure 3.				×			
and inserted in the							
should be modified					2		
protocol which					ų		
the sampling							
Once this is sent	Ϋ́.						E Coli
		Cincinnati	Tests to be completed at NREL in Cincinnati	ts to be compl	Tes		
		TSS					
		combine with					
1	4C	1 per well,	1L Poly	7 days	AIG017	SM 2540C	TDS
	4C	1 per well	1L Poly	7 days	AIG018	SM 2540D	TSS
-	4C	1 per well	1L Poly	48 hours	AIG006A	SM 5210B	BOD (5-day)
		<u>nitriteTKN</u>	5 1114				
10	4C	nitrate					

2

6

Circle Pines, MN 55014-1819

Attn: Tim MacDonald/Robin Worlie

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

BOTTLE ORDER/PACKING LIST

Ship To:

<u>Attn</u>: Carol Staniec MMB, LCD, U.S. EPA Region 5 77 W. Jackson Boulevard Chicago, IL 60604

Phone: (312) 886-1436 Fax: Email:
 Date Submitted:
 06/08/2017

 Date Needed:
 06/12/2017

 Date Shipped:
 01/01/1953

Shipping Method: Tracking Number: Ship Comments: Ship to: Interpoll Laboratories, Inc. 4500 Ball Road NE Circle Pines, MN 55014-1819 Attn: Tim MacDonald/Robin Worlie

Project: Carver County Compost Facility GW Monitoring

Order

Comments: Sample counts assumed 8 well locations + 2 FDs + 2 EBs. A TB is needed for PFCs only. Samples must be shipped daily on ice (6C) and follow CRL shipping and custody protocols. Additional volume is needed for MS/MSD locations for organics only.

BOTTLE ORDER/PACKING LIST

<u>Attn</u> :	Carol Staniec MMB, LCD, U.S. EPA Region 5 77 W. Jackson Boulevard Chicago, IL 60604	Date Submitted: Date Needed: Date Shipped:	06/08/2017 06/12/2017 01/01/1953
Phone: Fax: Email:	(312) 886-1436	Shipping Method: Tracking Number: Ship Comments: Sl	nip to:
Project: Carver County Compost Facility GW Monitoring Order		Interpoll Laboratories, Inc. 4500 Ball Road NE Circle Pines, MN 55014-1819 Attn: Tim MacDonald/Robin Wo	

Comments: Sample counts assumed 8 well locations + 2 FDs + 2 EBs. A TB is needed for PFCs only. Samples must be shipped daily on ice (6C) and follow CRL shipping and custody protocols. Additional volume is needed for MS/MSD locations for organics only.

	Container	Qty	Analysis	Matrix	Preservative	Sample Count	Lot Nbr	Comments
ſ	<i>Water Samples</i> 500 mL Poly H2SO4	12	TKN DA, Total Phosphorus DA	Water	Add H2SO4 to pH<2; Store cool at < or equal to 6 C	12	· ·	8 wells + 2 FDs + 2 EBs= 12 samples x 500mL poly each. No extra needed for MS/MSD
)	1 L Poly - Unpres	12	Solids, TDS, Solids, TSS	Water	Store cool at < or equal to 6 C	12		8 wells + 2 FDs + 2 EBs= 12 samples x 1L poly each. No extra needed for MS/MSD
•	40 mL amber VOA vial	38	Pesticides by LC/MS/MS	Water	Store cool at < or equal to 6 C in Dark	12		8 wells +2 FD + 2 EBs= 12 samples x 3 Vials each=36 + 2 Vials at MS/MSD location=38
	500 mL Poly Unpres	12	Anions NO3 as N	Water	Store cool at < or equal to 6 C	12		8 wells + 2 FDs + 2EBs=12 samples x 1 500mL poly each. No extra needed for MS/MSD location
-	15 mL polypropylene (Pre-walghed)	28	OSRTI PFC	Water	Store cool at < or equal to 6 C in Dark	13		8 wells+2 FDs+2EBs+1TB=13 samples x 2 tubes each. + 2 tubes at MS/MSD location=28
?	1 L Poly - Unpres	12	BOD	Water	Store cool at < or equal to 6 C	12		8 wells + 2 FDs + 2 EBs= 12 samples x 1L poly each. No extra needed for MS/MSD
	1 L Poly - HNO3	22	Hg Total CVAA, Metals ICP-AES (w), Metals ICP-MS (w)	Water	Add HNO3 to pH<2	12		8 wells (total+dissolved)+2 FDs (total and dissolved)+2EB (total only)=22. No extra needed for MS/MSD

BOTTLE ORDER/PACKING LIST

Ship To:	÷	*		
Attn:	Carol Staniec		Date Submitted:	06/08/2017
	MMB, LCD, U.S. EPA Region 5		Date Needed:	06/12/2017
	77 W. Jackson Boulevard		Date Shipped:	01/01/1953
	Chicago, IL 60604			
Phone:	(312) 886-1436		Shipping Method:	
Fax:			Tracking Number:	
Email:	64 13		Ship Comments: S	Ship to:
21 21			Interpoll Laborato	1827
Project:	Carver County Compost Facility GW Monitoring		4500 Ball Road NE Circle Pines, MN 5	
Order			Attn: Tim MacDor	
	: Sample counts assumed 8 well locations + 2 FDs +	2 EBs. A TB is	needed for PECs only	V.

Samples must be shipped daily on ice (6C) and follow CRL shipping and custody protocols. Additional volume is needed for MS/MSD locations for organics only.

	Container	Qty	Analysis	Matrix	Preservative	Sample Count	Lot Nbr	Comments
	Water Samples (Cor	ntinu	red)				_	
ľ	1 L Amber- Unpres.	26	SVOA water by SPE (8270 1-pass)	Water	Store cool at < or equal to 6 C	12		8 wells +2FDs+2EBs=12 samples x 2 1L ambers each + 2 1L ambers at MS/MSD location=26
ø	1 L Amber- Unpres.	26 4	Pesticides by SPE -Huis Samp	Water Water	Store cool at < or equal to 6 C	12 s		8 wells +2FDs+2EBs≈12 samples x 2 1L ambers each + 2 1L ambers at MS/MSD location=26

modification: 40 VOA vials provided for VOCs. 3 VOA vials per sampling location must be collected and preserved with HCL. 5 are needed at MS/MSd location. A trip blank must be submitted with the cooler containing VOCs. Make a trip blank by filling 3 VOA vials with di water and preserve with HCL. . .

. .

49 | CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

APPENDIX C: TEST METHODS

USEPA REGION 5 CHICAGO REGIONAL LABORATORY PFOS

NREL SAMPLE ECOLI AND FECAL COLIFORM ANAYSES AND SHIPMENT GUIDELINES

50 | CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

Title	· · · · · · · · · · · · · · · · · · ·	CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$\mathbf{D}_{a,a} = 1 \circ \mathbf{f} 7 0$
	3/21/2017 11:02:26 AM	Published	Page 1 of 70

Standard Operating Procedure for the Analysis of Polyfluorinated Compounds of Interest to OSRTI in Water, Sludge, Influent, Effluent, and Wastewater by Multiple Reaction Monitoring Liquid Chromatography/Mass Spectrometry (LC/MS/MS)

> United States Environmental Protection Agency Region 5 Chicago Regional Laboratory 536 S. Clark Street (ML-10C) Chicago IL, 60605

Table of Contents

1.	Scope and Application	2
2.	Summary of Method	3
3.	Abbreviations and Definitions	3
4.	Health, Safety and Waste Handling	. 5
5.	Cautions and Interferences	6

Title	1	CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	······································	Status	$D_{acc} 2 of 70$
	3/21/2017 11:02:26 AM	Published	Page 3 of 70

Tables 10-17 in the Appendix show the performance data for the target analytes and surrogates in various matrices.

1.4. The RL for a specific water sample may differ from that listed depending on the nature of the interferences in the sample matrix. The estimate of minimum laboratory contribution to measure uncertainty of this method for each compound is calculated by LCS mean ±3 SD. These values are derived from CRL historical data from Laboratory Control Samples. The uncertainty will be greater near the reporting limit and much greater near the detection limit. Refer to the Appendix, Table 2 for measured uncertainty. The default control limits, listed in Table 2 of the Appendix, for the analytes and surrogates are preliminary until a full multi-lab study is completed.

2. Summary of Method

- 2.1. A water sample (5 mL) is spiked with surrogates (all samples) and target PFC compounds (laboratory control and matrix spike samples) and hand-shaken for two minutes after adding 5 mL of methanol. The samples are then filtered through an Acrodisc GxF/0.2 μ m GHP membrane syringe driven filter unit. Acetic acid (10 μ L) is added to all the samples to adjust to pH ~ 3-4 and the sample is analyzed by LC/MS/MS. For sludge samples, the pH is adjusted to ~ 9-10 (adding ~ 20 μ l of ammonium hydroxide) before extraction and ~ 50 uL of acetic acid is needed for acidification after filtration.
- 2.2. The target compounds are identified by comparing the single reaction monitoring (SRM) transitions in the sample to the SRM transitions in the standards (Appendix Table 6). Certain PFC analytes only have a primary SRM transition that is used for identification and quantitation. The retention time (RT) for the analytes of interest must also agree with the RT of the mid-level standard by ±5%. The target compounds are quantitated using the SRM transitions of the target compounds utilizing external calibration. As an additional quality control measure, isotopicallylabeled PFC surrogate (listed in Section 7.2.4-5) recoveries are monitored; the percent recovery of each should fall within the control limits of the method. Compounds from this SOP are reported to the RL, typically in ng/L.

3. Abbreviations and Definitions

3.1. Abbreviations

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 5 of 70

RTS	Retention Time Shift
SD	Standard Deviation
SDS	Safety Data Sheet
SOP	Standard Operating Procedure
SRM	Single Reaction Monitoring
SS	Surrogate Standard
TC	Target Compound
TCL	Target Compound List
UPLC	Ultra Performance Liquid Chromatography

3.2. Definitions

Method Detection Limit (MDL): The minimum concentration of analyte that can be identified, measured, and reported with 99% confidence that the analyte concentration is greater than zero.

Reporting Limit (RL): This is the lowest concentration reported by CRL except in the case of a special request.

Batch QC: All the quality control samples and standards included in an analytical procedure. A batch typically consists of 20 field samples.

Sludge: Sludge in this method is defined as a sewage sample containing approximately \Box 2% solids in a sample by weight.

ASTM Type I Water: Shall conform to ASTM Standard D1193 specifications.

Reagent Water: Reagent water is defined as water with no interferants at or near the RL for all reagent compounds. The in-house Milli-Q water has been found acceptable for use. It is tested for each batch of samples by using it as a Method Blank.

SRM Transition: Single Reaction Monitoring transition.

4. Health, Safety and Waste Handling

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 7 of 70

5.2. Cautions

- 5.2.1. All reagents and solvents should be of pesticide-residue purity or higher to minimize interference problems, preferably LC/MS grade.
- 5.2.2. Contaminants have been found in reagents, glassware, tubing, polytetrafluoroethylene (PTFE) LC vial caps, glass disposable pipettes, filters, degassers, and other apparatus that release polyfluorinated compounds. All of these materials are routinely demonstrated to be free from interferences by analyzing laboratory reagent and method blanks under the same conditions as the samples. All the supplies should be checked to determine the release of target analytes of interest. If found, measures should be taken to remove the contamination or data should be qualified.
- 5.2.3. The Liquid Chromatography system used should have components replaced, when possible, with materials known to not contain fluorinated target analytes of interest.
- 5.2.4. Polyethylene LC autosampler vial caps or target analyte-free vial caps should be used.
- 5.2.5. Polyethylene disposable pipettes or target analyte-free pipettes should be used.All disposable pipettes should be checked for release of target analytes of interest.
- 5.2.6. Degassers are important to continuous LC operation and are most commonly made of fluorinated polymers. To enable use, an isolator column should be placed after the degasser and before the sample injection valve.
- 5.2.7. The procedure described in the glassware cleaning section (6.4) should be followed to make glassware free from interferences.

6. Equipment and Supplies

The vendors' equipment and/or part numbers are listed for the supplies and reagents below. Any equivalent equipment or supplies from any vendor may be used. Mention of brand names or part numbers is for informational purposes only; no endorsement is

Title	CRL Document #	Version # 1
OM021 OSRTI PFCs in Water	OM021	
Effective Date 3/21/2017 11:02:26 AM	Status Published	Page 9 of 70

6.3. Glassware and miscellaneous supplies

- 6.3.1. Vials 2-mL amber autosampler vials or equivalent (Source Waters, Part # 186000847C)
- 6.3.2. Polyethylene autosampler vial caps or equivalent (Source Waters, Part # 186004169)
- 6.3.3. Syringe 10-25 mL filter-adaptable glass syringe with luer lock
- 6.3.4. 50 mL polypropylene tubes (Source BD Falcon, Catalog # 352098)
- 6.3.5. 15 mL polypropylene tubes (Source BD Falcon, Catalog # 352097)
- 6.3.6. Gases ultrapure argon and nitrogen
- 6.3.7. Class A volumetric glassware
- 6.3.8. Pipette tips Polypropylene pipette tips free of release agents or low retention coating of various sizes (Source Eppendorf, Catalogue # 022491997, 022492080, 022491954, 022491946, and 022491512)
- 6.3.9. Acrodisc GxF/0.2µm GHP membrane syringe-driven filter unit (Source PALL Life Sciences, Part # AP-4307T). The Acrodisc filters are washed with at least 10 mL acetonitrile followed by 20 mL methanol prior to use.
- 6.3.10. Polyethylene disposable pipettes (SEDI-PETTM PIPET, Source Samco Scientific, Part # 252)

6.4. Glassware cleaning instructions

All glassware is cleaned according to CRL SOP GEN008. All glassware is subsequently rinsed with an organic solvent such as acetone, methanol, and/or acetonitrile prior to use.

7. Reagents and Standards

Items shown are for informational purpose only; equivalent reagents and standards may be used. All reagents and solvents should be of pesticide residue purity or higher to minimize interference problems, preferably LC/MS grade or equivalent. Refer to CRL SOP GEN026 for instructions and analyst responsibilities when purchasing reagents and standards.

NOTE: Standard mixes are available from Wellington Labs and contain each analyte at a given concentration, either at 1 or $2 \, \Box g/mL$. The target spike mix concentrations can be changed to account for the rigidity in standard sources when using mixes. The

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 11 of 70

91-4, Source: Wellington Labs, Part # L-PFPeS as the sodium salt)

- 7.2.1.8. Perfluoro-1-heptanesulfonate (L-PFHpS, C₇F₁₅SO₃⁻, CAS # 375-92-8, Source: Wellington Labs, Part # L-PFHpS as the sodium salt)
- 7.2.1.9. Perfluoro-1-nonanesulfonate (L-PFNS, C₉F₁₉SO₃⁻, CAS # 6825912-1, Source: Wellington Labs, Part # L-PFNS as the sodium salt)
- 7.2.1.10. Perfluoro-1-decanesulfonate (L-PFDS, C₁₀F₂₁SO₃⁻, CAS # 2806-15-7, Source: Wellington Labs, Part # L-PFDS as the sodium salt)
- 7.2.2.Polyfluoroalkyl carboxylic acids (PFAC)
 - 7.2.2.1. Perfluorobutanoate (PFBA, C4F7O2-, CAS # 375-22-4, Source: Fluka, Part # 52411-5ML-F)
 - 7.2.2.2. Perfluoropentanoate (PFPeA, C₅F₉O₂⁻, CAS# 2706-90-3, Source: Sigma Aldrich, Part # 396575-5ML)
 - 7.2.2.3. Perfluorohexanoate (PFHxA, C₆F₁₁O₂⁻, CAS#307-24-4, Source: Sigma Aldrich, Part # 29226-5ML)
 - 7.2.2.4. Perfluoroheptanoate (PFHpA, $C_7F_{13}O_2^-$, CAS# 375-85-9, Source: Sigma Aldrich, Part # 342041-5G)
 - 7.2.2.5. Perfluorooctanoate (PFOA $C_8F_{15}O_2^-$, CAS # 335-67-1, Source: Sigma Aldrich, Part # 171668-5G)
 - 7.2.2.6. Perfluorononanoate (PFNA, $C_9F_{17}O_2^-$, CAS# 375-95-1, Source: Sigma Aldrich, Part # 394459-5G)
 - 7.2.2.7. Perfluorodecanoate (PFDA, $C_{10}F_{19}O_2^-$, CAS# 335-76-2, Source: Sigma Aldrich, Part # 177741-5G)
 - 7.2.2.8. Perfluoroundecanoate (PFUnA, $C_{11}F_{21}O_2^-$, CAS# 2058-94-8, Source: Sigma Aldrich, Part # 446777-5G)
 - 7.2.2.9. Perfluorododecanoate (PFDoA, $C_{12}F_{23}O_2^-$, CAS# 307-55-1, Source: Sigma Aldrich, Part # 406449-1G)
 - 7.2.2.10. Perfluorotridecanoate (PFTriA, $C_{13}F_{25}O_2$, CAS# 72629-94-8, Source: Sigma Aldrich, Part # 654973-1G)
 - 7.2.2.11. Perfluorotetradecanoate (PFTreA, C₁₄F₂₇O₂⁻, CAS# 376-06-7, Source: Sigma Aldrich, Part # 446785-5G)
- 7.2.3.Polyfluorinated sulfonamides and sulfonamidoacetic acids
 - 7.2.3.1. N-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA, C₁₂H₈F₁₇NO₄S, CAS # 2991-50-6, Source: Wellington Labs, Part # N-EtFOSAA)
 - 7.2.3.2. N-methylperfluoro-1-octanesulfonamidoacetic acid (N-

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 13 of 70

source may be different than the one shown here, this is an evolving area and standards may change.

7.3. Reagent and standard preparation

All standard preparations are recorded in LIMS. If the details of the preparation are omitted from LIMS, a reference to the logbook containing the preparation details is included in LIMS. All standard stock vials and prepared solutions are labeled with the LIMS ID, name, concentration, dates of preparation and expiration, and initials of the creator. All LC or small vials (where surface area is an issue) shall include, at minimum, a LIMS ID which can be referenced back to LIMS or the logbook.

CAUTION: All standards must be kept away from PFC-containing packaging and materials used in preparation and storage. In order to prevent standard solutions from degrading, all standard solutions are stored at $< 6^{\circ}$ C in the refrigerator.

When standard compound purity is assayed to be 98% or greater, the weight may be used without correction to calculate the concentration of the stock standard. All weights and concentrations less than 98% purity listed in this SOP are corrected to at least 98% purity. Example: A weight of 0.511 g of compound X that is assayed to be 96% pure is recorded as 0.491 g of compound X after correction. If the standard is purchased and listed having a purity of 95+ % or similar designation, the purity is not accurately known and the product may be 95-100% pure. In this case, the product purity is noted in the LIMS database and/or logbook and may be used uncorrected. Expiration time is one year from the time prepared. The spiking standards and surrogates can be used for more than one year if they fall within +/-20% of the expected concentration from the calibration standard that is less than 1year old.

Traceability of PFC standards is established using the manufacturer's specifications provided at the time of purchase. The Certificates of Analysis may be obtained from the vendor or online at the vendor's website knowing the catalog and lot number of the standard used as recorded in the logbook or LIMS and are stored in the laboratory in a binder.

Procedures for the preparation of QC batch samples and standards are found in Sections 9.1 9.2.

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	Page 15 of 70
	3/21/2017 11:02:26 AM	Published	rage 15 01 70

Each MS/MSD or LCS/LCSD sample is spiked with target PFCs (listed in Sections 7.2.1-7.2.3) to achieve a concentration of 800 ng/L for PFBA and PFPeA and 160 ng/L for the remaining 22 PFCs in a 5 mL water sample. This can be done by adding 40 μ L of PFC Target Spike Solution I and 40 μ L of PFC Target Spike Solution II to each 5 mL QC sample (Refer to Appendix Table 3 for the composition and concentration of each target analyte in the spiking solutions; each spike solution is prepared in 95:5 acetonitrile and water). The target analyte spiking solutions are prepared from intermediate solutions which are prepared from neat standards. Aliquots of the intermediate solutions are combined and diluted using 95:5 acetonitrile and water to prepare the spike standard concentrations in Appendix Table 3.

7.3.3. Reporting limit check spiking solution

The reporting limit check sample is prepared by spiking a 5 mL water sample with target analytes at the reporting limit. Add 25 μ L of a PFC reporting limit check spiking solution to the reporting limit check sample to achieve 50 ng/L of PFBA and PFPeA and 10 ng/L for the remaining 22 PFCs (listed in Sections 7.2.1-7.2.3) in a 5 mL water sample. Refer to Table 3 (Appendix) for the concentrations of each target analyte in the reporting limit spike solution. The reporting limit check spiking solution is prepared in 95:5 acetonitrile and water from intermediate standard solutions or target spike solutions.

7.3.4. Calibration standards

A calibration stock standard solution is prepared from the target and surrogate spike solutions directly to ensure consistency. $500 \ \mu$ L of the surrogate spike and $500 \ \mu$ L of each PFC Target Spike Solution (I and II; Refer to Appendix Table 3 for the composition and concentration of each target analyte in the spiking solutions) is added to a 50 mL polypropylene tube and diluted to 50 mL with a 50:50 methanol and water solution containing 0.1 % acetic acid. This stock standard Solution A (Level 9, Appendix Table 4) containing 200 ng/L of all PFCs (except 1000 ng/L for PFBA and PFPeA) is diluted to prepare Levels 1 through 8 as shown in Tables 4 and 5 (Appendix). All calibration standards should contain 50:50 methanol and water with 0.1% acetic acid.

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 17 of 70

QC sample must be collected in its own container, including matrix spike, matrix spike duplicate, and duplicate samples.

Since surface binding of target compounds may bias data, it is best to collect a 5.0 mL sample in a graduated 15 mL polypropylene BD Falcon tube in the field so that the whole sample is processed in the lab.

CAUTION: Taking a sub-sample is not recommended in this SOP, whether in the field during sample collection, or in the lab at the bench.

In order to have accurate volumes, the weight of the 15 mL polypropylene BD Falcon tube should be taken before and after sampling in order to calculate an exact volume. The density of water is assumed to be 1.0 g/mL unless otherwise instructed by the client/sampler. The laboratory analysts will likely weigh the tubes before/after field sampling. If the clients/samplers pre-weigh their own sampling containers they shall provide those weights to CRL. The use of sample tags or removable labels should be used in order to weigh the vial without the additional weight of the label or its fragments.

If a larger sample is collected in the field, a 5.0 mL aliquot of that sample will be processed, not taking into account any PFCs that may adhere to the surface of the original container. This practice is not recommended. This section is in this SOP in the event that field samples are taken in large containers or for another project where the customer may be interested to "screen" for PFCs. This shall be stated in the case narrative accompanying the data and the data shall be qualified as estimated ('J') as this will affect the quantitative accuracy of many of the PFCs, potentially producing very low-biased results.

Conventional laboratory practices involving chain of custody, field sampling, lab custody beginning with receipt and transfer custody, and sampling protocols should be followed.

8.2. Sample preservation and storage

All samples are iced or refrigerated at $< 6^{\circ}$ C from the time of collection until sample analysis. At the laboratory, prepared samples (diluted and filtered) are stored in the refrigerator at $< 6^{\circ}$ C at all times while not being analyzed. Holding times have not yet been established for these analytes in various matrices. A preliminary holding time of

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 19 of 70

The method blank is prepared by measuring 5 mL of ASTM type I water in a 15 mL polypropylene tube, spiking with 40 \Box L of the surrogate spike solution (Section 7.3.1), and then taking it through the sample preparation step II in Section 9.2.

9.1.3. Laboratory control sample/laboratory control sample duplicate

Add 5 mL of ASTM type I water to each of two 15 mL polypropylene centrifuge tubes. The samples are spiked with 40 \Box L of surrogate spiking solution (Section 7.3.1), 40 µL of Target Spike Solution I, and 40 µL of Target Spike Solution II (Section 7.3.2, Appendix Table 3), and then taken through the sample preparation step II in Section 9.2.

9.1.4. Reporting limit check

Add 5 mL of ASTM type I water to a 15 mL polypropylene centrifuge tube. The sample is spiked with 40 \square L of surrogate spiking solution (Section 7.3.1) and 25 μ L of Reporting Limit Check solution (Section 7.3.3, Appendix Table 3) and then taken through the sample preparation step II in Section 9.2.

9.1.5. Sample and sample duplicate

The 5.0 mL sample collected in a 15 mL polypropylene centrifuge tube is allowed to warm to room temperature before spiking and sample processing (if sludge samples are requested to be analyzed by dry weight, see Section 9.2.3). If another sample size is collected, a 5.0 mL aliquot is used as the sample and indicated in the data package narrative (see Section 8.1). Each sample is spiked with 40 \Box L of surrogate spiking solution (Section 7.3.1) and then taken through the sample preparation step II in Section 9.2.

9.1.6. Matrix spike/matrix spike duplicate

Additional field-collected 5.0 mL samples in each of two 15 mL polypropylene centrifuge tubes are used for the MS and MSD (if sludge samples are requested to be analyzed by dry weight, see Section 9.2.3). If another sample size is collected, a 5.0 mL aliquot is used as the sample and indicated in the data

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 21 of 70
	5/21/2017 11:02:20 10:0	1 donished	

solids. In that case, dry weights must be determined for sludge samples according to CRL SOP AIG019. The sample is then initially weighed (~ 5 g to the hundredth of a gram) instead of taken by volume, dependent upon the percent moisture.

9.3. Analytical procedure

9.3.1. Sample analysis procedure

Instrument conditions for LC/MS/MS are described in Section 9.4.3. The target compounds are identified by comparing the single reaction monitoring (SRM) transitions in the sample to the SRM transitions in the standards. A confirmatory transition is available for most of the analytes (Appendix Table 6). The retention time (RT) for the analytes of interest must also agree with the RT of the mid-level standard by \pm 5%. The target compounds are quantitated using the primary SRM transitions of the target compounds utilizing external calibration. As an additional quality control measure, fourteen isotopicallylabeled surrogate (listed in Section 7.2.4-7.2.5) recoveries are monitored; the percent recovery of each should fall within the control limits of the method (Appendix Table 2). Compounds from this SOP are reported to the RL, typically in ng/L.

If the absolute amount of a target compound in a sample exceeds the working calibration range (see Level 9 in Appendix Table 4), the sample must be diluted and re-analyzed. This should be done by diluting the sample with 50:50 methanol and water solution containing 0.1 % acetic acid.

9.3.2. Qualitative and quantitative analysis

9.3.2.1. The quantitation of the target analytes and surrogates is accomplished with QuanLynx[™] or TargetLynx[™] software. An external calibration is used along with fourteen isotopically-labeled surrogates (listed in Section 7.2.4-7.2.5). Refer to Appendix Table 6 for the MRM transitions and expected retention times. The quantitation method is set as an external calibration using the peak areas in ppt units (ng/L).

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$P_{acc} 22 of 70$
	3/21/2017 11:02:26 AM	Published	Page 23 of 70

9.3.2.4.

mixtures may be observed with analytes that have the possibility of containing isomeric mixtures. The complete isomer grouping shall be quantitated consistently for all samples. These differences for PFHxS and PFOS were found in groundwater samples and may either be the cause of different compositions used, weathering, degradation, or the affinity of the branched isomers to be more soluble than the linear in water and leach into the water from the soil at a higher rate than the linear.

Regression fits should exclude the point of origin (X=0, Y=0) and be weighted by 1/concentration in order to increase the accuracy of the curve at the lower concentrations. For linear regression to be used, the coefficient of determination, r^2 , should be > 0.98 for each analyte, and for quadratic regression, the r^2 should be > 0.99. Upon inspection of the calibration curves, if one of the calibration standard injections, other than the high or low, skews the curve such that the r^2 is unacceptable, this point must be re-injected and replaced in the calibration curve, or a new calibration curve must be made or the data may be reported estimated, "J", and explained in the narrative. If the low and/or high points are excluded, a sixpoint curve is acceptable for quadratic fit and five point for a linear fit, but the calibration range and reporting limits must be modified to reflect this change. Points can be dropped from both the high and/or the low end of the curve as long as the reporting range is adjusted accordingly. The calculated calibration level concentrations used to generate the curve should be $< \pm 30\%$ deviation from the concentration of the generated curve; if this is exceeded, a new calibration curve must be generated or the data reported must be qualified estimated, "J", with an explanation in the narrative accompanying the data.

9.3.2.5. The retention time window of the SRM transitions must be within 5% of the retention time of the analyte in a Level 4-6 calibration standard. If this is not true, the calibration curve needs to be reanalyzed to see if there was a shift in retention time during the analysis and the sample needs to be re-injected. If the retention time is still incorrect in the sample, the analyte is referred to as an unknown.

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 25 of 70

instrument to obtain a width of about 0.75 Da at half height for each peak. This can be done with low mass and high mass resolution settings for each quadrupole. The ion energies also need to be set in order to obtain adequate movement or sensitivity without affecting peak shape or increasing baseline. In order to obtain optimal results, all adjustable tune page settings will need to be optimized for the calibration solution at the infusion flow rate chosen by the analyst, usually a low flow rate < 20 \Box L/min. The following guidelines for calibrating shall be followed:

- 9.4.2.1. There should be no missed reference peaks. If there are missed reference peaks, something is wrong and the instrument either requires optimization of the tuning parameters, maintenance, or a new/different calibration solution.
- 9.4.2.2. The Maximum Mean of Absolute Residuals shall be ≤ 0.1 . If above this value, something is wrong and the instrument either requires optimization of the tuning parameters, maintenance, or a new/different calibration solution.
- 9.4.2.3. 'Apply span correction' and 'Check Acquisition calibration ranges' should both be checked.
- 9.4.2.4. Peak Match Parameters should set the Peak Window at 1 Da, Initial Error of 2 Da, Intensity Threshold of 0.1, Curve fit using a 3rd or 4th order polynomial over the calibration range, and the display shall be calibrated.
- 9.4.2.5. In regards to Mass Measure, 'background subtract' should be selected with a polynomial order of 1 and 33% Below Curve. Smoothing should be enabled with a Peak Width of 0.75 Da and the number of smooths set at 2; either the Mean or Savitzky Golay data smoothing filters may be selected. Mean is usually chosen. The minimum peak width at half height (channels) should be set at 4 based upon the top of the peak and height.
- 9.4.2.6. The Acquisition parameters should be set over the calibration range and at scan speeds the instrument is specified to achieve. The

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 27 of 70

is wise to analyze a blank after a concentrated sample and before a dilute sample to minimize carry-over of analytes from injection to injection. However, there should not be carry-over between samples; The H-Class UPLC[®] has a flow through LC needle design. The gradient conditions for liquid chromatography are shown in Table 7 (Appendix).

The sample compartment temperature is set at 15°C and the needle wash solvent is 60% acetonitrile/40% 2-propanol. Other needle wash solvents may be used, but it must be demonstrated that they adequately wash the needle between injections.

9.4.3.2. Mass spectrometer conditions

Variable parameters depending on analytes are shown in Table 8 (Appendix). The instrument is set in the Electrospray (-) negative source setting. The values for the following parameters are shown here for information purposes only. These conditions should be checked and optimized when required.

Capillary voltage: 0.65 kV Cone: Variable depending on analyte Source temperature: 150 °C Desolvation gas temperature: 425°C Desolvation gas flow: 800 L/hr Cone gas flow: 200 L/hr Collision gas flow: 0.15 mL/min Low mass resolution 1: 3.0 High mass resolution 1: 14.9 Ion energy 1:1 Entrance energy: 1 Collision energy: Variable, see Table 8 (Appendix) Exit energy: 1 Low mass resolution 2: 3.0 High mass resolution 2: 14.7 Ion energy 2: 2.3

Gain: 1.0

.

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 29 of 70

are qualified as estimated ('J'). A new calibration must be generated every 24 hours regardless of a passing CCC.

CAUTION: The CCC end calibration check must be prepared in a separate vial since the concentrations of some analytes have been observed to change once the LC vial cap is pierced.

9.4.5. Autosampler schedule/analytical sequence

Prepare a sequence that includes all calibration standards, QC samples, and field samples. The first sample to be analyzed is a reagent blank sample. The calibration standards levels are analyzed next along with the second source calibration check standard. The next samples to be analyzed should be in the following recommended sequence: reagent blank, method blanks, reporting limit checks, LCS/LCSD, diluted field samples, field samples, duplicates, MS/MSD, and CCC.

10. Quality Control

10.1. Demonstration of capability

- 10.1.1. An analyst must have an approved Analyst Demonstration of Capability (ADOC) prior to reporting data. See the CRL QMP for guidance and requirements regarding ADOCs.
- 10.1.2. MDL with P&A studies must be performed before an analytical SOP may be used and repeated for any major SOP revisions. See the CRL QMP for guidance and requirements regarding IDOCs. MDLs for this method are shown in Tables 1 and 9 (Appendix). No data is reported below the reporting limit for this SOP unless the customer requests.
- 10.1.3. Quality control acceptance criteria for P&As are shown in Table 2
 (Appendix, preliminary until a validation study is completed). These limits will be updated as more data is generated. For a precision and accuracy (P&A) study, at least 4 samples containing all the PFCs and surrogates at or near the level 6 concentration in Table 4 (Appendix) must be analyzed as replicates. These samples are then analyzed according to the method described in Section 9.

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 31 of 70

Refer to Section 9.4.4.3 for continuing calibration check QC criteria and qualification guidelines.

10.3.4. Surrogates

All samples are spiked with a surrogate standard spiking solution as described in Section 9.1. The percent recovery limits for each surrogate compound will be updated regularly based on historical laboratory control sample recovery data and will be based on a 99.7% confidence interval from $X\pm 3\Box$. The current acceptance criteria are shown in Table 2 (Appendix, preliminary until a validation study is completed).

There are fourteen surrogates for this analysis that monitor method performance in each sample. The isotopically-labeled surrogates represent the unlabeled native analytes. In addition, PFTreA and PFTriA are represented by MPFDoA, PFHpA is represented by MPFHxA, PFBS, PFPeS, and PFHpS are represented by MPFHxS, PFDS and PFNS are represented by MPFOS, PFPeA is represented by MPFBA, and FOSA is represented by MNMeFOSAA. The number of surrogates used may be determined by customer request and may be different than what is stated in this method.

For qualification guidelines concerning surrogate recovery, see CRL SOP GEN028.

10.3.5. Method blank and reagent blank samples

For every 20 field samples, at least two method blanks will be prepared in reagent water to investigate for contamination throughout sample preparation, extraction, and analysis. A reagent blank is prepared each day with a 50:50 methanol and water solution containing 0.1 % acetic acid for every 30 samples (or a batch) to investigate for system/laboratory contamination.

The concentration of target analytes in the blank shall be less than half the reporting limit or the associated data shall be qualified "K" for high bias due to blank contamination. Alternatively, the reporting limit in the associated field sample(s) can be raised to three times the blank contamination concentration. Since a quadratic fit is often used, the concentrations below the reporting limit

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	Page 33 of 70
·	3/21/2017 11:02:26 AM	Published	

9.1 to monitor spike accuracy and method performance in a sample matrix. The percent recovery limits for each target compound will be updated regularly based on historical LCS recovery data and will be based on a 99.7% confidence interval ($X \pm 3\Box$). Historical LCS recovery data will be used in order to keep the limits more restrictive. The current acceptance criteria are shown in Table 2 (Appendix).

If the laboratory has not received MS/MSD samples for site-specific matrix evaluation, this QC check is excluded.

For qualification guidelines concerning MS/MSD recovery, see CRL SOP GEN028.

Calculate the percent recovery of the spike (P) using Equation 2.

Equation 2

 $P\Box 100\Box ___SSR\Box SR$

SA

Where:

SSR = MS/MSD Spiked Sample Result

SR = Unspiked Sample Result

SA = Spike Concentration

P =Percent Recovery

10.3.9. Duplicate samples

For every 20 field samples, a duplicate sample will be prepared using a field sample matrix in order to evaluate reproducibility of the sample preparation and analysis procedure. The percent difference in the duplicate must be < 30%. If not, the native sample is qualified estimated, "J".

Calculate the percent difference (%D) using Equation 3.

Equation 3

$$calculated \ concentration - expected \ concentration$$

 $\%D = ___ \times 100$
 $expected \ concentration$

Title	OMODI OCRTI DECa in Water	CRL Document # OM021	Version # 1	
	OM021 OSRTI PFCs in Water	01021		
Effective Date		Status	Page 35 of 70	
	3/21/2017 11:02:26 AM	Published	1460 55 01 70	

- 11.2.3. Verify that all analytes have been properly identified and quantified in the chromatogram. Using software programs, manually integrate as necessary. The integration is recorded before and after in the MassLynx[™] software, clearly showing the before and after integration.
- 11.2.4. Review the calibration report for calibration outliers and make area corrections for any peaks that are improperly integrated. If corrections have been made, update the calibration file and regenerate a calibration report. Alternatively, re-analyze "nonconforming" calibration level(s) and repeat the above procedures.

NOTE: A valid calibration curve must be generated before field samples or batch QC can be analyzed.

- 11.2.5. If the initial calibration data are acceptable, generate the calibration report. Samples may be analyzed during the 24-hour period after the last calibration standard injection, ending with an injection at or near the midpoint of the calibration curve (CCC). After that 24-hour period is expired, a new calibration curve must be generated to continue analysis or the low, middle, and high points of the previous curve must be checked with newly prepared calibration standards and all three points must be within $\pm 10\%$ of the previous calibration curve's concentration in order to be utilized.
- 11.2.6. Generate quantitation reports for all samples. Generate the final report. If manual integrations were made, the QuanLynx Audit Report can be consulted showing the details of how, when, and why the peak was changed. The entire quantitation method is saved and archived.
- 11.2.7. Review the quantitation reports for all samples making sure all surrogate and target compounds have been properly quantitated. Check for integration errors. Delete any false positives. Be sure the blank sample data have been properly reviewed.
- 11.2.8. Verify that all spike compounds were present in the MS/MSD and LCS/LCSD sample quantitation reports. Investigate any differences in spike concentrations that are more than 30% different.

.

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 37 of 70

11.4.2.1. Once the batch is called up in Data Entry/Review, click Create to create a Data Entry table. If data is to be entered manually, click Save and proceed to Section 11.4.3. To merge data automatically, click DataTool.

- 11.4.2.2. Once in DataTool, click Browse and select the .xml file created earlier (see Section 11.2.9). If unneeded sample entries remain in the lower left-hand box, click Clear. Double-click on the desired .xml file and either Auto Select or highlight individual samples and click Include. Ensure that the File Type is set to 'Waters MassLynx HRMS (*.xml)'.
- 11.4.2.3. Once the samples and quality control samples are selected, click **Done** and it will return to the main DataTool page. Ensure that the appropriate cross table is loaded.
- 11.4.2.4. Click Merge Files. If either Unmatched Analytes or Unmatched Units appear in red, repair the cross table with the assistance, if necessary, of the Group Leader. Verify that the results in Initial Result are correct and click Save. Once saved, the data entry table will be populated with the instrument data. Proceed to Section 11.4.4.
- 11.4.3. When performing manual data entry, enter the results in the column IResult. Include the response in the Response column and the retention time in the RT column. For each result, enter the date of analysis in the column Analyzed. This column has a calendar feature as do other date fields in LIMS. If dilutions were necessary for the analysis, enter the dilution factor in the column Diln. The sample result should be the one measured and not corrected for the dilution factor. Verify that the correct information is present in the Analyst field and the Instrument field.
- 11.4.4. Once all data are entered, click the Save button to save the entered data to the LIMS database. After saving, proceed to the Review page and click Query. Lock the data. Verify that all conversions to reporting units and dilutions have been calculated correctly. Verify that reporting limits have been correctly

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	Page 39 of 70
	3/21/2017 11:02:26 AM	Published	

- 12.2.1. High "background" levels of undesired substances (contamination from earlier sample injections) which contribute additional abundance at the isotope mass. Bake out the ion source assembly and condition the column.
- 12.2.2. Resolution of adjacent masses set improperly/higher than normal ratios due to poor resolution (peaks too wide) or lower ratios due to over resolution (narrow peaks).
- 12.3. Symptom: poor reproducibility

Probable Causes:

- 12.3.1. Loose or intermittent connection either to a printed circuit or to one or more ion source or quadrupole elements inside the analyzer assembly.
- 12.4. Symptom: high background

Probable Causes:

- 12.4.1. Dirty or contaminated ion source, electron multiplier, or quadrupole rod surfaces.
- 12.4.2. "Yesterday's" samples There is the possibility that some previously injected sample can still be present in the vacuum system long after it was thought to be evacuated. This phenomenon depends on sample volatility, temperature, etc.
- 12.4.3. Contamination in a recently cleaned vacuum system After any venting of a vacuum system for maintenance, there is the potential for introducing new substances into the vacuum system. Some substances are normal and can be pumped out, while others require more cleaning or baking.
 - 12.4.3.1. Solvents used in the cleaning process These will be present for a while but should be pumped out as heat is applied to the vacuum system.
 - 12.4.3.2. Water absorbed on the metal surfaces while vented This will pump out with heat.
 - 12.4.3.3. "Fingerprints" Heavy organic substances from inadequate clean room procedures may not be pumped out and may require source cleaning.

12.5. Symptom: mass spectrometer does not respond

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$\mathbf{D}_{\mathbf{n}} = 41 \circ \mathbf{f} = 70$
	3/21/2017 11:02:26 AM	Published	Page 41 of 70

15. Revision History

Description of changes only summarize significant changes. Minor changes not recorded in the revision history include, but are not limited to, addition of general information, correcting grammar, spelling, formatting, section changes, or re-wording for clarity that does not affect the meaning.

Version	Status	Location and Description of Significant Modifications
1	I	This document is first version of SOP for analysis of Expanded PFCs of Interest to OSRTI.
T _ T. '4'-1		

I = Initial

APPENDIX

<u>APPENDIX</u> <u>Item</u> Table 1	<u>Title</u> Method Parameters	<u>Revision #</u> 1	Date Revised August 2016
Table 2	Quality Control Acceptance Criteria	1	August 2016
	and Uncertainty		
Table 3	Target Analyte Spiking Solutions	1	August 2016
Table 4	Concentrations of Calibration Standards	1	August 2016
Table 5	Preparation of Calibration Standards	1	August 2016
Table 6	Retention Times and MRM Ions	1	August 2016
Table 7	Gradient Conditions for	1	August 2016
	Liquid Chromatography		
Table 8	Variable Mass Spectrometer	1	August 2016
•	Parameters Depending on Analyte		
Table 9	MDL Study	1	August 2016
Tables 10a-d	P&A Study in Sewage Treatment Plant I	1	August 2016
	Effluent		

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	D_{acc} 42 of 70
	3/21/2017 11:02:26 AM	Published	Page 43 of 70

PFNS	1.4	10 - 400
PFOA	1.7	10 - 400
PFHpS	2.5	10 - 400
PFHxS	1.2	10 - 400
PFHpA	1.0	10 - 400
PFHxA	2.0	10 - 400
PFBS	0.8	10 - 400
PFPeS	1.3	10 - 400
PFPeA	4.6	50 - 2000
PFBA	4.6	50 - 2000
FOSA	1.6	10 - 400
4:2 FTS	1.5	10 - 400
6:2 FTS	1.6	10 - 400
8:2 FTS	2.7	10 - 400
NEtFOSAA	· 1.1	10 - 400
NMeFOSAA	1.9	10 - 400

MDLs and RLs were determined from the IDOC performed on LC/MS/MS #3 analyzed in August 2016 (LIMS work order # 1701020, Qualtrax workflow ID #9595). This SOP is for use with LC/MS/MS #2 and #3.

Table 2. Quality Control Acceptance Criteria and Uncertainty

.

				`·····································
Average Recovery (%)	Standard Deviation (%)	# of Replicates (n)	Lower Control Limit (LCL) %	Upper Control Limit (UCL) %
100	15.6	102	70	130
103	8.4	102	70	130
100	9.9	102	70	130
99.8	6.6	102	70	130
97.7	5.6	102	70	130
101.4	2.7	6	70	130
97.3	6.4	102	70	130
96.4	5.0	102	70	130
	Recovery (%) 100 103 100 99.8 97.7 101.4 97.3	Recovery (%) (%) 100 15.6 103 8.4 100 9.9 99.8 6.6 97.7 5.6 101.4 2.7 97.3 6.4	Recovery (%) (%) (n) 100 15.6 102 103 8.4 102 100 9.9 102 99.8 6.6 102 97.7 5.6 102 101.4 2.7 6 97.3 6.4 102	Recovery (%) (%) (n) Limit (LCL) % 100 15.6 102 70 103 8.4 102 70 100 9.9 102 70 99.8 6.6 102 70 97.7 5.6 102 70 101.4 2.7 6 70 97.3 6.4 102 70

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 45 of 70

M8:2 FTS*	107.3	7.8	17	70	130
MNEtFOSAA*	111	3.8	17	70	130
MNMeFOSAA*	103.9	2.1	17	70	130

Laboratory control sample recovery statistics were calculated in August 2016 from historical LCS QC samples analyzed between July 2014 and August 2016, unless otherwise noted. This SOP is for use with LC/MS/MS #2 and #3.

*Laboratory control sample recovery statistics for these analytes were calculated in August 2016 from LCS QC samples analyzed in August 2016 as part of the IDOC performed on LC/MS/MS #3 (LIMS work order # 1701020, Qualtrax workflow ID #9595).

Table 3. Target Analyte Spiking Solutions

	Concentration	of Analyte in PFC T	arget Spike Solutions
Analyte	PFC High Targe	et Spike Solutions	PFC Reporting Limit
	Target Spike I	Target Spike II	Spike Solution
PFTreA, PFTriA, PFDoA, PFUnA, PFDA, PFOS, PFNA, PFHxA, PFHpA, PFBS, PFOA, PFHxS	20 μg/L	-	2 μg/L
PFBA, PFPeA	100 µg/L	-	10 µg/L
4:2 FTS, 6:2 FTS, 8:2 FTS, PFDS, PFNS, PFPeS, PFHpS, FOSA, N- MeFOSAA, NEtFOSAA	-	20 μg/L	2 μg/L

Table 4. Concentrations of Calibration Standards*

Analyte (Concentrations in ppt)	LV1	LV2	LV3	LV4	LV5	LV6	LV7	LV8	LV9
PFPeA, PFBA	25	50	100	200	300	400	500	750	1000

4. Martin

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 47 of 70

	Confirmatory	512.90219 [.]		
	Primary	00000000000		
PFDS	Confirmatory	ممحموموموم	9.8	1.2
	Primary	498.9080.1		
PFOS	Confirmatory	498.9□99.1	8.78	1.3
	Primary	462.90418.9		
PFNA	Confirmatory	462.90219	7.78	4.9
······································	Primary	000000000000000		
PFNS	Confirmatory	000000000000000	9.2	1.2
· ·	Primary	412.90369		
PFOA	Confirmatory	412.9□169	7.11	3.6
	Primary	000000000000000000000000000000000000000	- ^ -	
PFHpS	Confirmatory	00000000000000000	7.95	1.3
· · · · · · · · · · · · · · · · · · ·	Primary	· 398.9D80.1	- + 2	
PFHxS	Confirmatory	398.9099.1	7.39	1
	Primary	362.90319		
PFHpA	Confirmatory	362.9□169	6.35	4.1
	Primary	312.90269		
PFHxA	Confirmatory	312.90119.1	5.54	24.1
	Primary	298.9080.1		
PFBS	Confirmatory	298.9□99.1	5.66	1.6
Analyte	Primary/Confirmatory	MRM Transition	Retention Time (Minutes)	Primary/ Confirmatory SRM Area Ratio
PFPeA	Primary	2630219	4.68	NA
	Primary			
PFPeS	Confirmatory	00000000000	6.4	. 1.4
PFBA	Primary	212.90169	3.67	NA

`

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 49 of 70

		% Solvent Line A	% Solvent Line B	% Solvent Line C
Time (min)	Flow (mL/min)	95% Water : 5% Acetonitrile	Acetonitrile	400mM Ammonium Acetate (95% Water : 5% Acetonitrile)
0	0.3	95	0	5
1	0.3	75	20	5
6 .	0.3	50	45	5
13	0.3	15	80	5
14	0.4	· 0	95	5
17	0.4	0	95	5
18	0.4	95	0	5
21	0.4	95	0	5

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$\mathbf{D}_{acc} = 51 \text{ of } 70$
	3/21/2017 11:02:26 AM	Published	Page 51 of 70

		······································	1	
PFHpA	Primary	362.90319	15	10
ггпрА	Confirmatory	362.90169	15	15
	Primary	312.90269	15	8
PFHxA	Confirmatory	312.90119.1	15	18
	Primary	298.9080.1	10	30
PFBS	Confirmatory	298.9099.1	10	25
PFPeA	Primary	263□219	10	8
Analyte	Primary/Confirmatory	MRM Transition	Cone (V)	Collision Energy (eV)
	Primary	000000000000	15	34
PFPeS	Confirmatory	00000000000	15	30
PFBA	Primary	212.90169	10	8
· · · · · · ·	Primary	000000000	10	20
4:2 FTS	Confirmatory	םםםםםםםםם	10	24
	Primary	مومومومومو	10	22
6:2 FTS	Confirmatory	0000000000	10	30
0.0.7070	Primary	000000000000000	10	26
8:2 FTS	Confirmatory	00000000000	10	34
	Primary		15	20
N-MeFOSAA	Confirmatory		15	16
	Primary	000000000	15	20
N-EtFOSAA	Confirmatory	000000000000	15	16
FOSA	Primary	00000000000000000	15	28
MPFBA	Primary	2170172.1	10	7
MPFHxA	Primary	3150270	15	8
MPFHxS	Primary	402.9084.1	15	. 34
MPFOA	Primary	417□372	15	10

-

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$P_{acc} 52 \circ f 70$
	3/21/2017 11:02:26 AM	Published	Page 53 of 70

PFHpA	6	6.28	90.3	6.28	0.34	1.0
PFHxA	6	5.22	87	13.4	0.70	2.0
PFBS	6	6.50	108	4.16	0.27	0.8
PFPeS	6 ·	6.83	114	6.34	0.43	1.3
PFPeA	30	31.60	105	5.07	1.61	4.6
PFBA	30	34.60	115	4.58	1.59	4.6
FOSA	6	7.17	119	7.73	0.55	1.6
4:2 FTS	6	6.35	106	8.21	0.52	1.5
6:2 FTS	6	5.89	98.2	9.6	0.57 .	1.6
8:2 FTS	6	5.70	94.9	16.6	0.95	2.7
NEtFOSAA	. 6	7.54	126	4.98	0.38	1.1
NMeFOSAA	6	6.93	116	9.39	0.64	1.9

*MDL values are reported below the reporting limit and lowest point of the calibration curve; they are estimated concentrations because they are not bracketed by calibration points.

MDLs were determined from the IDOC performed on LC/MS/MS #3 analyzed in August 2016 (LIMS work order # 1701020, Qualtrax workflow ID #9595). This SOP is for use with LC/MS/MS #2 and #3.

Tables 10a-d. P&A Study in Sewage Treatment Plant I Effluent

Table 10a. Precision and accuracy study for PFACs in Sewage Treatment Plant I (Effluent

Sample	Treatment Plant I (Effluent Sample) Measured ng/L from 160 ng/L spike for all PFCAs except PFBA and PFPeA (800 ng/L)												
	PFTreA	PFTriA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPeA	PFBA		
Unspiked 1	<rl< td=""><td>11.62</td><td><rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>11.48</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<></td></rl<>	11.62	<rl< td=""><td><rl.< td=""><td><rl< td=""><td><rl< td=""><td>11.48</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<></td></rl<>	<rl.< td=""><td><rl< td=""><td><rl< td=""><td>11.48</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl.<>	<rl< td=""><td><rl< td=""><td>11.48</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>11.48</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	11.48	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>		
Unspiked 2	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>11.16</td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	11.16	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>		
P&A1	175.7	139.5	147.7	145.4	143.8	142.5	139.4	98.8	96.7	673.3	510.8		
P&A2	177.6	143:5	149.1	145.4	144.7	138.6	136.0	99.8	99.6	680.8	549.8		
P&A3	169.2	141.9	142.1	143.2	138.0	138.8	134.3	98.4	96.4	672.5	517.3		
P&A4	158.1	137.3	147.4	141.8	138.9	134.9	134.7	97.7	95.4	668.0	501.0		
Average Conc. (ng/L)	170.2	140.5	146.6	143.9	141.3	138.7	136.1	98.7	97.0	673.6	519.7		
% Average Recovery	106.4	87.8	91.6	90.0	88.3	86.7	85.1	61.7	60.6	84.2	65.0		

· ·

CRL Document #	Version # 1
OM021	
Status Published	Page 55 of 70
	OM021 Status

Table 10d. Precision and accuracy study for PFCs in Sewage Treatment Plant IV (Effluent Sample) Stickney, IL POTW (Effluent Sample)

									• •					
Sample		Measured ng/L from 160 ng/L spike												
	PFBS	PFH1S	PFOS	PFDS	PFNS	PFH pS	PFPeS	FOSA	4:2 FTS	6:2 FTS	8:2 FTS	N-ET FOSAA	N-MeFOSAA	
Unspiked }	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Unspiked 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Spiked 1	138	147	146	151	148	142	143	150]4]	147	159	158	153	
Spiked 2	127	134	140	144	146	142	139	146	133	141	148	150	143	
Spiked 3	134	142	148	143	144	143	133	143	134	139	151	15]	148	
Spiked 4	140	143	150	151	153	148]44	152	146	149	155	159	151	
Spiked 5	136	146	147	151	149	146	140	151	139	141	154	154	150	
Spiked 6	140	142	149	149	151	151	141	148	140	145	167	148 .	158	
Average Recovery (ag/L)	136	142	147	148	148	145	140	148	139	144	156	153	150	
% Average Recovery	84.7	88.8	91,7	92.7	92.8	90.8	87.5	92.7	86,8	89.8	97.2	95,8	94.0	
Standard Deviation	4.98	4.74	3.76	3.59	3.30	3,51	3.81	3.41	4.78	3.96	6.48	4,75	· 4,93	
RSD (%)	3.67	3.33	2,56	2.42	2.22	2.42	2.72	2.30	3.44	2.76	4.17	3,10	3.28	

Tables 11a-d. P&A Study in Sewage Treatment Plant I Influent

Т

Sample	Treatment Plant I (Influent Sample) P&A Data (160 ng/L spike for all PFCAs except PFBA and PFPeA (800 ng/L)												
	PFTreA	PFTriA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPeA	PFBA		
Unspiked 1	<rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>		
Unspiked 2	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	. <rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>		
P&A1	180.4	156.4	146.6	146.7	144.0	143.3	144.6	98.0	93.9	64,8.6	511.2		
P&A2	167.2	153.4	140.8	141.0	141.8	139.0	142.2	96.8	91.4	629.6	497.7		
P&A3	186.3	157.3	148.7	146.6	143.1	143.6	144.8	97.4	93.8	639.9	509.4		
P&A4	166.9	156.5	145.3	148.6	144.4	146.8	144.9	97.7	93.7	651.1	516.8		
Average Conc. (ng/L)	175.2	155.9	145.4	145.7	143.3	143.2	144.1	97.5	93.2	642.3	508.8		
% Average Recovery	109.5	97.4	90.8	91.1	89.6	89.5	90.1	60.9	58.3	80.3	63.6		
Sample		P&A	Data (160	Treati ng/L spike			ent Samplept PFBA	*	A (800 ng/I	.) .)			
	PFTreA	PFTriA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPeA	PFBA		
Standard Deviation	9.7	1.7	3.3	3.3	1.2	3.2	1.3	0.5	1.2	9.8	8.0		
RSD (%)	5.5	1.1	2.3	2.2	0.8	2.2	0.9	0.5	1.3	1.5	1.6		

Table 11a. Precision and accuracy study for PFACs in Sewage Treatment Plant I (Influent Sample)

Table 11b. Precision and accuracy study for PFAS in Sewage Treatment Plant I (Influent Sample)

.

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 57 of 70

	PFBS	PFBIIS	PFOS	PFDS	PFNS	PFHpS	PFPcS	FOSA	4:2 FTS	6:2 FTS	8:2 FTS	N-ET FOSAA	N-McFOSAA
Unspiked 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	17.8	ND	ND	ND
Unspiked 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	18.2	ND	ND	ND
Spiked 1	139	146	150	144	143	140	140	128	153	146	149	154	153
Spiked 2	144	141	152	143	150	142	143	128	151	145	162	153	157
Spiked 3	152	153	158	139	148	149	145	130	156	146	164	156	155
Spiked 4	138	143	141	146	142	145	136	127	150	143	155	145	155
Spiked 5	156	. 153	158	149	151	151	151	132	167	158	163	163	163
Spiked 6	140	148	154	146	147	145	143	126	148	142	151	152	159
Average Recovery (ng/L)	145	147	152	144	147	145	143	129	154	146	157	154	157
% Average Recovery	90.5	92.1	95.I	90.3	91.8	90.8	89.4	80.4	96.4	91.5	98.4	96.2	98.0
Standard Deviation	7.30	4.86	6.13	3.59	3.63	4.03	4.80	2.10	6.82	5,87	6.42	5.71	3,57
RSD (%)	5,05	3,30	4.03	2,48	2.47	2.78	3.35	1,63	4.42	4.01	4,08	3.71	2.28

Tables 12a-d. P&A Study in Chicago River Water

Table 12a. Precision and accuracy study for PFACs in Chicago River
--

Sample		Chicago River Water Measured ng/L from 160 ng/L spike for all PFCAs except PFBA and PFPeA (800 ng/L)												
	PFTreA	PFTriA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPeA	PFBA			
Unspiked 1	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>11.44</td><td><rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	11.44	<rl< td=""><td>9.54*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	9.54*	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>			
Unspiked 2	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>. <rl< td=""><td><rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>. <rl< td=""><td><rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	. <rl< td=""><td><rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>11.4</td><td><rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	11.4	<rl< td=""><td>9.5*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	9.5*	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>			
P&A1	142.0	146.4	149.1	145.7	142.5	146.9	145.4	96.5	89.5	691.1	517.4			
P&A2	143.8	149.7	157.5	150.6	153.0	154.9	147.5	100.5	91.4	708.4	530.4			
P&A3	138.0	144.6	147.9	147.8	150.0	152.8	136.4	99.1	90.7	697.7	551.9			
P&A4	147.7	143.4	152.6	149.3	150.9	147.5	137.4	98.7	89.4	681.7	535.4			
P&A5	160.7	160.7	153.7	149.1	145.7	153.2	145.8	102.3	90.7	706.3	547.8			
P&A6	150.6	144.7	148.5	142.2	139.5	144.4	135.4	97.1	87.8	695.1	529.1			
Average Conc. (ng/L)	147.1	148.3	151.6	147.5	146.9	150.0	141.3	99.0	89.9	696.7	535.3			
% Average Recovery	92.0	92.7	94.7	92.2	91.8	93.7	88.3	61.9	56.2	87.1	66.9			
Standard Deviation	8.0	6.5	3.7	3.1	5.3	4.2	5.5	2.2	1.3	9.9	12.7			
RSD (%)	5.4	4,4	2.5	2.1	3.6	2.8	3.9	2.2	1.4	1.4	2.4			

NOTE: P&A concentration for each analyte are values after subtracting average of the Unspiked samples if \Box RL. *Slightly below Reporting Limit

Table 12b. Precision and accuracy study for PFAS in Chicago River Water

Sample	0	Chicago River Water Measured ng/L from 160 ng/L spike							
Sumpro	PFBS	PFHxS	PFOS						
Unspiked 1	<rl< td=""><td><rl< td=""><td>10.34</td></rl<></td></rl<>	<rl< td=""><td>10.34</td></rl<>	10.34						

Title	OM021 OSRTI PFCs in Water	CRL Document # OM021	Version # 1
Effective Date	3/21/2017 11:02:26 AM	Status Published	Page 59 of 70

						Mea	sared ng/L fi		spîke				
	PFBS	PFH _x S	PFOS	PFDS	PFN\$	PFHpS	PFPeS	FOSA	4:2 FTS	6:2 FTS	8:2 FTS	N-ET FOSAA	N-MeFOSAA
Unspiked 1	ND	ND	13.9	ND	ND	ND	ND	ND	. ND	ND	ND	ND	ND
Unspiked 2	ND	NÐ	16.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Spiked 1	143	165	157	172	164	166	160	150	155	150	172	167	157
Spiked 2	152	170	162	177	176	167	162	150	158	170	172	179	163
Spiked 3	155	165	163	178	172	170	163	151	160	165	172	163	158
Spiked 4	150	167	169	175	172	170	165	148	153	160	170	163	156
Spiked 5	146	161	162	172	168	165	160	147	153	164	172	171	157
Spiked 6	150	163	169	176	170	165	161	153	154	167	175	173	157
Average Recovery (ng/L)	149	165	163	175	170	167	162	150	156	163	172	169	158
% Average Recovery	93.4	103	102	109	106	104	101	93.6	97.2	102	108	106	98.6
Standard Deviation	4,09	3.25	4.56	2.28	3.97	2.39	1.86	2.13	2.85	7.17	L.76	6,32	2.62
RSD (%)	2,74	1.97	2.79	1.30	2.33	1,43	1.15	1.42	1.83	4.40	1.02	3.73	1.66

Tables 13a-b. <u>P&A Study in Sewage Treatment Plant II (Effluent with Supplemental Sewage)</u>

<u> </u>	Sewage)													
Sample		Treatment Plant II (Effluent with Supplemental Sewage) Measured ng/L from 160 ng/L spike for all PFCAs except PFBA and PFPeA (800 ng/L)												
	PFTreA	PFTriA	PFDoA	PFUnA	PFDA	PFNA	PFOA	PFHpA	PFHxA	PFPeA	PFBA			
Unspiked 1	13.1	9.7*	40.1	26.6	60.6	26.2	30.8	<rl< td=""><td>9.3*</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	9.3*	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>			
Unspiked 2	12.8	10.6	39.7	24.8	55.9	27.7	33.5	<rl< td=""><td>10.6</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	10.6	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>			
P&A1	181.9	160.0	165.5	156.3	140.2	139.3	136.1	98.7	85.0	668.9	552.8			
P&A2	171.8	154.3	165.8	149.1	132.3	139.1	136.5	100.8	88.2	657.7	537.3			
P&A3	155.0	149.3	153.0	144.8	137.1	136.9	133.9	95.6	85.1	646.3	543.9			
P&A4	144.1	147.8	154.0	144.0	143.0	138.1	136.2	98.4	85.7	644.0	540.1			
P&A5	153.7	146.0	150.9	142.8	133.0	134.4	123.2	94.2	82.3	623.4	533.9			
P&A6	160.6	164.8	171.2	161.8	157.0	151.7	149.2	107.6	94.2	695.5	579.4			
Average Conc. (ng/L)	161.2	153.7	160.1	149.8	140.4	139.9	135.8	99.2	86.7	656.0	547.9			
% Average Recovery	100.7	96.1	100.0	93.6	87.8	87:5	84.9	62.0	54.2	82.0	68.5			
Standard Deviation	13.7	· 7.4	8.5	7.7	9.1	6.0	8.3	4.7	4.1	24.6	16.7			
RSD (%)	8.5	4.8	5.3	5.1	6.5	4.3	6.1	4.8	4.7	3.8	3.1			

Table 13a. Precision and accuracy study for PFCs in Sewage Treatment Plant II (Effluent with Supplemental Sewage)

NOTE: P&A concentration for each analyte are values after subtracting average of the Unspiked samples if \Box RL. The samples were extracted under basic conditions.

*Slightly below Reporting Limit

Table 13b. Precision and accuracy study for PFAS in Sewage Treatment Plant II (Effluent with

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$D_{res} (1 + f.70)$
	3/21/2017 11:02:26 AM	Published	Page 61 of 70

P&A4	142.8	142.0	153.8	144.7	142.8	145.2	137.1	102.0	86.6	636.2	874.3
P&A5	151.8	141.3	149.3	151.7	144.6	150.5	151.6	104.3	95.2	675.2	1155.3
P&A6	163.5	149:3	152.8	148.2	137.4	141.1	139.5	101.5	88.8	658.8	1243.5
Average Conc. (ng/L)	141.9	140.7	147.4	146.2	135.8	141.8	140.8	100.7	88.9	651.8	1037.2
% Average Recovery	88.7	87.9	92.1	91.4	84.9	88.6	88.0	62.9	55.6	81.5	129.6
Standard Deviation	14.2	5.5	10.5	3.6	13.6	5.9	5.4	3.6	5.0	22.0	- 285.0
RSD (%)	10.0	3.9	7.1	2.4	10.0	4.1	3.9.	3.6	5.6	3.4	27.5

NOTE: P&A concentration for each analyte are values after subtracting average of the Unspiked samples if \Box RL. The samples were extracted under basic conditions.

Table 14b. Precision and accuracy study for PFAS in Sewage Treatment Plant III (Effluent with	
Supplemental Sewage)	

Sample	Treatment Plant III (Effluent with Supplemental Sewage) Measured ng/L from 160 ng/L spike							
<u>k</u>	PFBS	PFHxS	PFOS					
Unspiked 1	20.7	<rl< td=""><td>222.3</td></rl<>	222.3					
Unsoiked 2	24.1	<rl< td=""><td>175.6</td></rl<>	175.6					
P&A1	140.0	147.3	130.7					
Sample		III (Effluent with Suppl red ng/L from 160 ng/L						
	PFBS	PFHxS	PFOS					
P&A2	138.0	138.2	145.2					
P&A3	149.5	151.2	107.9					
P&A4	138.9	154.5	127.1					
P&A5	153.5	157.5	147.5					
P&A6	143.8	156.0	150.9					
Average Conc. (ng/L)	143.9	150.8	134.9					
% Average Recovery	90.0	94.2	84.3					
Standard Deviation	6.3	7.2	16.3					
RSD (%)	4.4	4.8	12.1					

NOTE: P&A concentration for each analyte are values after subtracting average of the Unspiked samples if \Box RL. The samples were extracted under basic conditions.

Tables 15a-b. P&A Study in Lake Water

Table 15a. Precision and accuracy study for PFCs in Lake Water

	Lake Michicgan Water
Sample	

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	Daga (2 of 70
	3/21/2017 11:02:26 AM	Published	Page 63 of 70

÷									<u>.</u>		
Spiked 3	146	153	154	148	147	155	149	148	152	737	537
Spiked 4	147	153	152	. 146	145	152	140	· 143	153	735	466
Spiked 5	149	154	156	149	150	154	148	. 148	153	742	531
Spiked 6	153	161	158	· 151	149	156	144	148	157	797	553
Average Recovery (ng/L)	150	. 157	156	150	149	155	145	148	154	755	527
% Average Recovery	93.6	98.0	97.3	93.8	93.3	96.6	90.8	92.5	96.5	94.4	65.8
Standard Deviation	3.46	. 4.96	3.29	3.53	4.63	1.93	3.80	2.50	3.45	24.7	30.7
RSD (%)	2.31	3.16	2.12	2.35	3.10	1.25	2.62	1.69	2.24	3.27	5.83

						Ð	omer Glen, U	. Ground W	aier				
Sample	Measured ug/L from 160 ng/L spike												
	PFBS	PFH _x S	PFOS	PFDS	PFNS	PFHpS	PFPeS	FOSA	4:2 FTS	6:2 FTS	8:2 FTS	N-ET FOSAA	N-McFOSAA
Unspiked 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Unspiked 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND
Spiked 1	163	160	168	171	165	165	160	150	160	163	175	170	161
Spiked 2	157	161	159	166	168	161	158	148	150	162	163	170	158
Spiked 3	157	157	162	162	165	160	152	144	150	152	162	164	151
Spiked 4	156	160	164	156	162	158	149	149	149	147	163	158	151
Spiked 5	158	161	163	165	166	169	155	148	154	157	168	171	160
Spiked 6	159	164	163	168	164	164	152	146	149	153	163	167	154
Average Recovery (ng/L)	158	160	163	165	165	163	1.55	148	152	156	166	167	156
% Average Recovery	98.9	100	102	103	103	102	96.6	92,3	95.0	97.3	104	104	97.4
Standard Deviation	2.61	2.27	2.84	5.11	2.02	4.06	4,18	2.12	4.44	6.07	4.88	4.85	4,45
RSD (%)	1.65	1.42	1.74	3.10	1.22	2.49	2.70	1.43	2.92	3.90	2.95	2.91	2,85

Tables 17a-j. <u>Surrogate Recoveries for P&A Study</u>

Table 17a. Surrogate recoveries for precision and accuracy stu	tudy in Treatment Plant I (Effluer	it Sample)
--	------------------------------------	------------

Sample	Treatment Plant I (Effluent Sample – 160 ng/L spike)											
зашрю	MPFBA	MPFHxA	MPFHxS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFDoA			
Unspiked 1	151.6	152.7	154.8	150.6	147.5	158.1	158.1	157.2	161.9			
Unspiked 2	139.0	147.4	145.7	143.4	148.8	152.3	149.3	154.5	157.0			
P&A1	133.9	152.4	155.1	148.8	150.2	151.4	151.2	154.7	155.2			
P&A2	142.8	152.4	152.5	144.7	153.7	149.4	153.8	151.5	158.1			
P&A3	136.3	149.2	. 149.5	147.0	149.4	148.5	145.5	151.4	153.6			
P&A4	137.4	149.9	152.9	146.4	149.4	149.1	150.6	155.6	155.3			
Average Conc. (ng/L)	140.1	150.7	151.8	146.8	149.8	151.5	151.4	154.2	156.8			
Sample		Treatment Plant I (Effluent Sample – 160 ng/L spike)										

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	Daga (5 of 70
	3/21/2017 11:02:26 AM	Published	Page 65 of 70

P&A 6	151.6	167.4	168.7	165.0	163.2	165.8	164.6	168.6	168.2	
Average Conc. (ng/L)	146.0	161.6	162.3	158.5	158.3	159.6	159.8	162.9	. 162.8	
% Average Recovery	91.3	101.0	101.4	99.0	98.9	99.8	99.9	101.8	101.7	
Sample	Chicago River Water - 160 ng/L spike									
	MPFBA	MPFHxA	MPFHxS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFDoA	
Standard Deviation	5.3	5.5	7.7	6.0	5.6	8.8	5.5	5.1	6.5	
RSD (%)	3.6	3.4	4.7	3.8	3.5	5.5	3.4	3.1	4.0	

Table 17d. Surrogate recoveries for precision and accuracy study in Sewage Treatment Plant II (Effluent with Supplemental Sewage)

Sample	Treatment Plant II (Effluent with Supplemental Sewage – 160 ng/L spike)									
	MPFBA	MPFHxA	MPFHxS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFDoA	
Unspiked 1	143.0	148.9	153.1	149.5	156.7	161.5	157.2	165.8	176.2	
Unspiked 2	149.5	152.8	160.7	159.1	161.0	163.7	160.6	166.2	175.0	
P&A1	138.7	145.5	150.3	148.6	151.1	158.8	151.2	158.3	175.2	
P&A2	132.4	142.3	151.9	144.4	152.0	152.1	148.7	156.4	167.7	
P&A3	127.3	137.4	150.4	141.6	144.8	146.5	150.4	150.1	163.5	
P&A4	131.1	142.3	143.6	139.1	145.3	147.2	144.3	155.0	167.0	
P&A5	128.4	136.3	148.5	140.7	143.7	145.5	144.9	152.7	165.2	
P&A6	141.5	145.4	157.8	150.5	158.2	159.8	155.5	166.5	170.8	
Average Conc. (ng/L)	136.5	143.9	152.1	146.7	151.6	154.4	151.6	158.9	170.1	
% Average Recovery	85.3	89.9	95.0	91.7	94.7	96.5	94.8	99.3	106.3	
Standard Deviation	7.9	5.5	5.3	6.6	6.6	. 7.4	5.8	6.5	4.9	
RSD (%)	5.8	3.8	3.5	4.5	4.4	4.8	3.8	4.1	2.9	

Table 17e. Surrogate recoveries for precision and accuracy study in Sewage Treatment Plant III (Effluent with Supplemental Sewage)

Г

Sample	Treatment Plant III (Effluent with Supplemental Sewage – 160 ng/L spike)									
	MPFBA	MPFHxA	MPFHxS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFDoA	
Unspiked 1	136.1	144.9	147.7	149.4	151.2	152.6	150.8	162.4	170.5	
Unspiked 2	142.5	146.6	150.2	144.6	150.1	155.9	149.1	150.6	163.7	

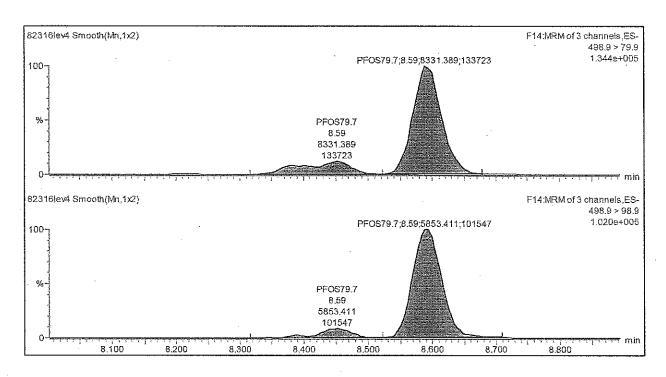
.

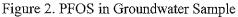
TitleCRL Document #
OM021 OSRTI PFCs in WaterVersion # 1Effective DateStatus
PublishedPage 67 of 70

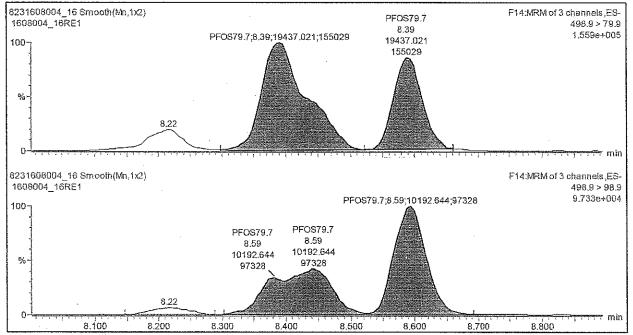
Standard Deviation	5.29	6,59	5.54	6.03	4.52	4.65	4.09	5,54	3.34	8.19	5.91	7.02	6.16	4.62
RSD (%)	7.22	4,38	3.67	4.01	2.88	3.19	2.67	3.76	2.27	5.59	3.95	4.55	3.94	2.92

Table 17h. Surrogate recoveries for precision and accuracy study in Ground Water

-					Surrogan	rs - Homer G	ien, IL Grou	id Water (Gri	oupd Water i	Sample – 160	ug/L spike)			,
Sample				<u> </u>						····				.
	MPFBA	MPFHXA	MPFHIS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFDoA	M4:2 FTS	M6:2 FTS	M8:2 FTS	MN-ET FOSAA	MN-MeFOSAA
Unspiked 1	119	156	163	155	156	171	154	159	155	156	153	160	176	166
Unspiked 2	113	355	164	154	154	170	160	158	158	158	164	172	171	170
Spiked 1	107	152	161	151	154	167	157	154	157	156	161	163	176	161
Spiked 2	116	152	167	154	153	172	157	158	158	162	161	185	177	167
Spiked 3	114	152	161	151	153	166	152	154	153	158	158	167	170	· 159
Spiked 4	104	147	158	151	147	164	150	151	151	156	153	167	165	155
Spiked 5	113	156	169	156	158	176	156	159	158	158	157	176	176	163
Spiked 6	113	154	159	158	156	173	156	154	157 -	160	158	170	180	166
Average Recovery (ng/L)	112	153	163	154	154	170	155	156	156	158	158	170	174	163
% Average Recovery	70.1	95.7	102	96.1	96.1	106	97.0	97.5	97.4	98.7	98.8	106	109	102
Standard Deviation	4,76	2.78	3.80	2.69	3.17	3.96	3.10	2.97	2.63	2.03	3.81	7.81	4.87	4.77 ·
RSD (%)	4.24	1.82	2.33	1.75	2.06	2.33	2.00	1.90	1.69	1.28	2.41	4.59	2.80	2.92


Table 17i. Surrogate recoveries for precision and accuracy study in Lake Water


	Snrrogales - Lake Michigan Water (Lake Water Sample – 160 ng/L spike)													
Sample														
	MPFBA	MPFHrA	MPFH ₂ S	MPFOA	MPFNA	MPFOS	MPFDA	MPFUnA	MPFD ₀ A	M4:2 FTS	M6:2 FTS	M8:2 FTS	MN-ET FOSAA	MN-McFOSAA
Unspiked I	107	148	158	150	152	169	157	154	158	150	155	168	182	167
Unspiked 2	112	158	173	161	162	183	164	163	165	155	163	167	192	175
Spiked I	112	154	163	155	159	172	157	161	160	166	168	178	173	168
Spiked 2	81.3	151	162	154	156	171	160	158	159	155	165	171	176	169
Spiked 3	102	152	164	155	155	171	156	155	158	160	162	180	173	167
Spiked 4	106	148	164	156	156	174	157	160	163	159	164	179	179	164
Spiked 5	112	153	163	156	152	169	154	154	156	160	163	27 ו	168	162
Spiked 6	71.1	137	155	149	148	167	145	150	155	348	154	164	182	165
Average Recovery (ng/L)	100	150	163	155	155	172	156	157	159	157	162	172	178	167
% Average Recovery	62.8	93.8	102	96.6	96.9	107	97.7	97.9	5_99	97.8	101	108	111	104
Standard Deviation	15.6	6.19	5.04	3.73	4.31	4.96	5,44 .	4.41 .	3.27	5.80 .	4.77	6.05	7.33	4.04
RSD (%)	15.6	4,13	3.10	2.41	2.78	2.89	3.48	2.82	2.05	3.71	2.95	3.51	4.12	2.42


Table 17j. Surrogate recoveries for precision and accuracy study in River Water

Surroyates - Chicago River Water (River Water Sample 160 ng/L spike)										e 160 ng/L s	pike)				
Sample															
	мрғва	MPFEXA	MPFHxS	MPFOA	MPFNA	MPFOS	MPFDA	MPFUBA	MPEDoA	M4:2 FTS	M6:2 FTS	M8:2 FTS	MN-ET FOSAA	MN-MeFOSAA	
Unspiked 1	121	153	164	161	158	174	157	157	161	160	156	167	175	167	
Unspiked 2	115	157	167	155	157	177	161	158	157	158	152	168	173 ~~	168	
Spiked 1	117	}49	165	153	153	171	153]54	158	157	155	167	167	165	
Spiked 2	123	154	169	157	160	377	156	16)	159	165	172	178	177	162	
Spiked 3	118	153	164	156	155	169	155	157	159)63	166	181	171	161	
Spiked 4	107	152	158	154	149	168	155	160	157	154	156	173	166	164	
Spiked 5	116	153	163	156	153	170	158	161	163	157	156	168	171	162	
Spiked 6	119	156	165	154	155	173	162	160	161	164	159	182	173	169	
Average Recovery (ng/L)	117	153	164	156	155	172	157	158	160	160	159	173	172	165	
% Average Recovery	72.9	95,8	103	97.3	96.9	108	98.2	99.0	99.7	99.8	99.4	108	107	103	
Standard Deviation	4.59	2.38	3.15	2.65	3.32	3.38	3.32	2.38	2.21	4.18	6.72	6.31	3,50	3.01	
RSD (%)	3.93	1.56	1.91	1.70	2.14	1.96	2.11	1.50	1.38	2,62	4.22	3.65	2.04	1.83	

Title		CRL Document #	Version # 1
	OM021 OSRTI PFCs in Water	OM021	
Effective Date		Status	$D_{}^{2} = (0 - 6.70)^{-1}$
	3/21/2017 11:02:26 AM	Published	Page 69 of 70

The peak at 8.22 minutes is probably another isomer group of PFOS, but it's not included in the quantitation of the calibration standard so it can't be included in the quantitation of the groundwater sample.

Figure 3. PFHxS in Calibration Standard

· · · ·

FIELD PROCEDURE 5

Sample collection for Microbial Analysis

All individual microbial samples from monitoring well should be taken with sterile or sterile disposable equipment whenever possible and care needs to be taken to make sure that cross contamination between samples does not occur due to the contamination of sampling materials and equipment from one sample site to another.

Sampling Instructions: Wear gloves when collecting samples. Do not rinse the bottles. The bottles are sterile so care must be taken not to contaminate the bottle or cap. Quickly open the bottle (but do not set the cap down), hold the cap by its outside edges only, and fill the sample bottle to leaving a one-inch headspace. The 1-inch headspace is important to ensure proper mixing of entire sample prior to microbial analysis. Cap the bottle immediately and label it with appropriate sample identification, collection time, and sampler initials. Place sample bottle into gallon size Ziploc bag. Place it into a cooler with ice or blue icepacks for delivery or overnight shipment to the laboratory. Samples should be chilled to 10°C or less but should not be frozen. Frozen samples will not be analyzed. Samples should be analyzed within 30hrs of collection. Samples may be shipped to the EPA ORD laboratory in Cincinnati, OH for receipt Monday through Thursday. Because analysis for *E. coli* and total coliforms is a 24hr test no samples will be accepted on Fridays or weekends during the study.

Upon receipt in the laboratory samples will analyzed for E. coli and total coliforms using Colilert[™] (Idexx, Westbrook MA) using the Quantitray sealer (Idexx, Westbrook MA) to provide a microbial estimation using Most Probable Number format. Samples will be analyzed using Standard Methods 9223B (APHA, 2014).

Colilert[™] simultaneously detects total coliforms and E. coli in water. Commercially prepared media formulations are available in packets for presence-absence and multiple-well procedures. The use of commercially prepared media is required for quality assurance and uniformity. Incubate the sample at 35.0°C+0.5°C for 24 hours. If the response is unclear after the specified incubation period, the sample is incubated for up to an additional 4 hours at 35.0°C+0.5°C. After the appropriate incubation period, compare each bottle/tube/well to the reference color "comparator" provided by the manufacturer. A yellow color greater or equal to the comparator indicates the presence of total coliforms in the sample, and the bottle/tube/well is then checked for fluorescence under long-wavelength UV light (365-nm). The presence of fluorescence greater than or equal to the comparator is a positive result for E. coli. The concentration in MPN/100 mL.

Prior to analysis of samples each lot of Colilert[™] will be QA/QC for sterility and performance using sterile Butterfields buffer. Any lot that doesn't pass the QA/QC check will be discarded. Each lot of Quantitray Sealer Trays will also be checked for sterility using sterile Butterfields buffer. Any lot not passing the QA check will be discarded. All samples analyzed will be recorded on Bench sheets maintained by Laura Boczek. All results will be communicated to Ron Herrmann.

37 CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

Sample Bench Sheet

Coli-lert Carver County Composting Groundwater Monitoring Project Total coliforms / E. coli Bench Sheet

Date/Time samples received, and processed_____ Date/Time results_____

Incubator Temperature_____

Initials_____

Sample ID	Dilution	Number of Yellow positive wells (Big/small)	Total Coliform MPN/100 mL	Dilution	Number of MUG positive wells (Big/Small)	E. coli MPN/100 mL
				10		

APPENDIX D: REPORTS

Hydrogeologic Investigation and Monitoring Well Installation Report

52 CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

51 | CARVER COUNTY COMPOST FACILITY GROUNDWATER MONITORING QUALITY ASSURANCE PROJECT PLAN

HYDROGEOLOGIC INVESTIGATION AND MONITORING WELL INSTALLATION REPORT

Carver County Compost Facilities Chanhassen and Watertown, Minnesota Project No. 6320-01

Prepared for:

Carver County Environmental Services 600 4th Street East Chaska, Minnesota 55319

March 22, 2017 Revised: April 27, 2017

PCarlson McCain

15650 36th Ave N, Suite 110 Plymouth, MN 55446 Tel 952-346-3900 Fax 952-346-3901 www.carlsonmccain.com

ENVIRONMENTAL . ENGINEERING . LAND SURVEYING

TABLE OF CONTENTS (Page 1 of 2)

1.0	INT	RODU	JCTION	1
	1.1	Purpo	ose and Scope	1
	1.2	Site B	ackground Information	1
		1.2.1	Arboretum Site Location and Hydrogeologic Setting	1
		1.2.2	Watertown Site Setting and Geology	1
2.0	FIE	LD IN\	/ESTIGATION ACTIVITIES RESULTS AND DISCUSSION	3
	2.1	Arbor	etum Site Investigation Activities	3
		2.1.1	Soil Borings	3
		2.1.2	Geology and Soils	
		2.1.3	Monitoring Well Installation and Site Hydrogeology	5
	2.2	Water	town Site Investigation Activities	7
		2.2.1	Soil Borings	7
		2.2.2	Geology and Soils	7
		2.2.3	Monitoring Well Installation and Site Hydrogeology	8
	2.3	Well I	Development	9
	2.4		Level Monitoring Data	
	2.5	Survey	ying	
3.0	CO	NCLUS	SION	
4.0			CES	
5.0	CEH	RTIFIC	ATION	

TABLES

Table 1	Soil Boring and Monitoring Well Construction Information
Table 2	Geotechnical Soil Sample Results
Table 3	Groundwater Elevations

FIGURES

Figure 1	L A	١r.	boretum	Site	Location	\mathcal{N}	lap
		_					T -

- Figure 2 Watertown Site Location Map
- Figure 3 Arboretum Boring Location Map
- Figure 4 Arboretum Water Table Hydrograph
- Figure 5 Arboretum Groundwater Elevations 01/10/2017
- Figure 6 Arboretum Groundwater Elevations 04/17/2017
- Figure 7 Watertown Boring Location Map
- Figure 8 Watertown Groundwater Elevations 01/10/2017
- Figure 9 Watertown Groundwater Elevations 4/17/2017

Carlson McCain, Inc.

i

Hydrogeologic Investigation and Monitoring Well Installation Report Carver County Compost Facilities

TABLE OF CONTENTS (Page 2 of 2)

APPENDICES

Appendix A Boring Logs and Monitoring Well Construction Diagrams

Appendix B Geotechnical Soil Sample Results

Appendix C Gradient Calculations

Appendix D MDH Well Records

Appendix E Well Development Logs

ii

April 27, 2017

Hydrogeologic Investigation and Monitoring Well Installation Report Carver County Compost Facilities

1.0 INTRODUCTION

1.1 Purpose and Scope

This report describes the work completed for the drilling of soil borings and installation of groundwater monitoring wells at the Arboretum Source Separated Organic Material (SSOM) Compost Site (Arboretum Site) and the Watertown Yard Waste Composting Site (Watertown Site). The purpose of the project was to install four vertical monitoring wells surrounding the active composting area at the Yard Waste Site; and drill six soil borings and install four monitoring wells surrounding the active composting area at the Arboretum Site. The wells will be used in conjunction with a demonstration research project to evaluate potential impacts of SSOM composting and yard waste composting on groundwater at the Arboretum and Watertown Sites, respectively. Soil boring information collected from the Arboretum Site will be used to determine the Site's compliance with Minnesota Pollution Control Agency (MPCA) SSOM composting rules and subsurface information will be used for determining the need for a lined compost pad at the Arboretum Site. Evaluation of the Arboretum Site compatibility will be provided under a separate cover.

1.2 Site Background Information

The information provided below has been adapted from background information provided in the Hydrogeologic Investigation Work Plan (Work Plan) (Carlson McCain, 2016).

1.2.1 Arboretum Site Location and Hydrogeologic Setting

The Arboretum Site is located in the northeast ¼ of the northeast ¼ of Section 17, Township 116 North, Range 27 West in the eastern portion of Carver County, Minnesota. A Site location map is presented in Figure 1. The Site is located within the University of Minnesota Landscape Arboretum property boundary, and consists of a compacted Class 5 compost pad and SSOM composting operations. The site occupies approximately 0.6 acres.

Topography of the Site consists of rolling hills interspersed with low-lying surface water depressions. Subsurface material consists of unconsolidated glacial till deposits overlying bedrock. Surficial deposits are reported to be associated with the Des Moines lob glaciation and consist of an unsorted mix of sand, silt, clay, and rocks. Regional groundwater is typically obtained from a buried quaternary sand and gravel aquifer at depths in excess of 200 feet below ground surface, and groundwater flow in the vicinity of the Site is southeast toward the Minnesota River. However, the surficial water table in the vicinity of the Site, in general, follows the local topography, and is recharged by low-lying surface water depressions.

1.2.2 Watertown Site Setting and Geology

The Watertown Site is located in the northeast ¼ of the southwest ¼ of Section 4, Township 117 North, Range 25 West in the northwest portion of Carver County, Minnesota. A Site location map is provided in Figure 2. The Watertown Site occupies approximately 2 acres and consists of a compacted compost pad and yard waste processing and composting operations.

The Watertown Site slopes gradually northeast, with all surface water draining toward the northeast portion of the Site and discharging into the adjacent Crow River. Geology at the Site consists of alluvial clay, silt, sand, and gravel deposited by the adjacent Crow River. Regional groundwater flow for the Watertown Site is to the southeast, toward the regional groundwater discharge of the Minnesota River. Local groundwater flow in the vicinity of the Site is to the east-northeast, toward the local groundwater discharge of the Crow River.

2.0 FIELD INVESTIGATION ACTIVITIES RESULTS AND DISCUSSION

The following sections discuss the field tasks associated with the soil boring advancement and monitoring well installation. Drilling and monitoring well installation services were provided by Cascade Drilling, L.P., of Little Falls, Minnesota, a licensed and registered well contractor in the State of Minnesota. Drilling and well construction was conducted in accordance with Minnesota Administrative Rules (Rules), Chapter 4725, Wells and Borings.

2.1 Arboretum Site Investigation Activities

2.1.1 Soil Borings

A total of six soil borings were advanced at the Arboretum Site, with two borings occurring within the compost pad footprint and four surrounding the active compost area. A map showing the boring locations is presented in Figure 3, and boring construction information is provided in Table 1. The two borings located on the pad, B16-5 and B16-6, were advanced to a depth of 15 feet below ground surface (bgs), and three of the four borings surrounding the pad, B16-1, B16-2, and B16-4, were advanced to a minimum of twelve feet below the observed water table with depths of 30 feet bgs, 40 feet bgs, and 30 feet bgs, respectively. The fourth boring, B16-3, was advanced to 70 feet bgs. Field boring logs are provided in Appendix A.

Borings were completed using rotasonic drilling methods in general accordance with American Society for Testing and Materials (ASTM) D6914-04 "Standard Practice for Sonic Drilling for Site Characterization and the Installation of Subsurface Monitoring Devices" (ASTM, 2010). Soil samples were collected continuously by advancing a four-inch diameter core barrel and extruding the soil from the core into a polyethylene bag. A six-inch diameter casing was advanced as needed to keep the borehole open during drilling, and to accommodate the installation of the wells.

Core runs were either 5-foot or 10-foot intervals depending on sample recovery and expected depth of the borehole. Extruded soil samples were placed on the ground for logging and stratigraphic characterization. Samples were logged, classified, and geologically interpreted in the field in general accordance with the procedure outlined in ASTM D2488 "Standard Practice for Description and Identification of Soils" (ASTM, 2009). Soil descriptions included consistency, matrix color, material classification, field moisture, plasticity, and dispositional interpretation. Soil textural classifications were assigned according to the United Soil Classification System (USCS). Due to the use of rotasonic drilling methods, standard penetration testing was not performed, and therefore density descriptions do not conform to ASTM D1586. However, pocket penetrometers were used to test core specimens of fine-grained soils. Penetrometer readings were converted to density descriptions using the equivalency values listed in the *Field Guide for Soil and Stratigraphic Analysis*, v. 2 (Midwest GeoSciences Group, 2008).

Boreholes that were not completed as monitoring wells were abandoned in accordance with Minnesota Rules. The boreholes were grouted using Portland cement, and filled to the ground surface.

2.1.2 Geology and Soils

The following section describes the geologic conditions encountered during the field investigation and also provides an interpretation of the geology of the Site. The information and discussion presented below are based on observations recorded on soil boring logs completed during the investigation, along with information provided in the Work Plan. Copies of the boring logs are included in Appendix A, and boring construction information is summarized in Table 1.

2.1.2.1 Unconsolidated Till (Des Moines Lobe Glaciation)

The main geologic materials at the Site consist of undifferentiated glacial till associated with the northwest source, Des Moines Ice Lobe glaciation. The till is comprised of an upper oxidized and lower unoxidized portion (Minnesota Geologic Survey, 2009).

The upper portion of the till is primarily comprised of a medium plasticity, sandy lean clay with varying amounts of very fine to coarse-grained sand and fine gravel. Soils classified as CL under USCS. Color was typically described as brown or yellowish-brown; with reference to the Munsell color chart, hue was reported as YR. Areas of mottling were observed at various depths within the upper till and were typically one to two feet thick. For example, mottling was observed in boring B16-4 at depths of 4'-5', 8'-10', and 15.5'-17'. The upper portion of the till unit was observed to be 26 feet thick in B16-1, 34 feet thick in B16-2, 26 feet thick in B16-3, and 18.5 feet thick in B16-4. Borings B16-5 and B16-6 were terminated prior to advancing through the upper portion of the till.

The lower, unoxidized portion of the till consists of sandy lean clay with silt, and varying amounts of very fine to fine-grained sand and trace fine gravel. Soils classified as CL under USCS. Color was described as dark gray; with reference to the Munsell soil color chart, hue was reported as Y. The lower portion of the till was observed to be 36 feet thick at boring B16-3. All other borings were terminated prior to reaching the bottom of the till.

2.1.2.2 Geotechnical Soil Samples

A total of six soil samples were collected from the borings located on the active compost pad and submitted to Soil Engineering Testing, Inc. of Bloomington, Minnesota for grain size analysis and classification in accordance with the United States Department of Agriculture (USDA) Soil Textural Classification. Three samples were collected at B16-5 from depths of 1.5-2.5 feet, 5-7 feet, and 10-11 feet deep, and three samples were collected at B16-6 from depths of 3-5 feet, 8-10 feet, and 12-13 feet deep. The six soil samples contained a combined average of 18 percent sand, 48 percent silt, 29 percent clay, and 5 percent coarse material, which corresponds to a USDA classification of silty clay loam. The top 5 to 7 feet below ground surface contained the most clayey material, however all

samples had greater than 20% percent clay, except for B16-6 from 10-11'. Laboratory results are summarized in Table 2 and hard copies of the report are provided in Appendix B.

2.1.3 Monitoring Well Installation and Site Hydrogeology

Four monitoring wells were installed within the soil borings discussed in Section 2.1 and were constructed in accordance with Minnesota Department of Health (MDH) well code (i.e. Minnesota Rules, Chapter 4725). Monitoring well MW-AR-1 was installed within boring B16-4, well MW-AR-2 was installed within boring B16-1, well MW-AR-3 was installed within B16-2, and well MW-AR-4 was installed within boring B16-3. Construction data for the new wells are summarized in Table 1 and well locations are shown on Figure 4.

Due to the fine grained nature of the soils, static water levels in each hole were not easily discernable during drilling. Recharge to the boreholes was observed to be slow and only at B16-2 was a water level measurement able to be obtained prior to installing the monitoring well. The water level measurement of 7.5 feet below ground surface at B16-2 was collected approximately 10 hours after drilling and was thought to have been higher than normal based on the abnormally high amount of precipitation received during the fall of 2016, and the presence of mottled and oxidized zones deeper in the borehole. The well at B16-2 was therefore installed lower than two feet below the observed water table, and the screened elevation at B16-2 was used as the basis for setting the well screens within the other soil borings located onsite. Consequently, the wells were completed at depths of approximately 22 to 25 feet below existing ground surface.

Water levels were not stabilized immediately after the completion of well installation on 12/10/16, so the monitoring wells were bailed dry and allowed to recharge until 12/28/16 before the next round of water levels was collected. Ultimately, three of the four monitoring wells were installed such that the bottom of the well was at least twelve feet below the static water elevation measured on 12/28/16. The one exception is MW-AR-4, where the well bottom was 10.63 feet below static water level.

The wells were installed using factory-new, two-inch diameter stainless steel, No. 7 slot screens. The screens were connected via couplers to schedule 40 low-carbon steel riser pipe which extended to approximately two-feet above ground surface. A clean, uniform sand filter pack was placed around each well screen and extended approximately three feet above the top of the screen. An approximately 1-foot thick hydrated bentonite seal was placed above the filter pack, followed by Portland cement placed to at or above ground surface. A concrete collar was placed around the well at the ground surface and sloped away from the well to divert surface drainage. Well protection consisted of a 7-foot long, 6-inch diameter, locking, steel protective casing (pro-top) imbedded within the concrete and three bumper posts surrounding the well.

All well installation activities were supervised by a Carlson McCain field geologist. Well construction details were entered onto well construction diagrams, which are included in Appendix A. In addition, MDH well construction records have also been included in Appendix D.

2.1.3.1 Site Hydrogeology

The uppermost groundwater observed at the Arboretum site occurs within the fine grained glacial till. Water levels from each of the four monitoring wells were collected on December 28th, 2016, January 10th, 2017, and April 17th, 2017. Groundwater elevations referenced to the North American Vertical Datum of 1988 (NAVD88) are summarized in Table 3, and a groundwater hydrograph is presented in Figure 4. During the initial measurements in December, groundwater elevations ranged from approximately 981 feet in MW-AR-4 to 1,001 feet in MW-AR-1, and were similar during the April event, ranging from approximately 978 feet in MW-AR-4 to 1,000 feet in MW-AR-1. During the January event water levels decreased by approximately three feet in all wells except for MW-4. Depth to water in monitoring wells MW-AR-1, MW-AR-2, and MW-AR-3 was less than five feet below the ground surface during both the January and April measurements. Water levels in MW-AR-4 have ranged from to 13.8 feet to 16.6 feet below ground surface.

Figures 5 and 6 illustrate groundwater elevation contours at the Site based on water level data collected on January 10th, 2017 and April 17th, 2017, respectively. The contours indicate that groundwater flow beneath the Site is generally south-southwest towards a low-lying marsh area, which is presumed to act as the local groundwater discharge for shallow groundwater in the surrounding upland areas. Using the contours shown in Figure 5, the horizontal gradient of the water table in below the Site is approximately 0.06 (unitless: vertical feet/horizontal foot). Calculations for determining the horizontal gradient are provided in Appendix C.

A notable feature of Figure 6 is that well MW-AR-4 is not used in generating the groundwater elevation contours. This was done in response to an apparent hydraulic disconnect between MW-AR-4 and the other three wells. The hydrograph in Figure 4 illustrates how water levels in MW-AR-4 do not track similarly with the other three wells. This dissimilarity, combined with the fact that the original borehole for MW-AR-4 was initially dry to a depth of 70 feet when first drilled, indicates a poor hydraulic connection between MW-AR-4 and the other three wells. Because this well has the lowest groundwater elevation, including it in the contouring would result in a contour map showing flow directly to the well, which is inconsistent with field observations that this location is not a preferential flow pathway.

The water level information collected to date is indicative of a variably saturated condition in the oxidized portion of the till, with water elevations varying both spatially and temporally. This is characteristic of clay till in that there can be discontinuous perched saturated zones within the overall fine-grained matrix. Generally speaking, the glacial till upon which the Site sits is considered an aquitard, or confining unit, and the borehole data shows that the first significant sand lens is nearly 70 feet below the ground surface, indicating that the Site presents low potential for influencing underlying drinking water aquifers. This is consistent with the Minnesota Department of Natural Resources pollution sensitivity map for Carver County, which reports a "Low" pollution sensitivity for near-surface materials at the Site location (DNR, 2014).

Hydrogeologic Investigation and Monitoring Well Installation Report Carver County Compost Facilities

2.2 Watertown Site Investigation Activities

2.2.1 Soil Borings

A total of four soil borings were advanced at the Watertown Site surrounding the active compost area. A map showing the boring locations is presented in Figure 7, and boring construction information is provided in Table 1. All four borings were advanced to a minimum depth of twelve feet below the observed water table. Boring B16-7 was advanced to a depth of 19 feet bgs, B16-8 was advanced to a depth of 18 feet bgs, B16-9 was advanced to a depth of 20 feet bgs, and B16-10 was advanced to 19 feet bgs. Field boring logs are provided in Appendix A.

Borings were completed using rotasonic drilling methods in general accordance with American Society for Testing and Materials (ASTM) D6914-04 "Standard Practice for Sonic Drilling for Site Characterization and the Installation of Subsurface Monitoring Devices" (ASTM, 2010). Soil samples were collected continuously by advancing a four-inch diameter core barrel and extruding the soil from the core into a polyethylene bag. A six-inch diameter casing was advanced as needed to keep the borehole open during drilling, and to accommodate the installation of the wells.

Core runs were either 5-foot or 10-foot interval depending on sample recovery and expected depth of the borehole. Extruded soil samples were placed on the ground for logging and stratigraphic characterization. Samples were logged, classified, and geologically interpreted in the field in general accordance with the procedure outlined in ASTM D2488 "Standard Practice for Description and Identification of Soils" (ASTM, 2009). Soil descriptions included consistency, matrix color, material classification, field moisture, plasticity, and depositional interpretation. Soil textural classifications were assigned according to the United Soil Classification System (USCS). Due to the use of rotasonic drilling methods, standard penetration testing was not performed, and therefore density descriptions do not conform to ASTM D1586. However, pocket penetrometers were used to test core specimens of fine-grained soils. Penetrometer readings were converted to density descriptions using the equivalency values listed in the *Field Guide for Soil and Stratigraphic Analysis*, v. 2 (Midwest GeoSciences Group, 2008).

2.2.2 Geology and Soils

The following section describes the geologic conditions encountered during the field investigation and also provides an interpretation of the geology of the Site. The information and discussion presented below are based on observations recorded on soil boring logs completed during the investigation, along with information provided in the Work Plan. Copies of the boring logs are included in Appendix A, and boring construction information is summarized in Table 1.

2.2.2.1 Alluvium

The geology encountered at the Watertown Site consists of unconsolidated fluvial deposits typical of a sandy meandering river (Boggs, 2006). The alluvium is comprised of alternating layers of gravel, sand,

and clay material. It is comprised of thickly bedded, variably textured deposits that classify as a poorly graded gravel with sand (GP), poorly graded sand (SP), fat clay (CH), and lean clay (CL) with lesser amounts of material classifying as poorly graded sand with silt (SP-SM) and sandy silt (ML) under the USCS. The typical sequence of material indicates a massively bedded fining upward characteristic, indicating a change from high flow velocity to low flow velocity which is consistent with floodplain deposits along a meandering river. Episodes of channel shifting and intensity of flooding affect the lateral variation and thickness of the deposits seen in the borings. In borings closer to the river, (B16-8, B16-9, and B16-10), coarser material is more prevalent at shallow depths, indicating that the finer suspended load material has either been removed or reworked by subsequent river channel shifting and flooding events. In general, the boring descriptions match well with fluvial deposition of horizontally stratified sands overlain by laminated mud.

The color of the alluvium varies; however the coarser deposits were typically described as very dark to yellowish brown with finer materials classifying as gray to black. With respect to the Munsell color chart, hue was typically reported at YR for the coarser material and Y for the fine grained material. Due to the proximity of the borings to the river and the shallow nature of the borings, it is assumed that none of the borings were advanced completely through the fluvial deposits.

2.2.3 Monitoring Well Installation and Site Hydrogeology

Four monitoring wells were installed within the soil borings discussed in Section 2.2 and constructed in accordance with MDH well code (i.e. Minnesota Rules, Chapter 4725). Monitoring well MW-WT-1 was installed within boring B16-7, well MW-WT-2 was installed within boring B16-8, well MW-WT-3 was installed within B16-9, and well MW-WT-4 was installed within boring B16-10. Construction data for the new wells are summarized in Table 1 and well locations are shown on Figure 8.

The wells were installed using factory-new, two-inch diameter stainless steel, No. 10 slot (0.01 inch) screens. The screens were connected via couplers to schedule 40 low-carbon steel riser pipe which extended to approximately two-feet above ground surface. A clean, uniform sand filter pack was placed around each well screen and extended approximately two feet above the top of the screen. An approximately 1-foot thick hydrated bentonite seal was placed above the filter pack, followed by Portland cement placed to at or above ground surface. A concrete collar was placed around the well at the ground surface and sloped away from the well to divert surface drainage. Well protection consisted of a 7-foot long, 6-inch diameter, locking, steel protective casing (pro-top) imbedded within the concrete and three bumper posts surrounding the well. The wells were fitted with two waterproof threaded caps; one within the riser pipe and a locking one fitting in the top of the pro-top.

All well installation activities were supervised by a Carlson McCain field geologist. Well construction details were entered onto well construction diagrams, which are included in Appendix A. In addition, MDH well construction records have also been included in Appendix D.

Hydrogeologic Investigation and Monitoring Well Installation Report Carver County Compost Facilities

2.2.3.1 Site Hydrogeology

All four monitoring wells were set so that the top of the screen was approximately two feet below the observed water table. With the exception of B16-7, the wells at the Watertown Site have primarily been set within saturated fat clay deposits. However, all monitoring wells screen at least two feet of sandy, coarse-grained material with B16-7 set to screen all sandy, coarse-grained material. Due to the wells screening at least a portion of loose, coarse-grained material, it is expected that groundwater recharge to the wells at the Watertown Site will be good.

Figures 8 and 9 illustrates groundwater elevation contours at the Watertown Site based on water level data collected on January 10th, 2017 and April 17th, 2017, respectively. The contours indicate that groundwater flow beneath the Site is generally to the east-northeast towards the Crow River, which is the local groundwater discharge. Using the contours shown in Figure 8, the horizontal gradient of the water table beneath the Site is approximately 0.005 (unit less: vertical feet/horizontal foot). Calculations for determining the horizontal gradient are provided in Appendix C.

2.3 Well Development

Monitoring wells at both the Arboretum and Watertown Sites were developed by using either a plastic bailer or a 12-volt submersible Hurricane® pump to remove water and sediment, and flush out fines from the filter pack and well screen. Development was conducted on January 10 and January 11, 2017. Development consisted of pumping at least three well annulus volumes of water from each well. During development, field measurements of pH, temperature, conductivity, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (eH) were obtained using a Horiba® U-50 Series water quality meter equipped with a flow-through cell. In addition, color and odor were noted. Well development was considered complete when the following criteria were met:

- Water temperature was stabilized to ± 0.5 degrees Celsius;
- pH was stabilized to <u>+</u> standard units; and,
- Specific conductance was stabilized to <u>+</u> 10% μS/cm;

Well development was conducted by Carlson McCain personnel and measurements were recorded on well development forms which are included in Appendix E. All well development criteria were met for each well at the Watertown Site. At the Arboretum Site, the wells were bailed or pumped dry and allowed to recharge three times in an attempt to remove the three well annulus volumes of water from each well. After bailing or pumping dry and allowing recharge, wells MW-AR-1 and MW-AR-3 had approximately 2.5 well annulus volumes removed. For MW-AR-2 and MW-AR-4, well recharge was much slower, and bailing the well dry three times resulted in the removal of approximately nine gallons of water from MW-AR-2 and five gallons from MW-AR-4 which is approximately one well annulus volume removed from each well. Due to time constraints, well development at the Arboretum Site was terminated prior to meeting the aforementioned stabilization criteria. All water removed during well development was disposed of at the surface, away from each well. Decontamination of the submersible pump used for well development consisted of decontaminating both the interior and exterior of the equipment. The exterior portion of the pump was decontaminated by using deionized (DI) water and paper toweling. The interior was decontaminated using an Alconox® wash, followed by a tap-water rinse, and completed with a rinse using DI water. Disposable tubing was used in conjunction with the pump at each well location. All disposable supplies (i.e. gloves, paper towels, etc.) were disposed of as solid waste.

2.4 Water Level Monitoring Data

Groundwater level measurements were collected using an electronic water level indicator and were measured to the nearest 0.01 foot. These measurements were taken from the top of riser (TOR) for each well. Measurements taken while drilling were made to the nearest 0.1 foot and referenced to the ground surface. A summary of groundwater elevation data is presented in Table 3.

2.5 Surveying

All well locations were surveyed to the nearest 0.01 foot horizontally and vertically using Real-Time Kinematic GPS survey methods. Horizontal coordinates were based on Carver County coordinates and Universal Transverse Mercator (UTM), Zone 15N. Elevations were measured in reference to NAVD88.

3.0 CONCLUSION

The 2016 hydrogeologic investigation and monitoring well installation activities were successfully completed in general accordance with the procedures outlined in the Work Plan.

Four monitoring wells (MW-AR-1, MW-AR-2, MW-AR-3, and MW-AR-4) were installed, developed, and surveyed at the Arboretum Site. These wells will be used as to assess groundwater levels and potential impacts from SSOM composting operations. In addition, two soil borings, B16-5 and B16-6, located on the active compost pad, were advanced to depths of 15 feet bgs at the Arboretum. Six soil samples were collected from these two borings and submitted for grain size analysis and USDA soil classification in accordance with the MPCA site suitability checklist. Results of the geotechnical analyses indicate that five feet of clayey soils occur within the top 15 feet bgs, and overall, the top 15 feet bgs classify as a Silty Clay Loam (with respect to USDA soil classification).

Based on requirements for siting a SSOM composting facility (Minnesota Rules 7035.2836, subp. 8) without a liner, the Site meets the requirement of five feet of clay soils. In regards to the requirement of the water table being greater than five feet from the ground surface: initial groundwater elevation measurements have thus far indicated that depth to water varies from less than five feet to greater than five feet depending on the timing of the measurement and the location of the measurement. This spatial and temporal variability is characteristic of the clayey soils in which the uppermost groundwater is observed. Additional water level measurements could help assess the degree of variability expected at the site over time. Considering there is a nearly 70 foot thickness of glacial till at the site, the potential for migration from the shallow saturated zone to the deeper regional aquifer is very low.

Well development stabilization criteria were not met for wells at the Arboretum Site. It is recommended that prior to sampling these monitoring wells, the wells should be bailed dry and allowed to fully recharge with clean, formation water.

Four monitoring wells (MW-WT-1, MW-WT-2, MW-WT-3, MW-WT-4) were installed, developed, and surveyed at the Watertown Site. These wells will be used as to assess potential impacts from yard waste composting.

4.0 REFERENCES

ASTM, 2010. ASTM Standard D6914-04, Standard Practice for Sonic Drilling for Site Characterization and the Installation of Subsurface Monitoring Devices. American Society for Testing Materials International; available at: http://www.astm.org.

ASTM, 2008. ASTM Standard D2488, Standard Visual Manual Procedure. American Society for Testing Materials International; available at: http://www.astm.org.

ASTM, 2009. ASTM Volume 04.08 Soil and Rock (I): D 420 - D 5876 American Society for Testing Materials; available at: http://www.astm.org.

Boggs, Sam, Jr, 2006. Principles of Sedimentology and Stratigraphy, 4th Edition, Prentice Hall.

Carlson McCain, 2016. Hydrogeologic Investigation Work Plan: Carver County Compost Facilities, Prepared for Carver County Environmental Services. November 2016.

Midwest GeoSciences Group, 2008. Field Guide for Soil and Stratigraphic Analysis, v.2, Midwest GeoSciences Group Press.

DNR, 2014. C-21 Geologic Atlas of Carver County Minnesota [Part B]. Minnesota Department of Natural Resources, Division of Ecological and Water Resources. Available online at: http://www.dnr.state.mn.us/waters/programs/gw_section/ mapping/ platesum/ carvcga.html.

Minnesota Geological Survey, 2009. C-21 Geologic Atlas of Carver County, Minnesota [Part A]. Retrieved from http://conservancy.umn.edu/handle/11299/59648.

Montana Natural Resources Conservation Service, 2016. Soil Texture Classification. United States Department of Agriculture; available at: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/mt/ homeowner/?cid=nrcs144p2_057682

United States Department of Agriculture, 1987. Soil Mechanics Level 1: Module 3 – USDA Textural Soil Classification. Natural Resources Conservation Service; available at: https://www.nrcs.usda.gov/ Internet/ FSE_DOCUMENTS/stelprdb1044818.pdf Hydrogeologic Investigation and Monitoring Well Installation Report Carver County Compost Facilities

5.0 CERTIFICATION

Carlson McCain has prepared this Hydrogeologic Investigation and Monitoring Well Installation Report for the exclusive use of Carver County, and its agents for specific application to the Watertown Yard Waste Site in Watertown, Minnesota and the Arboretum Site in Chaska, Minnesota. The services performed by Carlson McCain for this project have been conducted in a manner consistent with the level of skill and care ordinarily exercised by other members of the profession currently practicing in this area. No other warranty, expressed or implied, is made.

I certify that this document and all appendices were prepared under my direction or supervision under a system designed to assure that qualified personnel gathered and evaluated the information submitted. Based on my inquiry of the persons or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Furthermore, I certify that I am knowledgeable in the field of hydrogeology.

Signature:

Name and Title:

Megan Lindstrom, GIT– Staff Engineer/Geologist

Nick Bonow, P.E., P.G. - Senior Engineer/Geologist

Company Mailing Address:

	Δ. Δ		
ogist	Mugan Lundition	04/27/17	,
eologist	Nit Bund	04/27/17	
	Carlson McCain, Inc.		
	15650 36 th Ave N, Suite 110		
	Plymouth, MN 55446		•
Phone:	(952) 346-3859		

Date Signed:

T 11

Tables

TABLE 1 SOIL BORING AND MONITORING WELL CONSTRUCTION INFORMATION

Carver County Compost Sites

		- Carver ordinates t)	Location - UTM Zone 15E (meters)		TOR Elevation Ifeet above	GSE Elevation* [feet above	Well Diameter	Screen Length	Screen Slot	Screen	Well Depth ¹ Ifeet	Approx. Screen Elevation ² Ifeet above
r Norti	thing	Easting	Northing	Easting	NAVD88]	NAVD88]	[inches]	[feet]	Size	Туре	BTOR]	NAVD88]
			l I	Arboretum Sit	e Well Informat	ton						
1803	386	542113	16297818	1483784	995.17	992.5	2	10	No. 7	SS	25.45	980-970
1802	267	542113	16297700	1483783	994.28	991.5	2	10	No. 7	SS	26.58	978-968
1802	219	542198	16297651	1483868	996.7	994.9	2.	10	No. 7	SS	26.23	980-970
1804	430	542386	16297860	1484058	1005.73	1003.6	2	10	No. 7	SS	26.82	989-979
			V	Vatertown Sit	e Well Informa	tion					textest	
2199	939	480423	16337937	1422496	932.79	930.3	2	10	No. 10	SS	21.58	921-911
2200	062	480856	16338056	1422930	930.51	927	2.	10	No. 10	SS	20.16	920-910
2199	951	480827	16337944	1422899	931.83	932	2	10	No. 10	SS	21.33	920-910
2198	853	480788	16337847	1422860	932.34	931	2	10	No. 10	SS	21.60	921-911

f 1988

ed boring locations. Ground atertown Site

on and reflect well depth. vell. These measurements ams and well development stentially silted in well

g the measured well depth

stallation Report\Tables\Well Construction Info

4/26/2017

TABLE 2 GEOTECHNICAL SOIL SAMPLE RESULTS Carver County Compost Sites

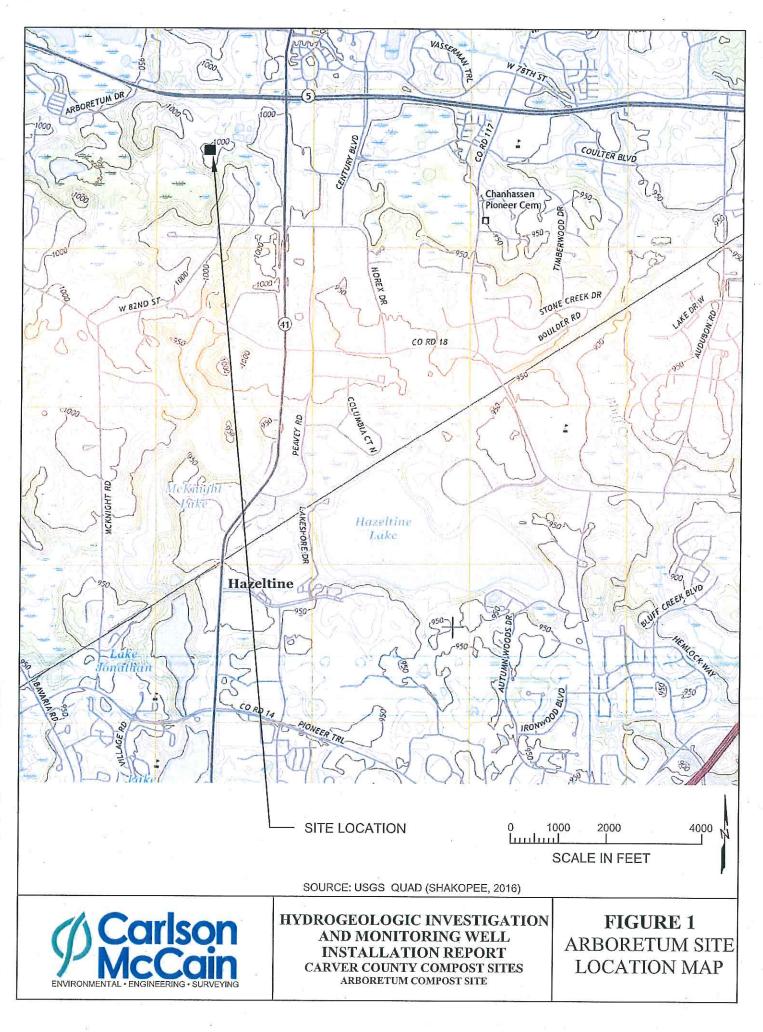
Boring Number	Interval Collected [ft bgs]	Percent Sand	Percent Silt	Percent Clay	USDA Classification
B16-6	1.5-2.5	8.9	48	42	Silty Clay
B16-5	3-5	1.6	56	42	Silty Clay
B16-6	5-7	29.4	42	23	Loam w/ a little gravel
B16-5	8-10	9.5	61	29	Silty Clay Loam
B16-6	10-11	36.6	39	18	Loam w/ a little gravel
B16-5	12-13	21.2	41	20	Silty Loam w/ a little gravel
Average C	Frain Size Percentages	18	48	29	Silty Clay Loam

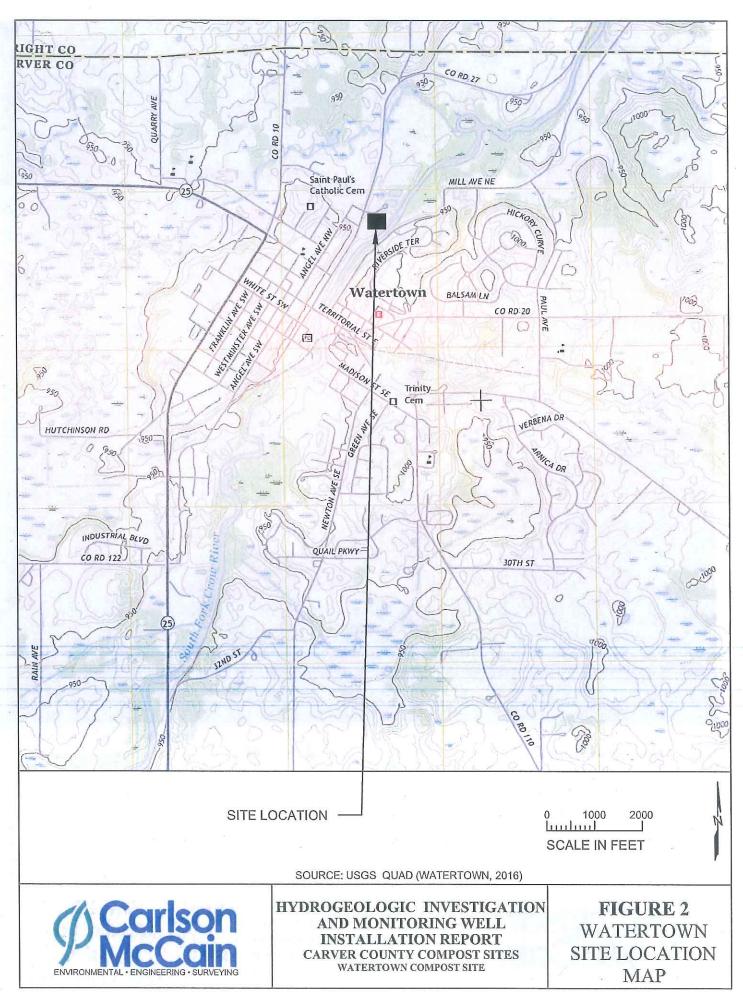
Note: Percentages of sand, silt, and clay are based on ASTM D422. USDA soil classification uses relative percentages of sand, silt, and clay only.

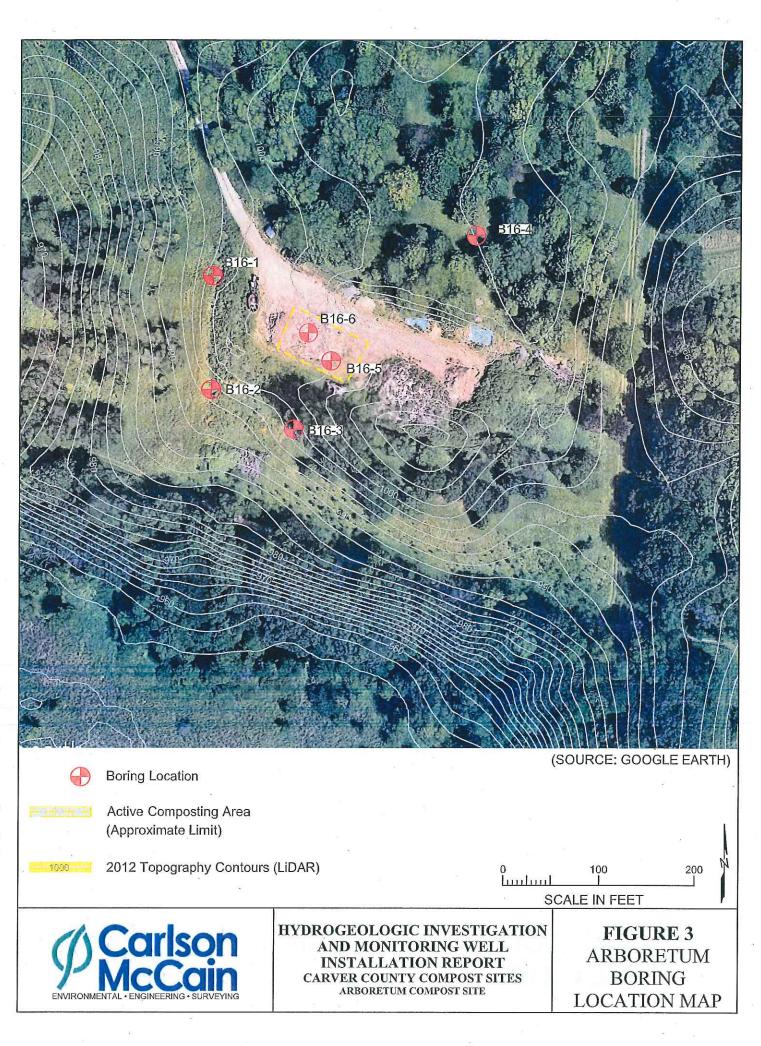
TABLE 3 GROUNDWATER ELEVATIONS Carver County Compost Sites

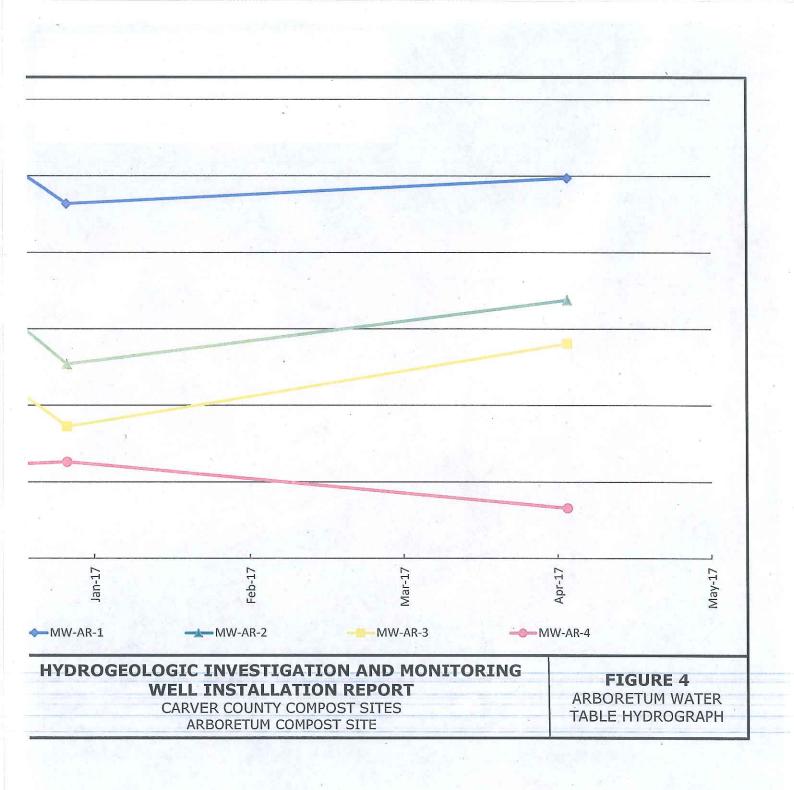
		12/28/2016	12/28/2016	1/10/2017	1/10/2017	4/17/2017	4/17/2017
F	TOR Elevation	Water Depth	Water Elevation	Water Depth	Water Elevation	Water Depth	Water Elevation
Well ID	(ft NAVD88)	Below TOR (ft)	(ft NAVD88)	Below TOR (ft)	(ft NAVD88)	Below TOR (ft)	(ft NAVD88)
Arboretum Site Water Levels							
MW-AR-1	1005.73	4.60	1001.13	7.56	998.17	5.88	999.85
MW-AR-2	995.17	3.90	991.27	7.48	987.69	3.29	991.88
MW-AR-3	994.28	7.55	986.73	10.67	983.61	5.24	989.04
MW-AR-4	996.7	15.60	981.10	15.41	981.29	18.42	978.28
Watertown Site Water Levels							
MW-WT-1	932.79	8.30	924.49	8.82	923.97	9.59	923.20
MW-WT-2	930.51	7.45	923.06	8.61	921.90	9.34	921.17
MW-WT-3	931.83	8.60	923.23	9.65	922.18	10.55	921.28
MW-WT-4	93 <u>2.54</u>	9.05	923.49	10.26	922.28	10.9	921.64

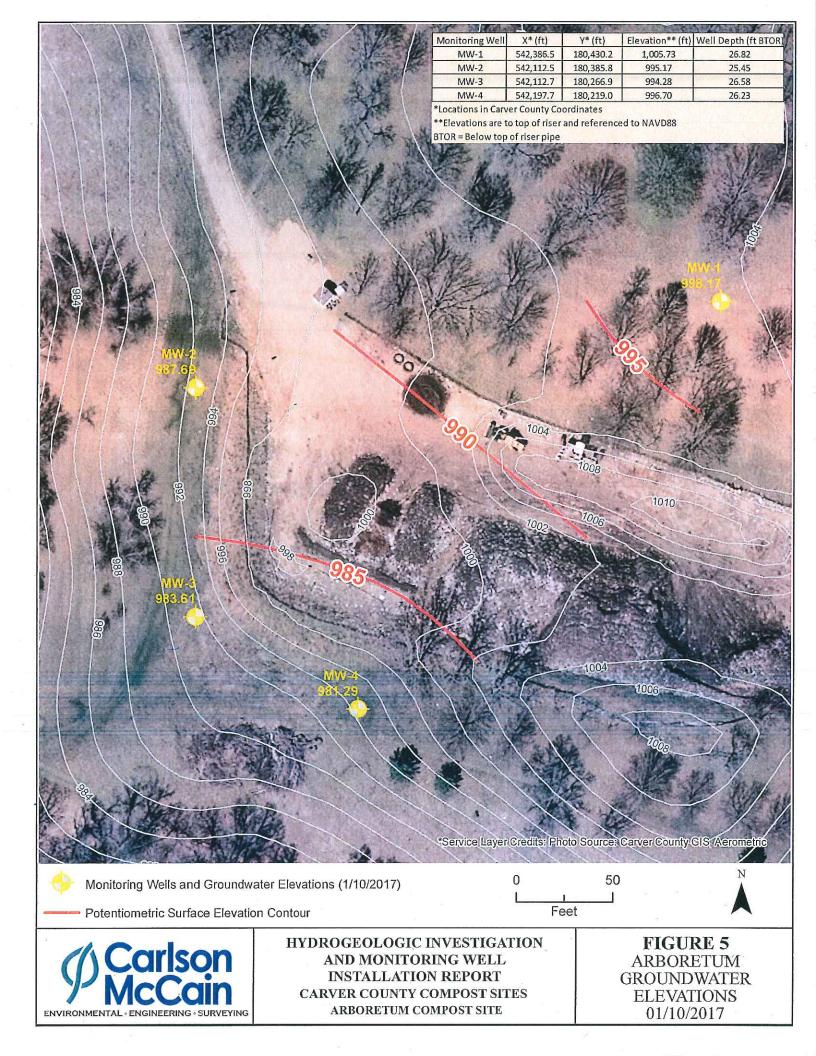
NAVD88= North American Vertical Datum of 1988 TOR - Top of riser.


4/26/2017


.


ŀ


. .


Figures

Appendix A Boring Logs and Monitoring Well Construction Diagrams

9	p	Car Ac		on iin				BORING NUMBER 16-1 PAGE 1 OF 1
.					_			
				invironmental Service	s			PROJECT NAME Carver County Compost Sites PROJECT LOCATION Chaska, Minnesota
		NUMBER			ETED	40/0/		
		0.1		COMPL		52 - N.		
				Cascade Drilling				
		NETHOE		ANALY CONTRACTOR AND A CONTRACT OF				AT TIME OF DRILLING
				m CHECK	EDBY	<u>N. B</u>	onow	
NOI			lent of	Compost Pad.	T	T		
FORMATION	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	./	MATERIAL DESCRIPTION
				PP = 1.8 tsf PP = 0.8 tsf	CL		pla 2.0 coa	rk grayish brown (10YR 4/2) SANDY LEAN CLAY, cohesive, medium sticity, sand is very fine to fine-grained with trace coarse sand, arse-grained material is subrounded to angular, trace to few rootlets, moist.
	 <u>5</u>	RS 1	70	PP = 0.3 tsf PP = 2.0 tsf PP = 1.5 tsf PP = 3.0 tsf PP = 1.5 tsf PP = 2.0 tsf PP = 1.5 tsf			coa Yel ma sor gra	proximately 1" thick poorly graded sand with silt layer at 2' bgs. Medium to arse-grained, angular, wet. Ilowish brown (10YR 5/4) SANDY LEAN CLAY, cohesive, medium plasticity, ssive, uniform, stiff to hard, sand is fine to medium-grained with few to ne coarse sand, coarse-grained material is subrounded to angular, few fine vel, moist to wet. Gravel is subrounded. avily mottled with white and gray observed from 4.5-6' bgs.
				PP = 1.5 tsf	2			
		PP = 1.0 (SI PP = 2.5 tsf			÷1			
	10			FF = 2.3 tSI			Sai	ndy silt lense at 9'bgs, approximately 2" thick, very fine to fine-grained.
				PP = 1.0 tsf	22		We	t from 10-16' bgs, soft.
			2					
				PP = 1.5 tsf PP = 1.3 tsf		8	s nu n	
				PP = 0.3 tsf				с. П
*	15	RS	100	PP = 0.3 tsf PP = 0.3 tsf				
		2	100	PP = 3.3 tsf	CL			
				PP = 2.0 tsf PP = 3.3 tsf			Oxi	dization observed from 15-18' bgs. Oxidization is primarily observed to be rounding coarse sand and gravel grains.
-				PP = 3.3 tsr PP = 4.0 tsr				
				PP = 4.5 tsf	57			
	20			FF - 4.3 (SI	-			
			-		1			
							Ā	
ŀ				PP = 3.0 tsf	1			
ļ	25	RS 3	41	PP = 4.0 tsf			11:-	hu avidized layer at 25' has annovimately 2" thick
-		3		PP = 4.0 tsf			HIG	hly oxidized layer at 25' bgs, approximately 3" thick.
				PP = 4.5 tsf			2 S	л т. т. т. ж. жи
-				PP = 3.5 tsf			28.5	
	30			PP = 2.0 tsf	CL		Dar 20.0 mai	k gray (5Y 4/1) SANDY LEAN CLAY, cohesive, medium plasticity, ssive, uniform, stiff to very stiff, some silt present, sand is fine to dium-grained with few coarse sand, coarse-grained material is angular to
			- 25				\ rou	nded, moist.
		ie V	л		. e . ⁻		Wa	ne slight oxidization at 29.5' bgs. ter was used to extrude the sample runs from the core barrel. alled monitoring well MW-AR-2 in soil boring. End of boring at 30.0 feet.
			5			а.		
				-	L	l		

TEST 6320- CARVER COUNTY COMPOST SITES ARBORETUM.GPJ GINT US.GDT 1/31/17

i T

9	β <mark>ρ</mark> Ν	ar IcC	so	n				BORING NUMBER 16-2 PAGE 1 OF 2				
						<u>a</u>	6 A.	PROJECT NAME Carver County Compost Sites				
-	DJECT N				unia ina ina'	10/0/	10	PROJECT LOCATION Chaska, Minnesota				
1								GROUND ELEVATION 991.5 ft HOLE SIZE 6 inch				
1								GROUND WATER LEVELS:				
1				onic CHECKE				AT TIME OF DRILLING AT END OF DRILLING				
				Compost Pad.		· · · · · · · · · · · · · · · · · · ·		I 10hrs AFTER DRILLING 7.5 ft / Elev 984.0 ft				
				ompost rad.			[
FORMATION	o DEPTH (ft)	· SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION				
				PP = 0.8 tsf	CL		2.0	Very dark grayish brown (10YR 3/2) SANDY LEAN CLAY, cohesive, medium to high plasticity, sand is very fine to fine-grained and angular, some roots, soft, moist.				
				PP = 1.5 tsf			2.0	Light yellowish brown (10YR 6/4) SANDY LEAN CLAY, cohesive, medium				
		- RS 52	5	PP = 1.8 tsf				plasticity, massive, uniform, sand is very fine to fine-grained with some coarse sand and subangular, trace to few fine gravel, trace coarse gravel, few to				
				PP = 2.5 tsf				some rootlets in the upper 3', slight 1M HCL reaction, moist. Coarse gravel is subrounded to rounded.				
	5		PP = 1.0 tsf									
				PP = 2.0 tsf PP = 2.3 tsf								
				PP = 2.0 tsf								
				PP = 2.0 tsf			Ā	×,				
	10			PP = 2.5 tsf								
			a.		1			For attempt #2, low pentrometer readings may be due to use of water to remove sample from core barrel.				
				PP = 0.3 tsf				remove sample from core barrel.				
				PP = 0.3 tsf	= 2.5 tsf = 3.0 tsf							
- 14 C				PP = 2.5 tsf								
				PP = 3.0 tsf								
	15	RS 2	90	PP = 0.3 tsf								
		2		PP = 3.3 tsf PP = 3.0 tsf	CL		5 m					
				PP = 3.3 tsf	01							
-												
				PP = 3.5 tsf	e.			* . 				
	20			PP = 4.0 tsf				Thin oxidized layer at 19' bgs, approximately 0.1 inches thick.				
		-		2	1		1	Thin oxidized layer at 19.5' bgs, approximately 0.1 inches thick.				
				PP = 4.0 tsf	a							
				PP = 3.5 tsf								
				PP = 3.5 tsf			-	н т ан ал ан				
*				PP = 4.0 tsf								
	25	RS	70	PP = 4.0 tsf				Mottled with white and gray observed from 24-25.5' bgs.				
		3		PP = 3.5 tsf				Becomes siltier with very fine to medium-grained sand from 25-28' bgs. Sand is subangular to rounded.				
			40	PP = 4.0 tsf				Poorly graded sand layer at 26' bgs, approximately 4" thick.				
				PP = 3.5 tsf								
				PP = 3.5 tsf				e -				
		1		PP = 4.0 tsf								
i s	30					1////						

(Continued Next Page)

PROJECT NUMBER 6320-00

BORING NUMBER 16-2 PAGE 2 OF 2

CLIENT	Carver County Environmental	Services
	Bartor Boarry Enthermonia	

PROJECT NAME Carver County Compost Sites

PROJECT LOCATION Chaska, Minnesota

FORMATION	00 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
			12	PP = 2.3 tsf PP = 2.3 tsf PP = 2.5 tsf	CL		Light yellowish brown (10YR 6/4) SANDY LEAN CLAY, cohesive, medium plasticity, massive, uniform, sand is very fine to fine-grained with some coarse sand and subangular, trace to few fine gravel, trace coarse gravel, few to some rootlets in the upper 3', slight 1M HCL reaction, moist. Coarse gravel is subrounded to rounded. <i>(continued)</i>
-	 35 	RS 4	95	PP = 2.5 tsf PP = 2.3 tsf PP = 2.0 tsf PP = 3.3 tsf			36.0 Dark gray (5Y 4/1) SANDY LEAN CLAY, cohesive, low to medium plasticity, massive, uniform, sand is very fine to coarse-grained with trace coarse sand,
-	 40			PP = 3.3 tsf PP = 3.3 tsf PP = 3.5 tsf	CL_		sand is angular to rounded, trace to few fine gravel (approximately 0.25" diameter), very stiff, moist.
		4 4 1 2	2 2	4. · · ·			Borehole was left open overnight to attempt to obtain a waterlevel. Borehole collapsed to 25' with casing in the ground to 20' bgs. Water was used to extrude sample runs from the core barrel. Installed monitoring well MW-AR-3 in soil boring. End of boring at 40.0 feet.
	6			in an		10	
		E.					
12			45		8		
21	e ⁵¹²	141					
4	a N	5	9	20 20 20	1	8	
	Į.	÷.	0	17 - 18 1			

1	10	ar	so	n			BORING NUMBER 16-3 PAGE 1 OF 3
	PN	Car AcC	Cai	n	ж. Ж		PAGE T OF 3
CLI	ENT C	arver Co	unty En	vironmental Services			PROJECT NAME Carver County Compost Sites
PRO	DJECT N	UMBER	6320-	-00			PROJECT LOCATION Chaska, Minnesota
DAT	TE STAF	RTED 12	2/7/16	COMPLE	TED	12/8/1	B/16 GROUND ELEVATION _994.9 ft HOLE SIZE _6 inch
DRI	LLING (CONTRA	CTOR _	Cascade Drilling			GROUND WATER LEVELS:
		/IETHOD					AT TIME OF DRILLING
				CHECKE			
NO	TES DO	owngradi	ent of C	Compost Pad.			AFTER DRILLING
FORMATION	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
				PP = 2.3 tsf	CL		Very dark grayish brown (10YR 3/2) SANDY LEAN CLAY, cohesive, medium 1.0 to high plasticity, sand is very fine-grained and angular, much roots throughout, soft, moist.
		RS 1	84	PP = 1.8 tsf PP = 1.0 tsf PP = 3.5 tsf PP = 2.0 tsf			Light yellowish brown (10YR 6/4) SANDY LEAN CLAY, cohesive, medium plasticity, massive, uniform, sand is fine to very fine-grained and subangular, few coarse sand and fine gravel, few roots in upper 2', some oxidation throughout, slight 1M HCL reaction, very stiff to hard, moist. Gravel is approximately 0.25-0.5" diameter granitic in origin, and angular.
			e.	PP = 4.0 tsf	-		
		RS 2	76	PP = 3.3 tsf PP = 3.8 tsf PP = 3.0 tsf			
	10			PP = 3.5 tsf			
		RS 3	90	PP = 3.3 tsf PP = 3.0 tsf PP = 2.8 tsf PP = 1.0 tsf			Trace roots throughout between 10-15' bgs. Stopped drilling on 12/7/16 at 10' bgs due to drill rig mechanical issues. Resumed drilling on 12/8/16. Attempted to collect a water level at 15' bgs on 12/8/16, borehole was dry. Becomes siltier at approximately 12' bgs.
				PP = 2.3 tsf	CL		
	10						Mottled with gray and white and heavy oxidation observed between 14.54-15' bgs.
				PP = 4.0 tsf	1		
		RS 4	100	PP = 3.3 tsf PP = 3.5 tsf PP = 4.5 tsf PP = 3.3 tsf	-		Cobble at 16.5' bgs. Few to some, medium to coarse-grained angular sand at approximately 17' bgs.
				PP = 3.5 tsf			Attempted water level after sampling to 20'. Water level probe tip slightly muddy.
		RS 5	100	PP = 4.0 tsf PP = 3.3 tsf PP = 4.0 tsf			Oxidization observed between 22-24' bgs.
	25			PP = 3.3 tsf			Cobble at 23' bgs.
				PP = 3.3 tsf			
		RS 6	100	PP = 3.3 tsf PP = 3.0 tsf PP = 4.0 tsf PP = 4.5 tsf	sc		27.0 Brown (10YR 5/3) CLAYEY SAND WITH GRAVEL, cohesive, low plasticity, sand is very fine to medium-grained with few coarse sand and fine gravel, coarse-grained material is rounded to subangular, massive, uniform, hard, moist,
	30			PP = 4.5 tsf			

(Continued Next Page)

PROJECT NUMBER _6320-00

BORING NUMBER 16-3

PAGE 2 OF 3

Services

PROJECT NAME Carver County Compost Sites

PROJECT LOCATION Chaska, Minnesota

FORMATION	00 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	8	MATERIAL DESCRIPTION
		RS 7	100	PP = 3.3 tsf PP = 1.8 tsf PP = 3.3 tsf PP = 40.0 tsf	SC		33.0	Cobble, approximately 3" diameter, at 29.75' bgs. Brown (10YR 5/3) CLAYEY SAND WITH GRAVEL, cohesive, low plasticity, sand is very fine to medium-grained with few coarse sand and fine gravel, coarse-grained material is rounded to subangular, massive, uniform, hard, moist. (continued) Attempted water level after sampling to 30', borehole was dry. Dark gray (5Y 4/1) SANDY LEAN CLAY, cohesive, medium plasticity, very
	35			PP = 3.5 tsf				uniform, massive, some silt, sand is very fine to coarse-grained with trace to few fine gravel and trace coarse gravel, coarse-grained material is angular to rounded, very stiff, moist. Cobble at 34' bgs.
=)))	 40	RS 8	100	PP = 3.3 tsf PP = 3.3 tsf PP = 3.8 tsf PP = 3.8 tsf PP = 3.5 tsf				Poorly graded sand layer at 38' bgs, approximately 0.5" thick. Oxidized.
н () (*	 45	RS 9	100.	PP = 2.5 tsf PP = 3.3 tsf PP = 3.0 tsf PP = 2.5 tsf PP = 3.0 tsf	,			Poorly graded sand layer at 42' bgs, approximately 0.3' thick, oxidized, wet. Gravel amount increases below 42', and silt content decreases to a sandy lean clay with gravel, no "gritty" feel.
°.8		RS 10	100	PP = 3.3 tsf PP = 4.0 tsf PP = 3.3 tsf PP = 4.5 tsf	CL		r r	Soil becomes siltier with very fine sand at 48' bgs.
DT 3/21/17	50		_	PP = 4.5 tsf				Began using water to advance casing at 50' bgs.
DRETUM.GPJ GINT US.G	 55	RS 11	98	PP = 3.5 tsf PP = 4.5 tsf PP = 3.3 tsf PP = 3.5 tsf PP = 4.0 tsf				
TEST 6320- CARVER COUNTY COMPOST SITES_ARBORETUM.GPJ GINT US.GDT 3/2/1/17		RS 12	90	PP = 4.5 tsf PP = 4.5 tsf PP = 4.0 tsf PP = 4.5 tsf PP = 4.5 tsf				Cobble at 56.5' bgs, approximately 2" diameter, does not react with 1M HCL, subangular, chert.
EST 6320- CARVER COUI	<u>60</u> 	RS 13	100	PP = 4.5 tsf PP = 4.5 tsf PP = 4.0 tsf PP = 2.0 tsf PP = 2.5 tsf	ML		<u>63.5</u>	Chert cobble at 62', approximately 3" diameter, rounded.

(Continued Next Page)

BORING NUMBER 16-3 PAGE 3 OF 3

CLIENT Carver County Environmental Services

PROJECT NAME Carver County Compost Sites

PR	OJECT I	UMBER	6320	0-00	PROJECT LOCATION Chaska, Minnesota								
FORMATION	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION						
	65	RS 14	100	PP = 3.5 tsf PP = 3.0 tsf PP = 3.5 tsf PP = 2.5 tsf	ML		Soil becomes SANDY SILT, cohesive, non-plastic, sand is very fine to fine-grained and subangular, trace coarse sand and fine gravel, moist. Gravel is rounded. <i>(continued)</i> Cobble at 66.5' bgs, approximately 3" diameter, rounded.						
	70				SP- SM		69.0 Large cobble/boulder at 69' bgs. Granitic in origin, quartz and biotite grains are visible. 70.0 Yellowish brown (10YR 5/4) POORLY GRADED SAND WITH SILT, very fine-grained with trace medium-grained sand, angular to subrounded, trace fine gravel, moist. Oxidization observed in bottom of sample bag at 70'. Abandoned original borehole with 7 bags of portland cement (100 lbs. bags). Moved eight feet south of original borehole and drilled B16-3R to 30' bgs. Installed monitoring well MW-AR-4 in borehole B16-3R. End of boring at 70.0 feet.						
e			14		L,								
GD1 3/21/17		1) * 											
TEST 6320- CARVER COUNTY COMPOST SITES_ARBORETUM.GPJ GINT US,GDT 3/2///													
IESI 6	5			2									

ED <u>1</u> ED <u>1</u> NTRA THOD <u>M. Lin</u> radient	2/10/16 2/10/16 CTOR _ _Rotas	COMPLI				DBO ISOT NAME OF THE OF
ED _1: INTRA THOD M. Lin radient	2/10/16 CTOR _ _Rotas	COMPLI			-3.1 - A.C. 1988	PROJECT NAME Carver County Compost Sites PROJECT LOCATION Chaska, Minnesota
		conic CHECKI	ED BY	_N. B		GROUND ELEVATION _1003.6 ft HOLE SIZE _6 inch GROUND WATER LEVELS: AT TIME OF DRILLING
SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	8	MATERIAL DESCRIPTION
			sc		4.5	Very dark gray (7.5YR 3/1) CLAYEY SAND, cohesive, low plasticity, sand is very fine to fine-grained and angular to subrounded, some roots throughout,
RS 1	40	PP = 2.0 tsf PP = 0.8 tsf PP = 0.3 tsf	E-		1.0	moist. Upper 4" are frozen. Brown (10YR 5/3) SANDY LEAN CLAY, cohesive, medium to high plasticity, massive, uniform, sand is very fine to medium-grained with some coarse sand and subangular to subrounded, trace to few fine gravel, trace coarse gravel, very soft to very stiff, moist. Coarse gravel is approximately 1-2" diameter. Mottled with white and gray observed from 4-5' bgs.
RS 2	76	PP = 0.3 tsf PP = 1.5 tsf PP = 0.3 tsf PP = 1.5 tsf PP = 1.5 tsf				Chert cobble at 5' bgs, subangular, approximately 3" diameter. Very dark gray (7.5YR 3/1) clayey sand layer from 5.3-6' bgs, cohesive, medium to high plasticity, wet. Poorly graded sand layer from 7-7.5' bgs, medium to coarse-grained, subangular to rounded, wet. Strong brown (7.5 YR 5/6) lean clay with silty sand from 8-10' bgs. Sand is very fine to coarse-grained, angular, wet. Heavily mottled with white and gray observed.
RS	100	PP = 0.3 tsf PP = 0.8 tsf PP = 1.5 tsf PP = 2.0 tsf PP = 0.3 tsf	CL			
.3		PP = 2.5 tsf PP = 3.0 tsf PP = 3.5 tsf PP = 3.3 tsf PP = 3.5 tsf			20.0	Mottled with white and gray, and oxidization observed from 15.5-17' bgs. From 17-20' bgs: soil is not overall wet, but moisture is visible on gravel and coarse sand grains.
RS 4	100	PP = 4.0 tsf PP = 4.5 tsf PP = 4.0 tsf PP = 4.0 tsf PP = 4.0 tsf PP = 4.5 tsf PP = 4.5 tsf	CL			Dark gray (5Y 4/1) SANDY LEAN CLAY, cohesive, low to medium plasticity, massive, uniform, sand is very fine to fine-grained with trace coarse sand, fine gravel and coarse gravel, sand is angular, very stiff to hard, moist. Gravel is rounded, less than 2" diameter, and granitic in origin. Steam was observed rising from the sample collected in attempt #4. Soil is more silty from 22-23.5' bgs.
		PP = 3.5 tsf PP = 3.5 tsf PP = 3.5 tsf PP = 3.5 tsf	in.			Oxidized layer observed at 26' bgs, approximatly 0.1 inches thick. Chert cobble observed at 28' bgs, approximately 4" diameter.
	RS 1 RS 2 RS 3	RS 40 RS 76 RS 100 RS 100	RS 140PP = 2.0 tsf PP = 0.8 tsf PP = 0.3 tsfRS 276PP = 0.3 tsf PP = 0.3 tsf PP = 1.5 tsf PP = 1.5 tsf PP = 1.5 tsfRS 3100PP = 0.3 tsf PP = 1.5 tsf PP = 1.5 tsf PP = 1.5 tsf PP = 3.5 tsf PP = 3.5 tsf PP = 3.5 tsf PP = 4.0 tsf PP = 4.0 tsf PP = 3.5 tsf PP = 4.0 tsf PP = 3.5 tsf	RS 40 PP = 2.0 tsf SC $PP = 0.8 tsf$ PP = 0.8 tsf PP = 0.3 tsf $PP = 0.3 tsf$ PP = 0.3 tsf PP = 0.3 tsf $PP = 1.5 tsf$ PP = 1.5 tsf PP = 1.5 tsf $PP = 1.5 tsf$ PP = 1.5 tsf PP = 1.5 tsf $PP = 0.3 tsf$ PP = 0.3 tsf PP = 0.3 tsf $PP = 0.3 tsf$ PP = 0.3 tsf PP = 2.0 tsf $PP = 1.5 tsf$ PP = 2.0 tsf PP = 3.0 tsf $PP = 3.0 tsf$ PP = 3.5 tsf PP = 3.5 tsf $PP = 3.5 tsf$ PP = 4.0 tsf PP = 4.0 tsf $PP = 4.0 tsf$ PP = 4.0 tsf PP = 4.0 tsf $PP = 4.0 tsf$ PP = 4.0 tsf PP = 3.5 tsf $PP = 3.5 tsf$ PP = 3.5 tsf PP = 3.5 tsf	$ \begin{array}{c c c c c c c c } RS \\ 1 \\ 40 \\ PP = 2.0 tsf \\ PP = 0.8 tsf \\ PP = 0.3 tsf \\ PP = 0.3 tsf \\ PP = 0.3 tsf \\ PP = 1.5 tsf \\ PP = 2.0 tsf \\ PP = 3.5 tsf \\ PP = 4.0 tsf \\ PP = 4.5 tsf \\ PP = 3.5 tsf \\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(Continued Next Page)

ch	Carlson	Í
P	Carlson McCain	

BORING NUMBER 16-4

PAGE 2 OF 2

CLIENT Carver County Environmental Services

RECOVERY %

TESTS

PROJECT NAME _ Carver County Compost Sites

PROJECT NUMBER _6320-00

SAMPLE TYPE NUMBER

FORMATION

DEPTH (ft)

Water was used to extrude sample from the core barrel. Installed monitoring well MW-AR-1 in soil boring. End of boring at 30.0 feet.

TEST 6320- CARVER COUNTY COMPOST SITES_ARBORETUM.GPJ GINT US.GDT 1/31/17

	PRO DAT DRI	ENT <u>C</u> DJECT I TE STAI	NUMBE	ounty R _632 12/10/ ACTOF	Environmental Service 20-00 16 COMPL R Cascade Drilling		12/10)/16	PROJECT NAME _Carver County Compost Sites PROJECT LOCATION _Chaska, Minnesota GROUND ELEVATION _999.4 ft HOLE SIZE _6 inch GROUND WATER LEVELS: AT TIME OF DRILLING			
	LOC	GED B	Y <u>M.</u>	indstro		ED BY	<u>N. B</u>	onow	AT END OF DRILLING AFTER DRILLING			
in W	FORMATION	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	2	MATERIAL DESCRIPTION			
			RS 1	100	PP = 3.5 tsf PP = 3.0 tsf PP = 3.0 tsf	SW- SM CL		1.5	Yellowish red (5YR 5/6) WELL GRADED SAND WITH SILT AND GRAVEL, very fine to coarse-grained, angular to subrounded, trace compost mixed in, trace roots, moist. Gravel is less than 1" diameter and round. Dark gray (7.5YR 4/1) LEAN CLAY with trace sand, cohesive, high plasticity, heavily mottled with dark gray, oxidized, sand is fine to medium-grained and rounded to angular, trace roots, compost/organic soil layering, very stiff, moist.			
	8				PP = 3.5 tsf	CL		5.0	Transitional mixed mottled zone of dark gray (7.5YR 4/1) LEAN CLAY and brown (10YR 5/3) SANDY LEAN CLAY, heavily mottled with white and gray, oxidized, laminated, sand is very fine to medium-grained and angular to			
2 		 10	RS 2	90	PP = 3.5 tsf PP = 3.5 tsf PP = 3.5 tsf PP = 3.0 tsf PP = 2.5 tsf	- CL			rounded, trace roots, very stiff, moist. Brown (10YR 5/3) SANDY LEAN CLAY, cohesive, medium plasticity, sand is very fine to medium-grained with some silt, few coarse sand, trace fine gravel, coarse material is subangular to subrounded, stiff to very stiff, moist. Heavily mottled with white, red, and gray, and oxidization observed from 5-11' bgs.			
		10 15	RS 3	90	PP = 3.0 tsf PP = 3.5 tsf PP = 1.5 tsf PP = 2.5 tsf PP = 2.0 tsf				Trace oxidization from 11-15' bgs. Cobble at 12.5' bgs, approximately 2.5" diameter, angular, rusty/oxidized. Sand lense observed at 13' bgs, fine to medium-grained, oxidized, less than 0.25" thick.			
T 1/31/17		15			19. 19.			15.0	Black, pulverized rock observed at 14.75'. Abandoned borehole with approximately 1.75 bags of portland cement (100 lbs. bags).			
ST 6320- CARVER COUNTY COMPOST SITES ARBORETUM.GPJ GINT US.GDT				0					End of boring at 15.0 feet.			

E	PRO DAT	ENT <u>C</u> DJECT I	arve NUN RTE	er Co IBER D _1	_ <u>6320</u> 2/10/16	nvironmental Service 0-00	ETED	12/10	/16	PROJECT LOCATION Chaska, Minnesota GROUND ELEVATION 998.3 ft HOLE SIZE _6 inch	
	LOC		Y_	M. Lii n Cor	ndstror npost I	sonic n CHECK Pad Footprint.	ED BY	<u>N. Bo</u>	now	AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING	
n 10	FORMATION	o DEPTH (ft)	SAMPLE TYPE	NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
				RS 1	100	PP = 4.0 tsf PP = 4.5 tsf PP = 3.0 tsf PP = 2.5 tsf	SW- SM CL CL		1.5 2.5 4.0	Yellowish red (5YR 5/6) WELL GRADED SAND WITH SILT AND GRAVEL, very fine to coarse-grained, angular to subrounded, trace compost/organic material, trace roots, moist. Gravel is less than 1" diameter and rounded. Dark gray (7.5YR 4/1) LEAN CLAY, cohesive, high plasticity, heavily mottled with with and gray, heavily oxidized, trace sand, sand is fine to medium-grained and rounded to angular, layers of compost mixed in, trace roots, hard, moist. Transitional, mixed, mottled zone of dark gray (7.5YR 4/1) LEAN CLAY and brown (10YR 5/3) SANDY LEAN CLAY, cohesive, medium plasticity, heavily	
	2	 	- _ _ _	RS 2	100	PP = 1.7 tsf PP = 2.0 tsf PP = 1.8 tsf PP = 2.0 tsf PP = 3.0 tsf	CL		5	 mottled with white and gray, oxidized, laminated, sand is very fine to medium-grained, trace roots, very stiff, moist. Brown (10YR 5/3) SANDY LEAN CLAY, very fine to medium-grain with some silt, few coarse sand, trace fine gravel, subangular to subrounded, cohesive, medium plasticity, trace roots, stiff to hard, uniform, massive, moist. Heavy mottling and oxidization observed from 4-7' bgs. Heavy mottling and oxidization layer observed at 7' bgs, approximately 0.25' thick. 	
				RS 3	100	PP = 4.0 tsf $PP = 4.0 tsf$ $PP = 4.0 tsf$ $PP = 4.5 tsf$ $PP = 4.5 tsf$			15.0	Sample from attempt #3 came out very straight from core barrel. Oxidized layer at 12' bgs, approximately 0.1" thick.	
L GINT LIS GDT 418										Abandoned borehole with 1.75 bags of portland cement (100 lbs. bags). End of boring at 15.0 feet.	
						5 29		8			
					-2 	2 2 2 2 2 2			14		

(P		ar c(on ain		_0 ⊖ 54 55	2	BORING NUMBER 16 PAGE 1 C
CL	ENT C	arv	er Co	ounty	Environmental Service	S			PROJECT NAME Carver County Compost Sites
	OJECT								PROJECT LOCATION Watertown, Minnesota
DA	TE STA	RTE	D _1	2/6/10	6 COMPL	ETED	12/6	'16	GROUND ELEVATION 930.3 ft HOLE SIZE 6 inch
					asonic				
					Om CHECK	ED BY	<u>N.</u> В	onow	
NO	TES <u>U</u>	pgra	adien	t of C	ompost Pad.	1 10 1	-	T	AFTER DRILLING
FORMATION	o DEPTH (ft)	SAMPI F TYPF	NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	~	MATERIAL DESCRIPTION
					PP = 0.5 tsf	SM		2.0	Dark grayish brown (10YR 4/2) SILTY SAND, fine-grained, subangular, cohesive, non-plastic, much roots throughout, soft, moist.
			RS 1	90	PP = 2.5 tsf PP = 0.3 tsf PP = 1.5 tsf PP = 1.5 tsf	CL			Mixture of very dark gray (10YR 3/1) and yellowish brown (10YR 5/4) SAND LEAN CLAY, cohesive, low to medium plasticity, some slight mottling with gray, sand is very fine to fine-grained with trace coarse sand and fine gravel sand is angular to rounded, few rootlets, stiff to very stiff, moist. Fine gravel layer at 3' bgs, approximately 0.1' thick.
			8						At 5' bgs: Color becomes all yellowish brown (10YR 5/4).
	[·]		e		PP = 1.0 tsf			7.0	Poor recovery in attempt #2 may be due to sampler pushing away sand.
			RS 2	60	PP = 1.3 tsf PP = 1.0 tsf PP = 1.5 tsf	сн		9.0	Black (5Y 2.5/2) FAT CLAY WITH SAND, cohesive, high plasticity, sand is very fine-grained and subangular, stiff, wet.
	10				_				Dark grayish brown (10YR 4/2) POORLY GRADED SAND, very fine to fine-grained, subrounded, massive, uniform, loose, wet.
						SP			
			RS	96	e.				2
	 15		3		15	SP		13.0	At 12.5' bgs: Sand grain size becomes medium to coarse-grained, angular. Gray (5Y 5/1) POORLY GRADED SAND WITH GRAVEL, medium to coarse-grained, subangular to angular, losse, massive, wet. Gravel is approximately 0.5" diameter.
			RS	100		SP			Cobble at 14.5'. Gray (5Y 5/1) POORLY GRADED SAND, very fine to fine-grained with trace fine gravel, subrounded to rounded, loose, massive, wet. Gravel is approximately 0.5" diameter.
			4						Coarse sand layer at 17' bgs, approximately 0.3' thick.
			2					19.0	2
	Τ								Installed monitoring well MW-WT-1 in soil boring.
	23					20 1		2 2	End of boring at 19.0 feet.
					a N				
					œ				
					-				8
							1		
а - 7					* 5				80 a. 1
					5				

9	N		lsc Ca	n			BORING NUMBER PAGE	
CLIE				nvironmental Service	26		PROJECT NAME Carver County Compost Sites	
	JECT N						PROJECT LOCATION Watertown, Minnesota	
				COMPL	FTFD	12/5/		
				Cascade Drilling				
	LLING M				4		AT TIME OF DRILLING _6.1 ft / Elev 920.9 ft	
				n CHECK		N B		
		2	-				now AT END OF DRILLING ✓ 16hrs AFTER DRILLING _4.6 ft / Elev 922.4 ft	
			1 1	compositi au.	-	1		
FORMATION	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
				PP = 2.5 tsf	CL		Yellowish brown (10YR 5/4) LEAN CLAY, cohesive, high plasticity, oxid trace medium-grained sand, sand is subangular, much roots and rootlet throughout, stiff to very stiff, moist.	ize ts
	 5	RS 1	60	PP = 2.0 tsf PP = 2.0 tsf PP = 2.5 tsf PP = 1.5 tsf	SP- SM		Black (10YR 2/1) POORLY GRADED SAND WITH SILT, very fine to medium-grained with trace angular coarse sand, subrounded to rounded somewhat cohesive, earthy odor, massive, trace leaf fragments, moist.	ł,
	 	RS 2	100	2 2 2	SP		 5.5 Wet at 5' bgs. ☑ Light brownish gray (2.5Y 6/2) POORLY GRADED SAND, medium-grain with some coarse sand, angular, massive, loose, wet. Slight oxidization at 6' bgs. Coarse sand layer at 8' bgs, rounded to subrounded, shell fragments pro approximately 0.1' thick. Dark gray (10YR 4/1) FAT CLAY layer at approximately 8.1' bgs, 0.3' thi contains shell fragments, very fine-grained, soft. 	ese
		RS 3	100	PP = 3.3 tsf PP = 2.0 tsf PP = 3.3 tsf PP = 4.5 tsf			At 9': 0.2' thick shell layer, much roots present. From 9.2-9.5': Dark gray (10YR 4/1) POORLY GRADED SAND, very fine-grained, varved, reacts moderatly with 1M HCL. Very dark gray (2.5Y 3/1) FAT CLAY WITH SAND, cohesive, medium to plasticity, laminated, sand is fine to medium-grained with trace coarse s coarse-grained material is rounded, stiff to hard, wet.	o hi and
	15	RS		PP = 3.5 tsf	CH		Good recovery in attempt #4 may be due to sand slough at top of sampl and stretching of clay as it's removed from the core barrel.	le i
-		4	° 100	PP = 4.0 tsf PP = 3.5 tsf				
			-				18.0	
			2.				During drilling, driller reported heaving sands. After drilling completion, water level rose to top of casing. Installed monitoring well MW-V/T-2 in borehole. End of boring at 18.0 feet.	

	ENT <u>/ C</u>	arver Co	ounty E	Environmental Service	S		BORING NUMBER 16-9 PAGE 1 OF 1 PROJECT NAME Carver County Compost Sites PROJECT LOCATION Watertown, Minnesota
DAT DRI DRI LOG	E STAI	RTED _1 CONTRA METHOE Y _M. LI	2/6/16 CTOR	COMPL			6/16 GROUND ELEVATION 932 ft HOLE SIZE 6 inch GROUND WATER LEVELS: ✓ ✓ AT TIME OF DRILLING 7.3 ft / Elev 924.7 ft ✓
FORMATION	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
		RS 1	70		SM		O.5 Very dark grayish brown (10YR 3/2) SILTY SAND, very fine to medium-grained with trace coarse sand, subangular, non-cohesive, massive, moist. Coarse sand is subrounded. Light yellowish brown (10YR 6/4) SANDY SILT, very fine to fine-grained with few medium to coarse-grained sand, non-cohesive, massive, mottled, trace gravel, hard, moist. Gravel is approximately 0.25" diameter.
	 <u>5</u> 	RS	40		SP- SM		 Very dark gray (10YR 3/1) POORLY GRADED SAND WITH SILT, fine to very fine-grained, angular, non-cohesive, trace very small shells, some clay, few roots, moist to wet. ✓ Wet at 8' bgs.
		2	40	PP = 0.5 tsf	SP		Some slough at the top of attempt #2 due to hole collapse. 9.5 Oxidized FAT CLAY layer observed from approximately 9.2-9.5' bgs, cohesive, soft. 11.0 Grayish brown (10YR 5/2) POORLY GRADED SAND, medium to
	 15	RS 3	96	PP = 3.0 tsf PP = 4.0 tsf	GP		Gray (5Y 5/1) POORLY GRADED GRAVEL WITH SAND, very coarse-grained sand with fine gravel, subangular to rounded, massive, loose, slight reaction with 1M HCL, wet. Gravel is approximately 0.25-0.5" diameter. Oxidization at 11.5' bgs. Color change to gray (5Y 5/1) observed at 12.5' bgs.
		RS 4	100	PP = 4.5 tsf $PP = 4.0 tsf$ $PP = 4.5 tsf$ $PP = 4.5 tsf$ $PP = 4.0 tsf$	СН		Gray (5Y 5/1) FAT CLAY, cohesive, high plasticity, laminated, trace to some medium to coarse-grained sand, trace fine gravel, coarse-grained material is subrounded, very stiff to hard, wet.
	20	2	×				20.0 Installed monitoring well MW-WT-3 in soil boring. End of boring at 20.0 feet.
ž			×				

TEST 5320- CARVER COUNTY COMPOST SITES_WATERTOWN.GPJ GINT US.GDT 1/31/17

9	ρ <mark>Ν</mark>	ar Ic(SO	n				BORING NUMBER 16-1 PAGE 1 OF
CLI					2			PROJECT NAME Carver County Compost Sites
	DJECT N							PROJECT LOCATION Watertown, Minnesota
				COMPL	ETED	12/6/	16	
DRI	LLING C	ONTRA	CTOR	Cascade Drilling				
	LLING M							AT TIME OF DRILLING 7.2 ft / Elev 923.8 ft
LOC	GGED BY	<u>M. Li</u>	ndstron	CHECK	ED BY	N. B	onow	AT END OF DRILLING
NOT	TES Do	wngradi	ent of C	Compost Pad.				
FORMATION	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	TESTS	U.S.C.S.	GRAPHIC LOG	2	MATERIAL DESCRIPTION
N		RS	- 64	PP = 3.5 tsf PP = 3.5 tsf PP = 2.5 tsf	ML		2.5	Dark grayish brown (10YR 4/2) SILT WITH SAND, cohesive, non-plastic, sar is medium-grained with few coarse-grained sand and some fine gravel, coarse-grained material is subangular, few roots, very stiff, moist. Gravel is approximately 1" diameter.
	5	1	04	PP = 4.0 tsf	SM SP- SM		4.0	Very dark gray (10YR 3/10) SILTY SAND, fine-grained with few medium to coarse-grained sand, cohesive, massive, slightly mottled with gray, trace fine gravel, coarse-grained material is rounded, few root and leaf fragments, stiff hard, moist. Dark gray (10YR 4/1) POORLY GRADED SAND WITH SILT, medium to
	 10	RS 2	100	PP = 0.5 tsf PP = 0.8 tsf PP = 0.5 tsf PP = 0.3 tsf PP = 1.5 tsf	CH		<u>V</u>	bark gray (101R 47) POORLY GRADED SAND WITH SILT, medulm to coarse-grained with trace very coarse-grained sand, subangular, loose, wood fragments throughout, moist. Plastic bag/liner observed at 5' bgs. Very dark gray (2.5Y 3/1) FAT CLAY, cohesive, high plasticity, massive, som very fine-grained sand, trace medium-grained sand, coarse-grained material rounded, roots and wood fragments throughout, soft, slight reaction with 1M HCL, wet. Roots range in size from very small to approximately 1" diameter. Some mottling with dark gray in the upper 5'. Attempted to collect at water level measurement after attempt #2, water leve probe tip was muddy, but no measureable water in borehole at that time.
		RS 3	100	PP = 0.5 tsf PP = 0.5 tsf PP = 0.5 tsf			13.0	
	 15			4	SP		15.0	Gray (5Y 5/1) POORLY GRADED SAND, coarse-grained, rounded to subrounded, trace fine gravel, wet. Gravel content increases towards 15' bgs
30				PP = 4.5 tsf				Gray (5Y 5/1) SANDY LEAN CLAY, cohesive, medium plasticity, thinly laminated, sand is medium-grained, trace fine gravel, hard, wet.
		RS	100	PP = 4.5 tsf	CL			
		4		-	UL			
				PP = 4.5 tsf			19.0	
				3 3 3 2 1 1 0 1 1 1				Installed monitoring well MW-WT-4 in soil boring. End of boring at 19.0 feet.
	2			त्र . र्थ				* * *
						5		
							-	

ŕ

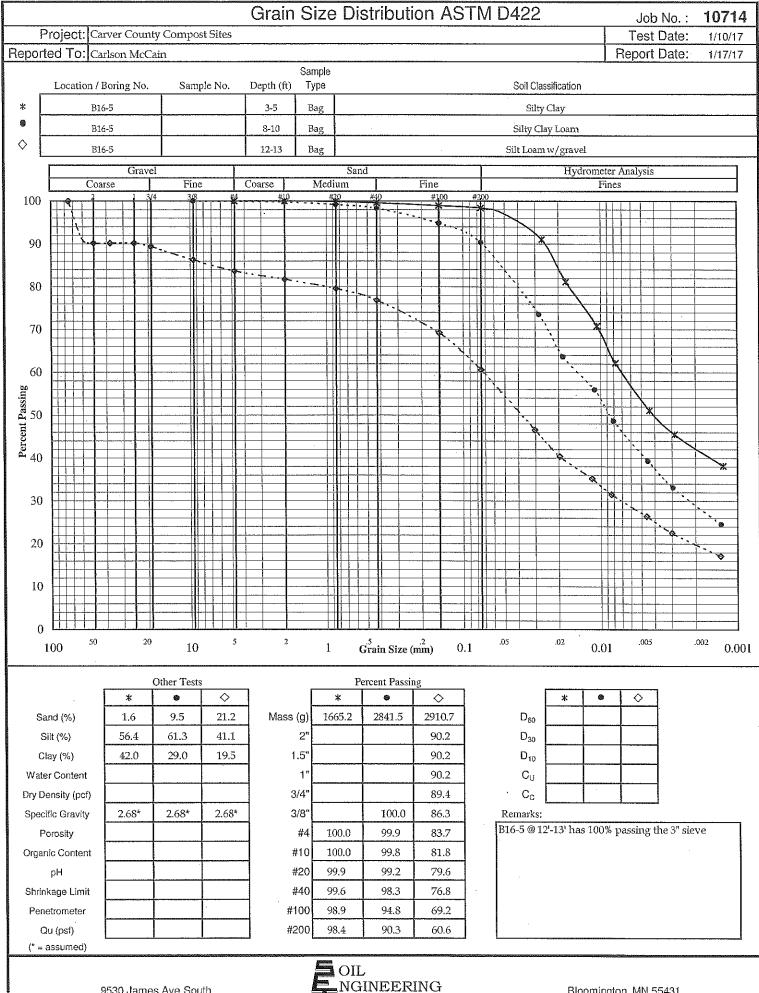
	Monitoring	Well Diagra	am
P Carlson McCain	Above Grade	e Completio	on MW-AR-1
Y McCain	PROJECT NAM	E: Carver Co	ounty Compost Sites
	LOCATION:	Chaska, MN	5 - 3 ²
Drilling Method: 4" x 6" Rota-sonic		<u> </u>	Ground Surface Elevation: 1003.6
Company: Cascade Drilling Foreman: Eric Sather			MDH Unique Well No.: 822180 Date/Time Started: 12/10/16 858
Rig Model: mini-Sonic ATV			Date/Time Completed: 12/10/2016 1013
Geol/Engr: M. Lindstrom			Coordinates: N 180430.2, E 542386.5
Protective Casing			8
Stick Up -3'	X		PROTECTIVE CASING
	and and		Type: Stainless Steel Bumper Posts: 3 around well
Riser Stick Up -2.5'			Diameter: 6" Casing Elevation: 1005.73
9 = 0		10 12	Length: 7' Locked: yes Key Number: 2121
	1 V 1		
	Ť		_CAP OR PLUG
			Type: Expansion Plug Vented: No
Ground Surface	STATES AND	- AN ANALY	
		All and a second	SURFACE BACKFILL MATERIAL
6 *	AND ST IN	States and	Type: Portland Cement
14			Total Volume: Manufacturer: TCC Materials
Top of Grout			Manufacturer: TCC Materials
			6
			s
× ×			
			RISER PIPE
			Type: Schedule 40 Low-Carbon Steel
		*2	Inner Diameter: 2 ^s
18 E			Joint Type: Threaded Coupler Total Length: 16.5 No:/Length of Sections: 1.65/10 ft
		a. 1	Manufacturer: EXLTUBE
5			
	a - 11		GROUT
			Type: Portland Cement
	6)		Total Volume: 1 bag Mix Ratio: 6 gallons of water/1 bag
	5 A.		Manufacturer: TCC Materials
			5 D I I I I 128
		-	5
Top of Seal 10'	NALSO CONTRACTO		SEAL
			Type/Size: 3/8" Bentonite Chips
		·	Total Volume: 1/4 bag
Top of Filter Pack11'			Manufacturer: Halliburton "Hole Plug"
Top of Screen 14'			FILTER PACK
			Type/Size: #10 Red Flint Sand
27			Total Volume: 2 bags Manufacturer: Red Flint Sand and Gravel
			Manoracoter: Neu Finn Janu anu Oravei
			WELL SCREEN
		11 C	Type: Stainless Steel
ن پې			Inner Diameter: 2" Length: 10' . Effective Length: 14'
			Slot Size: No. 7
(2)			Manufacturer: Johnson
Bottom of Screen 24' Bottom of Filter Pack 25'			7
Bottom of Filter Pack			WATER SOURCE: Arboretum Site water supply
	Borehole Diameter:	6"	
			NOTES: grout was placed to ground surface, and pro-top was installed in grout at
Total Depth of Boring30'Total Length of Well26.5	1		time of well installation. Grout height was verified to be at or above ground surface after allowing grout to settle a minimum of 12 hours.
Total Length of Well20.5	i		arter anowing grout to setue a minimum of 12 hours.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Monitori	ng Well Diagr	10133
Carlso McCa	10			
() Curisu			rade Completi	
7 McCa	In	PROJECT	NAME: Carver Co	ounty Compost Sites
		LOCATION	I: Chaska, MN	
Drilling Method: 4" x 6"	Rota-sonic			Ground Surface Elevation: 992.5
Company: Cascade Drill				MDH Unique Well No.: 822177
Foreman: Eric Sather				Date/Time Started: 12/09/16 1230
Rig Model: mini-Sonic A				Date/Time Completed: 12/09/2016 1420
Geol/Engr: M. Lindstron	n			Coordinates: N 180385.8, E 542112.5
Protective Casing	21			
Stick Up	-3'	1	<u> </u>	PROTECTIVE CASING
Riser Stick Up	-2.5'			Type: Stainless Steel Bumper Posts: 3 around well Diameter: 6" Casing Elevation: 995.17
Risel Suck Op	-2.5		-	Diameter: 6" Casing Elevation: 995.17 Length: 7'
				Locked: yes Key Number: 2121
				Rey Number: 2121
				CAP OR PLUG
				Type: Expansion Plug Vented: No
Ground Surface				
		ATENETS STO		
E		and the second	CHE CONTRACT	SURFACE BACKFILL MATERIAL
				Type: Portland Cement
		The second second	Company and the second	Total Volume:
TonofCourse				Manufacturer: TCC Materials
Top of Grout				
193				
				т. т
		1 1		RISER PIPE
				Type: Schedule 40 Low-Carbon Steel
				Inner Diameter: 2"
				Joint Type: Threaded Coupler
		18 J		Total Length: 15.5 No./Length of Sections: 1.55/10 ft
<i>b</i>				Manufacturer: EXLTUBE
63				* 2 C
				GROUT
				Type: Portland Cement
				Total Volume: 2 bags Mix Ratio: 6 gallons of water/1 bag
				Manufacturer: TCC Materials
			2	
		8	<i>1</i> 1	
				A LAND REPORT OF A STREET AND A STREET
Top of Seal	9'		CENTRAL SCIENCES	SEAL
		Solution in the second		Type/Size: 3/8" Bentonite Chips
Top of Filter Pack	10'			Total Volume: 1/4 bag
TOP OF PITTER PACK	10			Manufacturer: Halliburton "Hole Plug"
Top of Screen	13'			FILTER PACK
- op or server		-		Type/Size: #10 Red Flint Sand
c				Total Volume: 2 bags
				Manufacturer: Red Flint Sand and Gravel
				WELL SCREEN
		AND THESE		Type: Stainless Steel
1 A A A A A A A A A A A A A A A A A A A				Inner Diameter: 2"
				Length: 10' Effective Length: 14'
				Slot Size: No. 7
Dener (C	221	and the eng-		Manufacturer: Johnson
Bottom of Screen	23'			
[•] Bottom of Filter Pack	24'			
		Borehole Diam	eter: 6"	WATER SOURCE: Arboretum Site water supply
40 40		Dorenoie Diam	etet: 0	NOTES: grout was placed to ground surface, and pro-top was installed in grout at
Total Depth of Boring	30'			time of well installation. Grout height was verified to be at or above ground surface
Total Length of Well	25.5			after allowing grout to settle a minimum of 12 hours.
and a second second				
				4

P Carlso McCai	n	Above Gr	ng Well Diag ade Complet	
		LOCATION		Soundy Compositories
Drilling Method: 4" x 6" R Company: Cascade Drillir		LOCATION		Ground Surface Elevation: 991.5 MDH Unique Well No.: 822178
Foreman: Eric Sather		a according a		Date/Time Started: 12/09/16 844
Rig Model: mini-Sonic AT Geol/Engr: M. Lindstrom				Date/Time Completed: 12/09/2016 1008 Coordinates: N 180266.9, E 542112.7
	12	e		
Protective Casing Stick Up	-3'		5	PROTECTIVE CASING
	-2.5'	1	· · · · · · · · · · · · · · · · · · ·	Type: Stainless Steel Bumper Posts: 3 around well Diameter: 6" Casing Elevation: 994.28
Riser Stick Up	-2.5			Diameter: 6" Casing Elevation: 994.28
		34		Locked: yes Key Number: 2121
		-		
				CAP OR PLUG
Ground Surface				Type: Expansion Plug Vented: No
Ground Surface		CLASSES STOR	9111 (S.95) (C.)	
			State Shares	SURFACE BACKFILL MATERIAL
		And the State	AND STATES	Type: Portland Cement
	8	Sec. Sec.		Total Volume: Manufacturer: TCC Materials
Top of Grout				Manufacturer: ICC Materials
Top of Oroac		19 - Contraction - Contract 19 - Contraction		
· ·				
8		G	11	
				RISER PIPE Type: Schedule 40 Low-Carbon Steel
	59		a.c	Inner Diameter: 2"
	8			Joint Type: Threaded Coupler
				Total Length: 16.5 No./Length of Sections: 1.65/10 ft
				Manufacturer: EXLTUBE
				2 g. e II
				a
		- 24		GROUT
			- <u>8</u>	Type: Portland Cement
			8	Total Volume: 2 bags Mix Ratio: 6 gallons of water/1 bag
				Manufacturer: TCC Materials
*				8 ×
			0	5 D
· · · ·				A
	V			
Top of Seal	10'	Transferra	Contraction of the second	SEALT(Star2/01 Beneficial China
				Type/Size: 3/8" Bentonite Chips Total Volume: 1/4 bag
Top of Filter Pack	11'	1 and the second		Manufacturer: Halliburton "Hole Plug"
Top of Screen	14'		_	FILTER PACK
	20			Type/Size: #10 Red Flint Sand Total Volume: 2 bags
				Manufacturer: Red Flint Sand and Gravel
	8			
				WELL SCREEN
	0			Type: Stainless Steel
				Inner Diameter: 2" Length: 10' Effective Length: 14'
				Slot Size: No. 7
				Manufacturer: Johnson
Bottom of Screen	. 24'			
Bottom of Filter Pack	25'			
		Borehole Diamete	er: 6"	WATER SOURCE: Arboretum site supply
		Dorenoie Diamete	<u> </u>	NOTES: grout was placed to ground surface, and pro-top was installed in grout at
Total Depth of Boring	40'			time of well installation. Grout height was verified to be at or above ground surface
Total Length of Well	26.5'			after allowing grout to settle a minimum of 12 hours.
		10		2

11 Carloon	Monitoring Well Diagra	
Carlson McCain	Above Grade Completic	MW-AR-4
7 McCain	PROJECT NAME: Carver Con	unty Compost Sites
A CONTRACTOR OF	LOCATION: Chaska, MN	
Drilling Method: 4" x 6" Rota-sonic		Ground Surface Elevation: 994.9
Company: Cascade Drilling Foreman: Eric Sather		MDH Unique Well No.: 822179 Date/Time Started: 12/09/16 1523
Rig Model: mini-Sonic ATV		Date/Time Statted: 12/09/2016 1625
Geol/Engr: M. Lindstrom		Coordinates: N 180219, E 542197.7
Protective Casing Stick Up -2.5'		PROTECTIVE CASING
		Type: Stainless Steel Bumper Posts: 3 around well
Riser Stick Up -2'		Diameter: 6" Casing Elevation: 996.7
	±	Length: 7' Locked: yes Key Number: 2121
2	a	Locked: yes Key Number: 2121
		CAP OR PLUG
		Type: Expansion Plug Vented: No
Ground Surface	Internet and Internet	
		SURFACE BACKFILL MATERIAL
<i></i>		Type: Portland Cement
		Total Volume: Manufacturer: TCC Materials
Top of Grout		Manufacturer: ICC Materials
1 22		2
		RISER PIPE
		Type: Schedule 40 Low-Carbon Steel
		Inner Diameter: 2"
		Joint Type: Threaded Coupler Total Length: 16.5 No./Length of Sections: 1.65/10 ft
		Manufacturer: EXLTUBE
		GROUT
		Type: Portland Cement
8		Total Volume: 1 bag Mix Ratio: 6 gallons of water/1 bag
		Manufacturer: TCC Materials
a		s 8
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		v .
		under an entre and a second
Top of Seal 10'		SEAL
		Type/Size: 3/8" Bentonite Chips
Top of Filter Pack 11'	- Andrew States	Total Volume: 1/4 bag Manufacturer: Halliburton "Hole Plug"
Тор от Рисег Раск 14		Manufacturer: Halliburton Hole Plug
Top of Screen 14.5	5	FILTER PACK
		Type/Size: #10 Red Flint Sand
		Total Volume: 2 bags Manufacturer: Red Flint Sand and Gravel
		WELL SCREEN
		Type: Stainless Steel
15		Inner Diameter: 2" Length: 10' Effective Length: 14'
- 1 ¹		Slot Size: No. 7
D		Manufacturer: Johnson
Bottom of Screen 24.5 Bottom of Filter Pack 25		
2		WATER SOURCE: Arboretum Site water supply
3	Borehole Diameter: <u>6"</u>	
Total Depth of Boring	30'	NOTES: grout was placed to ground surface, and pro-top was installed in grout at time of well installation. Grout height was verified to be at or above ground surface
	6.5'	after allowing grout to settle a minimum of 12 hours.

.

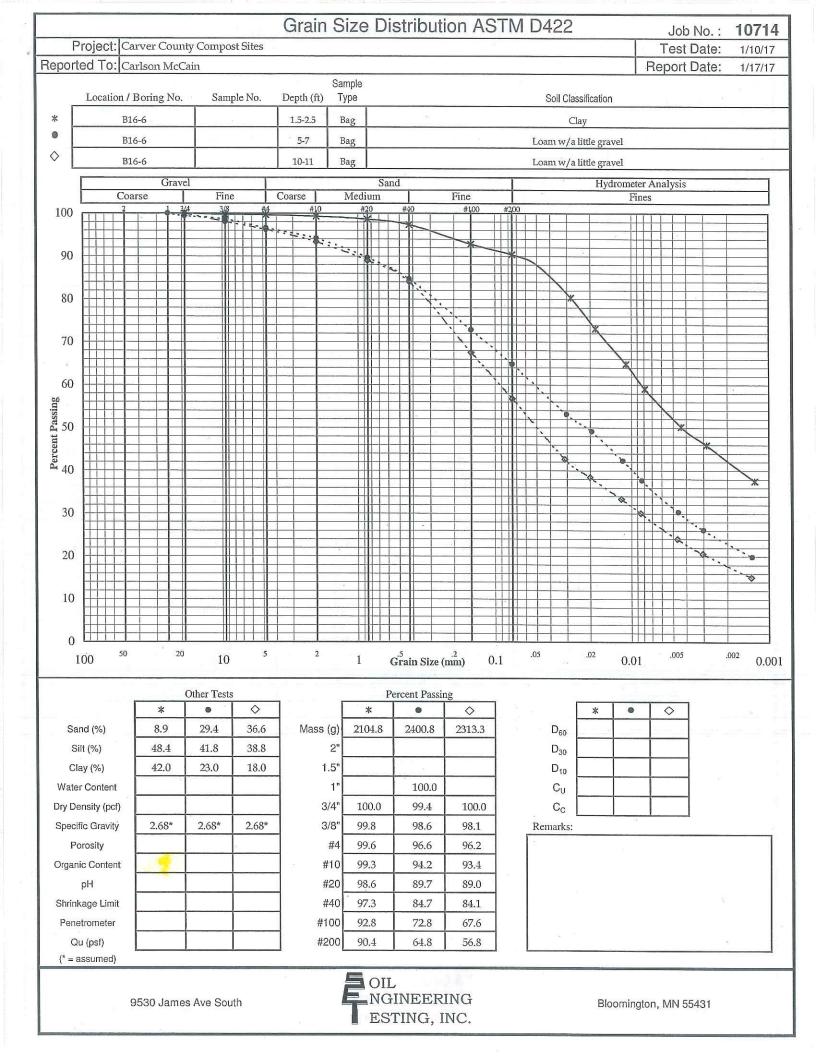

P Carlson McCain	Monitoring Well Diagra Above Grade Completic PROJECT NAME: Carver Com	MW-WT-1
Drilling Method: 4" x 6" Rota-sonic	LOCATION: Watertown, MN	Ground Surface Elevation: 930.3
Company: Cascade Drilling		MDH Unique Well No.: 822176
Foreman: Eric Sather		Date/Time Started: 12/06/14 1513
Rig Model: mini-Sonic ATV Geol/Engr: M. Lindstrom		Date/Time Completed: 12/06/2016 1604 Coordinates: N 219939, E 480483.7
2 2		n 9
Protective Casing Stick Up -3'		PROTECTIVE CASING
		Type: Stainless Steel Bumper Posts: 3 around well
Riser Stick Up <u>-2.5'</u>		Diameter: 6" Casing Elevation: 932.79 Length: 7'
	8	Locked: yes Key Number: 2121
		CAP OR PLUG
1 1990		Type: Expansion Plug Vented: No
Ground Surface		-/
		SURFACE BACKFILL MATERIAL
	A DECEMBER OF	Type: Portland Cement
		Total Volume:
Top of Grout		Manufacturer: TCC Materials
		м с _о е на ,
		8 8 8 8 V
2		· . · ·
		RISER PIPE
	· · · · · · · · · · · · · · · · · · ·	Type: Schedule 40 Low-Carbon Steel Inner Diameter: 2"
		Joint Type: Threaded Coupler
		Total Length: 11.5 No./Length of Sections: 1.15/10 ft
		Manufacturer: EXLTUBE
		× x
5 a.	2 11 F 11	e di
		_GROUT Type: Portland Cement
	20 E	Total Volume: 1/2 bag Mix Ratio: 6 gallons of water/1 bag
	10 E E	Manufacturer: TCC Materials
	4	
		6 Ø
		e es el la la 😽 🖶 es la la la 😤 😤 el
Top of Seal 6'		SEAL
× ×		Type/Size: 3/8" Bentonite Chips
Top of Filter Pack 7'		Total Volume: 1/4 bag Manufacturer: Halliburton "Hole Plug"
Top of Screen9'		FILTER PACK
		Type/Size: #10 Red Flint Sand Total Volume: 1 bag
		Manufacturer: Red Flint Sand and Gravel
2		
		WELL SCREEN Type: Stainless Steel
		Inner Diameter: 2"
		Length: 10' Effective Length: 12' Slot Size: No. 10
a <i>0</i> a a		Manufacturer: Johnson
Bottom of Screen 19'		20 N
Bottom of Filter Pack 19'		WATER SOURCE: Watertown city garage
18	Borehole Diameter: <u>6"</u>	water becook water own only garage
Total Depth of Boring 19"		NOTES: grout was placed to ground surface, and pro-top was installed in grout at
Total Depth of Boring 19" Total Length of Well 21.5"		time of well installation. Grout height was verified to be at or above ground surface after allowing grout to settle a minimum of 12 hours.
	-	· · ·

() Carlson McCair	1	Above Grad	y Well Diagra le Completio		MW-WT-2
		LOCATION:	Watertown, MN	inty compose ones	
Drilling Method: 4" x 6" Ro	ta-sonic	LOCITION	watertown, wite	Ground Surface Elevation: 927	
Company: Cascade Drilling				MDH Unique Well No.: 822173	3
Foreman: Eric Sather			and an and a second	Date/Time Started: 12/05/16 1	
Rig Model: mini-Sonic ATV	1			Date/Time Completed: 12/06/2	
Geol/Engr: M. Lindstrom				.Coordinates: N 220062.5, E 48	30856
					<i>b</i>
Protective Casing	21			PROTECTIVE CASING	* *
Stick Up	-3'			Type: Stainless Steel	Bumper Posts: 3 around well
Riser Stick Up	-2.25			Diameter: 6"	Casing Elevation: 930.51
ruser orek op	2.25			Length: 7'	
				Locked: yes	Key Number: 2121
			2		
				_CAP OR PLUG	
				Type: Expansion Plug	Vented: No
Ground Surface		The second secon			
			A Star	SURFACE BACKFILL MATERIAL Type: Portland Cement	7
		No. of the State		Total Volume:	
			And Andrews and Andrews	Manufacturer: TCC Materials	
Top of Grout			A MARINE		
					2 ⁷
8					
				<i>x</i>	5
×					
		1		RISER PIPE	
				Type: Schedule 40 Low-Carbon Steel Inner Diameter: 2"	
			(a	Joint Type: Threaded Coupler	······
				Total Length: 10.25	No./Length of Sections: 1.1/10 ft
		1 11		Manufacturer: EXLTUBE	
					a
				OPOUT	
			0	GROUT Type: Portland Cement	1 B
				Total Volume: 1/2 bag	Mix Ratio: 6 gallons of water/1 bag
				Manufacturer: TCC Materials	Mix Rabo. o galoris of watch 1 bag
*			8		
Top of Seal	5'	COLUMN TWO IS NOT	CRAMMING THE R	SEAL	
10p 01 3ear				Type/Size: 3/8" Bentonite Chips	
				Total Volume: 1/4 bag	
Top of Filter Pack	6.3'	Charles And		Manufacturer: Halliburton "Hole Plu	ıg"
					6 · · ·
Top of Screen	. 8'			FILTER PACK	
		-		Type/Size: #10 Red Flint Sand	
				Total Volume: 2 bags Manufacturer: Red Flint Sand and C	Secol
				Manufacturer: Red Fint Sand and C	Jravel
				WELL SCREEN	
	17		· · · · · · · · · · · · · · · · · · ·	Type: Stainless Steel	
ľ				Inner Diameter: 2"	
				Length: 10'	Effective Length: 11.7'
				Slot Size: No. 10	
Bottom of Screen	18'			Manufacturer: Johnson	
Bottom of Screen Bottom of Filter Pack	18				
Doctorn of Filter Fack		and the standard sector and sector		WATER SOURCE: Watertown city	garage
2		Borehole Diameter	r: 6"		<u>ک</u> ۵۰۰۰۵
					urface, and pro-top was installed in grout at
Total Depth of Boring	18				t was verified to be at or above ground surface
Total Length of Well	20.2	5'		after allowing grout to settle a minimu	om of 12 hours.
1					

Carlson McCain	11.11 VY 10.11 11.000 11.000	g Well Diagra de Completio	
Macain			
McCan			unty Compost Sites
	LOCATION:	Watertown, MN	
Drilling Method: 4" x 6" Rota-sonic Company: Cascade Drilling			Ground Surface Elevation: 932 MDH Unique Well No.: 822174
Foreman: Eric Sather	8	Sector 100 (100 (100 (100 (100 (100 (100 (100	Date/Time Started: 12/06/16 1034
Rig Model: mini-Sonic ATV		0. 	Date/Time Completed: 12/06/2016 1122
Geol/Engr: M. Lindstrom			Coordinates: N 219950.7, E 480826.5
Protective Casing Stick Up -2.5'			PROTECTIVE CASING
3Hck Op			Type: Stainless Steel Bumper Posts: 3 around well
Riser Stick Up -1.75'			Diameter: 6" Casing Elevation: 931.83
		a	Length: 7'
			Locked: yes Key Number: 2121
500	17		· · · · · · · · · · · · · · · · · · ·
			_CAP OR PLUG
Ground Surface			Type: Expansion Plug Vented: No
Ground Surface	10000 0000	16 1629 179	CP CONSTRUCTION OF A DECEMBER RECEIPTION OF A DECEMBER OF A DECEMBER OF A DECEMBER
	A State and		SURFACE BACKFILL MATERIAL
			Type: Portland Cement
			Total Volume:
T (0		Basel .	Manufacturer: TCC Materials
Top of Grout			, *
		8	e
			RISER PIPE
			Type: Schedule 40 Low-Carbon Steel
			Inner Diameter: 2"
			Joint Type: Threaded Coupler Total Length: 10.5 No./Length of Sections: 1.1/10 ft
			Manufacturer: EXLTUBE
14			Manufactorer, EXETOBE
		¹² 11	
			GROUT
1		5. C	Type: Portland Cement
			Total Volume: 1/2 bag Mix Ratio: 6 gallons of water/1 bag Manufacturer: TCC Materials
			Manufacturer: TOC Materials
T (0.1			CEAL
Top of Seal6'			_SEAL
	Period Strate	a state state of	Type/Size: 3/8" Bentonite Chips Total Volume: 1/4 bag
Top of Filter Pack 7'	and a survey of	(Internet States and Internet St	Manufacturer: Halliburton "Hole Plug"
1999 - Contradición de Contrad			
Top of Screen9'			_FILTER PACK
			Type/Size: #10 Red Flint Sand
			Total Volume: 1 bag
			Manufacturer: Red Flint Sand and Gravel
6 a.			WELLSCREEN
			Type: Stainless Steel
			Inner Diameter: 2"
			Length: 10' Effective Length: 12'
			Slot Size: No. 10
			Manufacturer: Johnson
Bottom of Screen 19'			20 e t
Bottom of Filter Pack 19'			
	Borehole Diameter:	6"	WATER SOURCE: Watertown city garage
	DOLENDIE DIAMETET:	<u> </u>	NOTES: grout was placed to ground surface, and pro-top was installed in grout at
			time of well installation. Grout height was verified to be at or above ground surface
Total Depth of Boring 20).		unie of well instantation. Orout neight was verified to be at or above profind sorrar.

P Carlson McCain	Monitoring Above Grad	e Completio	MW-WT-4
⁷ McCain			unty Compost Sites
	LOCATION:	Watertown, MN	
Drilling Method: 4" x 6" Rota-som	ic		Ground Surface Elevation: 931
Company: Cascade Drilling			MDH Unique Well No.: 822175
Foreman: Eric Sather Rig Model: mini-Sonic ATV			Date/Time Started: 12/06/16 1230
Geol/Engr: M. Lindstrom		A	Date/Time Completed: 12/06/2016 1318 Coordinates: N 219853.1, E 480788.1
Ocoly Engl. M. Endström			Coordinates: 14 219099.1, E 400700.1
Protective Casing Stick Up -3'			PROTECTIVE CASING
			Type: Stainless Steel Bumper Posts: 3 around well
Riser Stick Up -2.5'			Diameter: 6" Casing Elevation: 932.54
			Length: 7'
		. 0	Locked: yes Key Number: 2121
	· · · · · ·		
			_CAP OR PLUG
Ground Surface			Type: Expansion Plug Vented: No
Oround Surface	000000000000000000000000000000000000000	A RO-DOR	
		a deserve a	SURFACE BACKFILL MATERIAL
20 J		S States	Type: Portland Cement
			Total Volume:
			Manufacturer: TCC Materials
Top of Grout			· · · · · ·
			3
-			RISER PIPE
			Type: Schedule 40 Low-Carbon Steel
			Inner Diameter: 2"
			Joint Type: Threaded Coupler
			Total Length: 11.5 No./Length of Sections: 1.2/10 ft Manufacturer: EXLTUBE
			Manufacturer: EXLIGE
12 10			
			GROUT
			Type: Portland Cement
			Total Volume: 1/2 bag Mix Ratio: 6 gallons of water/1 bag
*		1	Manufacturer: TCC Materials
		54 B	
*			
T (0.1		Contraction of the local division of the	CE AL
Top of Seal	6'	Second Street	SEAL
5.			Type/Size: 3/8" Bentonite Chips Total Volume: 1/4 bag
Top of Filter Pack	7'		Manufacturer: Halliburton "Hole Plug"
		The second second	
Top of Screen	9'		FILTER PACK
			Type/Size: #10 Red Flint Sand
			Total Volume: 1 bag
			Manufacturer: Red Flint Sand and Gravel
			WELL SCREEN
			Type: Stainless Steel
			Inner Diameter: 2"
			Length: 10' Effective Length: 12'
×.			Slot Size: No. 10
Bottom of Screen	[9'		Manufacturer: Johnson
	19'		
			WATER SOURCE: Watertown city garage
8	Borehole Diameter:	6"	with Dico Concel. watcheven thy galage
	service plaineter.	<u></u>	NOTES: grout was placed to ground surface, and pro-top was installed in grout at
Total Depth of Boring	19'		time of well installation. Grout height was verified to be at or above ground surface
Total Length of Well	21.5'		after allowing grout to settle a minimum of 12 hours.

Appendix B Geotechnical Soil Sample Results



9530 James Ave South

ESTING, INC.

Bloomington, MN 55431

				Grain	Size	Distri	bution ASTM	I D422	Job No. : 10714		
-	Project: Carv	Test Date: 1/10/17									
Dest											
_ керо	Reported To: Carlson McCain Report Date: 1/17/1 Sample										
	Location / Bor	ing No.	Sample No.	Depth (ft)				Soil Classification			
Spec 1	B16-5			3-5	Bag		· ·				
			-				<u> </u>				
Spec 2 B16-5			8-10	Bag							
Spec 3 B16-5 12-13 Bag Silt Loam w/gravel											
Sieve Data											
		cimen 1					men 2		Specimen 3		
	Sieve		% Passing		Sieve		% Passing	Sieve	% Passing		
<u> </u>	2"	-			2"		4	2"	90.2		
	1.5				1.5"		· · · · · · · · · · · · · · · · · · ·	1.5"	90.2		
	1"				1"			1"	90.2		
	3/4" 3/8"				3/4"		100.0	3/4"	89.4		
			100.0		3/8"		100.0	3/8"	86.3		
	#4		100.0		#4		99.9 99.8	#4	83.7		
	#10 #20		99.9		#10 #20		99.2	#10	81.8		
	#20		99.6	_	#40		98.3	#40	79.8		
	#100		98.9		#100		94.8	#100	69.2		
			98.4		#200		90.3	#200	60.6		
		.!				vdromet	ter Data	1/200			
	Spe	cimen 1				Specir			Specimen 3		
Dian	neter (mm)		% Passing	Diamet			% Passing	Diameter	% Passing		
	0.027	1	91.0		0.028		73.6	0.030	46.6		
	0.018		81.1		0.019		63.6	0.020	40.4		
	0.011	-	70.8	0.011			55.9	0.012	35.2		
	0.008		62.2		0.008	i	48.7	0.008	31.5		
	0.004	1	51.1		0.004	.	39.3	0.005	26.4		
	0.003		45.5		0.003		33.1	0.003	22.5		
	0.001		38.1	0.001			24.6	0.001	17.1		
						Rema					
Specimen 1						Specir	Specimen 3				
									· · · · · · · · · · · · · · · · · · ·		
9530 James Ave South GIL Bloomington, MN 55431											

	Job No. : 10714										
	Project:	Test Date: 1/10/17									
Repo	rted ⊺o:	Report Date: 1/17/17									
	Locatio										
Spec 1		B16-6		1.5-2.5	Bag						
Spec 2	pec 2 B16-6			5-7	Bag	<u>.</u>					
Spec 3 B16-6					10-11 Bag Loam w/a little gravel						
Sieve Data											
		Specimen	1			Specir	nen 2		Specimen 3		
Specimen 1 Sieve % Passing				Sieve		% Passing	Sieve % Passing				
	2"		70 r 400mg	2"			,et dooling	2"			
	1.5"			1.5"		{		1.5"			
	1"		-	1"			100.0	1"			
	3/4"		100.0	3/4"			99.4	3/4"	100.0		
	3/8"		99.8		3/8"		98.6	3/8"	98.1		
	#4		99.6		#4		96.6	#4	96.2		
	#10		99.3	#10			94.2	#10	93.4		
	#20		98.6		#20		89.7	#20	89.0		
	#40		97.3		#40		84.7	#40	84.1		
	#100		92.8		#100		72.8	#100	67.6		
	#200		90.4		#200	-	64.8	#200	56.8		
			•		H	ydromet	er Data				
		Specimen	1			Specir	nen 2		Specimen 3		
Dian	neter (m	ım)	% Passing	Diameter			% Passing	Diameter	% Passing		
	0.028		80.3		0.030		53.1	0.031	42.6		
	0.018 73.1		0.019			49.2	0.020	38.4			
	0.011		64.9		0.012		42.3	0.012	33.4		
	0.008			0.008			37.7	0.008	30.0		
	0.004		50.2		0.005		30.3	0.005	24.1		
	0.003		45.9	0.003			26.2	0.003	20.6		
	0.001 37.6			0.001		19.9	0.001	15.1			
		<u> </u>				Rema		1	· · · · · · · · · · · · · · · · · · ·		
		Specimen	1			Specin	nen 2	<u></u>	Specimen 3		
						•					
9530 James Ave South					Ę.		EERING G, INC.	Bloomin	gton, MN 55431		

Appendix C Gradient Calculations

Hydrogeologic Investigation and Monitoring Well Installation Report

January 31, 2017

APPENDIX C: GRADIENT CALCULATIONS

ARBORETUM SITE:

Horizontal Gradient Calculation:

Governing Equation: Horizontal Gradient = $\frac{Change \text{ in Elevation}}{Distance}$

Given the perpendicular horizontal distance between contours 995 and 900 is approximately 85 ft:

Change in elevation = 995ft - 900 ft = 5 ft

Calculate the horizontal gradient: Horizontal Gradient = $\frac{5ft}{85ft} = 0.06ft/ft$

WATERTOWN SITE:

Horizontal Gradient Calculation:

Governing Equation: Horizontal Gradient = $\frac{Change \text{ in Elevation}}{Distance}$

Given the perpendicular horizontal distance between contours 923.5 and 923 is approximately 100 ft:

Change in elevation = 923.5ft - 923 ft = 0.5 ft

Calculate the horizontal gradient: Horizontal Gradient = $\frac{0.5ft}{100 ft} = 0.005 ft/ft$

Appendix D MDH Well Records

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 822177 CARVER Minnesota Statutes, Chapter 103I DATE WORK COMPLETED Section No. Fraction WELL/BORING DEPTH (completed) Township Name Township No. Range No. 23 23 SE NE NE 12-9-16 Chanhasser 17 116 DRILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Driven Cable Tool Latitude Longitude Auger House Number, Street Name, City, and ZIP Code of Well Location Other SONIC DRILLING FLUID WELL HYDROFRACTURED? Tes XNo 3675 Abdoretum DR Chaska 55318 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. Show exact location of well/boring in section grid with "X." From ft. To USE Monitoring Heating/Cooling Domestic Industry/Commercial Noncommunity PWS C Remedial Irrigation Community PWS SEE MAP Elevator Dewatering CASING MATERIAL HOLE DIAM. Drive Shoe? [] Yes NO Steel Threaded Welded h Mile Plastic CASING Diameter Specifications Weight 1 3.65 1bs./it. Sc+ 40 in. To • / n in Too ___ 1 Mile ----lbs./ft. in. To PROPERTY OWNER'S NAME/COMPANY NAME in. To lbs./ft. in. To NOF M handScripe Arboretum Property owner's mailing address if different than well location address indicated above. OPEN HOLE IES SCREEN. shusoh Make From 3675 Arboretum DR SS Туре Slot/Gauze -00 Set between 23 Length ChASKA, MN 55318 H. FITTINGS ft. and STATIC WATER LEVEL Ground Measured from 0 ______ft. Kelow [] Above land surface Date measured_ PUMPING LEVEL (below land surface) WELL OWNER'S NAME/COMPANY NAME NA CARVER COUNT _It. alter _hrs. pumping_ g.p.m Well-boring owner's mailing address if different than property owner's address indicated above. WELLHEAD COMPLETION Pitless/adapter manufacturer
 Casing protection
 Atorage
 Mall House
 Hand Pure Model 600 EAST 4th St 12 in. above grade Hand Pump At-grade 📋 Well House ChASRA, NN 55318 GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) 9 1.5 Material NEAT COMMENTER To ft. Yds. X Bags Material From ît Yds. Bags 🗌 Yds. 📋 Bags From Material HARDNESS OF FROM TO GEOLOGICAL MATERIALS COLOR MATERIAL From To Bags Driven casing seal NEAREST KNOWN SOURCE OF CONTAMINATION 23 a TAN direction typ feet Well disinfected upon completion? Yes XNO PUMP Not installed Date installed Manufacturer's name Model Number HP Voits n.q.p Length of drop pipe_ ft. Capacity Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS Does property have any not in use and not sealed well(s)? VARIANCE Was a variance granted from the MDH for this well? No TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. ASCADE VRIlling 3267 E Business Name Lic. or Reg. No. 117-16-3108 2856 12-13-16 Certified Rep. No. Date B16 -1 8221 MINN DEPT. OF HEALTH COPY HE-01205-15 (Rev. 8/13) ID #52603

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 822178 Minnesota Statutes, Chapter 1031 ARVER Township No. Range No. Section No. Fraction WELL/BORING DEPTH (completed) DATE WORK COMPLETED hip Name NE NE SE 12-9-16 Chanhassen 13 11 116 ft DRILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Driven Cable Tool _ Longitude Latitude Auger House Number, Street Name, City, and ZIP Code of Well Location SONIC Other DRILLING FLUID 3675 Arboretum DR WELL HYDROFRACTURED? | Yes No , CHASKA 55318 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. NA Show exact location of well/boring in section grid with "X." From ft. To USE Domestic Monitoring Heating/Cooling Noncommunity PWS Environ. Bore Hole Industry/Commercial Community PWS []] Irrigation 🗌 Remedial SEE MAY Dewatering Elevator CASING MATERIAL HOLE DIAM. Drive Shoe? Yes No Steel hreaded Welded Plastic CASING Diameter Weight Specifications in. To 14 1.3.65 15s./t. SCH 40 - 1 Mile ft. /bs./it. PROPERTY OWNER'S NAME/COMPANY NAME in To _ ft. ____ lbs./ft. in. To U of M Y=5 OPEN HOLE SCREEN_ Property owner's mailing address if diffe ohnson Diam. 2!(Make From 3675 Arboretum' DR 55 Туре 10 Slot/Gauze . 607 Lenoth ChASEA, MD 55318 Set between _______it. and _____ 14 ft. FITTINGS TAC STATIC WATER LEVEL Measured from Ground 10 ft. Below Above land surface Date measured 12-9-16 WELL OWNER'S NAME/COMPANY NAME PUMPING LEVEL (below land surface) CARVER COUNTY Well/boring owner's mailing address if different than property owner's address indicated above. MA ft. after hrs. pumping g.p.m WELLHEAD COMPLETION Pitless/adapter manufacturer 600 EAST 44 St 12 in. above grade protok Casing protection f At-grade 🔲 Well House 📄 Hand Pump Chasta, MN 55318 GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) Material NEAT CEMERFOR 10 To 0 It. 1.5 || Yds. || Bags Material ft. Material From it. 🗍 Yds. 🦳 Bags HARDNESS OF GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Driven casing seal From To Baos NEAREST KNOWN SOURCE OF CONTAMINATION AN 0 IA feet direction type Well disinfected upon completion?
Yes No PUMP Not installed Date installed Manufacturer's name Model Number HP Volts ft. Capacity Length of drop pipe g.p.m Type: Submersible 📋 L.S. Turbine 📋 Reciprocating 📋 Jet 📋 ABANDONED WELLS Does property have any not in use and not sealed well(s)? VARIANCE Was a variance granted from the MDH for this well?
Yes No TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. ASCADE DRILLING 3261 117-16-3108 B16-2 Vale Pro - 2856 12-13-16 Certified Rep. No. Date ÉRIC ATHER 822178 MINN DEPT. OF HEALTH COPY Name of Driller ID #52603 HE-01205-15 (Bey, 8/13)

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 822179 Minnesota Statutes, Chapter 1031 ARUER DATE WORK COMPLETED WELL/BORING DEPTH (completed) Township No. Range No. Section No. Fraction SE NE NE hanhassen ft 116 DRILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Cable Tool 🗌 Driven Latitude Longitude Auger Rotary House Number, Street Name, City, and ZIP Code of Well Location Other DRILLING FLUID WELL HYDROFRACTURED? Yes Arboretim DR haskA 1A Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. Show exact location of well/boring in section grid with "X. From ft. To ft USE Monitoring Heating/Cooling C Domestic Noncommunity PWS Environ, Bore Hole Industry/Commercial Remedial Irrigation Community PWS Dewatering GEE Elevator CASING MATERIAL Yes No HOLE DIAM. Drive Shoe? [] Yes Threaded Steel 4 Mile Plastic CASING Diameter Weight Specifications 13.65 ibs. At. SCH 40 in. To 14 - 1 Mile in To lbs./ft. PROPERTY OWNER'S NAME/COMPANY NAME in. To lbs./ft. in, To NOFM handschoe Arbonet OPEN HOLE 1ES SCREEN Property owner's mailing address if different than well location address indicated above Ohnson Make From 3675 Arboratum DR Diam. Туре 0 Slot/Gauze .00 5318 Length ChASEA, MN 5 2.4_ ft.and_ Set between ft. FITTINGS STATIC WATER LEVEL around Measured from _ft. Below 🗌 Above land surface Date measured_ WELL OWNER'S NAME/COMPANY NAME PUMPING LEVEL (below land surface) CARVER (GUNY) Well/boring owner's mailing address if different than property owner's address indicated above. S ft. after hrs. pumping g.p.m WELLHEAD COMPLETION Pitless/adapter manufacturer 600 EAST LAL Casing protection 6 prove Hand Pump St [X12 in. above grade Chaska, un 55318 GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) CEMENT 10 TO Material NEAT 0 ft. Vds. Bags Material From ft. 🗌 Yds. 🗌 Bags Material From 🗌 Yds. 🗌 Bags ft. HARDNESS OF GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Bags Driven casing seal From To NEAREST KNOWN SOURCE OF CONTAMINATION TAN 0 M NA feet direction typ Well disinfected upon completion?
Yes X No PUMP Not installed Date installed Manufacturer's name Model Number HP Volts Length of drop pipe ft. Capacity g.p.m Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS Does property have any not in use and not sealed well(s)?
Yes VARIANCE Was a variance granted from the MDH for this well? The TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. EI//ING 3267 117-16-3808 B16-3-R 2856 12-13-16 0 MINN DEPT. OF HEALTH COPY Name of Drille ID #52603 HE-01205-15 (Rev. 8/13)

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 822180 Minnesota Statutes, Chapter 103I ARUEZ DATE WORK COMPLETED Township No. Range No. WELL/BORING DEPTH (completed) Township Name Section No. Fraction SE NE Chanhasser NE 2 17 12-10-16 116 2 3 DRILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Cable Tool Driven Latitude_ _ Longitude Rotary Auger SONIL House Number, Street Name, City, and ZIP Code of Well Location Other . DRILLING FLUID WELL HYDROFRACTURED? Yes ChasICA 3675 Arboretum Dr. 55318 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. exact location of well/boring in section grid with "X." From ft. To ft USF Domestic Monitoring Heating/Cooling Environ. Bore Hole Noncommunity PWS Industry/Commercial Community PWS Irrigation Remedial GEE 1 Elevator Dewatering Π CASING MATERIAL HOLE DIAM. Drive Shoe? TYes No Steel Welded Threaded 1/2 Mile 7 Plastic CASING Diameter Weight Specifications ft. 365 ibs./ft. ScH 40 (0 in. Tot in, To -1 Mile іп. То lbs /ft PROPERTY OWNER'S NAME/COMPANY NAME in. To lbs./ft. ft. in, To ft Vot M Landscape Arboretun Property owner's mailing address it different than well location address indicated above. U of M Arboretun OPEN HOLE E SCREEN huson Make 0 From 911 3675 Arboretum 5 5 Diam. _0 Туре 007 Slot/Gauze Lenath Set between 24 it. FITTINGS CHASKA INN ft. and_ 55318 STATIC WATER LEVEL Measured from Grauna 6 _ft. Below Date measured_ 16 WELL OWNER'S NAME/COMPANY NAME PUMPING LEVEL (below land surface) CARVER County Well/boring owner's mailing address if different than property owner's address indicated above. ft. after hrs. pumping g.p.m WELLHEAD COMPLETION Pitless/adapter manufacturar yth 54 Model EAST 1000 Proto 12 in. above grade Hand Pump GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) 55318 MASKA MN Material NEAT COMPANY 10 To 0 ft. TYds. KBags Material From Vds / Bags Material From То Yds. Bags HARDNESS OF. GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Driven casing seal From Bags NEAREST KNOWN SOURCE OF CONTAMINATION С 20 feet direction Well disinfected upon completion? his 10 UMP Not installed Date installed Manufacturer's name Model Number HP Length of drop pipe ft. Capacity q.p.m Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS / No Does property have any not in use and not sealed well(s)? 1 Yes VARIANCE Was a variance granted from the MDH for this well? Yes TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. LILING 326 117-16-3108 316-4 856 12-13-16 8221 MINN DEPT, OF HEALTH COPY 8 Name of Drille ID #52603 HE-01205-15 (Rev. 8/13)

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name Minnesota Statutes, Chapter 1031 CARVER WELL/BORING DEPTH (completed) DATE WORK COMPLETED Township No. Range No. Section No. Fraction Township Name NATERTOWN 117 NENE 12-5-16 25 4 DRILLING METHOD GPS LOCATION — decimal degrees (to four decimal places). Cable Tool Driven Latitude Lonaitude Auger House Number, Street Name, City, and ZIP Code of Well Location SONIC DRILLING FLUID TOO LEWIS AVE M, WATERTOWN 5389 Show exact location of well/boring in section grid with "X." Sketch map of well/boring location WELL HYDROFRACTURED? Sketch map of well/boring location. Showing property lines, roads, buildings, and direction, From it. To USE T Domestic Heating/Cooling Noncommunity PWS Environ, Bore Hole Industry/Commercial GEE MAD Community PWS Irrigation Remedial Elevator Dewatering HOLE DIAM. CASING MATERIAL Drive Shoe? Tyes Wo Plastic Threaded [] Welded 1/2 Mile CASING Diameter Weight Specifications 2 11. 3.65 1bs./11. SCH 40 in. To 8 6 in. To 18 - 1 Mile -in To ibs./ft. PROPERTY OWNER'S NAME/COMPANY NAME CITY CITY OF WATERTOWN Property owner's mailing address if different than well location address indicated above. in. To lbs./ft. in. To OPEN HOLE SCREEN YES Make Johnson 309 LEWIS AVE 5 (PO BOX 279) WATERTOWN, MN 55388 From Diam. 55 Туре Slot/Gauze .010 1 Length 1 Set between 18 8 ft. FITTINGS ft. and_ STATIC WATER LEVEL Measured from Groune _ft. KBelow 🗌 Above land surface Date measured_12 -16 CARUER COUNTY PUMPING LEVEL (below land surface) NA ft. after hrs. pumping g.p.m Well-boring owner's mailing address if different than property owner's address indicated above. 600 EAST 4H 5fWELLHEAD COMPLE IN Pilless/adapter manufacturer Casing protection 6 70 13 p Well House Hand Pump Tanite. ceme Model Casing protection 2 in. above grade CHASFA, MN 55318 GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) 4 To Material EAT CEMENTEM Yds. Bags O ft. Material From From 🗌 Yds. 🗌 🗍 Bags Material HARDNESS OF FROM GEOLOGICAL MATERIALS COLOR TO MATERIAL Bags Driven casing seal From То NEAREST KNOWN SOURCE OF CONTAMINATION 2 0 KK direction Well disinfected upon completion? 🗌 Yes 🗙 No 3R 2 11 PLIMP Not installed Date installed 18 BR 11 Manufacturer's name HP Model Number Volts Length of drop pipe ft. Capacity a.p.n Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS Does property have any not in use and not sealed well(s)? VABIANCE Was a variance granted from the MDH for this well? 🗌 Yes 📈 No TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. RILING Lic. or Reg. No 117-16-3108 SCADE B16-8 1856 TER MINN DEPT, OF HEALTH COPY 8221 HE-01205-15 (Rev. 8/13)

D #52603

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 8221 Minnesota Statutes, Chapter 103I CARVER Township Name Township No. Range No. Section No. Fraction WELL/BORING DEPTH (completed) DATE WORK COMPLETED 25 SE NEGUS 12-6-16 4 WATERTOWN 177 DRILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Driven Cable Tool Latitude _ Longitude Rotary Auger House Number, Street Name, City, and ZIP Code of Well Location Other ZONIC WHERTOWN 53094 DRILLING FLUID LOWIS AVE NW WELL HYDROFRACTURED? Yes No 100 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. N A Show exact location of well/boring in section grid with "X." From ft. To USE Monitoring Domestic Heating/Cooling Noncommunity PWS Environ. Bore Hole Industry/Commercial Community PWS Irrigation Remedial SEE MAD Dewatering Elevator CASING MATERIAL HOLE DIAM. Drive Shoe? Tyes XNo -÷-Steel Threaded Welded 1/2 Mile Plastic CASING Diameter Weight Specifications 9 t. 3.45 105.11. 50H 40 In. To - 1 Mile in. To the dit PROPERTY OWNER'S NAME/COMPANY NAME OF WATERTOWN in, To ibs./it. in. To OPEN HOLE SCREEN, Yes owner's mailing address if different than well location address indicated above. 10 hrson 309 Lewis AVE 5 (20 Box 279) Make From 9 SS Diam. Type Slot/Gauze - 6/0 Length Set between ____19 r+C ft, and ft. FITTINGS WATERTOWN, MN 55388 STATIC WATER LEVEL Ground Measured from_ _it Below 🗌 Above land surface Date measured_ 6-16 WELL OWNER'S NAME/COMPANY NAME PUMPING LEVEL (below land surface) NIA CAPUER COUNTY Welliboring owner's mailing address it different than property owner's address indicated above. ft. after hrs. pumping q.p.m. WELLHEAD COMPLETION 600 EAST 4th St Pitless/adapter manufacturer Mode Casing protection 6 Protop 12 in. above grade At-grade 🔲 Well House 📋 Hand Pump ChASKA, MN 55318 GROUT INFORMATION (specify bentonite, cemenl-sand, neat-cement, concrete, cuttings, or other) MaterialNGAT CENERTON 6 TO 6 _ft. Vds. Bags ☐ Yds! ☐ Bags Material ft. To ft. Yds. Bags Material From HARDNESS OF COLOR GEOLOGICAL MATERIALS FROM TO MATERIAL Driven casing seal From To Bags NEAREST KNOWN SOURCE OF CONTAMINATION 13 KGC \bigcirc DAND NA feet direction Well disinfected upon completion? Yes YNo 13 9 PUMP Not installed Date installed Manufacturer's name Model Number HP Volts _ ft. Capacity g.p.m Length of drop pipe Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS Does property have any not in use and not sealed well(s)?
Yes XNo VARIANCE Yes No. TN# Was a variance granted from the MDH for this well? WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. Lic. or Reg. No. 117-16-3108 ASCADE B16-9 2856 Certified Rep. No. 12-13-16 ATHER RIC 8221 MINN DEPT. OF HEALTH COPY 1 Name of Driller ID #52603

HE-01205-15 (Rev. 8/13)

MINNESOTA UNIQUE WELL AND BORING NO. WELL OR BORING LOCATION MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING CONSTRUCTION RECORD County Name 822175 Minnesota Statutes, Chapter 103I ALVER DATE WORK COMPLETED Township No. Township Name Range No. Section No. Fraction WELL/BORING DEPTH (completed) SE NE SW 12-6-16 25 WATERTOWN ft. 11/ GPS LOCATION -- decimal degrees (to four decimal places). DRILLING METHOD Driven Cable Tool Latitude _ Longitude _ House Number, Street Name, City, and ZIP Code of Well Location 700 LEWIS ALE NO, Show exact location of well/boring in section grid with "X." WELL HYDROFRACTURED? Yes No WATERTOWN 53094 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. NA From ft. To USE Domestic Monitoring Heating/Cooling Noncommunity PWS Environ. Bore Hole Industry/Commercial Community PWS Irrigation Remedial SEE MAP Elevator Dewatering CASING MATERIAL HOLE DIAM. Drive Shoe? [] Yes XNo X Steel Threaded Welded 1/2 Mile Plastic CASING Diameter Weight Specifications 2 1. 3.65 Ibs./ft. SCH 40 in To - 1 Mile lbs./ft PROPERTY OWNER'S NAME/COMPANY NAME Property owner's mailing address if different than well location address indicated above. in. To lbs./ft In. To Johnson OPEN HOLE SCREEN Diam. 2 11 309 Lewis AVE S (RO BOX 279) Make 🖸 From ft. Туре Slot/Gauze .010 10 I enoth 19_ il. and Set between tt. FITTINGS STATIC WATER LEVEL WATERTOWN, MN 55358 GOUND Measured from 1. Below Above land surface Date measured 12-6-16 WELL OWNER'S NAME/COMPANY NAME CARVER COUNTY NIA _ft. after hrs. pumping g.p.m owner's mailing address in wner's address indicated above. WELLHEAD COMPLETION Pitless/adapter manufacturer_ 600 EAST 4th St Protof Casing protection_6 12 in. above grade At-grade Well House Hand Pump GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) ChASKA, MN 55318 Material N GAT (EMGION 6 ft. TYds. Bags Material From 🗌 Yds. 📋 Bags Material From ___ 🗌 Yds. 🔄 Bags ft. HARDNESS OF GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Driven casing seal From To Bags NEAREST KNOWN SOURCE OF CONTAMINATION 5 D direction feet type Well disinfected upon completion? 5 PUMP Not installed Date installed 13 15 Manufacturer's name Model Number HP Volts "R 2 Length of drop pipe ft. Capacity g.p.m Type: Submersible L.S. Turbine Reciprocating Jet ABANDONED WELLS VARIANCE Was a variance granted from the MDH for this well? [] Yes No TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. Zilling 326 117-16-3108 316-10 2856 12-17-16 Certified Ren No. 8221 MINN DEPT. OF HEALTH COPY ID #52603 HE-01205-15 (Rev. 8/13)

MINNESOTA UNIQUE WELL AND BORING NO. MINNESOTA DEPARTMENT OF HEALTH WELL OR BORING LOCATION WELL AND BORING CONSTRUCTION RECORD County Name 6 Minnesota Statutes, Chapter 1031 ARVER WELL/BORING DEPTH (completed) DATE WORK C Fraction Township No. Range No. Section No. Township Name 10 40 NE G WATERTOWN) 117 DBILLING METHOD GPS LOCATION - decimal degrees (to four decimal places). Cable Tool Driven Latitude Lonaitude Auger Soul Rotary House Number, Street Name, City, and ZIP Code of Well Location DRILLING FLUID WELL HYDROFRACTURED? Yes No 100 LEWIS AVE MW, WATERCTOWN 5309 Sketch map of well/boring location. Showing property lines, roads, buildings, and direction. Show exact location of well/boring in section grid with "X." From ft. To USE Monitoring Heating/Cooling Domestic Environ. Bore Hole Noncommunity PWS Industry/Commercial Community PWS Irrigation 🗌 Remedial Dewatering Elevator SEE CASING MATERIAL HOLE DIAM. Drive Shoe? Ves XNo Ghreaded Steel Welded % Mile Plastic CASING Diameter Weight Specifications 2 A. 3.65 105.11 SCH 4 in. To - 1 Mile the /ft in, To PROPERTY OWNER'S NAME/COMPANY NAME in. To lbs./ft. in. To CITY OF WATENTOWN operty owner's mailing address if different than well location address indicated above. OPEN HOLE XES SCREEN huson 309 Lewis AVE Make 0 From 5 Diam. C Туре (PO Box 279) Slot/Gauze .010 Length Set between _____9__ it. and ft. FITTINGS 5 WATERTOWN, UN 55388 STATIC WATER LEVEL Ground Measured from Tt. Below C Above land surface Date measured PUMPING LEVEL (below land surface) WELL OWNER'S NAME/COMPANY NAME NA County ARVER ft. after hrs. pumping g.p.m owner's mailing address if different than property owner's address indicated above. WELLHEAD COMPLETION Casing protection 600 EAST 4 th St Proto P X12 in. above grade Hand Pump At-grade 🗌 Well House ChASKA, MN 55318 GROUT INFORMATION (specify bentonite, cement-sand, neat-cement, concrete, cuttings, or other) Material NEAT (EMELATION O To O ft. 🗌 Yds. 🗙 Bags Vds. Bags Material Ħ. From _ ft. 🗌 Yds. 📋 Bags From To Material HARDNESS OF GEOLOGICAL MATERIALS COLOR FROM TO MATERIAL Bags Driven casing seal From To NEAREST KNOWN SOURCE OF CONTAMINATION 9 0 A feet direction Well disinfected upon completion?
Yes Yoo 9 PUMP Not installed Date installed Manufacturer's name HP Model Number Volts Length of drop pipe ft. Capacity q.p.m Type: Submersible. L.S. Turbine Reciprocating Jet]. ABANDONED WELLS Does property have any not in use and not sealed well(s)? Yes [VARIANCE Was a variance granted from the MDH for this well?
Yes No TN# WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge. Use a second sheet, if needed. REMARKS, ELEVATION, SOURCE OF DATA, etc. 1/1N6 3267 117-16-3108 816-1 2856 12-13-16 Certilied Rep. No. Date MINN DEPT, OF HEALTH COPY 8221 HE-01205-15 (Rev. 8/13) ID #52603

Appendix E Well Development Logs

	ØN N	arlso IcCc	on Iin	W	VELL DEVELOPMENT LOG SHEET				[] No. (MW-1
Project Name/Location: Water town Project No.:										
Date: $1-10-17$ Weather: $27^{p}F$, Snowing										
	Pumping Method 🖾 Pumped 🗆 Other									
	Ритр Тур	e: _	Hume	ane		Bailer '	Туре:	·		
		Vater (D.T.V	V.)	8.82		Dej	pth to Bott			
	Volume Ca	lculation		12.68×0.1	163) + (6.3	xax()	1469-0	,163)) = J	.07+4.3	7=6.77
	[[H x Vw] -	+ [N x H x (\	7bh - Vw)]} =	Total Well	Volume	**see belo	w for varia	ble definition	ns**	
	Time	Volume Removed (gal.)	pH	Cond. (<i>u</i> S/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color
	1003	Initial	6.92	1.18	9,9D	-187	1.04	1000	Ň	Daik brown
	1011	6	6,90	1.21	10.20	- JoD	0	1000	N	light browsen
	1021	12	6,86	1,19	10.08	-178	13.38	141	N	clear
	1032	19	6.78	1.19	10.67	-173	0	166	N	olear
	1044	311	6.75	1.19	10.64	-177	0	76.4	N	clear
	1056	30	6.71	1,16	10.69	- 176	0	35.6	N	clear
	1107	36	lg. 65	1.19	12.69	-174	0	29.6	N	alear
				· · · ·						
									-	

÷

Comments:	* Washed out flows through cell	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
		6.5"	1.723	1"	0.041
	· · · · · · · · · · · · · · · · · · ·	8"	2.611	2"	0.163
		10"	4.080	4"	0.653
		12"	5.875	6"	1.469
		N=Porosity = 0.3	H=D.T.I	3 - D.T.W	

3890 Pheasant Ridge Dr., Suite 100 • Blaine, MN 55449 • Tel 763-489-7900 • Fax 763-489-7959 • www.carlsonmccain.com

	Carlson McCain
ア	McCain

WELL DEVELOPMENT

LOG SHEET

Well No.

MW-Z

Project Na	me/Location	1:	Watertown	1	Project No.:					
Date: <u>1-10-17</u>				Weather:						
Pumping Method 🛒 Pur			Pumped		ther _	÷ .			Ŧ	-
Pump Typ)e:	Hurri	Lan		Bailer Type:					-
Depth to V	Water (D.T.V			-	om (D.T.B.)					
Volume C	alculation:	_(11.39 × 0	.163)+	(0.3	× 11.7x (1.469-0	.163))=	1. 86+ 4.58	
[[H x Vw]	+ [N x H x (V	7bh – Vw)]}	= Total Well	Volume	**see bel	ow for variat	ble definitio	ns**	= 6.44	
Time	Volume Removed (gal.)	pH	Cond. (<i>u</i> S/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color	
1400	Initial	6.77	1.36	11.70	-29	2.84	1000	N	daixigray	-
1406	6	6.74	1,36	11.64	-20	2,26	795	N	stightginy	
1414	12	6.75	1,36	11.63	-21	0,96	160	N	clear	- (10+3
1425	18	6,75	1.37	11.60	-46	6,07	62.7	N	Clear	alasei
14735	24	6.76	1.37	11.61	-56	0	31.8	M	Clear	
1444	30	6.75	1.37	11.60	-55	0	73.6	N	Clear.	
1455	36	6.77	1.37	11.61	-39	0	14.2	Ň	clear	
1501	39	6.78	1.38	11.61	- 40	0.	4.2	N	Clear	
					-					
Comments	: WL'. 14	25= 13.1	<u> </u>	Bore	hole Dia.	Borehole gal./ (Vbh)		le Well meter	Well gal./ft. (Vw)]
Comments: WL^{\prime} , $WQS = [3, 1]$ Borehole Dia.Borehole gal./ft.Inside Well DiameterWell gal./ft. (Vw)Latest purpoid div atter a same barrier (durid). 0.041 0.041 reducid. $8^{\prime\prime}$ 2.611 $2^{\prime\prime}$ 0.163										

mments: $WL', W25 = [3, 1]$	Borehole Dia.	(Vbh)	Diameter	Well gal./ft. (Vw)
lest purped dry after Z. Saallons. Pumphravate	6.5"	1.723	1"	0.041
duced.	8"	2.611	2"	0.163
	10"	4.080	4"	0.653
	12"	5,875	6"	1.469
· · · ·	N=Porosity = 0.3	H=D.T.E	- D.T.W	

3890 Pheasant Ridge Dr., Suite 100 • Blaine, MN 55449 • Tel 763-489-7900 • Fax 763-489-7959 • www.carlsonmccain.com

PN	Carlso 1cCa)n Iin	W	VELL DE Log	EVELOI G SHEE	Wel	1 No. (MW-3	
Project Na	me/Locations	:	Watertowr	<u>Λ</u>	-		Proj	ect No.:	
Date:		-10-17		Weather:	Shawin	m, 22%	windy		
Pumping N	vlethod	۲. کل	Pumped	□ 0	Other		,		
Ритр Тур	et	Hurrivare			Bailer T	Гуре:			
Depth to V	Water (D.T.W	10000	9.65			-	tom (D.T.B.)		
	alculation:	\sim		1.9h	4-		$\frac{1.469-0}{5}$ ble definition	in the second	6.58 gal
	+ [N x H x (V	$\frac{bh - vw}{b} = \frac{bh - vw}{b}$				w tor varial		<i>LS</i>	
Time	Removed (gal.)	рН	Cond. (<i>u</i> S/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color
1200	[Initial	6,55	1.41	11.81	- 167	0	1000	N	dark gray
1205	6	6.55	1.41	11.81	-107	0		N	slight gray
1210	12	6.60	1.41	11.89	-118	Ö	-880	N	faint gray
1216	18	6.81	1.41	11.97	-130	0	529	N	clear
1222	24	6,84	1,41	11.9.1	_136	ð	308	Ŋ	clear
1230	30	6.76	1,41	11.88	-134	0	37	N	clear
1236	36	6.72	1.41	11'd1	-133	0	939	N	clear
1244 .	.42	6.91	[,4]	11,43	-146	0	47.4	Ň	clear
1301	48	6,89	1.41	10.93	- 14	0	20.0	N	dear
1314	51	6,89	(,4/	10,73	-145	0	(6.5	N	clear

Comments:	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
WLS: 1205 = 11.94; 1208 = 12.04; 1230= 12.23	6.5"	1.723	1"	0.041
1301 = 10.18	8"	2.611	2"	0.163
· · · · · · · · · · · · · · · · · · ·	10"	4.080	4"	0.653
	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.H	3 – D.T.W	

ØN	Carls McCc	on xin	W	WELL DEVELOPMENT LOG SHEET					MW-4
Project N	ame/Locatio	n:	Water	own	·		Pro	ject No.:	
Date:		1-10-17	~	Weather:	Clear,	17 F. Wil	nd from nor	Ж	
Pumping	Method	Ŕ	Pumped		Other		· · · · · · · · · · · · · · · · · · · ·	 .	
Pump Ty	pe:	Hurri	tank		Bailer	Гуре:			
Depth to	Water (D.T.V	W.)	10.26			•	tom (D.T.B.		
Volume (Calculation:		(10, 14 x	0.163)+ (0.3x 121	e (1.469	-0,163))	-1.65+1	4.7 = 6.39
{[H x Vw]] + [N x H x (Vbh – Vw)]}	= Total Well	Volume	**see belo	w for varia	ble definitio	ns**	· · ·
Time	Volume Removed (gal.)	pH	Cond. (uS/cm)	Тетр. (°С)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color
1531	Initial	6.91	1.81	12,20	_169	O	1000	γ (orga - 	darne gray
1538	6	6,90	1,81	12,19	-172	Ô	952	у""	light stay
1545	13	6.89	1.81	12,19	- 175	Ö -	690	Y	
1555	18	6.96	1.83	12,12	_188	0	207	V "	light gray
1607	24	6.97	1.83	11.87	_ 192	0	102	Y, eggs	very slight gray
1618	30	6.89	1.83	11,85	-192	0	36.4	Y, eggs	very stight
1630	36	6.90	1.83	11.84	-140	0	1712	Y"	54 P)
1636	40	6.89	1,93	11.86	- 189	0	9,44	V te 1 x	11
	-								
Commen	ts:		NE SALA, SME	Bor	ehole Dia.	Borehole gal. (Vbh)		le Well meter	Well gal./ft. (Vw)
A Jaco	NODGINA ADDAN		<u>** eeserin 21142</u>		6.5"	1.723	í	1"	0.041

AT CLEVENDUSING DIGEORY, ETGS
and the house of the start of the same result lose live
- As penurhuster class with jobr, sinchs less like
W. APMALIS & NELL P. 19151
LOC DEODNICS & NTO D. LIKE C. 9951
V

Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
6.5"	1.723	1"	0.041
8"	2.611	2"	0,163
10"	4.080	4"	0.653
12"	5.875	6"	1.469
	UDTT	5) T 157	

N=Porosity = 0.3

H=D.T.B – D.T.W

ØN	arlso IcCa)n In	W		LL DEVELOPMENT LOG SHEET				MW-1
Project Na	me/Location	:	Arborctum				_	ect No.:	
Date:	1-	11-17		Weather:	Snowin	ng: 7°			
Pumping I	Aethod	Ŕ	<u> </u>						
Pump Typ	e:	Hymie	ane		Bailer 7	Type:	. P	astic	
Depth to V	Vater (D.T.W	7.)	7.56			*		2	6
Volume C	alculation:		(18,44 × 0.1	63)+(0.	3 × 13× (1.469+	0.163)) =	3+5.0	29 = 8,09
[[H x Vw]	+ [N x H x (V	[bh - Vw)]} =	Total Well	Volume	**see below	w for varial	le definitio	ns**	
Time	Volume Removed (gal.)	pH	Cond. (<i>u</i> S/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color
1031	5	7.58	0.869	6.41	-126	4.17	10000	Shight Digernia Ddar	Breasy
(044	8	7.48	0,912	6.42	-17	4.43	1000	,, ,,	Brown
	Bailed dry.	Waited 10 m	na Estanía	builed dr	y again.				
1545	10.5	7.11	0.795	8.57	-110	0		Ň	clear
1604	14	6.97	0,920	9,40	-27	0		N	cka-
	Returned	1524, Alv	nost full re	avery 7 pi	umped w/	Hurrienne	Driedu	s after	6 gallons
						-			
Comment	St C	1 h.fm hall		Bo	rehole Dia.	Borehole gal.		ide Well	Well gal./ft. (Vw)

Comments: Surged before bailing	Borehole Dia.	(Vbh)	Diameter	Well gal./ft. (Vw)
WL @ 1524 = 7.82	6.5"	1.723	1"	0.041
	8"	2.611	2"	0.163
	10"	4.080	4"	0.653
	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.H	3 – D.T.W	

WELL DEVELOPMENT LOG SHEET

Well No.

MW-2

lume Ca	e: Vater (D.T.V Ilculation: - [N x H x (V		Pumped 7.48 [8.02 × 6	O لکر		Type:			· · · · · · · · · · · · · · · · · · ·		
mp Type pth to W lume Ca	e: Vater (D.T.V Ilculation: - [N x H x (V	V.)	7.48 18.02 × (Bailer '				· · · · · · · · · · · · · · · · · · ·		
pth to W lume Ca	Vater (D.T.V Ilculation: - [N x H x (V		[8,02 × (·			
lume Ca	lculation: - [N x H x (V		[8,02 × (De						
	- [N x H x (V	6	•	Numi 1	to Water (D.T.W.) 7.4% Depth to Bottom (D.T.B.) 25.5						
(x Vw] +		[bh - Vw)]} =	·	2 + 16 + 5 + 10	0.3×13)	r (1,469	-D.163)	= 2.94	+ 5.09=8.0		
			= Total Well	Volume	**see belo	w for varia	ble definitio	ns**			
[ime	Volume Removed (gal.)	pH	Cond. (uS/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color		
18	5	7.4D	0,907	8.05	-147	6.18	1000	Slight organistor	Вгосин Вгоши		
12	7.6	7.36	0.954	8.53		1.	1000	(l <i>11</i>	Brown		
	Bailed	dry. Wait	ed 15 minu	tes. Bailei	ldry ago	(2) L					
UD	9.1	7.40	102	7.03	48	8.65	1020	je rë	Brown		
	Retuined o	nd bailed dr	Ý								
	2 <u>7</u>								-		
			-			· · · · · · · · · · · · · · · · · · ·					
<u> </u>											
	18 12	Cime (gal.) 18 5 12 7.6 Bailed 00 9.1	Cime (gal.) pH 18 5 7.40 12 7.6 7.36 Bailed dry. Wait 00 9.1 7.40	Cime (gal.) pH (uS/cm) 18 5 7.40 0.907 12 7.6 7.36 0.954 Bailed dry Wated 15 minu	Cime (gal.) pH (us/cm) (°C) 18 5 7.40 0.907 8.05 12 7.6 7.36 0.954 8.53 Bailed dry Waited 15 minutes Bailer 00 9.1 7.40 1.02 7.03	Cime (gal.) pH (uS/cm) (°C) (mv) 18 5 7.40 0.907 8.05 -147 12 7.6 7.36 0.954 8.53 -36 Bailed dry. Waited 15 minutes. Bailed dry age 00 9.1 7.40 1.02 7.03 48	Cime (gal.) pH (uS/cm) (°C) (mv) (ppm) 18 5 7.40 0.907 8.05 -147 6.18 12 7.6 7.36 0.954 8.53 -36 6.07 Bailed dry Waited 15 minutes Bailed dry 8.65 00 9.1 7.40 1.02 7.03 48 8.65	Cime (gal.) pH (uS/cm) (°C) (mv) (ppm) (ntu) 18 5 7.40 0.907 8.05 -147 6.18 1000 12 7.6 7.36 0.954 8.53 -36 6.07 1000 Bailed dry. Waited 15 minutes. Bailed dry. 9.03 1.02 00 9.1 7.40 1.02 7.03 48 8.65 1000	Cime (gal.) pH (u8/cm) (°C) (mv) (ppm) (ntu) Y/N 18 5 7.40 0.907 8.05 -147 6.18 1000 Slipht organized or granized or granized or granized or 12 7.6 7.36 0.954 8.53 -36 6.07 1000 11 " Bailed dry. Watted 15 minutes. Bailed dry. granized 7.03 48.65 1000 11 " 00 9.1 7.40 1.02 7.03 48.65 1000 11 "		

Comments: Surged then bailed	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
1300 WL before bailing= 19.1'	6.5"	1.723	1"	0.041
	8"	2.611	2"	0.163
x	10"	4.080	4"	0.653
·	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.H	3 – D.T.W	

3890 Pheasant Ridge Dr., Suite 100 • Blaine, MN 55449 • Tel 763-489-7900 • Fax 763-489-7959 • www.carisonmccain.com

Well Development Log Sheet								l No.	MW-3	
Project Nar	ne/Location:		Arboretum	۴			Proj	ect No.:		
Date: $1 - 1 - 17$ Weather: O_{vertus}^{\dagger} , 7°										
Pumping Method										
Pump Type	Pump Type: Hwii(Ang, Bailer Type: Plastic									
Depth to W	Vater (D.T.W							26.6		
Volume Ca	lculation:	. (15.93 × 0.163) + (0,3x1	13x (1.46	9-0.1(<u>63))</u> =	2.6+5.	09=7,6	;9	
{[H x Vw] +	[N x H x (V	bh - Vw)]} =	Total Well	Volume	**see belo	w for variab	le definition	15**		
Ťime	Volume Removed (gal.)	рН	Cond. (uS/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color	
1211	6	7.39	1.34	9.37	······································	5.72	1000	N	slight Referred	
1228	10	7:38	1.34	9.31		4,84	1820	N	11 11	
	•									
	Bailed dry . h	Jarled 10 minu	es and bakk d	ny again. Re	hunel @13	50 to pur	ip diry.			
1358	12	6.92	1.34	9.14	-67	1.39	397	N	clear	
1411	14	6.90	1.34	8.86	-38	0	119	N	clear	
1445	20	6.80	1.35	9.28	76	D	47.2	N	clear	
	went dry	/trickle aft.	x 20 galar	mor and which						
						1	·			

Ś

Comments: Surged + bailed	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
1423 WL@ 20.5 and decreasing Q.O.V. is seconds	6.5"	1.723	1"	0.041
	8"	2.611	2"	0.163
	10"	4.080	4"	0.653
·	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.I	3 – D.T.W	

PCarlson McCain

Well Development Log Sheet

Well No.

(MW-Y

Project Na	me/Location	1:	Arboretur	1			Pro	ject No.:	
Date:	<u>l-</u>	11-17		Weather:			. <u> </u>		
Pumping N	Method		Pumped	x C	Other				
Ритр Тур	e:				Bailer	Гуре:	Pastic		
Depth to Water (D.T.W.) <u>15,41</u> Depth to Bottom (D.T.B.) <u>26.25</u>									
Volume Ca	lculation:		(10.84x	0,163)+(0,3×13.9	3x (1.46	9-0:163))= 1,77 +	- 5,29 = 7.0
{[H x Vw] -	+ [N x H x (V	/bh - Vw)]} :	= Total Well	Volume	**see belo	w for varial	ble definition	<i>ns**</i>	
Time	Volume Removed (gal.)	рH	Cond. (<i>u</i> S/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color
1303	3	7.80	0.906	9,82	-130	7.50	1000	\mathcal{N}^{-1}	Brown
1309	1	7.84	0.910	9.75	-127	7,22	1000	N	Brown
	Bailed dry	, Waited + J	cuiled dry ag	a)#+					-
1330	Bailed 1	mbre gal	on before	well wen	t diyi				
	Returned @	1627 and	l bailed liry.	(about 0	·Zgallons)			· · · · · · · · · · · · · · · · · · ·	
					ζγ Ι			-	
				- - -			<i>.</i>		
								-	

Comments: Surged + bailed	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
ML@ 1627 = 24.33'	6.5"	1.723	- 1"	0.041
· · · · · · · · · · · · · · · · · · ·	8"	2.611	2"	0,163
	. 10"	4.080	4"	0.653
· · · · · · · · · · · · · · · · · · ·	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.E	3 - D.T.W	

-3890 Pheasant Ridge Dr., Suite 100 • Blaine, MN 55449 • Tel 763-489-7900 • Fax 763-489-7959 • www.carlsonmccain.com

Well Development Log Sheet

Well No.

Mw-y

Project Na	ne/Location	: _	Arboretum		Project No.:					
Date:		11-17		Weather:						
Pumping M	lethod		Pumped	DI C	ther					
Pump Type: Bailer Type: Plustic										
Depth to W	/ater (D.T.W	7.)	15,41				om (D.T.B.)			
Volume Ca	lculation:		(10.84×1	0,163)+(0,3×13.9	1x (1.46	9-0:163))=1,77+	-5.29=7.04	
{[H x Vw] +	• [N x H x (V	[bh - Vw)]} -	- Total Well	Volume	**see belo	w for varial	ble definition	<i>15^{**}</i>		
Time	Volume Removed (gal.)	pН	Cond. (uS/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color	
1303	3	7,50	0.906	9,82	-130	7.SD	1000	\mathcal{N}	Brown	
1309	I	7.84	0.910	9.75	-127	7,22	1000	N	Вгоши Вгоши	
			ciiled dry ay							
1330	Bailed 1	more cal	on before	Jell wen	tdiy,		-			
	Returned O	1627 an	l baikd lry.	(about 0	·Zgallons)					
								·		
						-				

Comments: Surgest + bailed	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
ML@ 1627 - 24.33'	6.5"	1.723	1"	0.041
	8"	2.611	2"	0.163
	10"	4.080	4"	0.653
	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.H	3 – D.T.W	

ψN	Carlso AcCc	on Iin	W	ELL DE	EVELO S SHEE		Wel	11 No. (MW-3	
Project Name/Location: Afbigetum Project No.:										
Date: $1 - 11 - 17$ Weather: $Overcast, 7^{\circ}$										
Pumping Method I Pumped I Other										
Pump Typ	e:	Harric	ane,		Bailer 7	Гуре:	Plastic			
Depth to V	Water (D.T.W									
Volume Ca	alculation:	_(15.93 × 0.16	3) + (0,3×	13x (1.46	n-a.1(63))=	2.6+5.	09 = 7,	69	
{[H x Vw]	+ [N x H x (V	/bh - Vw)]} =	Total Well	Volume	**see belo	w for varial	ole definition	25**		
Ťime	Volume Removed (gal.)	pH	Cond. (uS/cm)	Temp. (°C)	ORP (mv)	DO (ppm)	Turbidity (ntu)	Odor Y/N	Color	
1211	6	7.39	1.34	9.37	_109	5.72	1000	N	slight Reflish Brown	
1228	10	7:38	1.34	9.31	1	4,84	1720	N	€ <i>€ 11</i>	
				- -						
	· · · · ·						:			
	Bailed dry . U	Vaided 10 minu	ies and bailed c	iy again. Re	hund @ 13	so to pan	ip diry.			
1358	12	6,92	1.34	9,14	-67	1.39	797	Ν	clear	
1411	14	6.90	1.34	8.86	-38	0	119	N	clear	
1445	20	6.80	1.35	9.28	76	0	47.2	N	clear	
	Went dig	/trickle aft	v Zogalir	im ov cd						
								<u>.</u>		

Comments: Surged + bailed	Borehole Dia.	Borehole gal./ft. (Vbh)	Inside Well Diameter	Well gal./ft. (Vw)
1423 WL @ 20.5 and decreasing P.O.Vissounds	6.5"	1.723	1"	0.041
	8"	2.611	2"	0.163
	10"	4.080	4"	0.653
	12"	5.875	6"	1.469
	N=Porosity = 0.3	H=D.T.F	3 - D.T.W	

.