
# FINAL FOCUSED FEASIBILITY STUDY Mud Lake West

**Duluth, Minnesota**MPCA Work Order #3000017807



Prepared for:

Minnesota Pollution Control Agency 525 South Lake Avenue Suite 400 Duluth, Minnesota 55802



Prepared by:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103

> June 2017 Revision 01 BWJ160749

# FINAL FOCUSED FEASIBILITY STUDY Mud Lake West

**Duluth, Minnesota**MPCA Work Order #3000017807

June 2017 Revision 01 BWJ160749

#### Prepared for:

Minnesota Pollution Control Agency 525 South Lake Avenue Suite 400 Duluth, Minnesota 55802



Prepared by:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103 (651) 291-0456

## **Executive Summary**

This Focused Feasibility Study (FFS) for Mud Lake West (the Site) presents: a summary of current Site conditions; a discussion of remedial action objectives (RAOs); and the identification, screening, evaluation, and comparison of potential alternatives. This report was prepared by Bay West LLC (Bay West) in accordance with the Minnesota Pollution Control Agency (MPCA) Contract Work Order No. 3000014275.

The Site was studied as a part of the St. Louis River (SLR) Area of Concern (AOC). Funding to complete an FFS was obtained through the United States Environmental Protection Agency (USEPA), Great Lakes Legacy Act (GLLA) and state funding through the Minnesota Legacy Fund and the Wisconsin Knowles-Nelson Stewardship Fund.

A remedial investigation (RI) was conducted for the Site during the spring and summer of 2015. Contaminants of concern (COCs) identified during the RI were evaluated as part of this FFS and are detailed in **Section 1.4.3.3**. COCs identified for the Site include nickel, zinc, and polychlorinated dibenzo-p-dioxins/dibenzofurans (dioxins). Sediments with elevated levels of the COCs were generally identified in open water areas of the Site and are considered to present a high likelihood of significant effects to benthic invertebrates from exposure to surficial sediments, fish from consumption of benthic invertebrates, and may present a human health risk through direct contact with sediments or ingestion of contaminated biota (i.e., fish consumption).

In 2016, data was collected in support of the 2015 RI to address data gaps identified in the 2015 RI regarding the extent and volume of contaminated sediment within the Site, and to evaluate risks to human health and the environment due to potential impacts by the benthic community (2017 Data Gap Investigation [DGI]). Nickel, zinc, and dioxins were assessed in this investigation. Sediment sample analysis indicates that zinc and dioxin/furan sediment contamination does not extend to deep sediment intervals; however, nickel contamination does extend to deep sediment intervals. Deposition of zinc and dioxin-contaminated sediment occurred more recently than deposition of nickel-contaminated sediment. Toxicity and bioaccumulation testing results indicate site sediments do not appear to be toxic to benthic organisms, and nickel and zinc do not appear to bioaccumulate in benthic tissue; however, dioxins do appear to bioaccumulate in benthic tissue and could migrate up the food chain to higher trophic levels that consume benthic organisms. Based on these results, dioxins are the driving COC for remediation at the Site.

As identified in the SLR Remedial Action Plans (RAPs): RAP Stage I, MPCA and Wisconsin Department of Natural Resources (WDNR), 1992; and RAP Stage II, MPCA and WDNR, 1995; and later proven with testing, Mud Lake West, Duluth Harbor, Duluth, Minnesota (**Figure 1**), is potentially contributing to two impairments in the SLR AOC:

- Fish consumption advisory; and
- Degradation of the benthos environment.

Areas that are contributing to river sediment impairments should be addressed through remedial activities, as recommended by the RAP. In addition, addressing the contaminated sediments at the Site would also help in the reduction of impaired water resulting from bioaccumulative toxins in the SLR.

#### Remedial Action Objectives Developed by the MPCA for the Site

RAOs for the Site were developed based on the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP; 40 Code of Federal Regulations

[CFR] §300.430[e][2][i]), which defines RAOs as a listing of the COCs and media of concern, potential exposure pathways, and remediation goals. Specific RAOs were developed from a review of the results of Site characterization activities, site-specific risk and fate and transport evaluations, and an initial review of Applicable or Relevant and Appropriate Requirements (ARARs). The following RAOs for the Site include goals for the protection of human health and the environment:

- 1. Reduce human health risks associated with exposure to COCs through direct contact with sediments, inhalation, and incidental sediment ingestion by reducing sediment concentrations of COCs to protective levels or by eliminating direct contact or exposure potential.
- 2. Minimize or remove exposure to sediment contaminants that bioaccumulate in the food chain and contribute to fish consumption advisories.
- 3. Minimize or remove exposure of the benthic organisms to contaminated sediments above sediment cleanup goals.
- 4. Enhance aquatic habitat, if conditions allow, in a manner that contributes to the removal of beneficial use impairments (BUIs).

The following subsections present preliminary sediment cleanup levels (CULs) developed to achieve these RAOs. Alternatives were identified and screened to determine if they could meet these RAOs. The following alternatives were evaluated in this FFS:

**Alternative 1: No Action –** The NCP at Title 40 CFR provides that a No Action Alternative should be considered at every site. The No Action Alternative should reflect the site conditions described in the baseline risk assessment and remedial investigation. The No Action Alternative included within this FFS does not include any treatment or engineering controls, institutional controls (ICs), or monitoring. There are no costs associated with the No Action Alternative.

Alternative 2: Enhanced Monitored Natural Recovery with Broadcasted Amendment – This enhanced monitored natural recovery (EMNR) alternative would consist of applying a thin 0.01-meter layer of amendment material directly on top of the sediment surface in areas with sediment concentrations of COCs exceeding the preliminary CULs (i.e., areas of the Site with exceedances of the Midpoint Sediment Quality Target [SQT] for dioxins), hereafter referred to as remedial areas. Amendment material would be mixed into the sediments over time through bioturbation. The chosen amendment would reduce exposure of aquatic life to COCs through sequestration of sediment contaminants. Monitoring of sediment chemical concentrations, sediment toxicity, and bioaccumulation of COCs in aquatic life would be conducted until sufficient contaminant sequestration, degradation, transformation, or other natural recovery processes reduce risks to acceptable levels.

Alternative 3: Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover — This alternative would consist of constructing a 0.15-meter (6-inch) amended cover on top of the sediment surface in remedial areas, and thus adds a temporary isolation component to Alternative 2. This alternative would incorporate use of the same amendment material as incorporated into Alternative 2 and would likewise reduce exposure of aquatic life to COCs through sequestration of sediment contaminants. Long-term mixing of cover materials into underlying in situ sediments from bioturbation could be anticipated and would result in delivery of amendment materials to deeper sediment depths. Monitoring of chemical concentrations in sediment and cap material, sediment toxicity, and bioaccumulation of COCs in aquatic life would be conducted until sufficient contaminant sequestration, degradation, transformation, or other natural recovery processes reduce risks to acceptable levels.

**Alternative 4: Dredging with Wetland Restoration –** This alternative would consist of removing all sediments within remedial areas to the estimated average maximum depth of contamination of 0.5 meter (1.6 feet) in open water areas and 0.15 meter (0.5 feet) in wetland areas, plus an over-dredge of 0.30 meter (1 foot). Sediment removal would take place in both open water and wetland areas of the Site. A 0.15-meter (0.5-foot) sand cover would be constructed in open water areas upon completion of dredging activities to mitigate any potential negative effects of dredge residuals on aquatic life. A 0.46 meter (1.5 feet) sand cover would be constructed in wetland areas to replace the full thickness of dredged sediments. Plantings would be conducted to restore wetland areas.

Alternative 5: Dredge Open Water Areas/Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover in Wetland Areas – This hybrid of Alternatives 3 and 4 would consist of removing all sediments within open water remedial areas to the estimated average maximum depth of contamination of 0.5 meter, plus an over-dredge of 0.30 meter. It would incorporate EMNR in wetland remedial areas through construction of a thin-layer amended cover. The purpose of this hybrid approach is to achieve contaminant removal yet minimize disturbances to established wetland areas.

#### **Comparative Analysis Summary**

The comparative analysis of alternatives narrative discussion and quantitation table identified Alternative 2: EMNR with Broadcasted Amendment and Alternative 3: EMNR with Thin-Layer Amended Cover as a highly appropriate alternative to address contamination at the Site; however, Alternative 3 is almost two times more expensive as Alternative 2. The modifying criteria, state/support agency acceptance, and community acceptance are assessed formally after the public comment period. Stakeholder and community input will provide valuable insight as the MPCA considers information for the selection of a preferred alternative. The MPCA will conduct outreach activities to resource managers, current Site users, the public and local units of government prior to the public comment period.

Further studies are recommended during the design phase of the selected alternative. These recommended studies, depending on the alternative selected, may include:

- Bench and/or pilot scale testing of amendment materials to determine the most appropriate material for use at the Site. Potential amendment materials include Sedimite <sup>™</sup>, bauxite, biopolymers, permeable Organoclay<sup>™</sup>, phosphate additives (i.e., apatite), and zeolite (USEPA, 2013);
- Bench and/or pilot scale testing to determine appropriate application rates for the selected amendment material;
- Physical sediment characteristics assessment to aid in designing remedial actions involving dredging and/or capping; and
- Evaluation of potential dewatering areas within close proximity of the Site, including use of U.S. Steel property, if Alternative 4 or 5 is selected.

In addition, additional pre-design investigation and analysis might be warranted, in order to refine the remedial footprint, or to justify a need for a remedial action or provide basis for monitored natural recovery.

 Comparison of site sediment chemistry values to ambient sediment chemistry values developed for the U.S. Steel site.

- Biological assessments to evaluate effects of contaminated sediments on Site biota, which could include benthic toxicity and bioaccumulation testing, paired with sediment chemistry analysis for dioxins.
- Comparison of Site bioaccumulation data to similar data within the SLR estuary.

Pending the City of Duluth's decision on the preferred use of the Mud Lake causeway, additional data gaps might need to be addressed to evaluate the impact of partial or total causeway removal on the selected alternative:

• A hydrodynamic study to understand natural processes such as depositional and scouring forces to inform design and placement of cover materials.

# **TABLE OF CONTENTS**

| 1.0 IN | TRODUCTION AND BACKGROUND                                                  | 1-1   |
|--------|----------------------------------------------------------------------------|-------|
| 1.1 F  | Report Organization                                                        | 1-2   |
| 1.2    | Site Location and Current Use                                              | 1-2   |
| 1.3    | Site History                                                               | 1-2   |
|        | Site Characterization                                                      |       |
| 1.4.1  | Site Geology                                                               | 1-4   |
| 1.4.2  | ——————————————————————————————————————                                     |       |
|        | Nature and Extent of Contamination                                         |       |
|        | .3.1 Previous Investigations                                               |       |
|        | .3.2 Screening Criteria                                                    |       |
|        | .3.3 Contaminants of Concern                                               | 1-7   |
| 1.4.4  |                                                                            |       |
| 1.4.5  |                                                                            |       |
|        | PLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS AND                      |       |
|        | MEDIAL ACTION OBJECTIVES                                                   |       |
|        | Applicable or Relevant and Appropriate Requirements                        |       |
| 2.1.1  |                                                                            |       |
| 2.1.1  |                                                                            |       |
| 2.1.2  |                                                                            |       |
| 2.1.3  |                                                                            |       |
|        | Remedial Action Objectives                                                 |       |
|        |                                                                            |       |
| 2.2.1  |                                                                            | :- IZ |
|        | EVELOPMENT AND SCREENING of ALTERNATIVES                                   | _     |
|        | Remedial Technology Identification and Screening Process                   |       |
| 3.1.1  | Institutional Controls                                                     |       |
| 3.1.2  |                                                                            |       |
| 3.1.3  |                                                                            |       |
| 3.1.4  | Enhanced Monitored Natural Recovery                                        |       |
| 3.1.5  | In Situ Treatment                                                          |       |
| 3.1.6  |                                                                            |       |
| 3.1.7  | 0 0                                                                        |       |
| 3.1.8  |                                                                            |       |
| 3.1.9  |                                                                            |       |
|        | Remedial Technology Screening Results                                      |       |
|        | mplementation Assumptions                                                  |       |
| 3.2.1  | Staging Area Identification                                                | .3-6  |
| 3.2.2  |                                                                            |       |
|        | Development of Alternatives                                                |       |
| 3.3.1  |                                                                            | 3-7   |
| 3.3.2  | •                                                                          |       |
|        | Amendment                                                                  |       |
|        | .2.1 Amendment Selection and Application Rate                              |       |
|        | .2.2 Long-Term Monitoring                                                  |       |
| 3.3    | .2.3 Institutional Controls                                                | 3-9   |
| 3.3    | .2.4 Cost                                                                  | 3-9   |
| 3.3.3  | Alternative 3: Enhanced Monitored Natural Recovery with Thin-Layer Amended |       |
|        | Cover                                                                      | 3-9   |

|     | 3.3.3            | 3.1 Cover Design                                                                       | 3-10 |
|-----|------------------|----------------------------------------------------------------------------------------|------|
|     | 3.3.3            | 3.2 Long-Term Monitoring                                                               | 3-10 |
|     | 3.3.3            | 3.3 Institutional Controls                                                             | 3-11 |
|     | 3.3.3            | 3.4 Cost                                                                               | 3-11 |
|     | 3.3.4            | Alternative 4: Dredging with Wetland Restoration                                       | 3-11 |
|     |                  | 4.1 Dredging and Sand Cover Implementation                                             |      |
|     | 3.3.4            | 4.2 Cost                                                                               |      |
|     | 3.3.5            | Alternative 5: Dredge Open Water Areas/Enhanced Monitored Natural Reco                 |      |
|     | 0.0.0            | with Thin-Layer Amended Cover in Wetland Areas                                         |      |
|     | 3.3.             |                                                                                        | 3-13 |
|     | 3.3.             |                                                                                        |      |
|     | 3.3.             | J J                                                                                    |      |
| 4.0 |                  | MEDY SELECTION CRITERIA                                                                |      |
|     |                  | nreshold Criteria                                                                      |      |
|     | 4.1.1            |                                                                                        |      |
|     | 4.1.2            |                                                                                        |      |
| 4   |                  | rimary Balancing Criteria                                                              |      |
| •   | 4.2.1            | Long-Term Effectiveness and Permanence                                                 |      |
|     | 4.2.2            | Reduction of Toxicity, Mobility, or Volume Through Treatment                           |      |
|     | 4.2.3            | Short-Term Effectiveness                                                               |      |
|     | 4.2.4            | Implementability                                                                       |      |
|     | 4.2.5            | Costs                                                                                  |      |
| 4   |                  | odifying Criteria                                                                      |      |
| 7   | 4.3.1            |                                                                                        |      |
|     |                  | Community Acceptance                                                                   |      |
| 1   |                  | reen Sustainable Remediation                                                           |      |
| 5.0 |                  | MPARATIVE ANALYSIS OF ALTERNATIVES                                                     |      |
|     |                  | nreshold Criteria                                                                      |      |
| 5   | . i i i<br>5.1.1 | Overall Protection of Human Health and the Environment                                 |      |
|     | 5.1.1            |                                                                                        |      |
| 5   |                  | alancing Criteria                                                                      |      |
| 5   | .∠ Б.<br>5.2.1   | Long-Term Effectiveness and Permanence                                                 |      |
|     | 5.2.1            |                                                                                        |      |
|     |                  | Reduction of Toxicity, Mobility, or Volume Through Treatment  Short-Term Effectiveness |      |
|     | 5.2.3            | Implementability                                                                       |      |
|     | 5.2.4            | Cost                                                                                   |      |
| _   | 5.2.1            |                                                                                        |      |
| Э   |                  | odifying Criteria                                                                      |      |
|     | 5.3.1            | State Support/Agency Acceptance                                                        |      |
| F   | 5.3.2            | Community Acceptancereen Sustainable Remediation Criteria                              |      |
| Э   |                  |                                                                                        |      |
|     | 5.4.1            | Greenhouse Gas Emissions                                                               |      |
|     | 5.4.2            | Toxic Chemical Usage and Disposal                                                      |      |
|     | 5.4.3            | Energy Consumption                                                                     |      |
|     | 5.4.4            | Use of Alternative Fuels                                                               |      |
|     | 5.4.5            | Waster Consumption                                                                     |      |
| _   | 5.4.6            | Waste Generation                                                                       |      |
|     |                  | omparative Analysis Summary                                                            |      |
| 6.0 | REF              | ERENCES                                                                                | 6-1  |

#### **List of Figures**

| Figure 1  | Site Location Map                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| Figure 2  | Site Map                                                                                                                  |
| Figure 3  | Bathymetry                                                                                                                |
| Figure 4a | Nickel SQT Results Map                                                                                                    |
| Figure 4b | Zinc SQT Results Map                                                                                                      |
| Figure 5  | Nickel and Zinc Concentration Map                                                                                         |
| Figure 6  | Conceptual Site Model                                                                                                     |
| Figure 7  | Alternative 2: Enhanced Monitored Natural Recovery with Broadcasted Amendment                                             |
| Figure 8  | Alternative 3: Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover                                          |
| Figure 9  | Alternative 4: Dredging with Wetland Restoration                                                                          |
| Figure 10 | Alternative 5: Dredge Open Water Areas/Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover in Wetland Areas |

#### **List of Tables**

| Table 1<br>Table 2 | Contaminant of Concern Summary Technologies Screening Summary                                                                              |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Table 3            | Alternatives Summary                                                                                                                       |  |  |  |
| Table 4            | Cost Estimate – Alternative 2: Enhanced Monitored Natural Recovery with Broadcasted Amendment                                              |  |  |  |
| Table 5            | Cost Estimate – Alternative 3: Enhanced Monitored Natural Recovery with Thin-<br>Layer Amended Cover                                       |  |  |  |
| Table 6            | Cost Estimate – Alternative 4: Dredging with Wetland Restoration                                                                           |  |  |  |
| Table 7            | Cost Estimate – Alternative 5: Dredge Open Water Areas/ Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover in Wetland Areas |  |  |  |
| Table 8            | Comparative Analysis Summary – Threshold, Balancing, and Modifying Criteria                                                                |  |  |  |
| Table 9            | Comparative Analysis Summary – Green Sustainable Remediation Criteria                                                                      |  |  |  |
| Table 10           | Numerical Comparative Analysis Summary                                                                                                     |  |  |  |

### **List of Appendices**

| Appendix A | Mud Lake West Technical Memorandum                 |
|------------|----------------------------------------------------|
| Appendix B | Technical Analysis                                 |
|            | Table 1: Volume, Rate, and Time Frame Calculations |
|            | Table 2: Unit Rate Calculations                    |
|            | Table 3: Lump Sum Costs                            |
|            | Table 4: Monitoring Elements                       |
|            | Table 5: Present Value Calculations                |

# **Acronyms and Abbreviations**

| %           | percent<br>micrograms per kilogram      | NCP          | National Oil and Hazardous<br>Substances Pollution |
|-------------|-----------------------------------------|--------------|----------------------------------------------------|
| μg/kg       | activated carbon                        |              | Contingency Plan                                   |
|             | above mean sea level                    | ng TEO/kg    | nanograms toxic equivalency                        |
|             | area of concern                         | iig i⊏Q/kg   |                                                    |
|             |                                         | NDDEC        | per kilogram                                       |
| ARAR        | Applicable or Relevant and              | NPDE9        | National Pollutant Discharge                       |
| D \ \ \ \ + | Appropriate Requirement<br>Bay West LLC | 0014         | Elimination System                                 |
| bay west    | Bay west LLC                            |              | operation and maintenance                          |
|             | below sediment surface                  | OIRW         | Outstanding International                          |
|             | beneficial use impairment               | 0014/50      | Resource Water                                     |
|             | confined aquatic disposal               | OSWER        | Office of Solid Waste and                          |
|             | confined disposal facility              | 5.4.1        | Emergency Response                                 |
| CERCLA      | Comprehensive Environmental             |              | polycyclic aromatic hydrocarbon                    |
|             | Response, Compensation, and             |              | potentially bioactive zone                         |
|             | Liability Act                           |              | polychlorinated biphenyl                           |
|             | Code of Federal Regulations             |              | Remedial Action Objective                          |
|             | chapter or chapters                     |              | Remedial Action Plan                               |
|             | contaminant of concern                  |              | Risk Based Site Evaluation                         |
|             | conceptual site model                   | RCRA         | Resource Conservation and                          |
|             | cleanup level                           |              | Recovery Act                                       |
| DEDA        | Duluth Economic Development             |              | Request for Proposal                               |
|             | Authority                               |              | Remedial Investigation                             |
|             | data gap investigation                  |              | reasonable maximal exposure                        |
| dioxins     | polychlorinated dibenzo-p-              |              | Record of Decision                                 |
|             | dioxins/dibenzofurans                   |              | rough order of magnitude                           |
|             | diesel range organics                   |              | State Disposal System                              |
| EMNR        | Enhanced Monitored Natural              | SLR          | St. Louis River                                    |
|             | Recovery                                | SLRIDT       | St. Louis River/Interlake/Duluth                   |
|             | Focused Feasibility Study               |              | Tar                                                |
| GHG         | Greenhouse Gas                          | SQT          | sediment quality target                            |
| GLI         | Great Lakes Initiative                  |              | Sediment Screening Value                           |
| GLLA        | Great Lakes Legacy Act                  | SVOC         | semi-volatile organic compound                     |
| GSR         | Green Sustainable Remediation           |              | to be considered                                   |
| IC          | institutional control                   |              | Toxicity Characteristic Leaching                   |
| IDT         | Interlake/Duluth Tar                    |              | Potential                                          |
| ITRC        | Interstate Technology and               | TEF          | toxicity equivalence factor                        |
|             | Regulatory Council                      |              | toxic equivalency                                  |
| IZ          | Isolation Zone                          | U.S          |                                                    |
|             | Kaplan-Meier                            |              | Uniform Environmental                              |
|             | long-term monitoring                    |              | Covenants Act                                      |
|             | Minnesota Department of Health          | USACE        | United States Army Corps of                        |
|             | Minnesota Department of                 |              | Engineers                                          |
|             | Natural Resources                       | USC          | United States Code                                 |
| MERLA       | Minnesota Environmental                 |              | United States Environmental                        |
|             | Response and Liability Act              | <b>3 2 .</b> | Protection Agency                                  |
| ma/ka       | milligrams per kilogram                 | WCA          | Wetland Conservation Act                           |
|             | Mud Lake East                           |              | Wisconsin Department of                            |
|             | Mud Lake West                           |              | Natural Resources                                  |
|             | Monitored Natural Recovery              | WLSSD        | Western Lake Superior Sanitary                     |
|             | Minnesota Pollution Control             |              | District                                           |
| 🔾, (        | Agency                                  |              |                                                    |
|             | , 195110)                               |              |                                                    |

#### 1.0 INTRODUCTION AND BACKGROUND

The St. Louis River (SLR), located on the border between Minnesota and Wisconsin, is the second largest United States (U.S.) tributary to Lake Superior and has a special significance in the region. The lower estuary empties into the Duluth-Superior Harbor, the largest freshwater seaport in North America. It serves as a geographic boundary for Wisconsin and Minnesota, and provides regional shipping access to Lake Superior.

Development along the SLR over the past 130 years has contributed to contaminated sediments. In 1987, concerns over environmental quality conditions prompted the designation of 73 miles of the lower SLR, which includes the segment from Cloquet, Minnesota, to the Duluth/Superior Harbor, as 1 of 43 Great Lakes Areas of Concern (AOCs). The Minnesota Pollution Control Agency (MPCA) and Wisconsin Department of Natural Resources (WDNR) worked together to divide the SLR AOC into Sediment Assessment Areas for the purposes of evaluation and prioritization of remediation and restoration activities. Contaminated sediments were identified and characterized through several studies that included the collection and analysis of sediments and biota samples throughout the AOC.

Historical sediment contamination in the SLR AOC has resulted in impaired uses, including degradation of bottom-feeding invertebrate communities, increased incidence of fish tumors and other abnormalities, fish consumption advisories, and restrictions on dredging, resulting in nine beneficial use impairments (BUIs; MPCA, 2008). BUIs are a change in the chemical, physical or biological integrity of the Great Lakes system sufficient to cause any 1 of the 14 established use impairments, or other related uses, such as the microbial objective for waters used for body contact recreational activities (joint commission). The MPCA and WDNR are currently working together to implement a comprehensive long-term plan to restore beneficial use and delist BUIs in the SLR AOC. Many of the BUIs in the AOC are linked to the presence of sediment contaminants. Some sediment-derived contaminants also appear suspended in the water column and carried by the SLR to Lake Superior.

As identified in the SLR Remedial Action Plans (RAPs): RAP Stage I, MPCA and WDNR, 1992; and RAP Stage II, MPCA and WDNR, 1995; and later proven with testing, Mud Lake West (the Site), Duluth, Minnesota (**Figure 1**), is potentially contributing to two impairments in the SLR AOC:

- Fish consumption advisory; and
- Degradation of the benthos environment.

Areas that are contributing to river and harbor sediment impairments should be addressed through remedial activities, as recommended by the RAPs. According to the MPCA, it is recommended by many programs that biotoxins be reduced within the SLR estuary and harbor. Removing or isolating the contaminated sediments from the surface water/sediment interface will help in the reduction of the impaired water resulting from bioaccumulative toxins in the SLR AOC.

This Focused Feasibility Study (FFS) was prepared to evaluate remedial alternatives for contaminated sediment at the Site. The scope of this FFS does not consider alternatives for any other matrix such as soil, surface water, or groundwater that may be impacted at the Site.

This report was developed pursuant to the Bay West LLC (Bay West) Master Contract No. 63186 and MPCA Contract Work Order No. 3000014275, dated July 21, 2015, and accompanying the Scope of Work/Cost Estimate for the Site. Funding to complete the FFS for the Site comes from the United States Environmental Protection Agency (USEPA), the Great

Lakes Legacy Act (GLLA), and state funding through the Minnesota Legacy Fund and the Wisconsin Knowles-Nelson Stewardship Fund.

This FFS was written in general accordance with the MPCA Site Response Section Guidance Document Draft Guidelines on Remedy Selection (MPCA, 1998), the Minnesota Environmental Response and Liability Act (MERLA), the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations (CFR) Part 300, along with other Minnesota and Federal rules, statutes, and guidance.

#### 1.1 Report Organization

**Section 1.0** presents general background information including the Site history and a summary of current Site conditions. **Section 2.0** discusses Applicable or Relevant and Appropriate Requirements (ARARs) and summarizes Remedial Action Objectives (RAOs) to provide the framework for alternative evaluations for the Site. **Section 3.0** and **Section 4.0** present alternatives descriptions and the NCP remedy selection criteria used in this FFS. **Section 5.0** presents an evaluation of alternatives against standards and criteria. References are presented in **Section 6.0**.

#### 1.2 Site Location and Current Use

The Site is bounded to the west by the Duluth, Missabe & Iron Range Railway (DM&IR) Mud Lake site, to the north by the U.S. Steel site, and to the east by the 75-acre Mud Lake East (MLE) site. Wisconsin Central Ltd owns multiple land parcels surrounding the Site to the north, west, and south per the Saint Louis County Land Explorer website (<a href="http://gis.stlouiscountymn.gov/planningflexviewers/County Explorer/">http://gis.stlouiscountymn.gov/planningflexviewers/County Explorer/</a>). The railroad tracks dividing the Mud Lake West (MLW) and MLE are owned by the City of Duluth and maintained by the Lake Superior and Mississippi Railroad Company (<a href="http://lsmrr.org">http://lsmrr.org</a>), which operates historic train tours beginning near the Lake Superior Zoo in Duluth and ending at the southern end of the Gary and New Duluth neighborhoods. The train tours operate on Saturdays and Sundays from mid-June through mid-October. The City of Duluth is exploring the potential to remove the railroad causeway in order to open MLW and return the area to a more natural setting.

The Site comprises a 39-acre wetland area in the SLR estuary (**Figure 2**). The majority of the Site is marshland with open water located in the center of the lake and along the railroad embankment that divides MLW from MLE. The marshland areas were characterized during the 2015 RI as primarily cattails at the northern end of the Site and a mix of cattail and bog areas at the south and southwestern ends of the Site.

The Site is approximately 3,750 feet in length and 1,000 feet in width. Water depth at the Site ranged from 0.5 feet to 8.0 feet with a sediment elevation range of 594.00 feet to 601.76 feet above mean sea level (amsl) during the March and June 2015 RI sampling events; average water depth was 3.5 feet. **Figure 3** shows 2015 bathymetry created from field measurements of water depth. No storm sewer discharges have been identified in the vicinity of the Site (Bay West, 2015b).

#### 1.3 Site History

Historical maps, aerial photographs, and drawings were reviewed for the Site as part of the 2015 RI (Bay West, 2015b). The 2015 RI presents the following description of the historical documentation review.

Merritt's sectional survey map, dated 1889, depicts the Site as a lake cut off from the main channel by a railroad, similar to present day. A railroad running northeast to southwest acts as a levee separating the Site from the rest of Mud Lake and the main river channel. The 1902

Frank's Atlas map depicts a wetland surrounding the Site. The surrounding area to the northwest of the Site appears to be residential. The 1909 Duluth Street Railway Co. transit map is similar to previous maps. The 1912 Welbanks map is similar to previous maps and depicts "New Duluth" to the southwest of the Site and the "Minnesota Steel Company location" to the north of the Site. Two slips are depicted on the east side of the railroad, south of the Site.

The 1915 and 1917 U.S. Geological Survey (USGS) Topographic Map depicts the previously noted wetland, which is apparent on subsequent maps. The inlet from the main river channel has narrowed. The north adjoining property (previously identified as the Minnesota Steel Company) appears to be residentially developed as part of the Morgan Park area. The two slips are not depicted south of the Site. The 1927 McGill Warner Map is similar to the 1915 and 1917 topographic map, although the "Minnesota Steel Company Plant" is depicted on the north adjacent property. The Welbanks Map, published in 1935, depicts two slips south of the Site. Surrounding land use is relatively unchanged from the 1927 map.

Aerial photographs are available for Mud Lake from 1952 to 2013. Due to the scale of the photographs, it is not possible to discern details about surrounding site activities. No significant changes were noted between 1952 and 2013. In general, the aerial photographs show marshland surrounding the Site to the north, west, and south sides of the lake. Industrial activity north of the marshland is apparent. West of the marshland appears to be undeveloped land, with a highway traveling north-south beyond. South of the marshland the area is predominantly undeveloped land. The Northern Pacific Railroad running northeast to southwest defines the boundary between the Site and MLE. The inlet to MLE has widened in comparison to the 1935 Welbanks Map.

The following Site history was presented within the DM&IR Railway RI Report compiled for the DM&IR Mud Lake Site (Arcadis, 2011).

In 1907, U.S. Steel subsidiaries Spirit Lake Transfer Railway Company (the original owner of the Site) and Interstate Transfer Railway Company were incorporated for purposes of providing rail service to U.S. Steel subsidiary Minnesota Steel Company. The Spirit Lake line was completed in 1915 and ran from Adolf, Minnesota to the border of Wisconsin. Upon completion of the Spirit Lake line, all of Spirit Lake Transfer Railway's property was leased to, and thereafter operated by, U.S. Steel subsidiary Duluth, Missabe & Northern Railway Company (DM&N). DM&N and Spirit Lake Railway were consolidated in 1937, and the combined company became the Duluth, Missabe & Iron Range Railway (DM&IR). Minnesota Steel Company constructed the plant that would later become the Duluth Works between 1910 and 1915. The plant began operations in 1915 to 1916.

Minnesota Steel leased the plant to U.S. Steel subsidiary American Steel & Wire (AS&W) in 1932, and conveyed the plant and associated property to AS&W in 1935. AS&W was merged into U.S. Steel in the early 1950s and operated for some years thereafter as the AS&W Division of United States Steel Corporation.

Between 1948 and 1974, the Site was leased or licensed to U.S. Steel for steel mill refuse disposal purposes. Aerial photographs reveal that, over time, filling occurred in a west to east direction and encroached into the wetland surrounding the Site. Slag reclamation reportedly occurred to a degree; however, a significant volume of slag and other steel mill refuse was left onsite after the reclamation activities ceased. Slag was placed within the water table at the toe of the main slag impoundment (bluff) and does not appear to have been reclaimed as part of this operation.

The Site is currently surrounded by undeveloped or abandoned industrial (i.e., U.S. Steel site) properties. The only current sanctioned use of the Site and its surrounding properties is weekly historic train tours that pass through the Site.

#### 1.4 Site Characterization

#### 1.4.1 Site Geology

Regional geology in the Duluth area consists primarily of materials deposited during the last glaciation, and more recently as river sediment, overlying Precambrian igneous and sedimentary bedrock. These materials consist of silts, sands, and gravels that were deposited as the glaciers retreated northward. Fine grained sediment, primarily red silt and clay, was deposited in the ancestral glacial Lake Duluth. This red silt and clay occurs over much of the lower elevations in the Duluth area.

Bedrock units underlying the area consist of olivine gabbro and anorthositic gabbro members of the Duluth Complex, and the sedimentary units of the Fond du Lac Formation. The Duluth Complex is lower Precambrian, and the Fond du Lac Formation is upper Precambrian in age. The gabbroic members of the Duluth Complex form the hills to the west of the SLR and Lake Superior shore (MPCA, 1995).

Sediment cores collected during the 2015 RI generally contained brown to black loam to depth, consisting of up to 70 percent (%) woody organics, fibrous roots, and other plant material. A firm blue-gray clay and potential confining layer was observed within the bottommost portion of several deep cores. This blue-gray clay was easily distinguishable from the overlying silt and peat sediments. Based on the depth of sampler advancement at these locations, the blue-gray clay layer could be as deep as 2.9 meters below sediment surface.

#### 1.4.2 <u>Site Hydrology</u>

The regional groundwater flow system in the area generally flows from the Minnesota and Wisconsin uplands and discharges to Lake Superior and the SLR estuary.

The upper aquifer at the Site is located in the well graded sand unit. The groundwater flow direction is east from adjacent upland areas towards the Site. The sand is permeable and the hydraulic conductivity ranges from approximately 0.2 to 37.4 feet per day (feet/day). The hydraulic conductivity of the slag fill ranges from approximately 3 feet/day in adjacent upland areas to approximately 0.17 feet/day in wetland areas of the Site. Groundwater discharges to the Site, the base elevation (Arcadis, 2011).

While not measured during the 2015 RI, flow velocities are likely lower at the Site than the main stream channel. The Site is cut off from the eastern portion of Mud Lake and the main channel by a railroad embankment, with the exception of an approximately 75-foot railroad trestle that allows water to pass through from MLE and the main river channel to the Site. The City of Duluth is exploring options to remove the railroad causeway and open MLW to the rest of the SLR. The removal of the railroad causeway would likely result in significant impacts to the hydraulic conditions at the Site. High flow storm and Seiche events may be the primary mechanisms for flow into Mud Lake from the main channel. The relatively low flow velocities may result in sediment deposition after high flow storm and seiche events on the margins within areas of emergent vegetation.

#### 1.4.3 Nature and Extent of Contamination

The nature and extent of contamination at the Site was investigated during several studies between 2011 and 2015. The most recent investigation was an RI conducted specifically for the Site during March and June of 2015. A summary of previous Site investigations, as presented

within the 2015 RI report, is provided in **Section 1.4.3.1**. Screening criteria for application to sediment contaminants identified at the Site are discussed in **Section 1.4.3.2**. **Section 1.4.3.3** presents a discussion of the contaminants of concern (COCs) as identified in the 2015 RI report and **Section 1.4.3.4** presents the known depth, thickness, and volume of contaminated sediments at the Site.

#### 1.4.3.1 Previous Investigations

The following are previous investigation reports completed for the Site:

- St. Louis River Area of Concern Sediment Characterization: Final Report, prepared by LimnoTech, July 11, 2013 (LimnoTech Report)
  - The assessment of sediment chemistry in the MLW area, which included the analysis of metals, PAHs, and polychlorinated dibenzo-p-dioxins/dibenzofurans (dioxins) toxic equivalencies (TEQs) as contaminants of interest (COIs) at depths between 0.0 and 0.50 meters bss.
- Sediment Investigation Report, Lower St. Louis River, Fond Du Lac Dam to Kingsbury Bay, Duluth, Minnesota, prepared by SOMAT Engineering, Study ID 84, August 2012a (2012a SOMAT Report)
  - Mud Lake, which includes the Site, was investigated during an SLR and bay area study completed in 2012 (2012a Somat Report). Analytical results from this investigation indicated that contaminants are present at Mud Lake at concentrations that are considered to pose a low to moderate risk to sediment dwelling organisms.
- Remedial Investigation Report, DM&IR (Duluth Missabe & Iron Range Railway) Mud Lake Site (Mud Lake West), Duluth, Minnesota, prepared by Arcadis U.S., Inc., August 2011 (Arcadis Report)
  - DM&IR retained Arcadis to complete an RI for MLW. The investigation included groundwater, surface water, soils, and sediment. The sediment investigation included analysis of diesel-range organics (DRO), gasoline-range organics (GRO), volatile organic compounds (VOCs), PAHs, PCBs, Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver), calcium, magnesium, potassium, and sodium. Sixteen sediment samples were collected for MLW. Results analysis indicated PAHs, arsenic, cadmium, chromium, lead, and mercury exist at concentrations that may pose a risk to human health or the environment.
- Sediment Remedial Investigation Report, Mud Lake West, Duluth, Minnesota, prepared by Bay West LLC, December 2015 (2015 RI Report)
  - The 2015 RI Report concluded that exposure pathways are complete or potentially complete for recreational users through direct contact with contaminated sediments and ingestion of biota (i.e., fish consumption) and for ecological receptors through ingestion and dermal contact. The RI identified chromium, mercury, and dioxins as potential COIs for risk to human health. Dioxins were also identified as a potential COI for risk to sediment dwelling organisms. Nickel and zinc were both identified as COIs for risk to human health and to sediment dwelling organisms.
- Mud Lake West Technical Memorandum, Mud Lake West, Duluth, Minnesota, March 2017 (2017 Tech Memo)

In 2016, data was collected in support of the 2015 RI to address data gaps identified in the 2015 RI regarding the extent and volume of contaminated sediment within MLW, and to evaluate risks to human health and the environment due to potential impacts by the benthic community (2017 Data Gap Investigation [DGI]). Nickel, zinc, and dioxins were assessed in this investigation. Sediment sample analysis indicates that zinc and dioxin/furan sediment contamination does not extend to deep sediment intervals; however, nickel contamination does extend to deep sediment intervals. Deposition of zinc and dioxin-contaminated sediment occurred more recently than deposition of nickel-contaminated sediment. Toxicity and bioaccumulation testing results indicate that site sediments do not appear to be toxic to benthic organisms, and nickel and zinc do not appear to bioaccumulate in benthic tissue; however, dioxins do appear to bioaccumulate in benthic tissue and could migrate up the food chain to higher trophic levels that consume benthic organisms. Based on these results, dioxins should be the driving COC for remediation at Mud Lake West. The 2017 Tech Memo is included in **Appendix A**.

#### 1.4.3.2 Screening Criteria

Numerical sediment quality targets (SQTs), adopted for use in the SLR AOC to protect benthic invertebrates, can be used throughout Minnesota as benchmark values for making comparisons to surficial sediment chemistry measurements. Level I and Level II SQTs for the protection of sediment-dwelling organisms are available for 8 trace metals, 13 individual PAHs, total PAHs (all 13 priority PAHs), total PCBs, and 10 organochlorine pesticides. In addition, Level I and Level II SQTs for dioxins were adopted for the protection of fish, as insufficient information is available for sediment-dwelling organisms. The dioxins SQT is based on the dioxin TEQ value, which incorporates results of individual dioxin and furan congeners and toxicity equivalence factors (TEFs) for the protection of fish, denoted as TEQ Fish. SQTs are highly useful when evaluating risk for a specific compound or a group of compounds (i.e., total PCBs and total PAHs).

Contaminant concentrations below the Level I SQTs are unlikely to have harmful effects on sediment-dwelling organisms (i.e., benthic invertebrates). Contaminant concentrations above the Level II SQTS are more likely to result in harmful effects to benthic invertebrates (MPCA, 2007). Based on conversations with the MPCA, a qualitative comparison value midway between the Level I SQTs and Level II SQTs (i.e., Midpoint SQT) were used as criteria to identify, rank, and prioritize sediment-associated COCs within the Site.

Sediment Screening Values (SSVs) were developed to provide a human health-based toxicity value specifically related to sediment for the U.S. Steel Superfund site in the SLR (Minnesota Department of Health [MDH], 2013). The SSVs were developed using reasonable maximal exposures (RMEs) specific to the U.S. Steel site and the Lower SLR. The Updated Human Health Screening Values for SLR Sediments: U.S. Steel Site, dated April 2013, describes the updated SSVs. Chemical concentrations in water-covered sediments at or below the SSVs are considered safe for the general public; however, chemical concentrations in sediments exceeding the SSVs should not be considered unsafe because the SSVs were developed using conservative measures of exposure, bioavailability, and toxicity. Based on ongoing ambient concentration studies, some SSVs likely approach, or are less, than ambient concentrations in sediment, including SSVs for mercury, benzo(a)pyrene equivalents, PCBs, and dioxins. Further, the SSVs do not include RMEs specific to the Site and are not intended to be used as sediment cleanup values; therefore, SSVs will not be used to identify, rank, and prioritize sediment-associated COCs within the Site. Following finalization of the ambient concentration studies, SSVs for COCs may need to be reviewed for applicability to the Site.

#### 1.4.3.3 Contaminants of Concern

Potential COIs are discussed in depth in the 2015 RI Report and 2017 DGI and are summarized as follows. Exposure pathways are complete or potentially complete for recreational users at the Site and identified chromium, mercury, and dioxins as potential COIs for risk to human health; however, these COIs were not carried forward as COCs for this FFS as discussed below.

Exposure pathways are complete or potentially complete for direct exposure of ecological receptors to sediment contaminants through ingestion and dermal contact and identified dioxins, nickel, and zinc as potential COIs for risks to ecological health. Based on the bioaccumulation and toxicity testing results, only dioxins are carried forward as COCs for the Site.

CULs for dioxins will be determined based comparison to anthropogenic influenced ambient levels due to legacy contamination that are being developed by the MPCA; however, for the purposes of this FFS, the Midpoint SQT for dioxins will serve as the CUL. Exceedance of the dioxin Midpoint SQT will be used to determine the remedial footprint and development of remedial alternatives. A summary of COCs is presented in **Table 1**.

#### Chromium

Sediment samples collected during the 2015 RI were analyzed for total chromium, which combines concentrations of Chromium III and Chromium VI, but were compared to the 2013 cancer SSV for chromium VI (no SSV for total chromium exists; therefore, the chromium VI SSV was used as a conservative comparison criterion). It is, therefore, likely that the actual concentrations of chromium VI in sediment samples are likely lower than the total chromium concentrations and may not exceed the chromium VI SSV. Additionally, it is unknown if chromium concentrations detected at the Site are greater than ambient chromium concentrations in the AOC. Comparison to ambient chromium concentrations and analysis of chromium VI in sediment may be necessary to appropriately assess risk to human health.

#### Mercury

Mercury-impacted sediments with concentrations exceeding the SSV for protection of human health were found to occur in 99% of the samples analyzed during the 2015 RI; however, low-level mercury contamination occurs throughout the AOC, and as discussed in **Section 1.4.3.2**, may approach or be less than ambient concentrations in sediment based upon ongoing ambient concentration studies. Comparison to ambient mercury concentrations should be performed prior to making determinations of mercury as a COC.

#### Dioxins

Dioxins concentrations exceeded the Midpoint SQT in 42% for all intervals sampled during the 2015 RI and 2017 DGI, with 61% of samples exceeding in the 0.0 to 0.15-meter interval. Bioaccumulation testing indicates that dioxins do appear to bioaccumulate in benthic tissue and could migrate up the food chain to higher trophic levels that consume benthic organisms. Based on these results, dioxins should remain the driving COC for remediation at Mud Lake West and the remediation footprint will be based on locations where dioxins exceed the Midpoint SQT in surface sediment.

#### Nickel

Nickel concentrations exceeded the Midpoint SQT in 29% for all intervals sampled during the 2015 RI and 2017 DGI, with 33% of samples exceeding in the 0.0 to 0.15-meter interval. All of the Midpoint SQT exceedances were within the upper 1.0 meter of sediment. The maximum concentration of nickel (70.5 milligrams per kilogram [mg/kg]) was identified in the 0 to 0.15-meter interval. Based on toxicity and bioaccumulation testing results, nickel-contaminated

sediments do not appear to be toxic to benthic organisms and does not appear to bioaccumulate in benthic tissue; therefore, nickel will not be retained as a COC.

#### Zinc

Zinc concentrations exceeded the Midpoint SQT in 13% for all intervals sampled during the 2015 RI and 2017 DGI, with 27% of samples exceeding in the 0.0 to 0.15-meter interval. All of the Midpoint SQT exceedances were within the upper 1.0 meter of sediment. The maximum concentration of zinc (1850 mg/kg) was identified in the 0.15 to 0.5-meter interval. Based on toxicity and bioaccumulation testing results, zinc-contaminated sediments do not appear to be toxic to benthic organisms and does not appear to bioaccumulate in benthic tissue; therefore, zinc will not be retained as a COC.

#### 1.4.3.4 Depth, Thickness, and Volume of Contaminated Sediment

The 2015 RI Report and 2017 DGI were used to define the COCs, remedial areas, and remedial volumes used to compile this FFS. Distribution of dioxins at the Site is discussed below. Historical sample locations and corresponding sample results shown as exceedances of the SQTs are presented in **Figure 4a** and **Figure 4b**. Areas to be considered for remedial action are those where dioxins exceeded their respective Midpoint SQT and are presented in **Figure 5**. The preliminary CUL established for the Site is the Midpoint SQT for dioxins.

The vertical chemical profile for dioxins concentrations exceeding the Midpoint SQT generally decrease with depth. Approximately 61% of samples exceeded the Midpoint SQT in the surface interval, decreasing to 17% in the 0.15 to 0.5-meter interval. Only 17% (one sample) exceeded the Midpoint SQT in the 0.5 to 1.0-meter interval and no samples exceeded the Midpoint SQT in the >1.00-meter interval. Dioxins-impacted sediments with concentrations exceeding the Midpoint SQT appear throughout the Site. Concentrations as high as 97.61 ng TEQ/kg (over four times the Level 2 SQT) in the top 0.5 meter suggest a possible ongoing source of dioxins contamination. This ongoing source may also be related to the adjacent U.S. Steel site. The following table summarizes the vertical distribution of dioxins SQT exceedances as TEQ KM Fish values.

| TEQ KM FISH                   |        |      |        |       |        |     |      |    |              |    |
|-------------------------------|--------|------|--------|-------|--------|-----|------|----|--------------|----|
| Interval (meters)             | 0.0 to | 0.15 | 0.15 t | o 0.5 | 0.5 to | 1.0 | >1.0 | 00 | Al<br>Interv | -  |
| Number of samples             | 33     | 1    | 15     | 5     | 6      |     | 6    |    | 54           | ļ  |
| Number of detections          | 33     | 1    | 15     | 5     | 6      |     | 6    |    | 54           | ļ  |
| Max Concentration (ng TEQ/kg) | 66.5   | 44   | 97.    | 61    | 97.6   | 1   | 9.3  | 3  | 97.6         | 31 |
| Level 1 SQT Exceedances       | 100%   | 33   | 100%   | 15    | 100%   | 6   | 100% | 6  | 100%         | 54 |
| Midpoint SQT Exceedances      | 61%    | 20   | 20%    | 3     | 17%    | 1   | 0%   | 0  | 43%          | 23 |
| Level 2 SQT Exceedances       | 48%    | 16   | 13%    | 2     | 0%     | 0   | 0%   | 0  | 31%          | 17 |

Results combined from 2015 RI and 2017 DGI.

ng TEQ/kg = nanograms of dioxin toxicity equivalency per kilogram

Poor sample recovery was observed during the March 2015 RI sampling event and may have resulted in core shortening as described within **Section 3.3** of the RI Report. Core shortening, if present, would result in contaminated sediments existing at a deeper in situ sediment profile than suggested by the data. The 2017 DGI sampling utilized a Russian peat-borer sediment sample collection device to reduce core shortening.

**Figure 5** identifies remedial areas based on exceedances of the Midpoint SQT for dioxins at any of the sampled depth intervals and subsequent kriging of sample results. Contaminated sediments are located in both open water and wetland areas of the Site, which could drive the use of different remedial actions in these areas if established wetland areas are to be protected from intrusive remedial activities.

The open water portion of the remedial area totals approximately 32 acres as presented in **Figure 7** through **Figure 10**. The majority of COC contamination extends down to 0.15 meter bss throughout the open water portion, as shown in **Figure 5**; however, dioxins concentrations exceeding the Midpoint SQT were observed as deep as the 0.5 to 1.0-meter interval. The total volume of contaminated sediments within the open water portion is estimated at approximately 84,300 cubic yards based on the conservative average estimated depth of contaminated sediment of 0.5 meter.

The wetland portions of the remedial area total approximately 8 acres as presented in **Figure 7** through **Figure 10**. The majority of COC contamination extends down to 0.15 meter bss throughout the majority of both the southwestern and northeastern wetland area, as shown in **Figure 5**. The total volume of contaminated sediments within the wetland portions is estimated at approximately 6,600 cubic yards. Contaminant depth was estimated at 0.15 meter bss throughout the total 8-acre wetland area.

The total remedial area is approximately 40 acres with a contaminated sediment volume of approximately 91,000 cubic yards.

#### 1.4.4 Exposure Pathways

Exposure pathways represent the linkages among contaminant sources, release mechanisms, exposure pathways and routes, and receptors to summarize the current understanding of the risks to human health and the environment due to contamination. The 2015 RI concluded that the incidental ingestion and dermal contact exposure routes were complete for human recreational users of the Site. The lands surrounding the Site are privately owned and thus Site access is highly limited; however, trespassers have been observed at the Site and it is anticipated that these trespassers use the Site for recreational purposes, such as fishing, dog walking, etc. Conversations between Bay West, MPCA, and the City of Duluth on April 27, 2016, revealed potential future recreational development at the Site to include a recreational trail for walking, biking, etc. Construction of a trail at the Site would increase exposure risks to humans.

The 2015 RI also concluded that the ingestion and dermal contact exposure routes were complete for ecological receptors. Based on the 2017 DGI which indicates that COCs can bioaccumulate in benthic invertebrates, COCs could be released from sediments through uptake by biota and could result in subsequent consumption of exposed biota by animals or humans; therefore, the ingestion of biota pathway was also found to be complete for ecological and human receptors (i.e., fish consumption).

Reduction or isolation of sediment contamination at the Site will likely reduce contaminate concentrations found in biota tissue; therefore, addressing the ecological risk pathway identified for the Site will concurrently address the ingestion of biota via fish consumption pathway for human health.

Further discussions of human and ecological health risks posed by contaminated sediments at the Site are provided within the 2015 RI and 2017 Tech Memo reports.

#### 1.4.5 Conceptual Site Model

The development of a conceptual site model (CSM) allows data obtained during ongoing investigations to be integrated in an iterative approach that increases the understanding of the

physical and environmental setting of the Site and the fate and transport of COCs. The CSM provides a baseline for consideration of how remedy alternatives could be implemented to protect human and environmental health at the Site. The CSM is provided within the 2015 RI report and is illustrated in **Figure 6**.

The 2015 RI Report states that suspected sources of COCs observed at the Site are likely associated with widespread legacy contamination from upstream sources. The Site is generally cut off from the main channel of the SLR by the railroad embankment that separates the Site from Mud Lake East. During high flow storm events re-suspended sediment carrying legacy contaminants may enter MLW and redeposit in the low energy environment. It should be noted that the City of Duluth is exploring options to remove the railroad causeway that separate the Site from the SLR. If the City of Duluth decides to remove or modify the railroad causeway, the CSM should be updated for future investigations and remedial actions.

A potential source of upland contamination exists adjacent to, and west and north of the Site, as a result of steel processing operations dating back to at least 1912 and referred to as the U.S. Steel Superfund Site. Dioxins are known contaminants at the U.S. Steel Superfund Site. It is possible that contaminants from upland sources on the site have eroded and deposited into the Site. Elevated concentrations of dioxins within the upper 0.5 meter of Site sediments indicate that insignificant sediment deposition has occurred at the Site since industrial activities ended and/or that an ongoing source is present. Additional details regarding the CSM are contained within the 2015 RI Report. If ongoing sources are present, additional upland investigation and remedial actions may be necessary to protect any remedial actions taken at the Site from future contaminant inputs.

# 2.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS AND REMEDIAL ACTION OBJECTIVES

Remedial actions for releases and threatened releases of hazardous substances, pollutants, or contaminants must be selected and carried out in accordance with state and federal requirements. These requirements are referred to as ARARs. RAOs specify COCs, media of concern, potential exposure pathways, and remediation goals. Initially, Site remediation goals for the COCs are developed based on readily available information such as chemical-specific ARARs or other reliable information. The Site RAOs are modified, as necessary, as more information becomes available during the FFS process.

This section presents the preliminary ARARs, RAOs, and COCs to be used in the development of this FFS. The final ARARs, RAOs, and COCs will be developed in the Record of Decision (ROD) for the Site.

#### 2.1 Applicable or Relevant and Appropriate Requirements

This preliminary ARAR section summarizes the MPCA, Minnesota Department of Natural Resources (MDNR), and MDH ARARs, and to be considered (TBC) criteria for aquatic sediment associated with the Site. Local and Federal ARARs have also been included; however, the list may not include all applicable local and Federal ARARs.

The NCP (40 CFR 300.5) defines "applicable" requirements as: "those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility citing laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] site." Only those promulgated state standards identified by a state in a timely manner that are substantive and equally or more stringent than federal requirements may be applicable.

The NCP (40 CFR 300.5) further defines "relevant and appropriate" requirements as: "those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility citing laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstances at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site." Like "applicable" requirements, the NCP also provides that only those promulgated state requirements that are identified in a timely manner and are more stringent than corresponding federal requirements may be relevant and appropriate.

ARARs generally fall into one of the following three classifications:

- Chemical-specific: These ARARs are usually health- or risk-based numerical values or methodologies that, when applied to site-specific conditions, result in numerical values. These values establish an acceptable amount or concentration of a chemical that may be found in, or discharged to, the ambient environment. These requirements provide the basis for protective Site remediation levels for the COCs in the designated media.
- Location-specific: These ARARs generally restrict certain activities or limit concentrations of hazardous substances solely because of geographical or land use concerns. Requirements addressing wetlands, historic places, floodplains, or sensitive ecosystems and habitats are potential location-specific ARARs.

Action-specific: These ARARs are restrictions on the conduct of certain activities or the
operation of certain technologies at a particular site. Examples of action-specific ARARs
would be regulations dictating the design, construction, and/or operating procedures for
dredging, on-site landfilling, or capping. Action-specific requirements do not themselves
determine the cleanup alternative, but define how the chosen cleanup alternative should
be achieved.

In addition, criteria, advisories, guidance, and proposed standards developed by federal and state environmental and public health agencies that are not legally enforceable, but contain helpful information, are collectively referred to as TBCs. TBCs can be helpful in carrying out selected remedies or in determining the level of protectiveness of selected remedies. TBCs are meant to complement the use of ARARs, not compete with or replace them. TBCs are included, where appropriate, in the chemical-, location-, and action-specific discussions.

Several federal and state laws govern or provide the framework for remedial actions. Remedial actions must comply with substantive portions of these laws or acts, which were also reviewed during the ARAR development process. The following provides a summary of laws and acts that do not readily fall into one of the chemical-, location-, or action-specific classifications, but are applicable to the Site:

| ARAR/TBC                                               | Citation                                                               | Description/Potential Application                                                                                                                                          |
|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CERCLA                                                 | 42 United States<br>Code (USC) §§9601<br>et seq.                       | Federal Superfund Law.                                                                                                                                                     |
| NCP                                                    | 40 CFR Part 300                                                        | Provides organizational structure and procedures for preparing for and responding to discharges of oil and releases of hazardous substances, pollutants, and contaminants. |
| MERLA                                                  | Minn. Stat. §§115B.01 to 115B.20                                       | State Superfund Law.                                                                                                                                                       |
| Water Pollution<br>Control Act                         | Minn. Stat. chapter (ch.) 115                                          | Administration and enforcement of all laws relating to the pollution of any waters of the state.                                                                           |
| Duty to Notify and<br>Avoid Water<br>Pollution         | Minn. Stat. §115.061                                                   | Requires notification and recovery of discharge pollutants to minimize or abate pollution of the waters of the state.                                                      |
| Pollution Control<br>Agency                            | Minn. Stat. ch. 116                                                    | Provides organizational structure and procedures for responding to problems relating to water, air, and land pollution.                                                    |
| Water Law                                              | Minn. Stat. chs. 103A,<br>103B, 103C, 103D,<br>103E; 103F, and<br>103G | Provides regulations pertaining to any waters of the state, including surface water, wetlands and groundwater.                                                             |
| Safe Drinking Water<br>Act                             | 42 USC §§300f et seq.                                                  | Established to protect the quality of drinking water (above or underground).                                                                                               |
| Clean Water Act                                        | 33 USC §§1251 et seq.                                                  | Establishes structure for regulating discharges of pollutants and regulating quality standards for surface waters.                                                         |
| Resource<br>Conservation and<br>Recovery Act<br>(RCRA) | 42 USC §§6901 et seq.                                                  | Establishes RCRA Program and Regulations.                                                                                                                                  |

| ARAR/TBC                                          | Citation                                                        | Description/Potential Application                                                                                                                                                          |
|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clean Air Act                                     | 42 USC §§7401 et seq.                                           | Regulates air remissions from stationary and mobile sources.                                                                                                                               |
| Federal Energy<br>Regulatory<br>Commission (FERC) | FERC was<br>established by<br>congress through<br>various laws. | An independent agency that regulates transmission and wholesale sale of electricity and natural gas in interstate commerce. FERC authorizes and regulates non-federal hydropower projects. |

#### 2.1.1 Chemical-Specific ARARs and TBCs

The COCs associated with the sediments includes nickel, zinc, and dioxins. The following are the chemical-specific ARARs and TBCs associated with the sediments and shall be used to develop site-specific CULs:

| ARAR/TBC                                                                                               | Citation/Source                                                                                                                                                      | Description/Application                                                                             |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Sediment                                                                                               |                                                                                                                                                                      |                                                                                                     |  |  |  |
| SSVs                                                                                                   | MDH, 2013. Public Health Consultation,<br>Updated Human Health Screening<br>Values for SLR Sediments: U.S. Steel<br>Site, April.                                     | To be used as benchmark values for making comparisons to surficial sediment chemistry measurements. |  |  |  |
| SQTs                                                                                                   | Guidance for the Use and Application of SQTs for the Protection of Sediment-dwelling Organisms in Minnesota.                                                         | To be used as benchmark values for making comparisons to surficial sediment chemistry measurements. |  |  |  |
| All Media                                                                                              |                                                                                                                                                                      |                                                                                                     |  |  |  |
| Contaminated<br>Sediments<br>Remediation                                                               | Contaminated Sediments Remediation. <a href="http://www.itrcweb.org/contseds">http://www.itrcweb.org/contseds</a> remedy- <a href="mailto:selection/">selection/</a> | Guidance to assist in selecting remedial technology most appropriate for a specific site.           |  |  |  |
| Contaminated<br>Sediment<br>Remediation                                                                | Contaminated Sediment Remediation<br>Guidance for Hazardous Waste Sites,<br>USEPA, December 2005.                                                                    | Guidance to assist in selecting remedial technology most appropriate for a specific site.           |  |  |  |
| Contaminated Use of Amendments for In Situ Remediation at Superfund Sediment Sites, USEPA, April 2013. |                                                                                                                                                                      | Guidance to assist in situ remediation.                                                             |  |  |  |
| Site screening guidelines                                                                              | Working Draft Site Screening Evaluation<br>Guidelines. MPCA Risk-Based Site<br>Evaluation (RBSE) Manual (09/98).                                                     | Guidelines and criteria for screening human health and ecological risks.                            |  |  |  |

#### Sediment

#### Human Health Risk

SSVs are tools for screening contaminated sediments for potential impacts to human health; however, as described in **Section 1.4.3.2**, SSVs will not be used to evaluate sediment contamination at the Site. Further, the potentially complete human health exposure pathway will be mitigated by addressing ecological exposure pathways.

#### Ecological Risk

Preliminary Sediment Remediation Goals were developed for use in this FFS to achieve protection and restoration of habitat, minimize exposure of the benthic organisms to contaminated sediments and movement of contaminants up the food chain. The MPCA does not have sediment quality standards. SQTs, adopted for use in the SLR AOC, can be used

throughout the state as benchmark values for making comparisons to surficial sediment chemistry measurements as described in **Section 1.4.3.2**. The Midpoint SQT will be used to identify, evaluate, and prioritize sediment-associated risk to ecological health.

#### All Media

This guidance document assists in selecting remedial technology most appropriate for a specific site based on contaminated sediment and site specific characteristics (http://www.itrcweb.org/contseds\_remedy-selection/).

The USEPA document *Contaminated Sediment Remediation Guidance for Hazardous Waste Sites* presents remedial options available for contaminated sediments discussing advantages and limitations associated with the options.

The USEPA document *Use of Amendments for In Situ Remediation at Superfund Sediment Sites* presents remedial options using amendments available for contaminated sediments discussing advantages and limitations associated with the options.

The MPCA Site Screening and Evaluation Document presents an overall process for conducting a Tier 1 evaluation of the various exposure pathways at a site. The screening criteria worksheet can be found at the MPCA website (https://www.pca.state.mn.us/waste/risk-based-site-evaluation-guidance).

#### 2.1.2 Location-Specific ARARs and TBCs

The Location-Specific ARARs and TBCs for the Site are as follows:

| ARAR/TBC                                           | Citation/Source                                        | Description/Application                                                                                                           |
|----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Waters of the State and<br>Groundwater Protection  | Minn. Stat. 103G and 103H                              | Groundwater protection, nondegredation, and best management practices.                                                            |
| Floodplain Management and<br>Wetlands Protection   | 40 CFR Part 6, Appendix A, §6.a.(1)                    | Requires agencies to evaluate potential effects of actions in a floodplain to avoid adverse impacts.                              |
| Shoreland and Floodplain Management                | Minn. Rules ch. 6120                                   | Conserves economic and natural environmental values (MDNR).                                                                       |
| St. Louis County Land Use<br>Ordinances            | St. Louis County Zoning<br>Ordinances, ch. 1003        | Floodplain management, Manages on-site waste disposal and other site activities                                                   |
| Shoreland Management                               | Duluth City Code §51-26 et seq.                        | The City of Duluth requires a permit for any excavation or grading above the Ordinary High Water Mark within 300 feet of a river. |
| Endangered Species Act                             | 16 USC §1531 et seq.<br>50 CFR §17.11-12               | Conservation of threatened and endangered plants and animals and their habitats.                                                  |
| Endangered, Threatened,<br>Special Concern Species | Minn. Rules ch. 6134<br>Minn. Statute, Section 84.0895 | Protection of endangered,<br>threatened, special concern species<br>(MDNR).                                                       |
| Migratory Bird Treaty Act                          | 16 USC Chapter 7, Subchapter II §§703 and 712.2        | Protects migratory birds and their ecosystems.                                                                                    |
| MDH Advisory for SLR                               | MDH Provides fish consumption advisories.              |                                                                                                                                   |

The Site is located within the Lake Superior Drainage Basin. Surface water quality standards and provisions for Class 2B and 3B waters apply. In addition, USEPA and the Great Lakes states agreed in 1995 to a comprehensive plan to restore the health of the Great Lakes. The Final Water Quality Guidance for the Great Lakes System, also known as the Great Lakes Initiative (GLI), includes criteria for states to use when setting water quality standards for 29 pollutants, including bioaccumulative chemicals of concern, and prohibits the use of mixing zones for these toxic chemicals. Because the surface water at the Site is within the drainage basin of Lake Superior, the ARARs specified in the GLI, Minn, Rules ch. 7052 are applicable to the Site. Requirements of the Great Lakes Water Quality Agreement of 2012 apply to the Site. In addition, the surface waters adjacent to the Site are identified as an Outstanding International Resource Water (OIRW). The objective for OIRW is to maintain water quality at existing conditions when the quality is better than the water quality standards. Generally, OIRWs are considered surface water quality standards applicable to the SLR for Class 2B and OIRWs, as set forth in Minn. Rules, chs. 7050 and 7052, and to the additional surface water quality standards for the SLR, as set forth in Minn. Rules ch. 7065. The OIRW was established after the ROD was issued.

As stated in Minn. Rules ch. 7050.0210 Subp. 2:

Nuisance conditions prohibited. No sewage, industrial waste, or other wastes shall be discharged from either point or nonpoint sources into any waters of the state so as to cause any nuisance conditions, such as the presence of significant amounts of floating solids, scum, visible oil film, excessive suspended solids, material discoloration, obnoxious odors, gas ebullition, deleterious sludge deposits, undesirable slimes or fungus growths, aquatic habitat degradation, excessive growths of aquatic plants, or other offensive or harmful effects.

Title 40 CFR Part 6, Appendix A, Section 6 Requirements: Requires federal agencies to evaluate the potential effects of actions taken within a floodplain to avoid adversely impacting floodplains wherever possible.

Title 40 CFR Part 6, Appendix A, Section 6.a.(1) Floodplain/Wetlands Determination: Before undertaking an Agency action, each program office must determine whether or not the action will be located in or affect a floodplain or wetlands. The Agency shall utilize maps prepared by the Federal Insurance Administration of the Federal Emergency Management Agency (Flood Insurance Rate Maps or Flood Hazard Boundary Maps), Fish and Wildlife Service (National Wetlands Inventory Maps), and other appropriate agencies to determine whether a proposed action is located in or will likely affect a floodplain or wetlands. If there is no floodplain/wetlands impact identified, the action may proceed without further consideration of the remaining procedures set in this section. If floodplain/wetlands impact is identified, this section presents procedures that must be taken.

Shoreland and Floodplain Management (Minn. Rules ch. 6120): Provides standards and criteria intended to preserve and enhance the quality of surface waters, conserve the economic and natural environmental values of shorelands, and provide for the wise use of water and related land resources of the state. St. Louis County Zoning Ordinances, ch. 1003, establish additional floodplain management and manage site activities such as on-site waste disposal.

Shoreland Management Permit (Duluth City Code §51-26 et seq.), as defined by the City of Duluth: Requires a permit for any excavation or grading above the Ordinary High Water Mark within 300 feet of a river. Each alternative will involve some of these activities. The substantive requirements of this permit are found in the ordinance and may govern removal of natural vegetation, grading and filling, placement of roads, sewage and waste disposal, and setbacks.

The Endangered Species Act (16 USC §1531 et seq.) and the Minnesota Endangered, Threatened, Special Concern Species Act (Minn. Rules ch. 6134): Protect threatened and endangered plants and animals and their habitats.

Title 16 USC Chapter 7, Subchapter II §§703 and 712.2. (The Migratory Bird Treaty Act): Protects migratory birds and their ecosystems by specifying the taking, killing, or possessing migratory birds unlawful. Public Law 95-616, an amendment to this act, provides measures to protect identified ecosystems of special importance to migratory birds such as bald eagles against pollution, detrimental alterations, and other environmental degradations.

The MDH has established various fish consumption advisories for the SLR due to the presence of PAHs, PCBs, and RCRA metals in water and sediments.

#### 2.1.3 Action-Specific ARARs and TBCs

The following summarizes the Action-Specific ARARs for the Site. In addition, Occupational Safety and Health Standards (Minn. Rules ch. 5205) for worker health, safety, and training are applicable to remedial actions performed at the Site.

| ARAR/TBC                                                                                     | Citation/Source                                                                                                                                                  | Description/Application                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Waters of the State (both surface and underground)                                           | Minn. Rules ch. 7050 and 7052                                                                                                                                    | Surface water quality during remedy construction.                                                                           |  |  |
| Wetland Conservation<br>Act (WCA)                                                            | Minn. Stat. §§103G.2212373                                                                                                                                       | Protection of wetlands.                                                                                                     |  |  |
| Wetlands<br>Conservation                                                                     | Minn. Rules 8420                                                                                                                                                 | Protection of wetlands, wetland functions for determining public values.                                                    |  |  |
| Floodplain<br>Management Order                                                               | Executive Order 11988 and 40 CFR Part 6, Appendix A                                                                                                              | Regulates remedial action implementation in floodplains.                                                                    |  |  |
| Section 404 Permit<br>and Section 401<br>Certification<br>(Clean Water Act)                  | 33 CFR parts 320 and 323; 33 USC<br>§1341                                                                                                                        | Applies to discharge of dredged or fill material into waters of the United States.                                          |  |  |
| National Pollutant Discharge Elimination System (NPDES)/ State Disposal System (SDS) permits | Clean Water Act 33 USC §1342                                                                                                                                     | Surface water quality requirements for discharges of pollutants to waters of the state.                                     |  |  |
| Section 10 (Rivers and<br>Harbors Act of 1899)                                               | 33 USC 403                                                                                                                                                       | Applies to activities that will obstruct or alter any navigable water of the United States.                                 |  |  |
| Work in Public Waters                                                                        | Minn. Stat. §103G.245                                                                                                                                            | Permit requirements applicable to work in public waters that will change or diminish its course, current, or cross-section. |  |  |
| Public Water<br>Resources                                                                    | Minn. Rules ch. 6115                                                                                                                                             | Water appropriation permitting, standards and criteria for alterations to structure of public water (MDNR).                 |  |  |
| Minnesota Sediment<br>Quality Targets                                                        | Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-dwelling Organisms in Minnesota, MPCA Document Number: tdr-gl-04 | Establishes procedures for potentially bioactive zone (PBAZ) caps and covers.                                               |  |  |

| ARAR/TBC                                                                             | Citation/Source                             | Description/Application                                                                                 |  |
|--------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Western Lake Superior<br>Sanitary District<br>(WLSSD)                                | WLSSD Industrial Pre-Treatment<br>Ordinance | Requirements for any dredge water discharged into public sanitary sewers.                               |  |
| Construction and Use of Public Sewers                                                | Minn. Rules ch. 4715                        | Governs the use of sewers and public water systems if any dredge water is disposed of in public sewers. |  |
| MDNR Invasive<br>Species Management                                                  | Minn. Statutes 84D.02                       | Requirements for sediment transportation if invasive species are present                                |  |
| Solid Waste                                                                          | Minn. Rules ch. 7035                        | Requirements and standards for solid waste facilities.                                                  |  |
| Hazardous Waste                                                                      | Minn. Rules ch. 7045                        | Hazardous waste listing, and generator, transport, and facility standards.                              |  |
| Air Pollution Emissions and Abatement                                                | Minn. Stat. §116.061                        | Duty to notify and abate excessive or abnormal unpermitted air emissions.                               |  |
| Ambient Air Quality Standards                                                        | Minn. Rules ch. 7009                        | Provides air quality standards.                                                                         |  |
| Preventing Particulate<br>Matter From Becoming<br>Airborne and Emission<br>Standards | Minn. Rule parts 7011.0150 and 7011.8010    | Provides measures to control dust and emission standards for hazardous air pollutants.                  |  |
| Noise Pollution Control                                                              | Minn. Rules ch. 7030                        | Noise standards applicable to remedy construction.                                                      |  |

#### **Water Quality**

If any activity associated with the remedial actions results in an unregulated release, in accordance with the Water Pollution Control Act and Minn. Stat. 115.061, Duty to Notify, a notification and recovery of any pollutants discharged to minimize or abate pollution of the waters of the state is required.

In accordance with Minn. Rules ch. 7050, surface water quality standards for the maintenance and preservation of surface water quality during remedy construction, including discharges from treatment/work and stormwater runoff zones, shall be based on surface water quality standards that currently apply to Class 2B and OIRWs, as set forth in Minn. Rules, chs. 7050 and 7052, and to the additional surface water quality standards for the SLR set forth in Minn. Rules ch. 7065. Therefore, if water is discharged directly to the waters on or adjacent to the Site, it shall be treated to a level that meets applicable surface water discharge standards. Groundwater non-degradation and standards for the protection of groundwater during remedy construction are presented in Minn. Rules 7060.

During remediation, the MPCA would consider the areas in which work is performed as "treatment/work zones," to which the surface water quality standards normally applicable to the SLR would temporarily not apply. These treatment/work zones would be physically separated from adjacent waters through the use of engineering controls such as single or multiple silt curtains, inflatable dams, sheet piling, or other measures. During construction of the remedy, any discharges occurring within those controlled treatment/work zones, such as the discharge of capping material during capping operations, the release of contaminants during dredging operations, or runoff from activities on shore, would not be subject to water quality standards. Rather, water quality standards would apply outside of the treatment/work zone, beyond the

outermost engineering control structure where the water from the treatment/work zone is discharged. Other discharges occurring during remedy construction that are not included in a treatment/work zone, including discharges of treated dredge water, and discharges of stormwater runoff from shoreland modifications outside of the treatment/work zones, would also be subject to regulation.

If water is discharged, it would be treated to a level that meets applicable surface water discharge standards. The MPCA water quality standards may apply to these discharges. Final standards would be determined by the MPCA prior to implementation of the remedial actions. In the event that a standard is exceeded, further management practices would likely be required during remedy construction to reduce the amount of suspended contaminants escaping the treatment/work zone.

#### Wetlands, Shoreland, and Floodplain Management

In accordance with Minn. Rules ch. 7050, wetlands at the Site are classified as unlisted wetlands, Class 2B and 3B waters. In accordance with Minn. Rules ch. 8420, compliance with wetland ARARs will involve consultation with the MDNR to determine the category of wetlands present at the Site and any avoidance, mitigation, and replacement that may be necessary. Water quality standards for the maintenance and preservation of surface water quality during remedy construction including discharges from treatment/work and stormwater runoff zones shall be based on surface water quality standards that currently apply to Class 2B and 3B waters and shall comply with Minn. Stat. §§103G.221-.2373. Standards and specifications applicable to shoreland and floodplain management can be found in Executive Order 11988 and 40 CFR Part 6, Appendix A, Minn. Rules ch. 6120.

Minn. Stat. §103G.222 provides that a wetland replacement plan must be approved by the Local Governmental Unit before any Wetland Conservation Act (WCA) wetlands may be drained or filled, unless draining or filling falls within the "De Minimis" exemption or another exemption of Minn. Stat. §103G.2241. WCA wetlands are those wetlands that are not public water wetlands regulated by the MDNR and United States Army Corps of Engineers (USACE). WCA wetlands would be located above the Ordinary High Water Mark. The South St. Louis Soil and Water Conservation District provides additional guidance regarding WCA requirements for the Site at the following website: <a href="http://www.southstlouisswcd.org/wcact.html">http://www.southstlouisswcd.org/wcact.html</a>.

#### **Permits and Certifications**

Possible permits for cleanup activities include the following:

Section 404 Permit (Clean Water Act): Required for discharge of dredged or fill material into waters of the United States. The substantive requirements of this permit shall be met for alternatives that dredge or fill waters of the state. USACE evaluates applications for Section 404 permits. Substantive requirements that may be incorporated within a Section 404 permit for off-site activities can be found in 33 CFR Parts 320 and 323.

Section 401 Certification: The Clean Water Act, 33 USC §1341, requires that any application for a federal permit that may result in a discharge to a navigable water must be accompanied by a certification from the affected state indicating that the discharge will comply with all applicable water quality standards and effluent limitations of the Act. Thus, a Section 401 certification or a 401 certification waiver for remedial action at the Site would be necessary before the USACE may issue a Section 404 permit, and a certification may be necessary before the USACE may issue a Section 10 permit if that permit authorizes a "discharge."

National Pollutant Discharge Elimination System (NPDES; Clean Water Act 33 USC §1342): Discharges of pollutants to waters of the state associated with construction of the selected

remedy would be subject to the requirements applicable to a NPDES permit. Discharges could include the discharge of capping material, the discharge of contaminants released and suspended by dredging operations, the discharge of treated dredge water during dredging operations, and the discharge of stormwater runoff from shoreland modifications. These types of discharges would be subject to the same regulatory standards and controls that would apply under an MPCA permit. In addition, NPDES General Permit number MNG990000 has been required for managing dredged materials; however, this permit has expired and has not been renewed. According to Managing Dredged Materials in the State of Minnesota (MPCA, 2009), an individual NPDES/State Disposal System (SDS) Dredge Materials Management permit may be required. A NPDES Construction Permit and a Stormwater Pollution Prevention Plan are required by the MPCA if more than one acre of land is disturbed by excavation activities.

Section 10 of the Rivers and Harbors Act of 1899 (33 USC 403): A Section 10 permit is required from the USACE for any construction in or over any navigable water, or the excavation or discharge of material into such water, or the accomplishment of any other work affecting the course, location, condition, or capacity of such waters. The substantive requirements that may be incorporated within a Section 10 permit can be found in 33 CFR Parts 320 and 322.

Work in Public Waters (Minn. Stat. §103G.245): A permit from the MDNR is necessary for any work in public waters that will change or diminish its course, current, or cross-section. If an alternative under consideration involves dredging or capping, a public waters permit from the MDNR may be required. The substantive requirements that the MDNR may incorporate within its public waters permit are codified in statute and at Minn. Rules, ch. 6115. These requirements include compensation or mitigation for the detrimental aspects of any major change in the resource. The MDNR permits may require restoration of bathymetry (water depth) and habitat substrate (bottom) as part of the public waters permit. The MDNR would set the specific cover depth and composition requirements.

Additionally, if capping of contaminated sediments is conducted, requirements would include specifications for cap construction. In situ caps constructed for the containment of contaminated sediment must contain an isolation zone (IZ) and a potentially bioactive zone (PBAZ). The IZ is the portion of the cap that is applied directly over the contaminated sediments and is designed to isolate and attenuate the Site contaminants that could potentially be transported upward into the PBAZ at concentrations above the CULs by diffusion or advection transport mechanisms. The PBAZ is the area within the cap above the IZ where significant biological activity may potentially be present. The thickness and material specifications for the IZ and PBAZ should be determined based on pore water transport and attenuation modeling.

Air Emissions and Waste Management Permits: In accordance with Minn. Stat. §116.081, a permit is required for the construction, installation or operation of an emission facility, air contaminant treatment facility, treatment facility, potential air contaminant storage facility, storage facility, or system or facility related to the collection, transportation, storage, processing, or disposal of waste, or any part thereof, unless otherwise exempted by any agency rule now in force or hereinafter adopted, until plans have been submitted to the agency, and a written permit granted by the agency.

On-Site Disposal: The placement of dredged sediment into an on-site confined aquatic disposal (CAD) area and any subsequent seepage from the CAD, if implemented, would be regulated by the MPCA under the requirements applicable to an SDS permit. The legal requirements for an SDS are found in Minn. Stat. §115.07, Minn. Rules, Parts 7065.0100 to 7065.0160 and in other MPCA water quality rules including Minn. Rules chs. 7050 and 7052.

*Discharge into Sewers:* A permit from the Western Lake Superior Sanitary District (WLSSD) will be necessary if any dredge water is discharged into the public sewers. Pretreatment standards that would likely apply can be found at:

http://www.wlssd.duluth.mn.us/pdf/WLSSDPretreatmentOrdinance.pdf.

The permit will also include requirements to ensure that there will be no detrimental effects to their bio-solids program. A WLSSD permit would also represent compliance with Minn. Rule, Part 4715.1600 and the MPCA water rules governing indirect discharges.

*Invasive Species:* A prohibited/regulated invasive species permit will be required to transport sediment to a landfill, if invasive species are present near the proposed work area.

CERCLA provides for waiving of necessary permits for on-site work, provided the work is conducted in compliance with the substantial conditions of such permits. Although the permits themselves may not be required on CERLCA Sites, compliance with the substantial conditions of these identified permits shall be met.

#### **Construction and Use of Public Sewers**

Minn. Rules ch. 4715 governing the use of sewers and public water systems would apply if any water associated with remedial activities is disposed of in public sewers.

#### **Waste Management**

Solid and hazardous waste management requirements and standards can be found in Minn. Rules chs. 7035 and 7045, respectively. USEPA guidance has consistently stated that Superfund remedies involving movement of contaminated material within the area of a Site where such material is already located (sometimes referred to as an AOC) do not create a "waste" that is subject to RCRA (42 USC §§6901 et seq.) or other waste management requirements. Remedy alternatives that require contaminated materials to be moved to an off-site land disposal site are considered to generate waste that must be managed under applicable waste management requirements.

St. Louis County Zoning Ordinances, ch. 1003, establish additional floodplain management and manage site activities such as on-site waste disposal.

#### **Ambient Air Quality Standards**

Air quality standards applicable to releases into the air from cleanup activities include Min. Stat. 116.061, Air Pollution Emissions and Abatement. During remedy construction, activities such as transportation, storage and placement of capping material may result in particulate matter becoming airborne. Minn. Rules ch. 7009 establishes ambient air quality standards for criteria pollutants regulated under the Clean Air Act. Compliance points shall be selected in accordance with Minn. Rules ch. 7009. The ambient air quality standards for particulate matter that apply to remedial actions are found at: <a href="https://www.revisor.mn.gov/rules/?id=7009.0080">https://www.revisor.mn.gov/rules/?id=7009.0080</a>.

Control of the generation of airborne particulate matter during remedy construction is regulated in Minn. Rule part 7011.0150, *Preventing Particulate Matter from Becoming Airborne*, which includes measures to control dust that may be generated during remedy construction activities such as transportation, storage, and placement of capping material, which shall be addressed in the remedial design plan. Minn. Rules part 7011.8010, Site Remediation, incorporates the National Emission Standards for Hazardous Air Pollutants applicable during Site remediation activities

#### **Noise Pollution Control**

Minn. Rules ch. 7030 establishes noise standards for various land uses. Compliance points will be selected in accordance with Minn. Rules ch. 7030. The noise standards that will apply to the selected remedial action can be found at:

https://www.revisor.leg.state.mn.us/rules/?id=7030.0040.

#### 2.1.4 Other Considerations

Other considerations under MERLA set forth the regulatory requirements, RAOs and CULs that must be met by a remedy to meet the legal standard for a remedy under MERLA and the threshold criterion for protection of public health and welfare and the environment. A remedy, as defined under MERLA, must also include any monitoring, maintenance and institutional controls (ICs) and other measures that MPCA determines are reasonably necessary to ensure the protectiveness of the selected remedy over the long term.

It is particularly important to consider the requirements for long-term assurance of protectiveness where the remedy alternatives involve the use of capping or containment to manage contaminated media within the Site. Some requirements may also be necessary to ensure long-term protectiveness of alternatives that involve excavation or dredging and off-site disposal of contaminated soil or sediment.

In addition, MERLA requires the MPCA to consider the planned use of the property where the release of contaminants is located when determining the appropriate standards to be achieved by a remedy.

#### **Long-Term Assurance of Protectiveness**

MERLA requires that a remedy include measures that are reasonably required to ensure the ongoing protectiveness of a remedy once the components of the remedy have been constructed and entered their operational phase. Such measures may include, but are not limited to, ICs and monitoring and maintenance requirements. This section discusses the measures that MPCA determines are reasonably necessary to ensure long-term protectiveness.

#### **Institutional Controls**

Institutional controls are legally enforceable restrictions, conditions or controls on the use of property, groundwater or surface water at a property that are reasonably required to ensure the protectiveness of a remedy or other response actions taken at the Site. Areas of the Site where contaminated media remains in place after remedial construction will be subject to ICs (such as easements and restrictive covenants) that are legally binding on current and future owners of the property to ensure ongoing protection from disturbance of or exposure to the contamination. Restrictions on use may also be required for areas of the Site where contaminated media are treated and/or removed and where some residual contamination may remain.

Minn. Stat. §115B.16, subd. 2, requires an Affidavit Concerning Real Property Contaminated with Hazardous Substances to be recorded with the St. Louis County recorder by the owner of the property. The Uniform Environmental Covenants Act (UECA) and the authority for requiring environmental covenants can be found in Minn. Stat. ch. 114E. This statute requires MPCA approval of environmental covenants (which include restrictive covenants and access) when there is an environmental response project (which includes superfund cleanups) is overseen by the MPCA. Because the Site is not platted, the UECA may not apply and other ICs such as a City Ordinance may be required to prevent anchoring, fishing, dredging, and other activities that may disturb a cap or contaminated sediments left in place.

#### Long-Term Operation and Maintenance, Monitoring, and Contingency Action

On-site containment facilities and capping of impacted media (sediment) or any other alternative that may leave impacted media on-site will require post-construction monitoring, operation and maintenance (O&M), and contingency action plan to ensure that ARARs, RAOs and CULs that apply to the alternative are fully achieved and maintained over time.

General details of the post-construction monitoring, O&M, and contingency action plan requirements would be set forth in the FFS, along with an estimate of the cost to carry out each activity.

#### **Planned Use of Property**

In a provision entitled "Cleanup Standards" (Minn. Stat. §115B.17, subd. 2a), MERLA provides that when MPCA determines the standards to be achieved by response actions to protect public health and welfare and the environment from a release of hazardous substances, the agency must consider the planned use of the property where the release is located. The purpose of this provision of MERLA is to allow the MPCA to select cleanup standards that provide a level of protection that is compatible with the uses of the Site property that can be reasonably foreseen.

#### 2.2 Remedial Action Objectives

The RAOs developed by the MPCA for the Site are:

- Reduce human health risks associated with exposure to COCs through direct contact with sediments, inhalation, and incidental sediment ingestion by reducing sediment concentrations of COCs to protective levels or by eliminating direct contact or exposure potential.
- 2. Minimize or remove exposure to sediment contaminants that bioaccumulate in the food chain and contribute to fish consumption advisories.
- 3. Minimize or remove exposure of the benthic organisms to contaminated sediments above sediment cleanup goals.
- 4. Enhance aquatic habitat, if conditions allow, in a manner that contributes to the removal of BUIs.

The following subsection presents preliminary sediment CULs developed to achieve these RAOs.

#### 2.2.1 Preliminary Sediment Cleanup Levels

The selected remedy should meet the Preliminary CULs and provide protection of ecological and human health. The CULs should also provide cleanup standards consistent with any planned or potential future uses of the Site. The Midpoint SQT for dioxins will serve as the CULs for the Site. The SQTs for dioxins are greater than the SSV. The SSV for dioxins is likely less than ambient concentrations, according to the MDH Guidance (MDH, 2014); therefore, the Midpoint SQT will serve as a reasonable CUL. The following table presents the CULs for the COCs identified in **Section 1.4.3.3**.

| Contaminant | Units     | CUL  | Maximum<br>Concentration<br>Detected |
|-------------|-----------|------|--------------------------------------|
| Dioxins     | ng TEQ/kg | 11.2 | 29                                   |

Notes:

ng TEQ/kg = nanograms toxic equivalency per kilogram

#### 3.0 DEVELOPMENT AND SCREENING OF ALTERNATIVES

#### 3.1 Remedial Technology Identification and Screening Process

Potential technologies for addressing conditions at the Site were identified based upon professional experience of Bay West staff, discussions between Bay West and MPCA staff, and guidance developed for the remediation of contaminated sediment sites (USEPA, 2005; Interstate Technology and Regulatory Council [ITRC], 2014). Information collected during the 2015 RI was used to compile the CSM and identify feasible technologies for the Site.

A qualitative approach was used to screen technologies using a three-part ranking system where each technology was evaluated on effectiveness, implementability, and relative cost:

- Effectiveness was evaluated by the predicted ability of the technology under consideration to ensure long-term protection of human health and the environment while minimizing short-term impacts during implementation, as well as the technology's ability to meet RAOs.
- Implementability was evaluated by considering the technical and administrative feasibility of the technology. Technical feasibility includes the ability to achieve RAOs and the avoidance of creating additional risk during implementation, including the degree of disruption in the project area. Administrative feasibility includes the consideration of permits required for technology implementation, availability of disposal facilities and equipment necessary for the technology, and coordination with applicable agencies and stakeholders.
- Relative costs used for technology screening were based on engineering judgment, rather than detailed estimates. Detailed cost estimates were compiled for each individual alternative, which incorporate technologies meeting screening criteria, and are presented in **Section 3.3**.

**Table 2** presents a summary of the technology screening results. The following sections describe the technologies that were screened using the three-part ranking system.

#### 3.1.1 Institutional Controls

ICs are legally enforceable restrictions, conditions, or controls on the use of property, ground water, or surface water at a contaminated site that are reasonably required to ensure the protectiveness of a remedy or other response actions taken at the Site. If contaminated sediments remain in place after remedial actions are taken, the Site would be subject to ICs (such as easements and restrictive covenants) that are legally binding on current and future owners of the property to ensure ongoing protection from disturbance of or exposure to the contamination. Most remedial alternatives include ICs until long-term monitoring (LTM) indicates that risk reduction has been achieved and the RAOs have been met (ITRC, 2014). The following information obtained from USEPA sediment remediation guidance (USEPA, 2005) details ICs likely appropriate for use at the Site.

Fish consumption advisories are informational devices that are frequently already in place and incorporated into sediment site remedies. Commercial fishing bans are government controls that ban commercial fishing for specific species or sizes of fish or shellfish. Usually, state departments of health are the governmental entities that establish these advisories and bans. An advisory usually consists of informing the public that they should not consume fish from an area, or consume no more than a specified number of fish meals over a specific period of time from a particular area. Sensitive sub-populations or subsistence fishers may be subject to more stringent advisories. Advisories can be publicized through signs at popular fishing locations,

pamphlets, or other educational outreach materials and programs. Consumption advisories are not enforceable controls and their effectiveness can be extremely variable (USEPA, 2005).

Waterway use restrictions may be necessary to ensure the integrity of the alternative for any alternative where subsurface contamination remains in place (e.g., capping, MNR, or an in-water confined disposal site). Examples include restricting boat traffic in an area to establish a no-wake zone, or prohibiting anchoring of vessels. In considering boating restrictions, it is important to determine who can enforce the restrictions, and under what authority and how effective such enforcement has been in the past. In addition, a restriction on easements for installing utilities, such as fiber optic cables, can be an important mechanism to help ensure the overall protectiveness of a remedy (USEPA, 2005).

It may be necessary to work with private parties, state land management agencies, or local governments to implement use restrictions on nearshore areas and adjacent upland properties where contamination remains in place. For example, construction of boat ramps, retaining walls, or marina development can expose subsurface contamination and compromise the long-term effectiveness of a remedy. Where contaminated sediment exceeding CULs is identified in proximity to utility crossings or other infrastructure and temporary or permanent relocation of utilities in support of a dredging remedy may not be feasible or practical, capping may be desirable even though temporary cap disruption may be necessary periodically (USEPA, 2005).

#### 3.1.2 Monitoring

Monitoring is the collection and analysis of data (chemical, physical, and/or biological) over a sufficient period of time and frequency to determine the status and/or trend in one or more environmental parameters or characteristics. Monitoring should not produce a "snapshot in time" measurement, but rather should involve repeated sampling over time in order to define the trends in the parameters of interest relative to clearly defined management objectives. Monitoring is recommended for all types of sediment remedies both during and after remedial action and can be classified as construction monitoring and performance monitoring (also referred to as LTM), respectively. Monitoring should be conducted for a variety of reasons, including: 1) to assess compliance with design and performance standards; 2) to assess short-term remedy performance and effectiveness in meeting sediment CULs; and/or 3) to evaluate long-term remedy effectiveness in achieving RAOs and in reducing human health and/or environmental risk. In addition, monitoring data are usually needed to complete the five-year review process where a review is conducted.

Monitoring activities applicable to the Site could include one or more of the following based on the selected remedy:

- Collection of sediment chemical data to ensure that CULs have been achieved (due to dredging, in situ treatments, or degradation);
- Measurements of cover/cap thicknesses to ensure continued isolation of contaminants;
- Measurement of COC concentrations in cover/cap material to ensure that contaminants are not migrating into or through the cover/cap; and
- Measurement of toxicity to and bioaccumulation of COCs within aquatic organisms such as benthics and fish in order to evaluate reduction trends.

Construction monitoring may also be performed to ensure that contamination or nuisance materials are not released during construction activities. Construction monitoring activities applicable to the Site include one or more of the following:

- Turbidity monitoring to ensure that the off-site release of suspended sediments containing COCs is mitigated during dredging and/or cover/cap placement;
- Air monitoring to ensure that the off-site release of nuisance and/or contaminated dusts is mitigated during construction activities such as the mixing of sediments and amendment materials, hauling over dirt or gravel roadways, and excavation or other intrusive Site work;
- Periodic sampling of treated dredge contact water to mitigate contaminant inputs to water bodies or local sewage systems and to ensure that treated water meets permit or municipality requirements;
- Periodic sampling of dredged materials to ensure that landfill requirements for acceptance are achieved;
- Periodic sampling of imported materials (e.g., cover/cap materials, shoreline restoration materials, etc.) to mitigate impacts to water bodies or upland areas as a result of placement; and
- Pre- and post-construction soil sampling to access impacts of construction activities on lands used during the construction phase.

Both construction and performance monitoring (referred to as LTM) are incorporated into each of the remedial alternatives developed for this FFS.

#### 3.1.3 <u>Monitored Natural Recovery</u>

MNR is defined by the National Research Council as a remediation practice that relies on natural processes to protect the environment and receptors from unacceptable exposures to contaminants. This remedial approach depends on natural processes to decrease chemical contaminants in sediment to acceptable levels within a reasonable time frame. With MNR, contaminated sediments are left in place and monitored for ongoing physical, chemical, and biological processes that transform, immobilize, isolate, or remove contaminants until they no longer pose a risk to receptors. Natural processes that contribute to MNR may include sediment burial, sediment erosion or dispersion, and contaminant sequestration or degradation (for example, precipitation, adsorption, or transformation). These natural processes can reduce exposure to receptors (and thus reduce risk) and contribute to the recovery of the aquatic habitat and the ecological resources that it supports. MNR can be used alone or in combination with active remediation technologies to meet RAOs (ITRC, 2014).

#### 3.1.4 Enhanced Monitored Natural Recovery

Enhanced Monitored Natural Recovery (EMNR) relies on the same natural processes as MNR to decrease chemical contaminants in sediment but includes the application of material or amendments to enhance these natural recovery processes. EMNR can use several technologies including, but not limited to, thin-layer capping and introduction of reactive amendments such as activated carbon (AC). Thin-layer caps (typically up to 1 foot) are often applied as part of an EMNR approach. These caps enhance ongoing natural recovery processes, while minimizing effects on the aquatic environment. Thin-layer caps are not intended to completely isolate the affected sediment, as in a conventional isolation capping remedy. This layer also accelerates the process of physical isolation, which continues over time by natural sediment deposition (ITRC, 2014).

#### 3.1.5 In Situ Treatment

In situ sediment treatment involves applying or mixing of an amendment into sediments. Mixing may be achieved either passively, through natural biological processes such as bioturbation, or actively through mechanical means such as augers. In situ treatment technologies can achieve risk reduction in environmentally sensitive environments such as wetlands and submerged aquatic vegetation habitats, where sediment removal or containment by capping might be harmful. Treatment amendments typically reduce concentrations of freely dissolved chemicals that are available for exposure to organisms or that may be mobilized and transferred from sediment to the overlying water column (ITRC, 2014). The following in situ treatment technologies were screened in this evaluation:

- Immobilization Immobilization treatments add chemicals or cements to reduce the leachability of contaminants. Mechanisms include solidification (encapsulation) or stabilization (chemical or absorptive reactions that convert contaminants to less toxic or mobile forms);
- Enhanced bioremediation Microbial degradation by bacteria or fungi is enhanced by adding materials such as oxygen, nitrate, sulfate, hydrogen, nutrients, or microorganisms to the sediment;
- Oxidation/reduction Chemicals are injected into sediment to act as an oxidant/electron acceptor to facilitate aerobic decomposition of organic matter;
- Chemical oxidation The addition of chemical oxidizers to sediment can cause the rapid and complete chemical destruction of many toxic organic chemicals;
- Phytoremediation Phytoremediation uses plant species to remove, transfer, stabilize, and destroy contaminants in sediment. Generally limited to sediments in shallow water zones and low concentrations; and
- Adsorption Adsorbents can be used as sediment amendments for in situ treatment of contaminants. Sorption of metals and organics can take place simultaneously with a suitable combination of sorbents. Adsorbents or other amendments can be contained in a mat, applied in bulk onto the sediment surface, mixed in the sediment, added as part of a sand cap, or as a layer within a sand cap. When used as a direct sediment amendment, rather than as an amended cap, mixing of amendments by benthic organisms is desired to incorporate the amendment into the sediment. In such cases, mixing may be promoted by injecting the amendment into the sediment with hollow tines or using equipment similar to a rototiller.

#### 3.1.6 Capping

Capping is the process of placing a clean layer of sand, sediments, or other material over contaminated sediments in order to mitigate risk posed by those sediments. The cap may also include geotextiles to aid in layer separation or geotechnical stability, amendments to enhance protectiveness, or additional layers to armor and maintain its integrity or enhance its habitat characteristics.

When amendments are mixed directly into sediments, the resulting remedy is termed "in situ treatment." When these amendments are added to cap material, the remedy is called an "amended cap," and the amendments enhance the performance of the cap material. The same amendment used in the same proportions is generally more effective at isolating contaminants when used in a cap than when placed directly into sediments. The amended cap provides the benefits of capping in addition to the benefits of the treatment amendment (ITRC. 2014).

A cap should consist of at least two parts; an IZ and a PBAZ. The IZ is the portion of the cap that is applied directly over the contaminated sediments and is designed to isolate and attenuate contaminants that could potentially be transported upward into the PBAZ by diffusion or advection transport mechanisms. The PBAZ is the area within the cap above the IZ where biological activity may potentially be present. The PBAZ thickness can be estimated based on the potential organisms (both plant and animal) that may be present or take up residency once the cap is constructed. Contaminant levels should not exceed CULs for COCs throughout the entire thickness of the PBAZ.

### 3.1.7 <u>Dredging and Excavation</u>

Dredging consists of the removal of contaminated sediment from water bodies in order to reduce risks to human health and the environment. Removal is particularly effective for source control (mass removal of hot spots) but potentially less effective for overall risk reduction because of resuspension and residual contamination. The three methods of contaminated sediment removal are mechanical dredging, hydraulic dredging, and excavation. As with any type of removal operation, additional technologies are required to appropriately handle the removed sediment. Dredged material handling technologies may involve transport, dewatering, treatment, and or disposal of sediment (ITRC, 2014). Mechanical dredging, hydraulic dredging, and excavation were screened independently in this evaluation.

After removal, the contaminated sediment can be treated or disposed of in a controlled setting, such as an off-site landfill or other treatment, storage, and disposal facility, an on-site aquatic or terrestrial confined disposal facility (CDF), or a facility that converts the sediment to a reusable product. Disposal methods were evaluated independently from dredging and excavation and are described further in **Section 3.1.9**.

### 3.1.8 <u>Dewatering</u>

Dewatering may be necessary to prepare dredged materials for disposal. Dewatering reduces the water content and hence the volume and weight of the disposed sediment. If the material is to be reused or further treated, dewatering also leads to reduced transportation cost and improves handling properties. The nature and extent of dewatering needed depends on the sediment characteristics and the type of dredging, transport, and disposal methods planned for the removed material (ITRC, 2014). Dewatering technologies may rely upon gravity draining and evaporation processes (e.g., spreading and geotextile bags), mechanical processes (e.g., filter presses), and chemical conditioning (e.g., polymer additions and stabilization additives). The type of dewatering technology selected for use may depend upon the amount of space available for dewatering, the distance of the dewatering space from dredging operations, discharge options for treated dredge contact water, project scope, and cost of implementing the technology.

#### 3.1.9 Disposal

Disposal of dredged or excavated sediment is the placement of materials into a controlled site or facility to permanently contain contaminants within the sediment. Management is achieved through the placement of materials into facilities such as sanitary landfills, hazardous material landfills, CDFs, or CAD facilities. Off-site landfills are generally used for dredged material disposal when on-site disposal is not feasible or when off-site disposal is more cost effective.

Landfills have been used for sediment volumes of over 1 million cubic yards. Typically, some type of on-site or near-site disposal facility is used at sites where dredged material volumes greater than 200,000 cubic yards are generated. Landfilling is also favored at smaller or moderately sized sites, where transportation is feasible. The associated hazards and cost of transporting and landfilling large volumes of sediment make this disposal method somewhat

less desirable than other solutions. Other considerations, such as public and stakeholder acceptance, lack of access to suitable on-site land- or water-based disposal facilities, and proximity to an existing off-site landfill may support the landfilling option.

CDFs are constructed to isolate dredged sediment from the surrounding environment. CDFs can be located upland, near shore, or in the water (as an island). Material staging or a temporary CDF may be necessary for dewatering dredged sediment. CDFs represent a common disposal method and typically are built for larger volume sites (200,000 cubic yards or more of sediment).

The CAD method deposits dredged material within a nearby body of water. A pre-existing depression within the sediment surface is preferred, though one can be created if necessary. Dredged sediment is deposited in the depression and capped with clean material. This process carries with it the same risks associated with using capping as a remedy. The goal of moving the contaminated sediment to the aquatic disposal site is to reduce the risk of exposure to contaminated materials (ITRC, 2014).

Disposal at landfills, CDFs, and CADs were screened independently in this evaluation.

### 3.1.10 Remedial Technology Screening Results

**Table 2** documents the technology screening process and results. The following remedial technologies were determined to be the most effective, implementable, and cost-effective and were retained for assembling the alternatives described in **Section 3.3**:

- ICs;
- Monitoring;
- Enhanced Monitored Natural Recovery;
- In Situ Treatment:
- Dredging;
- Gravity and Chemical Conditioning Dewatering; and
- Landfill Disposal.

### 3.2 Implementation Assumptions

This section describes important factors and assumptions for implementing one or more of the alternatives presented in **Section 3.3**.

### 3.2.1 Staging Area Identification

Implementation of alternatives involving placement of sand and/or amendment materials would require identification and construction of a staging area in which to receive and stockpile imported materials and for loading of materials into barges for transport to the Site. Based on conversations between Bay West and the Duluth Seaway Port Authority, City of Duluth, and MPCA, the most likely staging area location would be Hallett Dock #7. Hallett Dock #7 is located approximately 7 miles downriver of the Site and is located adjacent to part of the Interlake/Duluth Tar (IDT) Superfund site. It is currently being considered for purchase by the Duluth Seaway Port Authority and, therefore, could serve as a staging facility for future remediation projects throughout the Duluth/Superior Harbor. Although previous remedial activities have resulted in capping of sediments between Hallett Dock #7 and lands to the west, the end of the dock is nearly 500 feet in width and could potentially be used as a mooring location for sediment/cap material transport barges operating between Hallett Dock #7 and remediation sites (Sharrow, 2016).

Hallett Dock #7 is not currently used for barge mooring, berthing, or as a staging area, but has served similar purposes in the past. The facilities are currently in fair to poor condition and may require repairs before use. Inspection of the dock walls and their suitability for use should be conducted prior to the design phase. For the purposes of this FFS, the dock end wall was assumed to be in acceptable condition for mooring barges and the dock suitable for use as a staging area for all alternatives. Satellite imagery indicates the presence of a large paved area at the end of Hallett Dock #7, which is appropriately sized for stockpiling materials.

### 3.2.2 Sediment Dewatering Area Identification

Implementation of an alternative involving dredging would require identification and construction of a sediment dewatering area in which to stage dredged sediments until they are sufficiently dewatered and can be excavated and sent to a landfill for disposal.

The most suitable geographic location in which to construct a dewatering pad is the U.S. Steel site located immediately north/northwest of the Site. The U.S. Steel site is currently abandoned industrial property and contains forested and open lands sufficiently sized for construction of a dewatering pad. The U.S. Steel site is currently serving this purpose for ongoing dredging of sediments from Radio Tower Bay, which is located south of the Site.

It was assumed for the purposes of this FFS that construction of a dewatering pad could be conducted on U.S. Steel property. Costs for construction of a dewatering pad were included within the cost analyses; however, use of the existing dewatering basin may be a possibility if the Radio Tower Bay sediments are dewatered, excavated, and hauled off-site prior to commencement of remedial activities at the Site.

### 3.3 Development of Alternatives

This section describes the alternatives developed for the Site. The alternatives were developed using the selected remedial technologies discussed in **Section 3.1**, Site data collected during the 2015 RI/2017 DGI, and the CSM. Site sediment chemical data was used to estimate the depth and spatial extent of the remedial areas for dioxins (the COCs) as presented in **Figure 5**. A summary of the proposed alternatives is presented in **Table 3**. Calculations used to determine volumes, rates, and time frames related to remedy construction are presented in Table 1 in **Appendix B**. Assumptions made to compile cost estimates were incorporated into a Technical Analysis and are also included in **Appendix B**.

The total present value costs for alternatives presented within this FFS should be considered to be rough order of magnitude (ROM) costs. Based on the Association for the Advancement of Cost Engineering ROM classification chart, estimates presented in this FFS are considered Class 4. Class 4 estimates are considered Schematic Designs; 15 to 20% of the level of effort required to have a complete estimate has been done. Actual cost of the project could be 50% greater or 30% less (+50/-30) than the estimates developed thus far. ROM cost estimates for the FSS were compiled using a variety of sources. These sources include construction cost data from RSMeans estimating software for open shop pricing in Duluth, Minnesota; current Bay West and state contract rates for labor, equipment, and sample analysis; personal communication with vendors; historic cost data from projects similar in size and scope; other FFS documents, presentations, or technical papers that provided estimated or real construction cost data; and available online vendor pricing of materials. Preset value calculations are included in Table 5 in **Appendix B**.

### 3.3.1 Alternative 1: No Action

The NCP at Title 40 CFR provides that a No Action alternative should be considered at every site. A No Action alternative should reflect the site conditions described in the baseline risk

assessment and remedial investigation. The No Action Alternative included within this FFS does not include any treatment or engineering controls, ICs, or monitoring. There are no costs associated with the No Action alternative. The No Action alternative could potentially be a viable alternative if a future toxicity/bioaccumulation study indicates that concentrations of Site COCs in sediments pose no significant detrimental effects to aquatic life (i.e., benthics and fish).

### 3.3.2 Alternative 2: Enhanced Monitored Natural Recovery with Broadcasted Amendment

This alternative would consist of broadcasting an amendment material over sediments with COC concentrations exceeding the Midpoint SQT (i.e., the CULs). Areas of the Site exceeding the CULs are presented in **Figure 7** and equal approximately 40 acres. The objective of applying an amendment material to in situ sediments at the Site is to reduce availability of Site COCs in sediments and sediment pore water to aquatic organisms and thereby limit the exposure and affects to the organisms, and transfer of chemical contaminants to higher trophic organisms. This alternative was developed to minimize intrusive remedial action construction activities within wetland areas already established at the Site.

ICs would be implemented and LTM would commence following application of the selected amendment to remedial areas. The major components of Alternative 2 are described in the following sections.

### 3.3.2.1 Amendment Selection and Application Rate

This alternative consists of applying a thin layer of amendment material directly on top of in situ contaminated sediments. It is anticipated that the amendment material would be mixed into the underlying sediments over time through natural bioturbation processes caused by burrowing organisms, larger animal life, and rooting plants; therefore, this alternative is intended to reduce contaminant availability rather than provide isolation from contaminants as in a traditional capping scenario. The chosen amendment material would reduce exposure of aquatic life to COCs through sequestration of COCs in sediments and sediment pore water. Selection of an amendment material would be conducted during the design phase and would likely be selected based on results of bench and/or pilot scale testing. Potential amendment materials for consideration include permeable Sedimite<sup>TM</sup>, Organoclay<sup>TM</sup>, phosphate additives (e.g., apatite), bauxite, biopolymers, and zeolite (USEPA, 2013). Any potential negative effects of these amendments, such as the potential for increased levels of eutrophication for phosphate additives, should also be considered during amendment selection. For the purposes of this FFS, the selected amendment material will be Sedimite<sup>TM</sup>.

The chosen application rate (i.e., thickness) of amendment to be applied should be capable of sequestering COCs in sediments and sediment pore water for an indefinite period of time, assuming that no ongoing source of contamination is present. It was assumed that a 0.01-meter layer of amendment material would be applied to in situ sediments strictly for cost analysis purposes. The final amendment application rate would be determined during the design phase and may largely depend upon COC sediment concentrations, depth of contamination, and the presence or absence of groundwater upwelling.

Implementation of this alternative assumes that approximately 2,073 cubic yards of amendment material would be broadcasted over a 40-acre area at an average thickness of 0.01 meter.

#### 3.3.2.2 Long-Term Monitoring

LTM would commence after remedy implementation and would include collection of Site data to: monitor mixing of the amendment material throughout the sediment column over time; monitor sequestration of Site COCs in sediments; monitor reduction trends in sediment toxicity to

benthic organisms and COC bioaccumulation in benthic and fish tissue; and to ensure that ICs continue to be enforced as long as COCs remain in sediments above the CUL.

LTM data collection would be conducted periodically for an indefinite period of time or until concentrations of COCs in sediments attenuate to levels below the CULs and are deemed protective of human health and the environment. For the purposes of this FFS, it was assumed that data collection would occur once every 5 years for a period of 30 years. If attenuation of COC concentrations to levels below the CULs does not occur after 30 years then monitoring will likely continue.

Data collection will consist of the following:

- Collection of sediment cores or sediment profile imagery to observe mixing of amendment material throughout the sediment column;
- Collection of sediment samples to be analyzed for Site COCs;
- Collection of sediment samples for benthic toxicity and bioaccumulation analysis;
- Collection of fish tissue samples for bioaccumulation analysis; and
- Review of IC enforcement status.

Potential monitoring locations are presented in **Figure 7**.

#### 3.3.2.3 Institutional Controls

ICs applicable to this alternative include those that would protect against direct human contact with contaminated sediments and ingestion of contaminants through fish consumption. The MDH currently communicates fish consumption guidelines for the lakes and rivers of Minnesota. Advisories for consumption of fish within the SLR and below the Fond du Lac Dam are in place for 11 species of fish due to the presence of mercury and PCBs within fish tissue. No specific advisories are in place related to COCs. It is currently unknown whether the meal advice provided within the fish consumption guidelines is protective for these compounds; therefore, the applicability of meal guidelines to COCs would require investigation. Postings warning of contaminated sediments would be posted near potential Site access locations and would be modified according to changes in Site use (e.g., placed along walking/biking paths if developed in the future).

### 3.3.2.4 Cost

Calculations used to determine unit rate costs for each of the alternatives are presented in Table 2 in **Appendix B**. Other project costs determined on a lump sum basis are presented in Table 3 in **Appendix B**. The monitoring and evaluation program and associated costs developed for each alternative are presented in Table 4 in **Appendix B**. The costs associated with each alternative are presented as Class 4 (+50/-30) estimates and are appropriate for remedial design alternative evaluations only.

The estimated total present value cost for Alternative 2 is \$6,800,000. **Table 4** presents a breakdown of the estimated costs associated with Alternative 2.

### 3.3.3 Alternative 3: Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover

This alternative would consist of constructing a 0.15-meter (0.5-foot) amended cover over sediments with COC concentrations exceeding the CULs (**Figure 8**). The objective of this alternative is to reduce the availability of Site COCs to aquatic organisms through addition of an amendment material and subsequent sequestration of contaminants as discussed for Alternative 2, and to provide some immediate isolation of contaminated sediments through

construction of 0.15 meters of clean substrate. Construction of the amended cover would take place in both open water and wetland areas of the Site.

ICs would be implemented and LTM would commence following construction of the thin-layer amended cover. The major components of Alternative 3 are described in the following sections.

#### 3.3.3.1 Cover Design

It was assumed for the purposes of this FFS that a 0.15-meter amended cover would be constructed and that the cover would consist of sand with 5 percent carbon amendment by weight. It is anticipated that a single layer of a sand/amendment mix would be constructed rather than separate amendment and sand layers. Amendments mixed into and applied with soil or sand may provide better dispersion, uniformity, placement controls, and contact time when the required quantity of amendment is small, versus bulk placement of amendment materials (USEPA, 2013). The assumed cover thickness and amendment ratio was selected strictly for the purposes of the cost analysis and should be refined during the design phase. The chosen application rate (i.e., mix ratio) of amendment to be applied should be capable of sequestering COCs migrating upward through the cover material and should account for mixing of cover material into underlying sediments over time through bioturbation processes. The chosen amendment material would reduce exposure of aquatic life to COCs through sequestration of COCs in sediments and sediment pore water, as discussed for Alternative 2, and should be selected during the design phase based on bench or pilot scale testing.

Implementation of this alternative assumes that approximately 2,246 cubic yards of amendment material and 31,060 cubic yards of sand would be mixed and applied over a 40-acre area at an average thickness of 0.15 meter. The need for burning, mowing, or laying down of vegetation in wetland areas prior to construction of the cover should be determined during the design phase.

### 3.3.3.2 Long-Term Monitoring

LTM would commence after remedy implementation and would include collection of Site data to: monitor concentrations of COCs in cover material; monitor mixing of cover materials throughout the sediment column over time; monitor attenuation and/or sequestration of Site COCs in sediments; monitor reduction trends in sediment toxicity to benthic organisms and COC bioaccumulation in benthic and fish tissue; and to ensure that ICs continue to be enforced as long as COCs remain in sediments above the CUL.

LTM data collection would be conducted periodically for an indefinite period of time or until concentrations of COCs in sediments attenuate to levels below the CULs and are deemed protective of human health and the environment. For the purposes of this FFS, it was assumed that data collection would occur once every 5 years for a period of 30 years. If attenuation of COC concentrations to levels below the CULs does not occur after 30 years then monitoring will likely continue.

Data collection will consist of the following:

- Collection of cover samples (0 to 0.15 meter bss) to be analyzed for Site COCs;
- Collection of sediment samples below 0.15 meter bss to be analyzed for Site COCs;
- Collection of sediment cores or sediment profile imagery to observe mixing of cover materials throughout the sediment column;
- Collection of sediment samples for benthic toxicity and bioaccumulation analysis;
- Collection of fish tissue samples for bioaccumulation analysis; and
- Review of IC enforcement status.

Potential monitoring locations are presented in Figure 8.

#### 3.3.3.3 Institutional Controls

ICs applicable to Alternative 3 are the same as presented in **Section 3.3.2.3** for Alternative 2. No ICs are necessary for maintenance of the cover as cover material is anticipated to mix with underlying sediments; any intrusive activities conducted at the Site in the future would likely serve to further mix cover materials with underlying sediments.

#### 3.3.3.4 Cost

Calculations used to determine unit rate costs for each of the alternatives are presented in Table 2 in **Appendix B**. Other project costs determined on a lump sum basis are presented in Table 3 in **Appendix B**. The monitoring and evaluation program and associated costs developed for each alternative are presented in Table 4 in **Appendix B**. The costs associated with each alternative are presented as Class 4 (+50/-30) estimates and are appropriate for remedial design alternative evaluations only.

The estimated total present value cost for Alternative 3 is \$13,800,000. **Table 5** presents a breakdown of the estimated costs associated with Alternative 3.

### 3.3.4 Alternative 4: Dredging with Wetland Restoration

This alternative would consist of complete removal of all sediments with COC concentrations exceeding the CULs. Removal of contaminated sediments would mitigate exposure of aquatic and human receptors to sediment contaminants, thus allowing for achievement of RAOs. The dredged sediments would be slurried and pumped via pipeline to a sediment dewatering area, stabilized over a period of several months, excavated, loaded onto trucks, and disposed of at an off-site landfill. Dredging would take place in both open water and wetland areas of the Site. Following sediment removal, a sand cover would be placed to reduce the surface concentration of dredge residuals through mixing of the upper sediment layer and to restore wetland areas. ICs and a LTM program would not be implemented following completion of remedy construction if complete removal of contaminated sediments is achieved. Complete removal was assumed for the purposes of this FFS and, therefore, IC/LTM costs are not incorporated into the cost analysis.

The major components of Alternative 4 are described in the following sections.

### 3.3.4.1 Dredging and Sand Cover Implementation

A dredging alternative would include removal of all sediments with COC concentrations exceeding the CUL. Areas of the Site exceeding the CUL are presented in **Figure 9** and equal approximately 40 acres. Dredging was assumed to be conducted in the 32-acre open water portions of the Site down to 0.5 meter (1.6 feet) bss – the average maximum depth of observed sediment contamination in the open water portion of the Site – for purposes of the cost analysis. Dredging was assumed to be conducted in 8-acre wetland portions of the Site down to 0.15 meter (0.5 feet) bss – the average maximum depth of observed sediment contamination in the wetland portion of the Site – for purposes of the cost analysis. The total volume of in situ sediments requiring removal is estimated to be 91,000 cubic yards. Over-dredging of sediments was assumed as a means of increasing dredge efficiency and reducing the mass of dredge residuals remaining after dredging completion. A 0.30 meter (1 foot) over-dredge was assumed, which would increase the total dredge volume to approximately 156,000 cubic yards.

A 0.15-meter (6-inch) sand cover would be constructed in previously dredged open water areas of the Site to manage dredge residuals and to improve benthic habitat. A sand cover would be constructed in previously dredged wetland areas to pre-dredge elevations; therefore, 0.46 meters (1.5 feet) of sand would to be placed to restore wetland areas following dredging. If restoring wetlands to pre-dredge elevations is not necessary then the amount of sand to be

placed in wetland areas could be reduced. Final cover specifications would be determined during the design phase. The total volume of sand required to construct the cover is estimated at 45,700 cubic yards. Wetland plantings would be conducted following construction of the sand cover to restore wetland areas.

Implementation of a dredge and cover alternative would require access to properties in which to stage materials as described in **Section 3.1.1** and for construction of a sediment dewatering area as described in **Section 3.2.2**. Wetland areas that comprise the outer boundaries of the Site to the north, west, and south limit the potential areas in which these support facilities can be constructed. A railroad embankment that defines the Site to the east limits the ease of transferring materials between the Site and Hallett Dock #7, a potential material staging area and/or sediment dewatering area. It was assumed for the purposes of this FFS that sediments would be staged (i.e., dewatered and staged until excavation and disposal) at the U.S. Steel site located immediately adjacent to and north/northwest of the Site. The off-Site location of the sediment dewatering area necessitates that sediments be hydraulically dredged or mechanically dredged and slurried, and subsequently pumped to the dewatering area.

Hydraulic pumping of sediments often results in a solids content of less than 5% and large flow rates for incoming slurry; therefore, a large volume of slurry would require dewatering and large volumes of dredge contact water would require "handling" and likely treatment as well prior to being discharged. It was assumed for the purposes of the cost analysis that geotextile bags would be used for sediment dewatering and costs to construct a sediment dewatering pad to stage the geotextile bags, sump, and water treatment plant were incorporated into the cost analysis. Discharge options for treated dredge contact water could include discharging to the WLSSD sanitary sewer or back into the SLR. The selected discharge location would determine the extent of treatment required to meet acceptance or permit requirements. Discharge location and treatment method can have a significant effect on total project cost and should be investigated further during the design phase.

The disposal option evaluated for alternatives involving dredging is off-site landfill disposal. It is assumed that sediments dredged from the Site will be classified as non-hazardous based on historic sample concentrations. Potential off-site landfills evaluated for this FFS include Vonco V Waste Management Campus located at 1100 West Gary Street in Duluth, Minnesota (approximately 2 miles northwest of the Site) and Shamrock Environmental Landfill located at 761 Highway 45 in Cloquet, Minnesota (approximately 13 miles west of the Site).

ICs and a LTM program would not be implemented following completion of remedy construction if complete removal of contaminated sediments is achieved. Complete removal was assumed for the purposes of this FFS and, therefore, IC/LTM costs are not incorporated into the cost analysis.

### 3.3.4.2 Cost

Calculations used to determine unit rate costs for each of the alternatives are presented in Table 2 in **Appendix B**. Other project costs determined on a lump sum basis are presented in Table 3 in **Appendix B**. The costs associated with each alternative are presented as Class 4 (+50/-30) estimates and are appropriate for remedial design alternative evaluations only.

The estimated total present value cost for Alternative 4 is \$29,252,000. **Table 6** presents a breakdown of the estimated costs associated with Alternative 4.

Dewatering of hydraulically pumped sediments and subsequent treatment of dredge contact water is the single largest cost for Alternative 4 and totals over \$6,000,000. Costs related to sediment dewatering and treatment of dredge contact water is based on professional experience of Bay West staff and is considered an "all-in" value consisting of mob/demob,

material procurement, material disposal, labor, and equipment costs. Due to the estimated treatment volume, each \$10 in the per cubic yard cost of dewatering and treatment increases or decreases overall construction costs by approximately \$2,000,000. Contingency, design, and project management costs were calculated on a percentage basis of total construction costs and, therefore, the impact is amplified. Further analysis of sediments, permit requirements, options and sizes of available staging areas, and analysis of dewatering technologies appropriate for available staging areas will be required to refine dewatering and treatment costs.

# 3.3.5 <u>Alternative 5: Dredge Open Water Areas/Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover in Wetland Areas</u>

This alternative presents a hybrid approach utilizing dredging elements from Alternative 4 and EMNR elements from Alternative 3. This alternative would consist of complete removal of all sediments with COC concentrations exceeding the CULs, as was proposed for Alternative 4, in open water areas of the Site. Removal of contaminated sediments would mitigate exposure of aquatic and human receptors to sediment contaminants, thus allowing for achievement of RAOs in open water areas. Sediment removal would not be conducted within wetland areas in order to minimize intrusive construction activities. Instead, an EMNR approach would be utilized within wetland areas and would consist of constructing a 0.15-meter amended cover on top of the sediment surface, as was proposed for Alternative 3. Construction of an amended thin-layer cover would allow for sequestration of sediment contaminants as cover material mixes into in situ sediments or as groundwater upwelling forces contaminants into the cover. The cover could also provide some immediate isolation of contaminated sediments through placement of 0.15 meter of clean substrate.

### 3.3.5.1 Dredging and Enhanced Monitored Natural Recovery Implementation

The dredging element of this alternative would include removal of all sediments with COC concentrations exceeding the CUL in open water areas of the Site only. Open water areas of the Site with sediments exceeding the CUL are presented in **Figure 10** and equal approximately 32 acres. Dredging was assumed to be conducted down to 0.5 meter (1.6 feet) bss – the average maximum depth of observed sediment contamination across the Site – for purposes of the cost analysis. The total volume of in situ sediments requiring removal from open water areas is estimated to be 84,000 cubic yards. Over-dredging of sediments was assumed as a means of increasing dredge efficiency and reducing the mass of dredge residuals remaining after dredging completion. A 0.30 meter (1 foot) over-dredge was assumed, which would increase the total dredge volume to approximately 136,000 cubic yards. Following dredging, a 0.15-meter (6-inch) sand cover would be constructed in previously dredged open water areas of the Site to manage dredge residuals and to improve benthic habitat. Construction of a 0.15-meter cover over 32 acres would require 25,000 cubic yards of sand.

Dredged sediments would be handled, dewatered, excavated, and disposed of in the same manner as described for Alternative 4.

The thin-layer amended cover element of this alternative would include construction of a 0.15-meter amended cover over wetland areas with sediment concentrations of COCs exceeding the CUL. Wetland areas of the Site with sediments exceeding the CUL are presented in **Figure 10** and equal approximately 8 acres. The thin-layer cover was assumed to consist of sand with 5 percent carbon amendment by weight and mixed prior to placement rather than constructed using separate amendment and sand layers. Construction of such a sand cover in wetland areas of the Site would require approximately 266 cubic yards each of amendment and 6,300 cubic yards of sand materials. The final cover design and amendment application rate would be determined during the design phase, as discussed in **Section 3.3.3.1** for Alternative 3.

### 3.3.5.2 Long-Term Monitoring

LTM would commence after remedy implementation and would include collection of Site data within wetland areas only. No LTM activities would be conducted within dredged areas if complete removal of contaminated sediments is achieved, which was assumed for the purposes of this FFS. LTM data will be collected within wetland areas as described in **Section 3.3.3.2** for Alternative 3. Potential monitoring locations are presented in **Figure 10**.

#### 3.3.5.3 Cost

Calculations used to determine unit rate costs for each of the alternatives are presented in Table 2 in **Appendix B**. Other project costs determined on a lump sum basis are presented in Table 3 in **Appendix B**. The costs associated with each alternative are presented as Class 4 (+50/-30) estimates and are appropriate for remedial design alternative evaluations only.

The estimated total present value cost for Alternative 5 is \$28,594,000. **Table 7** presents a breakdown of the estimated costs associated with Alternative 5.

### 4.0 REMEDY SELECTION CRITERIA

The alternatives were evaluated and compared using the NCP remedy selection criteria outlined below and in general accordance with USEPA guidelines for feasibility studies (USEPA, 1990). The NCP remedy selection criteria are divided into three groups based on the function of the criteria in remedy selection. The NCP definitions of each criterion are included below. Green Sustainable Remediation (GSR) criteria were also evaluated during this FFS and are included as a fourth group of criteria. Additional detail may be added from MPCA and/or USEPA guidance where appropriate.

### 4.1 Threshold Criteria

The Threshold Criteria relate to statutory requirements that each alternative must satisfy in order to be eligible for selection and include the following:

### 4.1.1 Overall Protection of Human Health and the Environment

Alternatives shall be assessed to determine whether they can adequately protect human health and the environment, in both the short- and long-term, from unacceptable risks posed by hazardous substances, pollutants, or contaminants present at the Site by eliminating, reducing, or controlling exposures to levels established during development of remediation goals. Overall protection of human health and the environment draws on the assessment of other evaluation criteria, especially long-term effectiveness and permanence, short-term effectiveness, and compliance with ARARs.

### 4.1.2 Compliance with Applicable or Relevant and Appropriate Requirements

The alternatives shall be assessed to determine whether they attain applicable or relevant and appropriate requirements under federal environmental laws and state environmental or facility citing laws or provide grounds for invoking a waiver.

### 4.2 Primary Balancing Criteria

The Primary Balancing Criteria are the technical criteria upon which the detailed analysis is primarily based and include the following.

### 4.2.1 Long-Term Effectiveness and Permanence

Alternatives shall be assessed for the long-term effectiveness and permanence they afford, along with the degree of certainty that the alternative will prove successful. Factors that shall be considered, as appropriate, include the following:

- 1. Magnitude of residual risk remaining from untreated waste or treatment residuals remaining at the conclusion of the remedial activities. The characteristics of the residual should be considered to the degree that they remain hazardous, taking into account their volume, toxicity, mobility, and propensity to bioaccumulate.
- 2. Adequacy and reliability of controls, such as containment systems and ICs, necessary to manage treatment residuals and untreated waste. This factor addresses, in particular, the uncertainties associated with land disposal for providing long-term protection from residuals; the assessment of the potential need to replace technical components of the alternative, such as a cap, a slurry wall, or a treatment system; and the potential exposure pathways and risks posted should the remedial action need replacement.

### 4.2.2 Reduction of Toxicity, Mobility, or Volume Through Treatment

The degree to which alternatives employ recycling or treatment that reduces toxicity, mobility, or volume shall be assessed, including how treatment is used to address the principal threats posed by the Site. Factors that shall be considered, as appropriate, include the following:

- 1. The treatment or recycling processes the alternatives employ and materials they will treat:
- 2. The amount of hazardous substances, pollutants, or contaminants that will be destroyed, treated or recycled;
- 3. The degree of expected reduction in toxicity, mobility, or volume of the waste due to treatment or recycling and the specification of which reductions(s) are occurring;
- 4. The degree to which the treatment is irreversible;
- 5. The type and quantity of residuals that will remain following treatment, considering the persistence, toxicity, mobility, and propensity to bioaccumulate of such hazardous substances and their constituents; and
- 6. The degree to which treatment reduces the inherent hazards posed by principal threats at the Site.

### 4.2.3 Short-Term Effectiveness

The short-term impacts of alternatives shall be assessed considering the following:

- 1. Short-term risks that might be posed to the community during implementation of an alternative;
- 2. Potential impacts on workers during remedial action and the effectiveness and reliability of protective measures;
- 3. Potential environmental impacts of the remedial action and the effectiveness and reliability of mitigating measures during implementation; and
- 4. Time until protection is achieved.

#### 4.2.4 Implementability

The ease or difficulty of implementing the alternatives shall be assessed by considering the following types of factors, as appropriate:

- Technical feasibility, including technical difficulties and unknowns associated with the construction and operation of a technology, the reliability of the technology, ease of undertaking additional remedial actions, and the ability to monitor the effectiveness of the remedy;
- 2. Administrative feasibility, including activities needed to coordinate with other offices and agencies and the ability and time required to obtain any necessary approvals and permits from other agencies (for off-site actions); and
- Availability of services and materials, including the availability of adequate off-site treatment, storage capacity, and disposal capacity and services; the availability of necessary equipment and specialists, and provisions to ensure any necessary additional resources; the availability of services and materials; and the availability of prospective technologies.

### 4.2.5 <u>Costs</u>

The types of costs that shall be assessed include the following:

- 1. Capital costs, including both direct and indirect costs;
- 2. Annual O&M costs; and
- 3. Net present value of capital and O&M costs.

The USEPA guidance document *A Guide to Developing and Documenting Cost Estimates During the Feasibility Study* (USEPA, 2000) was used to develop cost estimates presented in this FFS. The cost estimates developed for this FFS are primarily for the purpose of comparing remedial alternatives during the remedy selection process, not for establishing project budgets. As previously described, cost estimates are considered Class 4 estimates, Schematic Design.

### 4.3 Modifying Criteria

The third group is made up of the Modifying Criteria specified below. These last two criteria are assessed formally after the public comment period, although to the extent that they are known will be factored into the identification of the preferred alternative.

### 4.3.1 State/Support Agency Acceptance

Assessment of state/agency concerns may not be completed until comments on this FFS are received, but may be discussed, to the extent possible, in the document issued for public comment (FFS or proposed plan). The state/agency concerns that shall be assessed include the following:

- 1. The state's/agency's position and key concerns related to the preferred alternative and other alternatives; and
- 2. State/agency comments on ARARs or the proposed use of waivers.

### 4.3.2 Community Acceptance

This assessment includes determining which components of the alternatives interested persons in the community support, have reservations about, or oppose. This assessment may not be completed until comments on the document submitted for public review are received.

#### 4.4 Green Sustainable Remediation

The last group is made up of the GSR criteria specified below. There are six criteria included with this analysis, which are then summarized to provide each alternative with an overall GSR rating. The six GSR criteria evaluated with this FFS include the following:

- Greenhouse Gas (GHG) Emissions;
- Toxic Chemical Usage and Disposal;
- Energy Consumption;
- Use of Alternative Fuels;
- · Water Consumption; and
- Waste Generation.

### 5.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

The purpose of the comparative analysis is to identify and compare advantages and disadvantages of each evaluated alternative relative to one another with respect to remedy selection criteria presented in **Section 4.0** in order to determine which of the alternatives best meets those criteria. The comparative analysis is documented in this section and summarized in **Table 8** and **Table 9**. **Table 10** presents a numerical comparison of the evaluated alternatives.

### 5.1 Threshold Criteria

### 5.1.1 Overall Protection of Human Health and the Environment

Only those alternatives that would meet the threshold criteria of providing overall protection of human health and the environment were carried forward with the comparative analysis. Alternative 1 would not meet the threshold criteria, but was carried forward as it is required for analysis under the NCP. Alternatives 2, 3, 4, and 5 would adequately protect human health and the environment from unacceptable risks posed by hazardous substances, pollutants, or contaminants present at the Site; however, contaminated sediment would remain in place under Alternatives 2, 3, and 5 requiring monitoring to ensure long-term effectiveness. Alternative 4 would provide the highest level of protection, since contaminated sediments would be removed from the aquatic environment.

### 5.1.2 Compliance with Applicable or Relevant and Appropriate Requirements

Only alternatives that meet threshold criteria were carried forward, as stated previously. Alternative 1 does not meet the threshold criteria, but was carried forward as it is required for analysis under the NCP. Alternatives 2, 3, 4, and 5 comply with the ARARs identified in **Section 2**.

### 5.2 Balancing Criteria

### 5.2.1 Long-Term Effectiveness and Permanence

Alternative 1 is not effective in the long-term or permanent. Alternatives 2, 3, 4, and 5 are effective in the long-term; however, contaminated sediment would remain in place under Alternatives 2, 3, and 5, requiring long-term O&M and ICs to ensure long-term effectiveness and, therefore, they are not as permanent. Disposal of sediment at an off-site landfill would be equally effective in the long-term. Since all contaminated sediments would be removed, Alternative 4 would provide the most permanence, even though contaminants would not be permanently destroyed in the landfill.

In summary, Alternative 4 would provide a high achievement of this criterion by removing all of the contaminated sediment in the aquatic environment above the SQTs. Alternatives 2 and 3 would provide a moderate achievement of this criterion, since amendment materials would eventually mix into the sediment column and sequester contaminants within the most biologically active sediment zone; however, deeper contamination may remain and future addition of amendment material may be required. Alternative 5 would provide a moderate to high achievement of this criterion as it combines dredging in certain areas of the Site and amendment placement in others.

### 5.2.2 Reduction of Toxicity, Mobility, or Volume Through Treatment

Alternatives 1 and 4 would not provide a reduction in the toxicity, mobility, or volume through treatment; however, Alternative 4 would remove all contaminated sediment from the aquatic environment and place it in a maintained landfill. Alternatives 2, 3, and 5 would reduce the toxicity, mobility, or volume of sediment contaminants through sequestration of sediment

contaminants in contact with amendment materials (i.e., near the sediment surface) rendering them unavailable to biota; however, it is unlikely that bioturbation processes would mix amendment materials to the maximum depth of contamination and, therefore, some contamination would remain in place indefinitely. Amendment materials applied on the sediment surface would also reduce contaminant mobility into the water column by providing a sorptive barrier between contaminated sediments and the water column.

In summary, Alternatives 2 and 3 would provide a moderate to high achievement of this criterion by reducing the toxicity and mobility of sediment contaminants through treatment via amendment materials mixed into the sediment column. Alternative 5 would provide a moderate achievement as amendment materials would only be placed in a portion of the Site. Alternatives 1 and 4 would provide a low level of achievement of this criterion since no reduction of toxicity, mobility, or volume would take place.

### 5.2.3 Short-Term Effectiveness

There are no short-term risks associated with Alternative 1 as no actions would be implemented at the Site. The rest of the alternatives would have some short-term risks during implementation of the remedy. Alternative 4 requires dredging of 1.3 meters (4.3 feet) of sediment and would result in removal of the entire PBAZ and temporary destruction of plant and animal habitat over the entire remedial area. Additionally, dredging of sediments would remove contamination from beneath the water column and require multiple transfers of contaminated sediments (and dredge contact water) by Site workers until eventual landfill disposal, thus creating additional opportunities for exposure to Site workers. Alternative 5 also requires dredging in open water areas of the Site to 1.3 meters, but does not require dredging in wetland areas and, therefore, has fewer short-term adverse effects to aquatic communities and Site workers than Alternative 4.

Short-term adverse effects to aquatic habitat and biota would be similar among Alternatives 2 and 3 and would include displacement of fish and smothering of benthic organisms. Alternative 2 would provide the least adverse effects of these alternatives because only a thin 0.05-meter (2-inch) layer of amendment material would be placed rather than a 0.15-meter (6-inch) cover as in Alternative 3. Alternative 5 would fall between Alternative 4 and Alternatives 2 and 3 as it is a hybrid approach and utilizes elements of each of these alternatives. The effects from Alternatives 2, 3, 4, and 5 would occur during remedy construction and during the recovery period thereafter. Benthic organisms would be expected to be re-established for all alternatives within several growing seasons.

In summary, Alternative 1 would provide a high achievement of the short-term effectiveness criterion as there would be no impact to surrounding community and aquatic habitat and no risk to Site workers. Alternatives 2 and 3 would have a moderate to high achievement of the short-term effectiveness criterion due to an increase in short-term adverse effects to aquatic biota during cover construction; however, impacts are anticipated to be small. Alternative 5 would have a moderate achievement of the short-term effectiveness criterion due to the adverse effects to benthic organisms and Site workers through handling of contaminated sediments dredged from open water areas. Alternative 4 would have a low to moderate achievement of the short-term effectiveness criterion as it presents the greatest adverse effects to benthic organisms and the greatest risks to Site workers through handling of contaminated sediments over a longer duration of time as compared to Alternative 5.

#### 5.2.4 Implementability

There are no implementability concerns associated with Alternative 1.

Application of cover materials to wetland areas requires specialized equipment such as marsh buggies that are capable of both navigating open water and traversing upland areas. Such equipment is available but somewhat specialized. Additionally, application of cover materials would require barging of materials from a nearby staging area or a staging area located along the SLR, such as Hallett Dock #7. It is anticipated that Hallett Dock #7 would be available as a staging area but this assumption assumes purchase of Hallett Dock #7 by the Duluth Seaway Port Authority and successful coordination of future access agreements. For these reasons Alternatives 2 and 3 provide a moderate to high level of achievement of the implementability criterion.

Dredging, dewatering, and water treatment that would be required under Alternatives 4 and 5 are all technically feasible and implementable from an engineering perspective. These technologies have been implemented successfully at other sediment sites and could be readily implemented at the Site; however, implementation of these alternatives would require more time and resources than Alternatives 2 and 3. Additionally, access to properties in which to dewater sediments and treat dredge contact water would be essential to implementation of these alternatives. It is unknown if adjacent properties are available for use. For these reasons Alternatives 4 and 5 would provide a moderate level of achievement of the implementability criterion.

Weather could significantly impact productivity, particularly if done in the early spring or late fall. High winds in the late fall produce large waves that could impact productivity. Barge traffic and any Site activities would be postponed in the spring until ice melt is completed. Winter or freezing conditions in the fall could shorten the construction season. Alternatives 4 and 5 have the longest estimated time to complete and, therefore would stand to be the most impacted by weather.

Implementability also includes administrative feasibility of the remedy. As with most sediment remediation activities, multiple state and federal agencies and other stakeholder input is required, providing a lower achievement of administrative feasibility of implementing a remedy. Additional time would be required to obtain any necessary approvals and permits from other agencies. Alternatives 4 and 5 would likely require more coordination with other regulatory agencies than Alternatives 2 and 3, as off-site disposal is required for Alternatives 4 and 5.

In summary, Alternative 1 has no actions to be implemented and thus provides a high achievement of the implementability criterion. Alternatives 2 and 3 are the next easiest to implement since they only require cover construction and provide a moderate to high achievement of this criterion. Alternatives 4 and 5 provide a moderate achievement of the implementability criterion due to increased coordination with other regulatory agencies and landowners, and due to increased time and materials required for implementation of dredging. **Table 10** presents a numerical score that provides a scale to compare all alternatives.

#### 5.2.1 Cost

Cost estimates developed for each alternative are included in **Section 3.3** and summarized in **Table 3**. The cost estimates include: capital costs, including both direct and indirect costs; annual O&M costs; and net present value of capital and O&M costs.

In summary, Alternative 1 provides the most cost-effective option, followed by Alternative 2 because it requires the least amount of time and materials of any active remedy. Alternative 3 is the next most cost effective as no dredging is required. Alternative 5 is the next most cost

effective as dredging of the wetland areas is avoided and a much lower volume of sand is required to construct the remedy. Additionally, fewer cubic yards of sediment are dredged in comparison to Alternative 4, which results in lower dewatering, water treatment, hauling, and disposal costs. Alternative 4 is the least cost effective as it requires dredging of all contaminated sediments within the remedial area and subsequent dewatering, water treatment, hauling, and disposal costs associated with the larger dredge volume. Additionally, a large volume of sand is required to restore the wetland areas, which adds to the total project cost. **Table 10** presents a numerical score that compares the costs for all alternatives.

### 5.3 Modifying Criteria

The modifying criteria, State/support agency acceptance and community acceptance, are assessed formally after the public comment period, and to the extent that they are known will be factored into the identification of the preferred alternative.

### 5.3.1 State Support/Agency Acceptance

State/agency input will be assessed to assist in determining the appropriate alternative for the Site. Key factors that will influence alternative selection include but are not limited to knowledge of future Site use, Site remediation prioritization, and funding source availability. Alternatives 1 through 5 will be formally assessed after public comment period.

### 5.3.2 Community Acceptance

Lands surrounding the Site are privately owned and access is limited to trespassers and a historic train tour that travels through the Site on weekends from mid-June through mid-October. The Superior and Mississippi Railroad Company (<a href="http://lsmrr.org">http://lsmrr.org</a>) operates the tours on railroad tracks owned by the City of Duluth. Recent conversations between Bay West, the MPCA, and the City of Duluth revealed that a future recreational path may be constructed through the Site.

Any remediation work completed at the Site involving application of amendments or construction of a cover would require construction of a mooring area adjacent to the railroad embankment (i.e., driving of dolphin pilings) and passing of materials over the railroad tracks; therefore, coordination with the City of Duluth and the Superior and Mississippi Railroad Company would be required for implementation of Alternatives 2, 3, and 5, which incorporate amendment placement or sand cover construction. Train tour interruptions could be minimized by working weekdays only or performing construction activities prior to mid-June, when tours begin. As noted previously, the City of Duluth is exploring the possibility of removing some or all of the railroad causeway at the Site; therefore, this consideration should be examined further during the design phase.

Additional coordination would be required with the current or future owners of Hallett Dock #7 for use as a material staging area. The total estimated time required for on-site construction activities for Alternatives 2 and 3 is shorter than Alternatives 4 and 5, at 5 and 22 weeks, respectively. The majority of work related to implementation of Alternatives 2 and 3 would take place directly on-Site and presumably at a privately-owned staging area. It is anticipated that community acceptance of Alternatives 2 and 3 will be high based on the factors outlined above.

Any remediation work completed at the Site involving dredging would require sourcing of a nearby dewatering area in which to pump and subsequently dewater dredged sediments; therefore, coordination with a nearby property owner such as U.S. Steel would be required for implementation of Alternatives 4 and 5. Implementation of Alternatives 4 and 5 would also result in increased truck traffic in the nearby neighborhood of Gary, and may require additional coordination with City of Duluth officials. Alternatives 4 and 5 have substantially longer construction durations than Alternatives 2 and 3, at 49 weeks and 56 weeks, respectively. It is

anticipated that community acceptance of Alternatives 4 and 5 will be high because these alternatives involve complete removal of contamination in at least a portion of the Site and because the Site is not widely used by the community.

Mechanical dredging of sediments and subsequent barging of sediments to an off-site sediment dewatering area such as Hallett Dock #7 was not evaluated as part of this FFS. Additionally, construction of a material staging and/or sediment dewatering area at the western shoreline of the Site within wetland areas was not evaluated for this FFS. These scenarios could be considered depending on stakeholder and community acceptance of the proposed alternatives.

### 5.4 Green Sustainable Remediation Criteria

### 5.4.1 Greenhouse Gas Emissions

Alternative 1 would have no GHG emissions. Alternatives 2, 3, 4, and 5 would result in GHG emissions from the mobilization, operation, and demobilization of all fuel-powered construction equipment required to construct the cover and/or dredge. Alternatives 4 and 5 would also produce emissions during transport of sediments by truck to the disposal facility. Reduction of emissions can be accomplished by using equipment that is compliant with the latest USEPA non-road engine standards and retrofitting older equipment with appropriate filters.

### 5.4.2 <u>Toxic Chemical Usage and Disposal</u>

There are no known toxic chemicals associated with these alternatives.

### 5.4.3 Energy Consumption

Alternative 1 would consume no additional energy. Alternatives 2, 3, 4, and 5 would result in the consumption of fossil fuels for the mobilization, operation, and demobilization of all gas- and diesel-powered construction equipment associated with the dredging, hauling, and disposal of the contaminated sediment and the installation of cover materials. Only placement of cover materials is required for Alternatives 2 and 3 whereas Alternatives 4 and 5 require dredging and cover placement, resulting in more fossil fuel consumption.

### 5.4.4 Use of Alternative Fuels

Alternative 1 would not require the use of alternative fuels. Biodiesel blended fuels (B10 or B20) could be used as a supplemental fuel source for all diesel-powered construction equipment associated with Alternatives 2, 3, 4, and 5.

### 5.4.5 Water Consumption

Alternative 1 would not require the consumption of water. A minimal quantity of water would be required to decontaminate personnel and equipment during sediment dredging activities associated with Alternatives 4 and 5.

#### 5.4.6 Waste Generation

Alternatives 1, 2, and 3 would not generate waste. Alternatives 4 and 5 would generate waste that includes the dredged contaminated sediments, contaminated dewatering pad materials, and any non-recyclable water treatment media that would be removed from the Site and disposed of.

### 5.5 Comparative Analysis Summary

The comparative analysis of alternatives narrative discussion and quantitation table identified Alternatives 2 and 3 as more appropriate alternatives than Alternatives 1, 4, and 5 to address contamination at the Site. Alternative 1 does not achieve overall protection of human health and the environment, does not achieve ARARs, is not effective in the long-term, does not reduce

toxicity, mobility, or volume of contamination, and is not effective in the short term; however, this alternative is implementable and cost effective. Alternatives 2, 3, 4, and 5 are all protective of human health and the environment and achieve ARARs. Alternatives 2, 3, and 5 have similar long-term effectiveness and reductions in toxicity, mobility, or volume of contaminants. Alternatives 2 and 3 are superior in the short-term effectiveness criterion because durations to implement these alternatives are the shortest, with the exception of Alternative 1. Alternatives 2 and 3 are also the least complex of the alternatives with exception of Alternative 1, making Alternatives 2 and 3 also the most implementable. Of Alternatives 2, 3, 4, and 5, Alternative 2 is the most cost effective.

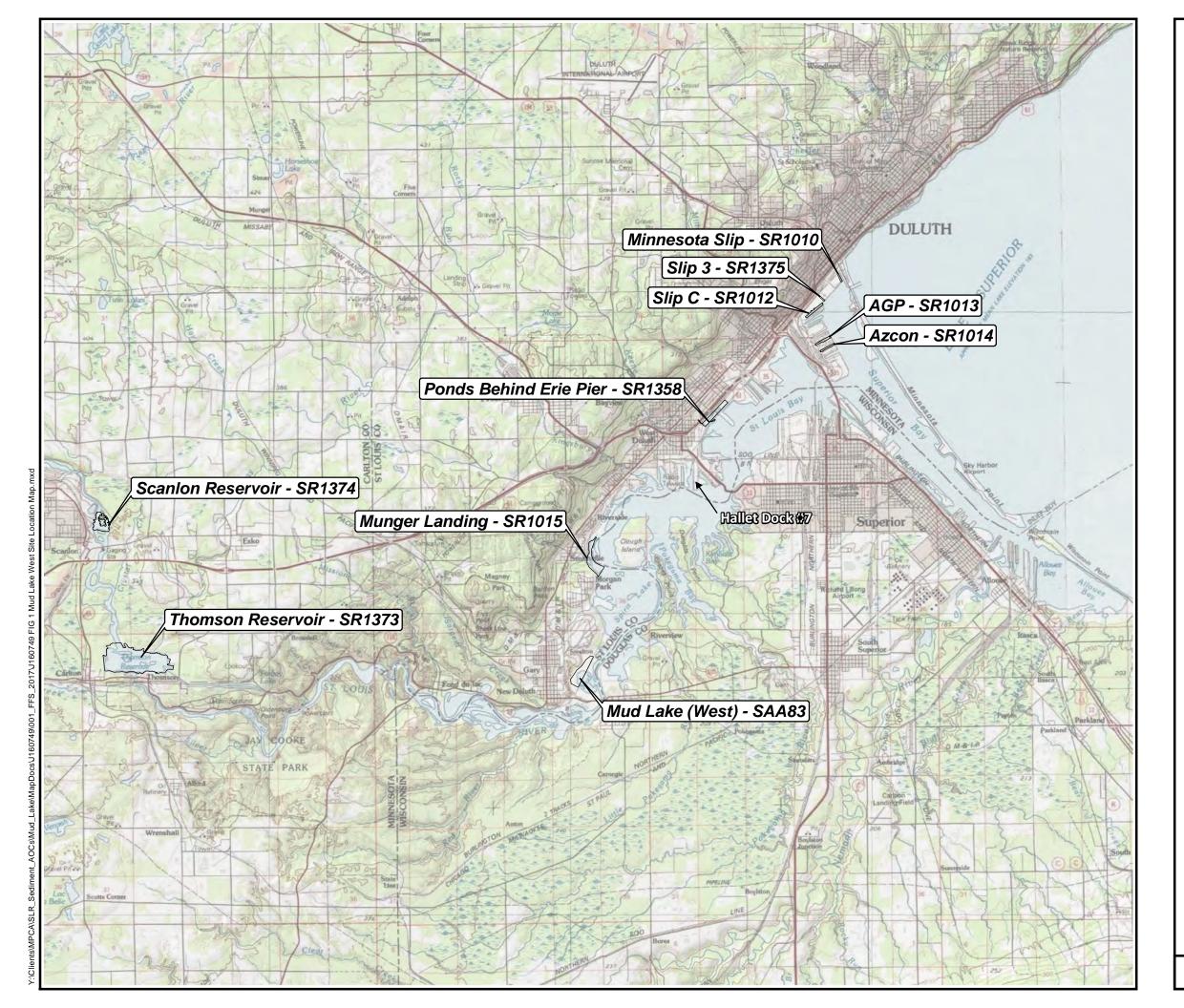
The modifying criteria, State/support agency acceptance, and community acceptance are assessed formally after the public comment period. Stakeholder and community input will provide valuable insight as the MPCA considers information for the selection of a preferred alternative. The MPCA will conduct outreach activities to resource managers, current Site users, the public and local units of government prior to the public comment period.

Further studies are recommended during the design phase of the selected alternative. These recommended studies, depending on the alternative selected, may include:

- Bench and/or pilot scale testing of amendment materials to determine the most appropriate material for use at the Site. Potential amendment materials include AC, bauxite, biopolymers, permeable Organoclay, phosphate additives (i.e., apatite), and zeolite (USEPA, 2013);
- Bench and/or pilot scale testing to determine appropriate application rates for the selected amendment material;
- Physical sediment characteristics assessment to aid in designing remedial actions involving dredging and/or capping; and
- Evaluation of potential dewatering areas within close proximity of the Site, including use of U.S. Steel property, if Alternative 4 or 5 is selected.

In addition, additional pre-design investigation and analysis might be warranted, in order to refine the remedial footprint, or to justify a need for a remedial action or provide basis for monitored natural recovery.

- Comparison of site sediment chemistry values to ambient sediment chemistry values developed for the U.S. Steel site.
- Biological assessments to evaluate effects of contaminated sediments on Site biota, which could include benthic toxicity and bioaccumulation testing, paired with sediment chemistry analysis for dioxins.
- Comparison of Site bioaccumulation data to similar data within the SLR estuary.


Pending the City of Duluth's decision on the preferred use of the Mud Lake causeway, additional data gaps might need to be addressed to evaluate the impact of partial or total causeway removal on the selected alternative:

• A hydrodynamic study to understand natural processes such as depositional and scouring forces to inform design and placement of cover materials.

### 6.0 REFERENCES

- AMI, 2012. Sheet: C1.0, "Preliminary Pier B Hotel & Condominiums, Dock Rehabilitation, Project Permitting, Existing Site Plan." May.
- Arcadis, 2011. "Remedial Investigation Report DM&IR Mud Lake Site." August.
- Bay West LLC (Bay West), 2015a. "Draft Technical Memorandum, Remedial Action Objectives, Preliminary Remedial Goals, Potentially Bioactive Zone Thicknesses, SR#276 U.S. Steel Duluth Works Site." October.
- Bay West, 2015b. "Draft Sediment Remedial Investigation Report, Mud Lake West, Duluth Minnesota." December.
- Duluth Economic Development Authority (DEDA), 2016. "Request for Proposals, Development of Lot D, RFP #16D-1," March.
- EA Engineering, Science, and Technology, Inc., PBC, 2015. "Site Characterization Report, Assessment of Contaminated Sediment, St. Louis River Site Characterization, St. Louis River and Bay Area of Concern, Duluth, Minnesota"; U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, Illinois. EP-R5-11-10.
- The Great Lakes Towing Company, 2013. Full Service Lakes-Wide Towing Contract Schedule of Contract Rates and Conditions. March 2013. Retrieved from http://thegreatlakesgroup.com/wp-content/uploads/2012/12/GLT\_2012\_Schedule\_of\_Contract\_Rates\_Conditions.pdf, March 2016.
- Interstate Technology and Regulatory Council (ITRC) Contaminated Sediments Team, 2014. "Contaminated Sediments Remediation – Remedy Selection for Contaminated Sediments." August.
- Minnesota Department of Health (MDH), 2013. Public Health Consultation, "Updated Human Health Screening Values for St. Louis River Sediment: U.S. Steel Site, Duluth, St. Louis County, Minnesota." April.
- MDH, 2014. Fish Consumption Guidelines for Woman Who Are or May Become Pregnant and Children Under Age 15, Rivers. May.
- Minnesota Pollution Control Agency (MPCA) and Wisconsin Department of Natural Resources (WDNR), 1992. "The St. Louis River System Remedial Action Plan. Stage One."
- MPCA and WDNR, 1995. "The St. Louis River System Remedial Action Plan, Progress Report Stage II."
- MPCA, 1995. "Draft Work Plan, Sediment Operable Unit Supplemental Remedial Investigation and Feasibility Study Reports SLRIDT Site, Duluth Minnesota"; November.
- MPCA, 1998. "Risk-Based Site Evaluation Manual," September.
- MPCA, 2004. "Record of Decision for the Sediment Operable Unit St. Louis River/Interlake/Duluth Tar Site, Duluth, Minnesota." August.
- MPCA, 2007. "Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota." February.
- MPCA, 2008. "Beneficial Use Impairments." June.
- MPCA, 2009. "Managing Dredged Materials in the State of Minnesota." June.
- Schubauer-Berigan, M., and J.L. Crane, 1997. "Survey of Sediment Quality in the Duluth/Superior Harbor: 1993 Sample Results"; U.S. Environmental Protection Agency, Great Lakes National Program Office; Chicago, Illinois. EPA 905-R97-005.

- Service Engineering Group (Service), 2002. *Data Gap Report, St. Louis River/Interlake/Duluth Tar Site*. November. Retrieved from <a href="https://www.barr.com/slridt/documents/DataGapReport/html%20files/datagap/report/dgr.htm">https://www.barr.com/slridt/documents/DataGapReport/html%20files/datagap/report/dgr.htm</a>, March, 2016.
- Service Engineering Group, 2003. "St. Louis River/Interlake/Duluth Tar Site, Duluth, MN, Revised Draft Feasibility Study." December.
- Sharrow, J., DeLuca, D., 2016. Duluth Seaway Port Authority, personal communication, March.
- Somat Engineering, April 12, 2013, "Sediment Investigation Report, St. Louis River, Duluth Harbor." August.
- U.S. Environmental Protection Agency (USEPA), 1990. "The Feasibility Study: Detailed Analysis of Remedial Action Alternatives." Office of Solid Waste and Emergency Response (OSWER) Directive 9955.3-01FS4, March.
- USEPA, 2000. "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study," EPA-540-R-00-002, July.
- USEPA, 2005. "Contaminated Sediment Remediation Guidance for Hazardous Waste Sites."
- USEPA, 2013. "Use of Amendments for In Situ Remediation at Superfund Sediment Sites." April.



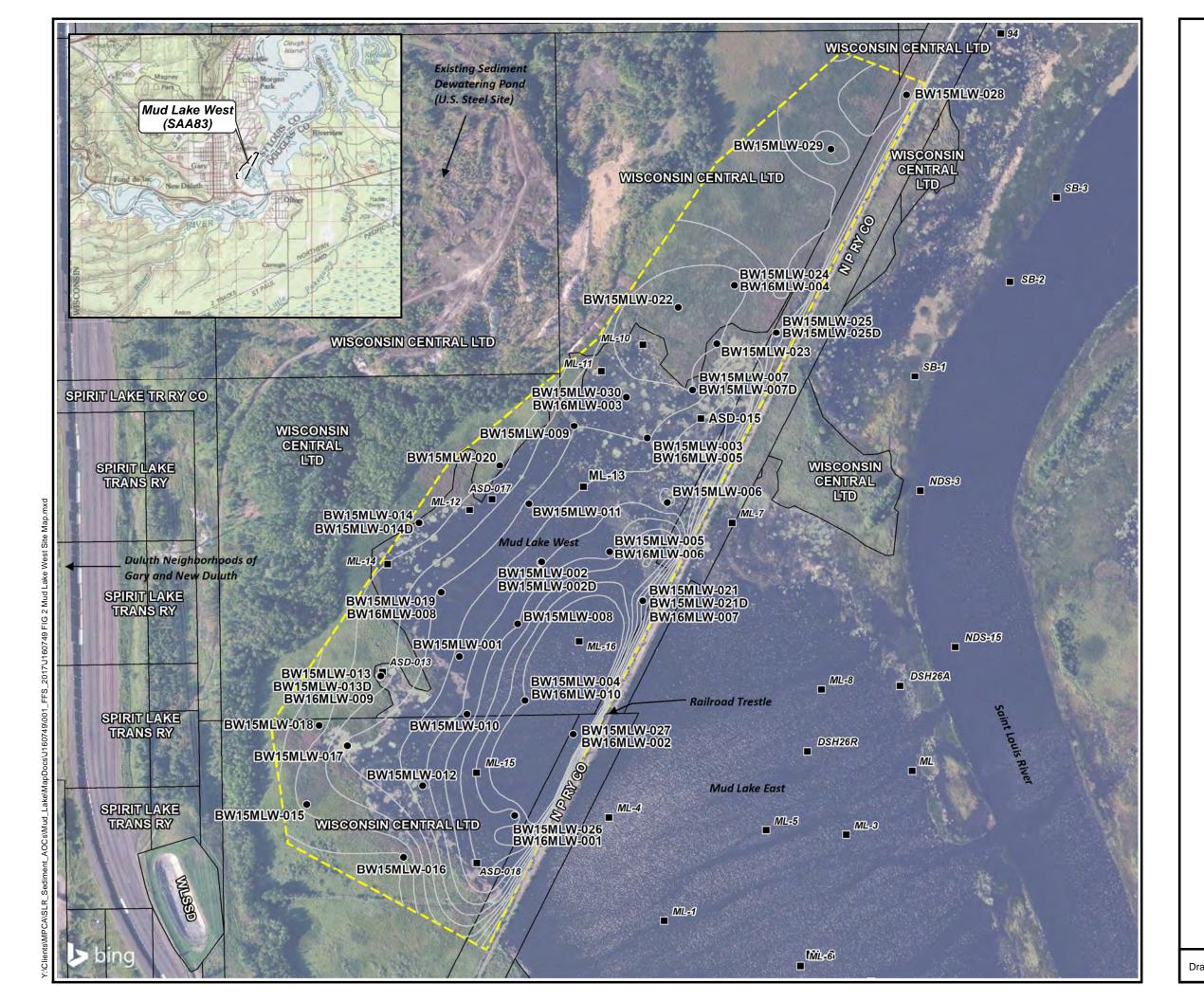
# Site Location Map

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



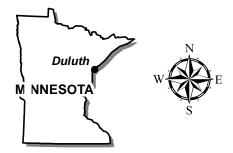
Map Projection: NAD 1983 UTM Zone 15 N Basemap: National Geographic Society, i-cubed



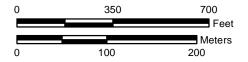

Site Location (Labeled on map)






Date Drawn/Revised:5/11/2017 Project No.J160749




### Site Map

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



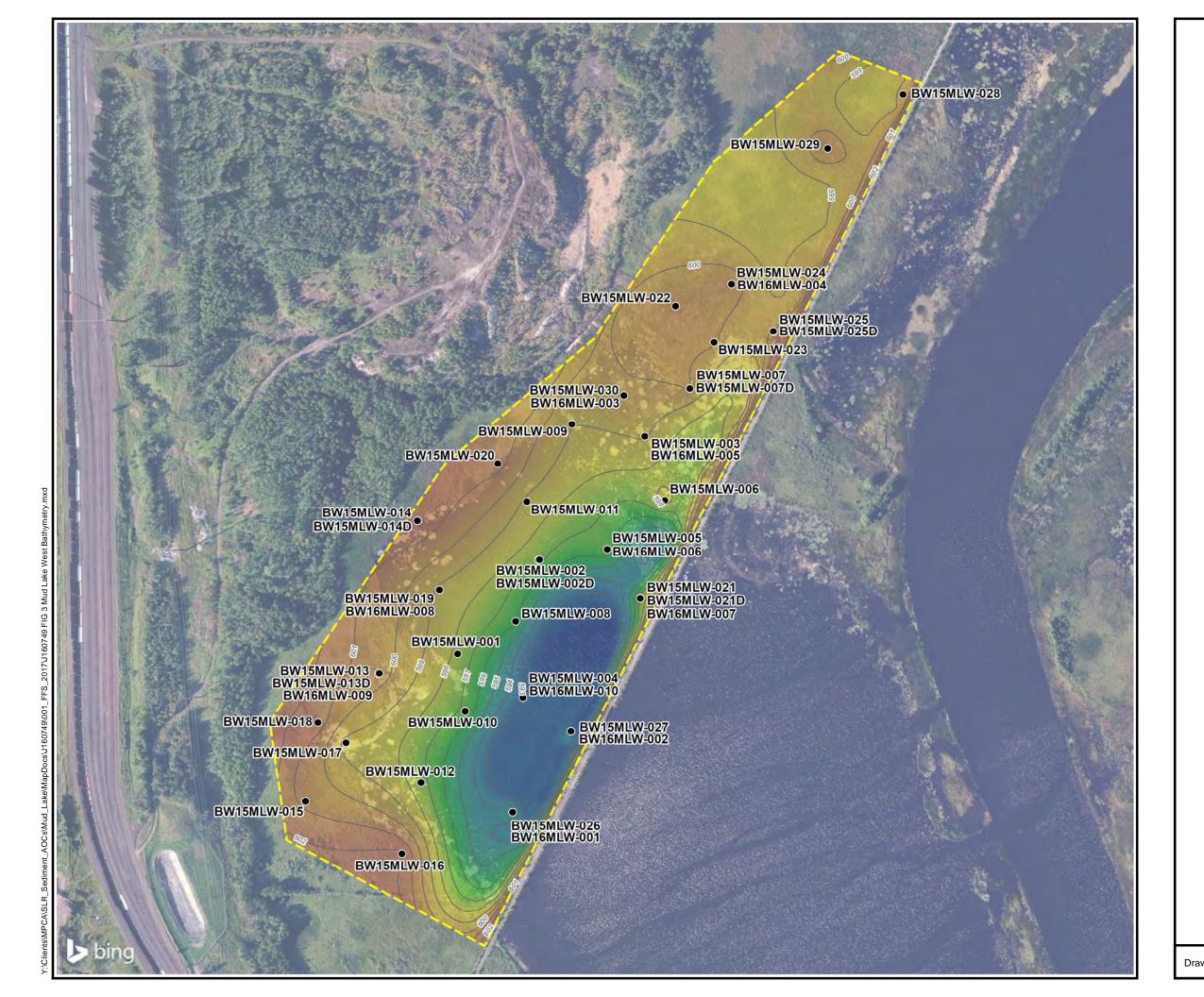
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS



- Sediment Sample (Bay West 2015/2016)
- Historical Sediment Sample (2010)

**Bathymetry Elevation Contour** 

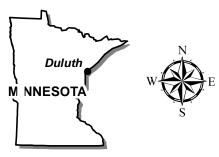



Mud Lake West Site Boundary

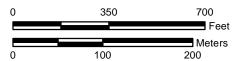


Parcel Boundary (With Property Owners)




Drawn By: S.G. Date Drawn/Revised:5/11/2017 Project No.J160749




### **Bathymetry**

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



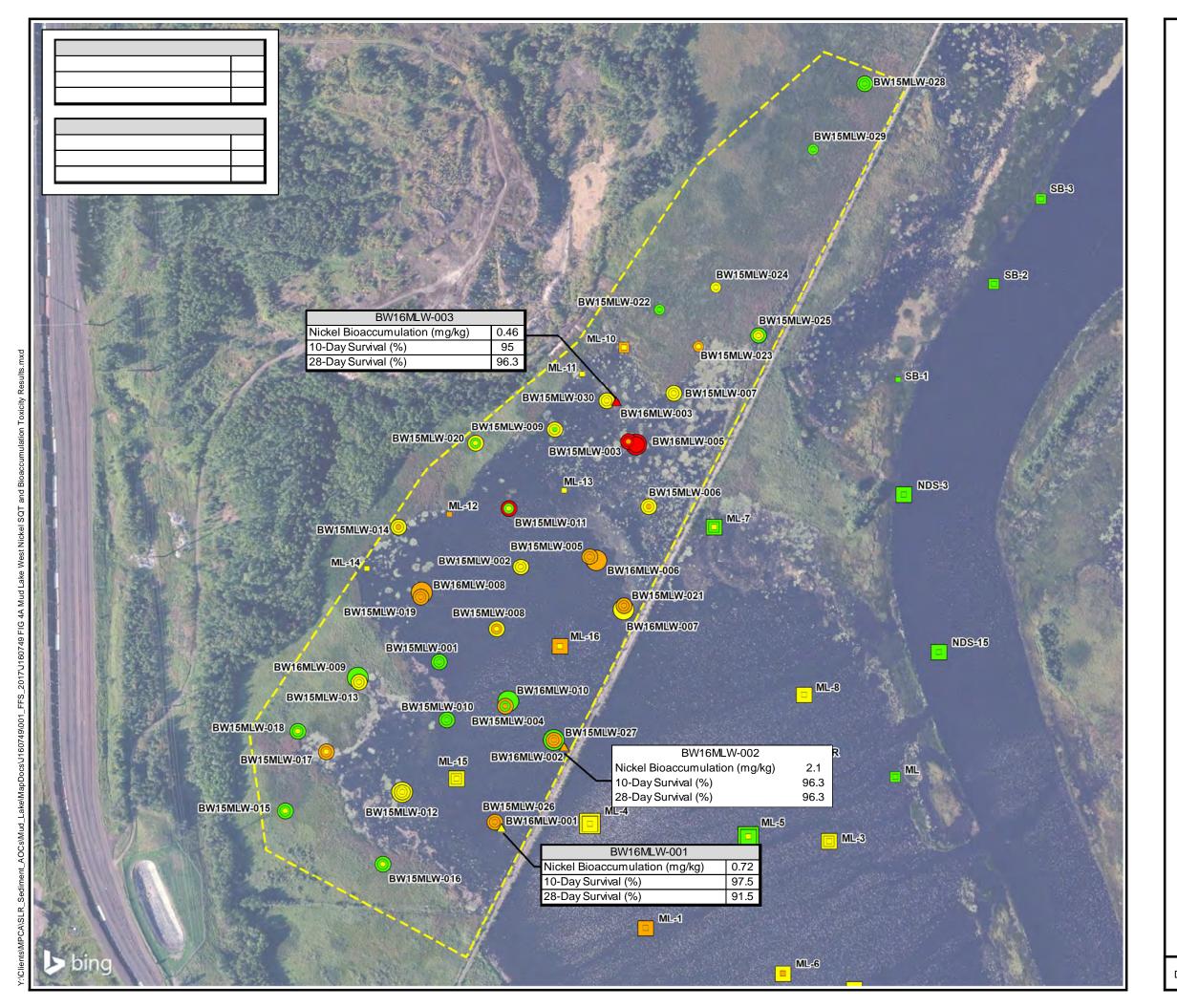
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS



Sediment Sample (Bay West 2015/2016)

Bathymetric Contour Line




Mud Lake West Site Boundary

# **Water Depth** 603.5 ft +1.00 ft 597.5 ft 6 00 ft 591.5 ft -11.0 ft

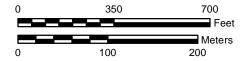
NOTE: Bathymetery compiled from water level measurements collected during March/June 2015 Remedial Investigation



Drawn By: S.G. Date Drawn/Revised:5/11/2017 Project No.J160749



# Figure 4A


### Nickel SQT and Bioaccumulation/Toxicity Results

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





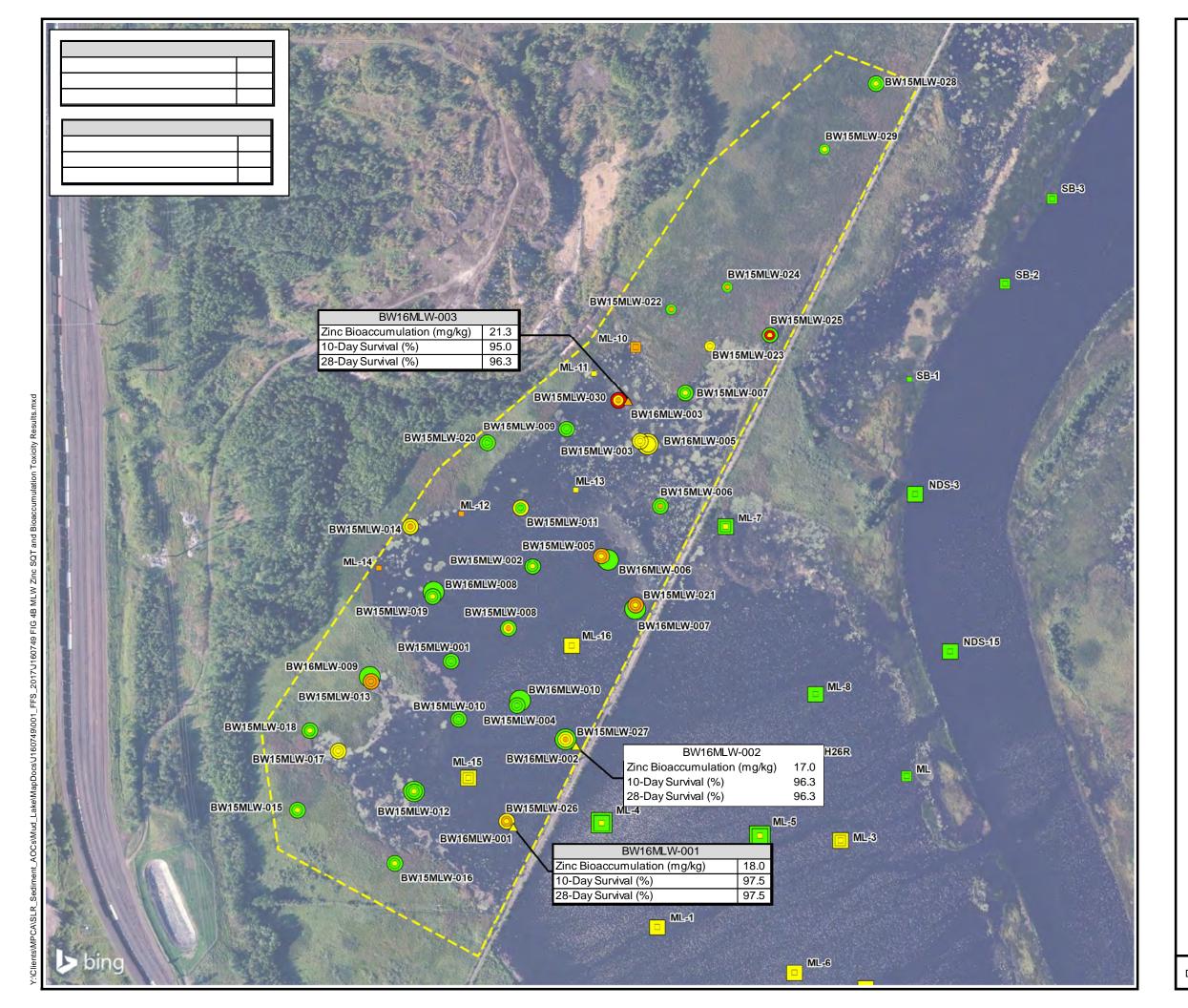
Mud Lake West Site Boundary

### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m >1.0 m


### **Nickel SQT Comparison**

- Does not exceed Level 1 SQT (23 mg/kg)
- Exceeds Level 1 SQT (23 mg/kg)
- Exceeds Midpoint SQT (36 mg/kg)
- Exceeds Level 2 SQT (49 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Date Drawn/Revised:5/11/2017 Project No.J160749



### Figure 4B Zinc SQT and Bioaccumulation/Toxicity Results

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





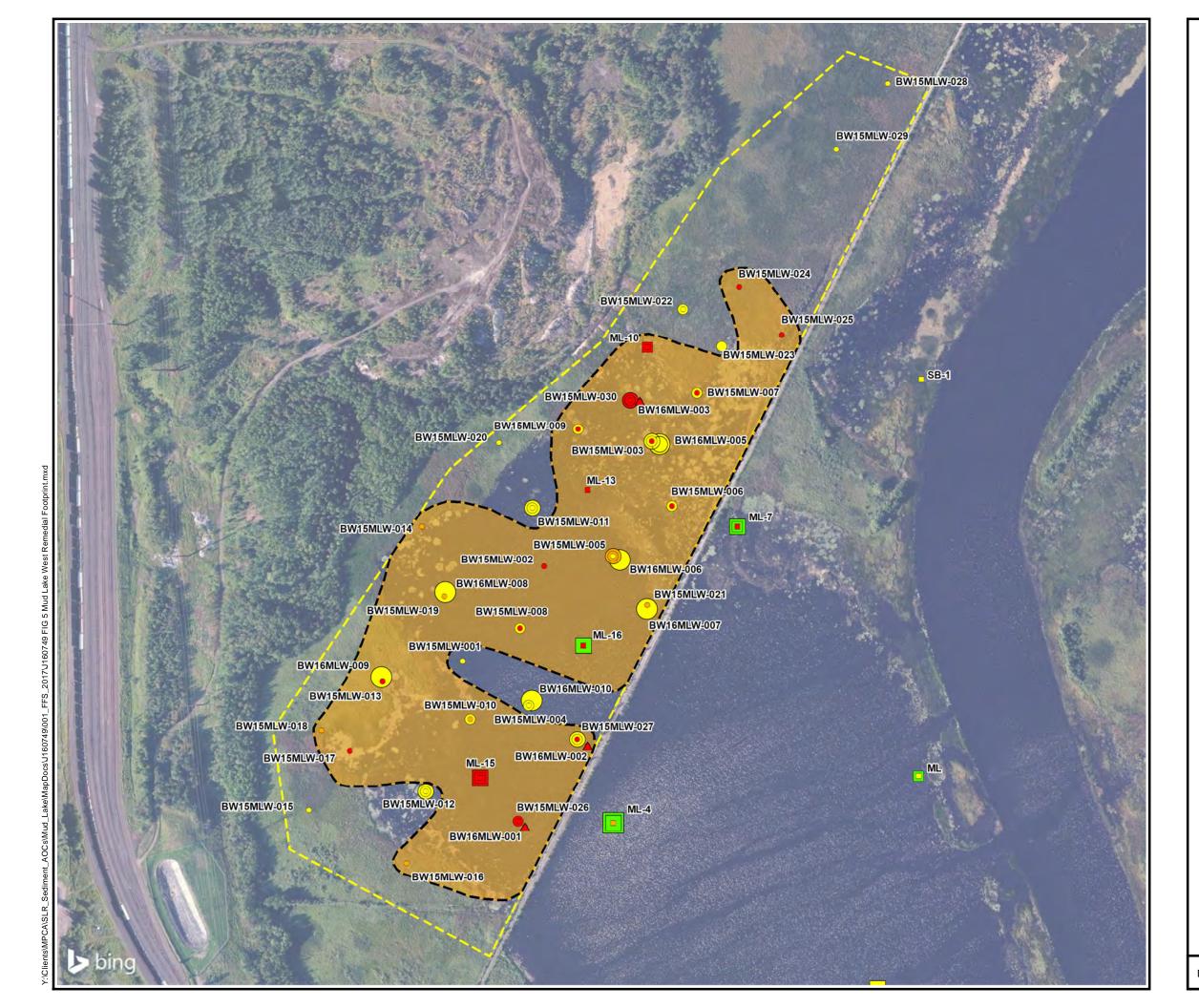
Mud Lake West Site Boundary

### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

### Sample Interval

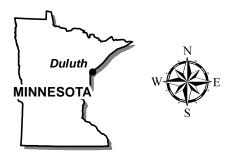
- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


### **Zinc SQT Comparison**

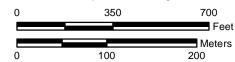
- Does not exceed Level 1 SQT (120 mg/kg)
- Exceeds Level 1 SQT (120 mg/kg)
- Exceeds Midpoint SQT (290 mg/kg)
- Exceeds Level 2 SQT (460 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.




Drawn By: S.G. Date Drawn/Revised:5/11/2017 Project No.J160749




### Remedial Footprint

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





Mud Lake West Site Boundary

Remedial Footprint (40.11 Acres)

### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

### **TEQ KM Fish SQT Comparison**

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

### **TEQ KM Fish SQT Exceedance Areas**



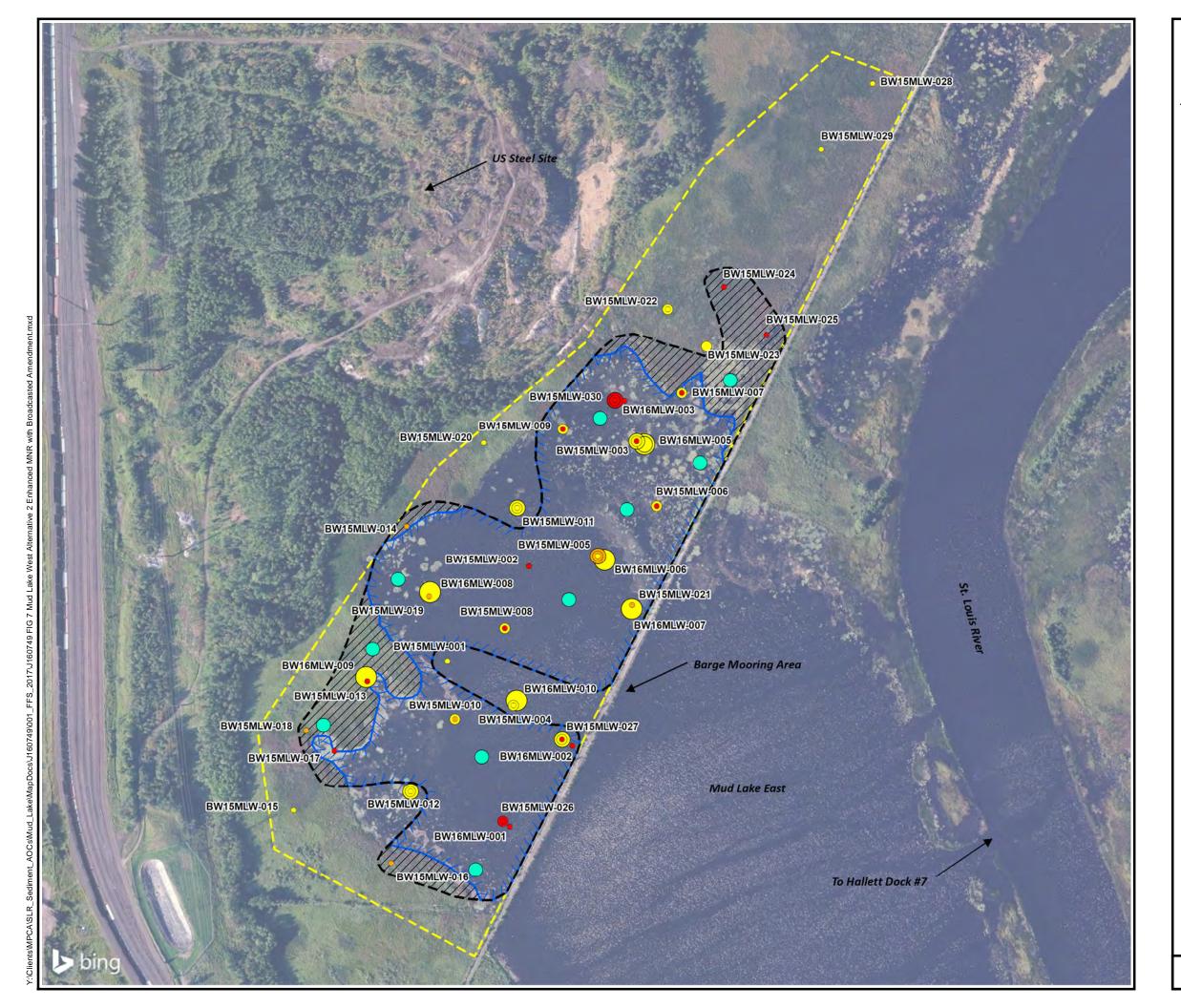
Estimated Area Exceeding Midpoint SQT (40.11 Acres)



Date Drawn/Revised:5/12/2017 Project No.J160749

# Conceptual Site Model

# Mud Lake West SLR Sediment AOCs


Duluth, MN

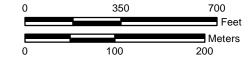


Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS



Drawn By: S.G. Date Drawn/Revised:5/11/2017 Project No.J160749




### Alternative 2 - Enhanced MNR with **Broadcasted Amendment**

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





**Proposed Monitoring Location** 



Open Water Areas - 31.87 Acres (0.05m Broadcasted Amendment)



Wetland Areas - 8.24 Acres (0.05m Broadcasted Amendment)

Remedial Areas (40.11 Acres)

Mud Lake West Site Boundary

### Sample Type

Sediment Sample (Bay West 2015/2016)

### Sample Interval

0-0.15 m

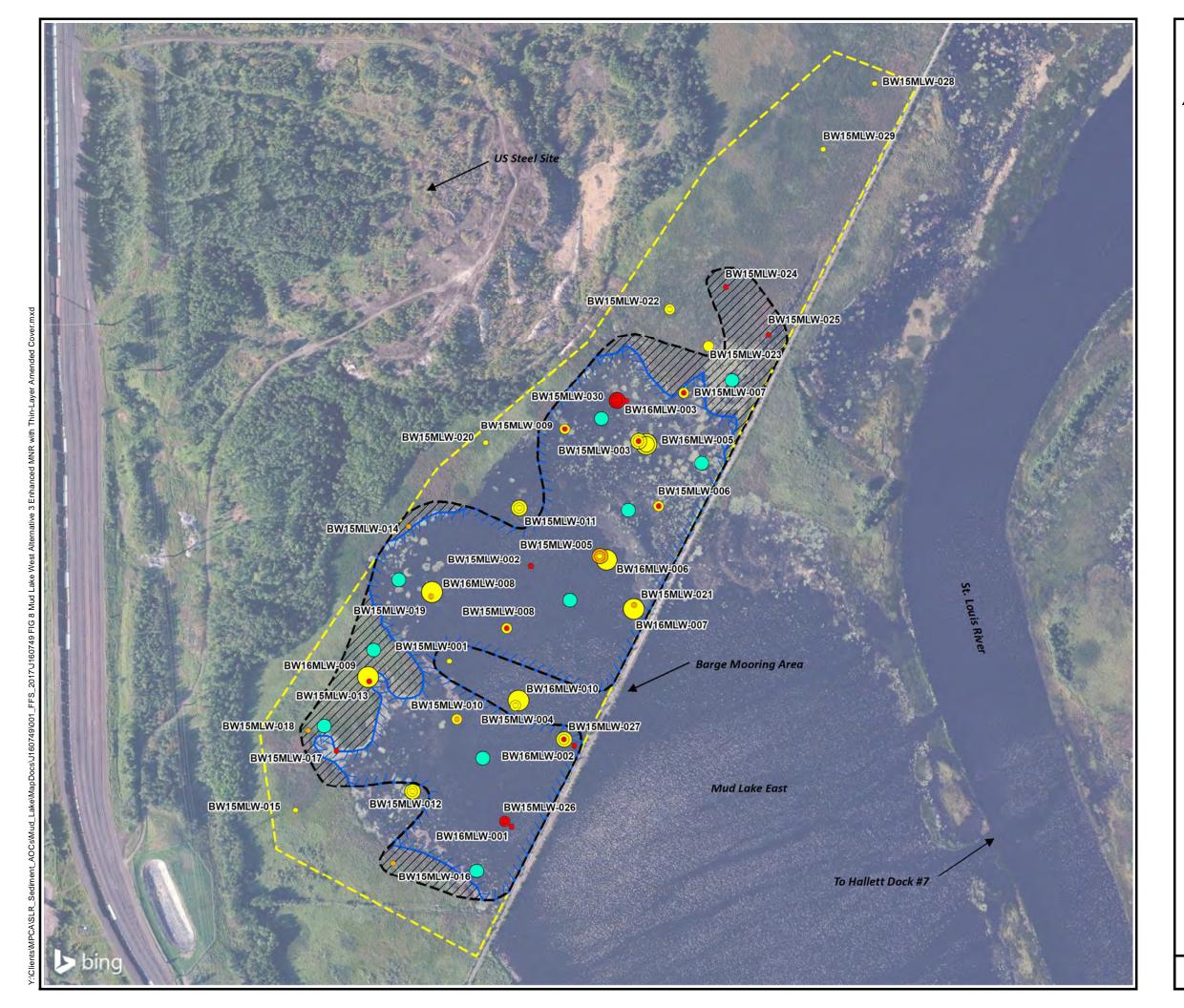
0.15-0.50 m

0.50-1.0 m

>1.0 m

### **TEQ KM Fish SQT Comparison**

Does not exceed Level 1 SQT (0.85 ng TEQ/kg)


Exceeds Level 1 SQT (0.85 ng TEQ/kg)

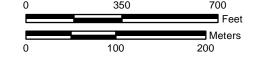
Exceeds Midpoint SQT (11.2 ng TEQ/kg)

Exceeds Level 2 SQT (21.5 ng TEQ/kg)



Drawn By: S.G. Date Drawn/Revised:5/22/2017 Project No.J160749




### Alternative 3 - Enhanced MNR with Thin-Layer Amended Cover

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN

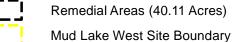


Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





**Proposed Monitoring Location** 




Open Water Areas - 31.87 Acres (0.15m amended cover)



(0.15m amended cover)

Wetland Areas - 8.24 Acres



### Sample Type

Sediment Sample (Bay West 2015/2016)

### Sample Interval

0-0.15 m

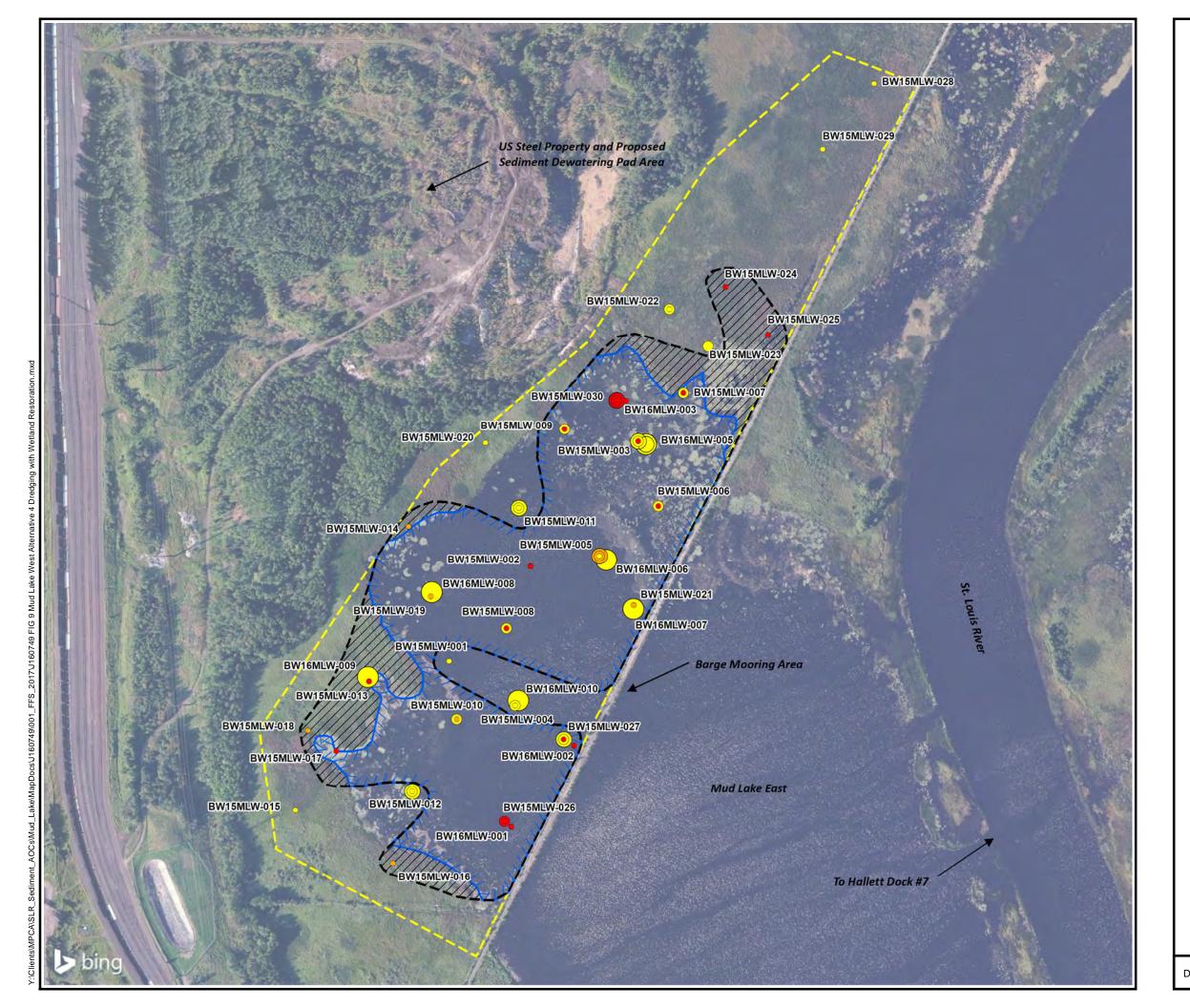
0.15-0.50 m

0.50-1.0 m

>1.0 m

### **TEQ KM Fish SQT Comparison**

Does not exceed Level 1 SQT (0.85 ng TEQ/kg)


Exceeds Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Midpoint SQT (11.2 ng TEQ/kg)

Exceeds Level 2 SQT (21.5 ng TEQ/kg)



Date Drawn/Revised:5/22/2017 Project No.J160749




### Alternative 4 - Dredging with Wetland Restoration

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





Open Water Areas - 31.87 Acres (Dredge 1.3m; 0.15m sand cover)



Wetland Areas - 8.24 Acres (Dredge 1.3m; 1.3m sand cover)



Remedial Areas (40.11 Acres)



Mud Lake West Site Boundary

### Sample Type

O Sediment Sample (Bay West 2015/2016)

### Sample Interval

0-0.15 m

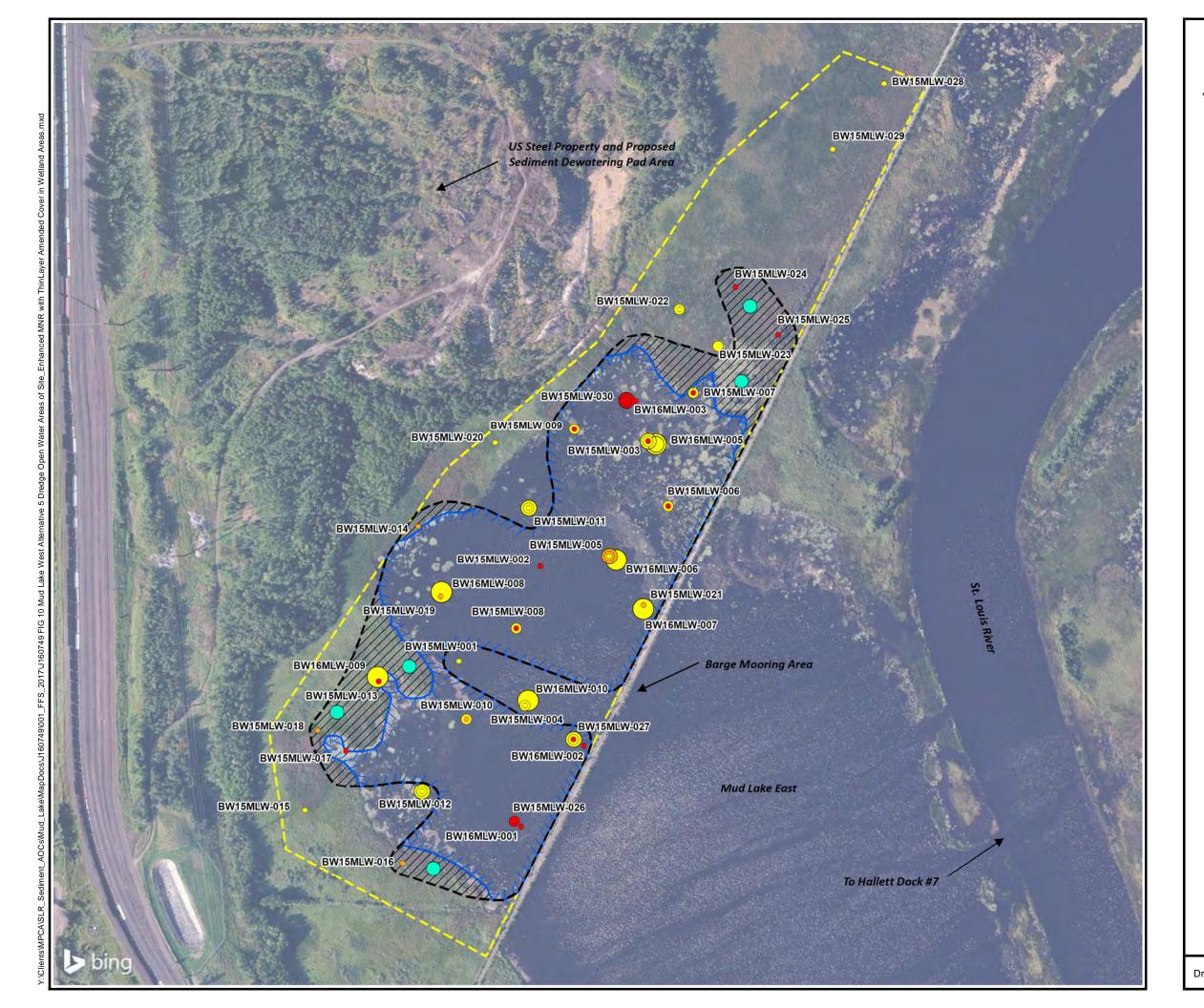
0.15-0.50 m

0.50-1.0 m

>1.0 m

### **TEQ KM Fish SQT Comparison**

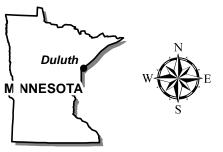
Does not exceed Level 1 SQT (0.85 ng TEQ/kg)


Exceeds Level 1 SQT (0.85 ng TEQ/kg)

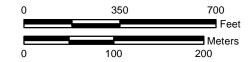
Exceeds Midpoint SQT (11.2 ng TEQ/kg)

Exceeds Level 2 SQT (21.5 ng TEQ/kg)




Drawn By: S.G. Date Drawn/Revised:5/12/2017 Project No.J160749




Alternative 5 - Dredge Open Water Areas of Site/Enhanced MNR with Thin-Layer Amended Cover in Wetland Areas

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





**Proposed Monitoring Location** 



Open Water Areas - 31.87 Acres (Dredge 1.3m; 0.15m sand cover)



Wetland Areas - 8.24 Acres (0.15m amended sand cover)

Remedial Areas (40.11 Acres)

Mud Lake West Site Boundary

### Sample Type

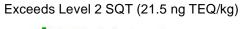
O Sediment Sample (Bay West 2015/2016)

### Sample Interval

0-0.15 m

0.15-0.50 m

0.50-1.0 m


>1.0 m

### **TEQ KM Fish SQT Comparison**

Does not exceed Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Midpoint SQT (11.2 ng TEQ/kg)





Date Drawn/Revised:5/22/2017 Project No.J160749

### **Tables**

# Table 1 Contaminant of Concern Summary Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Contaminant | Units     | Cleanup<br>Level | Maximum Concentration Detected |
|-------------|-----------|------------------|--------------------------------|
| Dioxins     | ng TEQ/kg | 11.2             | 50.5                           |

Notes:

mg/kg = milligrams per kilogram

ng TEQ/kg = nanograms toxic equivalency per kilogram

Table 2
Technologies Screening Summary
Focused Feasibility Study
Mud Lake West
Minnesota Pollution Control Agency

|                              | Technology                             | Description                                                                                                                                                                                                                                                                                             | Applicability                                                                                                                                                                                                             | Ranking   |                                                                                                                                                                                                                                        |   |                                                                                                                                                      |        |                                                                                                                                                                                                                                    |                               |                                                                                                                                                                                                      |
|------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category                     |                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |           | Effectiveness                                                                                                                                                                                                                          |   | Implementablility                                                                                                                                    |        | Relative Cost                                                                                                                                                                                                                      | Retained for<br>Consideration | Rationale                                                                                                                                                                                            |
| Institutional<br>Controls    | Institutional Controls                 | Institutional controls in the form of an environmental restrictive covenant or conditions of future permits may be used to prevent exposure and contact with impacted soil or sediment by restricting land uses or disturbances to the material.                                                        | May consist of fish consumption advisories, commercial fishing bans, waterway use restrictions, or deed restrictions                                                                                                      | 0         | Effective in meeting RAOs when combined with other remedies.                                                                                                                                                                           |   | Easily implemented with little distruption to the Site.                                                                                              | \$     | Minimal but there are long term costs associated with initiating and maintaining institutional controls.                                                                                                                           | Yes.                          | Some institutional controls already in place; however, additional controls are expected to be a required component of any remedy.                                                                    |
| Monitoring and<br>Evaluation | Monitoring                             | The collection and analysis chemical, physical, and/or biological data over a sufficient period of time and frequency to determine the status and/or trend in one or more environmental parameters or characteristics.                                                                                  | compliance with design and performance                                                                                                                                                                                    | 0         | Effective in meeting RAOs when combined with other remedies.                                                                                                                                                                           |   | Highly implementable with no disturbance to the Site.                                                                                                | \$     | The main cost is associated with laboratory analysis.                                                                                                                                                                              | Yes.                          | Monitoring is expected to be a required component of any remedy.                                                                                                                                     |
| Natural Recovery             | Monitored Natural Recovery             | MNR leaves impacted sediment in place and relies on ongoing, naturally occurring processes to isolate, destroy, or reduce exposure or toxicity of impacted sediment.                                                                                                                                    | Burial of contaminated sediments does not appear to be occuring at the Site and depsotion rates are not likely sufficient to isolate COCs in reasonable timeframe and concentrations do not appear to be reducing.        | $\otimes$ | Burial does not appear to be occuring and current data does not indicated the extent of MNR effectiveness in COC reduction.                                                                                                            |   | Highly implementable with no disturbance to the Site.                                                                                                | \$     | The main cost of NR is associated with monitoring.                                                                                                                                                                                 | No.                           | Effectiveness at the Site has not been demonstrated and does not appear to be effective under current conditions.                                                                                    |
|                              | Enhanced Monitored Natural<br>Recovery | EMNR adds amendments to the sediment to accelerate physical isolation process and facilitates re-establishment of benthic or plant habitat. May include a granular or carbon sorbent cover (over sediments) or biological stimulants (to soil).                                                         | Use of an amendment may increase the rate at which sediment contaminant concentrations are reduced/made less available over time.  Natural bioturbation processes will assit in mixing amendments into in-situ sediments. |           | Sediment amendments have been used successfully in the past to reduce the availability of contaminants to biota.                                                                                                                       | • | Implementable; however, requires site access, staging area, and placement equipment. Impact to Site operation can be minimal with advanced planning. | \$\$   | Greater initial cost than NR due to thin cover or amendment placement, but less expensive than conventional cap or sediment removal.                                                                                               | Yes.                          | Effectiveness of chemical contaminant sequestration in sediments via addition of amendments has been demonstrated. Allows for remedial action with limited disturbance to established wetland areas. |
| Capping                      | Capping                                | Capping provides a physical barrier and chemical isolation from COCs. Caps may be constructed from clean sediment, sand, gravel, geotextiles, liners, reactive or absorptive material and may consist of multiple layers. Granular sediment caps can provide erosion protection and limit bioturbation. | Cap thickness depends on bioactive zone (BAZ) thickness requirements, which vary by habitat, substrate and water depth. A cap may alter hydrologic conditions and Site use.                                               | •         | Highly effective and proven technology. Solubililty and eventual migration of COCs through capping material is possible. Would reduce water depth significantly in already shallow areas and may turn wetland areas into upland areas. | • | Implementable, but would likely permanently reduce the size of wetland areas.                                                                        | \$\$\$ | Capping costs are generally less than sediment removal, and depend on cap thickness, material, lateral extent and surface water engineering factors.  Material costs for a synthetic cap are generally higher than a granular cap. | No.                           | Would likely turn wetland areas into upland areas and therefore was not retained for consideration.                                                                                                  |

Table 2
Technologies Screening Summary
Focused Feasibility Study
Mud Lake West
Minnesota Pollution Control Agency

|                           |                                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |   |                                                                                                                                           |           | Ranking                                                                                                                                                        |               |                                                                                                                                                                                                       | 5                             |                                                                                                                                      |
|---------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Category                  | Technology                                  | Description                                                                                                                                                                                                                                                                                                     | Applicability                                                                                                                                                                                                                              |   | Effectiveness                                                                                                                             |           | Implementablility                                                                                                                                              |               | Relative Cost                                                                                                                                                                                         | Retained for<br>Consideration | Rationale                                                                                                                            |
|                           | Mechanical Dredging                         | Sediment is lifted to the surface using a mechanical excavator or crane and placed on a barge for transport. Removed sediment has a similar moisture content as the in situ material, requiring dewatering prior to disposal. Residual cover is typically needed to manage remaining impacts.                   | Mechanical dredging is implementable at the Site but no staging area locations are present in which to stabilize sediments. Sediments must be slurried and pumped to an off-site staging area.  Sediment controls expected to be required. |   | Highly effective and proven technology; however, resuspension may limit effectiveness.                                                    |           | Requires dredging equipment and upland staging infrastructure for sediment dewatering and transportation. Less staging space required than hydraulic dredging. | \$\$\$        | Main capital costs include equipment mobilization, staging area devlopment, equipment operation, residual cover materials, and construction and operation of a containment area for dredged material. | Yes.                          | Suitible for use at the Site, but mechanically dredged sediments must be slurried with water and pumped to an off-site staging area. |
| Excavation and<br>Removal | Hydraulic Dredging                          | Hydraulic dredging captures water with the sediment and removes it by pumping the sediment slurry typically through a pipeline to the dewatering location or final disposal site. High water content of slurry requires significant dewatering. Residual cover is typically needed to manage remaining impacts. | Hydraulic dredging is implementable at the Site. Sediments must be pumped to an off-site staging area.  Sediment controls expected to be required.                                                                                         |   | Highly effective and proven technology; however, resuspension may limit effectiveness.                                                    | •         | Implementable; however, requires large staging area for dewatering equipment, requires more water treatment than mechanical dredging.                          | \$\$\$\$      | Additional treatment and disposal costs due to greater water content of the slurried sediment.                                                                                                        | Yes.                          | Suitable for use at the Site, but dredged sediments must be pumped to an off-site staging area.                                      |
|                           | Mechanical Removal in Dry Conditions        | Water is diverted or drained from the excavation area using a containment barrier such as a cofferdam to allow for excavation of s dry sediment with conventional equipment (e.g. backhoe). Typically limited to shallow areas.                                                                                 | Well suited for shallow areas and geometry that allows for construction of containment barrier and water diversion.                                                                                                                        |   | Effective and proven technology. Allows for visual inspection during removal. Minimal resuspension/redeposition. High degree of accuracy. | 0         | Feasible in small-volume removal areas.<br>Site preparation difficult due to water<br>management.                                                              | \$\$\$        | Costs are similar to mechanical dredging, with the added cost to construct diversion or containment structures.                                                                                       | No                            | Not suitable when compared to mechanical or hydraulic dredging.                                                                      |
|                           | Off-Site                                    | Removed sediment is transported to an offsite disposal location that will accept the waste. Dewatering of sediments is generally required before transport.                                                                                                                                                     | Transportation of large volumes of sediment would create significant truck traffic through the surrounding community for a long duration.                                                                                                  |   | Effective at meeting RAOs, low risk of spills during transportation.                                                                      | •         | Disruption to neighbors during trucking, may result in limited work hours. Seasonal restrictions may also apply.                                               | \$\$\$\$      | Costs for offsite disposal include dewatering, water treatment, loading and transportation costs and landfill disposal fees. Transportation costs depend on distance to the landfill.                 | Yes.                          | Suitable with proper truck routing. Onsite storage facilities are not available.                                                     |
| Disposal                  | Confined Disposal Facility (CDF)            | CDFs are engineered structures enclosed by dikes and specifically designed to contain sediment. CDFs may be located either upland (above the water table), near-shore (partially in the water), or completely in the water (island CDFs).                                                                       | Creation of a CDF would result in destruction of wetland areas.                                                                                                                                                                            |   | Most widely used method for disposal and has been demonstrated effective.                                                                 | 0         | Requires high level of design, detailed knowledge of dredge plans, requires large permanent area for construction, and treatment of discharge.                 | \$\$\$        | Costs for a CDF include engineering and design costs, materials for dikes and suspended solids control, and construction equipment and labor.                                                         | No                            | Based on the surrounding wetland areas and large dredge volumes, consolidation areas are not feasible.                               |
|                           | On-site Contained Aquatic Disposal<br>(CAD) | Dredged or excavated sediment is disposed within a natural or excavated depression elsewhere in the water body.                                                                                                                                                                                                 | A suitable location to accommodate entire sediment volume is not available.                                                                                                                                                                | 0 | Would likely be effective at maintaining COCs if propertly designed.                                                                      | $\otimes$ | A suitable location to accommodate entire sediment volume is not available.                                                                                    | <b>\$\$\$</b> | Specialized equipment for a CAD may be required, especially if the disposal site is in deep water. Dredging to create a CAD would add cost.                                                           | No                            | Based on the Site charateristics, a suitable location is not available at the Site to accommodate the required disposal volume.      |

## Table 2 Technologies Screening Summary Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                   |                         |                                                                                                                                                                                                                                               |                                                                                                                   |           |                                                                                                                                    |           | Ranking                                                                                                                                                            |        |                                                                                                                                                                                                  | 5                             |                                                                                                                                                                                                      |
|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category          | Technology              | Description                                                                                                                                                                                                                                   | Applicability                                                                                                     |           | Effectiveness                                                                                                                      |           | Implementablility                                                                                                                                                  |        | Relative Cost                                                                                                                                                                                    | Retained for<br>Consideration | Rationale                                                                                                                                                                                            |
|                   | Immobilization          | Immobilization treatments add chemicals or cements to reduce the leachability of COCs. Mechanisms include solidification (encapsulation) or stabilization (chemical or absorptive reactions that convert COCs to less toxic or mobile forms). | Implementation at a sediment site is difficult due to submerged work requirement and restricting future Site use. | 0         | Is effective for COCs. Stabilization of sediments reduces erosion potential. May result in poor environment for benthic community. | $\otimes$ | Sediment mixing can be difficult. May require dewatering. Requires equipment for mixing. Solidified sediment would restrict future Site use.                       | \$\$\$ | Costs for solidification or stabilization affected<br>by the quantity and type of reagents added to<br>the waste and the need for specialized<br>equipment for mixing reagents with<br>sediment. | No                            | Not proven to be effective for sediments. Costly and more difficult to implement than other technologies.                                                                                            |
|                   | Enhanced Bioremediation | Microbial degradation by bacteria or fungi is enhanced by adding materials such as oxygen, nitrate, sulfate, hydrogen, nutrients, or microorganisms to the sediment.                                                                          | Can be effective for COCs.                                                                                        | 0         | Requires specific geochemical parameters to be successful (temperature, Ph, nutrient availability)                                 | $\otimes$ | Sub-aqueous implementation difficult, requires site access, staging area, and placement equipment. Impact to Site operation can be minimal with advanced planning. | \$\$\$ | Costs of enhanced bioremediation are relatively low, but several treatments and monitoring similar to MNR may be required.                                                                       | No                            | Difficult to implement sub aqueously.                                                                                                                                                                |
|                   | Oxidation/Reduction     | Chemicals are injected into sediment to act as an oxidant/electron acceptor to facilitate aerobic decomposition of organic matter.                                                                                                            | Chemical addition may create toxic conditions.                                                                    | 0         | Chemical addition may create toxic conditions. Not proven safe for subaqueous conditions.                                          | 0         | Bench-scale testing and pilot-scale testing required to determine the type, concentration, and quantity of oxidant and amendments required.                        | \$\$\$ | Costs include bench- or pilot-scale tests. Monitoring may be required.                                                                                                                           | No                            | Not proven safe for subaqueous conditions.                                                                                                                                                           |
| In Situ Treatment | Chemical Oxidation      | The addition of chemical oxidizers to sediment can cause the rapid and complete chemical destruction of many toxic organic chemicals.                                                                                                         | Effectiveness for Site COCs.                                                                                      | $\otimes$ | Addition of chemicals may form temporarily toxic conditions for benthic or aquatic organisms. COCs may become more bioavailable.   | •         | Pilot studies would be required to determine the effectiveness of specific oxidants for COCs.                                                                      | \$\$\$ | Costs include bench- or pilot-scale tests to determine effectiveness, oxidants for injection, and a delivery system. Monitoring may also be required.                                            | No                            | Chemical addition may create toxic conditions and COCs may become more bioavailable                                                                                                                  |
|                   | Phytoremediation        | Phytoremediation uses plant species to remove, transfer, stabilize, and destroy COCs in soil and sediment. Generally limited to sediments in shallow water zones and low concentrations.                                                      | Habitat restoration not likely necessary, technology not effective in open water areas of Site.                   | 0         | Effective only in shallow contaminated areas, which comprise only 1/3 of the Site area.                                            |           | Implementation involves planting and in some cases harvesting with little disruption to the Site.                                                                  | \$\$   | Primary costs are purchasing and planting applicable species. Monitoring may also be required.                                                                                                   | No                            | May be implemented for habitat restoration, but not effective alone.                                                                                                                                 |
|                   | Adsorption              | Adsorbents can be used as sediment amendments for in situ treatment of COCs. Sorption organics can take place simultaneously with a suitable combination of sorbents.                                                                         | May be useful as EMNR amendment.                                                                                  | •         | Sorption of COCs possible with amendment materials.                                                                                | •         | Amendments can be delivered to the sediment in the form of pellets or mixed into other media (i.e., sand) to resist resuspension.                                  | \$\$   | The main costs include the adsorbent material, and a method for depositing it on the surface sediment.  Monitoring may also be required.                                                         | Yes.                          | Effectiveness of chemical contaminant sequestration in sediments via addition of amendments has been demonstrated. Allows for remedial action with limited disturbance to established wetland areas. |

Table 2
Technologies Screening Summary
Focused Feasibility Study
Mud Lake West
Minnesota Pollution Control Agency

|            |                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                       |   |                                                                                                                                                                                                                              |   | Ranking                                                                                                                                                                                                                                                                    |              |                                                                                                                                                                                                                                             |                               |                                                                                                                         |
|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Category   | Technology                    | Description                                                                                                                                                                                                                     | Applicability                                                                                                                                                                                         |   | Effectiveness                                                                                                                                                                                                                |   | Implementablility                                                                                                                                                                                                                                                          |              | Relative Cost                                                                                                                                                                                                                               | Retained for<br>Consideration | Rationale                                                                                                               |
|            | Passive Dewatering            |                                                                                                                                                                                                                                 | Could be utilized if sufficient space is available off-site for long-term passive dewatering to take place. Adjacent U.S. Steel Site is currently serving this purpose for Radio Tower Bay sediments. | 0 | Passively dewatered sediments may not have low enough water content for landfill disposal, so supplemental technologies may be required.                                                                                     | • | Implementable if adjacent staging area can be located. Time frames for passive dewatering likely longer than for mechanical dewatering.                                                                                                                                    | <b>\$</b> \$ | Costs to consider include construction of a dewatering facility or adequately sized CDF.                                                                                                                                                    | Yes.                          | Appropriate for off-site disposal when used with hydruospoic amendment addition and/or sufficient dewatering timeframe. |
|            | Sediment Reworking            | Reworking sediments to promote drainage, and mixing sediments with excavation equipment can enhance passive dewatering.                                                                                                         | If a CDF is constructed, sediment reworking could be performed within the CDF.                                                                                                                        | 0 | Sediment mixing and reworking would facilitate a timelier and more complete dewatering, but may not be sufficient for off-site disposal.                                                                                     | 0 | Hydraulically pumped sediments would result in excessive water content for sediment reworking initially. May be feasible after sediments have dewatered for a period of time.                                                                                              | <b>\$</b> \$ | Cost savings are expected over passive dewatering alone due to time saved.                                                                                                                                                                  | No                            | Not appropriate for offsite disposal.                                                                                   |
| Dewatering | Hydrospoic Amendment Addition | Dredged sediments are mixed with amendments such as slags or cementitious materials to remove moisture and improve strength and stability.                                                                                      | Could be used to enhance dewatering in conjunction with passive dewatering                                                                                                                            | • | Effectiveness of amendments depend on the moisture content of removed sediment. Pre-treatment dewatering likely required due to hydraulic dredging for maximum effectiveness and to achieve desired geotechnical properties. | 0 | Would require staging, mixing, and curing areas. Amendment addition creates a greater volume and mass, which needs to be considered in disposal options. Likely requires pretreatment dewatering. May not be time and energy efficient for hydraulically pumped sediments. | \$\$         | Costs include amendment materials and mixing equipment. Costs increase with increased moisture content. Both the addition rate and the bulking factor of treated material should be considered when evaluating costs of amendment material. | No                            | Likely not time and energy efficient for hydraulically pumped sediments due to high water content of dredge slurry.     |
|            | Geotextile Tube Dewatering    |                                                                                                                                                                                                                                 | Applicable to hydraulically dredged sediments or mechancially dredged sediments if slurried and pumped to dewatering area.                                                                            |   | Proven technology and widely used for slurried dredge sediments.                                                                                                                                                             | • | Implementable if a nearby dewatering area can be located. Currently, the adjacent U.S. Steel Site is serving this purpose for Radio Tower Bay sediments.                                                                                                                   | \$\$\$       | Costs include flocculent and coagulant materials, cost of geotextile tubes and construction of staging area.                                                                                                                                | Yes.                          | Appropriate for slurried dredge sediments and large dredge volume.                                                      |
|            | Mechanical Dewatering         |                                                                                                                                                                                                                                 | Requires homogeneous waste stream provided by hydraulic dredging methods and site sediments.                                                                                                          |   | Generally works best with a homogeneous waste stream produced via hydraulic dredging. Selection of specific mechanical dewatering equipment depends on treatment or disposal methods that follow.                            | • | Faster than passive dewatering and requires less space. Production rates depend on size and quality of the dewatering device and on the solids content of the input stream.                                                                                                | \$\$\$\$     | Costs of mechanical dewatering are generally higher than passive dewatering due to the energy and equipment requirement.                                                                                                                    | No                            | Likely not cost effective for project dredge volumes.                                                                   |
|            | Rapid Dewatering Systems      | A system that continuously processes the slurry from a hydraulic dredge and separates solids into piles of debris; shells; and gravel, sand, and fines. Includes polymer addition and flocculation, which may remove some COCs. | Applicable to hydraulically dredged sediments or mechancially dredged sediments if slurried and pumped to dewatering area.                                                                            |   | Highly effective and proven technology but typically utlized for large-scale and long-term dredging operations.                                                                                                              | • | Faster than passive dewatering and requires less space. Production rates depend on size and quality of the dewatering device and on the solids content of the input stream.                                                                                                | \$\$\$\$     | Costs of mechanical dewatering are generally higher than passive dewatering due to the energy and equipment requirement.                                                                                                                    | No                            | Likely not cost effective for project dredge volumes.                                                                   |

## Table 2 Technologies Screening Summary Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                 |                    |                                                                                                                                                                                    |                                                                                                                                                     |        |                                                                                                                                                               |   | Ranking                                                                                                                                                                                                                          |                                                                                                                                                                      | Datain ad fan                 |                                                                            |
|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|
| Category        | Technology         | Description                                                                                                                                                                        | Applicability                                                                                                                                       |        | Effectiveness                                                                                                                                                 |   | Implementablility                                                                                                                                                                                                                | Relative Cost                                                                                                                                                        | Retained for<br>Consideration | Rationale                                                                  |
|                 | Filtration         | Filters remove solids and sediments from wastewater, also removing absorbed COCs from the waste stream. Flocculants may be added to the waste stream to facilitate solids removal. | Filtration is a standard method for water treatment and would be effective at removing site COCs sorbed to suspended sediments in the waste stream. | $\cup$ | Filters can be selected based on the required particulate size. Treatability study to determine if filtration is effective at reducing the COC concentration. | • | Filtration is a widely used method for<br>water treatment. Selection of the<br>filtration methods and type requires<br>engineering design and site specific<br>knowledge of the waste stream. Would<br>require a dewatering area | \$\$\$ Costs depend on change out frequency of filtration material.                                                                                                  | Yes.                          | Effective for COC removal when used in combination with liquid adsorption. |
| Water Treatment | Liquid Adsorption  | Involves pumping water through a vessel containing granular activated carbon (GAC), organoclay, or another adsorbent material; dissolved compounds to adsorb to its surface.       | Conventional adsorptive materials would remove COCs.                                                                                                | •      | Sorptive clay vessels are appropriate for treating COCs.                                                                                                      | • | Liquid adsorption systems are widely available, have a relatively small footprint, and require a relatively short timeframe for treatment.                                                                                       | \$\$\$ Costs include media, vessels, and disposal/recyling costs for media. The adsorbent must be recharged or replaced periodically. Power is required for pumping. | Yes.                          | Effective for COC removal.                                                 |
|                 | Advanced Oxidation |                                                                                                                                                                                    | Advanced oxidation is applicable for treating most organics, including COCs.                                                                        | 1 (    | Advanced oxidation is applicable for treating most organics.                                                                                                  | • | Advanced oxidation systems are widely available, have a relatively small footprint, and require a relatively short timeframe for treatment. Handling and storage of oxidizers would require special safety precautions.          | \$\$\$\$ Costs may be higher because of energy requirements to power UV lights.                                                                                      | No                            | Cost likely too high.                                                      |

|           | Effectiveness                                      | Implementability                               | Relative Cost        |
|-----------|----------------------------------------------------|------------------------------------------------|----------------------|
| $\otimes$ | Not effective at reaching RAOs                     | Not implementable at the Site                  | \$\$\$\$ - High      |
|           | Partially effective for some COCs or<br>Site areas | Difficult to implement                         | \$\$\$ - Medium-high |
| •         | Effective under certain conditions                 | Implementable, requires technical<br>knowledge | \$\$ - Moderate      |
|           | Demonstrated effective technology                  | Readily implemented                            | \$ - Low             |

# Table 3 Alternatives Summary Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Alternative                   | Alternative 1: No Action | Alternative 2: Enhanced MNR with Broadcasted Amendment                                  | Alternative 3: Enhanced MNR with Thin-Layer Amended Cover                                   | Alternative 4: Dredging with Wetland Restoration                                                                         | Alternative 5: Dredge Open<br>Water Areas of Site/Enhanced<br>MNR with Thin-Layer Amended<br>Cover in Wetland Areas |
|-------------------------------|--------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Total Present Worth Cost      | \$0                      | \$6,834,000                                                                             | \$13,878,000                                                                                | \$29,252,000                                                                                                             | \$28,594,000                                                                                                        |
| Cover/Cap Area                | 0 acres                  | 32.1 acres (0.05-meter [2-inch] amendment "cover")                                      | 32.1 acres (0.15-meter [6-inch] amended cover)                                              | 7.9 wetland acres (1.30-meter [4.3-feet] sand cover); 24.2 open water acres (0.15-meter [6-inch] sand cover)             | 7.9 wetland acres (0.15-meter [6-inch] amended cover); 24.2 open water acres (0.15-meter sand cover)                |
| Dredge Area                   | 0 acres                  | 0 acres                                                                                 | 0 acres                                                                                     | 40.1 acres (dredge 0.7 meters)                                                                                           | 31.9 acres (dredge 0.7 meters)                                                                                      |
| Cover Volume - Sand/Amendment | 0 CY/ 0 CY               | 0 CY/ 2,073 CY                                                                          | 31,060 CY/ 2,246 CY                                                                         | 45,649 CY/ 0 CY                                                                                                          | 32,089 CY/ 266 CY                                                                                                   |
| Dredge Volume                 | 0 CY                     | 0 CY                                                                                    | 0 CY                                                                                        | 155,682 CY                                                                                                               | 135,741 CY                                                                                                          |
| Construction Timeframe        | 0 weeks                  | 5 weeks                                                                                 | 22 weeks                                                                                    | 25 weeks 1st season (dredge); 25<br>weeks 2nd season (place cover;<br>excavation and disposal of dewatered<br>sediments) | 37 weeks 1st season; 19 weeks 2nd season (excavation and disposal of dewatered sediments)                           |
| Monitoring Program            | None                     | Chemical and physical sediment;<br>benthic toxicity and bioaccumulation;<br>fish tissue | Chemical and physical sediment and cover; benthic toxicity and bioaccumulation; fish tissue | None                                                                                                                     | Chemical and physical sediment and cover; benthic toxicity and bioaccumulation; fish tissue; wetland areas only     |

### Table 4 Cost Estimate - Alternative 2: Enhanced MNR with Broadcasted Amendment Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Description                                                | Unit     | ı  | Estimated Unit<br>Cost | Estimated<br>Quantity | E  | xtended Value | Р  | resent Value | Comments                                         |
|------------------------------------------------------------|----------|----|------------------------|-----------------------|----|---------------|----|--------------|--------------------------------------------------|
| Construction Costs                                         |          |    |                        |                       |    |               |    |              |                                                  |
| Mobilization/Demobilization                                | Lump Sum | \$ | 206,000                | 1                     | \$ | 206,000       | \$ | 192,523      | All construction occurs on Year 1                |
| Rent Hallett Dock #7 for Staging Area                      | Month    | \$ | 10,000                 | 3                     | \$ | 30,000        | \$ | 28,037       |                                                  |
| Install and Remove Dolphin Pilings                         | Lump Sum | \$ | 95,000                 | 1                     | \$ | 95,000        | \$ | 88,785       |                                                  |
| Purchase Amendment Materials and Stockpile at Staging Area | ton      | \$ | 4,000                  | 1243.41               | \$ | 4,973,640     | \$ | 4,648,262    |                                                  |
| Load and Barge Materials Between Staging Area and Site     | CY       | \$ | 50.00                  | 2073                  | \$ | 103,650       | \$ | 96,869       |                                                  |
| Broadcast Amendment in Wetland Areas                       | CY       | \$ | 91.00                  | 426                   | \$ | 38,766        | \$ | 36,230       |                                                  |
| Broadcast Amendment in Open Water Areas                    | CY       | \$ | 79.04                  | 1647                  | \$ | 130,182       | \$ | 121,665      |                                                  |
| Construction Monitoring/CQA and Oversight                  | Week     | \$ | 12,802                 | 5                     | \$ | 64,010        | \$ | 59,822       |                                                  |
| Monthly Operating Expenses and Site Security               | Month    | \$ | 21,000                 | 3                     | \$ | 63,000        | \$ | 58,879       |                                                  |
| Implement Institutional Controls                           | Lump Sum | \$ | 5,000.00               | 1                     | \$ | 5,000         | \$ | 4,673        | Site postings                                    |
|                                                            |          |    | -                      | SUBTOTAL              | \$ | 5,709,248     | \$ | 5,335,745    |                                                  |
| Long-Term Monitoring                                       |          |    |                        |                       |    |               |    |              |                                                  |
| Monitoring and Evaluation Report                           | Each     | \$ | 4,000                  | 6                     | \$ | 24,000        | \$ | 8,631        | Every 5 years for 30 years                       |
| Field Sampling                                             | Event    | \$ | 34,000                 | 6                     | \$ | 204,000       | \$ | 73,366       | Every 5 years for 30 years                       |
| Sample Analysis                                            | Event    | \$ | 55,520                 | 6                     | \$ | 333,120       | \$ | 119,802      | Every 5 years for 30 years                       |
|                                                            |          |    | -                      | SUBTOTAL              | \$ | 561,120       | \$ | 201,799      |                                                  |
|                                                            |          |    |                        | TOTAL                 | \$ | 6,270,368     | \$ | 5,537,544    |                                                  |
|                                                            |          |    |                        | 25% Contingency       | \$ | 324,182       | \$ | 222,321      | Contingency does not include amendment materials |
|                                                            |          |    | CONSTRUCTIO            | N GRAND TOTAL         | \$ | 6,594,550     | \$ | 5,759,865    |                                                  |
| Professional and Technical Services                        |          |    |                        |                       |    |               |    |              |                                                  |
| Remedial Design (6%)                                       | Lump Sum | \$ | 396,000                | 1                     | \$ | 396,000       | \$ | 396,000      | Year 0                                           |
| Project Management and Permitting (5%)                     | Lump Sum | \$ | 330,000                | 1                     | \$ | 330,000       | \$ | 308,411      | Year 1                                           |
| Construction Management (6%)                               | Lump Sum | \$ | 396,000                | 1                     | \$ | 396,000       | \$ | 370,093      | Year 1                                           |
|                                                            |          |    | -                      | SUBTOTAL              | \$ | 1,122,000     | \$ | 1,074,505    | -                                                |
|                                                            |          |    |                        | TOTAL                 | \$ | 7,717,000     | \$ | 6,834,000    |                                                  |

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Appendix A for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

### Table 5 Cost Estimate - Alternative 3: Enhanced MNR with Thin-Layer Amended Cover Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Description                                                | Unit     | E  | Estimated Unit<br>Cost | Estimated<br>Quantity | Ex | xtended Value | Pr | resent Value | Comments                                               |
|------------------------------------------------------------|----------|----|------------------------|-----------------------|----|---------------|----|--------------|--------------------------------------------------------|
| Construction Costs                                         |          |    |                        |                       |    |               |    |              |                                                        |
| Mobilization/Demobilization                                | Lump Sum | \$ | 213,000                | 1                     | \$ | 213,000       | \$ | 199,065      | All construction occurs on Year 1                      |
| Rent Hallett Dock #7 for Staging Area                      | Month    | \$ | 10,000.00              | 5                     | \$ | 50,000        | \$ | 46,729       |                                                        |
| Install and Remove Dolphin Pilings                         | Lump Sum | \$ | 95,000.00              | 1                     | \$ | 95,000        | \$ | 88,785       |                                                        |
| Purchase Amendment Materials and Stockpile at Staging Area | Ton      | \$ | 3,000.00               | 2246                  | \$ | 6,738,480     | \$ | 6,297,645    |                                                        |
| Purchase Sand and Stockpile at Staging Area                | CY       | \$ | 20.80                  | 31060                 | \$ | 646,054       | \$ | 603,789      |                                                        |
| Load and Barge Materials Between Staging Area and Site     | CY       | \$ | 50.00                  | 32355                 | \$ | 1,617,770     | \$ | 1,511,935    |                                                        |
| Construct Cover in Wetland Areas                           | CY       | \$ | 91.00                  | 6647                  | \$ | 604,871       | \$ | 565,300      | 6 inch cover; sand and amendment (5 percent by weight) |
| Construct Cover in Open Water Areas                        | CY       | \$ | 32.07                  | 25708                 | \$ | 824,507       | \$ | 770,568      | 6 inch cover; sand and amendment (5 percent by weight) |
| Construction Monitoring/CQA and Oversight                  | Week     | \$ | 12,802                 | 22                    | \$ | 281,644       | \$ | 263,219      |                                                        |
| Monthly Operating Expenses and Site Security               | Month    | \$ | 21,000                 | 5                     | \$ | 105,000       | \$ | 98,131       |                                                        |
| Implement Institutional Controls                           | Lump Sum | \$ | 5,000                  | 1                     | \$ | 5,000         | \$ | 4,673        | Site postings                                          |
|                                                            |          |    |                        | SUBTOTAL              | \$ | 11,181,326    | \$ | 10,449,838   |                                                        |
| Long-Term Monitoring                                       |          |    |                        |                       |    |               |    |              |                                                        |
| Monitoring and Evaluation Report                           | Each     | \$ | 4,000                  | 6                     | \$ | 24,000        | \$ | 8,631        | Every 5 years for 30 years                             |
| Field Sampling                                             | Event    | \$ | 34,000                 | 6                     | \$ | 204,000       | \$ | 73,366       | Every 5 years for 30 years                             |
| Sample Analysis                                            | Event    | \$ | 61,470                 | 6                     | \$ | 368,820       | \$ | 132,641      | Every 5 years for 30 years                             |
|                                                            |          |    |                        | SUBTOTAL              | \$ | 596,820       | \$ | 214,638      |                                                        |
|                                                            |          |    |                        | TOTAL                 | \$ | 11,778,146    | \$ | 10,664,476   |                                                        |
|                                                            |          |    |                        | 25% Contingency       | \$ | 1,259,917     | \$ | 1,091,708    | Contingency does not include amendment materials       |
|                                                            |          |    | CONSTRUCTION           | ON GRAND TOTAL        | \$ | 13,038,063    | \$ | 11,756,183   |                                                        |
| Professional and Technical Services                        |          |    |                        |                       |    |               |    |              |                                                        |
| Remedial Design (6%)                                       | Lump Sum | \$ | 782,000                | 1                     | \$ | 782,000       | \$ | 782,000      | Year 0                                                 |
| Project Management and Permitting (5%)                     | Lump Sum | \$ | 652,000                | 1                     | \$ | 652,000       | \$ | 609,346      | Year 1                                                 |
| Construction Management (6%)                               | Lump Sum | \$ | 782,000                | 1                     | \$ | 782,000       | \$ | 730,841      | Year 1                                                 |
|                                                            |          |    |                        | SUBTOTAL              | \$ | 2,216,000     | \$ | 2,122,187    | -                                                      |
|                                                            |          |    |                        | TOTAL                 | \$ | 15,254,000    | \$ | 13,878,000   |                                                        |

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Appendix A for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

### Table 6 Cost Estimate - Alternative 4: Dredging with Wetland Restoration Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Description                                                 | Unit     | Estimate<br>Cos |          | Estimated<br>Quantity | E  | xtended Value | Pi | resent Value | Comments                                                                             |
|-------------------------------------------------------------|----------|-----------------|----------|-----------------------|----|---------------|----|--------------|--------------------------------------------------------------------------------------|
| Construction Costs                                          |          |                 |          |                       |    |               |    |              |                                                                                      |
| Mobilization/Demobilization                                 | Lump Sum | \$              | 190,000  | 1                     | \$ | 190,000       | \$ | 177,570      | All construction occurs on Year 1                                                    |
| Site Work                                                   | Lump Sum | \$              | 796,000  | 1                     | \$ | 796,000.00    | \$ | 743,925      |                                                                                      |
| Rent Hallett Dock #7 for Staging Area                       | Month    | \$              | 10,000   | 9                     | \$ | 90,000        | \$ | 84,112       |                                                                                      |
| Install and Remove Dolphin Pilings                          | Lump Sum | \$              | 95,000   | 1                     | \$ | 95,000        | \$ | 88,785       |                                                                                      |
| Mechanically Dredge Sediments and Pump to Staging Area      | CY       | \$              | 17.83    | 155682                | \$ | 2,775,671     | \$ | 2,594,085    |                                                                                      |
| Turbidity Controls                                          | Lump Sum | \$              | 30,000   | 1                     | \$ | 30,000        | \$ | 28,037       |                                                                                      |
| Treat Dredge Contact Water (per CY sediment removed)        | CY       | \$              | 40.00    | 155682                | \$ | 6,227,260     | \$ | 5,819,869    | "All-in" ROM estimate including mob/demob, materials, equipment, labor, and disposal |
| Purchase Sand and Stockpile at Staging Area                 | CY       | \$              | 20.80    | 45649                 | \$ | 949,495       | \$ | 887,379      |                                                                                      |
| Load and Barge Materials Between Staging Area and Site      | CY       | \$              | 50.00    | 45649                 | \$ | 2,282,440     | \$ | 2,133,121    |                                                                                      |
| Construct Cover in Wetland Areas                            | CY       | \$              | 32.07    | 19941                 | \$ | 639,530       | \$ | 597,692      |                                                                                      |
| Construct Cover in Open Water Areas                         | CY       | \$              | 32.07    | 25708                 | \$ | 824,492       | \$ | 770,554      |                                                                                      |
| Wetland Restoration                                         | Lump Sum | \$              | 139,000  | 1                     | \$ | 139,000       | \$ | 129,907      |                                                                                      |
| Excavate and Load Dewatered Sediments                       | CY       | \$              | 6.90     | 155682                | \$ | 1,074,306     | \$ | 1,004,024    |                                                                                      |
| Transportation and Disposal of Dewatered Sediments          | Ton      | \$              | 17.66    | 217954                | \$ | 3,848,030     | \$ | 3,596,289    | 1.4 tons per cubic yard                                                              |
| Construction Monitoring/CQA and Oversight (Labor/Equipment) | Week     | \$              | 12,802   | 71                    | \$ | 908,942       | \$ | 849,479      |                                                                                      |
| Construction Monitoring and Sample Analysis                 | Lump Sum | \$              | 99,000   | 1                     | \$ | 99,000        | \$ | 92,523       |                                                                                      |
| Monthly Operating Expenses and Site Security                | Month    | \$              | 21,000   | 17                    | \$ | 357,000       | \$ | 333,645      |                                                                                      |
|                                                             |          |                 |          | SUBTOTAL              | \$ | 21,326,167    | \$ | 19,930,997   | <del>-</del>                                                                         |
|                                                             |          |                 |          | 25% Contingency       | \$ | 5,331,542     | \$ | 4,982,749    |                                                                                      |
|                                                             |          | CONS            | STRUCTI  | ON GRAND TOTAL        | \$ | 26,657,709    | \$ | 24,913,746   | <del>-</del>                                                                         |
| Professional and Technical Services                         |          |                 |          |                       |    |               |    |              |                                                                                      |
| Remedial Design (6%)                                        | Lump Sum | \$ 1,           | ,600,000 | 1                     | \$ | 1,600,000     | \$ | 1,600,000    | Year 0                                                                               |
| Project Management and Permitting (5%)                      | Lump Sum | \$ 1,           | ,330,000 | 1                     | \$ | 1,330,000     | \$ | 1,242,991    | Year 1                                                                               |
| Construction Management (6%)                                | Lump Sum | \$ 1,           | ,600,000 | 1                     | \$ | 1,600,000     | \$ | 1,495,327    | Year 1                                                                               |
|                                                             |          |                 |          | SUBTOTAL              | \$ | 4,530,000     | \$ | 4,338,318    | -                                                                                    |
|                                                             |          |                 |          | TOTAL                 | \$ | 31,188,000    | \$ | 29,252,000   |                                                                                      |

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Appendix A for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

### Table 7 Cost Estimate - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Description                                                 | Unit     | Estimated Unit<br>Cost | Estimated<br>Quantity | Ext | ended Value | Prese | ent Value | Comments                                                                                |
|-------------------------------------------------------------|----------|------------------------|-----------------------|-----|-------------|-------|-----------|-----------------------------------------------------------------------------------------|
| Construction Costs                                          |          |                        |                       |     |             |       |           |                                                                                         |
| Mobilization/Demobilization                                 | Lump Sum | \$ 214,000             | 1                     | \$  | 214,000     | \$    | 200,000   | All construction occurs on Year 1                                                       |
| Site Work                                                   | Lump Sum | \$ 796,000             | 1                     | \$  | 796,000     | \$    | 743,925   |                                                                                         |
| Rent Hallett Dock #7 for Staging Area                       | Month    | \$ 10,000              | 10                    | \$  | 100,000     | \$    | 93,458    |                                                                                         |
| Install and Remove Dolphin Pilings                          | Lump Sum | \$ 95,000              | 1                     | \$  | 95,000      | \$    | 88,785    |                                                                                         |
| Mechanically Dredge Sediments and Pump to Staging Area      | CY       | \$ 17.83               | 135741                | \$  | 2,420,149   | \$ 2  | 2,261,821 | Open water areas only                                                                   |
| Turbidity Controls                                          | Lump Sum | \$ 30,000              | 1                     | \$  | 30,000      | \$    | 28,037    |                                                                                         |
| Treat Dredge Contact Water (per CY sediment removed)        | CY       | \$ 50.00               | 135741                | \$  | 6,787,050   | \$ 6  | 6,343,037 |                                                                                         |
| Purchase Sand and Stockpile at Staging Area                 | CY       | \$ 20.80               | 32089                 | \$  | 667,449     | \$    | 623,784   | Wetland sand (95 percent of 6-inch cover by volume) and open water area sand (6 inches) |
| Purchase Amendment Materials and Stockpile at Staging Area  | Ton      | \$ 3,000.00            | 461                   | \$  | 1,384,320   | \$ 1  | 1,293,757 | Wetland areas only (5 percent of 6-inch cover by volume)                                |
| Load and Barge Materials Between Staging Area and Site      | CY       | \$ 50.00               | 32550.31204           | \$  | 1,627,516   | \$ 1  | 1,521,043 |                                                                                         |
| Construct Cover in Wetland Areas                            | CY       | \$ 91.00               | 6647                  | \$  | 604,871     | \$    | 565,300   | 6-inch amended cover                                                                    |
| Construct Cover in Open Water Areas                         | CY       | \$ 32.07               | 25708                 | \$  | 824,507     | \$    | 770,568   | 6 inches sand, no amendment                                                             |
| Excavate and Load Dewatered Sediments                       | CY       | \$ 6.90                | 135741                | \$  | 936,703     | \$    | 875,424   |                                                                                         |
| Transportation and Disposal of Dewatered Sediments          | Ton      | \$ 17.66               | 190037                | \$  | 3,355,156   | \$ 3  | 3,135,659 |                                                                                         |
| Construction Monitoring/CQA and Oversight (Labor/Equipment) | Week     | \$ 12,802.00           | 37                    | \$  | 473,674     | \$    | 442,686   |                                                                                         |
| Construction Monitoring and Sample Analysis                 | Lump Sum | \$ 99,000.00           | 1                     | \$  | 99,000      | \$    | 92,523    |                                                                                         |
| Monthly Operating Expenses and Site Security                | Month    | \$ 21,000.00           | 10                    | \$  | 210,000     | \$    | 196,262   |                                                                                         |
| Implement Institutional Controls                            | Lump Sum | \$ 5,000.00            | 1                     | \$  | 5,000       | \$    | 4,673     | Site postings                                                                           |
|                                                             |          |                        | SUBTOTAL              | \$  | 20,630,394  | \$ 19 | 9,280,742 |                                                                                         |
| Long-Term Monitoring                                        |          |                        |                       |     |             |       |           |                                                                                         |
| Monitoring and Evaluation Report                            | Each     | \$ 4,000               | 6                     | \$  | 24,000      | \$    | 8,631     | Every 5 years for 30 years                                                              |
| Field Sampling                                              | Event    | \$ 34,000              | 6                     | \$  | 204,000     | \$    | 73,366    | Every 5 years for 30 years                                                              |
| Sample Analysis                                             | Event    | \$ 37,082              | 6                     | \$  | 222,000     | \$    | 80,016    | Every 5 years for 30 years                                                              |
|                                                             |          |                        | SUBTOTAL              | \$  | 450,000     | \$    | 162,013   |                                                                                         |
|                                                             |          |                        | TOTAL                 | \$  | 21,080,394  | \$ 19 | 9,442,755 |                                                                                         |
|                                                             |          |                        | 25% Contingency       | \$  | 5,270,099   | \$ 4  | 4,860,689 |                                                                                         |
|                                                             |          | CONSTRUCTI             | ON GRAND TOTAL        | \$  | 26,350,493  | \$ 24 | 4,303,444 |                                                                                         |
| Professional and Technical Services                         |          |                        |                       |     |             |       |           |                                                                                         |
| Remedial Design (6%)                                        | Lump Sum | \$ 1,581,000           | 1                     | \$  | 1,581,000   | \$ 1  | 1,581,000 | Year 0                                                                                  |
| Project Management and Permitting (5%)                      | Lump Sum | \$ 1,318,000           | 1                     | \$  | 1,318,000   | \$ 1  | 1,231,776 | Year 1                                                                                  |
| Construction Management (6%)                                | Lump Sum | \$ 1,581,000           | 1                     | \$  | 1,581,000   | \$ 1  | 1,477,570 | Year 1                                                                                  |
|                                                             |          |                        | SUBTOTAL              | \$  | 4,480,000   | \$ 4  | 4,290,346 | •                                                                                       |
|                                                             |          |                        | TOTAL                 | \$  | 30,830,000  | \$ 28 | 8,594,000 |                                                                                         |

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Appendix A for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design. 0.22014434

# Table 8 Comparative Analysis Summary - Threshold, Balancing, and Modifying Criteria Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                                           |                                                                                                                                                                                                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation Criteria                       | Alternative 1: No Action                                                                                                                                                                                                            | Alternative 2: Enhanced MNR with Broadcasted Amendment                                                                                                                                                                                                                                                                                                                                                                                     | Alternative 3: Enhanced MNR with Thin-Layer Amended Cover                                                                                                                                                                                                                                                                                                                                                                                  | Alternative 4: Dredging with Wetland Restoration                                                                                                                                                                                                  | Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Amended Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           | Provides no achievement of protection of Human Health and the                                                                                                                                                                       | Provides a moderate achievement of protection of Human                                                                                                                                                                                                                                                                                                                                                                                     | Provides a moderate achievement of protection of Human Health                                                                                                                                                                                                                                                                                                                                                                              | Provides a high achievement of protection of Human Health and                                                                                                                                                                                     | Provides a moderate to high achievement of protection of                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | Environment as contaminant concentrations remain with minimal controls to prevent exposure.                                                                                                                                         | Health and the Environment. Sediment contaminants would be reduced through addition of an amendment material and controlled by providing an amendment layer between contaminated sediments and the water column. May require monitoring to ensure effectiveness and future additions of amendment material.                                                                                                                                | and the Environment. Sediment contaminants would be reduced through addition of an amendment material and controlled by providing an amendment layer between contaminated sediments and the water column. May require monitoring to ensure effectiveness and future additions of amendment material.                                                                                                                                       | the Environment. Only residual contaminated sediment would remain in place; however, it is anticipated that the residual contamination will not exceed the RAOs.                                                                                  | Human Health and the Environment. Sediment contaminants would be reduced through addition of an amendment material and controlled by providing an amendment layer between contaminated sediments and the water column. Includes complete removal of sediments within a portion of the Site.                                                                                                                                                                                               |
| ADADe                                     | Provides <b>no achievement</b> of ARARs since chemical-specific TBCs are not met for sediment. Location and action-specific ARAR s do not apply to this alternative.                                                                | Provides a <b>moderate achievement</b> of ARARs if implemented properly; however, COCs may not be reduced to concentrations less than RAOs in a reasonable time frame.                                                                                                                                                                                                                                                                     | Provides a <b>moderate achievement</b> of ARARs if implemented properly; however, COCs may not be reduced to concentrations less than RAOs in a reasonable time frame.                                                                                                                                                                                                                                                                     | Provides a <b>high achievement</b> of ARARs if implemented properly Contaminants above the RAOs would be removed.                                                                                                                                 | Provides a moderate to high achievement of ARARs if implemented properly; however, COCs may not be reduced to concentrations less than RAOs in a reasonable time frame.                                                                                                                                                                                                                                                                                                                   |
|                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Primary Balancing Criteria                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Long-term Effectiveness<br>and Permanence | Provides <b>no achievement</b> of long-term effectiveness and remedy is not long-term effective or permanent.                                                                                                                       | Provides a moderate achievement of long-term effectiveness and permanence because sediment contaminants would eventually be sequesterd by amendment materials and rendered unavailable to biota within the most biologically active zone; however, sequestration of contaminants at deeper intervals may not occur and monitoring and possible reapplication of amendment material may be necessary as contaminants would remain in place. | Provides a moderate achievement of long-term effectiveness and permanence because sediment contaminants would eventually be sequesterd by amendment materials and rendered unavailable to biota within the most biologically active zone; however, sequestration of contaminants at deeper intervals may not occur and monitoring and possible reapplication of amendment material may be necessary as contaminants would remain in place. |                                                                                                                                                                                                                                                   | Provides a moderate to high achievement of long-term effectiveness and permanence because sediment contaminants would eventually be sequesterd by amendment materials and rendered unavailable to biota; however, sequestration of contaminants at deeper intervals may not occur and monitoring and possible reapplication of amendment material may be necessary as contaminants would remain in place. Contaminated sediments would be permanently removed from a portion of the Site. |
|                                           | Provides a <b>low achievement</b> of this criterion as no reduction in toxicity, mobility, or volume is provided.                                                                                                                   | Provides a moderate to high achievement of this criterion as the toxicity and mobility of sediment contaminants would be reduced through addition of an amendment material near the sediment surface; however, it is possible that deeper sediment contamination could remain in place indefinitely.                                                                                                                                       | Provides a moderate to high achievement of this criterion as the toxicity and mobility of sediment contaminants would be reduced through addition of an amendment material near the sediment surface; however, it is possible that deeper sediment contamination could remain in place indefinitely.                                                                                                                                       | Provides a <b>low</b> achievement of this criterion as no reduction in toxicity, mobility, or volume is provided.                                                                                                                                 | Provides a <b>moderate achievement</b> of this criterion as the toxicity and mobility of sediment contaminants would be reduced through addition of an amendment material near the sediment surface within a portion of the Site; however, it is possible that deeper sediment contamination could remain in place indefinitely.                                                                                                                                                          |
| Short-term effectiveness                  | Provides a <b>high achievement</b> of this criterion as no actions are implemented, so no risks to the community would result from remedy implementation; however, receptors would continue to be exposed to contaminated sediment. | Provides a <b>moderate to high achievement</b> of this criterion since cover placement would temporarily displace the benthic community. Risks to workers is low.                                                                                                                                                                                                                                                                          | Provides a <b>moderate to high achievement</b> of this criterion since cover placement would temporarily displace the benthic community. Risks to workers is low.                                                                                                                                                                                                                                                                          | Provides a <b>low to moderate achievement</b> of this criterion since dredging and removal of the PBAZ would take place across the entire remedial area. Risks to Site workers is moderate, but for a longer duration of time than Alternative 5. | Provides a <b>moderate achievement</b> of this criterion since dredging would remove the PBAZ in open water areas of the Site. No dredging would occur in wetland areas. Risks to workers is moderate.                                                                                                                                                                                                                                                                                    |
|                                           | Provides a <b>high achievement</b> of this criterion as no actions would be implemented.                                                                                                                                            | Provides a <b>moderate to high achievement</b> of implementability since it only requires placement of cover material using proven methods with a low to moderate level of complexity.                                                                                                                                                                                                                                                     | Provides a <b>moderate to high achievement</b> of implementability since it only requires placement of cover material using proven methods with a low to moderate level of complexity.                                                                                                                                                                                                                                                     | Provides a <b>moderate achievement</b> of implementability since it requires a large amount of dredging and staging coordination.                                                                                                                 | Provides a <b>moderate achievement</b> of implementability since it requires a large amount of dredging and staging coordination.                                                                                                                                                                                                                                                                                                                                                         |
| Cost (1)                                  | \$0                                                                                                                                                                                                                                 | \$6,834,000                                                                                                                                                                                                                                                                                                                                                                                                                                | \$13,878,000                                                                                                                                                                                                                                                                                                                                                                                                                               | \$29,252,000                                                                                                                                                                                                                                      | \$28,594,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modifying Criteria                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| State Support / Agency<br>Acceptance      | TBD                                                                                                                                                                                                                                 | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBD                                                                                                                                                                                                                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Community Acceptance                      | TBD                                                                                                                                                                                                                                 | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBD                                                                                                                                                                                                                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Notes

(1) Cost are presented as Present Value.

M = Million

\* Not included in numerical comparison on (Table 5-2).

TBD = To Be Determined

#### Table 9

#### Comparative Analysis Summary - Green Sustainable Remediation Criteria Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Evaluation Criteria                | Alternative 1: No Action                                 | Alternative 2: Enhanced MNR with Broadcasted Amendment               | Alternative 3: Enhanced MNR with Thin-Layer Amended Cover                                                                           | Alternative 4: Dredging with Wetland Restoration                                                                                                            | Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Amended Cover in Wetland Areas                                                          |
|------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                          |                                                                      | Threshold Criteria                                                                                                                  |                                                                                                                                                             |                                                                                                                                                             |
| Green House Gas (GHG)<br>Emissions | None.                                                    |                                                                      | Total GHG emissions produced during cover material delivery and placment and equipment mobilization related to sampling activities. | Total GHG emissions produced during mob/demob activities, cover material delivery and placement, dredging, and mobilization related to sampling activities. | Total GHG emissions produced during mob/demob activities, cover material delivery and placement, dredging, and mobilization related to sampling activities. |
| Toxic Chemical Usage and Disposal  | None.                                                    | No toxic chemicals are used or disposed.                             | No toxic chemicals are used or disposed.                                                                                            | No toxic chemicals are used or disposed.                                                                                                                    | No toxic chemicals are used or disposed.                                                                                                                    |
| Energy Consumption                 | None.                                                    | · · ·                                                                | Fossil fuels are limited to the equipment mobilization for sampling activities and cover placement operations.                      | Fossil fuels are limited to mob/demob activities, cover material delivery and placement, dredging, and mobilization related to sampling activities.         | Fossil fuels are limited to mob/demob activities, cover material delivery and placement, dredging, and mobilization related to sampling activities.         |
| Use of Alternative Fuels           | None.                                                    | Alternative fuels could be used to run heavy construction equipment. | Alternative fuels could be used to run heavy construction equipment.                                                                | Alternative fuels could be used to run heavy construction equipment.                                                                                        | Alternative fuels could be used to run heavy construction equipment.                                                                                        |
| Water Consumption                  | None.                                                    | No water consumption is necessary.                                   | Little water consumption is necessary.                                                                                              | Little water consumption is necessary.                                                                                                                      | Little water consumption is necessary.                                                                                                                      |
| Waste Generation                   | None.                                                    | No waste generation.                                                 | No waste generation.                                                                                                                | Contaminated sediments, dewatering pad materials, media                                                                                                     | Contaminated sediments, dewatering pad materials, media                                                                                                     |
| GSR Criteria Summary               | Provides a <b>high achievement</b> of the GSR criterion. | Provides a moderate to high achievement of the GSR criterion.        | Provides a <b>moderate to high achievement</b> of the GSR criterion.                                                                | Provides a <b>low achievement</b> of the GSR criterion.                                                                                                     | Provides a <b>low achievement</b> of the GSR criterion.                                                                                                     |

(1) Cost are presented as Present Value.M = Million

\* Not included in numerical comparison on (Table 5-2).

TBD = To Be Determined

## Table 10 Numerical Comparative Analysis Summary Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                                                             |                          | Alternative 2: Enhanced MNR with Alternative 3: Enhanced MNR with Alternative 4: Dredging with |                          | Alternative 4: Dredging with | Alternative 5: Dredge Open Water<br>Areas/Enhanced MNR with Thin-<br>Layer Amended Cover in Wetland |
|-------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|
| Evaluation Criteria                                         | Alternative 1: No Action | Broadcasted Amendment                                                                          | Thin-Layer Amended Cover | Wetland Restoration          | Areas                                                                                               |
| Overall Protection of Human Health & Environment            | 0                        | 2                                                                                              | 2                        | 3                            | 2.5                                                                                                 |
| ARARs                                                       | 0                        | 2                                                                                              | 2                        | 3                            | 2.5                                                                                                 |
| Long-term Effectiveness and Permanence                      | 0                        | 2                                                                                              | 2                        | 3                            | 2.5                                                                                                 |
| Reduction of Toxicity, Mobility or Volume through Treatment | 1                        | 2.5                                                                                            | 2.5                      | 1                            | 2                                                                                                   |
| Short-term effectiveness                                    | 3                        | 2.5                                                                                            | 2.5                      | 1.5                          | 2                                                                                                   |
| Implementability                                            | 3                        | 2.5                                                                                            | 2.5                      | 2                            | 2                                                                                                   |
| Cost (1)                                                    | 3                        | 3                                                                                              | 2.5                      | 0.5                          | 1                                                                                                   |
| State Support / Agency Acceptance                           | TBD                      | TBD                                                                                            | TBD                      | TBD                          | TBD                                                                                                 |
| Community Acceptance                                        | TBD                      | TBD                                                                                            | TBD                      | TBD                          | TBD                                                                                                 |
| Total Numerical Value                                       | 10                       | 16.5                                                                                           | 16                       | 14                           | 14.5                                                                                                |

#### Notes

(1) Cost are presented as Present Value.

Ratings are based on achievement of criterion: no achievement, low achievement; moderate achievement; and high achievement.

Scores are based on 0 = no achievement; 1 = low achievement; 2 = moderate achievement; and 3 = high achievement.

Scoring for cost are based on the following cost breakpoints: > \$ 20 million = low achievement; \$5-20 Million = moderate achievement; and < \$5 million = high achievement.

GSR criteria not included in this numerical comparison.

See Table 6 for a discussion of each criterion.

### **Appendix A**

2017 Mud Lake West Technical Memorandum

# Final Mud Lake West Technical Memorandum

# **Mud Lake West Duluth, Minnesota**

**June 2017** 



## Final Mud Lake West Technical Memorandum

Mud Lake West Duluth, Minnesota

**June 2017** 



Prepared for:



520 Lafayette Road North St. Paul, Minnesota 55155

Prepared by:



Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103

### **Table of Contents**

| 1.0 INTRODUCTION                                                              | 1  |
|-------------------------------------------------------------------------------|----|
| 1.1 Purpose and Objectives                                                    | 1  |
| 1.2 Report Organization                                                       | 2  |
| 1.3 Site Setting                                                              | 2  |
| 1.4 Investigation History and COIs                                            | 2  |
| 2.0 FIELD ACTIVITIES AND METHODS                                              | 3  |
| 2.1 Sediment Sampling Overview                                                |    |
| 2.1.1 Ponar Equipment Description and Procedure                               | 3  |
| 2.1.2 Russian Peat Borer Equipment Description and Procedure                  | 3  |
| 2.1.3 Equipment Decontamination                                               |    |
| 2.2 Ex Situ Benthic Macroinvertebrate Tissue Sampling Overview                |    |
| 2.3 Community Assessment Equipment Description and Procedure                  |    |
| 2.4 Sample Processing                                                         |    |
| 2.4.1 Sample Collection and Analysis                                          | 6  |
| 2.4.1.1 Sediment Physical/Chemical Analysis                                   |    |
| 2.4.1.2 Community Assessments      2.4.1.3 Toxicity & Bioaccumulation Testing |    |
| 2.4.2 Rinsate Blanks                                                          |    |
| 2.4.3 Waste Characterization and Disposal                                     |    |
| 2.5 Data Interpretation                                                       |    |
| 2.5.1 Treatment of Non-Detect Data                                            |    |
| 2.5.2 Sediment Quality Targets (SQTs)                                         |    |
| 2.5.3 Data Qualifiers                                                         |    |
| 2.5.4 Sample Interval Categorization                                          | 8  |
| 2.6 Sediment Quality Guidelines                                               | 9  |
| 3.0 SUMMARY OF RESULTS                                                        | 10 |
| 3.1 Sample Depth and Sediment Recovery                                        | 10 |
| 3.2 Sediment Chemistry Data                                                   | 10 |
| 3.2.1 Metals (Sediment)                                                       | 10 |
| 3.2.1.1 Nickel                                                                |    |
| 3.2.1.2 Zinc                                                                  |    |
| 3.2.1.3 Dioxins/Furans                                                        |    |
| 3.3 Physical Sediment Characterization                                        |    |
| 3.3.1 Grain Size                                                              |    |
| 3.3.2 Total Organic Carbon                                                    |    |
| 3.4 Tissue Chemistry Data                                                     |    |
| 3.4.1 Bioaccumulation Tissue Data                                             |    |
| 3.4.1.1 Metals                                                                |    |
| 3.4.2 Toxicity Testing                                                        |    |
| 3.5 Community Assessment Comparison Data                                      |    |
|                                                                               |    |

|                                                                              | Widd L                                                                                                                                                                                                                                                    | ake West – Dulutili, Mily |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4.0                                                                          | DATA QUALITY REVIEW                                                                                                                                                                                                                                       |                           |
| 4.1                                                                          | Analytical Data QA/QC Review                                                                                                                                                                                                                              |                           |
| 4.2                                                                          | Interpretation of Concentrations Less Than Detection Limits                                                                                                                                                                                               | 19                        |
| 4.3                                                                          | Summary                                                                                                                                                                                                                                                   | 19                        |
| 5.0                                                                          | DISCUSSION AND CONCLUSION                                                                                                                                                                                                                                 | 20                        |
| 6.0                                                                          | REFERENCES                                                                                                                                                                                                                                                | 21                        |
| List of                                                                      | Tables                                                                                                                                                                                                                                                    |                           |
| Table            | Sample Locations Core Summary Analytical Testing Parameters Summary Total Organic Carbon Results Community Assessment Metals Results Dioxin/furans Results - Sediment Dioxin/furans Results - Tissue Bioaccumulation Summary                              |                           |
| List of                                                                      | f Figures                                                                                                                                                                                                                                                 |                           |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure | <ul> <li>Site Map</li> <li>Sample Locations</li> <li>Nickel SQT Results</li> <li>Zinc SQT Results</li> <li>TEQ KM Fish SQT Results</li> <li>Nickel Bioaccumulation &amp; Toxicity Results</li> <li>Zinc Bioaccumulation &amp; Toxicity Results</li> </ul> |                           |
| List of                                                                      | Appendices                                                                                                                                                                                                                                                |                           |
| Appen<br>Appen<br>Appen<br>Appen                                             | dix B GLEC Report<br>dix C Disposal Documentation                                                                                                                                                                                                         |                           |

### **Acronyms and Abbreviations**

| %       |                                   | MPCA       | Minnesota Pollution Control         |
|---------|-----------------------------------|------------|-------------------------------------|
|         | micrograms per kilogram           |            | Agency                              |
| amsl    | above mean sea level              | MS         | matrix spike                        |
| AOC     | Area of Concern                   |            | matrix spike/matrix spike duplicate |
| ASTM    | American Society for Testing and  | MSD        | matrix spike duplicate              |
|         | Materials                         |            | mean sea level                      |
| BARR    | Barr Engineering Company          |            | National Climatic Data Center       |
|         | Bay West LLC                      |            | not established                     |
| BAZ     | bioactive zone                    | ng         |                                     |
|         | below sediment surface            |            | National Ocean Service              |
|         | beneficial use impairments        |            | National Pollutant Discharge        |
|         | Citizen Advisory Committee        |            | Elimination System                  |
|         | chain of custody                  |            | Pace Analytical Services, Inc.      |
|         | contaminants of concern           |            | polycyclic aromatic hydrocarbon     |
|         | Constituent of Interest           |            | polychlorinated biphenyl            |
|         | conceptual site model             |            | polychlorinated biprierryi          |
|         |                                   |            | dibenzo-p-dioxins/dibenzo furans    |
| DIVIQIR | Duluth Missabe & Iron Range       |            |                                     |
| DDT     | Railway                           |            | probable effects concentration      |
|         | direct push technology            |            | probable effect concentration       |
|         | data quality objectives           | DUIC       | quotient Public Health Consultation |
|         | diesel-range organics             |            |                                     |
|         | estimation detection limit        |            | quality assurance                   |
|         | Environmental Laboratory          |            | Quality Assurance Project Plan      |
|         | Accreditation Program             | QC         |                                     |
| ESB     | Equilibrium Partitioning Sediment |            | Remedial Action Plan                |
|         | Benchmarks                        |            | Resource Conservation and           |
|         | feasibility study                 |            | Recovery Act                        |
|         | Field Sampling Plan               |            | remedial investigation              |
| GC/MS   | gas chromatograph/mass            | ROW        |                                     |
|         | spectrometer                      |            | Sediment Assessment Area            |
| GPR     | ground penetrating radar          |            | St. Louis River                     |
| GPS     | Global Positioning System         | SLRCAC     | St. Louis River Citizen Advisory    |
| GRO     | gasoline-range organics           |            | Committee                           |
| HH      | human health                      | SOMAT      | SOMAT Engineering                   |
| ID      | identification                    |            | standard operating procedure        |
| IDW     | investigation derived waste       |            | Sediment Quality Guidelines         |
|         | International Great Lakes Datum   | SQT        | Sediment Quality Target             |
|         | of 1985                           |            | 2,3,7,8-tetrachlorodibenzo-p-       |
| IJC     | International Joint Commission    |            | dioxin                              |
|         | Kaplan Meier                      | TEQ        | toxicity equivalent                 |
|         | laboratory control sample         |            | toxicity equivalent per kilogram    |
|         | laboratory control sample         |            | total organic carbon                |
|         | duplicates                        | U.S        |                                     |
| I DB    | left descending bank              |            | Unified Soil Classification System  |
|         | low water datum                   |            | United States Environmental         |
|         | Minnesota Department of Health    |            | Protection Agency                   |
|         | method detection limit            |            | United States Geological Survey     |
|         | milligrams per kilogram           |            | volatile organic compound           |
|         | Mud Lake East                     |            | Wisconsin Department of Natural     |
|         | Mud Lake East<br>Mud Lake West    |            | •                                   |
| mm      |                                   |            | Resources World Health Organization |
|         |                                   | v v I I\ / | VV(A)(1)   COIII   A (A (I)/A (I))  |

#### 1.0 INTRODUCTION

Bay West LLC (Bay West) has completed a Technical Memorandum to support the Mud Lake West (MLW), also designated as SAA #83 (the Site), Sediment Remedial Investigation Report completed in April 2016 (2016 RI) and the MLW Focused Feasibility Study (FFS), completed in June 2016 by Bay West under contract with the Minnesota Pollution Control Agency (MPCA). The FFS will be updated with the results from this investigation; resulting in a Final 2017 FFS. Limited field activities were conducted as part of ongoing work to investigate the extent and volume of contaminated sediment within MLW, and to evaluate risks to human health and the environment due to potential impacts to the benthic community. A site location map is included as **Figure 1**, and a site map is included as **Figure 2**.

This Technical Memorandum describes investigation field activities conducted during the mobilization event that occurred in October of 2016, presents chemical, physical, bioaccumulation, and toxicity site data collected during this event, discusses data results, conclusions, and presents recommendations. This Technical Memorandum is intended to be a supplement to the 2016 RI and FFS; therefore, only data from the October 2016 investigation will be presented in this document.

#### 1.1 Purpose and Objectives

Historical sediment contamination in the St. Louis River Area of Concern (SLR AOC) has resulted in impaired uses, including degradation of bottom-feeding invertebrate communities, increased incidence of fish tumors and other abnormalities, fish consumption advisories, and restrictions on dredging, resulting in nine beneficial use impairments (BUIs; MPCA, 2008). BUIs are a change in the chemical, physical or biological integrity of the Great Lakes system sufficient to cause any one of the 14 established use impairments, or other related uses, such as the microbial objective for waters used for body contact recreational activities (2013 Joint Commission). The MPCA and WDNR are currently working together to implement a comprehensive long-term plan to restore beneficial use and delist BUIs in the SLR AOC. Many of the BUIs in the AOC are linked to the presence of sediment contaminants. Some sediment-derived contaminants also appear suspended in the water column and are carried by the river to Lake Superior.

The purpose of this Technical Memorandum was to collect new and supplement existing information gathered during the 2016 RI regarding sediment quality at the Site, including chemical, bioaccumulation, toxicity, and physical site data. Data collected will ultimately be used to develop a course for remedial action, if needed, to restore and delist the Site BUIs.

Specific objectives for the October 2016 investigation are to:

- Provide site-specific information regarding benthic organisms and the toxicity of the contaminants of concern (COCs; i.e., nickel, zinc, and dioxins/furans as defined within the FFS) to benthic organisms.
- Conduct limited benthic macroinvertebrate community assessments to assess the "health" of the benthic community at locations with elevated COC concentrations and to provide an additional line of evidence regarding contaminant impacts at the Site using the sediment quality triad approach.
- Collect and analyze sediment samples for Site COCs to corroborate findings of toxicity and bioaccumulation testing and to further define the vertical extent of contamination at the Site.
- Refine the 2016 RI conceptual site model (CSM) that evaluates contaminant fate and transport, and provides a comparison between SLR AOC-specific risk-based screening

values and existing conditions to identify unacceptable risks to human health and/or the environment.

#### 1.2 Report Organization

**Section 1.0 – Introduction** – This section provides a brief overview of the Saint Louis River AOC, MLW, and summarizes previous investigations and COIs relative to the Site.

**Section 2.0 – Field Activities and Methods** – This section describes the field activities and methods utilized.

**Section 3.0 – Summary of Results** – This section summarizes the results of the data collection, including chemical and physical site data.

**Section 4.0 – Data Quality Review** – This section describes the data quality review process and the results of quality assurance (QA)/quality control (QC) review of chemical data.

**Section 5.0 – Discussion** – This section discusses the results and conclusions.

**Section 6.0 – References**– This presents references for the report.

#### 1.3 Site Setting

This document serves as a supplement to the 2016 RI, which provides a full description of the site settings and history.

#### 1.4 Investigation History and COIs

Numerous investigations of sediment quality have occurred at the Site, resulting in various report documents, which have been summarized in the 2016 RI. Prior to reading this document, a review of the 2016 RI should be completed to provide a better understanding of the Site history. Those investigations and reports not summarized in the 2016 RI are summarized as follows.

### Data Gap Investigation Field Sampling Plan (FSP) Field Sampling Plan, Mud Lake West, prepared by Bay West, October 2016 (FSP)

The FSP was completed to provide sampling protocol to collect new data regarding toxic and bioaccumulative effects of Site sediments on benthic organisms and to assist in determining the relationship between SQT exceedances and observed toxicity at the Site. To assess the benthic macroinvertebrate community "health" at locations with elevated COC concentrations and to provide additional lines of evidence regarding contaminant impacts at the Site using the sediment quality triad approach. Finally, sediment samples were collected and analyzed for Site COCs to corroborate findings of toxicity and bioaccumulation testing and to further define the vertical extent of contamination at the Site.

#### Focused Feasibility Study (FFS), Mud Lake West, prepared by Bay West, June 2016

Nickel, zinc, and dioxins/furans were carried forward as Site COCs within the FFS. The FFS identified five remedial action alternatives which were developed to meet remedial action objectives (RAOs) for the Site. A comparative analysis of the alternatives presented in the FFS identified Alternative 2: Enhanced Natural Recovery (EMNR) with Broadcasted Amendment and Alternative 3: EMNR with Thin Layer Amended Cover as viable alternatives to be implemented at the Site. However, the FFS recommends additional studies to determine the most appropriate design alternative including: Complete pilot scale amendment testing to determine the most appropriate amendment and amendment application rates for the site, complete a physical sediment characteristic assessment to aid in designing remedial actions at the Site, and evaluate a potential dewatering area near the Site, should Alternative 4 or 5 be selected.

#### 2.0 FIELD ACTIVITIES AND METHODS

Sampling activities and procedures were conducted in accordance with the October 2016 MLW Site-Specific Data Gap Investigation Field Sampling Plan (FSP), the 2014 Bay West Quality Assurance Project Plan (QAPP) for the RI at the SLR Areas of Concern, and applicable Bay West standard operating procedures (SOPs). The following section describes applicable physical site data, sediment sampling and procedure, and analytical results evaluation procedure used in the October 2016 investigation.

All sample locations were pre-determined and aerial background maps were loaded onto a Trimble Global Positioning System (GPS) unit with sub-meter accuracy prior to site mobilization. The GPS was used to navigate as close to the pre-determined sample locations as possible, and GPS locational data was also collected at each of the sampled locations

#### 2.1 Sediment Sampling Overview

October 4, 2016 Bay West conducted a field sampling event within MLW. In total, 3 bulk sediment samples were collected from surface sediment for toxicity and bioaccumulation testing, community assessment, and physical and chemical analysis. These samples were collected from locations BW16MLW-001 through BW16MLW-003.

Deep interval sediment samples were collected for physical and chemical analysis at the following locations: BW16MLW-005 through BW16MLW-010. No sample was collected from BW16MLW-004, this location was inaccessible due to its location in the marsh. The following sections contain additional information on the sampling event, and the methods, procedures, and equipment used during sediment sample collection, if not already covered in the FFS or FSP. Sample locations are shown on Figure 3.

#### 2.1.1 Ponar Equipment Description and Procedure.

All surface sediment samples were collected using a Wildco Petite Ponar grab sampler (ponar). The ponar was used to collect sediments from the sediment/water interface for submission as a toxicity/bioaccumulation testing media, for benthic community assessments, and for physical and chemical analysis.

The ponar has a maximum sediment penetration depth of 2.75 inches (0.07 meter) and a total jaw volume of 2.4 liters. Due to the small size of the sampler, multiple "grabs" of sediment were performed at each location to collect a sufficient volume of sediment for testing/analysis (up to 5 gallons of sediment per location). After each grab of sediment, the team repositioned the sampler so that the next grab was collected approximately 0.25-0.50 meter away from the previous grab. This method of sediment collection was repeated to ensure that the final composite samples were representative of a single in-situ sediment elevation (i.e., 0-0.07 meter).

Collected sediment was transferred directly from the ponar into clean, laboratory supplied, 5-gallon buckets. Once a sufficient volume of sediment had been collected, overlying water was decanted and the sediment was thoroughly homogenized within the buckets. A sub-sample was then collected and placed within Ziploc-type bags (double bagged) for grain size analysis.

#### 2.1.2 Russian Peat Borer Equipment Description and Procedure

A Russian peat borer was used to collect deep sediment samples. The Russian peat borer is described in the 2016 RI Report along with associated sampling procedures utilized in the field. Specific sampling procedure utilized during the October sampling event is described as follows.

Once the boat was anchored above the sample location, the water depth was recorded and electrical tape used to mark out the desired length of each push. For instance, if water depth was recorded at 1.0 meter, electrical tape was used to mark distances of 3.0 meters on the sampler's extension rods, as measured from the bottom of the side filling chamber.



Photo showing discrete sample collected with Russian Peat Borer.

Deep interval sediment samples were collected using the Russian Peat Borer from varied depths depending on the location and the depth of refusal. To collect the deep interval samples, the sampler was advanced into the sediment until the mark reached the water's surface, indicating that the sampler had been advanced a distance of 2.0 meters into the sediment. The "T" handle was then turned to collect the sample, and the sampler retrieved. The sampler was laid horizontal within the boat and the side filling chamber was opened. The sample was then retrieved from the bottommost 0.25 meter. All samples were placed directly into separate Ziploc bags and labeled with identifying information, and later stored on ice until they could be processed.

#### 2.1.3 Equipment Decontamination

After each grab or coring attempt, all materials in contact with sediments were washed with lake water to remove visible sediments (i.e., Wildco Petite Ponar and chamber of Russian Peat Borer). After each sample location, sampling equipment was decontaminated using Alconox, water and a stiff bristled brush.

#### 2.2 Ex Situ Benthic Macroinvertebrate Tissue Sampling Overview

Sediment was also collected for the purpose of performing laboratory controlled 28-day (28-d) Lumbriculus variegatus bioaccumulation testing. These samples will be referred to as "ex situ" tissue samples. Sediment was collected using the Ponar grab sampler and stored in laboratory supplied buckets. The sediment was submitted to the laboratory for bioaccumulation analysis, and chemical and physical analysis. Sediment for ex situ analysis was collected at BW16MLW-001, BW16MLW-002, and BW16MLW-003.

#### 2.3 Community Assessment Equipment Description and Procedure

Community assessments were completed by collecting approximately three ponar grabs of sediment from each sample location. The sediment was sieved through a 425-micron (35 mesh) screen. All material captured on the screen was placed into white plastic trays with fresh, cool

water. Benthic organisms were removed from the tray, separated by organism type, and placed into smaller ice cube trays.



Photo showing a community assessment in progress.

Search and removal of organisms from each plastic tray took place for 15 minutes to retain consistency across all sample locations. A count of each species identified was recorded on community assessment worksheets, a field notebook, or an electronic log. Benthic organisms were released back into the water once assessments were complete. Additional information regarding benthic community assessments is included in the Bay West Site-Specific Benthic Macroinvertebrate Community Assessment SOP found in the FSP, and as an appendix to the QAPP addendum. Sediment for community assessments was collected at BW16MLW-001, BW16MLW-002, and BW16MLW-003.

#### 2.4 Sample Processing

Collected sediment was brought back to shore for processing for submittal to a laboratory as a media during toxicity and bioaccumulation testing, for physical and chemical analysis, and for community assessment. Sediment to be used as media and for physical and chemical analysis from each location either remained in the 5-gallon bucket or was transferred into the appropriate laboratory supplied containers, dependent on sampling parameters for that particular sample location. Once a sample was collected and the container sealed, the container (not the lid) was labeled with the sample location ID, sample date, and time of collection using an indelible ink marker.

Sediment samples were processed and submitted for chemical analysis in accordance with the approved site-specific FSPs.

All sample processing was conducted following the sampling event. The following activities were conducted during sample processing:

- Sample collection information (e.g., location ID, sample time, water depth, push, recovery, interval depth, etc.) was transferred from each 5-gallon bucket or Ziploc bag to Bay West's Sediment Sampling Log Sheet;
- Each sample was photographed during field sampling or during processing;
- Visual and physical observations of the sample were recorded on the log sheet in accordance with the site-specific FSPs following the American Society for Testing and

Materials (ASTM) D 2488 and the United States Department of Agriculture (USDA) descriptor classification, including sample color, material composition, grain size, firmness, cohesiveness, odor, and any other notable observations such as sheen.

- Analytical sample intervals were determined for core samples in accordance with the site-specific FSPs;
- Sample material was placed in appropriate laboratory-supplied containers, labeled, and placed on ice for delivery to either Pace Analytical Services, Inc. (Pace), Axys, or Great Lakes Environmental Center, Inc. (GLEC); and
- All reusable sampling tools used for homogenization or other purposes were decontaminated after processing in a solution of Alconox and distilled water using the procedures described in **Section 2.4**.

#### 2.4.1 Sample Collection and Analysis

#### 2.4.1.1 Sediment Physical/Chemical Analysis

Samples for Vertical Delineation of Site Contaminants

Sediment samples from BW16MLW-005 through BW16MLW-010 were collected to gather additional vertical sediment chemical data using a Russian Peat Borer sampler as detailed in **Section 2.1.2**.

Samples collected for vertical delineation of contamination were submitted to the following laboratories using the following methods:

- Dioxins/furans as congeners (Pace, United States Environmental Protection Agency [USEPA] 8290A);
- Nickel and zinc (Pace, USEPA 6020A); and
- TOC (Pace, USEPA 9060A).

Four of the six samples were submitted for the following:

• Grain size (Pace, ASTM D422 with hydrometer).

All samples were collected, prepared, and handled in accordance with the FSP, project QAPP and QAPP addendum, and Bay West SOPs.

The specific analysis for each sample is detailed in **Table 1**. Each sample was accounted for on the chain of custody (CoC) completed during sample processing. All samples were stored on ice and delivered to the appropriate laboratory.

QC samples collected by the processing team consisted of duplicates and matrix spike/matrix spike duplicates (MS/MSDs). Field duplicates and matrix MS/MSD samples were collected for sediments at a frequency of 10 percent (%) and 5%, respectively, for dioxins/furans, nickel, and zinc. No duplicate or MS/MSD sample was collected for TOC or grain size analysis. Field equipment rinsate blanks were collected at a frequency of 1 per day for each day the ponar sampler was used and analyzed for nickel and zinc. No duplicates or MS/MSD samples were collected in relation to benthic tissue analysis due to constraints in available tissue mass and project budget.

#### 2.4.1.2 Community Assessments

Site benthic macroinvertebrates were collected from locations BW16MLW-001, BW16MLW-002, and BW16MLW-003, for community assessments. Community assessments were completed as described in **Section 2.3** and the community assessment findings are discussed in **Section 3.5**.

#### 2.4.1.3 Toxicity & Bioaccumulation Testing

Site sediments from locations BW16MLW-001 through BW16MLW-003 were collected for in situ toxicity and bioaccumulation testing as outlined in the FSP. Sediments were contained within and delivered to the GLEC Laboratory in laboratory-supplied containers. The specific analysis for each sample is detailed in **Table 1**.

The GLEC laboratory conducted the following tests:

- 10-d Chironomus tentans toxicity testing (USEPA Method 100.2 and laboratory SOP);
- 28-d Hyalella azteca toxicity testing (USEPA Method 100.1 and laboratory SOP); and
- 28-d *Lumbriculus variegatus* bioaccumulation testing (USEPA Method 100.3 and laboratory SOP).

Following the 28-d *Lumbriculus variegatus* bioaccumulation testing, *Lumbriculus variegatus* tissue was extracted from the sediment substrate by GLEC. Subsamples from the sediment samples and *Lumbriculus variegatus* tissue samples were submitted by GLEC to the following laboratories using the following methods:

- Tissue Analysis Dioxins/furans as congeners and lipids content (Axys Analytical, USEPA 1613B or 8290A);
- Sediment Analysis Dioxins/furans as congeners (Pace, USEPA 1613B or 8290A);
- Tissue and Sediment Analysis Nickel (Pace; USEPA method such as 6020A);
- Tissue and Sediment Analysis Zinc (Pace, USEPA method such as 6020A);
- Sediment Analysis TOC (Pace; USEPA method such as 9060A); and
- Sediment Analysis Grain size (Pace, ASTM D422 with hydrometer).

Toxicity and bioaccumulation testing samples were collected, prepared, and handled in accordance with the laboratory's SOPs on collection and handling of environmental samples. For a detailed description of toxicity and bioaccumulation testing, procedures, and results see the December 16, 2016, GLEC Draft Report: Results for the 10-day *Chironomus dilutus*, 28-day *Hyalella azteca*, and the 28-day *Lumbriculus variegatus* Whole Sediment Toxicity Testing, Bay West LLC; Mud Lake West-St. Louis River AOC Project (GLEC Report) in **Appendix B**.

#### 2.4.2 Rinsate Blanks

Rinsate blank samples were collected by pouring distilled water over non-disposable sampling equipment and into bottles provided by the analytical laboratory to verify proper decontamination of sampling equipment. Two rinsate blanks were collected for Mud Lake West sampling. One was collected from the ponar and one was collected from the Russian Peat Borer to verify proper decontamination of sampling equipment. The rinsate blanks were labeled BW16-RB01-100416 and BW16-RB02-100516 and analyzed for mercury. Mercury was not detected at concentrations exceeding the laboratory reporting limit for both rinsate blanks.

#### 2.4.3 Waste Characterization and Disposal

IDW consisting of excess sediment and disposable sampling supplies was placed in two 55-gallon steel drums along with the investigation-derived waste (IDW) generated during the sampling event and two additional sampling events completed at Thomson and Scanlon Reservoirs. A total of two drums of waste were generated during the three sampling events. An IDW sample was collected from the drums at the completion of the sampling and submitted for analysis of landfill disposal parameters. The drums were transported to Bay West, under MPCA approval, and stored until IDW sample results were obtained. All IDW was characterized as

non-hazardous waste and disposed of by Veolia ES Technical Solutions. Disposal documentation is included in **Appendix C**.

#### 2.5 Data Interpretation

#### 2.5.1 Treatment of Non-Detect Data

Scaling censored (non-detected) data was performed for dioxin/furan toxic equivalents (TEQ) calculations for sediment and tissue with the goal of eliminating false positives and false negatives from the final data set.

For sediment and tissue, the dioxin/furan data was input into a USEPA TEQ Kaplan Meier (KM) calculator which includes calculations that support a simple, quasi-sensitivity analysis that examines the effect of various ways of handling non-detect or rejected (R-flagged) analytical data results within a sample's congener profile. The TEQ KM Calculator utilized 1998 World Health Organization (WHO) toxicity equivalence factors (TEFs) for fish (TEQ KM Fish value). The calculator was used to determine the TEQ KM Fish value for dioxin/furan sediment analysis, as described in the 2016 RI Report.

#### 2.5.2 Sediment Quality Targets (SQTs)

Numerical SQTs adopted for use in the SLR AOC to protect benthic invertebrates can be used throughout Minnesota as benchmark values for making comparisons to sediment chemistry measurements. Level 1 and Level 2 SQTs for the protection of sediment-dwelling organisms are available for 8 trace metals, 13 individual polycyclic aromatic hydrocarbons (PAHs), total PAHs (all 13 priority PAHs), total polychlorinated biphenyls (PCBs), and 10 organochlorine pesticides. In addition, Level 1 and Level 2 SQTs for COCs were adopted for the protection of fish, as insufficient information is available for sediment-dwelling organisms. SQTs are highly useful when evaluating risk for a specific compound or a group of compounds (i.e., total PCBs and total PAHs).

Contaminant concentrations below the Level 1 SQTs are unlikely to have harmful effects on sediment-dwelling organisms (i.e., benthic invertebrates). Contaminant concentrations above the Level 2 SQTS are more likely to result in harmful effects to benthic invertebrates (MPCA, 2007). Based on conversations with the MPCA, a qualitative comparison value midway between the Level 1 SQTs and Level 2 SQTs (i.e., midpoint SQT) will be used as conservative criteria to identify, rank, and prioritize sediment-associated contaminants within the Site.

#### 2.5.3 Data Qualifiers

Routine analytical laboratory procedures involve evaluation and quantitation of concentrations at levels below the stated reporting limits, but greater than the stated method detection limit (MDL) or estimation detection limit (EDL; for dioxins). In these cases, data are qualified with a "J." All estimated concentrations were reported as detects for the purposes of summations, calculations and risk-screening evaluation.

#### 2.5.4 Sample Interval Categorization

Sediment samples were collected from horizons (A, B, and C) within the sediment core, in accordance with the FSP. Horizons were determined by core length, recovery, and the observation of anthropogenic materials, such as sheens, staining, or non-native debris. Because of varying core lengths and recovery, sediment sample collection depth was not consistent between sample locations. In order to spatially evaluate analytical results and sediment screening criteria comparisons between sample locations, sediment samples were categorized into depth intervals. Sediment intervals and the methods for categorizing sediment samples into intervals were determined through discussions with the MPCA. Sediment samples

were categorized into four intervals based on the depth of collection. The intervals focus on the stratigraphy of contamination within the bioactive zone (BAZ), which is assumed to be the upper meter of sediment. The intervals are as follows:

- 0.0 to 0.15 meter;
- 0.15 to 0.50 meter;
- 0.50 to 1.00 meter; and
- >1.0 meter.

Each sediment sample was categorized into one of the three intervals if at least 25% of the sample length was within an interval. For example, if a sample was collected from 0.30 to 0.55 meter below the sediment surface, the sample would be categorized in the 0.15- to 0.50-meter category. Occasionally, 25% of a sample was collected within two intervals. For example, if a sample was collected from 0.64 to 1.15 meters, 71% of the upper portion of the sample is within the 0.50- to 1.00-meter interval, and 29% of the lower portion of the sample is within the >1.00-meter interval. In these cases, the sample was considered in the discussion and evaluation of both the 0.5- to 1.00-meter interval and the >1.00-meter interval.

#### 2.6 Sediment Quality Guidelines

Consensus-based SQGs, community assessment comparison/evaluation procedures, and chemical comparison/evaluation procedures are discussed in detail in the 2016 RI Report and the FSP.

#### 3.0 SUMMARY OF RESULTS

This section summarizes the results obtained from field activities.

#### 3.1 Sample Depth and Sediment Recovery

The sampling objective at the Site, as outlined within the FSP, was to collect surface sediment samples and deep sediment samples.

As stated in **Section 2.1.1.1**, surface sediment samples were collected using a Wildco Petite Ponar grab sampler and Jon boat. Grab sample recovery was a 100%.

As stated in **Section 2.1.1.2**, deep sediment samples were collected using a Russian Peat Borer sampler and Jon boat. The sampler was advanced from the sediment surface to a depth of at least 1 meter bss at all locations. Refusal was encountered at four of the six locations sampled. Refusal appeared to be due to a clay layer encountered below 1.85 meter bss, creating increased resistance as the sampler was advanced. The average sediment recovery was approximately 80%, achieving sediment recovery goals for the Site.

Completed sediment collection logs and photographs of sediment prior to processing are included in **Appendix A**. **Table 2** through **Table 4** provide a summary of sample locations, water depths, sediment elevations, type of sample collected, analytical parameters, and number of samples from each location.

#### 3.2 Sediment Chemistry Data

The following discussion presents the summarized analytical results from 9 samples obtained from 9 locations collected during the October 2016 sampling event at the Site.

**Table 1** provides a summary of sediment samples and laboratory analyses selected for each sample. Analytical results are presented in **Table 7** and **Table 8**, and laboratory analytical reports are included in **Appendix D**. The following sections present a summary of analytical results.

#### 3.2.1 Metals (Sediment)

Sediment samples were analyzed for nickel and zinc and results for the samples were screened against their respective SQT values. **Table 7** presents the detailed analytical results for nickel and zinc. The following sections summarize the analytical results and screening criteria comparisons for each metal analyte with respect to the following depth intervals: 0.0 to 0.15 meters, 0.15 to 0.5 meters, 0.5 to 1.0 meters, and >1.0 meter. An explanation of sample interval calculations can be found in the 2016 RI Report. **Figures 4** through **5** present analytical results for nickel and zinc, respectively, at distinct intervals compared to their respective SQTs.

#### 3.2.1.1 Nickel

Analytical results for nickel were compared to the respective SQTs. The following table summarizes the results for nickel.

| Sample Name                        | Sample Interval (meters) | Result (mg/kg) |
|------------------------------------|--------------------------|----------------|
| BW16MLW-001-0.0-0.15               | 0.0-0.15                 | 32.5           |
| BW16MLW-002-0.0-0.15               | 0.0-0.15                 | 40             |
| BW16MLW-003-0.0-0.15               | 0.0-0.15                 | 50.6           |
| BW16MLW-005-0.90-1.15 <sup>1</sup> | 0.5-1.0 and >1.0         | 62             |
| BW16MLW-006-1.75-2.0               | >1.0                     | 39             |
| BW16MLW-007-1.6-1.85               | >1.0                     | 28.4           |

| Sample Name           | Sample Name Sample Interval (meters) |      |
|-----------------------|--------------------------------------|------|
| BW16MLW-008-1.15-1.40 | >1.0                                 | 38.7 |
| BW16MLW-009-1.75-2.0  | >1.0                                 | 13.5 |
| BW16MLW-010-1.45-1.70 | >1.0                                 | 17.1 |

Notes:

<sup>1</sup>25% of the sample was collected within two intervals, the sample was evaluated for both intervals, as described in **Section 2.5.4**.

SQT – Sediment Quality Target

Values highlighted in yellow indicate concentration exceeding SQT Level I (23 mg/kg)

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (36 mg/kg)

Values highlighted in red indicate concentration exceeding SQT Level II (49 mg/kg)

Level 1 SQT exceedances occurred in sample BML16MLW-001 and BML16MLW-007. SQT Midpoint was exceeded in sample BML16MLW-002, BML16MLW-006, and BML16MLW-008. Level 2 SQT was exceeded in sample BML16MLW-003 and BML16MLW-005. The maximum concentration of nickel (62 mg/kg) was identified at location BML16MLW-005.

#### 3.2.1.2 Zinc

Analytical results for zinc were compared to the respective SQTs. The following table summarizes the results for zinc.

| Sample Name                        | Sample Interval (meters) | Result (mg/kg) | Results Qualifier |
|------------------------------------|--------------------------|----------------|-------------------|
| BW16MLW-001-0.0-0.15               | 0.0-0.15                 | 165            |                   |
| BW16MLW-002-0.0-0.15               | 0.0-0.15                 | 185            |                   |
| BW16MLW-003-0.0-0.15               | 0.0-0.15                 | 328            |                   |
| BW16MLW-005-0.90-1.15 <sup>1</sup> | 0.5-1.0 and >1.0         | 176            |                   |
| BW16MLW-006-1.75-2.0               | >1.0                     | 108            |                   |
| BW16MLW-007-1.6-1.85               | >1.0                     | 84.5           |                   |
| BW16MLW-008-1.15-1.40              | >1.0                     | 67.3           |                   |
| BW16MLW-009-1.75-2.0               | >1.0                     | 27.4           | J                 |
| BW16MLW-010-1.45-1.70              | >1.0                     | 30.9           | J                 |

Notes:

<sup>1</sup>25% of the sample was collected within two intervals, the sample was evaluated for both intervals, as described in **Section 2.5.4**.

J - estimated value

SQT - Sediment Quality Target

Values highlighted in yellow indicate concentration exceeding SQT Level I (120 mg/kg)

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (290 mg/kg)

Values highlighted in red indicate concentration exceeding SQT Level II (460 mg/kg)

Level 1 SQT exceedances occurred in sample BML16MLW-001, BML16MLW-002, and BML16MLW-005. SQT Midpoint was exceeded in sample BML16MLW-003. No sample exceeded the Level II SQT. The maximum concentration of zinc (328 mg/kg) was identified at location BML16MLW-003.

#### 3.2.1.3 Dioxins/Furans

The following tables summarize the TEQ KM Fish results for Site sediment samples, calculated as described in the 2016 RI Report and compared to their respective SQTs.

**Table 8** presents a complete table of Site dioxins/furans results. When estimated values were reported by the laboratory, those values were used. All other dioxin/furans results were handled as outlined in 2016 RI Report, when calculating the TEQ KM Fish values.

Analytical results were evaluated for the following depth intervals: 0.0 to 0.15 meters, 0.15 to 0.5 meters, 0.5 to 1.0 meters, and <1.0 meter. An explanation of sample interval calculations can be found in the 2016 RI Report. **Figures 6** presents TEQ KM Fish SQT results.

| Sample Name                        | Sample Interval (meters) | Results <sup>1</sup> | Result Qualifier |
|------------------------------------|--------------------------|----------------------|------------------|
| BW16MLW-001-0.0-0.15               | 0.0-0.15                 | 25.7                 |                  |
| BW16MLW-002-0.0-0.15               | 0.0-0.15                 | 23.9                 |                  |
| BW16MLW-003-0.0-0.15               | 0.0-0.15                 | 50.6                 |                  |
| BW16MLW-005-0.90-1.15 <sup>2</sup> | 0.5-1.0 and >1.0         | 0.93                 | J                |
| BW16MLW-006-1.75-2.0               | >1.0                     | 4.72                 | J                |
| BW16MLW-007-1.6-1.85               | >1.0                     | 9.33                 | J                |
| BW16MLW-008-1.15-1.40              | >1.0                     | 1.41                 | J                |
| BW16MLW-009-1.75-2.0               | >1.0                     | 3.4642               | J                |
| BW16MLW-010-1.45-1.70              | >1.0                     | 1.4571               | J                |

Notes:

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

SQT - Sediment Quality Target

TEQ – dioxin toxicity equivalency

Values highlighted in yellow indicate concentration exceeding SQT Level I (0.85 ng TEQ/kg)

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (11.2 ng TEQ/kg)

/alues highlighted in red indicate concentration exceeding SQT Level II (21.5 ng TEQ/kg)

TEQ values calculated using the USEPA Advanced Kaplan Meier TEQ Calculator Dioxins analyzed by EPA Method SW8290

For TEQ KM Fish, Level 1 SQT exceedances occurred in BW16MLW-005 through BM16MLW-010. Level II exceedances occurred in BW16MLW-001 through BM16MLW-003. The maximum concentration of TEQ KM FISH (50.546 ng TEQ/kg) was identified in the 0.15 to 0.5-meter interval at location BW16MLW-003.

#### 3.3 Physical Sediment Characterization

Surface sediment samples collected at the Site generally contained brown to dark brown silt loam, consisting of up to 15% fibrous woody debris.

Deeper sediment samples collected at the Site, up to a maximum depth of 2.00 meters, generally contained brown to dark brown silty peat, consisting of up to 100% fibrous woody debris. A firm tan clay to silty clay was observed within the bottommost sediments in core samples collected from locations BW16MLW-005 through BW16MLW-008. Based on the depth of sampler advancement at these locations, the tan clay layer depth varied between 1.15 meters bss at location BW15MLW-005 and 2.00 meters at location BW16MLW-006.

#### 3.3.1 Grain Size

Seven samples were analyzed for grain size distribution to meet site investigation objectives presented in the site-specific FSP for MLW. The following table summarizes grain size analysis.

<sup>1 -</sup> Result units are ng TEQ/kg

<sup>&</sup>lt;sup>2</sup>25% of the sample was collected within two intervals, the sample was evaluated for both intervals, as described in **Section 2.5.4**.

J - estimated value

Grain size distribution charts are presented in laboratory analytical reports included in **Appendix D**.

| Sample ID<br>(depth interval |                 |              | Perce<br>Grav |      | Percent<br>Sand |        | Percent Percent Sand Fines |      |      | d10              |
|------------------------------|-----------------|--------------|---------------|------|-----------------|--------|----------------------------|------|------|------------------|
| [meters])                    | Classification  | +3<br>inches | Coarse        | Fine | Coarse          | Medium | Fine                       | Silt | Clay | Percent<br>Finer |
| BW16MLW-001<br>(0 – 0.15)    | Silt            | 0            | 0             | 0    | 1               | 2      | 6                          | 78   | 13   | 99.0             |
| BW16MLW-002<br>(0.0 – 0.15)  | Sandy Silt      | 0            | 0             | 0    | 0               | 0      | 1                          | 80   | 19   | 100.0            |
| BW16MLW-003<br>(0.0 – 0.15)  | Silt with Sand  | 0            | 0             | 0    | 0               | 2      | 1                          | 70   | 27   | 100              |
| BW16MLW-005<br>(0.90 – 1.15) | Silty with Sand | 0            | 0             | 0    | 1               | 9      | 12                         | 42   | 36   | 99.0             |
| BW15MLW-006<br>(1.75 – 2.00) | Silty with Sand | 0            | 0             | 0    | 0               | 12     | 12                         | 41   | 35   | 100.0            |
| BW15MLW-007<br>(1.6 – 1.85)  | Silty with Sand | 0            | 0             | 0    | 0               | 7      | 14                         | 52   | 27   | 100              |
| BW15MLW-008<br>(1.15 – 1.40) | Silt with Sand  | 0            | 0             | 0    | 0               | 10     | 16                         | 47   | 27   | 100.0            |

#### 3.3.2 Total Organic Carbon

TOC analyses were performed on all sediment samples collected. The TOC results are summarized in **Table 5** and as follows.

TOC results ranged from 26,100 to 153,000 milligrams per kilogram (mg/kg); the average TOC value was 87,922 mg/kg.

| Sample Name           | Sample Interval (meters) | Result (mg/kg) |
|-----------------------|--------------------------|----------------|
| BW16MLW-001-0.0-0.15  | 0.0-0.15                 | 26,100         |
| BW16MLW-002-0.0-0.15  | 0.0-0.15                 | 24,500         |
| BW16MLW-003-0.0-0.15  | 0.0-0.15                 | 30,200         |
| BW16MLW-005-0.90-1.15 | 0.5-1.0 and >1.0         | 104,000        |
| BW16MLW-006-1.75-2.0  | >1.0                     | 85,300         |
| BW16MLW-007-1.6-1.85  | >1.0                     | 117,000        |
| BW16MLW-008-1.15-1.40 | >1.0                     | 99,200         |
| BW16MLW-009-1.75-2.0  | >1.0                     | 152,000        |
| BW16MLW-010-1.45-1.70 | >1.0                     | 153,000        |

Notes:

mg/kg – milligram/kilogram

#### 3.4 Tissue Chemistry Data

#### 3.4.1 Bioaccumulation Tissue Data

Site sediment samples were collected by Bay West and provided to GLEC where they were used as growing media for benthic macroinvertebrates. GLEC performed the bioaccumulation test by exposing *Lumbriculus variegatus* to sediment samples collected from the Site for a period of 28 days. A 4-day survival screening was performed at the start of the 28-day

bioaccumulation test to determine if the bioaccumulation test would be successful. Following the 28-day growth period, the *Lumbriculus variegatus* was extracted from the sediment samples for tissue analysis. GLEC or other specified laboratories completed tissue analysis on the benthic macroinvertebrates to determine potential bioaccumulative impacts of sediment COCs on benthic macroinvertebrates. The following sections present the bioaccumulation study tissue results and sediment chemistry results for the sediment samples used as growing media. The following table presents a summary of the general physical characteristics of the sediment samples used in the bioaccumulation study and the results of the 4-day survival screening test.

| Sample ID                                                                                                            | Background<br>L. variegatus<br>Tissue Day 0<br>10/25/2016 | West Bear Skin<br>Laboratory<br>Control | BW16MLW-001-<br>0.0-0.15 | BW16MLW-002-<br>0.0-0.15 | BW16MLW-003-<br>0.0-0.15 |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--|
|                                                                                                                      |                                                           | Sediment 0                              | Chemistry Results        |                          |                          |  |
| Percent<br>Moisture (%)                                                                                              | NA                                                        | 86.6                                    | 84.8                     | 79.9                     | 87.7                     |  |
| Mean Total<br>Organic<br>Carbon<br>(mg/kg-dry)                                                                       | NA                                                        | 14900                                   | 26100                    | 24500                    | 30200                    |  |
| Lumbriculus                                                                                                          | variegatus 4-Day                                          | Toxicity Screening                      | Sediment Tests Con       | ducted October 14 -      | - October 18, 2016       |  |
| 4-Day<br>Screening<br>Test Percent<br>Survival <sup>1</sup>                                                          | NA                                                        | 100                                     | 97.5                     | 97.5                     | 95.0                     |  |
| Lumbriculus variegatus 28-Day Bioaccumulation Whole Sediment Toxicity Tests Conducted October 25 – November 22, 2016 |                                                           |                                         |                          |                          |                          |  |
| Average Wet Depurated Weight (g)                                                                                     | NA                                                        | 18.27 15.08 15.60                       |                          | 15.48                    |                          |  |

Notes:

Initiated 28-day test with 18 grams of L. variegatus per replicate

Percent Moisture: Method ASTM D2974-87 and a reporting limit of 0.10%

Total Organic Carbon: Method EPA 9060 in quadruplicate and a reporting limit of 100 mg/kg dry

NA – not applicable

mg/kg - milligram per kilogram

#### 3.4.1.1 Metals

The following table, **Table 10**, and **Figures 7** through **9** summarize bioaccumulation data provided in the GLEC Report, see the GLEC Report for additional details.

| Lumbriculus variegatus 28-Day Bioaccumulation Tests Conducted October 25 – November 22, 2016  Metals |                                                           |                                                                                                           |      |      |      |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|------|------|--|--|--|
| Sample ID                                                                                            | Background<br>L. variegatus<br>Tissue Day 0<br>10/25/2016 | variegatus Laboratory Sur Day 0 Control BW16MLW-001- BW16MLW-002- BW16MLW-00-0.0-0.15 BW16MLW-00-0.0-0.15 |      |      |      |  |  |  |
| Nickel (mg/kg)                                                                                       | 1.00                                                      | 1.10                                                                                                      | 0.72 | 2.10 | 0.46 |  |  |  |
| Zinc (mg/kg)                                                                                         | 21.4                                                      | 18.2                                                                                                      | 18.0 | 17.0 | 21.3 |  |  |  |
|                                                                                                      | Corresponding Sediment Chemistry                          |                                                                                                           |      |      |      |  |  |  |
| Nickel (mg/kg)                                                                                       | NA                                                        | NA                                                                                                        | 32.5 | 40.0 | 50.6 |  |  |  |
| Zinc (mg/kg)                                                                                         | NA                                                        | NA                                                                                                        | 165  | 185  | 328  |  |  |  |

<sup>&</sup>lt;sup>1</sup>Replicates initiated with 10 organisms each

Notes:

Nickel & Zinc: Method: EPA 6020; Preparation Method: EPA 3050B

NA – not applicable

g – grams

mg/kg – milligram per kilogram

Values highlighted in yellow indicate sediment concentration exceeding SQT Level I

Values highlighted in orange indicate sediment concentration exceeding the midpoint between SQT Level I and SQT

Level II

Values highlighted in red indicate sediment concentration exceeding SQT Level II

#### 3.4.1.2 Dioxins/Furans

The following table summarizes the TCDD equivalent results for Site tissue samples with respect to the dioxin TEQ KM for fish. The TEQ KM calculator for Fish could not be used as described in the 2016 RI Report because the data set had too few detected congeners to make the calculation statistically sound. To develop a TEQ KM Fish value range for the data set the 1998 TEFs were used and the calculation was completed three times as follows: All non-detect results were set equal to the detection limit and multiplied by the TEFs, all non-detect results were set equal to half of the detection limit and multiplied by the TEFs, and finally all non-detect results were set equal to zero and multiplied by the TEFs. The following table summarizes the TEQ KM for Fish data ranges developed and is also presented in **Table 9** and in **Figure 9**.

| Lumbriculus variegatus 28-Day Bioaccumulation Tests Conducted October 25 – November 22, 2016  Dioxins/Furans |                                                           |                                         |                          |                          |                          |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--|
| Sample ID                                                                                                    | Background<br>L. variegatus<br>Tissue Day 0<br>10/25/2016 | West Bear Skin<br>Laboratory<br>Control | BW16MLW-001-<br>0.0-0.15 | BW16MLW-002-<br>0.0-0.15 | BW16MLW-003-<br>0.0-0.15 |  |
| No-Detect =<br>Detection<br>Limit                                                                            | 0.20                                                      | 0.20                                    | 0.59                     | 0.58                     | 0.95                     |  |
| Non-detect = 0.5* Detection Limit                                                                            | 0.11                                                      | 0.11                                    | 0.55                     | 0.54                     | 0.92                     |  |
| Non-detect = Zero                                                                                            | 0.01                                                      | 0.00                                    | 0.51                     | 0.50                     | 0.90                     |  |
| Corresponding Sediment Chemistry                                                                             |                                                           |                                         |                          |                          |                          |  |
| TEQ KM Fish                                                                                                  | NA                                                        | NA                                      | 25.70                    | 23.85                    | 50.55                    |  |

Notes:

ng TEQ/kg – nanograms of dioxin toxicity equivalency per kilogram

Values highlighted in yellow indicate concentration exceeding SQT Level I (0.85 ng TEQ/kg)

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (11.2 ng TEQ/kg)

Values highlighted in red indicate concentration exceeding SQT Level II (21.5 ng TEQ/kg)

TEQ values for sediment calculated using the USEPA Advanced Kaplan Meier TEQ Calculator NA – not analyzed

Tissue TEQ KM Fish data ranges for BW16MLW-001 through BW16MLW-003 ranged from 0.50 to 0.95 ng TEQ/kg. Background and Control data ranged from 0.00 to 0.20 ng TEQ/kg. Corresponding sediment data at each sample location exceed the Level II TEQ KM Fish SQT.

#### 3.4.2 Toxicity Testing

Site sediment samples were collected by Bay West and provided to GLEC where they were used as growing media for benthic macroinvertebrates. The following table presents percent survival rates for two benthic macroinvertebrate species, *Chronomus dilutes* and *Hyallela Azteca*, grown in Site sediment supplied to GLEC as compared to a control sample from West Bear Skin Lake. The *Chronomus dilutes* were exposed to the sediment samples for 10 days and the *Hyallela Azteca* were exposed to the sediment samples for 28 days. No significant differences between the survival rates are apparent for either species. **Table 11** and **Figures 7** through **9** summarize toxicity data provided in the GLEC Report, see the GLEC Report for additional details.

| Sample ID  Sample ID  Control                                                                  |         | BW16MLW-001-<br>0.0-0.15 | BW16MLW-002-<br>0.0-0.15 | BW16MLW-003-<br>0.0-0.15 | Water Only<br>Secondary<br>Control |  |  |
|------------------------------------------------------------------------------------------------|---------|--------------------------|--------------------------|--------------------------|------------------------------------|--|--|
| Chronomus dilutus 10-Day Whole Sediment Toxicity Tests Conducted October 14 – October 24, 2016 |         |                          |                          |                          |                                    |  |  |
| Average <sup>1</sup><br>Ash-Free-Dry Weight<br>(AFDW) (mg)                                     | 0.99208 | 1.41660                  | 1.33997                  | 1.26304                  | 0.94908                            |  |  |
| Biomass <sup>2</sup> Weight (AFDW) (mg)                                                        | 0.96762 | 1.37525                  | 1.28650                  | 1.19675                  | 0.9235                             |  |  |
| 10-Day Percent<br>Survival                                                                     | 97.5    | 97.5                     | 96.3                     | 95.0                     | 97.5                               |  |  |
| Hyallela azteca 28-Day Whole Sediment Toxicity Tests Conducted October 19 – November 16, 2016  |         |                          |                          |                          |                                    |  |  |
| Average <sup>1</sup><br>Ash-Free-Dry Weight<br>(AFDW) (mg)                                     | 0.16913 | 0.18442                  | 0.16769                  | 0.18462                  | 0.33775                            |  |  |
| Biomass <sup>2</sup> Weight (AFDW) (mg)                                                        | 0.16700 | 0.179737                 | 0.16075                  | 0.17550                  | 0.33387                            |  |  |
| 28-Day Percent<br>Survival                                                                     | 98.8    | 97.5                     | 96.3                     | 96.3                     | 98.8                               |  |  |

Notes:

Average Ash-Free-Dry Weight (AFDW) of Chironomus dilutus at test initiation = .33313 mg

Average Dry Weight of Hyallela azteca at test initiation = 0.01950 mg

<sup>&</sup>lt;sup>1</sup>Average Ash-Free-Dry-Weight (AFDW) is the total ash-free-dry weight of surviving organisms

<sup>&</sup>lt;sup>2</sup>Biomass weight is the total Ash-Free-Dry-Weight of surviving organisms divided by the initial number of organisms

#### 3.5 Community Assessment Comparison Data

Community assessments were completed as described in **Section 2.3**. A summarized results table is presented as follows, the full table with specific benthic macroinvertebrate species identified can be found in **Table 6**.

|                                           | Collection Information |                          |                                          |                                              | Result                             |                                     |
|-------------------------------------------|------------------------|--------------------------|------------------------------------------|----------------------------------------------|------------------------------------|-------------------------------------|
| Location                                  | Date                   | Number of<br>Ponar Grabs | Approximate<br>Collection Area<br>(cm²)¹ | Community<br>Assessment<br>Duration<br>(min) | Biotic Index<br>Score <sup>2</sup> | Biotic Health<br>Score <sup>3</sup> |
| BW16MLW-001                               | 10/4/2016              | 3                        | 675                                      | 15                                           | 1.6                                | Poor                                |
| BW16MLW-002                               | 10/4/2016              | 3                        | 675                                      | 15                                           | 1.3                                | Poor                                |
| BW16MLW-003                               | 10/4/2016              | 3                        | 675                                      | 15                                           | 1                                  | Poor                                |
| Boulder Lake Reservoir (Reference Sample) |                        |                          |                                          |                                              |                                    |                                     |
| BW16BLR-001                               | 9/20/2016              | 3                        | 675                                      | 15                                           | 0.0                                | Poor                                |

Notes:

cm = centimeters

min = minutes

 $<sup>^{1}</sup>$ Each grab = 15.2 cm x 15.2 cm (225 cm $^{2}$ )

<sup>&</sup>lt;sup>2</sup>Biotic Index Score Calculation: http://watermonitoring.uwex.edu/pdf/level1/datasheets/data-Biotic2014.pdf

<sup>&</sup>lt;sup>3</sup>Biotic Health Score: Good: 2.6–2.5, Fair: 2.1–2.5, and Poor: 2.0–1.0

#### 4.0 DATA QUALITY REVIEW

#### 4.1 Analytical Data QA/QC Review

In accordance with the St. Louis River Sediment Area of Concern QAPP dated July 2014 and the QAPP Addendum dated February 2015, data verification was performed on the following organic and inorganic analyses: total metals, dioxin/furans, and TOC. A cursory review was performed on grain size. All data was collected and samples were analyzed by Pace, Axys, or GLEC, MDH Environmental Laboratory Accreditation Program (ELAP)-accredited laboratories. The following table describes methods and percentage of total samples for each parameter.

| Parameter        | Media    | Total Samples | Percentage | Analytical Method      |
|------------------|----------|---------------|------------|------------------------|
| Nickel           | Sediment | 9             | 100%       | SW-846 Method<br>6020A |
| Zinc             | Sediment | 9             | 100%       | SW-846 Method<br>6020A |
| Dioxins/Furans   | Sediment | 9             | 100%       | SW-846 Method<br>8290A |
| TOC              | Sediment | 9             | 100%       | SW-846 Method<br>9060A |
| Grain size       | Sediment | 7             | 100%       | ASTM D422              |
| Percent Moisture | Sediment | 9             | 100%       | ASTM D2974-07          |
| Nickel           | Tissue   | 3             | 100%       | SW-846 Method<br>6020A |
| Zinc             | Tissue   | 3             | 100%       | SW-846 Method<br>6020A |
| Dioxins/Furans   | Tissue   | 3             | 100%       | SW-846 Method<br>8290A |

In general, the areas covered by the data verification process included reviewing the following:

- CoC records:
- Technical holding times and preservation;
- Laboratory and field QC reporting forms (method blanks, rinsate blanks, surrogates, laboratory control samples [LCSs], laboratory control sample duplicates [LCSDs], and MS/MSDs, as appropriate);
- · Required analytical methods;
- Reporting limits;
- Case narrative;
- · Completeness of Results; and
- Data usability (compliance with data quality objectives [DQOs]).

Level II Laboratory reports were provided by the laboratory and reviewed, so the following areas were not covered by the data verification:

- Tune summaries (gas chromatograph/mass spectrometer [GC/MS] only);
- Initial calibrations;
- Continuing calibrations;
- Internal standards;

- Target compound/analyte ID;
- Target Compound/analyte quantitation; and
- System performance.

As per the approved QAPP, data verification was performed by a Bay West Chemist and documented using the MPCA Laboratory Data Review Checklist. Data verification was performed by comparing the contents of the data packages and QA/QC results to the requirements in the QAPP, the respective analytical methods, and the laboratory SOPs. Additional qualifiers were added, as needed, and summarized in the MPCA Laboratory Data Review Checklists, included in **Appendix D**. All metals samples analyzed by SW-846 Method 6020A were analyzed at 20-fold dilution in accordance with the Pace SOP.

Field duplicates, MS/MSDs, method blanks, and rinsate blanks were collected and/or analyzed at required frequencies specified in the approved QAPP as follows. Field duplicates met or exceeded the required frequencies of 10% for the samples analyzed for selected metals and dioxins/furans. MS/MSDs analysis met or exceeded the required frequency of 5% for selected metals and dioxins/furans. Rinsate blanks were collected daily for selected metals as discussed in the FSP. Analytes detected in samples at concentrations less than 10% of the method blank or rinsate blank concentrations were qualified "U" as undetected.

Samples results were considered estimated if the sample results were associated with LCSs/LCSDs or MS/MSDs recoveries outside QC limits. When LCS or MS/MSD recoveries were biased low, both detected and undetected sample results were flagged with a "J" or "UJ" to indicate that the concentration or reporting limit is considered estimated. When LCS or MS/MSD recoveries were biased high, only the detected results were qualified "J" as estimated. Only detected results were qualified "J" when relative percent differences were high in field duplicates, MS/MSDs, and LCS/LCSDs. All non-detect values were flagged with a "U."

#### 4.2 Interpretation of Concentrations Less Than Detection Limits

The MPCA Guidance: Laboratory Quality Control and Data Policy requires concentrations less than the reporting limit but above the MDLs to be qualified with a "J" because they are considered estimated. Samples below the MDL were qualified with a "U." Bay West replaced all "E", "I", and "P" Pace qualifiers with a "J" flag to indicate that the sample concentrations are considered estimated.

Since guidance for calculations of toxicity quotients do not prescribe which scaling factor for non-detect results should be used, non-detection values were set equal to one-half of the reporting limit for metals, PAHs, and Dioxin/Furans.

#### 4.3 Summary

Overall, no significant data quality discrepancies were observed. All data were verified and found acceptable, as qualified, and met DQOs. Additional information regarding data verification can be found in Laboratory Data Review Checklists in **Appendix D**.

#### 5.0 DISCUSSION AND CONCLUSION

The following section describes the results obtained during the limited field activities.

All Community Assessment Comparisons completed for BW16MLW – 001 through 003 surface sediment indicated that the sediment health at these locations was poor. Macroinvertebrate species diversity was low and species consisted only of pollutant tolerant macroinvertebrates. However, this assessment was completed at the very end of the growing season which may have skewed the outcome of the assessment; therefore, this data is considered inconclusive. Additional assessments would need to be completed during the growing season to develop a clear conclusion of sediment quality at these locations.

Sediment samples were collected and analyzed for Site COCs to further define the vertical extent of contamination at the Site. Zinc and dioxin/furan sediment concentrations in deep interval samples did not exceed Midpoint SQTs, indicating deposition of the contaminants occurred relatively recently. Nickel sediment concentrations in deep interval samples exceeded the Midpoint SQT in 50% of the samples, indicating deposition of nickel-contaminated sediment occurred.

28-Day *Lumbriculus variegatus* bioaccumulation Testing was completed on the surface sediment samples from BW16MLW-001 to BW16MLW-003. Results showed similar levels of both nickel and zinc in tissue as compared to control samples. Nickel in tissue exposed to site sediments ranged from 0.46 to 2.10 mg/kg while control and background ranged from 1 to 1.10 mg/kg. Zinc in tissue exposed to site sediments ranged from 17 to 21.3 mg/kg while control and background ranged from 18.2 to 21.4 mg/kg. Nickel and zinc in site sediments do not appear to bioaccumulate in benthic tissue, indicating that these contaminants would not migrate up the food chain to higher trophic levels.

28-Day *Lumbriculus variegatus* Bioaccumulation Testing results for dioxins/furans ranged from 0.51-0.95 ng TEQ/kg, while the control and background ranged from 0.00 to 0.20 ng TEQ/kg. TEQ KM Fish results for BW16MLW-001 to BW16MLW-003 were at least twice the level of dioxin/furans as compared to the background/control. These results indicate that dioxins/furans appear to bioaccumulate in benthic tissue could migrate up the food chain to higher trophic levels that consume benthic organisms.

Toxicity Testing completed on surface sediments with Midpoint SQT exceedances were completed. *Chronomus dilutus* 10-Day Toxicity Tests and *Hyallela azteca 28*-Day Toxicity Tests both had survival rates ranging between 97.5% and 95%. Control survival rates for the same Toxicity Tests ranged from 98.8% to 97.5%. There was no significant difference in survival rate between the two indicating that observed Midpoint SQT exceedances do not appear to have an impact on survival rates for benthic health at Mud Lake.

Since site sediments do not appear to be toxic to benthic organisms, and because nickel and zinc do not appear to bioaccumulate in benthic tissue, nickel and zinc do not appear to pose a significant risk to the environment and should no longer be considered COCs for the Site. The exposure pathway to high trophic levels appears to be complete for dioxins/furans, which could pose a risk to the environment; therefore, dioxin/furans should remain a COC for Mud Lake West.

#### 6.0 REFERENCES

- Bay West LLC, 2014. Final Quality Assurance Project Plan, St. Louis River Sediment Areas of Concern, Version 00. July.
- Bay West LLC, 2016. Final Sediment Remedial Investigation Report, Mud Lake West, Duluth, Minnesota. April.
- Bay West LLC, 2016. Final Focused Feasibility Study, Mud Lake West, Duluth, Minnesota.
- Bay West LLC, 2016. Final Data Gap Investigation Sampling Plan, Mud Lake West, Duluth, Minnesota, June.
- Crane, J.L., D.D. MacDonald, C.G. Ingersoll, D.E. Smorong, R.A. Lindskoog, C.G. Severn, T.A. Berger, and L.J. Field. 2000. Development of a framework for evaluating numerical Sediment Quality Targets (SQTs) and sediment contamination in the St. Louis River Area of Concern. U.S. Environmental Protection Agency (USEPA), Great Lakes National Program Office, Chicago, IL. EPA-905-R-00-008.
- International Joint Commission, 2013. http://www.ijc.org/rel/boards/annex2/buis.htm#table1
- LimnoTech, 2013. St. Louis River Area of Concern Sediment Characterization: Final Report. July 11.
- Minnesota Pollution Control Agency (MPCA), 2007. Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota. February.
- MPCA, 2008. St. Louis River Area of Concern Delisting Targets. December.
- USEPA, 2000. Instructions on the Preparation of a Superfund Division Quality Assurance Project Plan. Region V USEPA, Revision 0. (USEPA, 2000), June 5.
- USEPA, 2001. *EPA Requirements for Quality Assurance Project Plans*, EPA/240/B-01/003. (USEPA, 2001), March.

## **Tables**

June 2017 BWJ160749

Table 1 - Sample Analysis Summary Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

|             |                       |                     |                      |                                    |                         |                        | Sec               | liment              |                         |                                |      |       |                 |                         |
|-------------|-----------------------|---------------------|----------------------|------------------------------------|-------------------------|------------------------|-------------------|---------------------|-------------------------|--------------------------------|------|-------|-----------------|-------------------------|
|             |                       |                     |                      |                                    | Chemi                   | cal/Physica            | l                 |                     |                         |                                | Тох  | icity | Bioaccumulation |                         |
| Location    | Sample ID             | Sample Interval (m) | Sample Type (G or C) | Dioxins and furans by SW-846 8290A | Mercury by SW-846 7471B | Nickel by SW-846 6020A | Zinc SW-846 6020A | TOC by SW-846 9060A | Grain size by ASTM D422 | Percent moisture by ASTM D2216 | 10-d | 28-d  | 28-d            | Community<br>Assessment |
| BW16MLW-001 | BW16MLW-001-0.0-0.15  | 0.0-0.15            | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   | Х                       | Х                              | Х    | Х     | Х               | Х                       |
| BW16MLW-002 | BW16MLW-002-0.0-0.15  | 0.0-0.15            | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   | Х                       | Х                              | Х    | Х     | Х               | Χ                       |
| BW16MLW-003 | BW16MLW-003-0.0-0.15  | 0.0-0.15            | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   | Х                       | Х                              | Х    | Х     | Х               | Χ                       |
| BW16MLW-005 | BW16MLW-005-0.90-1.15 | 0.90-1.15           | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   | Χ                       |                                |      |       |                 |                         |
| BW16MLW-006 | BW16MLW-006-1.75-2.0  | 1.75-2.0            | G                    | Х                                  |                         | Χ                      | Χ                 | Х                   | Х                       |                                |      |       |                 |                         |
| BW16MLW-007 | BW16MLW-007-1.6-1.85  | 1.6-1.85            | G                    | Х                                  |                         | Х                      | Х                 | Х                   | Х                       |                                |      | _     |                 |                         |
| BW16MLW-008 | BW16MLW-008-1.15-1.40 | 1.15-1.40           | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   | Х                       |                                |      |       |                 |                         |
| BW16MLW-009 | BW16MLW-009-1.75-2.0  | 1.75-2.0            | G                    | Х                                  |                         | Х                      | Χ                 | Χ                   |                         |                                |      |       |                 |                         |
| BW16MLW-010 | BW16MLW-010-1.45-1.70 | 1.45-1.70           | G                    | Х                                  |                         | Х                      | Χ                 | X                   |                         |                                |      |       |                 |                         |

Notes:

Sampled

Summary does not include fish tissue or EPA-collected benthic tissue

Grab (G)

Composite (C)

Table 1 - Sample Analysis Summary Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

|             |                       |                                         |                                                   |                                  |                 |                                    | Tissu                   | ne                      |          |      |
|-------------|-----------------------|-----------------------------------------|---------------------------------------------------|----------------------------------|-----------------|------------------------------------|-------------------------|-------------------------|----------|------|
| Location    | Sample ID             | In Situ (Mayfly, Dragonfly, & Crawfish) | In Situ Hester Dendy (Macrobenthos &<br>Crawfish) | Laboratory Exposed (Lumbriculus) | Grams Collected | Dioxins and furans by SW-846 8290A | Mercury by SW-846 7471B | Methyl Mercury EPA 1630 | % LIPIDS | Type |
| BW16MLW-001 | BW16MLW-001-0.0-0.15  |                                         |                                                   | Х                                |                 |                                    |                         |                         |          |      |
| BW16MLW-002 | BW16MLW-002-0.0-0.15  |                                         |                                                   | Х                                |                 |                                    |                         |                         |          |      |
| BW16MLW-003 | BW16MLW-003-0.0-0.15  |                                         |                                                   | Х                                |                 |                                    |                         |                         |          |      |
| BW16MLW-005 | BW16MLW-005-0.90-1.15 |                                         |                                                   |                                  |                 | _                                  |                         |                         | _        |      |
| BW16MLW-006 | BW16MLW-006-1.75-2.0  |                                         |                                                   |                                  |                 |                                    |                         |                         |          |      |
|             | BW16MLW-007-1.6-1.85  |                                         |                                                   |                                  |                 |                                    |                         |                         |          |      |
|             | BW16MLW-008-1.15-1.40 |                                         |                                                   |                                  |                 |                                    |                         |                         |          |      |
| BW16MLW-009 | BW16MLW-009-1.75-2.0  |                                         |                                                   |                                  |                 |                                    |                         |                         |          |      |
| BW16MLW-010 | BW16MLW-010-1.45-1.70 |                                         |                                                   |                                  |                 |                                    |                         |                         |          |      |

Notes:

Sampled
Summary does not include fish tissue or EPA-collected

Grab (G) Composite (C)

#### **Table 2 - Sample Locations**

Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

| Location    | Sample ID             | Easting    | Northing  | Water<br>Elevation (ft) | Water<br>Depth (ft) | Top of<br>Sediment<br>Elevation (ft) | Date<br>Sampled |
|-------------|-----------------------|------------|-----------|-------------------------|---------------------|--------------------------------------|-----------------|
| BW16MLW-001 | BW16MLW-001-0.0-0.15  | -92.212131 | 46.662074 | 603.5                   | 7                   | 596.5                                | 10/4/2016       |
| BW16MLW-002 | BW16MLW-002-0.0-0.15  | -92.21123  | 46.66294  | 603.5                   | 8.2                 | 595.3                                | 10/4/2016       |
| BW16MLW-003 | BW16MLW-003-0.0-0.15  | -92.210372 | 46.666488 | 603.5                   | 3.25                | 600.25                               | 10/4/2016       |
| BW16MLW-005 | BW16MLW-005-0.90-1.15 | -92.21008  | 46.666051 | 603.5                   | 4.2                 | 599.3                                | 10/4/2016       |
| BW16MLW-006 | BW16MLW-006-1.75-2.0  | -92.210608 | 46.66486  | 603.5                   | 6.4                 | 597.1                                | 10/4/2016       |
| BW16MLW-007 | BW16MLW-007-1.6-1.85  | -92.210161 | 46.664347 | 603.5                   | 6.1                 | 597.4                                | 10/4/2016       |
| BW16MLW-008 | BW16MLW-008-1.15-1.40 | -92.21321  | 46.664461 | 603.5                   | 4.6                 | 598.9                                | 10/4/2016       |
| BW16MLW-009 | BW16MLW-009-1.75-2.0  | -92.214144 | 46.663581 | 603.5                   | 2.6                 | 600.9                                | 10/4/2016       |
| BW16MLW-010 | BW16MLW-010-1.45-1.70 | -92.211963 | 46.663311 | 603.5                   | 8.9                 | 594.6                                | 10/4/2016       |

NR- Not recorded

#### **Table 3 - Core Summary**

#### Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

| Location    | Sample ID             | Date<br>Sampled | Sample Method | Depth of<br>Push (m) | Depth of<br>Push (ft) | Recovery<br>(m) | Recovery<br>(ft) | Percent<br>Recovery |
|-------------|-----------------------|-----------------|---------------|----------------------|-----------------------|-----------------|------------------|---------------------|
| BW16MLW-001 | BW16MLW-001-0.0-0.15  | 10/4/2016       | Ponar         | 0.15                 | 0.5                   | 0.15            | 0.5              | 100                 |
| BW16MLW-002 | BW16MLW-002-0.0-0.15  | 10/4/2016       | Ponar         | 0.15                 | 0.5                   | 0.15            | 0.5              | 100                 |
| BW16MLW-003 | BW16MLW-003-0.0-0.15  | 10/4/2016       | Ponar         | 0.15                 | 0.5                   | 0.15            | 0.5              | 100                 |
| BW16MLW-005 | BW16MLW-005-0.90-1.15 | 10/4/2016       | Russian Peat  | 1.2                  | 3.8                   | 0.5             | 1.6              | 100                 |
| BW16MLW-006 | BW16MLW-006-1.75-2.0  | 10/4/2016       | Russian Peat  | 2.0                  | 6.6                   | 0.5             | 1.6              | 100                 |
| BW16MLW-007 | BW16MLW-007-1.6-1.85  | 10/4/2016       | Russian Peat  | 1.85                 | 6.1                   | 0.5             | 1.6              | 100                 |
| BW16MLW-008 | BW16MLW-008-1.15-1.40 | 10/4/2016       | Russian Peat  | 1.4                  | 4.6                   | 0.5             | 1.6              | 100                 |
| BW16MLW-009 | BW16MLW-009-1.75-2.0  | 10/4/2016       | Russian Peat  | 2.0                  | 6.6                   | 0.5             | 1.6              | 100                 |
| BW16MLW-010 | BW16MLW-010-1.45-1.70 | 10/4/2016       | Russian Peat  | 1.7                  | 5.6                   | 0.5             | 1.6              | 100                 |

#### **Table 4 - Analytical Parameters Summary**

Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

| Analytical Parameters                                 | Chemical Abstract Number or Analyte Code | Analytical Method |
|-------------------------------------------------------|------------------------------------------|-------------------|
| Metals                                                |                                          |                   |
| Nickel                                                | 7440-02-0                                | SW-846 6020A      |
| Zinc                                                  | 7440-66-6                                | SW-846 6020A      |
| Polychlorinated Dibenzo-p-dioxins (Dioxins)/Polychlor | inated Dibenzofurans (Furans)            |                   |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)            | 1746-01-6                                | SW-846 8290A      |
| 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)         | 40321-76-4                               | SW-846 8290A      |
| 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)        | 57653-85-7                               | SW-846 8290A      |
| 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)        | 39227-28-6                               | SW-846 8290A      |
| 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)        | 19408-74-3                               | SW-846 8290A      |
| 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)     | 35822-46-9                               | SW-846 8290A      |
| 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)     | 3268-87-9                                | SW-846 8290A      |
| 2,3,7,8-Tetrachlorodibenzofuran (TCDF)                | 51207-31-9                               | SW-846 8290A      |
| 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)             | 57117-41-6                               | SW-846 8290A      |
| 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)             | 57117-31-4                               | SW-846 8290A      |
| 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)            | 57117-44-9                               | SW-846 8290A      |
| 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)            | 72918-21-9                               | SW-846 8290A      |
| 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)            | 70648-26-9                               | SW-846 8290A      |
| 2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)            | 60851-34-5                               | SW-846 8290A      |
| 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)         | 67562-39-4                               | SW-846 8290A      |
| 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)         | 55673-89-7                               | SW-846 8290A      |
| 1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)         | 39001-02-0                               | SW-846 8290A      |
| TCDD Equivalent                                       |                                          |                   |
| General Chemistry                                     |                                          |                   |
| Total Organic Carbon                                  |                                          | SW-846 9060A      |
| Physical Testing                                      |                                          |                   |
| Grain Size                                            |                                          | ASTM D422         |

#### **Table 5 - Total Organic Carbon Results**

Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

| Sample Name           | Sample Depth<br>Start<br>(m) | Sample Depth<br>End<br>(m) | Sample Interval (m) | Result (mg/kg) | Results<br>Qualifier |
|-----------------------|------------------------------|----------------------------|---------------------|----------------|----------------------|
| BW16MLW-001-0.0-0.15  | 0.0                          | 0.15                       | 0.0-0.15            | 26,100         |                      |
| BW16MLW-002-0.0-0.15  | 0.0                          | 0.15                       | 0.0-0.15            | 24,500         |                      |
| BW16MLW-003-0.0-0.15  | 0.0                          | 0.15                       | 0.0-0.15            | 30,200         |                      |
| BW16MLW-005-0.90-1.15 | 0.9                          | 1.15                       | 0.5-1.0 and >1.0    | 104,000        |                      |
| BW16MLW-006-1.75-2.0  | 1.75                         | 2                          | >1.0                | 85,300         |                      |
| BW16MLW-007-1.6-1.85  | 1.6                          | 1.85                       | >1.0                | 117,000        |                      |
| BW16MLW-008-1.15-1.40 | 1.15                         | 1.4                        | >1.0                | 99,200         |                      |
| BW16MLW-009-1.75-2.0  | 1.75                         | 2                          | >1.0                | 152,000        |                      |
| BW16MLW-010-1.45-1.70 | 1.45                         | 1.7                        | >1.0                | 153,000        |                      |

#### Notes:

TOC - Total organic carbon

J - estimated value

U - indicates non-detet because of TOC contamination in the method blank

m - meters

TOC analyzed by EPA Method SW9060

## **Table 6 - Community Assessment**

Mud Lake West
St. Louis River Area of Concern
Duluth, Minnesota

|                     |           | Collection                  | on Information                     |                                              |                         |                             |                                        |                                      |                        | Benthic Ma                      | croinvertebra                | ates                       |       |                               |                              |                                       |                                        |
|---------------------|-----------|-----------------------------|------------------------------------|----------------------------------------------|-------------------------|-----------------------------|----------------------------------------|--------------------------------------|------------------------|---------------------------------|------------------------------|----------------------------|-------|-------------------------------|------------------------------|---------------------------------------|----------------------------------------|
| Location            | Date      | Number<br>of Ponar<br>Grabs | Approximate Collection Area (cm²)¹ | Community<br>Assessment<br>Duration<br>(min) | Alderfly<br>(Sensitive) | Mayfly (Semi-<br>Sensitive) | Fingernail<br>Clam (Semi-<br>Senstive) | Non-Red<br>Midge (Semi-<br>Tolerent) | Horsefly<br>(Tolerant) | Horsehair<br>Worm<br>(Tolerant) | Thread<br>Worm<br>(Tolerant) | Snails (Semi-<br>Tolerant) | vvorm | Tubifex<br>Worm<br>(Tolerant) | Needle<br>Worm<br>(Tolerant) | Biotic<br>Index<br>Score <sup>2</sup> | Biotic<br>Health<br>Score <sup>3</sup> |
| BW16MLW-001         | 10/4/2016 | 3                           | 675                                | 15                                           | 0                       | 0                           | 1                                      | 1                                    | 2                      | 0                               | 0                            | 0                          | 0     | 0                             | 1                            | 1 /                                   | Poor                                   |
| DVV I OIVIL VV-UU I |           |                             | Weighte                            | ed Group Score                               | 0                       | 0                           | 3                                      | 2                                    | 2                      | 0                               | 0                            | 0                          | 0     | 0                             | 1                            | 1.6                                   | P001                                   |
| BW16MLW-002         | 10/4/2016 | 3                           | 675                                | 15                                           | 0                       | 0                           | 1                                      | 0                                    | 5                      | 0                               | 0                            | 0                          | 0     | 0                             | 0                            | 1.3                                   | Poor                                   |
| DVV TOIVILVV-002    |           |                             | Weight                             | ed Group Score                               | 0                       | 0                           | 3                                      | 0                                    | 5                      | 0                               | 0                            | 0                          | 0     | 0                             | 0                            | 1.3                                   | FUUI                                   |
| BW16MLW-003         | 10/4/2016 | 3                           | 675                                | 15                                           | 0                       | 0                           | 0                                      | 0                                    | 0                      | 0                               | 0                            | 3                          | 6     | 0                             | 0                            | 1.0                                   | Poor                                   |
| DAA LOIAIFAA-002    |           |                             | Weight                             | ed Group Score                               | 0                       | 0                           | 0                                      | 0                                    | 0                      | 0                               | 0                            | 3                          | 6     | 0                             | 0                            | 1.0                                   | F 001                                  |
|                     |           |                             |                                    |                                              |                         | Bot                         | ulder Lake Res                         | ervoir (Refere                       | nce Sample)            |                                 |                              |                            |       |                               |                              |                                       |                                        |
| BW16BLR-001         | 9/20/2016 | 3                           | 675                                | 15                                           | 0                       | 0                           | 0                                      | 0                                    | 0                      | 0                               | 0                            | 0                          | 0     | 0                             | 0                            | 0.0                                   | Poor                                   |
| DVV TODEK-UUT       |           |                             | Weighte                            | ed Group Score                               | 0                       | 0                           | 0                                      | 0                                    | 0                      | 0                               | 0                            | 0                          | 0     | 0                             | 0                            | 0.0                                   | FUUI                                   |

 $<sup>^{1}</sup>$ Each grab = 15.2 cm x 15.2 cm (225 cm2)

<sup>&</sup>lt;sup>2</sup>Biotic Index Score Calculation: <a href="http://watermonitoring.uwex.edu/pdf/level1/datasheets/data-Biotic2014.pdf">http://watermonitoring.uwex.edu/pdf/level1/datasheets/data-Biotic2014.pdf</a>

<sup>&</sup>lt;sup>3</sup>Biotic Health Score: Good 2.6-3.5 Fair 2.1-2.5 Poor 1.0-2.0

#### **Table 7 - Metals Results**

Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

|          |           | Sample      | e Name      |        | BW16ML<br>0-0. |     | BW16ML\<br>0-0. |     | BW16ML'<br>0-0. |     | BW16MLV<br>0.90-1 |         | BW16ML<br>1.75- |            | BW16ML <sup>1</sup> |   | BW16ML<br>1.15-1 |   | BW16M<br>009-<br>1.75-2 | - | BW16ML<br>1.45- |    |
|----------|-----------|-------------|-------------|--------|----------------|-----|-----------------|-----|-----------------|-----|-------------------|---------|-----------------|------------|---------------------|---|------------------|---|-------------------------|---|-----------------|----|
|          | Sar       | nple Depth  | Start (met  | ers)   | 0              |     | 0               |     | 0               |     | 0.9               | )       | 1.7             | <b>'</b> 5 | 1.6                 |   | 1.1              | 5 | 1.75                    | 5 | 1.4             | 15 |
| Chemical | Sai       | mple Depth  | n End (mete | ers)   | 0.1            | 5   | 0.1             | 5   | 0.1             | 5   | 1.1               | 5       | 2               |            | 1.8                 | 5 | 1.4              | ļ | 2                       |   | 1.              | 7  |
|          | S         | ample Inter | rval (meter | s)     | 0.0-0          | .15 | 0.0-0           | .15 | 0.0-0           | .15 | 0.5-1.0 aı        | nd >1.0 | >1.             | .0         | >1.0                | ) | >1.0             | 0 | >1.0                    | ) | >1              | .0 |
|          | SQT Level | SQT         | SQT Level   | Result |                |     |                 |     |                 |     |                   |         |                 |            |                     |   |                  |   |                         |   |                 |    |
|          | 1         | Midpoint    | 2           | unit   | Result         | Q   | Result          | Q   | Result          | Q   | Result            | Q       | Result          | Q          | Result              | Q | Result           | Q | Result                  | Q | Result          | Q  |
| Nickel   | 23        | 36          | 49          | mg/kg  | 32.5           |     | 40.0            |     | 50.6            |     | 62.0              |         | 39.0            |            | 28.4                |   | 38.7             |   | 13.5                    |   | 17.1            |    |
| Zinc     | 120       | 290         | 460         | mg/kg  | 165            |     | 185             |     | 328             |     | 176               |         | 108             |            | 84.5                |   | 67.3             |   | 27.4                    | J | 30.9            | J  |

Notes:

Q - Qualifiers

J - estimated value

NE - not estabilshed

SQT - Sediment Quality Target

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

Values highlighted in red indicate concentration exceeding SQT Level II

Mercury was anlayzed by EPA Method SW7471B

#### Table 8 - Dioxin/Furan Results - Sediment

Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

|                     |             | Sample         | Name          |             | BW16ML<br>0.0-0 |      | BW16ML<br>0.0-0 |      |        | LW-003-<br>0.15 | BW16ML<br>0.90- |         | BW16ML<br>1.75 |    | BW16ML\<br>1.6-1 |   | BW16ML\<br>1.15-1 |   | _      | LW-009-<br>5-2.0 | BW16ML<br>1.45- |    |
|---------------------|-------------|----------------|---------------|-------------|-----------------|------|-----------------|------|--------|-----------------|-----------------|---------|----------------|----|------------------|---|-------------------|---|--------|------------------|-----------------|----|
|                     |             | Sample Depth S | tart (meters) | )           | O               | )    | C               | )    |        | 0               | 0.              | 9       | 1.7            | 75 | 1.6              | 5 | 1.1               | 5 | 1.     | .75              | 1.4             | 45 |
| Chemical            |             | Sample Depth   | End (meters)  |             | 0.1             | 15   | 0.1             | 15   | 0.     | 15              | 1.1             | 5       | 2              | )  | 1.8              | 5 | 1.4               | ļ |        | 2                | 1.              | 7  |
| Crieffical          |             | <u> </u>       | , ,           |             |                 |      |                 |      |        |                 |                 |         |                |    |                  |   |                   |   |        |                  |                 |    |
|                     |             | Sample Interv  | al (meters)   |             | 0.0-0           | 0.15 | 0.0-0           | 0.15 | 0.0-   | 0.15            | 0.5-1.0 a       | nd >1.0 | >1             | .0 | >1.              | 0 | >1.0              | 0 | >      | 1.0              | >1              | .0 |
|                     | SQT Level I | SQT Midpoint   | SQT Level I   | Result unit | Result          | Q    | Result          | Q    | Result | Q               | Result          | Q       | Result         | Q  | Result           | Q | Result            | Q | Result | Q                | Result          | Q  |
| 1,2,3,4,6,7,8-HpCDD | NE          | NE             | NE            | ng/Kg       | 350             |      | 250             |      | 460    |                 | 7.8             | J       | 39             |    | 79               |   | 12                | J | 35     | J                | 11              | J  |
| 1,2,3,4,6,7,8-HpCDF | NE          | NE             | NE            | ng/Kg       | 580             |      | 560             |      | 1300   |                 | 14              |         | 94             |    | 230              |   | 23                |   | 71     |                  | 19              | J  |
| 1,2,3,4,7,8,9-HpCDF | NE          | NE             | NE            | ng/Kg       | 5.5             | J    | 5.5             | J    | 11     | J               | 0.51            |         | 1.1            | J  | 2.6              | J | 1.5               |   | 1.8    |                  | 3               |    |
| 1,2,3,4,7,8-HxCDD   | NE          | NE             | NE            | ng/Kg       | 3.4             | J    | 3.1             | J    | 5.4    | J               | 0.14            |         | 1              |    | 0.67             | J | 0.62              |   | 0.74   |                  | 1.7             |    |
| 1,2,3,4,7,8-HxCDF   | NE          | NE             | NE            | ng/Kg       | 9.5             | J    | 9.1             | J    | 19     |                 | 0.4             | J       | 1.7            | J  | 3.3              | J | 0.87              |   | 1.7    | J                | 1.3             |    |
| 1,2,3,6,7,8-HxCDD   | NE          | NE             | NE            | ng/Kg       | 21              |      | 20              |      | 39     |                 | 0.56            | J       | 3.2            | J  | 6                | J | 1.1               | J | 3.2    | J                | 0.85            |    |
| 1,2,3,6,7,8-HxCDF   | NE          | NE             | NE            | ng/Kg       | 28              |      | 28              |      | 84     |                 | 1               | J       | 8.4            | J  | 18               | J | 0.92              | J | 2.8    | J                | 1.5             |    |
| 1,2,3,7,8,9-HxCDD   | NE          | NE             | NE            | ng/Kg       | 10              | J    | 9.6             | J    | 18     |                 | 0.3             | J       | 1.9            | J  | 3.4              | J | 0.64              | J | 1.5    | J                | 1.3             |    |
| 1,2,3,7,8,9-HxCDF   | NE          | NE             | NE            | ng/Kg       | 3               | J    | 3.3             | J    | 5.7    | J               | 0.15            |         | 0.39           |    | 0.37             |   | 0.36              |   | 0.5    |                  | 0.73            |    |
| 1,2,3,7,8-PeCDD     | NE          | NE             | NE            | ng/Kg       | 3.6             | J    | 2.9             | J    | 5.5    | J               | 0.24            | J       | 0.39           | J  | 1                | J | 0.24              |   | 0.61   | J                | 0.64            |    |
| 1,2,3,7,8-PeCDF     | NE          | NE             | NE            | ng/Kg       | 2.8             | J    | 2.9             | J    | 8.3    | J               | 0.22            | J       | 0.52           | J  | 1.2              | J | 0.3               |   | 0.58   |                  | 0.63            |    |
| 2,3,4,6,7,8-HxCDF   | NE          | NE             | NE            | ng/Kg       | 10              | J    | 9.8             | J    | 20     |                 | 0.14            |         | 2.1            | J  | 3.8              | J | 0.66              |   | 1.1    | J                | 1               |    |
| 2,3,4,7,8-PeCDF     | NE          | NE             | NE            | ng/Kg       | 6.2             | J    | 5.9             | J    | 10     | J               | 0.26            | J       | 0.92           | J  | 1.5              | J | 0.34              | J | 0.86   | J                | 0.59            | J  |
| 2,3,7,8-TCDD        | NE          | NE             | NE            | ng/Kg       | 1.6             | J    | 1.3             | J    | 2.6    | J               | 0.18            |         | 0.47           | J  | 0.6              | J | 0.35              |   | 0.66   |                  | 0.51            |    |
| 2,3,7,8-TCDF        | NE          | NE             | NE            | ng/Kg       | 6.9             |      | 5.8             |      | 11     |                 | 0.83            | J       | 2.2            | J  | 2.6              | J | 1.7               | J | 2.7    | J                | 2.9             | J  |
| OCDD                | NE          | NE             | NE            | ng/Kg       | 3900            | J    | 2800            |      | 5400   |                 | 74              |         | 410            |    | 840              |   | 130               |   | 380    |                  | 95              |    |
| OCDF                | NE          | NE             | NE            | ng/Kg       | 250             |      | 270             |      | 570    |                 | 6.6             | J       | 47             |    | 110              |   | 11                | J | 34     | J                | 13              | J  |
| Total HpCDD         | NE          | NE             | NE            | ng/Kg       | 770             |      | 530             |      | 990    |                 | 16              |         | 84             |    | 170              |   | 28                |   | 70     |                  | 22              | J  |
| Total HpCDF         | NE          | NE             | NE            | ng/Kg       | 1000            |      | 970             |      | 2200   |                 | 25              |         | 170            |    | 400              |   | 40                |   | 120    |                  | 32              | J  |
| Total HxCDD         | NE          | NE             | NE            | ng/Kg       | 190             |      | 180             |      | 330    |                 | 6.1             | J       | 21             |    | 44               |   | 9.4               | J | 24     | J                | 9.1             | J  |
| Total HxCDF         | NE          | NE             | NE            | ng/Kg       | 400             |      | 370             |      | 810    |                 | 11              | J       | 57             |    | 150              |   | 15                | J | 50     |                  | 11              | J  |
| Total PeCDD         | NE          | NE             | NE            | ng/Kg       | 43              |      | 45              |      | 76     |                 | 3               | J       | 4              | J  | 15               | J | 3.2               | J | 5      | J                | 2.5             | J  |
| Total PeCDF         | NE          | NE             | NE            | ng/Kg       | 130             |      | 120             |      | 230    |                 | 2.9             | J       | 15             | J  | 35               |   | 4.5               | J | 15     | J                | 3.4             | J  |
| Total TCDD          | NE          | NE             | NE            | ng/Kg       | 15              |      | 13              |      | 34     |                 | 3.6             |         | 3              | J  | 4.3              |   | 0.52              | J | 1.5    | J                | 2.9             | J  |
| Total TCDF          | NE          | NE             | NE            | ng/Kg       | 68              |      | 64              |      | 110    |                 | 3.7             |         | 9.4            |    | 18               |   | 5.1               |   | 10     |                  | 8.2             |    |
| TEQ KM Fish         | 0.85        | 11.2           | 21.5          | ng TEQ/Kg   | 25.699          | J    | 23.848          | J    | 50.546 |                 | 0.9279          | J       | 4.718          | J  | 9.3313           | J | 1.4143            | J | 3.4642 | J                | 1.4571          | J  |

Notes:

Q - Qualifier

J - estimated value

NE - Not established NA- Not established

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

ng/kg - nanograms per kilogram

SQT - Sediment Quality Target

TEQ - dioxin toxicity equivalency

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

/alues highlighted in red indicate concentration exceeding SQT Level II

TEQ values calculated using the US EPA Advanced Kaplan Meier TEQ Calculator

Dioxins analyzed by EPA Method SW8290

#### Table 9 - Dioxin/furans Results - Tissue

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

|                     |           | BW16MLW | /-001 | BW16ML\   | N-002 | BW16ML | W-003 | Control-<br>West |    | Backgrou<br>0 | ınd Day |
|---------------------|-----------|---------|-------|-----------|-------|--------|-------|------------------|----|---------------|---------|
| Chemical            |           | 9.98    |       | 9.99      | 7     | 10.    | 0     | 10               | .0 | 10.           | 1       |
|                     | Units     | Result  | Q     | Result    | Q     | Result | Q     | Result           | Q  | Result        | Q       |
| 1,2,3,4,6,7,8-HpCDD | ng/kg     | 1.7     | U     | 1.88      | U     | 3.45   | J     | 0.147            | U  | 0.173         | U       |
| 1,2,3,4,6,7,8-HpCDF | ng/kg     | 3.67    | J     | 3.65      | J     | 8.72   |       | 0.0575           | J  | 0.0572        | U       |
| 1,2,3,4,7,8,9-HpCDF | ng/kg     | 0.0576  | U     | 0.0581    | J     | 0.0893 | J     | 0.0575           | U  | 0.0572        | U       |
| 1,2,3,4,7,8-HxCDD   | ng/kg     | 0.0867  | J     | 0.102     | J     | 0.155  | J     | 0.0575           | J  | 0.0572        | U       |
| 1,2,3,4,7,8-HxCDF   | ng/kg     | 0.219   | KJ    | 0.206     | J     | 0.322  | J     | 0.0575           | J  | 0.0572        | U       |
| 1,2,3,6,7,8-HxCDD   | ng/kg     | 0.415   | KJ    | 0.521     | J     | 0.797  | J     | 0.0575           | J  | 0.061         | KJ      |
| 1,2,3,6,7,8-HxCDF   | ng/kg     | 0.45    | J     | 0.535     | J     | 1.23   | J     | 0.0575           | J  | 0.0572        | U       |
| 1,2,3,7,8,9-HxCDD   | ng/kg     | 0.162   | U     | 0.205 U   | U     | 0.287  | J     | 0.0575           | U  | 0.0572        | U       |
| 1,2,3,7,8,9-HxCDF   | ng/kg     | 0.0576  | U     | 0.0581 U  | U     | 0.0578 | U     | 0.0575           | U  | 0.0572        | U       |
| 1,2,3,7,8-PeCDD     | ng/kg     | 0.216   | J     | 0.155 J   | J     | 0.333  | J     | 0.0575           | U  | 0.0575        | KJ      |
| 1,2,3,7,8-PeCDF     | ng/kg     | 0.206   | KJ    | 0.212 J   | J     | 0.427  | J     | 0.0575           | U  | 0.0572        | U       |
| 2,3,4,6,7,8-HxCDF   | ng/kg     | 0.0867  | KJ    | 0.101 K J | KJ    | 0.158  | J     | 0.0575           | U  | 0.0572        | U       |
| 2,3,4,7,8-PeCDF     | ng/kg     | 0.27    | KJ    | 0.23 J    | J     | 0.372  | J     | 0.0575           | U  | 0.0572        | U       |
| 2,3,7,8-TCDD        | ng/kg     | 0.2     | KJ    | 0.350 J   | J     | 0.305  | J     | 0.0575           | U  | 0.0685        | KJ      |
| 2,3,7,8-TCDF        | ng/kg     | 0.492   | J     | 0.436 J   | J     | 0.624  | J     | 0.0575           | U  | 0.141         | J       |
| OCDD                | ng/kg     | 9.14    | J     | 9.28 J    | J     | 22.7   |       | 0.716            | J  | 0.256         | KJ      |
| OCDF                | ng/kg     | 1.02    | J     | 0.999 J   | J     | 2.26   | J     | 0.0677           | J  | 0.0572        | U       |
| Total HpCDD         | ng/kg     | 3.71    |       | 3.90      |       | 7.40   | U     | 0.0575           | U  | 0.276         | U       |
| Total HpCDF         | ng/kg     | 7.24    |       | 7.42      |       | 16.1   |       | 0.0575           | U  | 0.0572        | U       |
| Total HxCDD         | ng/kg     | 1.09    | U     | 2.57      |       | 3.84   |       | 0.0575           | U  | 0.0572        | U       |
| Total HxCDF         | ng/kg     | 5.36    | U     | 5.95      |       | 10.3   |       | 0.0575           | U  | 0.0572        | U       |
| Total PeCDD         | ng/kg     | 0.774   |       | 1.29      |       | 2.00   |       | 0.0575           | U  | 0.0572        | U       |
| Total PeCDF         | ng/kg     | 5.59    |       | 5.99      |       | 8.03   |       | 0.0575           | U  | 0.0572        | U       |
| Total TCDD          | ng/kg     | 1.24    |       | 2.11      |       | 1.93   |       | 0.138            |    | 0.0572        | U       |
| Total TCDF          | ng/kg     | 6.10    |       | 5.35      |       | 8.16   |       | 0.0575           | U  | 0.0713        |         |
| TEQ Fish (ND=DL)    | ng TEQ/kg | 0.59    |       | 0.58      |       | 0.95   |       | 0.2              |    | 0.2           |         |
| TEQ Fish (ND=0.5DL) | ng TEQ/kg | 0.55    |       | 0.54      |       | 0.92   |       | 0.11             |    | 0.11          |         |
| TEQ Fish (ND=0)     | ng TEQ/kg | 0.51    |       | 0.50      |       | 0.90   |       | 0.00             |    | 0.01          |         |

Notes:

Q - Qualifier

J - estimated value

K-peak detected but did not meet quantification criteria, result reported I

NE - not estabilshed

NA - Not Established

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

ng/kg - nanograms per kilogram

TEQ - dioxin toxicity equivalency

U - concentration did not exceed laboratory reporting limit

TEQ values calculated using the TEF 1998 factors for fish in accordance with MPCA SQT guidance,

non-detects were set equal to detection level, 0.5 detection level, and zero

Dioxins analyzed by EPA Method SW8290

#### **Table 10 - Biaccumulation Summary**

#### Mud Lake West St. Louis River Area of Concern Duluth, Minnesota

| Sample ID                                             | Background L. variegatus<br>Tissue Day 0 10/25/2016 |                       | BW16MLW-001-0.0-<br>0.15 | BW16MLW-002-0.0-<br>0.15 | BW16MLW-003-0.0-<br>0.15 |
|-------------------------------------------------------|-----------------------------------------------------|-----------------------|--------------------------|--------------------------|--------------------------|
| Lumbricul                                             | lus variegatus 4 -Day Toxic                         | ity Screening Sedimen | t Tests Conducted Oct    | ober 14 - October 18, i  | 2016                     |
| 4-Day Screening Test<br>Percent Survival <sup>r</sup> | NA                                                  | 100                   | 97.5                     | 97.5                     | 95.0                     |
| Lumbriculus varieg                                    | gatus 28 -Day Biaccumulati                          | on Whole Sediment To  | oxicity Tests Conducte   | d October 25 - Novem     | ber 22, 2016             |
| Average Wet Depurated<br>Weight (g)                   | NA                                                  | 18.27                 | 15.08                    | 15.60                    | 15.48                    |
| Nickel (mg/kg)                                        | 1.00                                                | 1.10                  | 0.72                     | 2.10                     | 0.46                     |
| Zinc (mg/kg)                                          | 21.4                                                | 18.2                  | 18.0                     | 17.0                     | 21.3                     |
|                                                       |                                                     | Sediment Chemistr     | y Results                |                          |                          |
| Percent Moisture (%)                                  | NA                                                  | 86.6                  | 84.8                     | 79.9                     | 87.7                     |
| Mean Total Organic Carbon<br>(mg/kg-dry)              | NA                                                  | 14900                 | 26100                    | 24500                    | 30200                    |

Notes: Replicates initiated with 10 organisms each

Initiated 28-day test with 18 grams of L. variegatus per replicate Nickel & Zinc: Method: EPA 6020; Preparation Method: EPA 3050B

Percent Moisture: Method ASTM D2974-87 and a reporting limit of 0.10%

Total Organic Carbon: Method EPA 9060 in quadruplicate and a reporting limit of 100 mg/kg dry

NA - not applicable

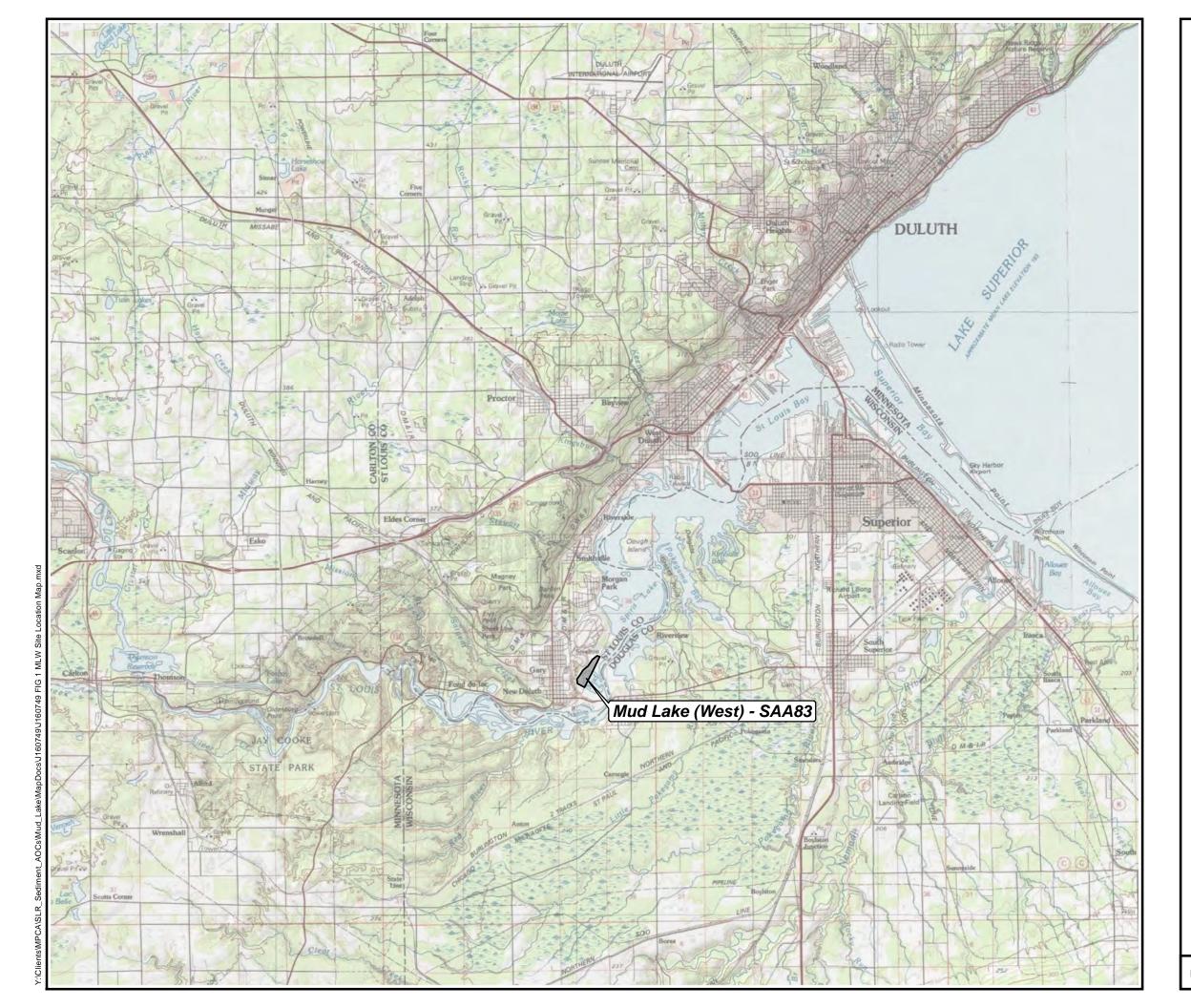
g - grams

mg - milligrams

mg/kg - milligram per kilogram

#### **Table 11 - Toxicity Summary**

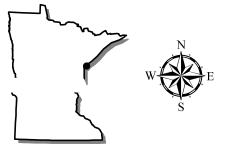
Mud Lake West St. Louis River Area of Concern Duluth, Minnesota


| Sample ID                                               | West Bear Skin<br>Laboratory Control | BW16MLW-001-<br>0.0-0.15 | BW16MLW-002-<br>0.0-0.15 | BW16MLW-003-<br>0.0-0.15 | Water Only<br>Secondary Control |
|---------------------------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|
| Chronomus                                               | dilutus 10-Day Who                   | le Sediment Toxicity     | Tests Conducted Octo     | ber 14 - October 24, 2   | 2016                            |
| Average <sup>1</sup> Ash-Free-Dry<br>Weight (AFDW) (mg) | 0.99208                              | 1.41660                  | 1.33997                  | 1.26304                  | 0.94908                         |
| Biomass <sup>2</sup> Weight (AFDW)<br>(mg)              | 0.96762                              | 1.37525                  | 1.28650                  | 1.19675                  | 0.9235                          |
| 10 -Day Percent Survival                                | 97.5                                 | 97.5                     | 96.3                     | 95.0                     | 97.5                            |
| Hyallela az                                             | teca 28 -Day Whole S                 | Sediment Toxicity Tes    | ts Conducted October     | r 19 - November 16, 2    | 016                             |
| Average <sup>1</sup> Ash-Free-Dry<br>Weight (AFDW) (mg) | 0.16913                              | 0.18442                  | 0.16769                  | 0.18462                  | 0.33775                         |
| Biomass <sup>2</sup> Weight (AFDW)<br>(mg)              | 0.16700                              | 0.179737                 | 0.16075                  | 0.17550                  | 0.33387                         |
| 28 -Day Percent Survival                                | 98.8                                 | 97.5                     | 96.3                     | 96.3                     | 98.8                            |

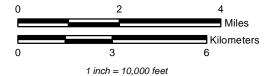
Notes: Average Ash-Free-Dry Weight (AFDW) of *Chironomus dilutus* at test initiation = .33313 mg Average Dry Weight of Hyallela azteca at test initiation = 0.01950 mg

<sup>&</sup>lt;sup>1</sup>Average Ash-Free-Dry-Weight (AFDW) is the total ash-free-dry weight of surviving organisms

<sup>&</sup>lt;sup>2</sup>Biomass weight is the total Ash-Free-Dry-Weight of surviving organisms divided by the initial number of organisms


June 2017 BWJ160749




# Site Location Map

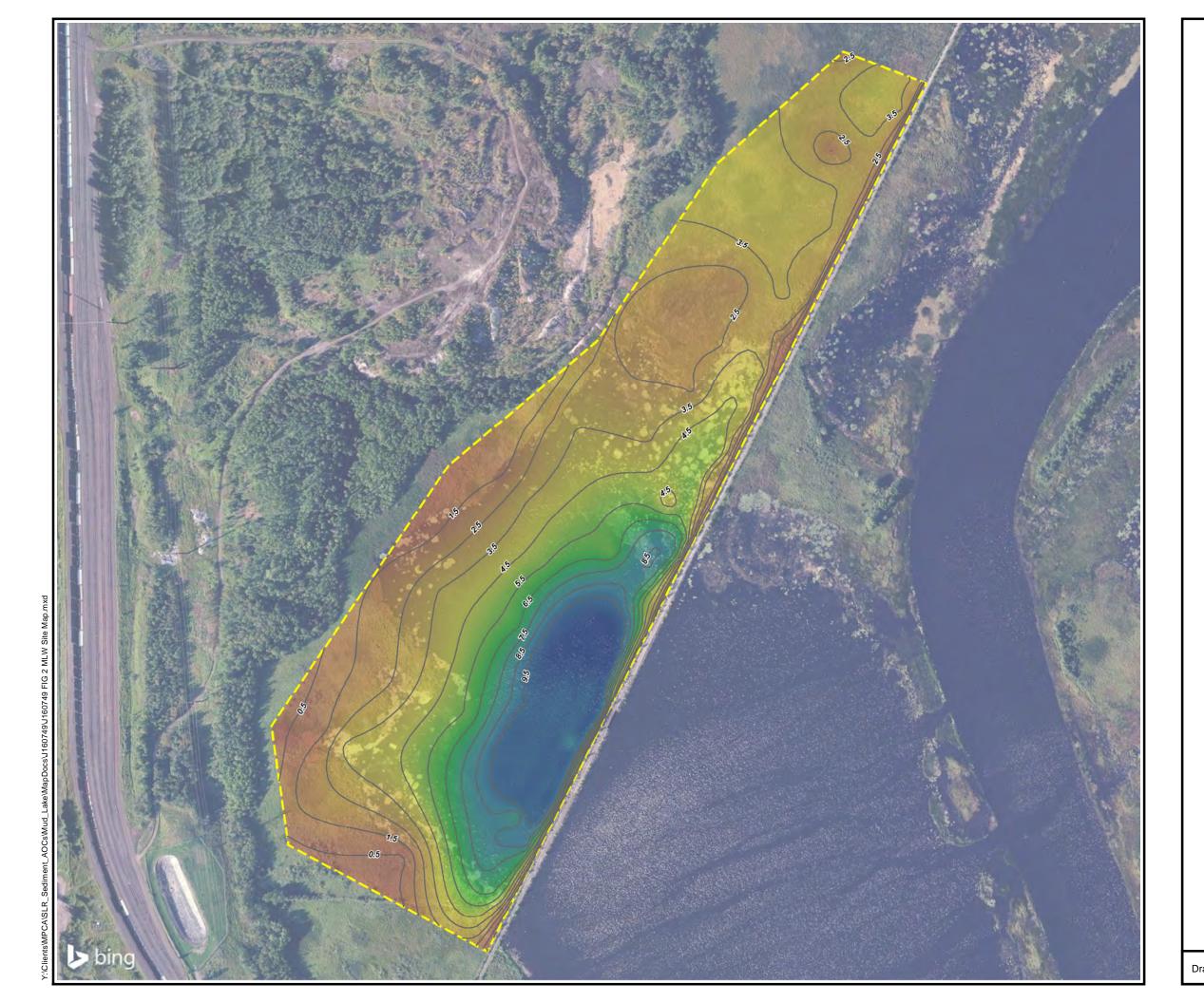
## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: National Geographic Society, i-cubed

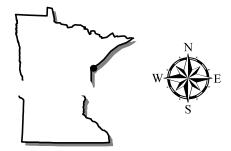





Mud Lake West Site Location






Date Drawn/Revised:3/13/2017 Project No.J160749



# Figure 2 Site Map

## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS



Bathymetric Contour Line



Mud Lake West Site Boundary

# Water Depth 603.5 ft +1.00 ft 597.5 ft 6.00 ft 591.5 ft -11.0 ft

NOTE: Bathymetery compiled from water level measurements collected during March/June 2015 Remedial Investigation



Drawn By: S.G. Date Drawn/Revised:3/13/2017 Project No.J160749



# Sample Locations

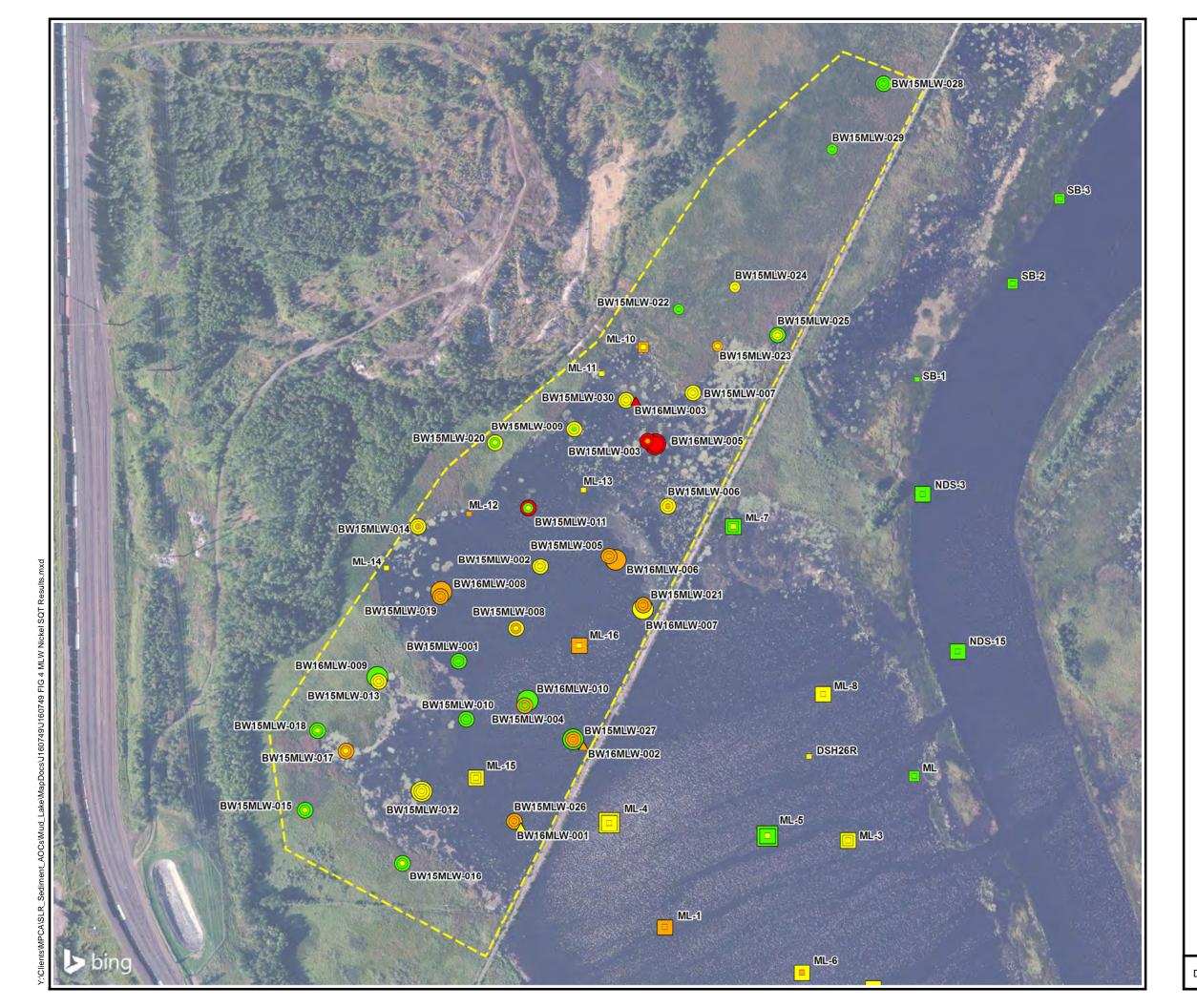
## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS




- 2016 Sediment Sample Locations
- 2016 Toxicity/Bioaccumulation Testing and Community Assessment Locations



Mud Lake West Site Boundary



Drawn By: S.G. Date Drawn/Revised:3/13/2017 Project No.J160749



#### **Nickel SQT Results**

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





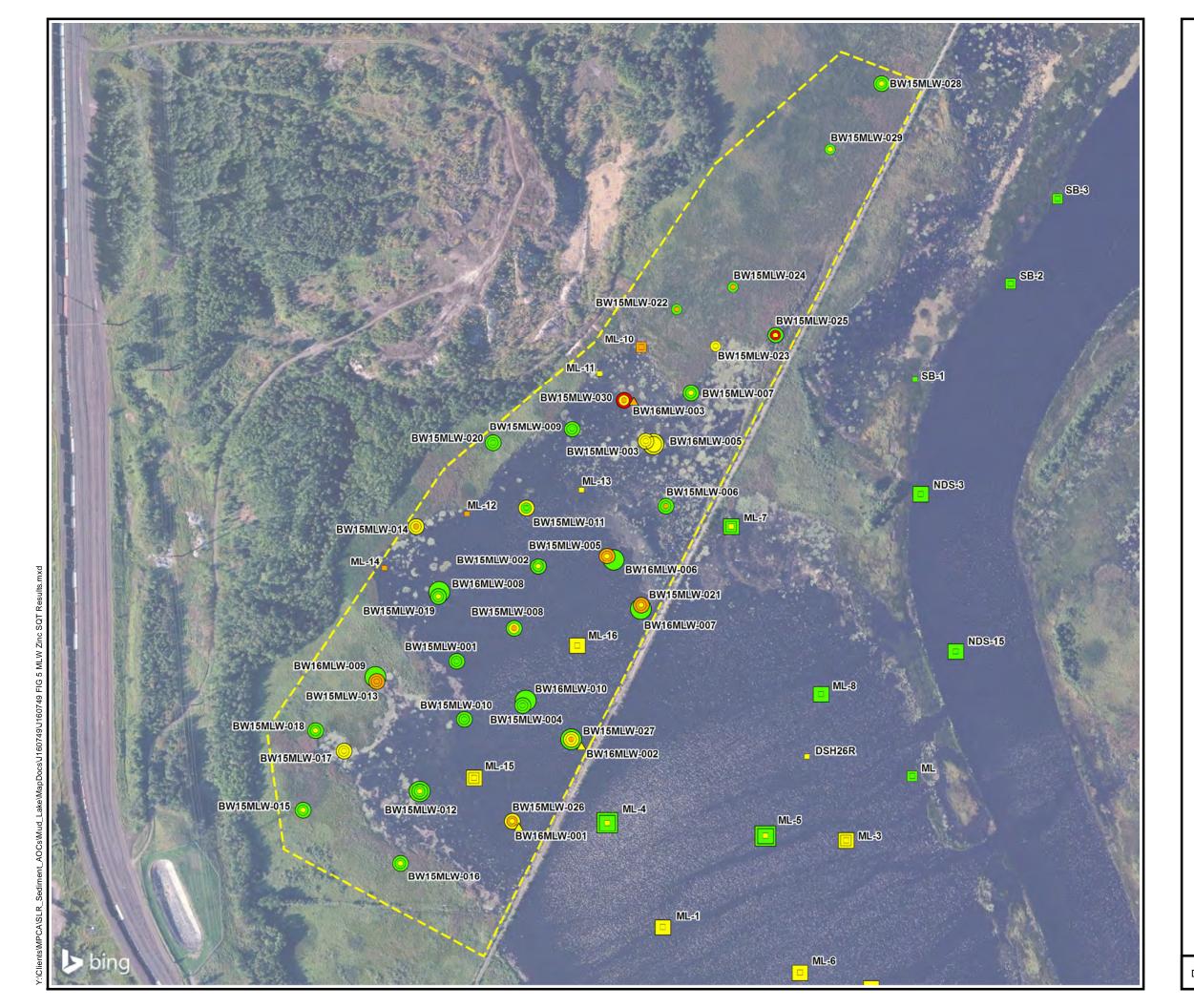
Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
- Sediment Sample (Historical)

#### **Sample Interval**

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


#### **Nickel SQT Comparison**

- Does not exceed Level 1 SQT (23 mg/kg)
- Exceeds Level 1 SQT (23 mg/kg)
  - Exceeds Midpoint SQT (36 mg/kg)
  - Exceeds Level 2 SQT (49 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Date Drawn/Revised:3/13/2017 Project No.J160749



#### Zinc SQT Results

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





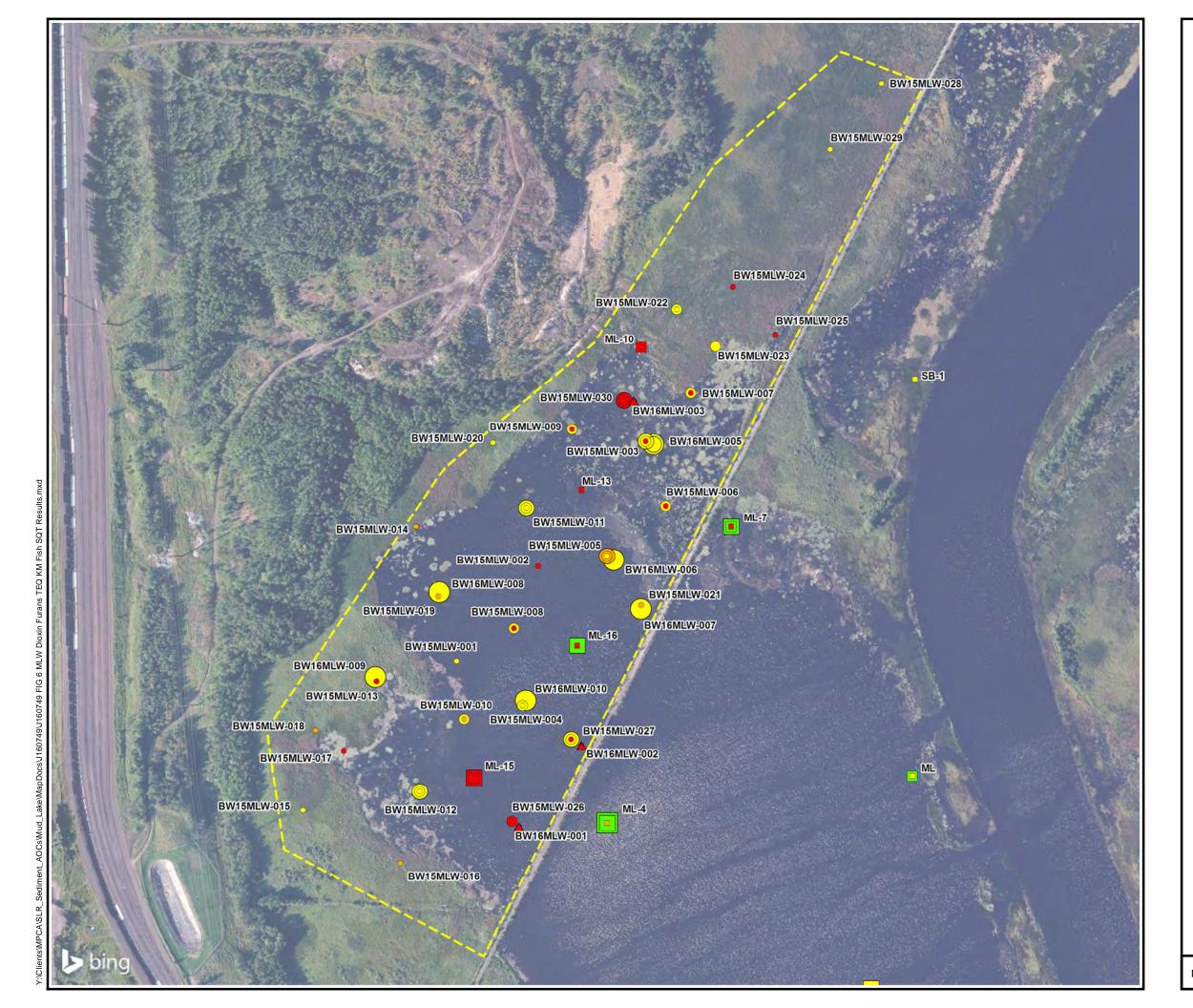
Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

#### **Sample Interval**

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


#### **Zinc SQT Comparison**

- Does not exceed Level 1 SQT (120 mg/kg)
- Exceeds Level 1 SQT (120 mg/kg)
- Exceeds Midpoint SQT (290 mg/kg)
- Exceeds Level 2 SQT (460 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Drawn By: S.G. Date Drawn/Revised:3/13/2017 Project No.J160749



#### TEQ KM Fish SQT Results

### **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





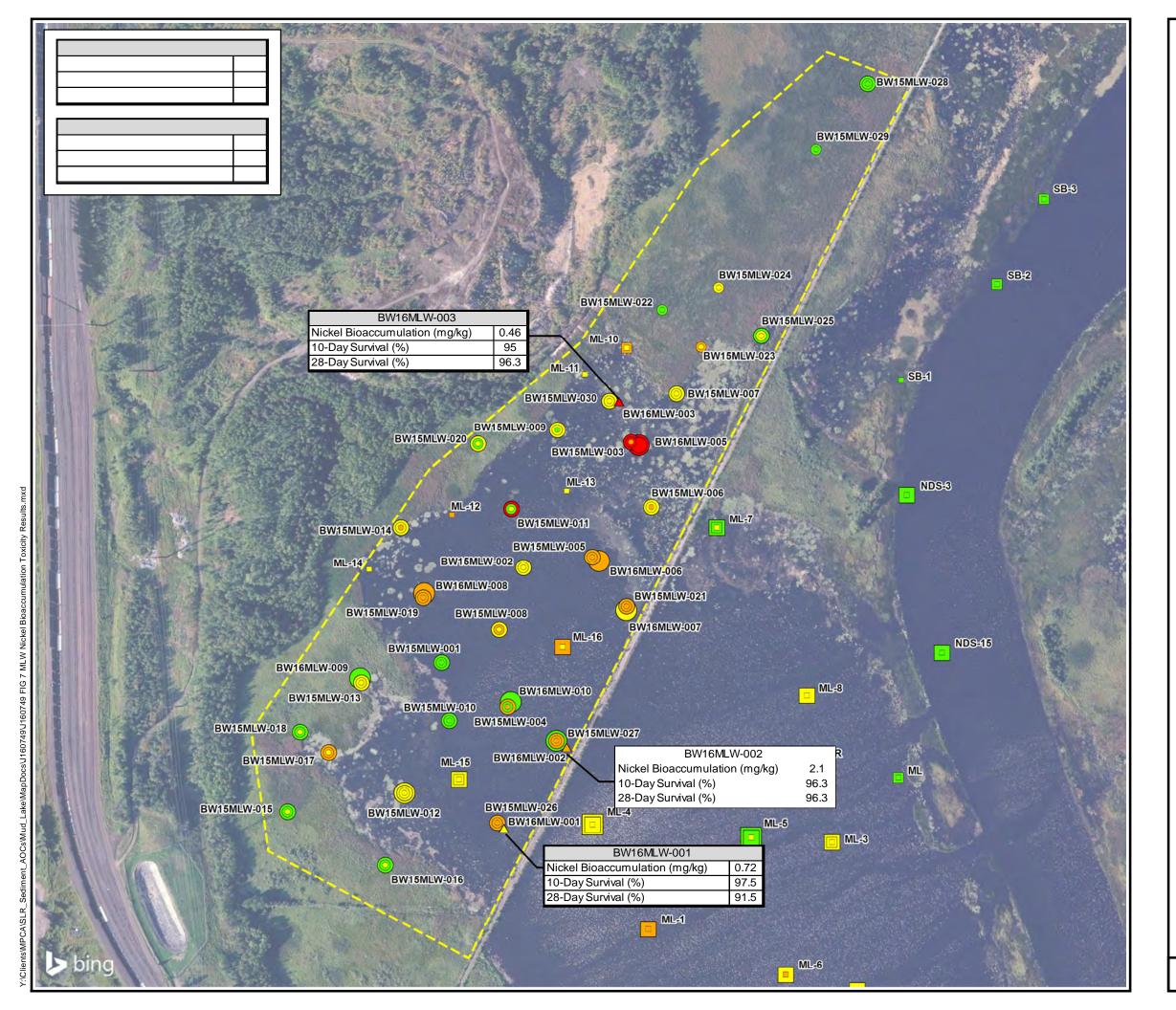
Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

#### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


#### **TEQ KM Fish SQT Comparison**

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Drawn By: S.G. Date Drawn/Revised:3/13/2017 Project No.J160749



# Figure 7 Nickel Bioaccumulation/Toxicity Results

## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





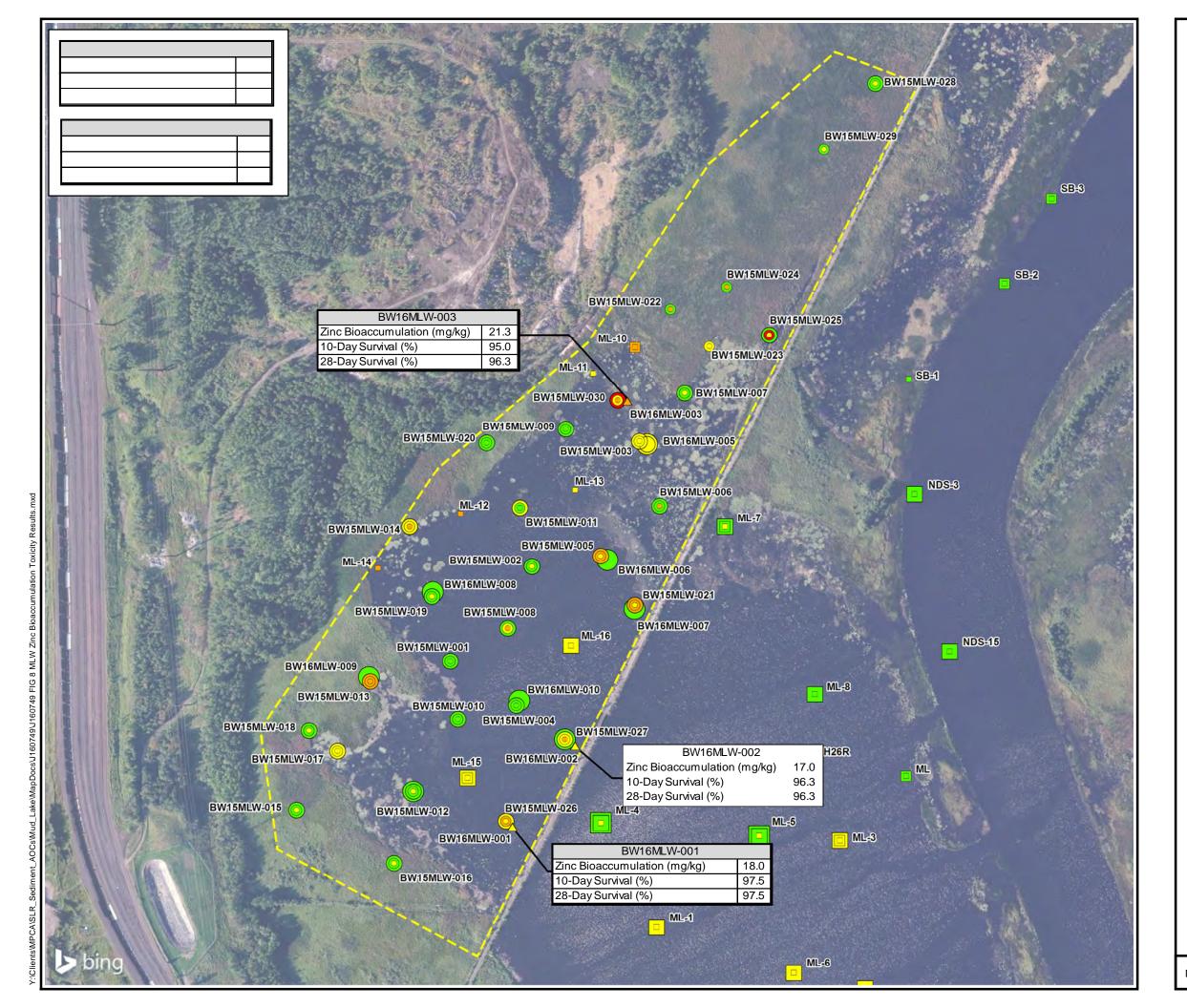
Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

#### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


#### **Nickel SQT Comparison**

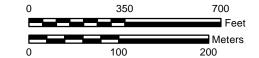
- Does not exceed Level 1 SQT (23 mg/kg)
- Exceeds Level 1 SQT (23 mg/kg)
- Exceeds Midpoint SQT (36 mg/kg)
- Exceeds Level 2 SQT (49 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Date Drawn/Revised:3/13/2017 Project No.J160749




## Zinc Bioaccumulation/Toxicity Results

## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





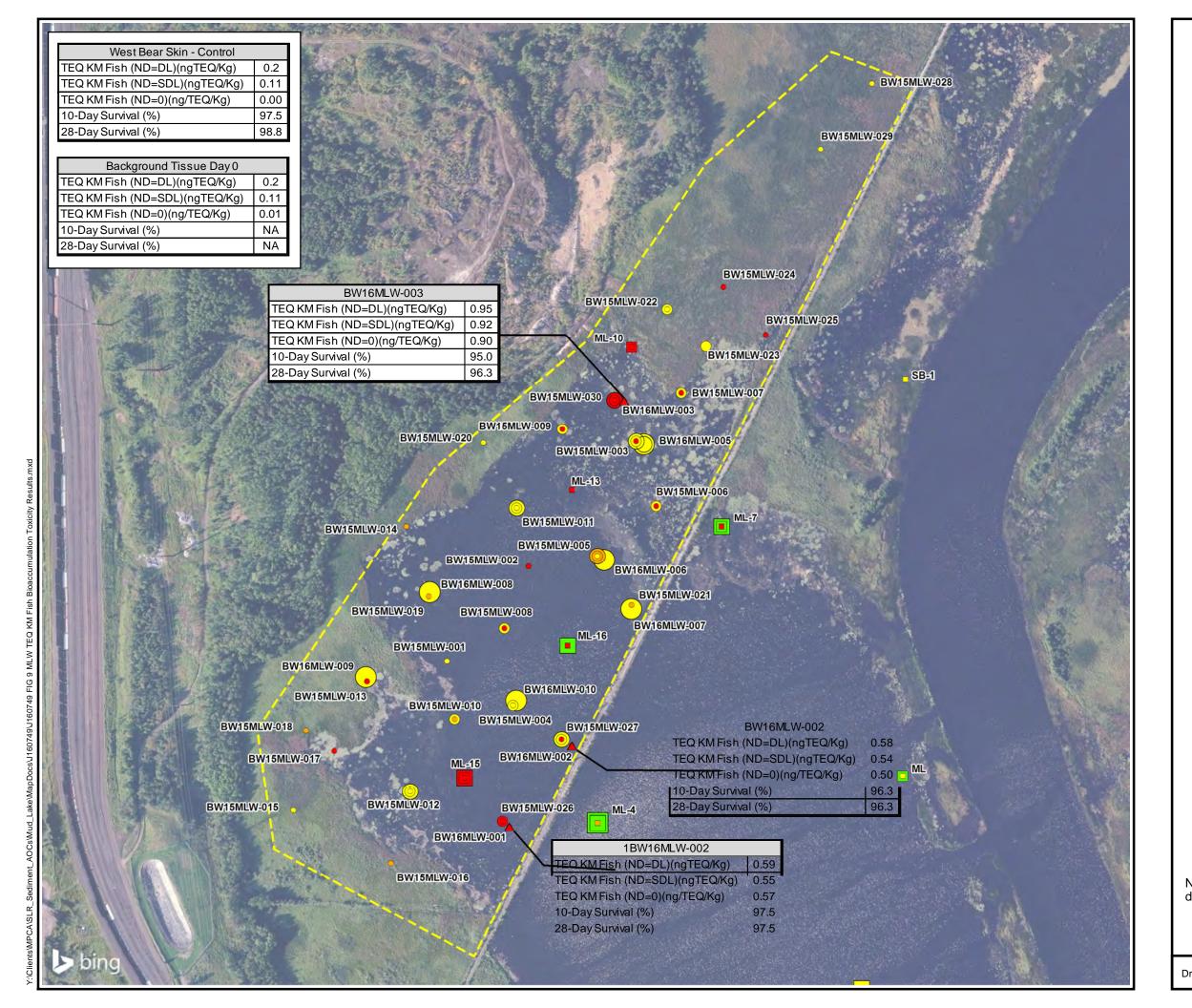
Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
  - Sediment Sample (Historical)

#### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


#### **Zinc SQT Comparison**

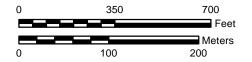
- Does not exceed Level 1 SQT (120 mg/kg)
- Exceeds Level 1 SQT (120 mg/kg)
- Exceeds Midpoint SQT (290 mg/kg)
- Exceeds Level 2 SQT (460 mg/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.




Date Drawn/Revised:3/13/2017 Project No.J160749




## TEQ KM Fish **Bioaccumulation/Toxicity** Results

## **Mud Lake West SLR Sediment AOCs**

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: Microsoft Bing WMS





Mud Lake West Site Boundary

#### Sample Type

- Sediment Sample, Including Tox/Bio Testing
- Sediment Sample (Bay West 2015/2016)
- Sediment Sample (Historical)

#### Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

#### **TEQ KM Fish SQT Comparison**

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Note: Sample location BW16MLW-004 was inaccessible during the time of sampling - Not sampled.



Drawn By: S.G. Date Drawn/Revised:3/13/2017 Project No.J160749

# Appendix A Field Notes, Core Logs, and Photos

June 2017 BWJ160749

# Sediment Collection & Characterization Core Log



| Project/S          | ite In    | format                   | ion  |                         |           |                        |                                         |              |                  |                  |                        |                        |  |
|--------------------|-----------|--------------------------|------|-------------------------|-----------|------------------------|-----------------------------------------|--------------|------------------|------------------|------------------------|------------------------|--|
| Project Nan        | ne:       | SLR                      |      |                         | Client:   | M                      | IPCA                                    | PCA          |                  | actor:           | Bay West               |                        |  |
| Project #:         | J160      | Site Loca                |      | ation:                  | Bould     | er Lake Reser          | r Lake Reservoir                        |              | <b>D</b> : BW    | BW16BLR-001      |                        |                        |  |
| Core & Po          | olling    | Colle                    | ctio | n Inform                | nation    |                        | Sample Colle                            | ctors:       | ACB              | sm               | <br>с ] [              | JMB                    |  |
| Date<br>Collected: | Septe     | otember 20, 2016 Tin     |      | ne Collected:           |           | 12:16 PM               | 7                                       | LAbove/Below | LWD (ft):        |                  |                        |                        |  |
| Water Elevat       | tion (ft) | :                        |      |                         | Water D   | epth (f                | (t): 8.0                                |              | Sediment         | Elevatior        | n (ft):                |                        |  |
| Poling Co          | llectic   | n Infor                  | mat  | ion                     | Equipm    | nent:                  | Rods                                    |              |                  |                  |                        |                        |  |
| Location<br>ID     | W         | pth of<br>/ater<br>cm)   |      | Depth to esistance (cm) | Re        | oth to<br>fusal<br>cm) | "Soft"<br>Sediment<br>Thickness<br>(cm) |              | Refusal Ty       | /pe              |                        | diment Ty<br>paching R |  |
| PL-01 PL-01        |           |                          |      |                         | 1   [     | 315                    | 61<br>0                                 |              | Sedimer Woody De |                  | Silty Clay Silt Loam — |                        |  |
| Core Colle         |           | Inform<br>Push<br>tempts | ı    | n C<br>Push De          | ollection |                        | Ponar/G Push Recovery (ft)              | 1            | Recovery         | Re               | tained?                |                        |  |
|                    |           | -<br>-<br>-              |      |                         |           |                        |                                         |              | 0<br>0<br>0<br>0 | _<br>_<br>_<br>_ |                        |                        |  |
| Core Pro           | cessi     | ng Info                  | orm  | ation                   | Sa        | imple l                | Processors:                             | ACE          | з Јмв            |                  | СЈМ                    |                        |  |
| Length of C        | ore (m    | ): (                     | 0.15 | Date                    | e Proces  | sed:                   | September 20                            | , 2016       | Time Prod        | essed:           | 12:10                  | PM                     |  |

| Sediment               | Charac         | terizati    | ion L    | og l       | Loc  | ation ID:    | BW16BL       | _R-001 | <b>Bay W</b> | est |
|------------------------|----------------|-------------|----------|------------|------|--------------|--------------|--------|--------------|-----|
| Layer 1:               | St             | tart Depth  | (m): 0.0 | )          | Er   | nd Depth (r  | n): 0.15     |        |              |     |
| Primary Colo           | r: Very Dark E | Brown (10YR | 2/2)     | Secondary  | y Cc | olor: Dark B | rown (10YR 3 | /3)    |              |     |
| USCS: PT               |                | USDA:       | Peat     |            |      | Grains:      | Rounded      |        |              |     |
| Organics:              | Woody          |             | %:       | 75 - 100   |      | Odor:        | No Odor      |        |              | 1   |
| Rocks: N               | one            |             | %:       | N/A        |      | Moisture     | : Saturate   | ed     |              |     |
| Petrochemica           | al: None       |             |          | Cohesivene | ess: | Loose        |              |        |              |     |
| Description/<br>Notes: | Very woo       | dy, 90%, s  | ome silt | :, <5%.    |      |              |              |        |              |     |
| Layer 2:               | St             | art Depth   | (m):     |            | Er   | nd Depth (r  | n):          |        | -            |     |
| Primary Colo           | r:             |             |          | Secondary  | y Co | olor: —      |              |        |              |     |
| USCS: _                |                | USDA:       | _        |            |      | Grains:      | _            |        |              |     |
| Organics:              | _              |             | %:       | _          |      | Odor:        | _            |        |              |     |
| Rocks:                 |                |             | %:       | _          |      | Moisture     | :            |        |              |     |
| Petrochemica           | al:            |             |          | Cohesiven  | ess: | _            |              |        |              |     |
| Description/<br>Notes: |                |             |          |            |      |              |              |        |              |     |
| Layer 3:               | St             | tart Depth  | (m):     |            | Er   | nd Depth (r  | n):          |        | -            |     |
| Primary Colo           | r:             |             |          | Secondary  | y Co | olor: —      |              |        |              |     |
| USCS: -                | <u> </u>       | USDA:       | _        |            |      | Grains:      | _            |        |              |     |
| Organics:              | _              | 1           | %:       | _          |      | Odor:        | _            |        |              |     |
| Rocks:                 | -              |             | %:       |            |      | Moisture     | : —          |        |              |     |
| Petrochemica           | al: —          |             |          | Cohesivene | ess: | _            |              |        |              |     |
| Description/<br>Notes: |                |             |          |            |      |              |              |        |              |     |

# **Benthic Macroinvertebrate Worksheet**



| Project/S                                                                                             | Site                                                    | Info        | rmation      |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|--------------|---------------|----------------|---------------|-----------|----------|-----------------|-------------------------|-------|------------|-------------|-------------|---------|----------------|----|
| Project Na                                                                                            | ame:                                                    | SLF         | ₹            | Proje         | ect #:         | J^            | 160139    |          | CI              | ient:                   | MP    | CA         | Cor         | ntractor:   | Ва      | y Wes          | st |
| Site Name                                                                                             | ame: Boulder Lake Reserve                               |             |              | eservoi       | oir Sample/Loc |               |           |          | cation I        | ation Name: BW16BLR-001 |       |            | 001         |             |         |                |    |
| Processo                                                                                              | rs:                                                     | A           | .CB          | 11            | MB             |               |           |          | Da              | ate:                    | Sep   | otember 20 | 0, 2016     | Time        | ə: [1   | 10:49 <i>F</i> | AM |
| Weather:                                                                                              | Ten                                                     | npera       | ture (deg    | F): 70        | 70 Skies: Pa   |               |           |          | artly Clo       | tly Cloudy W            |       |            | peed (mp    | oh) & Direc | tion: 5 | 5-10           |    |
| Sample Collection Information                                                                         |                                                         |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| Method:                                                                                               | lethod: Ponar                                           |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| Number o                                                                                              | nber of Grabs: 3 Approximate Collection Area (cm2): 675 |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| Notes:                                                                                                | Notes: Each grab = 15.2 cm x 15.2 cm (225 cm2)          |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| Habitat Information  Primary Color: Very Dark Brown (10YR 2/2) Secondary Color: Dark Brown (10YR 3/3) |                                                         |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| USCS: P                                                                                               |                                                         |             | <del>-</del> | USDA:         |                |               |           |          |                 |                         |       |            | ell Rounded |             |         |                |    |
| Organics:                                                                                             |                                                         | oody        |              |               | %:             | $\overline{}$ | 5 - 100   | _        | $_{\rceil}^{-}$ | Odor: No Od             |       |            |             |             |         |                |    |
| Rocks:                                                                                                | None                                                    | <del></del> |              | $\overline{}$ | %:             | N             | I/A       | _        | =               | Mois                    | sture | e: Saturat | ted         |             |         |                |    |
| Petrochem                                                                                             | L<br>nical:                                             | Non         | ne           |               | 7              | Co            | ohesivene | <br>ess: | Loose           | Loose                   |       |            |             |             |         |                |    |
| Description                                                                                           | n/Note                                                  | es:         | Natural sl   | neen, w       | ر /oody, ۱     | 90%           | %, some s | silt (   | (<5%)           |                         |       |            | 1           |             |         |                |    |
| Notes:                                                                                                |                                                         |             |              |               |                |               |           |          |                 |                         |       |            |             |             |         |                |    |
| Very woo                                                                                              | dy org                                                  | janics      | s, 90%, wi   | th some       | e silt.        |               |           |          |                 |                         |       |            |             |             |         |                |    |

## **Benthic Macroinvertebrate Community Assessment**



#### Each grab = 15.2 cm x 15.2 cm (225 cm2)

| Group 1                      | Group 2                        | Group 3               | Group 4               |  |  |
|------------------------------|--------------------------------|-----------------------|-----------------------|--|--|
| (Sensitive)                  | (Semi-Sensitive)               | (Semi-Tolerant)       | (Tolerant)            |  |  |
| Alderfly                     | Caddisfly                      | Black Fly             | Bloodworm Midge       |  |  |
| Dobsonfly                    | Crane Fly                      | Non-Red Midge         | Isopod/Sowbug         |  |  |
| Stonefly                     | Crawfish                       | Scud                  | Leech                 |  |  |
| Water Snipe Fly              | Damselfly                      | Snails                | Tubifex Worm          |  |  |
|                              | Dragonfly                      |                       |                       |  |  |
|                              | Fingernail Clam                |                       |                       |  |  |
|                              | Mayfly                         |                       |                       |  |  |
|                              | Riffle Beetle                  |                       |                       |  |  |
|                              | Water Penny                    |                       |                       |  |  |
| Total # of Organisms:        | Total # of Organisms:          | Total # of Organisms: | Total # of Organisms: |  |  |
| Total # of Taxa:             | Total # of Taxa:               | Total # of Taxa:      | Total # of Taxa:      |  |  |
| Miscellaneous Benthic Macro  | pinvertebrates                 | Other                 | Total # of Organisms: |  |  |
| Other                        |                                | Other                 | Total # of Taxa:      |  |  |
| Notes:                       |                                | TOTAL # of            | Γ <b>ΑΧΑ</b> : 0      |  |  |
| 15 minute assessment perform | ned no macroinvertebrates four | TOTAL # of ORG        | GANISMS: 0            |  |  |
|                              |                                |                       |                       |  |  |

# **Benthic Macroinvertebrate Sample Collection**



|                                                                                    |          |              | _              |                       |                              |                   |  |  |  |  |
|------------------------------------------------------------------------------------|----------|--------------|----------------|-----------------------|------------------------------|-------------------|--|--|--|--|
| Sample Location:                                                                   | BW1      | 6BLR-001     | Target Macro   | oinvertebrate Organis | sm: Other (See no            | Other (See notes) |  |  |  |  |
| Date: September                                                                    | 20, 2016 |              |                |                       |                              |                   |  |  |  |  |
|                                                                                    | Org      | anism Size   | Quantity       | Wet Weight (g)        | Individual Wet<br>Weight (g) |                   |  |  |  |  |
|                                                                                    | Large    | (>/= 20 mm)  |                |                       | 0                            |                   |  |  |  |  |
|                                                                                    | Mediu    | m (10-19 mm) |                |                       | 0                            |                   |  |  |  |  |
|                                                                                    | Sma      | all (< 9 mm) |                |                       | 0                            |                   |  |  |  |  |
|                                                                                    |          |              | Total          | Total                 | Average                      |                   |  |  |  |  |
|                                                                                    |          |              | 0              | 0                     | 0                            |                   |  |  |  |  |
| Notes:                                                                             |          |              |                |                       |                              |                   |  |  |  |  |
| No macroinvertebrates were submitted for analysis.  Sample Processing - Depuration |          |              |                |                       |                              |                   |  |  |  |  |
| Start Date/Time:                                                                   |          |              | E              | End Date/Time:        |                              |                   |  |  |  |  |
| Duration (hours):                                                                  |          |              |                |                       |                              |                   |  |  |  |  |
| Laboratory Sa                                                                      | mple An  | alysis       |                |                       |                              |                   |  |  |  |  |
| Sample ID:                                                                         |          | Samp         | ole Date/Time: |                       | Laboratory                   | :                 |  |  |  |  |
| PAHs 17                                                                            | ] VOCs   | Dioxins      | PCBs           | ☐ pH ☐ Mois           | ture                         | Grain Size        |  |  |  |  |
| Select Metals                                                                      | ☐ Ar     | Cd [         | Cr Cu          | ☐ Hg ☐ Ni             | Pb                           |                   |  |  |  |  |
| ☐ MS/MSD                                                                           | _        |              |                | Othe                  | r Compound: —                |                   |  |  |  |  |
| ☐ Duplicate                                                                        |          | Sar          | mple ID:       |                       | Dup Time:                    |                   |  |  |  |  |
| Notes:                                                                             |          |              |                |                       |                              |                   |  |  |  |  |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 20, 2016

Sample Location:

BW16BLR-001



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:

Photo 6:

v.082016

# Sediment Collection & Characterization Core Log



| Project/Si         | te In                             | formati        | on      |                             |            |                                         |                      |              |                          |                                      |            |  |  |
|--------------------|-----------------------------------|----------------|---------|-----------------------------|------------|-----------------------------------------|----------------------|--------------|--------------------------|--------------------------------------|------------|--|--|
| Project Nam        | ne:                               | SLR            |         |                             | Client:    | MF                                      | PCA                  |              | Contractor:              |                                      | Bay West   |  |  |
| Project #:         | J160                              | 139            | S       | site Locat                  | ion:       | r Lake Reservo                          | Location ID:         |              |                          | BW16BLR-002                          |            |  |  |
| Core & Po          | olling                            | Collec         | tion    | Informa                     | ation      |                                         | Sample Collect       | ors:         | ACB                      | SC                                   | у ДМВ      |  |  |
| Date<br>Collected: | ISANTAMBAR ZII ZIIIA I IIM        |                |         |                             |            | ne Collected: 1:25 PM A                 |                      |              | Above/Below LWD (ft):    |                                      |            |  |  |
| Water Elevati      | on (ft)                           | :              |         | \ \                         | Water Der  | oth (ft)                                | 14.2                 |              | Sediment Elevation (ft): |                                      |            |  |  |
| Poling Col         | lectic                            | n Infori       | matio   | n                           | Equipme    | nt:                                     | Rods                 |              |                          |                                      |            |  |  |
| Location<br>ID     | Depth of Depth to Water (cm) (cm) |                | istance | Depth to<br>Refusal<br>(cm) |            | "Soft"<br>Sediment<br>Thickness<br>(cm) |                      | Refusal Type |                          | Sediment Type<br>Approaching Refusal |            |  |  |
| PL-01              |                                   | 74             | 90      |                             | 101        |                                         | 27                   |              | Sediment                 | $\neg$                               | Silty Clay |  |  |
| PL-01              | L '                               | 432            |         | 549                         | 60         | 5                                       | 173                  |              | Sediment                 | $\rfloor  $                          | Silt       |  |  |
|                    |                                   |                |         |                             |            |                                         | 0                    |              | _                        |                                      | _          |  |  |
|                    |                                   |                |         |                             |            |                                         | 0                    |              | _                        |                                      | _          |  |  |
| Core Colle         | ction                             | Inform         | ation   | Со                          | llection M | lethod                                  | l: Ponar/Gra         | ıb           |                          |                                      |            |  |  |
|                    |                                   | Push<br>tempts | F       | Push Dep                    | oth (ft)   | Re                                      | Push<br>ecovery (ft) | % F          | Recovery                 | Ret                                  | tained?    |  |  |
|                    |                                   | _              |         |                             |            |                                         |                      |              | 0                        |                                      |            |  |  |
|                    |                                   | _              |         |                             |            |                                         |                      |              | 0                        |                                      |            |  |  |
|                    |                                   | _              |         |                             |            |                                         |                      |              | 0                        | _                                    |            |  |  |
|                    |                                   | _              |         |                             |            |                                         |                      |              | 0                        | _                                    |            |  |  |
|                    |                                   | _              |         |                             |            |                                         |                      |              | 0                        |                                      |            |  |  |
| Core Prod          | essi                              | ng Info        | rmat    | ion                         | Sam        | nple P                                  | rocessors:           | ACB          | JMB                      | c                                    | CJM        |  |  |
| Length of Co       | ore (m                            | ): 0           | .15     | Date                        | Processe   | ed:                                     | September 20, 2      | 2016         | Time Process             | sed:                                 | 2:10 PM    |  |  |

| Sedime                        | nt (  | Charac      | terizati     | on L     | og        | Loc   | ation ID:     |        | BW16BLR-002 |   | <b>b</b> Bay | West |
|-------------------------------|-------|-------------|--------------|----------|-----------|-------|---------------|--------|-------------|---|--------------|------|
| Layer 1: Start Depth (m): 0.0 |       |             |              |          | )         | Er    | nd Depth (r   | n):    | 0.15        |   |              |      |
| Primary C                     | olor: | Very Dark B | rown (10YR   | 2/2)     | Seconda   | ry Cc | olor: Black ( | 10\    | (R 2/1)     | 1 | A TOTAL      | 15   |
| uscs: N                       | ЛL    |             | USDA:        | Silt Loa | ım        |       | Grains:       | R      | ounded      |   |              | E    |
| Organics:                     | ٧     | Voody       |              | %:       | 0 - 5     |       | Odor:         | N      | o Odor      |   |              |      |
| Rocks:                        | Nor   | ne          |              | %:       | N/A       |       | Moisture      | ::     | Saturated   | 1 |              |      |
| Petrochen                     | nical | None        |              |          | Cohesiver | ness: | Loose         |        |             |   |              |      |
| Descriptio<br>Notes:          | n/    | Soft claye  | y silt, loos | e.       |           |       |               |        |             |   |              |      |
| Layer 2:                      |       | St          | art Depth    | (m):     |           | Er    | nd Depth (r   | n):    |             |   |              |      |
| Primary C                     | olor: | _           |              |          | Secondar  | ry Co | olor: —       |        |             |   |              |      |
| USCS:                         | _     |             | USDA:        | _        | =         |       | Grains:       |        | -           |   |              |      |
| Organics:                     |       | _           |              | %:       | _         |       | Odor:         | _      | -           |   |              |      |
| Rocks:                        |       |             |              | %:       |           |       | Moisture      | ::     | _           |   |              |      |
| Petrochen                     | nical | : —         |              |          | Cohesiver | ness: | _             | _      |             |   |              |      |
| Descriptio<br>Notes:          | n/    |             |              |          |           |       |               |        |             |   |              |      |
| Layer 3:                      | :     | St          | art Depth    | (m):     |           | Er    | nd Depth (r   | n):    |             |   |              |      |
| Primary C                     | olor: |             |              |          | Secondar  | ry Co | olor:         |        |             |   |              |      |
| USCS: _                       |       |             | USDA:        | _        |           |       | Grains:       |        | -           |   |              |      |
| Organics:                     |       | _           |              | %:       | _         |       | Odor:         | Ŀ      | -           |   |              |      |
| Rocks:                        |       |             |              | %:       | _         |       | Moisture      | ):<br> | <u> </u>    |   |              |      |
| Petrochen                     | nical | :           |              |          | Cohesiver | ness: | _             |        |             |   |              |      |
| Descriptio<br>Notes:          | n/    |             |              |          |           |       |               | _      |             |   |              |      |

# **Photographic Log**

Photo 3:



Project Name: SLR Project Number: J160139 Photographs taken on: September 20, 2016 Location ID: BW16BLR-002 Photo 2: Photo 1:

Photo 5: Photo 6:

Photo 4:



| Project/Si         | ite In   | forma                  | ition         |                         |           |                 |                    |            |       |                                      |               |         |      |         |         |             |       |          |                   |               |
|--------------------|----------|------------------------|---------------|-------------------------|-----------|-----------------|--------------------|------------|-------|--------------------------------------|---------------|---------|------|---------|---------|-------------|-------|----------|-------------------|---------------|
| Project Nam        | ne:      | SLR                    |               |                         |           | Clien           | t:                 | MP         | CA    |                                      |               |         |      | Contr   | actor   | :           | Bay ' | West     |                   |               |
| Project #:         | J160     | 139                    |               | Site L                  | <br>_ocat | ion:            | Βοι                | ıldeı      | r Lak | e Rese                               | ervoir        |         | Loca | ation   | ID:     | BW          | 16BI  | LR-00    | 3                 |               |
| Core & Po          | olling   | Colle                  | ectio         | n Info                  | orm       | ation           |                    |            | Sam   | ple Col                              | lecto         | rs:     |      | ACB     | <br>] [ | JMI         | в Т   | S        | с ]               |               |
| Date<br>Collected: | Septe    | ember:                 | 21, 20        | 16                      | Tim       | e Colle         | cted:              |            | 10:   | 17 AM                                |               | Ak      | oove | /Below  | / LWC   | ) (ft):     |       |          | <u> </u>          |               |
| Water Elevat       | ion (ft) | :                      |               |                         | '         | Water [         | Depth              | (ft):      | :     | 7.5                                  |               |         | Sed  | diment  | Elev    | ation       | (ft): |          |                   |               |
| Poling Col         | lectio   | n Info                 | rmat          | ion                     |           | Equip           | ment:              |            | Roc   | ls                                   |               |         |      |         |         |             |       |          |                   |               |
| Location<br>ID     | w        | pth of<br>/ater<br>cm) |               | Depth<br>esista<br>(cm) | nce       | Re              | pth tefusa<br>(cm) |            |       | "Soft"<br>Sedimer<br>hicknes<br>(cm) | nt            |         | Ref  | fusal 1 | Гуре    |             |       |          | nent Ty<br>hing R | /pe<br>efusal |
| PL-01              |          | 74                     |               | 90                      | $\neg$    | $\mid$ $\vdash$ | 101                | ٦          |       | 27                                   | $\neg$        |         |      | Sedime  |         | $\neg \mid$ |       | Sili     | ty Clay           |               |
| PL-01              |          | 239                    | L             | 249                     |           |                 | 272                | ╛╽         |       | 33                                   |               |         | S    | Sedime  | ent     | ┚╽          |       | Sil      | t Loam            |               |
|                    |          |                        |               |                         |           |                 |                    |            |       | 0                                    |               |         |      |         |         | $\prod$     |       |          | _                 |               |
|                    |          |                        |               |                         | _         |                 |                    | _<br> <br> |       | 0                                    |               |         |      |         |         | <b>-</b>    |       |          |                   |               |
|                    |          |                        |               |                         |           |                 |                    | _]         |       | 0                                    |               |         |      |         |         |             |       |          |                   |               |
| Core Colle         | ection   | Infori                 | matio         | n                       | Сс        | llection        | n Met              | hod:       | •     | Ponar/                               | 'Grab         | )       |      |         | 7       |             |       |          |                   |               |
|                    |          | Push<br>tempts         | s             | Push                    | ) Dep     | oth (ft)        |                    | Re         | Pu    | sh<br>ery (ft)                       |               | % F     | Reco | very    | _       | Ret         | ained | ነ?       |                   |               |
|                    |          | _                      | 7             |                         |           |                 |                    |            |       |                                      | 1             |         | 0    |         | 1-      | _           |       |          |                   |               |
|                    |          | _                      | <b>1</b>      |                         |           |                 |                    |            |       |                                      |               |         | 0    |         |         |             |       |          |                   |               |
|                    |          |                        | ╡             |                         |           |                 |                    |            |       |                                      |               |         | 0    |         |         |             |       |          |                   |               |
|                    |          |                        | $\exists$     |                         |           |                 |                    |            |       |                                      |               |         | 0    |         |         |             |       |          |                   |               |
|                    |          |                        | $\frac{1}{2}$ |                         |           |                 |                    |            |       |                                      | $\frac{1}{1}$ |         | 0    |         |         |             |       | $\dashv$ |                   |               |
|                    |          |                        | _   <br>      |                         |           |                 | ]  <br>            |            |       |                                      | ]  <br>       | <u></u> |      |         | L       |             |       | <u></u>  |                   |               |
| Core Prod          | cessi    | ng In                  | form          | ation                   |           | S               | ampl               | e Pr       | oces  | ssors:                               | A             | ACB     |      | JME     | 3       | С           | JM    |          |                   |               |
| Length of Co       | ore (m   | ):                     | 0.15          |                         | Date      | Proces          | ssed:              |            | Sept  | ember 2                              | 20, 20        | 16      | Tin  | ne Pro  | cesse   | ed:         | 10:   | :30 AN   |                   |               |

| Sediment (             | Characterizat         | ion L      | .og L         | ocation ID:    | BW16BLR-003   | <b>Bay West</b> |
|------------------------|-----------------------|------------|---------------|----------------|---------------|-----------------|
| Layer 1:               | Start Depth           | (m): 0.    | 0             | End Depth (r   | m): 0.15      |                 |
| Primary Color          | Very Dark Brown (10YR | 2/2)       | Secondary     | Color: Black ( | 10YR 2/1)     |                 |
| USCS: ML               | USDA:                 | Silt Loa   | am            | Grains:        | Rounded       |                 |
| Organics: F            | Fibrous               | %:         | 10 - 25       | Odor:          | No Odor       |                 |
| Rocks: No              | ne                    | %:         | N/A           | Moisture       | : Saturated   |                 |
| Petrochemical          | : None                |            | Cohesivene    | ess: Loose     |               |                 |
| Description/<br>Notes: | Silty with some fine  | sand, I    | oose with lor | ng fibrous woo | ody material. | Option 1        |
| Layer 2:               | Start Depth           | (m):       |               | End Depth (r   | m):           |                 |
| Primary Color          | _                     |            | Secondary     | Color: –       |               |                 |
| uscs: —                | USDA:                 | _          | _             | Grains:        | _             |                 |
| Organics:              |                       | %:         | _             | Odor:          | _             |                 |
| Rocks: —               |                       | <b>%</b> : | _             | Moisture       | :             |                 |
| Petrochemical          | :                     |            | Cohesivene    | ess: —         |               | _               |
| Description/<br>Notes: |                       |            |               |                |               |                 |
| Layer 3:               | Start Depth           | (m):       |               | End Depth (r   | m):           |                 |
| Primary Color          | _                     |            | Secondary     | Color: —       |               |                 |
| USCS:                  | USDA:                 |            |               | Grains:        | _             |                 |
| Organics:              | _                     | %:         | _             | Odor:          | _             |                 |
| Rocks: —               |                       | <b>%</b> : | _             | Moisture       | :             |                 |
| Petrochemical          | :                     |            | Cohesivene    | ess:           |               |                 |
| Description/<br>Notes: |                       |            |               |                |               |                 |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 21, 2016

Location ID:

BW16BLR-003



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103-1867

651/291-0456 FAX 651/291-0099 1-800-279-0456

## **DAILY DIARY**

To be completed by Crew Leader

Page \_1\_ of \_2\_

| Job Name<br>SLR AOC                                                                                          |                                                                                                                                                         | Job No.<br>J160139                                                        | Date<br>October 4, 2016                                                             |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Project Manager                                                                                              |                                                                                                                                                         | Bay West Crew                                                             | ,                                                                                   |  |  |  |  |  |  |  |  |
| Paul Raymaker                                                                                                | Nient Vieitere Bey Weet e                                                                                                                               | Chris Musson, Alex Blel, Jonna B                                          | jelland                                                                             |  |  |  |  |  |  |  |  |
| •                                                                                                            | lient, visitors, Bay West S                                                                                                                             | taff other than listed above)                                             |                                                                                     |  |  |  |  |  |  |  |  |
| Andrew Peterson  Detailed description                                                                        | of work performed:                                                                                                                                      |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
|                                                                                                              |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Crew members mobil                                                                                           | Crew members mobilized to the Duluth office and gathered equipment and supplies, and then mobilized to Mud                                              |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Lake West. The small jon boat was launched and the team collected: bulk sediments for laboratory             |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| toxicity/bioaccumulation testing using a petite ponar dredge from the 0.0 – 0.15m interval; sediment surface |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| samples using a petit                                                                                        | samples using a petite ponar dredge from the 0.0 – 0.15m interval; and deep interval sediment samples using a                                           |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Russian peat borer sa                                                                                        | Russian peat borer sampler (intervals varied depending on location and refusal). Location BW16MLW-004 was                                               |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| not collected as it is lo                                                                                    | ocated within the marsh                                                                                                                                 | <u>area. Previous experience sampling v</u>                               | vithin the marsh area suggests                                                      |  |  |  |  |  |  |  |  |
| a push depth greater                                                                                         | than 1.0 meter would no                                                                                                                                 | t be achievable due to the lack of sed                                    | iment and the presence of                                                           |  |  |  |  |  |  |  |  |
| dense, rooty material                                                                                        | that makes up the lake b                                                                                                                                | oottom in that area.                                                      |                                                                                     |  |  |  |  |  |  |  |  |
|                                                                                                              |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| -                                                                                                            |                                                                                                                                                         | ed the bulk sediment samples for ship                                     |                                                                                     |  |  |  |  |  |  |  |  |
| -                                                                                                            |                                                                                                                                                         | LEC) and processed the remaining se                                       | _                                                                                   |  |  |  |  |  |  |  |  |
| Mud Lake West. Sam                                                                                           | ples destined for GLEC                                                                                                                                  | were delivered to Fed Ex for overnigh                                     | t shipping to GLEC.                                                                 |  |  |  |  |  |  |  |  |
| Note –Collected and                                                                                          | depurated organisms are                                                                                                                                 | e being held awaiting determination of                                    | how samples should be                                                               |  |  |  |  |  |  |  |  |
| composited (potential                                                                                        | ly with Hester Dendy tiss                                                                                                                               | sue) and what locations/species shou                                      | ld be analyzed. Sediment                                                            |  |  |  |  |  |  |  |  |
| samples collected from                                                                                       | m the reservoirs are also                                                                                                                               | awaiting shipment to the laboratory.                                      | These samples are waiting on                                                        |  |  |  |  |  |  |  |  |
| determination of whet                                                                                        | her or not sufficient bent                                                                                                                              | hic tissue can be collected at a partic                                   | ular location and which                                                             |  |  |  |  |  |  |  |  |
| locations will have see                                                                                      | diments submitted for lal                                                                                                                               | poratory bioaccumulation testing.                                         |                                                                                     |  |  |  |  |  |  |  |  |
| Waste Generated:                                                                                             |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| None.                                                                                                        |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Change in Condition                                                                                          | ns (if any):                                                                                                                                            |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| None.                                                                                                        |                                                                                                                                                         |                                                                           | _                                                                                   |  |  |  |  |  |  |  |  |
| Sample Summary:                                                                                              |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Samples Taken: _X_ Yes No                                                                                    |                                                                                                                                                         | and 003 (bulk sediments from the xicity/bioaccumulation testing and ysis) | COC:<br>SLR-GLEC-1<br>(toxicity/bioaccumulation<br>testing, d/f, nickel, zinc, TOC) |  |  |  |  |  |  |  |  |
|                                                                                                              | BW16MLW-005 through 010 (surface and deep interval sediments for physical/chemical analysis)  SLR-MLW-1 (d/f, nickel, zinc) SLR-MLW-2 (TOC, grain size) |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |
| Sample Destination:                                                                                          |                                                                                                                                                         |                                                                           |                                                                                     |  |  |  |  |  |  |  |  |

Benthic tissue – Organisms will be depurated and jarred, then sent to EPA-designated lab. Sediment – Dioxins/furans, mercury, TOC, and grain size samples will be sent to Pace.

# **Benthic Macroinvertebrate Worksheet**



| Project/S  | Site I                                                                                               | Info  | rmation          | l     |         |       |           |               |       |        |             |         |            |           |       |
|------------|------------------------------------------------------------------------------------------------------|-------|------------------|-------|---------|-------|-----------|---------------|-------|--------|-------------|---------|------------|-----------|-------|
| Project Na | ame:                                                                                                 | SLF   | ₹                | Proje | ect #:  | J     | 160139    | CI            | ient: | MPC    |             | Con     | tractor:   | Bay V     | Vest  |
| Site Name  | <b>)</b> :                                                                                           | M     | ud Lake \        | Nest  |         |       | Sample/Lo | cation I      | Name: | : BV   | W16MLW-0    | 001     |            |           |       |
| Processo   | rs:                                                                                                  | Α     | СВ               | JI    | MB      |       | СЈМ       | Da            | ate:  | Octo   | ober 4, 201 | 6       | Time       | 10:       | 30 AM |
| Weather:   | Tem                                                                                                  | npera | ture (deg        | F): 6 | 1       |       | Skies: Pa | artly Sur     | าทy   |        | Wind Spe    | ed (mpl | h) & Direc | tion: 0-5 |       |
| Sample     | Colle                                                                                                | ectic | n Infor          | matio | n       |       |           |               | ,     | •••••  | ,           |         |            |           |       |
| Method:    |                                                                                                      | P     | onar             |       |         |       |           |               |       |        |             |         |            |           |       |
| Number o   | Number of Grabs: 3 Approximate Collection Area (cm2): 675                                            |       |                  |       |         |       |           |               |       |        |             |         |            |           |       |
| Notes:     | Notes: Each grab = 15.2 cm x 15.2 cm (225 cm2)                                                       |       |                  |       |         |       |           |               |       |        |             |         |            |           |       |
| Habitat I  | olor:                                                                                                |       | ion<br>y Dark Br |       |         |       |           | Secor         |       |        | : Dark Bro  | -       | YR 3/3)    |           |       |
| USCS: M    |                                                                                                      |       |                  | USDA: |         | Г     | oam<br>   | $\overline{}$ |       | rains: |             |         |            |           |       |
| Organics:  | $\vdash$                                                                                             | rous  |                  |       | %:      | F     | - 5       | _ <br>        |       |        | : No Odor   |         |            |           |       |
|            | None                                                                                                 |       |                  |       | %:<br>T | L     | J/A       |               | Mois  | sture: | Saturated   | d<br>   |            |           |       |
|            | Petrochemical: None Cohesiveness: —  Description/Notes: Very soft sediment, <5% fibrous woody debris |       |                  |       |         |       |           |               |       |        |             |         |            |           |       |
| Notes:     | •••••                                                                                                |       |                  |       |         | ••••• |           |               |       |        |             |         |            |           |       |
|            |                                                                                                      |       |                  |       |         |       |           |               |       |        |             |         |            |           |       |

### **Benthic Macroinvertebrate Community Assessment**



#### Each grab = 15.2 cm x 15.2 cm (225 cm2)

| Group 1                     | Group 2               | Group 3               | Group 4               |  |  |
|-----------------------------|-----------------------|-----------------------|-----------------------|--|--|
| (Sensitive)                 | (Semi-Sensitive)      | (Semi-Tolerant)       | (Tolerant)            |  |  |
| Alderfly                    | Caddisfly             | Black Fly             | Bloodworm Midge       |  |  |
| Dobsonfly                   | Crane Fly             | 1 Non-Red Midge       | Isopod/Sowbug         |  |  |
| Stonefly                    | Crawfish              | Scud                  | Leech                 |  |  |
| Water Snipe Fly             | Damselfly             | Snails                | Tubifex Worm          |  |  |
|                             | Dragonfly             |                       |                       |  |  |
|                             | 1 Fingernail Clam     |                       |                       |  |  |
|                             | Mayfly                |                       |                       |  |  |
|                             | Riffle Beetle         |                       |                       |  |  |
|                             | Water Penny           |                       |                       |  |  |
| Total # of Organisms:       | Total # of Organisms: | Total # of Organisms: | Total # of Organisms: |  |  |
| Total # of Taxa:            | Total # of Taxa: 1    | Total # of Taxa: 1    | Total # of Taxa:      |  |  |
| Miscellaneous Benthic Macro | Dinvertebrates 2      | Other Horsefly        | Total # of Organisms: |  |  |
| Other                       | 1                     | Other Needleworm      | Total # of Taxa: 2    |  |  |
| Notes:                      |                       | TOTAL # of 1          | :<br>ГАХА: 4          |  |  |
| 15 min assessment           |                       | TOTAL # of ORG        | GANISMS: 5            |  |  |
|                             |                       |                       |                       |  |  |

## **Benthic Macroinvertebrate Sample Collection**



| Sample Location:                | BW/1    | 6MLW-001           | Target Macre                                         | oinvertehrate Organisc | n: Other (See not            | Other (See notes) |  |  |  |
|---------------------------------|---------|--------------------|------------------------------------------------------|------------------------|------------------------------|-------------------|--|--|--|
|                                 |         |                    | Target Macroinvertebrate Organism: Other (See notes) |                        |                              |                   |  |  |  |
| Date: October 4, 2              | 016     |                    |                                                      |                        |                              |                   |  |  |  |
|                                 | Org     | anism Size         | Quantity                                             | Wet Weight (g)         | Individual Wet<br>Weight (g) |                   |  |  |  |
|                                 | Large   | (>/= 20 mm)        |                                                      |                        | 0                            |                   |  |  |  |
|                                 | Mediu   | m (10-19 mm)       |                                                      |                        | 0                            |                   |  |  |  |
|                                 | Sma     | all (< 9 mm)       |                                                      |                        | 0                            |                   |  |  |  |
|                                 |         |                    | Total                                                | Total                  | Average                      |                   |  |  |  |
|                                 |         |                    | 0                                                    | 0                      | 0                            |                   |  |  |  |
| Notes:                          |         |                    |                                                      |                        |                              |                   |  |  |  |
| No macroinvertebr Sample Proces |         | e submitted for an | nalysis.                                             |                        |                              |                   |  |  |  |
| Start Date/Time:                |         |                    | E                                                    | End Date/Time:         |                              |                   |  |  |  |
| Duration (hours):               |         |                    |                                                      |                        |                              |                   |  |  |  |
| Laboratory San                  | nple An | alysis             |                                                      |                        |                              |                   |  |  |  |
| Sample ID:                      |         | Samp               | le Date/Time:                                        |                        | Laboratory:                  | _                 |  |  |  |
| PAHs 17                         | VOCs    | Dioxins            | PCBs                                                 | ☐ pH ☐ Moiste          | ure TOC                      | Grain Size        |  |  |  |
| Select Metals                   | ☐ Ar    | ☐ Cd ☐             | Cr Cu                                                | ☐ Hg ☐ Ni              | Pb                           |                   |  |  |  |
| ☐ MS/MSD                        |         |                    |                                                      | Other                  | Compound: —                  |                   |  |  |  |
| Duplicate                       | _       | San                | nple ID:                                             |                        | Dup Time:                    |                   |  |  |  |
| Notes:                          |         |                    |                                                      |                        |                              |                   |  |  |  |

### **Photographic Log**



Project Name: SLR Project Number: J160139 Photographs taken on: October 5, 2016

Sample Location:

BW16MLW-001







Photo 2:

| Photo 3: |  | Photo 4: |  |
|----------|--|----------|--|
|----------|--|----------|--|

Photo 5: Photo 6:

# **Benthic Macroinvertebrate Worksheet**



| Project/S                                                 | Site                                                           | Info  | rmation          | l        |        |   |             |                   |          |        |              |          |            |           |       |
|-----------------------------------------------------------|----------------------------------------------------------------|-------|------------------|----------|--------|---|-------------|-------------------|----------|--------|--------------|----------|------------|-----------|-------|
| Project Na                                                | ame:                                                           | SLF   | ₹                | Proje    | ect #: | J | 160139      |                   | Client:  | MPC    |              | Conf     | tractor:   | Bay \     | West  |
| Site Name                                                 | <b>):</b>                                                      | M     | ud Lake \        | <br>Nest |        |   | Sample/Lo   | <br>ocati         | on Name: | : B\   | W16MLW-0     | 02       |            |           |       |
| Processo                                                  | rs:                                                            | Α     | СВ               | J        | MB     |   | СЈМ         |                   | Date:    | Octo   | ober 4, 2016 | 3        | Time       | 10:       | 54 AM |
| Weather:                                                  | Tem                                                            | npera | ture (deg        | F): 6    | 1      |   | Skies: F    | artly             | Sunny    |        | Wind Spe     | ed (mpł  | n) & Direc | tion: 0-5 | j     |
| Sample                                                    | Coll                                                           | ectic | n Infor          | matio    | n      |   |             | •••••             |          | ,      |              |          |            |           |       |
| Method:                                                   |                                                                | Р     | onar             |          |        |   |             |                   |          |        |              |          |            |           |       |
| Number of Grabs: 3 Approximate Collection Area (cm2): 675 |                                                                |       |                  |          |        |   |             |                   |          |        |              |          |            |           |       |
| Notes:                                                    | Notes: Each grab = 15.2 cm x 15.2 cm (225 cm2)                 |       |                  |          |        |   |             |                   |          |        |              |          |            |           |       |
| Habitat I Primary Co                                      |                                                                |       | ion<br>y Dark Br | own (10  |        |   | oam         | Se                |          | Color  | r: Dark Brov | -        | YR 3/3)    |           |       |
| Oscs. IIV<br>Organics:                                    |                                                                | rous  |                  |          | %:     | Г | - 10        | $\overline{\top}$ |          |        | : No Odor    | <u> </u> |            |           |       |
|                                                           | None                                                           |       |                  | =        | %:     | F | I/A         | $\dashv$          |          | sture: |              |          |            |           |       |
| Petrochem                                                 |                                                                | Non   | ne               |          | 7      |   | ohesiveness | <br>::            | oose     |        |              |          |            |           |       |
| Description                                               | Description/Notes:  Very soft silty sediment, 7% fibrous woody |       |                  |          |        |   |             |                   |          |        |              |          |            |           |       |
| Notes:                                                    |                                                                |       |                  |          |        |   |             |                   |          |        |              |          |            |           |       |
|                                                           |                                                                |       |                  |          |        |   |             |                   |          |        |              |          |            |           |       |

### **Benthic Macroinvertebrate Community Assessment**



#### Each grab = 15.2 cm x 15.2 cm (225 cm2)

| Group 1                     | Group 2            | Group 3          | Group 4                 |  |  |  |
|-----------------------------|--------------------|------------------|-------------------------|--|--|--|
| (Sensitive)                 | (Semi-Sensitive)   | (Semi-Tolerant)  | (Tolerant)              |  |  |  |
| Alderfly                    | Caddisfly          | Black Fly        | Bloodworm Midge         |  |  |  |
| Dobsonfly                   | Crane Fly          | Non-Red Midge    | Isopod/Sowbug           |  |  |  |
| Stonefly                    | Crawfish           | Scud             | Leech                   |  |  |  |
| Water Snipe Fly             | Damselfly          | Snails           | Tubifex Worm            |  |  |  |
|                             | Dragonfly          |                  |                         |  |  |  |
|                             | 1 Fingernail Clam  |                  |                         |  |  |  |
|                             | Mayfly             |                  |                         |  |  |  |
|                             | Riffle Beetle      |                  |                         |  |  |  |
|                             | Water Penny        |                  |                         |  |  |  |
| Total # of 0                | Total # of 1       | Total # of 0     | Total # of Organisms:   |  |  |  |
| Total # of Taxa:            | Total # of Taxa: 1 | Total # of Taxa: | Total # of Taxa:        |  |  |  |
| Miscellaneous Benthic Macro | pinvertebrates 5   | Other Horsefly   | Total # of Organisms: 5 |  |  |  |
| Other                       |                    | Other            | Total # of Taxa: 1      |  |  |  |
| Notes:                      |                    | TOTAL # of 7     | [AXA: 2                 |  |  |  |
|                             |                    |                  |                         |  |  |  |
| 15 min assessment           |                    | TOTAL # of ORG   | GANISMS: 6              |  |  |  |
|                             |                    |                  |                         |  |  |  |
|                             |                    |                  |                         |  |  |  |

## **Benthic Macroinvertebrate Sample Collection**



| Samp          | le Location:                                         | BW1     | 6MLW-002          | Target Macr  | oinvertebrate Organis | m: Other (See no             | otes) |  |  |  |
|---------------|------------------------------------------------------|---------|-------------------|--------------|-----------------------|------------------------------|-------|--|--|--|
| Date:         | October 4, 20                                        | 016     |                   | -            |                       |                              |       |  |  |  |
|               |                                                      | Org     | anism Size        | Quantity     | Wet Weight (g)        | Individual Wet<br>Weight (g) |       |  |  |  |
|               |                                                      | Large   | (>/= 20 mm)       |              |                       | 0                            |       |  |  |  |
|               |                                                      | Mediu   | m (10-19 mm)      |              |                       | 0                            |       |  |  |  |
| Small (< 9 mm |                                                      |         | all (< 9 mm)      |              |                       | 0                            |       |  |  |  |
|               |                                                      |         |                   | <b>Total</b> | Total 0               | Average 0                    |       |  |  |  |
| Notes         | <b>:</b> :                                           |         |                   | l []         |                       |                              |       |  |  |  |
|               | ple Proces                                           |         | e submitted for a |              |                       |                              |       |  |  |  |
| Start         | Date/Time:                                           |         | _                 |              | End Date/Time:        |                              |       |  |  |  |
| Durati        | on (hours):                                          |         |                   |              |                       |                              |       |  |  |  |
| Labo          | ratory San                                           | nple An | alysis            |              |                       |                              |       |  |  |  |
| Samp          | Sample ID: Sample Date/Time: Laboratory: —           |         |                   |              |                       |                              |       |  |  |  |
| ☐ PA          | PAHs 17 VOCs Dioxins PCBs pH Moisture TOC Grain Size |         |                   |              |                       |                              |       |  |  |  |
| ☐ Se          | Select Metals Ar Cd Cr Cu Hg Ni Pb                   |         |                   |              |                       |                              |       |  |  |  |
| □ м           | S/MSD -                                              |         |                   |              | Othe                  | r Compound:                  |       |  |  |  |
| □ D           | uplicate -                                           | _       | San               | nple ID:     |                       | Dup Time:                    |       |  |  |  |
| Notes         | ::                                                   |         |                   |              |                       |                              |       |  |  |  |



Project Name: SLR Project Number: J160139 Photographs taken on: October 5, 2016

Sample Location:

BW16MLW-002



Photo 1:



Photo 2:



Photo 3:

Photo 4:

Photo 5: Photo 6:

# **Benthic Macroinvertebrate Worksheet**



| Project/S                                                 | Site I                                                                   | Info        | rmation                |                 |         |         |              |             |        |       |             |         |            |          |         |   |
|-----------------------------------------------------------|--------------------------------------------------------------------------|-------------|------------------------|-----------------|---------|---------|--------------|-------------|--------|-------|-------------|---------|------------|----------|---------|---|
| Project Na                                                | ame:                                                                     | SLF         | ₹                      | Proje           | ect #:  | J       | 160139       | c           | lient: | MP    | CA          | Con     | ntractor:  | Вау      | West    |   |
| Site Name                                                 | <b>):</b>                                                                | M           | ud Lake \              | Nest            |         |         | Sample/Lo    | <br>ocation | Name   | : B   | W16MLW-     | 003     |            |          |         |   |
| Processo                                                  | rs:                                                                      | Α           | СВ                     | JI              | MB      |         | СЈМ          | D           | ate:   | Oct   | ober 4, 201 | 16      | Time       | e: 1º    | 1:13 AM | 1 |
| Weather:                                                  | Tem                                                                      | npera       | ture (deg              | F): 61          |         |         | Skies: P     | artly Su    | ınny   |       | Wind Sp     | eed (mp | h) & Direc | tion: 5- | -10     |   |
| Sample                                                    | Colle                                                                    | ectic       | n Infor                | matio           | n       | •••••   |              |             |        |       |             |         |            |          |         |   |
| Method:                                                   |                                                                          | Р           | onar                   |                 |         |         |              |             |        |       |             |         |            |          |         |   |
| Number of Grabs: 3 Approximate Collection Area (cm2): 675 |                                                                          |             |                        |                 |         |         |              |             |        |       |             |         |            |          |         |   |
| Notes:                                                    | Notes: Each grab = 15.2 cm x 15.2 cm (225 cm2)                           |             |                        |                 |         |         |              |             |        |       |             |         |            |          |         |   |
| Habitat I                                                 |                                                                          |             | i <b>on</b> y Dark Bro | <br><br>own (10 | )YR 2/2 | <u></u> |              | Seco        | ondary | Colo  | r: Dark Bro | own (10 | )YR 3/3)   |          |         |   |
| USCS: M                                                   | 1L                                                                       |             |                        | USDA:           | Silt    | t Lo    | oam          |             | Gr     | rains | : Well Ro   | unded   |            |          |         |   |
| Organics:                                                 | Fib                                                                      | rous        |                        |                 | %:      | 10      | 0 - 25       |             | 1      | Odoı  | r: No Odo   | r       |            |          |         |   |
| Rocks:                                                    | None                                                                     | <del></del> |                        |                 | %:<br>¬ | N       | I/A          |             | Mois   | sture | : Saturate  | ed      |            |          |         |   |
| Petrochem                                                 | nical:                                                                   | Non         | ie                     |                 |         | Co      | ohesiveness: | Loos        | :е     |       |             |         |            |          |         |   |
| Description                                               | Description/Notes:  Very soft silty sediment, 15% fibrous woody material |             |                        |                 |         |         |              |             |        |       |             |         |            |          |         |   |
| Notes:                                                    |                                                                          | •••••       | •••••                  |                 | •••••   |         |              |             |        |       |             | •••••   | ••••••     |          | •••••   |   |
|                                                           |                                                                          |             |                        |                 |         |         |              |             |        |       |             |         |            |          |         |   |

### **Benthic Macroinvertebrate Community Assessment**



#### Each grab = 15.2 cm x 15.2 cm (225 cm2)

| Group 1                     | Group 2                 | Group 3                 | Group 4                 |  |  |  |
|-----------------------------|-------------------------|-------------------------|-------------------------|--|--|--|
| (Sensitive)                 | (Semi-Sensitive)        | (Semi-Tolerant)         | (Tolerant)              |  |  |  |
| Alderfly                    | Caddisfly               | Black Fly               | 6 Bloodworm Midge       |  |  |  |
| Dobsonfly                   | Crane Fly               | Non-Red Midge           | Isopod/Sowbug           |  |  |  |
| Stonefly                    | Crawfish                | Scud                    | Leech                   |  |  |  |
| Water Snipe Fly             | Damselfly               | 3 Snails                | Tubifex Worm            |  |  |  |
|                             | Dragonfly               |                         |                         |  |  |  |
|                             | Fingernail Clam         |                         |                         |  |  |  |
|                             | Mayfly                  |                         |                         |  |  |  |
|                             | Riffle Beetle           |                         |                         |  |  |  |
|                             | Water Penny             |                         |                         |  |  |  |
| Total # of 0 Organisms:     | Total # of 0 Organisms: | Total # of 3 Organisms: | Total # of 6 Organisms: |  |  |  |
| Total # of Taxa:            | Total # of Taxa:        | Total # of Taxa: 1      | Total # of Taxa: 1      |  |  |  |
| Miscellaneous Benthic Macro | pinvertebrates          | Other                   | Total # of Organisms:   |  |  |  |
| Other                       |                         | Other                   | Total # of Taxa:        |  |  |  |
| Notes:                      |                         | TOTAL # of 1            | [AXA: 2                 |  |  |  |
|                             |                         |                         |                         |  |  |  |
| 15 minute assessment        |                         | TOTAL # of ORG          | SANISMS: 9              |  |  |  |
|                             |                         |                         |                         |  |  |  |

## **Benthic Macroinvertebrate Sample Collection**



|                                                                                                          |         |               | 1             |                |                              |            |  |  |
|----------------------------------------------------------------------------------------------------------|---------|---------------|---------------|----------------|------------------------------|------------|--|--|
| Sample Location: BW16MLW-003 Target Macroinvertebrate Organism: Other (See notes)  Date: October 4, 2016 |         |               |               |                |                              |            |  |  |
| Date: October 4, 2                                                                                       | 2016    |               |               |                |                              |            |  |  |
|                                                                                                          | Org     | janism Size   | Quantity      | Wet Weight (g) | Individual Wet<br>Weight (g) |            |  |  |
|                                                                                                          | Large   | e (>/= 20 mm) |               |                | 0                            |            |  |  |
|                                                                                                          | Mediu   | ım (10-19 mm) |               |                | 0                            |            |  |  |
|                                                                                                          | Sm      | all (< 9 mm)  |               |                | 0                            |            |  |  |
|                                                                                                          |         |               | Total         | Total          | Average                      |            |  |  |
|                                                                                                          |         |               | 0             | 0              | 0                            |            |  |  |
| Notes:                                                                                                   |         |               | l []          | l              |                              |            |  |  |
| No macroinverteb                                                                                         |         | Depuration    |               |                |                              |            |  |  |
| Start Date/Time:                                                                                         |         |               | E             | End Date/Time: |                              |            |  |  |
| Duration (hours):                                                                                        |         |               |               |                |                              |            |  |  |
| Laboratory Sa                                                                                            | mple Ar | nalysis       |               |                |                              |            |  |  |
| Sample ID:                                                                                               |         | Samp          | le Date/Time: |                | Laboratory:                  | _          |  |  |
| PAHs 17                                                                                                  | VOCs    | Dioxins       | PCBs          | pH Mois        | ture TOC                     | Grain Size |  |  |
| Select Metals                                                                                            | ☐ Ar    | ☐ Cd ☐        | Cr Cu         | ☐ Hg ☐ Ni      | Pb                           |            |  |  |
| ☐ MS/MSD                                                                                                 |         |               |               | Othe           | r Compound:                  |            |  |  |
| Duplicate                                                                                                | _       | Sar           | nple ID:      |                | Dup Time:                    |            |  |  |
| Notes:                                                                                                   |         |               |               |                |                              |            |  |  |

### **Photographic Log**



Project Name: SLR Project Number: J160139 Photographs taken on: October 5, 2016

Sample Location:

BW16MLW-003



Photo 1:

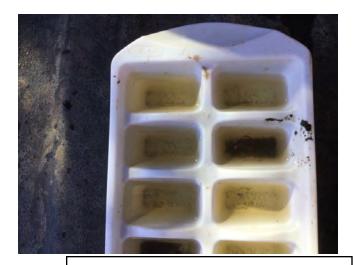



Photo 2:

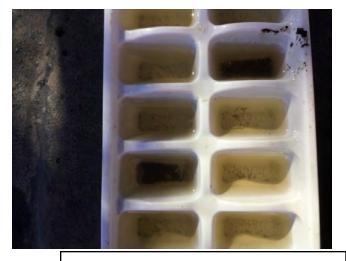



Photo 3:

Photo 4:

Photo 5: Photo 6:



| Project/Si         | ite Inf   | ormati              | on       |                         |          |                        |                                       |        |                   |               |          |                        |      |
|--------------------|-----------|---------------------|----------|-------------------------|----------|------------------------|---------------------------------------|--------|-------------------|---------------|----------|------------------------|------|
| Project Nam        | ne:       | SLR                 |          |                         | Client   | : М                    | PCA                                   |        |                   | Contract      | or:      | Bay West               |      |
| Project #:         | J1601     | 39                  | Sit      | e Locati                | on:      | Mud L                  | ake West                              |        | Loc               | ation ID:     | BW       | V16MLW-001             |      |
| Core & Po          | olling    | Collec              | tion l   | nforma                  | ation    |                        | Sample Coll                           | ectors | ··········<br>: [ | ACB           | JM       | В СЈМ                  | ]    |
| Date<br>Collected: | Octob     | er 4, 201           | 6        | Time                    | e Collec | cted:                  | 10:08 AM                              |        | Above             | e/Below L\    | VD (ft): | 2.4                    |      |
| Water Elevati      | ion (ft): | 601.                | 1        | V                       | Vater D  | epth (f                | t): 7.0                               |        | Se                | ediment El    | evation  | n (ft): 596.5          |      |
| Poling Col         | lection   | n Inforn            | nation   |                         | Equipm   | nent:                  | N/A                                   |        |                   |               |          |                        |      |
| Location<br>ID     | Wa        | th of<br>ater<br>m) | Resis    | oth to<br>stance<br>em) | Re       | oth to<br>fusal<br>cm) | "Soft"<br>Sedimen<br>Thicknes<br>(cm) |        | Re                | fusal Typ     | e        | Sedimen<br>Approaching |      |
| PL-01              | 7         | 74                  |          | 90                      |          | 101                    | 0                                     |        |                   | Sediment<br>— |          | Silty C                | Clay |
|                    |           |                     |          |                         |          |                        | 0                                     |        |                   | _             |          | _                      |      |
| Core Colle         | ction     | Informa             | ition    | Co                      | llection | Metho                  | d: Ponar/0                            | Grab   |                   |               |          |                        |      |
|                    |           | ush<br>empts        | Pu       | ısh Dep                 | th (ft)  | F                      | Push<br>Recovery (ft)                 | 9      | % Reco            | overy         | Ret      | tained?                |      |
|                    |           | _                   |          |                         |          |                        |                                       |        | 0                 |               |          |                        |      |
|                    |           |                     |          |                         |          |                        |                                       |        | 0                 |               |          |                        |      |
|                    |           | _                   |          |                         |          |                        |                                       |        | 0                 |               |          |                        |      |
|                    |           | _                   |          |                         |          |                        |                                       |        | 0                 |               |          |                        |      |
|                    |           |                     | <u> </u> |                         |          | L                      |                                       |        | 0                 |               |          |                        |      |
| Core Prod          | cessir    | ng Info             | rmatio   | on                      | Sa       | ample F                | Processors:                           | AC     | В                 | CJM           | J        | ІМВ                    |      |
| Length of Co       | ore (m):  | 0.                  | 15       | Date                    | Proces   | sed:                   | October 4,                            | 2016   | Tiı               | me Proces     | ssed:    | 10:08 AM               |      |

| Sedimer               | nt C                                  | haracte        | rizatio     | on L     | og          | Loc   | ation ID:    | BW16MLW-0       | 01       | <b>b</b> Bay West |
|-----------------------|---------------------------------------|----------------|-------------|----------|-------------|-------|--------------|-----------------|----------|-------------------|
| Layer 1:              |                                       | Start          | : Depth (r  | n): 0.0  | 0           | ] En  | nd Depth (r  | m): 0.15        |          |                   |
| Primary Co            | olor:                                 | /ery Dark Brow | vn (10YR 2/ | (2)      | Seconda     | ry Co | olor: Dark B | rown (10YR 3/3) |          |                   |
| USCS: N               | <u> </u>                              | ι              | JSDA:       | Silt Loa | am          |       | Grains:      | Well Rounded    |          |                   |
| Organics:             | Fik                                   | orous          |             | %:       | 0 - 5       |       | Odor:        | No Odor         |          |                   |
| Rocks:                | None                                  | 9              |             | %:       | N/A         |       | Moisture     | : Saturated     |          |                   |
| Petrochem             | nical:                                | None           |             |          | Cohesive    | ness: | Loose        |                 | $ \top $ |                   |
| Description<br>Notes: | n/                                    | Very soft silt | y sedime    | ent, <5  | % fibrous v | woody | У            |                 |          |                   |
| Layer 2:              | :                                     | Start          | : Depth (r  | n):      |             | En    | nd Depth (r  | m):             |          |                   |
| Primary Co            | olor:                                 | _              |             |          | Seconda     | ry Co | olor: —      |                 |          |                   |
| USCS: -               |                                       | ,              | JSDA:       | _        | _           |       | Grains:      | _               |          |                   |
| Organics:             |                                       |                |             | %:       |             |       | Odor:        | _               |          |                   |
| Rocks:                |                                       |                |             | %:       |             |       | Moisture     | : —             |          |                   |
| Petrochem             | nical:                                |                |             |          | Cohesive    | ness: | _            |                 |          |                   |
| Description<br>Notes: | n/                                    |                |             | _        |             |       |              |                 |          |                   |
| Layer 3:              | · · · · · · · · · · · · · · · · · · · | Start          | : Depth (r  | n):      |             | En    | nd Depth (r  | m):             |          |                   |
| Primary Co            | olor: -                               |                | Г           |          | Seconda     | ry Co | olor: —      |                 |          |                   |
| USCS: _               | _                                     | l              | JSDA: -     | _        |             |       | Grains:      | _               |          |                   |
| Organics:             | <u>_</u>                              |                |             | %:       | _           |       | Odor:        |                 |          |                   |
| Rocks:                |                                       |                |             | %:       | _           |       | Moisture     | :               | _]       |                   |
| Petrochem             | nical:                                | _              |             |          | Cohesive    | ness: | _            |                 |          |                   |
| Description<br>Notes: | n/                                    |                |             |          |             |       |              |                 |          |                   |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-001



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:



| Project/Si         | ite Info            | rmation    |                                |                    |                        |                                         |       |                   |         |                                      |
|--------------------|---------------------|------------|--------------------------------|--------------------|------------------------|-----------------------------------------|-------|-------------------|---------|--------------------------------------|
| Project Nam        | ne: S               | SLR        |                                | Client:            | MP                     | CA                                      |       | Contractor        | :       | Bay West                             |
| Project #:         | J16013              | 9          | Site Loca                      | tion:              | Mud La                 | ıke West                                |       | Location ID:      | BW      | 16MLW-002                            |
| Core & Po          | olling C            | Collection | n Inform                       | ation              |                        | Sample Collec                           | tors: | ACB               | JME     | в СЈМ                                |
| Date<br>Collected: | Octobe              | r 4, 2016  | Tin                            | ne Collec          | ted:                   | 10:48 AM                                | Al    | bove/Below LWI    | ) (ft): | 2.4                                  |
| Water Elevati      | ion (ft):           | 601.1      |                                | Water De           | epth (ft)              | : 8.2                                   |       | Sediment Elev     | ation   | (ft): 595.3                          |
| Poling Col         | lection             | Informa    | tion                           | Equipm             | ent:                   | N/A                                     |       |                   |         |                                      |
| Location<br>ID     | Deptl<br>Wat<br>(cn | er F       | Depth to<br>Resistance<br>(cm) | Ref                | oth to<br>fusal<br>em) | "Soft"<br>Sediment<br>Thickness<br>(cm) |       | Refusal Type      |         | Sediment Type<br>Approaching Refusal |
| PL-01              | 74                  |            | 90                             |                    | 01                     | 27<br>0<br>0                            |       | Sediment  —  —  — |         | Silty Clay  — — — —                  |
| Core Colle         | Pu                  |            | on Co<br>Push De               | ollection pth (ft) | 1 _                    | Ponar/Gra Push ecovery (ft)             | l     | Recovery          | Ret     | ained?                               |
|                    | -                   |            |                                |                    |                        |                                         |       | 0 -               |         |                                      |
|                    | _                   | _          |                                |                    |                        |                                         |       | 0 -               | _       |                                      |
|                    | _                   | _          |                                |                    |                        |                                         |       | 0 -               | _       |                                      |
|                    | _                   | _          |                                |                    |                        |                                         |       | 0 -               | _       |                                      |
|                    | _                   | - ]        |                                |                    |                        |                                         |       | 0 -               | _       |                                      |
| Core Prod          | cessinç             | Inform     | ation                          | Sa                 | ımple Pı               | rocessors:                              | ACB   | СЈМ               | JI      | МВ                                   |
| Length of Co       | ore (m):            | 0.15       | Date                           | Process            | sed:                   | October 4, 20                           | )16   | Time Processe     | ed:     | 10:48 AM                             |

| Sedime              | ent (    | Charac      | terizati    | ion L    | og         | Loc   | ation ID:    | BV     | V16MLW-002 | <b>Bay West</b> |
|---------------------|----------|-------------|-------------|----------|------------|-------|--------------|--------|------------|-----------------|
| Layer 1             | 1:       | St          | art Depth   | (m): 0.0 | )          | Er    | nd Depth (r  | n): [  | 0.15       |                 |
| Primary (           | Color:   | Very Dark B | srown (10YR | 2/2)     | Seconda    | ry Co | olor: Dark B | rown ( | 10YR 3/3)  |                 |
| USCS:               | ML       |             | USDA:       | Silt Loa | m          |       | Grains:      | Well   | Rounded    |                 |
| Organics:           | F        | ibrous      |             | %:       | 5 - 10     |       | Odor:        | No C   | Odor       |                 |
| Rocks:              | No       | ne          |             | %:       | N/A        |       | Moisture     | : Sa   | turated    |                 |
| Petroche            | mical    | : None      |             |          | Cohesive   | ness: | Loose        |        |            |                 |
| Descripti<br>Notes: | on/      | Very soft   | silty sedim | nent, 7% | fibrous wo | oody  |              |        |            |                 |
| Layer 2             | 2:       | St          | art Depth   | (m):     |            | Er    | nd Depth (r  | n):    |            |                 |
| Primary (           | Color:   | _           |             |          | Seconda    | ry Co | olor: —      |        |            |                 |
| USCS:               | _        |             | USDA:       |          | -          |       | Grains:      |        |            |                 |
| Organics:           |          | _           |             | %:       |            |       | Odor:        | _      |            |                 |
| Rocks:              | _        |             |             | %:       | _          |       | Moisture     | : [_   |            |                 |
| Petroche            | emical   | :           |             |          | Cohesive   | ness: | _            |        |            |                 |
| Descripti<br>Notes: | on/      |             |             |          |            |       |              |        |            |                 |
| Layer 3             | <br>3:   | St          | art Depth   | (m):     | 7          | Er    | nd Depth (r  | n):    |            |                 |
| Primary             | Color:   |             | 1           |          | Seconda    | ry Co | olor:        |        |            |                 |
| USCS:               | <u> </u> |             | USDA:       | _        |            |       | Grains:      |        |            |                 |
| Organics:           | L        | _           |             | %:       |            |       | Odor:        | _      |            |                 |
| Rocks:              | _        |             |             | %:       | _          |       | Moisture     | :      |            |                 |
| Petroche            | emical   | :           |             |          | Cohesive   | ness: | _            |        |            |                 |
| Descripti<br>Notes: | on/      |             |             |          |            |       |              |        |            |                 |

## **Photographic Log**



Project Name: SLR Project Number: J160139 Photographs taken on: October 4, 2016

Location ID: BW16MLW-002





Photo 1:

Photo 2:





Photo 3:

Photo 4:

Photo 5: Photo 6:



| Project/Si         | ite Inf   | ormati              | on     |                         |          |                        |                                         |      |                    |         |                                      |
|--------------------|-----------|---------------------|--------|-------------------------|----------|------------------------|-----------------------------------------|------|--------------------|---------|--------------------------------------|
| Project Nam        | ne:       | SLR                 |        |                         | Client   | : MF                   | PCA                                     |      | Contracto          | r:      | Bay West                             |
| Project #:         | J1601     | 39                  | Sit    | e Locati                | on:      | Mud La                 | ake West                                |      | _ocation ID:       | BW      | /16MLW-003                           |
| Core & Po          | olling    | Collec              | tion l | nforma                  | ation    |                        | Sample Collect                          | ors: | ACB                | JMI     | В СЈМ                                |
| Date<br>Collected: | Octob     | er 4, 201           | 16     | Time                    | e Collec | cted:                  | 11:07 AM                                | At   | ove/Below LW       | D (ft): | 2.4                                  |
| Water Elevati      | ion (ft): | 601                 | .1     | V                       | Vater D  | epth (ft               | ): 3.25                                 |      | Sediment Elev      | /ation  | (ft): 600.25                         |
| Poling Col         | lectio    | n Inforn            | nation |                         | Equipm   | nent:                  | N/A                                     |      |                    |         |                                      |
| Location<br>ID     | Wa        | th of<br>ater<br>m) | Resis  | oth to<br>stance<br>em) | Re       | oth to<br>fusal<br>cm) | "Soft"<br>Sediment<br>Thickness<br>(cm) |      | Refusal Type       |         | Sediment Type<br>Approaching Refusal |
| PL-01              | ,<br>     | 74                  |        | 90                      |          | 101                    | 27<br>0                                 |      | Sediment<br>—<br>— |         | Silty Clay — —                       |
|                    |           |                     |        |                         |          |                        | 0                                       |      |                    |         | _                                    |
| Core Colle         |           |                     | ition  | Co                      | llection | Method                 |                                         | ab   |                    |         |                                      |
|                    |           | ush<br>empts        | Pu     | ısh Dep                 | th (ft)  | R                      | Push<br>ecovery (ft)                    | % F  | Recovery           | Ret     | ained?                               |
|                    |           | _                   |        |                         |          |                        |                                         |      | 0                  |         |                                      |
|                    |           | _                   |        |                         |          |                        |                                         |      | 0 -                | _       |                                      |
|                    |           | _                   |        |                         |          |                        |                                         |      | 0 -                | _       |                                      |
|                    |           |                     |        |                         |          |                        |                                         |      | 0 -                | _       |                                      |
|                    |           | _                   |        |                         |          |                        |                                         |      | 0                  | _       |                                      |
| Core Prod          | cessir    | g Info              | rmatio | on                      | Sa       | ample P                | rocessors:                              | ACB  | СЈМ                | J       | МВ                                   |
| Length of Co       | ore (m):  | 0.                  | 15     | Date                    | Proces   | sed:                   | October 4, 201                          | 16   | Time Process       | ed:     | 11:07 AM                             |

| Sedimen                | t CI     | naracte       | rizatio    | on L     | og          | Loca                | ation ID:   | BW16MLW-00      | 3 | <b>Bay West</b> |
|------------------------|----------|---------------|------------|----------|-------------|---------------------|-------------|-----------------|---|-----------------|
| Layer 1:               |          | Start         | Depth (r   | n): 0.0  | )           | En                  | d Depth (r  | m): 0.15        |   |                 |
| Primary Col            | lor: V   | ery Dark Brow | n (10YR 2/ | (2)      | Seconda     | ry Co               | lor: Dark B | rown (10YR 3/3) |   |                 |
| USCS: MI               | <u>L</u> | l             | JSDA:      | Silt Loa | ım          |                     | Grains:     | Well Rounded    |   |                 |
| Organics:              | Fib      | rous          |            | %:       | 10 - 25     |                     | Odor:       | No Odor         |   |                 |
| Rocks:                 | None     |               |            | %:       | N/A         |                     | Moisture    | : Saturated     |   |                 |
| Petrochemi             | cal:     | None          |            |          | Cohesive    | ness:               | Loose       |                 |   |                 |
| Description/<br>Notes: | , \[\v   | ery soft silt | y sedime   | ent, 15º | % fibrous v | voody               | material    |                 |   |                 |
| Layer 2:               |          | Start         | Depth (r   | n):      |             | <br>] <sub>En</sub> | d Depth (r  | n):             |   |                 |
|                        | _        |               |            |          | <br>7       | J                   |             |                 |   |                 |
| Primary Col            | lor: –   | -             | Г          |          | Seconda     | ry Co               | lor:        |                 |   |                 |
| USCS: _                |          | \             | JSDA:      | _        |             |                     | Grains:     | _               |   |                 |
| Organics:              | _        |               |            | %:       |             |                     | Odor:       |                 |   |                 |
| Rocks: -               |          |               |            | %:       | _           |                     | Moisture    | :               |   |                 |
| Petrochemi             | cal:     | _             |            |          | Cohesive    | ness:               | _           |                 |   |                 |
| Description/<br>Notes: | /        |               |            |          |             |                     |             |                 |   |                 |
| Layer 3:               |          | Start         | Depth (r   | n):      |             | <br>] En            | d Depth (r  | n):             |   |                 |
| Primary Col            | lor:     | -             |            |          | Seconda     | ry Co               | lor: —      |                 |   |                 |
| uscs: -                |          | ι             | JSDA:      | _        |             |                     | Grains:     | _               |   |                 |
| Organics:              | _        |               |            | %:       | _           |                     | Odor:       | _               |   |                 |
| Rocks:                 | _        |               |            | %:       |             |                     | Moisture    | : —             |   |                 |
| Petrochemi             | cal:     | _             |            |          | Cohesive    | ness:               | _           |                 | ] |                 |
| Description/<br>Notes: | /        |               |            |          |             |                     |             |                 |   |                 |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-003



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:

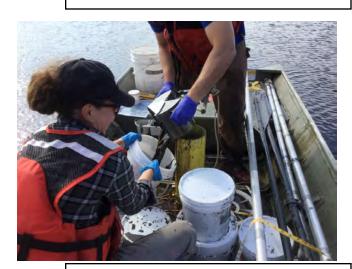



Photo 6:



| Project/S          | ite In   | formatio                      | n                     |        |           |                        |                                         |                 |              |                |                                      |
|--------------------|----------|-------------------------------|-----------------------|--------|-----------|------------------------|-----------------------------------------|-----------------|--------------|----------------|--------------------------------------|
| Project Nan        | ne:      | SLR                           |                       |        | Client:   | MF                     | PCA                                     |                 | Contracto    | r:             | Bay West                             |
| Project #:         | J160     | 139                           | Site                  | Locat  | ion:      | Mud La                 | ake West                                | Locat           | ion ID:      | BW             | /16MLW-005                           |
| Core & Po          | olling   | Collect                       | ion In                | form   | ation     |                        | Sample Collectors                       | s: A            |              | JME            | в СЈМ                                |
| Date<br>Collected: | Octol    | ber 4, 201                    | 6                     | Tim    | e Collec  | ted:                   | 1:09 PM                                 | Above/E         | Below LW     | D (ft):        | 2.4                                  |
| Water Elevat       | ion (ft) | : 601.                        | 1                     | \      | Water D   | epth (ft               | ): 4.2                                  | Sedi            | ment Elev    | /ation         | (ft): 599.3                          |
| Poling Col         | llectio  | n Inform                      | ation                 |        | Equipm    | ent:                   | N/A                                     |                 |              |                |                                      |
| Location<br>ID     | W        | pth of<br>/ater<br>cm)        | Dept<br>Resist<br>(cn | ance   | Ref       | oth to<br>fusal<br>cm) | "Soft"<br>Sediment<br>Thickness<br>(cm) | Refu            | sal Type     |                | Sediment Type<br>Approaching Refusal |
| PL-01              | ection   | 74                            | 90                    |        | ollection | Method                 | 27 0 0 0 Russian Pear                   |                 | diment       |                | Silty Clay  — — —                    |
|                    |          | Push tempts  1  — — — — — — — | Pus                   | sh Dep | oth (ft)  | R                      | Push ecovery (ft)                       | % Recov 0 0 0 0 | <del>-</del> | <b>Ret</b> Yes | ained?                               |
| Core Prod          | cessi    | ng Infor                      | matio                 | 1      | Sa        | ımple P                | rocessors: AC                           | В               | СЈМ          | JI             | МВ                                   |
| Length of Co       | ore (m)  | ): 0.5                        | 50                    | Date   | Process   | sed:                   | October 4, 2016                         | Time            | e Process    | ed:            | 1:09 PM                              |

| Sedimen                | t CI     | naract                            | terizati              | on L    | .og       | Loca   | ntion ID:  | BW16MLW-00      | )5       | <b>Bay West</b> |
|------------------------|----------|-----------------------------------|-----------------------|---------|-----------|--------|------------|-----------------|----------|-----------------|
| Layer 1:               |          | Sta                               | art Depth (           | m): 0.  | 65        | End    | d Depth (r | n): 1.15        |          |                 |
| Primary Col            | lor: R   | eddish Bro                        | wn                    |         | Seconda   | ry Col | or: Dark B | rown (10YR 3/3) |          |                 |
| USCS: PT               | <u> </u> |                                   | USDA:                 | Peat    |           |        | Grains:    | Well Rounded    |          |                 |
| Organics:              | Wo       | ody                               |                       | %:      | 75 - 100  |        | Odor:      | No Odor         |          | FACILITY        |
| Rocks:                 | None     |                                   |                       | %:      | N/A       |        | Moisture   | : Saturated     |          |                 |
| Petrochemic            | cal:     | None                              |                       |         | Cohesiver | ness:  | Loose      |                 |          |                 |
| Description/<br>Notes: | ′  s     | efusal @<br>ilty peat<br>ample at | 9 1.15<br>: 0.90-1.15 | i m     |           |        |            |                 |          |                 |
| Layer 2:               |          | Sta                               | art Depth (           | m):     |           | End    | d Depth (r | n):             |          |                 |
| Primary Col            | lor:     | -                                 |                       |         | Seconda   | ry Col | or: —      |                 |          |                 |
| USCS: -                |          |                                   | USDA:                 | _       |           |        | Grains:    | _               |          |                 |
| Organics:              |          | <u> </u>                          |                       | %:      |           |        | Odor:      | _               |          |                 |
| Rocks:                 |          |                                   |                       | %:      | _         |        | Moisture   | : —             |          |                 |
| Petrochemic            | cal:     | _                                 |                       |         | Cohesiver | ness:  | _          |                 |          |                 |
| Description/<br>Notes: | /        |                                   |                       |         |           |        |            |                 |          |                 |
| Layer 3:               |          | Sta                               | art Depth (           | m):     |           | End    | d Depth (r | n):             |          |                 |
| Primary Col            | lor: –   | -                                 |                       | Γ       | Seconda   | ry Col | or:        |                 |          |                 |
| USCS:                  |          |                                   | USDA:                 | _       |           |        | Grains:    | _               |          |                 |
| Organics:              | _        |                                   |                       | %:      | _         |        | Odor:      |                 |          |                 |
| Rocks: -               | _        |                                   |                       | %:<br>— | _         |        | Moisture   | :               | $\Box$   |                 |
| Petrochemio            | cal:     | _                                 |                       |         | Cohesiver | ness:  | _          |                 | <u> </u> |                 |
| Description/<br>Notes: | /        |                                   |                       |         |           |        |            |                 |          |                 |



Project Name: SLR Project Number: J160139 Photographs taken on: October 4, 2016

Location ID:

BW16MLW-005



Photo 1:



Photo 2:



Photo 3:




Photo 4:



Photo 5:

Photo 6:



| Project/Si         | te Infe  | ormatio             | n                       |            |                     |          |                                         |        |             |          |        |        |        |                                 |   |
|--------------------|----------|---------------------|-------------------------|------------|---------------------|----------|-----------------------------------------|--------|-------------|----------|--------|--------|--------|---------------------------------|---|
| Project Nam        | ne:      | SLR                 |                         |            | Client:             | MF       | PCA                                     |        |             | Contrac  | ctor:  | E      | Bay We | est                             |   |
| Project #:         | J1601    | 39                  | Site                    | <br>Locati | on:                 | /Jud La  | ake West                                |        | _<br>Loca   | tion ID  | ): [   | BW1    | 16MLV  | V-006                           |   |
| Core & Po          | olling   | Collecti            | on Inf                  | orma       | ation               |          | Sample Collec                           | ctors: | ·····       | ACB      |        | JMB    |        | СЈМ                             |   |
| Date<br>Collected: | Octob    | er 4, 2016          | <b>)</b>                | Time       | e Collect           | ed:      | 12:58 PM                                | ] ,    | L<br>Above/ | Below L  | <br>WD | (ft):  | 2.4    |                                 |   |
| Water Elevati      | on (ft): | 601.1               |                         | V          | Vater De            | pth (ft) | 6.4                                     |        | Sed         | liment E | levat  | tion ( | (ft):  | 597.1                           |   |
| Poling Col         | lection  | n Informa           | ation                   |            | Equipme             | ent:     | N/A                                     |        |             |          |        |        |        |                                 |   |
| Location<br>ID     | Wa       | th of<br>ater<br>m) | Depth<br>Resista<br>(cm | ance       | Dept<br>Refu<br>(cr | ısal     | "Soft"<br>Sediment<br>Thickness<br>(cm) |        | Ref         | usal Ty  | pe     |        |        | ediment <sup>-</sup><br>paching |   |
| PL-01              | 7        | 74                  | 90                      |            | 10                  | )1       | 0                                       | ]   [  | S           | edimen   | t      |        |        | Silty Cla                       | y |
|                    |          |                     |                         |            |                     |          | 0                                       | ]   [  |             | _        |        | ]      |        | _                               |   |
|                    |          |                     |                         |            |                     |          | 0                                       |        |             | _        |        |        |        | _                               |   |
| Core Colle         | ction l  | nformat             | ion                     | Col        | lection N           | 1ethoc   | d: Russian                              | Peat S | Sample      | er       |        |        |        |                                 |   |
|                    |          | ush<br>empts        | Pus                     | h Dep      | th (ft)             | R        | Push<br>ecovery (ft)                    | %      | Reco        | very     | I      | Reta   | ined?  |                                 |   |
|                    |          | 1                   |                         |            |                     |          |                                         |        | 0           |          | Ye     | :S     |        |                                 |   |
|                    |          | _                   |                         |            |                     |          |                                         |        | 0           | _        |        |        |        |                                 |   |
|                    |          |                     |                         |            |                     | ╠        |                                         |        | 0           |          |        |        |        | $\frac{1}{1}$                   |   |
|                    |          | _                   |                         |            |                     |          |                                         |        | 0           |          |        |        |        |                                 |   |
| Core Prod          | essin    | g Inforr            | natior                  | <br>1      | San                 | nple P   | rocessors:                              | ACE    | ······      | CJM      |        | JN     | ив     |                                 |   |
| Length of Co       | ore (m): | 0.5                 | 5                       | Date       | Processe            | ed:      | October 4, 20                           | 016    | L<br>Tim    | e Proce  | essec  | d: [   | 12:58  | s PM                            |   |

| Sediment (             | Characterizat                                                   | ion L   | og           | Loca  | ntion ID:  | BW16MLW-006          | 6 <b>6</b> | Bay West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------|---------|--------------|-------|------------|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Layer 1:               | Start Depth                                                     | (m): 1. | 50           | End   | d Depth (r | m): 2.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Color:         | Reddish Brown                                                   |         | Secondar     | y Col | or: Very D | ark Brown (10YR 2/2) |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USCS: PT               | USDA:                                                           | Peat    |              |       | Grains:    | Well Rounded         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organics: V            | Voody                                                           | %:      | 75 - 100     |       | Odor:      | No Odor              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rocks: Noi             | ne                                                              | %:      | N/A          |       | Moisture   | : Saturated          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochemical          | : None                                                          |         | Cohesiven    | ess:  | Loose      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description/<br>Notes: | Soft refusal @ 2 m<br>Sample @ 1.75-2.0<br>Silty clay peat with |         | streak at 1. | .9 m  |            |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Layer 2:               | Start Depth                                                     | (m):    |              | End   | d Depth (r | m):                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Color:         | _                                                               |         | Secondar     | y Col | or: —      |                      |            | Clar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| uscs: —                | USDA:                                                           | _       | -            |       | Grains:    | _                    |            | a de la companya de l |
| Organics:              | _                                                               | %:      | _            |       | Odor:      | _                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rocks: —               |                                                                 | %:      | _            |       | Moisture   | : —                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochemical          | :                                                               |         | Cohesiven    | ess:  |            |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description/<br>Notes: |                                                                 |         |              |       |            |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Layer 3:               | Start Depth                                                     | (m):    |              | End   | d Depth (r | m):                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Color:         | _                                                               |         | Secondar     | y Col | or:        |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USCS:                  | USDA:                                                           |         |              |       | Grains:    | _                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organics:              | _                                                               | %:      | _            |       | Odor:      | _                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rocks: —               |                                                                 | %:      | _            |       | Moisture   | :                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochemical          | :  -                                                            |         | Cohesiven    | ess:  |            |                      | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description/<br>Notes: |                                                                 |         |              |       |            |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-006



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:



| Project/Si         | ite In   | format                 | tion  |                               |              |                     |                                         |        |               |         |                                      |
|--------------------|----------|------------------------|-------|-------------------------------|--------------|---------------------|-----------------------------------------|--------|---------------|---------|--------------------------------------|
| Project Nam        | ne:      | SLR                    |       |                               | Client:      | МІ                  | PCA                                     |        | Contractor    | :       | Bay West                             |
| Project #:         | J160     | 139                    |       | Site Loc                      | ation:       | Mud L               | ake West                                | L      | ocation ID:   | BW      | 116MLW-007                           |
| Core & Po          | olling   | Colle                  | ctio  | n Inforr                      | nation       |                     | Sample Collector                        | rs:    | ACB           | JMI     | в СЈМ                                |
| Date<br>Collected: | Octob    | oer 4, 20              | 016   | Ti                            | me Collec    | ted:                | 12:42 PM                                | Abc    | ve/Below LWI  | ) (ft): | 2.4                                  |
| Water Elevati      | ion (ft) | : 60                   | 1.1   |                               | Water De     | epth (ft            | 6.1                                     |        | Sediment Elev | ation   | (ft): 597.4                          |
| Poling Col         | lectio   | n Info                 | rmat  | ion                           | Equipm       | ent:                | N/A                                     |        |               |         |                                      |
| Location<br>ID     | W        | pth of<br>/ater<br>cm) |       | Depth to<br>esistance<br>(cm) | e Ref        | th to<br>usal<br>m) | "Soft"<br>Sediment<br>Thickness<br>(cm) | ı      | Refusal Type  |         | Sediment Type<br>Approaching Refusal |
| PL-01              |          | 74                     |       | 90                            |              | 01                  | 27<br>0                                 |        | Sediment<br>— |         | Silty Clay —                         |
|                    |          |                        |       |                               |              |                     | 0                                       |        | _             |         | _                                    |
|                    |          |                        |       |                               |              |                     | 0                                       |        | _             |         | _                                    |
| Core Colle         | ction    | Inform                 | natio | n (                           | Collection I | Method              | d: Russian Pe                           | at San | npler         |         |                                      |
|                    | -        | Push<br>tempts         |       | Push D                        | epth (ft)    | R                   | Push<br>ecovery (ft)                    | % Re   | ecovery       | Ret     | ained?                               |
|                    |          | 1                      |       |                               |              |                     |                                         |        | 0             | ⁄es     |                                      |
|                    |          | <u> </u>               |       |                               |              |                     |                                         |        | 0    -        | _       |                                      |
|                    |          |                        |       |                               |              |                     |                                         |        | 0   -         | -<br>   |                                      |
|                    |          | _                      |       |                               |              |                     |                                         |        | 0 -           | _       |                                      |
| Core Prod          | essi     | ng Inf                 | orma  | ation                         | Sa           | mple F              | Processors: A                           | СВ     | СЈМ           | J       | MB                                   |
| Length of Co       | ore (m)  | ):                     | 0.5   | Dat                           | te Process   | ed:                 | October 4, 2016                         |        | Time Processe | ed:     | 12:42 PM                             |

| Sedimer                                  | nt C             | harac      | terizati                               | on L       | og        | Loc         | ation ID:   | BW16MLW     | /-007 | <b>Bay West</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|------------------|------------|----------------------------------------|------------|-----------|-------------|-------------|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Layer 1:                                 |                  |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Co                               | R 5/3)           |            | Secondary Color: Dark Brown (10YR 3/3) |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uscs: C                                  |                  | USDA:      | Silty Cla                              | lay Grains |           |             | Well Rounde | d           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organics: Woody                          |                  |            |                                        | %:         | 25 - 50   |             | Odor:       | No Odor     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rocks:                                   | ks: None         |            |                                        | %:         | N/A       |             | Moisture    | : Saturated |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochem                                | nical:           | ical: None |                                        |            | Cohesiver | ness        | Stiff       |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Descriptior<br>Notes:                    | n/ [             |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Layer 2:                                 |                  |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Color: — Secondary Color: —      |                  |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USCS:                                    | USCS: USDA: —    |            |                                        |            |           |             | Grains:     |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Organics:                                |                  |            |                                        | %:         | _         |             | Odor:       | _           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rocks: —                                 |                  |            |                                        | %:         | Moisture: |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochem                                |                  |            | Cohesiveness: —                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description<br>Notes:                    | n/               |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Layer 3: Start Depth (m): End Depth (m): |                  |            |                                        |            |           |             |             |             |       | THE STATE OF THE S |
|                                          | Primary Color: — |            |                                        |            |           |             | olor: —     |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uscs: -                                  |                  |            |                                        |            |           |             | Grains:     |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  |            |                                        | %:         |           |             | Odor: —     |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  |            | %:                                     | _          |           | Moisture: — |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Petrochem                                |                  |            | Cohesiveness: —                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Descriptior<br>Notes:                    | Γ                |            |                                        |            |           |             |             |             |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-007



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:



| Project/Si               | ite Inf | ormati       | on     |                       |                        |                        |                                         |                                |                           |     |                                      |  |  |
|--------------------------|---------|--------------|--------|-----------------------|------------------------|------------------------|-----------------------------------------|--------------------------------|---------------------------|-----|--------------------------------------|--|--|
| Project Name: Sl         |         | SLR          |        |                       | Client: MI             |                        | PCA                                     |                                | Contractor:               |     | Bay West                             |  |  |
| Project #:               | J1601   | 39           | Si     | ite Locati            | e Location: Mud L      |                        | ake West                                |                                | Location ID:              |     | BW16MLW-008                          |  |  |
| Core & Po                | olling  | Collec       | tion l | nforma                | ation                  |                        | Sample Collec                           | tors:                          | ACB                       | JM  | В СЈМ                                |  |  |
| Date October 4, 2016 Tir |         |              |        |                       | ne Collected: 12:26 PM |                        |                                         | Al                             | Above/Below LWD (ft): 2.4 |     |                                      |  |  |
| Water Elevati            | 601     | .1           | V      | Water Depth (ft): 4.6 |                        |                        |                                         | Sediment Elevation (ft): 598.9 |                           |     |                                      |  |  |
| Poling Col               | lection | n Inforr     | natior | 1                     | Equipn                 | nent:                  | N/A                                     |                                |                           |     |                                      |  |  |
| Location<br>ID           | Wa      |              |        | esistance Re          |                        | oth to<br>fusal<br>cm) | "Soft"<br>Sediment<br>Thickness<br>(cm) |                                | Refusal Type              |     | Sediment Type<br>Approaching Refusal |  |  |
| PL-01                    | ,<br>   | 74           |        | 90                    | 101                    |                        | 0                                       |                                | Sediment<br>—             |     | Silty Clay                           |  |  |
|                          |         |              |        |                       |                        |                        | 0 0                                     |                                | _                         |     | _                                    |  |  |
| Core Colle               | ction   | Informa      | ation  | Co                    | llection               | Method                 | d: Russian F                            | Peat Sa                        | ampler                    |     |                                      |  |  |
|                          |         | ush<br>empts | P      | ush Dep               | oth (ft)               | R                      | Push<br>ecovery (ft)                    | % F                            | Recovery                  | Ret | tained?                              |  |  |
|                          |         | 1            |        |                       |                        |                        |                                         |                                | 0                         | Yes |                                      |  |  |
|                          |         | _            |        |                       |                        |                        |                                         |                                | 0                         | _   |                                      |  |  |
|                          |         | _            |        |                       |                        |                        |                                         |                                | 0                         | _   |                                      |  |  |
|                          |         | _            |        |                       |                        |                        |                                         |                                | 0                         | _   |                                      |  |  |
|                          |         | _            |        |                       |                        |                        |                                         |                                | 0                         | _   |                                      |  |  |
| Core Prod                | cessir  | ng Info      | rmati  | on                    | Sa                     | ample F                | Processors:                             | ACB                            | СЈМ                       | J   | МВ                                   |  |  |
| Length of Core (m): 0.5  |         |              |        |                       | Proces                 | sed:                   | October 4, 2016                         |                                | Time Processed:           |     | 12:26 PM                             |  |  |

| Sedime                                                                                                       | ent (   | Charac      | terizati | ion L                                  | og        | Loc  | ation ID:            | BW16M      | LW-008 | ]      | <b>Bay Wes</b> | Į                               |
|--------------------------------------------------------------------------------------------------------------|---------|-------------|----------|----------------------------------------|-----------|------|----------------------|------------|--------|--------|----------------|---------------------------------|
| Layer 1: Start Depth (m): 0.80 End Depth (m): 1.30                                                           |         |             |          |                                        |           |      |                      |            |        |        |                | 1 × × ×                         |
| Primary (                                                                                                    | Color:  | Reddish Bro | own      | Secondary Color: Dark Brown (10YR 3/3) |           |      |                      |            | 3/3)   |        |                | 7                               |
| USCS:                                                                                                        | PT      |             | USDA:    | Peat                                   | <b>_</b>  |      | Grains: Well Rounded |            |        |        |                | 4                               |
| Organics:                                                                                                    | · V     | /oody       |          | %:                                     | 75 - 100  |      | Odor: No Odor        |            |        |        |                | -                               |
| Rocks:                                                                                                       | None    |             |          | %:                                     | N/A       |      | Moisture             | : Saturate | ed     |        |                | -                               |
| Petroche                                                                                                     | emical: | None        |          |                                        | Cohesiver | ness | : Loose              |            |        |        | 1              | 1                               |
| Description/<br>Notes: Fine peat with some fine grains (silty clay) Soft Refusal at 1.4m Sample @ 1.05-1.30m |         |             |          |                                        |           |      |                      |            |        |        |                | 1                               |
| Layer 2: Start Depth (m): 1.30 End Depth (m): 1.40                                                           |         |             |          |                                        |           |      |                      |            |        |        |                | 1000 11                         |
| Primary Color: Very Dark Brown (10YR 2/2) Secondary Color: —                                                 |         |             |          |                                        |           |      |                      |            |        |        |                | Sale.                           |
| USCS:                                                                                                        |         |             | USDA:    | Silty Clay                             |           |      | Grains:              | Well Roun  | nded   |        |                | No. of Street, or other Persons |
| Organics: Woody                                                                                              |         |             |          | %:                                     | 25 - 50   |      | Odor:                | No Odor    |        | EMILO. |                |                                 |
| Rocks: None                                                                                                  |         |             |          | %:                                     | N/A       |      | Moisture             | : Saturate | ed     |        |                |                                 |
| Petroche                                                                                                     | emical: |             |          | Cohesiveness: Loose                    |           |      |                      |            | 1      | -      | 1              |                                 |
| Description/ Notes: Silty clay loam with 50% woody material.                                                 |         |             |          |                                        |           |      |                      |            |        |        |                |                                 |
| Layer 3: Start Depth (m): End Depth (m):                                                                     |         |             |          |                                        |           |      |                      |            |        |        |                |                                 |
| Primary Color: Secondary Color:                                                                              |         |             |          |                                        |           |      |                      |            |        |        |                |                                 |
| USCS:                                                                                                        |         |             | USDA:    | -<br> <br>  %:                         |           |      | Grains:              |            |        |        |                | 1 :                             |
| Organics: —                                                                                                  |         |             |          |                                        |           |      | Odor:                |            |        |        |                | W. Strange                      |
| Rocks:                                                                                                       |         |             |          | %:<br>                                 |           |      |                      |            |        |        |                | Mark . T.                       |
| Petroche                                                                                                     |         |             |          |                                        | Cohesiver | ness |                      |            |        |        |                | 2                               |
| Descripti<br>Notes:                                                                                          | ion/    |             |          |                                        |           |      |                      |            |        |        |                | 0                               |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-008



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:

# Sediment Collection & Characterization Core Log



| Project/Si         | ite In   | format                   | ion  |                         |            |                        |                                         |         |                          |         |                                      |
|--------------------|----------|--------------------------|------|-------------------------|------------|------------------------|-----------------------------------------|---------|--------------------------|---------|--------------------------------------|
| Project Nam        | ne:      | SLR                      |      |                         | Client     | : MP                   | CA                                      |         | Contractor               | :       | Bay West                             |
| Project #:         | J160     | 139                      |      | Site Loca               | ation:     | Mud La                 | ke West                                 | L       | ocation ID:              | BW      | /16MLW-009                           |
| Core & Po          | olling   | Colle                    | ctio | n Inforn                | nation     |                        | Sample Collecto                         | <br>rs: | ACB                      | JMI     | В СЈМ                                |
| Date<br>Collected: | Octol    | per 4, 20                | )16  | Tir                     | ne Colle   | cted:                  | 12:03 PM                                | Ab      | ove/Below LW[            | ) (ft): | : 2.4                                |
| Water Elevati      | ion (ft) | : 60°                    | 1.1  |                         | Water D    | epth (ft)              | 2.6                                     |         | Sediment Elev            | ation   | n (ft): 600.9                        |
| Poling Col         | lectio   | n Infor                  | mati | on                      | Equipn     | nent:                  | N/A                                     |         |                          |         |                                      |
| Location<br>ID     | W        | pth of<br>later<br>cm)   |      | Depth to esistance (cm) | Re         | pth to<br>fusal<br>cm) | "Soft"<br>Sediment<br>Thickness<br>(cm) |         | Refusal Type             |         | Sediment Type<br>Approaching Refusal |
| PL-01              |          | 74                       |      | 90                      |            | 101                    | 27<br>0<br>0                            |         | Sediment — — —           |         | Silty Clay  — — —                    |
| Core Colle         | I        | Inform<br>Push<br>tempts | ı    | n C<br>Push De          | collection | ı                      | Push                                    |         | mpler<br>ecovery         | Ret     | tained?                              |
|                    |          | _<br>_<br>_<br>_         |      | 2                       |            |                        |                                         |         | 0 -<br>0 -<br>0 -<br>0 - |         |                                      |
| Core Prod          | essi     | ng Info                  | orma | ation                   | Sa         | ample Pr               | rocessors:                              | ACB     | СЈМ                      | J       | МВ                                   |
| Length of Co       | ore (m)  | ):                       | 0.5  | Date                    | e Proces   | sed:                   | October 4, 2016                         | 5       | Time Processo            | ed:     | 12:03 PM                             |

| Sedimen               | nt C     | harac      | terizati                | on L    | og             | Loca   | ition ID:  | BW16MLW-00      | )9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Bay West</b> |
|-----------------------|----------|------------|-------------------------|---------|----------------|--------|------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Layer 1:              |          | Sta        | art Depth (             | (m): 1. | 5              | End    | d Depth (r | n): 2.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second  |
| Primary Co            | olor:    | eddish Bro | wn                      |         | Seconda        | ry Col | or: Dark B | rown (10YR 3/3) | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| USCS: P               | <u> </u> |            | USDA:                   | Peat    |                |        | Grains:    | Well Rounded    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Organics:             | Wo       | ody        |                         | %:      | 75 - 100       |        | Odor:      | No Odor         | ٦l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Rocks:                | None     | ;          |                         | %:      | N/A            |        | Moisture   | : Saturated     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100             |
| Petrochem             | nical:   | None       |                         |         | Cohesiver      | ness:  | Loose      |                 | extstyle 	ext | THE WAY         |
| Description<br>Notes: | "  v     |            | soft at 2 m<br>sediment |         | lable silty lo | oam    |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Layer 2:              |          | Sta        | art Depth (             | (m):    |                | End    | d Depth (r | n):             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Primary Co            | olor: -  | _          |                         |         | Seconda        | ry Col | or: —      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| USCS:                 |          |            | USDA:                   | _       |                |        | Grains:    | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Organics:             | _        |            |                         | %:      | _              |        | Odor:      | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Rocks:                |          |            |                         | %:      | _              |        | Moisture   | : —             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Petrochem             | nical:   | _          |                         |         | Cohesiver      | ness:  |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Description<br>Notes: | n/       |            |                         |         |                |        |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Layer 3:              |          | Sta        | art Depth (             | (m):    | 7              | End    | d Depth (r | n):             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Primary Co            | olor: –  | -          |                         | Г       | Seconda        | ry Col | or:        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| USCS: _               | -        |            | USDA:                   | _       |                |        | Grains:    | _               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Organics:             | <u> </u> |            |                         | %:      | _              |        | Odor:      | _               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Rocks:                |          |            |                         | %:<br>— |                |        | Moisture   | :               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Petrochem             | nical:   | _          |                         |         | Cohesiver      | ness:  |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Description<br>Notes: | n/       |            |                         |         |                |        |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |



Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 4, 2016

Location ID:

BW16MLW-009



Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 5:



Photo 6:

# Sediment Collection & Characterization Core Log



| Project/Si         | ite In   | forma                  | tion  |                              |              |                     |                                         |        |               |          |                                      |
|--------------------|----------|------------------------|-------|------------------------------|--------------|---------------------|-----------------------------------------|--------|---------------|----------|--------------------------------------|
| Project Nam        | ne:      | SLR                    |       |                              | Client:      | МІ                  | PCA                                     |        | Contracto     | r:       | Bay West                             |
| Project #:         | J160     | 139                    |       | Site Lo                      | cation:      | Mud L               | ake West                                | L      | ocation ID:   | BW       | /16MLW-010                           |
| Core & Po          | olling   | Colle                  | ctio  | n Infor                      | mation       |                     | Sample Collecto                         | ors:   | ACB           | JM       | В СЈМ                                |
| Date<br>Collected: | Octob    | oer 4, 2               | 016   | Т                            | ime Collec   | ted:                | 11:38 AM                                | Ab     | ove/Below LW  | 'D (ft): | : 2.4                                |
| Water Elevati      | ion (ft) | : 60                   | 1.1   |                              | Water De     | epth (ft            | ): 8.9                                  |        | Sediment Ele  | vatior   | n (ft): 594.6                        |
| Poling Col         | lectio   | n Info                 | rmat  | ion                          | Equipm       | ent:                | N/A                                     |        |               |          |                                      |
| Location<br>ID     | W        | pth of<br>/ater<br>cm) |       | Depth to<br>esistand<br>(cm) | ce Ref       | th to<br>usal<br>m) | "Soft"<br>Sediment<br>Thickness<br>(cm) |        | Refusal Type  | <b>!</b> | Sediment Type<br>Approaching Refusal |
| PL-01              |          | 74                     |       | 90                           |              | 01                  | 0                                       |        | Sediment<br>— |          | Silty Clay<br>—                      |
|                    |          |                        |       |                              |              |                     | 0                                       |        | _             |          | _                                    |
|                    |          |                        |       |                              |              |                     | 0                                       |        | _             |          | _                                    |
| Core Colle         | ction    | Inforn                 | natio | n                            | Collection I | Method              | d: Russian Pe                           | eat Sa | mpler         |          |                                      |
|                    | -        | Push<br>tempts         |       | Push [                       | Depth (ft)   | R                   | Push<br>ecovery (ft)                    | % R    | ecovery       | Ref      | tained?                              |
|                    |          | 1                      |       |                              |              |                     |                                         |        | 0             | Yes      |                                      |
|                    |          | _                      |       |                              |              |                     |                                         |        | 0             |          |                                      |
|                    |          |                        |       |                              |              |                     |                                         |        | 0 0           |          |                                      |
|                    |          | _                      |       |                              |              |                     |                                         |        | 0             | _        |                                      |
| Core Prod          | cessi    | ng Inf                 | orma  | ation                        | Sa           | mple F              | Processors:                             | ACB    | СЈМ           | J        | МВ                                   |
| Length of Co       | ore (m)  | ):                     | 0.5   | Da                           | ate Process  | ed:                 | October 4, 2016                         | 6      | Time Process  | sed:     | 11:38 AM                             |

| Sediment (             | Charac                 | terizati          | ion L    | og        | Loc   | ation ID:    | BW16MLW-0       | 10          | <b>©</b> Bay | West |
|------------------------|------------------------|-------------------|----------|-----------|-------|--------------|-----------------|-------------|--------------|------|
| Layer 1:               | St                     | art Depth         | (m): 1.2 | 2         | Er    | nd Depth (r  | m): 1.7         |             |              |      |
| Primary Color:         | Brown (10Y             | R 5/3)            |          | Secondar  | ry Co | olor: Dark B | rown (10YR 3/3) |             |              | 1    |
| USCS: PT               |                        | USDA:             | Peat     |           |       | Grains:      | None            |             |              |      |
| Organics: W            | /oody                  |                   | %:       | 75 - 100  |       | Odor:        | No Odor         | *           |              |      |
| Rocks: Nor             | ne                     |                   | %:       | N/A       |       | Moisture     | : —             | 8           |              |      |
| Petrochemical:         | None                   |                   |          | Cohesiver | ness: | Loose        |                 |             |              |      |
| Description/<br>Notes: | Straight p<br>0.25m sa | eat<br>mple 1.45- | -1.7m    |           |       |              |                 |             |              |      |
| Layer 2:               | St                     | art Depth         | (m):     |           | Er    | nd Depth (r  | m):             |             |              |      |
| Primary Color:         | _                      |                   |          | Secondar  | ry Co | olor: —      |                 |             | D Rocky      |      |
| USCS: -                |                        | USDA:             | _        |           |       | Grains:      | _               | Ó           |              |      |
| Organics:              | _                      |                   | %:       | _         |       | Odor:        | _               |             |              |      |
| Rocks:                 |                        |                   | %:       |           |       | Moisture     | : —             |             |              | 1    |
| Petrochemical:         |                        |                   |          | Cohesiver | ness: | _            |                 |             |              |      |
| Description/<br>Notes: |                        |                   |          |           |       |              |                 |             |              |      |
| Layer 3:               | St                     | art Depth         | (m):     |           | Er    | nd Depth (r  | m):             |             |              | 7    |
| Primary Color:         | _                      |                   |          | Secondar  | ry Co | olor: —      |                 |             |              |      |
| USCS:                  |                        | USDA:             | _        |           |       | Grains:      | _               |             |              |      |
| Organics: -            | -                      |                   | %:       | _         |       | Odor:        | _               |             |              |      |
| Rocks: —               |                        |                   | %:       | _         |       | Moisture     | :               |             |              |      |
| Petrochemical:         | _                      |                   |          | Cohesiver | ness: | _            |                 |             | A Partie     |      |
| Description/<br>Notes: |                        |                   | _        |           |       |              |                 | To a second |              |      |



SLR Project Name: Project Number: Photographs taken on: October 4, 2016 J160139

Location ID:

BW16MLW-010



Photo 1:



Photo 2:



Photo 3:



Photo 5:



Photo 4:



Photo 6:

## Appendix B GLEC Report

June 2017 BWJ160749



#### Great Lakes Environmental Center

Applied Environmental Sciences www.glec.com

#### Traverse City Operations

739 Hastings St. Traverse City MI 49686

231 941-2230 231 941-2240 fax

## Columbus Operations

1295 King Ave. Columbus OH 43212

614 487-1040 614 487-1920 fax December 16, 2016

Paul Raymaker, P.G. Geologist Bay West LLC 5201 East River Road #313 Minneapolis, MN 55421

#### RE: DRAFT REPORT: Results for the 10-day Chironomus dilutus, 28-day

Hyalella azteca, and 28-day Lumbriculus variegatus Whole Sediment Toxicity

**Testing** 

Bay West, LLC; Mud Lake West-St. Louis River AOC Project

**Project Number: 2386** 

#### Dear Mr. Raymaker:

Great Lakes Environmental Center, Inc. (GLEC) has completed our analysis of three sediment samples that were collected by Bay West personnel on October 4<sup>th</sup>, 2016 for the Mud Lake West-St. Louis River AOC Project in Minnesota. Our analysis included the following whole sediment toxicity tests: *Chironomus dilutus* (*C. dilutus*) 10-day growth and survival, *Hyalella azteca* (*H. azteca*) 28-day growth and survival, and *Lumbriculus variegatus* (*L. variegatus*) 28-day bioaccumulation tests which included 4-day acute toxicity screening tests.

During the whole sediment toxicity tests with *C. dilutus* and *H. azteca*, the organisms were exposed to whole sediment samples and the effects on survival and growth were measured. The *L. variegatus* 28-day bioaccumulation analysis included the exposure of *L. variegatus* to whole sediment samples and the measurement of nickel, zinc, dioxins, furans, and percent lipids in the collected tissue samples. Total Organic Carbon (TOC), percent moisture, nickel, zinc, dioxins, and furans were also analyzed in the whole sediment samples.

The whole sediment toxicity tests were completed at GLEC's laboratory in Traverse City, Michigan. Sediment and tissue chemistry analysis was completed by Pace Analytical Laboratories in Green Bay, Wisconsin.

#### **Whole Sediment Toxicity**

The sample identification numbers, survival, and growth test results for the whole sediment toxicity assessments for the three sediment samples and laboratory controls are summarized and provided in the following tables:

| • | Table 1: | 10-Day C. dilutus Average Percent Survival                                                                      |
|---|----------|-----------------------------------------------------------------------------------------------------------------|
| • | Table 2: | 10-Day <i>C. dilutus</i> Average Growth and Biomass Estimates (expressed as average ash-free-dry-weight (AFDW)) |
| • | Table 3: | 28-Day H. azteca Average Percent Survival                                                                       |
| • | Table 4: | 28-Day H. azteca Average Growth and Biomass Estimates                                                           |
| • | Table 5: | 4-Day L. variegatus Average Percent Survival                                                                    |
| • | Table 6: | 28-Day L. variegatus Average Depurated Wet Weight                                                               |
| • | Table 7: | 28-Day L. variegatus Tissue Analyte Results: Nickel and Zinc                                                    |
| • | Table 8: | Sediment Percent Moisture and Total Organic Carbon (TOC) of the Sediment Samples                                |

Water quality data for the overlying water for each sediment sample tested are summarized in Tables 9 through 12 for the *C. dilutus*, *H. azteca*, 4-day *L. variegatus*, and 28-day *L. variegatus* tests, respectively.

A detailed summary of the overlying water quality measurements are provided in Appendices B1 (*C. dilutus*), B2 (*H. azteca*), B3 (4- day *L. variegatus*), and B4 (28-day *L. variegatus*).

The survival, growth, and statistical data sheets and summaries for the *C. dilutus* and *H. azteca* tests are shown in Appendices C1 through C2, and D1 through D2, respectively. The day 4 laboratory bench data sheets for the 4-day percent survival are provided in Appendix E and 28-day depurated wet weights of the *L. variegatus* are provided in Appendix F.

The analytical chemistry data for the 28-day *L. variegatus* tissue collected from the whole sediment bioaccumulation tests are summarized in Table 7 and provided in Appendix G. The analytical chemistry data for the whole sediment samples is summarized in Table 8 and provided in Appendix H.

The daily laboratory bench data sheets and analytical chemistry data for both the sediment and tissue samples are kept on file at GLEC and are also provided on the enclosed compact diskettes. Chain of Custody forms and reference toxicant data are provided in Appendices A and I, respectively.

**December 16, 2016** 

#### **METHODS**

3

The whole sediment toxicity tests were conducted at our Traverse City, Michigan laboratory following GLEC's written Standard Operating Procedures (SOPs) which are based on the procedures outlined in U.S. EPA Method, EPA/600/R-99/064 Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates, Second Edition and American Society for Testing and Materials (ASTM) 1706-05, Standard Test Methods for Measuring the Toxicity of Sediment Associated Contaminants with Freshwater Invertebrates (ASTM 2010).

The three sediment samples were collected by Bay West and delivered via courier to GLEC. The sediment samples were received at GLEC, where they were assigned a unique GLEC laboratory identification number and stored at  $0 \le 6$ °C, but not frozen, until test initiation (see table below).

|              | Sample      | GLEC<br>Lab. ID |                  |                  | Temperature<br>Upon Receipt |
|--------------|-------------|-----------------|------------------|------------------|-----------------------------|
| Sample I.D.  | Description | Number          | Date Sampled     | Date Received    | (°C)                        |
| BW16MLW-001- | Site Sample | 11,080          | October 04, 2016 | October 05, 2016 | 7.5                         |
| 0.0-0.15     |             |                 |                  |                  |                             |
| BW16MLW-002- | Site Sample | 11,081          | October 04, 2016 | October 05, 2016 | 8.0                         |
| 0.0-0.15     |             |                 |                  |                  |                             |
| BW16MLW-003- | Site Sample | 11,082          | October 04, 2016 | October 05, 2016 | 8.1                         |
| 0.0-0.15     |             |                 |                  |                  |                             |

Upon receipt the samples exceeded the recommended temperature requirement of  $0 \le 6^{\circ}$ C, but not frozen. An e-mail was sent October 5, 2016 detailing the condition and temperature of the sediment samples upon receipt. All shipping containers had a sufficient amount of ice still packed on top of the sediment samples and the ice was not melted. GLEC did not receive a stop work request and in response, GLEC continued as planned and used the sediment samples to conduct the whole sediment toxicity and bioaccumulation tests.

All toxicity testing and bioaccumulation tests included a natural sediment control as outlined in the Minnesota Pollution Control Agency (MPCA) Specification for Services Form; i-admin9-07: 1/30/2016). The natural sediment control is referred in this report as a laboratory control.

The 10-day *C. dilutus* toxicity tests and the 28-day *H. azteca* toxicity tests were initiated on October 14, 2016 and October 19, 2016, respectively, for each of the three sediment samples, one laboratory control and one water only exposure, per test organism.

Mr. Paul Raymaker
Bay West, LLC
4
Mud Lake West-St. Louis River AOC
Draft Report

**December 16, 2016** 

On October 14, 2016, the three investigative sediment samples and a laboratory control sediment were used to initiate 4-day *L. variegatus* sediment toxicity screening tests. *L. variegatus* survival after 4-days of exposure in the three investigative samples and laboratory control sediment were all greater than 90 percent survival (Table 5). Consequently, the 28-day *L. variegatus* bioaccumulation tests were initiated with the three investigative sediments and one laboratory control sediment on October 25, 2016.

## 10-DAY CHIRONOMUS DILUTUS AND 28-DAY HYALELLA AZTECA WHOLE SEDIMENT TOXICITY TESTS

#### Summary of Test Procedures: 10-Day Chironomus dilutus and 28-Day Hyalella azteca

Second to third instar *C. dilutus* (10-11 days old at test initiation; provided by an outside supplier: Aquatic Bio Systems) were used to initiate the 10-day whole sediment toxicity tests and water only exposure. Juvenile *H. azteca* (7-8 days old; cultured in house) were used to initiate the 28-day whole sediment toxicity tests and water only exposure. All organisms were randomly placed in test chambers using a large bore pipette. The *C. dilutus* and *H. azteca* were continuously exposed for the duration of the test (10-days and 28-days, respectively) to each of the sediment samples, one laboratory control sediment and one water only exposure.

In the water only exposures, test organisms were exposed to the overlying water with no sediment. There were eight replicate beakers for each sediment sample, the water only exposure, and the laboratory control sediment; each replicate contained 10 test organisms. The laboratory control sediment (as per the MPCA Specification for Services Form) is a natural sediment control from West Bear Skin Lake, an oligotrophic glacial lake near the Boundary Waters Canoe Area (BWCA) in Minnesota.

The *C. dilutus* and *H. azteca* were exposed in 470 mL glass test chambers, each containing 100 mL of whole sediment and 175 mL of overlying water.

Prior to adding the whole sediment to each test chamber, the laboratory control sediment as well as each investigative sediment sample were thoroughly homogenized using a pre-cleaned stainless steel all purpose mixer or spoon until a uniform color and texture was achieved.

As per the MPCA Service Form, a subsample from each of the homogenized sediment samples was collected for chemistry analysis: Total Organic Carbon and percent moisture (analyzed at PACE Analytical in Green Bay, Wisconsin, Table 8 and Appendix H), dioxins, furans, nickel, zinc, and percent moisture (shipped to PACE Analytical, Minneapolis, Minnesota, as per client request and results sent directly to the client).

The homogenized sediment was then added to each test chamber using a pre-cleaned stainless steel spoon. After the addition of the sediment to the test chambers, overlying water was

immediately added; this was considered test day -1, the test day prior to day 0 (October 13, 2016 for the *C. dilutus* tests and October 18, 2016 for the *H. azteca* tests). Test organisms were randomly added to each replicate test chamber the following day (test day 0), October 14, 2016 for the *C. dilutus* tests and October 19, 2016 for the *H. azteca* tests.

Overlying water was intermittently supplied to each test chamber at least twice daily (once every 12-hours) via a static-renewal water delivery system. The overlying water for each sediment sample, the laboratory control sediment, and the water only exposure consisted of de-chlorinated municipal (Traverse City, Michigan) (Lake Michigan sourced) water, with an average hardness of 129 mg/L and an average alkalinity of 100 mg/L. Temperature, dissolved oxygen, pH, and specific conductance of the overlying water was measured daily prior to use.

The *C. dilutus* test chambers were fed 1.5 mL of Tetrafin® goldfish food slurry (4 mg/mL dry solids) once daily. The *H. azteca* test chambers were fed 1.0 mL mixture of yeast, trout food, and wheat grass (YTC; ~1800 (1700-1900 +/- 5%) mg/L solids) once daily.

The test chambers were placed in a temperature controlled water bath under the specified conditions of  $23 \pm 1$ °C; photoperiod 16 hours light: eight hours dark; and light intensity of 100-1000 lux.

Temperature  $(23 \pm 1^{\circ}\text{C})$  and the DO  $(\geq 2.5 \text{ mg/L})$  concentrations of the overlying water in the test chambers were measured daily in two alternating replicates for each test sediment, and the results were recorded on the laboratory bench data sheets. There were no instances of decreased DO or temperature exceedances in either the *C. dilutus* or the *H. azteca* whole sediment toxicity tests.

Alkalinity, hardness, pH, conductance, and total ammonia (as N) were measured in the overlying water on test days 0 and 10 for the *C. dilutus* tests (Table 9 and Appendix B1) and on days 0 and 28 for the *H. azteca* tests (Table 10 and Appendix B2). For the 28-day *H. azteca* whole sediment toxicity tests, conductivity was measured weekly, and pH was measured at least three times per week from two randomly selected test chambers. The alkalinity, hardness, and total ammonia (as N) samples were a composite sample collected from all replicates of a given treatment. All test exposure water quality measurements were recorded on the laboratory bench data sheets (see enclosed compact disc).

Observations of organism behavior and anomalies observed within the sediment were made daily for each test chamber and recorded on the laboratory bench data sheets.

The number of *C. dilutus* surviving in each replicate test chamber was recorded at test termination (10 days), and a summary of the percent survival at test termination is provided in Tables 1 and 2. The average ash free dry weight [AFDW in milligrams (mg)] of the surviving organisms for each *C. dilutus* replicate, and the biomass [AFDW (mg) of the surviving

Mr. Paul Raymaker
Bay West, LLC 6
Mud Lake West-St. Louis River AOC
Draft Report

**December 16, 2016** 

organisms divided by the initial number of organisms] was also determined at test termination, and the results are summarized in Table 2.

The number of surviving *H. azteca* in each replicate chamber was recorded at test termination (28 days) and the survival data are summarized in Tables 3 and 4. The average dry weight [in milligrams (mg)] of the surviving organisms for each *H. azteca* replicate, and the biomass [dry weight (mg) of the surviving organisms divided by the initial number of organisms] was also determined at test termination, and the data are summarized in Table 4.

A statistical procedure, using the program TOXCALC (version 5.0.32) and following statistical guidelines provided in U.S. EPA Method 600/R-99/064 and ASTM Method 1706-95B (2010), was used to compare the 10-day *C. dilutus* and the 28-Day *H. azteca* survival and growth data from the three investigative sediment samples to survival and growth data from the laboratory control sample (West Bear Skin natural sediment sample). Prior to analysis, all percent survival data were transformed using an arc sine-square root transformation.

All transformed data were then tested for normality and homogeneity of variances. Next, an analysis of variance (ANOVA) was conducted using the most appropriate parametric (e.g., Dunnet's or Bartlett's t-tests) or nonparametric (e.g., Steel's Many-One Rank or Wilcoxon with Bonferroni's) t-test. If the data failed to meet the assumptions of normality or homogeneity, the nonparametric tests were used to analyze the data. Additional statistical analysis would be conducted using homoscedastic or heteroscedastic t-tests, when an investigative sediment sample was significantly different from the laboratory control. The homoscedastic or heteroscedastic t-tests, are used for comparing a single treatment to a single control.

The homoscedastic t-test assumes the data are normally distributed (Shapiro-Wilk Test or Kolmogorov D Test) and the variances are equal (F-test). If the variances are not equal, the data are analyzed using the heteroscedastic t-test. If the data are not normally distributed, then the data are analyzed using a nonparametric t-test (e.g., Steel's Many-One Rank Test or Wilcoxon Rank Sum Test with Bonferroni's Adjustment).

Growth data were initially evaluated for normal distribution and homogeneity of variances. In those cases where the data were not normally distributed or homogenous, the data were analyzed using either the nonparametric test or the heteroscedastic t-test. In addition to growth being evaluated as average dry weight of the surviving organisms, growth was also analyzed as biomass (average dry weight of surviving organisms divided by the number of initial organisms).

The survival and growth for each investigative sample was considered statistically different when significantly lower (p< 0.05) than observed in the laboratory control sediment (CS# 136).

**December 16, 2016** 

Organisms exposed to the laboratory control sediment and the water only exposure achieved acceptable survival and growth, as specified in the U.S. EPA manual EPA/600/R-99/064. In this instance, the laboratory control sediment and water only exposure results confirmed test acceptability and the health of the test organisms.

7

#### **RESULTS**

#### 10-Day Chironomus dilutus and 28-Day Hyalella azteca Whole Sediment Toxicity Tests

#### 10-Day Chironomus dilutus

The organisms exposed to the laboratory control sediment and to the water only exposure exceeded the minimum survival (70 percent) and growth (0.48 mg AFDW at test termination) criteria for acceptable controls for the *C. dilutus* tests (Tables 1 and 2). The acceptability requirements for survival and growth for the *C. dilutus* test can be found in U.S. EPA manual EPA/600/R-99/064, Test Method 100.2; Table 12.1. There was 97.5 percent survival in the laboratory control.

The overlying water quality measurements (Table 9) were also within the acceptable limits following the U.S. EPA testing protocol. Daily mean temperatures were  $23^{\circ}\text{C} \pm 1^{\circ}\text{C}$ ; dissolved oxygen (DO) was maintained above 2.5 mg/L in the overlying water; and there were no variations greater than 50% in overlying water hardness or alkalinity measurements within each test type. Total ammonia over the duration of ten days varied between 0.08 mg/L and 0.68 mg/L in the overlying water among all sediment types. Consequently, the *C. dilutus* whole sediment toxicity tests were conducted following the standard protocols and are valid assessments of sediment toxicity.

All test chambers were observed daily to assess organism behavior and no unusual observations were noted with the test organisms in these sediment samples.

#### Statistical Analysis for 10-Day Chironomus dilutus Tests

**Laboratory Control Sediment Compared to Investigative Sediment Samples** 

*C. dilutus* survival and growth results (Appendix C1) from the laboratory control sediment sample CS # 136 (West Bear Skin Lake) were compared statistically to the three investigative sediment samples. After 10 days of exposure when compared to the laboratory control sediment sample, *C. dilutus* survival was not significantly reduced (p≥0.05) in any of the three investigative sediment samples (see Tables 1, 2, and Appendix C2).

When compared to the laboratory control sediment sample (see Table 2 and Appendix C2), C. dilutus growth measured as AFDW of surviving organisms (mg) and biomass [AFDW of surviving organisms divided by the initial number of organisms (mg)] was not significantly reduced ( $p \ge 0.05$ ) in any of the three sediment samples.

Outputs for the survival and growth statistical analyses for the *C. dilutus* whole sediment toxicity tests are provided in Appendix C2.

#### 28-Day Hyalella Azteca

The *H. azteca* test organisms exposed to the laboratory control sediment and to the water only exposure exceeded the minimum survival criteria (80%), and displayed acceptable measurable growth (Tables 3 and 4). The requirements for acceptable survival and growth for the *H. azteca* can be found in U.S. EPA manual EPA/600/R-99/064, Test Method 100.4; Table 14.3. There was 98.8 percent survival in the laboratory control.

The overlying water quality measurements (Table 10) were also within the acceptable limits following the U.S. EPA testing protocol. Daily mean temperatures were  $23 \pm 1$  °C; dissolved oxygen (DO) was maintained above 2.5 mg/L in the overlying water, and there were no variations greater than 50% in overlying water hardness or alkalinity measurements within each test type. Total ammonia over the duration of twenty-eight days varied between 0.05 mg/L and 0.37 mg/L in the overlying water among all sediment types.

All test chambers were checked daily to assess organism behavior and no unusual observations were noted with the test organisms in these sediment samples. The *H. azteca* whole sediment toxicity tests are valid assessments of sediment toxicity.

#### Statistical Analysis for 28-Day Hyalella azteca Tests

#### **Laboratory Control Sediment Compared to Investigative Sediment Samples**

Survival and growth results (Appendix D1) from the laboratory control sediment were compared statistically to the three investigative sediment samples. After 28 days of exposure when compared to the laboratory control sediment sample: CS#136 (see Tables 3, 4, and

Mr. Paul Raymaker
Bay West, LLC
9
Mud Lake West-St. Louis River AOC
Draft Report

**December 16, 2016** 

Appendix D2) *H. azteca* survival was not significantly reduced ( $p \ge 0.05$ ) in any of the three investigative sediment samples.

After 28 days of exposure there was no significant reductions ( $p \ge 0.05$ ) in *H. azteca* growth (expressed as average dry weight) or biomass in any of the three investigative sediment samples when compared to laboratory control sediment sample (see Table 4 and Appendix D2).

Outputs for the survival and growth statistical analyses for the *H. azteca* whole sediment toxicity tests are provided in Appendix D2.

## 28-DAY LUMBRICULUS VARIEGATUS WHOLE SEDIMENT BIOACCUMULATION TOXICITY TEST

## Summary of Test Procedures: 4-day *Lumbriculus variegatus* Acute Whole Sediment Toxicity Screening Test

Prior to conducting the 28-day bioaccumulation studies, 4-day *L. variegatus* acute toxicity screening tests were conducted. The 4-day *L. variegatus* acute toxicity screening tests were initiated with each of the three investigative sediment samples (as listed in the previous table) and one laboratory control sediment, on October 14, 2016.

Adult *L. variegatus* (purchased from California Blackworm Company) were used to initiate the 4-day whole sediment toxicity screening tests. *L. variegatus* were continuously exposed for 4-days to each of the three investigative sediment samples and to the laboratory control sediment.

Consistent with the EPA method 100.3, there were four replicate samples for each investigative sediment sample and the laboratory control sample; each *L. variegatus* replicate was initiated with 10 animals.

The *L. variegatus* were exposed in 470 mL glass test chambers, each containing 100 mL of whole sediment and 175 mL of overlying water.

Prior to adding the whole sediment to each test chamber, the laboratory control as well as each investigative sediment sample were thoroughly homogenized using a pre-cleaned stainless steel all purpose mixer or spoon until a uniform color and texture was achieved.

The homogenized sediment was then added to each test chamber using a pre-cleaned stainless steel spoon. After the addition of the sediment to the test chambers, the overlying water was

immediately added; this was considered to be test day -1 (October 13, 2016). Test organisms were randomly added to each replicate test chamber the following day (test day 0).

Overlying water was intermittently supplied to each test chamber at least twice daily (once every 12-hours) via a static-renewal water delivery system. The overlying water for each sediment sample and the laboratory control sediment consisted of de-chlorinated municipal (Traverse City, Michigan) tap (Lake Michigan sourced) water, with an average hardness of 129 mg/L and an average alkalinity of 100 mg/L. Temperature, dissolved oxygen, pH, and specific conductance of the overlying water was measured daily prior to use.

The test chambers were placed in a temperature controlled water bath under the specified conditions of  $23 \pm 1^{\circ}$ C; photoperiod 16 hours light: eight hours dark; and light intensity of 100-1000 lux.

Temperature and the dissolved oxygen (DO) concentration of the overlying water in the test chambers were measured daily in two alternating replicates for each test sediment, and the results were recorded on the laboratory bench data sheets. If the DO dropped below 2.5 mg/L, the number of daily overlying water renewals was increased (up to 4 times per day) for all treatments until the DO recovered to greater than 3.0 mg/L. Once the DO had increased to above 3.0 mg/L, additional water renewals were suspended, until the DO values dropped below 2.5 mg/L, at which time the additional water renewals were re-initiated. There were no instances in the whole sediment toxicity tests of decreased DO and increased overlying water renewals.

Alkalinity, hardness, pH, conductivity, and total ammonia (as N) were measured on test days 0 and 4, in the overlying water for the *L. variegatus* tests (Table 11 and Appendix B3).

Observations of organism behavior and anomalies observed within the sediment were made daily for each test chamber and recorded on the laboratory bench data sheets.

The number of *L. variegatus* surviving in each replicate test chamber was recorded at test termination (4 days), and a summary of the percent survival at test termination is provided in Table 5.

A statistical analysis was not performed on the survival of the 4 day *L. variegatus* whole sediment toxicity screening tests. The percent survival of the *L. variegatus* after 4 days in the laboratory control and the three investigative sediment samples were all greater than 90 percent survival (see Table 5).

#### Results: 4-Day L. variegatus Acute Whole Sediment Toxicity Screening Test

The organisms exposed to the laboratory control sediment exceeded 90 percent survival after 4-days of exposure (see Table 5).

The laboratory controls for each toxicity test met the minimum survival requirements as specified in the EPA method and those requirements are acknowledged in the following results section for each set of toxicity tests. For the purpose of this study, the laboratory control sediment was used as a measure of test acceptably and the health of the test organisms.

The overlying water quality measurements (Table 11 and Appendix B3) were also within the acceptable limits following the U.S. EPA testing protocol (i.e., daily mean temperatures were  $23 \pm 1$  °C; dissolved oxygen (DO) was maintained above 2.5 mg/L in the overlying water and there were no variations greater than 50% in overlying water hardness or alkalinity measurements within each test type. Total ammonia over the duration of 4 days varied between 0.07 mg/L and 0.39 mg/L in the overlying water among all sediment types). Consequently, the *L. variegatus* 4-day whole sediment toxicity tests were conducted following the standard protocols and are valid assessments of sediment toxicity screening.

All test chambers were observed daily to assess organism behavior and no unusual observations were noted with the test organisms in these sediment samples.

The laboratory bench sheets with the recorded 4-day *L. variegatus* survival are provided in Appendix E.

### Summary of Test Procedures: 28-Day *L. variegatus* Whole Sediment Bioaccumulation Tests

On October 25, 2016 the 28-day bioaccumulation test was initiated with the three investigative sediment samples and one laboratory control. Adult *L. variegatus* were used to initiate the test and were continuously exposed for 28-days to the three investigative sediment samples.

Adult *L. variegatus* were exposed in 3 liter (L) glass tanks, each containing 1.5L of whole sediment and 1.5 L of overlying water. Temperature-controlled overlying water was supplied to each test chamber via a continuous-renewal water delivery system at a rate of 5 mL/min ( $\pm$  2 mL/min). All test chambers were aerated at approximately 100 bubbles per minute for the full duration of the test. The overlying water consisted of de-chlorinated municipal (Lake Michigan) water of moderate hardness (~140 mg/L). Consistent with the test procedure, there were five replicate tanks for each sediment sample. On day 0 (October 25, 2016) each test replicate was initiated with a 18 grams wet weight of *L. variegatus* in order to meet the required 12 grams of wet tissue at test termination. The recommended addition of *L. variegatus* to minimize depletion of sediment contaminates during the bioaccumulation test follows a 50:1 ratio; TOC in the sediment to dry weight of organisms (EPA method 100.3)

In the 28-day *L. variegatus* bioaccumulation test, GLEC balanced the TOC ratio with the varying TOC concentrations between the laboratory control sediment and the investigative

sediment samples, the minimum tissue requirements per replicate analysis (outlined in the MPCA Service Form), the volume of sediment available, the absolute need for equal replication, and the potential biases in the biota-sediment accumulation factors. To accomplish this, GLEC modified the SOP for these toxicity tests by; increasing the volume of sediment per replicate while maintaining an adequate overlying water renewal volume per day, and by decreasing the wet weight of *L. variegatus* exposed per replicate at test initiation, resulting in a practical TOC/organism ratio of approximately 27:1 or greater, given the limitation of the method [1] [2].

The test chambers were placed in a temperature controlled water bath under the specified conditions of  $23 \pm 1$ °C; photoperiod of 16 hours light and 8 hours dark; and light intensity of 100-1000 lux. Water temperature and dissolved oxygen were monitored daily in two random replicates for each test sample. Alkalinity, hardness, pH, dissolved oxygen (D.O.), conductivity, temperature, and total ammonia were measured at Day 0 (test initiation) and on days 7, 14, 21, and 27 (Table 12 and Appendix B4).

All test chambers were checked daily to assess organism behavior and no unusual observations were noted with the test organisms. Consequently, the *L. variegatus* whole sediment toxicity tests are valid assessments of sediment toxicity.

The overlying water quality measurements (Table 12) were also within the acceptable limits following the U.S. EPA testing protocol (i.e., daily mean temperatures were  $23 \pm 1$  °C; dissolved oxygen (DO) was maintained above 2.5 mg/L in the overlying water and there were no variations greater than 50% in overlying water hardness or alkalinity measurements within each test type. Total ammonia over the duration of 28 days varied between 0.11 mg/L and 1.33 mg/L in the overlying water among all sediment types.). Consequently, the *L. variegatus* 28-day bioaccumulation sediment toxicity tests were conducted following the standard protocols and are valid assessments of sediment toxicity.

At test termination, the test organisms were recovered from each replicate chamber using reasonable effort until a minimum of 12 grams of *L. variegatus* per replicate or 60 grams of *L. variegatus* composited per sediment sample (requested per MPCA Service Form) was recovered.

After 28 days of exposure, the surviving *L. variegatus* were depurated for 24 hours in overlying water to purge all gut contents. The final total depurated wet weight (g) of surviving *L. variegatus* was also determined at test termination and is provided in Table 6 and Appendix F.

After the 24-hour depuration period, the surviving *L. variegatus* were weighed, homogenized, then frozen in glass jars (supplied by the analytical laboratories). The tissue samples were sent to two different laboratories; Pace Analytical for tissue analysis on the following analytes: nickel and zinc (Table 7 and Appendix G) and AXYS Laboratory for tissue analysis

**December 16, 2016** 

on the following analytes: dioxins, furans, and percent lipids (results delivered directly to Bay West).

The analyte result data supplied by Pace Analytical is provided in Appendix G and electronically on the enclosed compact diskette.

#### Results: 28-Day L. variegatus Tissue Analysis

L. variegatus tissue that was harvested from the 28-day bioaccumulation toxicity tests was analyzed by Pace Laboratories, Inc. for the following parameters:

• **Nickel:** Analytical Method; EPA 6020

• **Zinc**; Analytical Method; EPA 6020

All analyses are reported on a wet weight basis. Quality Control data and reporting are provided with the raw analytical data on the attached diskette. No statistical analysis was performed with the *L. variegates* tissue analysis.

Total Organic Carbon (TOC) and percent moisture were also analyzed in whole sediment samples (Table 8). TOC in the sediment was analyzed using the test method EPA 9060-in quadruplicate.

#### **SUMMARY**

In summary, GLEC completed whole sediment toxicity testing and analysis of three sediment samples. Each whole sediment toxicity test was performed following acceptable methods, without exception, and is accurate and complete. Whole sediment toxicity test results are in compliance with the requirements of the National Environmental Laboratory Accreditation Conference (NELAC).

Statistical analyses were completed for the whole sediment toxicity tests with *C. dilutus* and *H. azteca*. All data are summarized in the following tables and raw data reported in the appendices to this report.

*C. dilutus* survival and growth were not significantly reduced in any of three sediment samples when compared to the laboratory control sediment sample (Tables 1 and 2).

*H. azteca* survival and growth were also not significantly reduced any of three sediment samples when compared to the laboratory control sediment sample (Tables 3 and 4).

No statistical comparisons were completed with the *L. variegatus* analytical tissue data. *L. variegatus* analytical tissue data is summarized in Table 7. Sediment chemistry results for TOC and percent moisture are summarized in Table 8.

14

If you have any questions, or if you would like additional information, please contact either myself or Dennis McCauley at (231) 941-2230. Thank you for the opportunity to provide this service to Bay West. We look forward to continue providing environmental services to you in the future.

Sincerely,

Mailee W. Garton Laboratory Coordinator

Mailer W. Harrow

Dennis J. M<sup>c</sup>Cauley President/Senior Environmental Scientist

Donar Thicky

MWG:mg



Mr. Paul Raymaker
Bay West, LLC
Mud Lake West-St. Louis River AOC
Draft Report

**December 16, 2016** 

#### **REFERENCES**

- 1. Burkhard, LP., Hubin-Barrows, D., Billa, N., Highland, TL., Hockett, JR., Mount, DR., Norberg-King, TJ., "Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading", in Archives Environmental Contamination and Toxicology 2016 Jul 10;71(1):70-7. Epub 2016 May 10.
- 2. Van Geest, JL., Poirer, DG., Solomon, KR., Sibley, PK., "The Effect of Organism Density on Bioaccumulation of Contaminants from Sediments in Three Aquatic Species: A Case for Standardizing to Sediment Organic Carbon", Archives of Environmental Contamination and Toxicology 60(4):626-35 · May 2011



TABLE 1. Comparison of Number of Surviving *Chironomus dilutus* per Replicate and Percent Survival;
Between the Laboratory Control Sediment and the Investigative Sediments;

Chironomus dilutus 10-Day Whole Sediment Toxicity Tests Conducted October 14 - October 24, 2016;
Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| REPLICATE<br>NUMBER                        | West Bear Skin<br>Laboratory<br>Control | 0.0-0.15       | 0.0-0.15       | BM16MLW-003-<br>0.0-0.15 | Water Only<br>Secondary |
|--------------------------------------------|-----------------------------------------|----------------|----------------|--------------------------|-------------------------|
|                                            | CS# 136                                 | GLC No. 11,080 | GLC No. 11,081 | GLC No. 11,082           | Control                 |
| 1                                          | 10                                      | 10             | 9              | 10                       | 9                       |
| 2                                          | 10                                      | 10             | 10             | 10                       | 10                      |
| 3                                          | 10                                      | 10             | 10             | 9                        | 10                      |
| 4                                          | 10                                      | 10             | 10             | 10                       | 10                      |
| 5                                          | 10                                      | 9              | 10             | 10                       | 9                       |
| 6                                          | 9                                       | 10             | 8              | 9                        | 10                      |
| 7                                          | 9                                       | 10             | 10             | 9                        | 10                      |
| 8                                          | 10                                      | 9              | 10             | 9                        | 10                      |
| 10-Day<br>Percent<br>Survival <sup>r</sup> | 97.5                                    | 97.5           | 96.3           | 95.0                     | 97.5                    |

**r** Replicates initiated with 10 organisms each



TABLE 2. Comparison of Average<sup>1</sup> Dry Weight (mg), Biomass<sup>2</sup> (mg) and Percent Survival;
Between the Laboratory Control Sediment and the Investigative Sediments;
Chironomus dilutus 10-Day Whole Sediment Toxicity Tests Conducted October 14 - October 24, 2016;
Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

|                                                               |                                     | ear Skin<br>ry Control              | BM16MLW                             | -001-0.0-0.15                       | BM16MLW                             | -002-0.0-0.15                       | BM16MLW                             | -003-0.0-0.15                       | Water                               | r Only                              |
|---------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| GLC Number                                                    | CS#                                 | #136                                | 11,                                 | 080                                 | 11,                                 | 081                                 | 11,                                 | 11,082                              |                                     | y Control                           |
| Replicate<br>Number                                           | Average <sup>1</sup><br>Weight (mg) | Biomass <sup>2</sup><br>Weight (mg) |
| 1                                                             | 1.09000                             | 1.09000                             | 1.47100                             | 1.47100                             | 1.44000                             | 1.29600                             | 1.05200                             | 1.05200                             | 1.04444                             | 0.94000                             |
| 2                                                             | 0.94100                             | 0.94100                             | 1.11000                             | 1.11000                             | 1.34500                             | 1.34500                             | 1.30900                             | 1.30900                             | 0.88000                             | 0.88000                             |
| 3                                                             | 1.06300                             | 1.06300                             | 1.34200                             | 1.34200                             | 1.29700                             | 1.29700                             | 1.55111                             | 1.39600                             | 0.95400                             | 0.95400                             |
| 4                                                             | 0.96700                             | 0.96700                             | 1.47600                             | 1.47600                             | 1.13200                             | 1.13200                             | 1.18700                             | 1.18700                             | 0.98800                             | 0.98800                             |
| 5                                                             | 0.94200                             | 0.94200                             | 1.94667                             | 1.75200                             | 1.23900                             | 1.23900                             | 1.25300                             | 1.25300                             | 1.00222                             | 0.90200                             |
| 6                                                             | 0.92444                             | 0.83200                             | 1.24600                             | 1.24600                             | 1.41875                             | 1.13500                             | 1.23111                             | 1.10800                             | 0.84000                             | 0.84000                             |
| 7                                                             | 1.03222                             | 0.92900                             | 1.38000                             | 1.38000                             | 1.49400                             | 1.49400                             | 1.32000                             | 1.18800                             | 0.94900                             | 0.94900                             |
| 8                                                             | 0.97700                             | 0.97700                             | 1.36111                             | 1.22500                             | 1.35400                             | 1.35400                             | 1.20111                             | 1.08100                             | 0.93500                             | 0.93500                             |
| Average <sup>1</sup><br>Ash-Free-Dry<br>Weight<br>(AFDW) (mg) |                                     |                                     | 1.41660                             |                                     | 1.33997                             |                                     | 1.26304                             |                                     | 0.94908                             |                                     |
| Biomass <sup>2</sup> Weight (AFDW) (mg)                       |                                     | 0.96762                             |                                     | 1.37525                             |                                     | 1.28650                             |                                     | 1.19675                             |                                     | 0.92350                             |
| 10-Day<br>Percent<br>Survival                                 | 97                                  | 7.5                                 | 97                                  | 7.5                                 | 90                                  | 5.3                                 | 95                                  | 5.0                                 | 97                                  | 7.5                                 |

Note: Average Ash-Free-Dry Weight (AFDW) of *Chironomus dilutus* at test initiation = 0.33313 mg

<sup>&</sup>lt;sup>1</sup>Average Ash-Free-Dry-Weight (AFDW) is the total ash-free-dry weight of surviving organisms

<sup>&</sup>lt;sup>2</sup>Biomass weight is the total Ash-Free-Dry-Weight of surviving organisms divided by the initial number of organisms.



TABLE 3. Comparison of Number of Surviving *Hyalella azteca* per Replicate and Percent Survival;
Between the Laboratory Control Sediment and the Investigative Sediments; *Hyallela azteca* 28-Day Whole Sediment Toxicity Tests Conducted October 19 - November 16, 2016;
Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| REPLICATE<br>NUMBER                        | West Bear Skin<br>Laboratory<br>Control | BM16MLW-001-<br>0.0-0.15 | BM16MLW-002-<br>0.0-0.15 | BM16MLW-003-<br>0.0-0.15 | Water Only<br>Secondary |
|--------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------|
|                                            | CS# 136                                 | GLC No. 11,080           | GLC No. 11,081           | GLC No. 11,082           | Control                 |
| 1                                          | 10                                      | 10                       | 10                       | 10                       | 10                      |
| 2                                          | 10                                      | 10                       | 9                        | 10                       | 9                       |
| 3                                          | 9                                       | 9                        | 9                        | 10                       | 10                      |
| 4                                          | 10                                      | 10                       | 10                       | 10                       | 10                      |
| 5                                          | 10                                      | 9                        | 10                       | 9                        | 10                      |
| 6                                          | 10                                      | 10                       | 10                       | 8                        | 10                      |
| 7                                          | 10                                      | 10                       | 9                        | 10                       | 10                      |
| 8                                          | 10                                      | 10                       | 10                       | 10                       | 10                      |
| 28-Day<br>Percent<br>Survival <sup>r</sup> | 98.8                                    | 97.5                     | 96.3                     | 96.3                     | 98.8                    |

**r** Replicates initiated with 10 organisms each



TABLE 4. Comparison of Average<sup>1</sup> Dry Weight (mg), Biomass<sup>2</sup> (mg) and Percent Survival;
Between the Laboratory Control Sediment and the Investigative Sediments;
Hyallela azteca 28-Day Whole Sediment Toxicity Tests Conducted October 19 - November 16, 2016;
Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

|                                                |                                     | ear Skin<br>ry Control              | BM16MLW                             | -001-0.0-0.15                       | BM16MLW-                            | -002-0.0-0.15                       | BM16MLW                             | -003-0.0-0.15                       | Water                               | r Only                              |
|------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| GLC Number                                     | CS#                                 | ‡136                                | 11,                                 | 080                                 | 11,                                 | 081                                 | 11,                                 | 082                                 | Secondary Control                   |                                     |
| Replicate<br>Number                            | Average <sup>1</sup><br>Weight (mg) | Biomass <sup>2</sup><br>Weight (mg) |
| 1                                              | 0.19100                             | 0.19100                             | 0.18500                             | 0.18500                             | 0.15500                             | 0.15500                             | 0.20500                             | 0.20500                             | 0.25900                             | 0.25900                             |
| 2                                              | 0.17600                             | 0.17600                             | 0.16100                             | 0.16100                             | 0.17333                             | 0.15600                             | 0.17000                             | 0.17000                             | 0.31000                             | 0.27900                             |
| 3                                              | 0.17000                             | 0.15300                             | 0.20889                             | 0.18800                             | 0.19556                             | 0.17600                             | 0.17600                             | 0.17600                             | 0.34900                             | 0.34900                             |
| 4                                              | 0.16300                             | 0.16300                             | 0.20500                             | 0.20500                             | 0.14700                             | 0.14700                             | 0.14600                             | 0.14600                             | 0.45800                             | 0.45800                             |
| 5                                              | 0.16900                             | 0.16900                             | 0.19444                             | 0.17500                             | 0.16300                             | 0.16300                             | 0.18444                             | 0.16600                             | 0.36800                             | 0.36800                             |
| 6                                              | 0.17200                             | 0.17200                             | 0.16200                             | 0.16200                             | 0.16500                             | 0.16500                             | 0.27250                             | 0.21800                             | 0.33600                             | 0.33600                             |
| 7                                              | 0.16300                             | 0.16300                             | 0.19000                             | 0.19000                             | 0.18667                             | 0.16800                             | 0.14700                             | 0.14700                             | 0.33000                             | 0.33000                             |
| 8                                              | 0.14900                             | 0.14900                             | 0.16900                             | 0.16900                             | 0.15600                             | 0.15600                             | 0.17600                             | 0.17600                             | 0.29200                             | 0.29200                             |
| Average <sup>1</sup> Dry Weight (mg)           | 0.16913                             |                                     | 0.18442                             |                                     | 0.16769                             |                                     | 0.18462                             |                                     | 0.33775                             |                                     |
| Average<br>Biomass <sup>2</sup><br>Weight (mg) |                                     | 0.16700                             |                                     | 0.17937                             |                                     | 0.16075                             |                                     | 0.17550                             |                                     | 0.33387                             |
| 28-Day<br>Percent<br>Survival                  | 98                                  | 3.8                                 | 97                                  | 7.5                                 | 96                                  | 5.3                                 | 96                                  | 5.3                                 | 98                                  | 3.8                                 |

Note: Average Dry Weight of  $Hyallela\ azteca$  at test initiation =  $0.01950\ mg$ 

<sup>&</sup>lt;sup>1</sup> Average Dry Weight is the total dry weight of surviving organisms

<sup>&</sup>lt;sup>2</sup>Biomass weight is the total dry weight of surviving organisms divided by the initial number of organisms.



TABLE 5. Comparison of Number of Surviving *Lumbriculus variegatus* per Replicate and Percent Survival;
Between the Laboratory Control Sediment and the Investigative Sediments; *Lumbriculus variegatus* 4-Day Toxicity Screening Sediment Tests Conducted October 14 - October 18, 2016;
Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| REPLICATE<br>NUMBER                                | West Bear Skin<br>Laboratory<br>Control | BM16MLW-001-<br>0.0-0.15 | BM16MLW-002-<br>0.0-0.15 | BM16MLW-003-<br>0.0-0.15 |
|----------------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|
|                                                    | CS# 136                                 | GLC No. 11,080           | GLC No. 11,081           | GLC No. 11,082           |
| 1                                                  | 10                                      | 10                       | 9                        | 8                        |
| 2                                                  | 10                                      | 9                        | 10                       | 10                       |
| 3                                                  | 10                                      | 10                       | 10                       | 10                       |
| 4                                                  | 10                                      | 10                       | 10                       | 10                       |
| 4-Day Screening Test Percent Survival <sup>r</sup> | 100                                     | 97.5                     | 97.5                     | 95.0                     |

r Replicates initiated with 10 organisms each



TABLE 6. Summary of *Lumbriculus variegatus* Average Depurated Wet Weight (g) for the Laboratory Control and Investigative Sediment Samples;

Lumbriculus variegatus 28-Day Bioaccumulation Whole Sediment Toxicity Tests Conducted October 25 - November 22, 2016; Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| REPLICATE<br>NUMBER                    | West Bear Skin<br>Laboratory<br>Control | BM16MLW-001-<br>0.0-0.15 | BM16MLW-002-<br>0.0-0.15 | BM16MLW-003-<br>0.0-0.15 |
|----------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|
|                                        | CS# 136                                 | GLC No. 11,080           | GLC No. 11,081           | GLC No. 11,082           |
| 1                                      | 19.72                                   | 17.29                    | 15.62                    | 16.63                    |
| 2                                      | 19.00                                   | 14.22                    | 16.17                    | 14.67                    |
| 3                                      | 19.30                                   | 15.28                    | 14.30                    | 15.43                    |
| 4                                      | 17.36                                   | 15.09                    | 15.74                    | 15.04                    |
| 5                                      | 15.99                                   | 13.52                    | 16.19                    | 15.63                    |
| Average Wet<br>Depurated<br>Weight (g) | 18.27                                   | 15.08                    | 15.60                    | 15.48                    |

Note: Initiated 28-day test with 18 grams of L. variegatus per replicate.



TABLE 7. Analytical *Lumbriculus variegatus* Tissue Chemistry Results: Nickel (mg/Kg) and Zinc (mg/Kg); Results Reported on a "Wet Weight" Basis;

Lumbriculus variegatus 28-Day Bioaccumulation Whole Sediment Toxicity Tests Conducted October 25 - November 22, 2016; Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

|                | Background  L. variegatus Tissue  Day 0 10/25/2016 | West Bear Skin<br>Laboratory<br>Control | BM16MLW-001-<br>0.0-0.15 | BM16MLW-002-<br>0.0-0.15 | BM16MLW-003-<br>0.0-0.15 |  |
|----------------|----------------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--|
|                |                                                    | CS# 136                                 | GLC No.<br>11,080        | GLC No.<br>11,081        | GLC No.<br>11,082        |  |
| Nickel (mg/Kg) | 1.00                                               | 1.10                                    | 0.72                     | 2.10                     | 0.46                     |  |
| Zinc (mg/Kg)   | 21.4                                               | 18.2                                    | 18.0                     | 17.0                     | 21.3                     |  |

Nickel and Zinc: Method: EPA 6020; Preparation Method: EPA 3050B



TABLE 8. Sediment Chemistry Results: Percent Moisture (%) and Total Organic Carbon (TOC) for; Laboratory Control Sediment and the Investigative Sediments; Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

|                                          | West Bear Skin<br>Laboratory<br>Control | BM16MLW-001-<br>0.0-0.15 | BM16MLW-002-<br>0.0-0.15 | BM16MLW-003-<br>0.0-0.15 |  |
|------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--|
|                                          | CS# 136                                 | GLC No. 11,080           | GLC No. 11,081           | GLC No. 11,082           |  |
| Percent Moisture (%)                     | 86.6                                    | 84.8                     | 79.9                     | 87.7                     |  |
| Mean Total Organic<br>Carbon (mg/kg-dry) | 14,900                                  | 26,100                   | 24,500                   | 30,200                   |  |

**Percent Moisture**: Method ASTM D2974-87 and a reporting limit of 0.10%.

TOC: Method EPA 9060 in quadruplicate and a reporting limit of 100 mg/Kg dry



TABLE 9. Summary of Mean Water Quality Parameters of Overlying Water Collected Prior to Renewal;

Chironomus dilutus 10-Day Whole Sediment Toxicity Tests Conducted October 14-October 24, 2016;

Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| Sample ID<br>GLC No.           | Temperature (°C) (range) n=22 | pH (s.u.)<br>(range)<br>n=4 | Dissolved<br>Oxygen (mg/L)<br>(range)<br>n=22 | Specific<br>Conductivity<br>(µmhos/cm)<br>(range)<br>n=4 | Hardness<br>(CaCO3 mg/L)<br>(range)<br>n=2; n=4 GLC<br>11082 | Alkalinity<br>(CaCO3 mg/L)<br>(range)<br>n=2; n=4 GLEC<br>11082 | Ammonia<br>(mg/L as N)<br>(range)<br>n=2; n=4 GLEC<br>11082 |
|--------------------------------|-------------------------------|-----------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
| West Bearskin Lake             | 22.5                          | 7.37                        | 5.0                                           | 290                                                      | 118                                                          | 84                                                              | 0.50                                                        |
| CS #136                        | (22.4-22.7)                   | (7.28-7.45)                 | (3.1-7.7)                                     | (274-302)                                                | (116-120)                                                    | (78-90)                                                         | (0.33-0.67)                                                 |
|                                |                               |                             |                                               |                                                          |                                                              |                                                                 |                                                             |
| Water Only Control             | 22.7                          | 7.91                        | 6.0                                           | 319                                                      | 138                                                          | 104                                                             | 0.34                                                        |
| NA                             | (22.3-22.9)                   | (7.52-8.3)                  | (3.7-8.6)                                     | (316-323)                                                | (136-140)                                                    | (102-106)                                                       | (0.08-0.59)                                                 |
| <b>BW16MLW-001-0-</b><br>11080 | <b>22.7</b> (22.4-22.8)       | <b>7.50</b> (7.43-7.59)     | <b>4.5</b> (2.3-6.8)                          | <b>310</b> (298-324)                                     | 132<br>(120-144)                                             | <b>96</b> (90-102)                                              | <b>0.38</b> (0.18-0.58)                                     |
| <b>BW16MLW-002-0-</b><br>11081 | <b>22.6</b> (22.3-22.7)       | <b>7.56</b> (7.33-7.96)     | <b>4.7</b> (2.3-7.8)                          | <b>309</b> (296-314)                                     | 136<br>(128-144)                                             | <b>93</b> (88-98)                                               | <b>0.29</b> (0.15-0.43)                                     |
| BW16MLW-003-0-<br>11082        | <b>22.5</b> (22.3-22.8)       | <b>7.47</b> (7.42-7.56)     | <b>4.3</b> (2.7-6.6)                          | <b>309</b> (296-320)                                     | 134<br>(128-140)                                             | <b>99</b> (94-106)                                              | <b>0.53</b> (0.39-0.68)                                     |

n= Number of measurements



TABLE 10. Summary of Mean Water Quality Parameters of Overlying Water Collected Prior to Renewal;

Hyalella azteca 28-Day Whole Sediment Toxicity Tests Conducted October 19-November 16, 2016;

Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| Sample ID<br>GLC No.        | Temperature (°C) (range) n=58 | <b>pH (s.u.)</b> (range) n=28 | Dissolved<br>Oxygen (mg/L)<br>(range)<br>n=58 | Specific<br>Conductivity<br>(µmhos/cm)<br>(range)<br>n=12 | Hardness<br>(CaCO3 mg/L)<br>(range)<br>n=2, GLC<br>#11080 n=4 | Alkalinity<br>(CaCO3 mg/L)<br>(range)<br>n=2, GLC<br>#11080 n=4 | Ammonia<br>(mg/L as N)<br>(range)<br>n=2, GLC<br>#11080 n=4 |
|-----------------------------|-------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
| West Bearskin Lake          | 22.7                          | 7.57                          | 6.9                                           | 303                                                       | 124                                                           | 90                                                              | 0.20                                                        |
| CS #136                     | (22.2-23.3)                   | (7.42-7.76)                   | (6.1-8)                                       | (267-319)                                                 | (112-136)                                                     | (82-98)                                                         | (0.09-0.3)                                                  |
| Water Only Control<br>NA    | <b>22.7</b> (22.1-23.2)       | <b>8.01</b> (7.76-8.25)       | <b>7.7</b> (6.9-8.9)                          | <b>314</b> (308-319)                                      | <b>134</b> (132-136)                                          | <b>103</b> (102-104)                                            | <b>0.06</b> (0.05-0.06)                                     |
| <b>BW16MLW-001</b><br>11080 | <b>22.7</b> (22.1-23.1)       | <b>7.91</b> (7.47-8.52)       | <b>6.4</b> (5.3-7.7)                          | <b>320</b> (292-340)                                      | 131<br>(124-136)                                              | <b>94</b> (88-98)                                               | <b>0.14</b> (0.06-0.22)                                     |
| BW16MLW-002<br>11081        | <b>22.7</b> (22.2-23.2)       | <b>7.84</b> (7.48-8.12)       | <b>6.5</b> (5.7-7.8)                          | <b>318</b> (288-362)                                      | 130<br>(124-136)                                              | <b>98</b> (90-106)                                              | <b>0.12</b> (0.05-0.18)                                     |
| BW16MLW-003<br>11082        | <b>22.6</b> (22.2-23.2)       | <b>7.81</b> (7.26-8.49)       | <b>6.0</b> (4.1-7.8)                          | <b>319</b> (304-339)                                      | <b>128</b> (124-132)                                          | <b>98</b> (98-98)                                               | <b>0.21</b> (0.05-0.37)                                     |

n= Number of measurements



TABLE 11. Summary of Mean Water Quality Parameters of Overlying Water Collected Prior to Renewal; lumbriculus variegatus 4-Day Screening Survival Tests Conducted October 14-October 18, 2016; Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| Sample ID<br>GLC No.             | Temperature (°C) (range) n=10 | pH (s.u.)<br>(range)<br>n=4 | Dissolved Oxygen (mg/L) (range) n=10 | Specific<br>Conductivity<br>(µmhos/cm)<br>(range)<br>n=4 | Hardness<br>(CaCO3 mg/L)<br>(range)<br>n=2, GLC #<br>11082 n=4 | Alkalinity<br>(CaCO3 mg/L)<br>(range)<br>n=2, GLC #<br>11082 n=4 | Ammonia<br>(mg/L as N)<br>(range)<br>n=2, GLC #<br>11082 n=4 |
|----------------------------------|-------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|
| Laboratory Control               | 22.6                          | 7.38                        | 6.9                                  | 286                                                      | 122                                                            | 83                                                               | 0.25                                                         |
| West Bearskin Lake               | (22.4-22.8)                   | (7.26-7.46)                 | (6.6-7.6)                            | (272-302)                                                | (116-128)                                                      | (78-88)                                                          | (0.16-0.33)                                                  |
| <b>BW16MLW-001-0.0-</b><br>11080 | <b>22.7</b> (22.5-22.8)       | <b>7.55</b> (7.47-7.62)     | <b>6.6</b> (6.2-7.1)                 | <b>303</b> (297-309)                                     | 128<br>(120-136)                                               | <b>95</b> (90-100)                                               | <b>0.13</b> (0.07-0.18)                                      |
| BW16MLW-002-0.0-<br>11081        | <b>22.6</b> (22.3-22.9)       | <b>7.59</b> (7.49-7.66)     | <b>6.7</b> (6-7.2)                   | <b>300</b> (290-307)                                     | 132<br>(128-136)                                               | <b>94</b> (88-100)                                               | <b>0.11</b> (0.07-0.15)                                      |
| BW16MLW-003-0.0-<br>11082        | <b>22.6</b> (22.3-22.8)       | <b>7.59</b> (7.49-7.68)     | <b>6.3</b> (5.3-7)                   | <b>310</b> (304-316)                                     | 133<br>(128-144)                                               | <b>97</b> (94-100)                                               | <b>0.27</b> (0.15-0.39)                                      |

n= Number of measurements



TABLE 12. Summary of Mean Water Quality Parameters of Overlying Water;

\*\*Lumbriculus variegatus\*\* 28-Day Bioaccumulation Whole Sediment Toxicity Tests Conducted October 25-November 22, 2016;

Bay West LLC; MPCA; Mud Lake West-Saint Louis River Area of Concern, Duluth, Minnesota.

| Sample ID<br>GLC No.     | Temperature<br>(°C)<br>(range)<br>n=58 | <b>pH (s.u.)</b> (range) n=10 | Dissolved<br>Oxygen (mg/L)<br>(range)<br>n=58 | Specific<br>Conductivity<br>(µmhos/cm)<br>(range)<br>n=10 | Flows (mLs/minute) (range) n=145 | Hardness<br>(CaCO3 mg/L)<br>(range) | Alkalinity<br>(CaCO3 mg/L)<br>(range) | Ammonia<br>(mg/L as N)<br>(range) |
|--------------------------|----------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|
|                          |                                        |                               |                                               |                                                           |                                  | n=5,                                | n=5,                                  | n=5,                              |
|                          |                                        |                               |                                               |                                                           |                                  | GLC #11080 n=6,                     | GLC #11080 n=6,                       | GLC #11080 n=6,                   |
|                          |                                        |                               |                                               |                                                           |                                  | GLC #11082 n=9                      | GLC #11082 n=9                        | GLC #11082 n=9                    |
| West Bearskin Lake       | 22.6                                   | 8.02                          | 7.7                                           | 309                                                       | 4.4                              | 131                                 | 103                                   | 0.57                              |
| CS #136                  | (22.0-23.4)                            | (7.81-8.26)                   | (6.9-8.5)                                     | (303-317)                                                 | (3.2-6.8)                        | (128-132)                           | (98-106)                              | (0.13-0.84)                       |
| <b>BW16MLW-001</b> 11080 | <b>22.4</b> (22.0-23.1)                | <b>8.03</b> (7.87-8.17)       | <b>7.6</b> (5.9-8.7)                          | <b>312</b> (305-319)                                      | <b>4.1</b> (3.0-5.8)             | 134<br>(124-140)                    | <b>99</b><br>(94-104)                 | <b>0.68</b> (0.11-1.21)           |
| BW16MLW-002<br>11081     | <b>22.6</b> (22.1-23.2)                | <b>7.97</b> (7.80-8.19)       | <b>7.4</b> (6.6-8.6)                          | <b>310</b> (299-317)                                      | <b>4.2</b> (3.0-7.0)             | 133<br>(124-140)                    | <b>98</b> (94-102)                    | <b>0.78</b> (0.20-1.19)           |
| BW16MLW-003<br>11082     | <b>22.6</b> (22.0-23.3)                | <b>8.01</b> (7.69-8.22)       | <b>7.3</b> (5.8-8.6)                          | <b>311</b> (304-320)                                      | <b>4.4</b> (3.0-7.0)             | 131<br>(120-140)                    | <b>99</b> (96-102)                    | <b>0.90</b> (0.22-1.33)           |

n= Number of measurements

# **Appendix A Chain of Custodies**

## CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|                                                                                                                                                                         | ion B<br>ired Project Inform | ation:                                           |                  |                                                                                       |                 | tion (      |                   | ion:      |          |                                               |                |          |                            | Section EQuiS             | on D<br>Informati                                | on:            |              |             |                        |          |              |                 |                  |              |                                                  |                       | ž                              | 49;                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|------------------|---------------------------------------------------------------------------------------|-----------------|-------------|-------------------|-----------|----------|-----------------------------------------------|----------------|----------|----------------------------|---------------------------|--------------------------------------------------|----------------|--------------|-------------|------------------------|----------|--------------|-----------------|------------------|--------------|--------------------------------------------------|-----------------------|--------------------------------|----------------------|
| Company: Bay West, LLC Repor  Address: 5 Empire Drive Copy                                                                                                              | rt To: Nan                   | cy McD                                           | onald            |                                                                                       |                 | ntion:      | Name              | :         |          |                                               | s Pay<br>Vest, |          |                            | Facility<br>Facility      | 0-4-                                             |                |              | Sediment    | Areas o                | f Concer | n            | Page            |                  |              | 1                                                | of                    | 1                              | 1                    |
| St. Paul, MN 55103                                                                                                                                                      |                              |                                                  |                  |                                                                                       |                 | ress:       |                   |           |          |                                               | re Dr          |          |                            | Facility                  |                                                  |                | is Rive      |             |                        |          |              | -               |                  |              |                                                  |                       |                                |                      |
|                                                                                                                                                                         | nase Order No.:              |                                                  |                  |                                                                                       |                 | Quote F     | Referen           | ice;      |          |                                               |                |          |                            |                           | ility_code                                       | 54702          | 3            |             |                        |          |              | COC#            |                  |              | SLI                                              | R-GLEC                | :-1                            |                      |
|                                                                                                                                                                         | ct Name: SLR                 | Sedim                                            | ent AOCs         |                                                                                       | Lab i           | Project     | Manag             | jer:      |          | Ma                                            | ilee (         | 3arto    | on                         |                           |                                                  |                |              |             |                        |          |              |                 |                  | Site Lo      | ocation                                          |                       |                                |                      |
| Requested Due Date/TAT: Standard Project                                                                                                                                | ct Number: J16               | 0139                                             | <del></del>      |                                                                                       |                 |             |                   |           |          |                                               |                |          |                            |                           |                                                  |                |              |             |                        |          | ,            |                 |                  | s            | TATE:                                            |                       | MN                             |                      |
|                                                                                                                                                                         | I Matrix<br>odes<br>CODE     |                                                  | Collecti         | on                                                                                    |                 |             | F                 | res       | ervati   | ves                                           |                |          |                            |                           | (sr                                              |                | Requ         | uested      | Analy                  | sis.     |              |                 |                  |              |                                                  |                       |                                |                      |
| Sample Location ID (sys_loc_code)  Sample ID (sys_sample_code)  Sample ID (sys_sample_code)  Sample ID (sys_sample_code)  Sample ID (sys_sample_code)  Air Tissue Other |                              | SAMPLE TYPE<br>(G=GRAB C=COMP)                   | DATE             | Time                                                                                  | # OF CONTAINERS | Unpreserved | H₂SO <sub>4</sub> | E CALL    | NaOH     | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol       | Omer     | 10-d toxicity (C. dilutes) | 28-d toxicity (H. azteca) | 28-d bioaccumulation (L. variegatus)             | Nickel (6020A) | Zinc (6020A) | TOC (9060A) | Dioxins/furans (8290A) |          |              |                 | G                | ĔC           | <b>a</b>                                         | Comm                  | ents                           |                      |
| BW14MLW-005-0-0.15                                                                                                                                                      | so                           | G                                                | 3/12/15          | 1204                                                                                  |                 |             |                   | T         |          |                                               |                | 320000   |                            |                           |                                                  |                |              |             |                        |          |              |                 |                  |              |                                                  |                       |                                |                      |
| BW16MLW-001 BW16MLW-001-0.0-0.15                                                                                                                                        | so                           | +                                                | 10/4/16          | 1008                                                                                  | 2               | 2           | +                 | 1         | $\top$   | $\Box$                                        |                |          | ×                          | ×                         | ×                                                | ×              | ×            | X           | х                      | tel      | MD           | 7               | 5                | 11030        | Dioxins                                          | furans to             | Pace An                        | nalytical            |
| 2 BW16MLW-002 BW16MLW-002-0.0-0.15                                                                                                                                      | so                           |                                                  | 10/4/16          | 1048                                                                                  | 2               | 2           | $\top$            | +         | $\top$   |                                               |                |          | ×                          | ×                         | ×                                                | ×              | ×            | ×           | х                      | Jer      | 1            | 8.0             |                  | 1831         |                                                  | furans to             |                                |                      |
| 3 BW16MLW-003 BW16MLW-003-0.0-0.15                                                                                                                                      | so                           | 1                                                | 10/4/16          | 1107                                                                                  | 2               | 2           |                   | 1         | $\top$   |                                               |                |          | ×                          | ×                         | ×                                                | ×              | ×            | ×           | ×                      | 30       | T-1          | 4.              |                  | 1083         | Dioxins                                          | furans to             | Pace Ar                        | nalytical            |
| 44)                                                                                                                                                                     |                              | †- <u>*</u> -                                    | 137.17.13        | 7.3                                                                                   | Ī               | -           | $\top$            | $\top$    |          |                                               |                |          |                            | <u> </u>                  | 1                                                |                |              |             |                        |          | 1.           |                 |                  |              |                                                  |                       |                                |                      |
|                                                                                                                                                                         |                              | 1                                                |                  |                                                                                       |                 | H           | $\top$            | $\top$    |          | П                                             |                | - Action |                            |                           |                                                  | -              |              |             |                        |          |              |                 |                  |              |                                                  |                       |                                |                      |
| 6                                                                                                                                                                       |                              | <del>                                     </del> |                  |                                                                                       |                 |             |                   | $\top$    | $\top$   |                                               | $\top$         |          |                            | -                         | 1                                                |                |              | ļ           |                        |          |              | 1               |                  |              |                                                  |                       |                                |                      |
|                                                                                                                                                                         |                              |                                                  |                  |                                                                                       |                 | H           | +                 | +         | +        |                                               |                |          |                            | -                         |                                                  |                |              |             |                        |          |              |                 |                  | <u> </u>     |                                                  |                       |                                |                      |
| 皇 <b>7</b>                                                                                                                                                              |                              |                                                  |                  |                                                                                       | ┢               | H           | $\dagger$         | $\dagger$ | +        | $\vdash$                                      | $\dashv$       |          | <u> </u>                   |                           | <u> </u>                                         |                |              |             |                        | <b>.</b> | <del> </del> |                 |                  |              |                                                  |                       |                                |                      |
| <b>6</b>                                                                                                                                                                |                              |                                                  |                  |                                                                                       | ┢               | $\vdash$    | +                 | +         | +        | $\vdash$                                      |                | -        |                            | <del> </del>              | 1                                                |                | <u> </u>     |             |                        |          | <del> </del> |                 |                  |              | <del>                                     </del> |                       |                                |                      |
| <b>39</b>                                                                                                                                                               |                              |                                                  |                  |                                                                                       | ┞               | H           | +                 | +         | +        |                                               | +              | -        |                            |                           | ╁                                                |                | ļ            |             |                        | ļ        | <b> </b>     |                 | -                | <del> </del> | <b>†</b>                                         |                       |                                |                      |
| 10                                                                                                                                                                      |                              | +                                                |                  |                                                                                       | L               |             | +                 | +         | -        | $\vdash$                                      | H              |          | -                          | <u> </u>                  | <del>                                     </del> |                |              |             | -                      |          |              | -               |                  |              | <del>                                     </del> |                       |                                |                      |
| 540<br>g::                                                                                                                                                              |                              | -                                                |                  |                                                                                       | $\vdash$        | H           | -                 | +         | +        | H                                             | $\vdash$       | _        |                            | <del> </del>              |                                                  |                | <del> </del> |             |                        | <u> </u> | <del> </del> | -               |                  | <u> </u>     |                                                  |                       |                                |                      |
| 12 ADDITIONAL COMMENTS                                                                                                                                                  | RELING                       | UISHEDI                                          | BY / AFFILIATION | DATE                                                                                  |                 | TIME        |                   |           | 4-1-147  |                                               | A              | CCEF     | PTED BY                    | VAEEU                     | LIATION                                          |                |              |             | DATE                   |          |              | TIME            |                  |              | SAMPL                                            | E COND                | ITIONS                         |                      |
| 表现的对象的 100 100 100 100 100 100 100 100 100 10                                                                                                                           | ALC: UNKNOWNED WATERSTONE    | T11800-18500-17-05                               | Bay Wes          | + 144/16                                                                              |                 |             |                   |           |          |                                               | E,             |          |                            | AUSCHWININGS              | 60F157M2011130                                   |                |              |             | 4/1                    |          | /            | 900             | )                | See          | Š                                                | -                     |                                |                      |
|                                                                                                                                                                         | - •                          |                                                  | /                |                                                                                       | _               |             | _                 |           |          |                                               |                |          |                            |                           |                                                  |                |              |             |                        |          | ļ            |                 |                  | 3 4          | 3                                                | `>                    |                                | >                    |
| Rec                                                                                                                                                                     | Kelly St                     | ratter                                           | GIEC             | 10151                                                                                 | 10              | 210         |                   |           |          |                                               |                | >        |                            |                           |                                                  |                |              |             |                        |          |              | w/00/18-10-2-10 | en-1482 2. 5. 71 |              | }<br>•                                           | Received on Ice (Y/N) | Custody Sealed Cooler<br>(Y/N) | Samples Intact (Y/N) |
|                                                                                                                                                                         | ,                            | •                                                | SAMPLER          | NAME AND SIG<br>e of SAMPLER:                                                         | NAT             | IURE<br>/   | 7200              |           | <u> </u> | 7                                             | 7              |          | designation of the second  | PROPERTY LABORS           |                                                  | 1.1            |              |             |                        |          | A4035        |                 |                  | בֿ, <b>נ</b> | (0.)                                             | sived o               | ody Se<br>(Y/                  | ples Ir              |
|                                                                                                                                                                         |                              |                                                  |                  | GNATURE OF SAMPLER: CARIS MUSSON  GNATURE OF SAMPLER  DATE Signed (MM/DD/YY): 10/4/16 |                 |             |                   |           |          |                                               |                |          | Rect                       | Cust                      | San                                              |                |              |             |                        |          |              |                 |                  |              |                                                  |                       |                                |                      |



EUSTODY SEAL DATE SIGNATURE





# Sample

## CHECK-IN FORM

CLIENT: Bay West

PROJECT NUMBER: 2386 - OC

| INITIAL SAI                                            | MPLE CHEMIS               | STRY (UPON R                | ECEIPT)                       |   |    |        |
|--------------------------------------------------------|---------------------------|-----------------------------|-------------------------------|---|----|--------|
| DATE RECEIVED                                          | 10/5/16                   | 10/5/16                     | 10/5/16                       |   | 45 |        |
| SAMPLE ID                                              | BW16/12-001<br>-0.0-0.15  | 0.0-0.15                    | BW16 MLW -003<br>-0.0-0.15    |   | 1  |        |
| TYPE (W=water, SED=sediment, M=material)               | Sed                       | Sed                         | Sed                           |   |    | _      |
| COLLECTION (G=grab, C=composite)                       | G                         | b                           | 6                             |   |    |        |
| GLC NUMBER                                             | 11080                     | 11081                       | 11085                         | 1 |    | N<br>N |
| COLLECTION DATE                                        | 10/4/16                   | 10/4/16                     | 10/1/16                       |   |    | A I    |
| COLLECTION TIME                                        | 100%                      | 1048                        | 1107                          | 1 |    | S      |
| TEMPERATURE (<6 degrees Celsius <sup>1</sup> )         | 7.5                       | 8.0                         | 6.1                           |   |    | _      |
| SAMPLE DESCRIPTION/OBSERVATIONS (clarity, color, odor) | Brown<br>Pulding<br>Roots | Muddy, some<br>roots, Brown | Muddy<br>Brown<br>Slight odor |   | 45 | ,      |

<sup>1</sup> If out of range see project manager

## INITIAL SAMPLE CHEMISTRY (UPON RECEIPT)

| and the second s |   | <br>     | <br>                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|-----------------------------------------|
| DATE RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | <u> </u> | <br>                                    |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |          |                                         |
| TYPE (W=water, SED=sediment, M=material)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |          |                                         |
| COLLECTION (G=grab, C=composite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          |                                         |
| GLC NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          | = = = = = = = = = = = = = = = = = = = = |
| COLLECTION DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          | $\frac{1}{s}$                           |
| COLLECTION TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |                                         |
| TEMPERATURE (<6 degrees Celsius <sup>1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |          |                                         |
| SAMPLE DESCRIPTION/OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |                                         |
| (clarity, color, odor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |          |                                         |

## Sample Check-In Discrepancy/Comment Form

| Project Number: 5286                                                                                                                                                                                                | GLC Number: 1080 - 1108 - 1108 -                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date: 10/5/16                                                                                                                                                                                                       | Date Sampled: 1014116                                                                                                                                                                                                                                      |
| Technician Initials ICs / MW                                                                                                                                                                                        | Date Sampred.                                                                                                                                                                                                                                              |
| Project Manager: Mw                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |
| <b>Discrepancy:</b> Please mark one or more of the following listed below can be described in the Comment Section.                                                                                                  |                                                                                                                                                                                                                                                            |
| Any questions associated with the samples (i.e., damaged co labels, document discrepancies, insufficient sample volume) project manager, client and/or state authority. All corresponsolved as quickly as possible. | must be corrected prior to analysis by contacting the                                                                                                                                                                                                      |
| Cooler Condition:                                                                                                                                                                                                   | Container Condition:                                                                                                                                                                                                                                       |
| ☐ Samples were not received on wet ice ☐ No temperature blank submitted  ▼ Temperature of samples outside of acceptable range, or sa show evidence of freezing.                                                     | ☐ Leaking ☐ Broken ☐ Loose caps, or without labels                                                                                                                                                                                                         |
| Container Label Condition:                                                                                                                                                                                          | Sample Documentation Discrepancies:                                                                                                                                                                                                                        |
| □ Not the same ID/info. as on COC □ Incomplete or missing information: sample ID, collection date/time □ Other: label smeared, torn, or otherwise illegible                                                         | <ul> <li>□ Samples not received, but listed on COC</li> <li>□ Samples received, but not listed on COC</li> <li>□ Mislabeled toxicology tests, preservatives, etc.</li> <li>□ Holding time expired</li> <li>□ Insufficient quantity for analysis</li> </ul> |
| Chain of Custody Discrepancies:                                                                                                                                                                                     | . ,                                                                                                                                                                                                                                                        |
| <ul> <li>□ No custody seal</li> <li>□ Custody seal not intact</li> <li>□ No relinquish signature or name</li> <li>□ No date/time relinquished</li> <li>□ No signature</li> <li>□ Incomplete information</li> </ul>  |                                                                                                                                                                                                                                                            |
| Contacted cline vie comal.  Der attacked steet.                                                                                                                                                                     | 10/5/16                                                                                                                                                                                                                                                    |
| Competitive Actions (v.l., v., i., l., d., d., d., v., v.,                                                                                                                                                          | described de commentina)                                                                                                                                                                                                                                   |
| Corrective Actions: (please use include dates and                                                                                                                                                                   |                                                                                                                                                                                                                                                            |
| 00 per email will proceed w                                                                                                                                                                                         | 7th disting                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |
| Laboratory Technician Signature: MWW W                                                                                                                                                                              | Date: 10/5/16                                                                                                                                                                                                                                              |
| 1 Tojoct Trianager/ Laboratory Supervisor Signatur                                                                                                                                                                  | en alle (the Date: 10/5/14                                                                                                                                                                                                                                 |



## Receipt temperature of sediment samples

1 message

Mailee Garton <mgarton@glec.com> Wed, Oct 5, 2016 at 12:22 PM To: Paul Raymaker <praymaker@baywest.com>, Nancy McDonald <nmcdonald@baywest.com>, Chris Musson <cmusson@baywest.com>

Good Afternoon,

The three sediment samples arrived in good condition. The temperatures of the sediment samples upon receipt were 7.5, 8.0, and 8.1 degrees Celsius (C). All shipping containers had a sufficient amount of ice still packed on top of the samples, not melted. Future suggestion would be to open the bags of ice and place around the samples.

Target temperatures upon receipt is 0 to  $\leq 6$  degrees C, not frozen. With that being said the temperatures were just slightly above the maximum allowable temperature. This slight temperature deviation most likely will not cause an issue with the samples. The recommended temperature is to inhibit microbial degradation, chemical transformations, and loss of highly volatile toxic substances.

Were the samples pre-chilled prior to shipment? If not, we recommend chilling the samples prior to shipment.

Unless we hear otherwise, GLEC will continue as planned and use the sediment samples to conduct the whole sediment toxicity and bioaccumulation tests.

Thank you and take care,

Mailee

Mailee Garton
Co Manager of Operations - Toxicology Laboratory/Coordinator
Great Lakes Environmental Center
739 Hastings Street
Traverse City, MI 49686
Phono: 231,041,2330

Phone: 231-941-2230 Fax: 231-941-2240 Cell: 231-590-0043

## Appendix B1 Overlying Water Quality Summaries

• Chironomus dilutus

10/14/2016 - 10/24/2016



Project Name: Bay West

**Project Number:** 2386 **Test Type:** 10 Day Whole Sediment Toxicity Survival and Growth

Test Dates:

Test Species: C. dilutus

100% Data Entry

<u>Date</u> <u>Initials</u> <u>Data Entered</u>

11/4/2016 MP All

100% Data Quality Check

 Date
 Initials
 Data QC'ed
 Found Y
 Corrected:Y

 11/18/2016
 DS
 ALL
 N
 N

100% Error Corrected Quality Check

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u>

Not applicable no errors found

Data QC 10%

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u>

11/30/2016 mwg All data on days 1,2,7,8 and 10



**Project Name: Project Number:**  Bay West 2386-00

Test Dates: 10/14/2016-10/24/2016
Test Type: 10 Day Whole Sediment Toxicity Survival and Growth

Sample ID: GLEC ID:

West Bearskin Lake

Test Species: C. dilutus

| oumpic ib. |          | 00 "400     | inc    |        | rest openies. | S. C. dilatas |            |        |  |
|------------|----------|-------------|--------|--------|---------------|---------------|------------|--------|--|
| GLEC ID:   |          | CS #136     |        |        |               |               |            |        |  |
|            |          | Temperature | pН     | D.O.   | Conductivity  |               | Alkalinity |        |  |
| Date       | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)        | (mg/L)        | (mg/L)     | (mg/L) |  |
| 25-Sep-15  | 0        | 22.6        | 7.45   | 7.7    | 282           | 116           | 78         | 0.33   |  |
|            |          | 22.7        | 7.43   | 7.4    | 274           |               |            |        |  |
| 26-Sep-15  | 1        | 22.5        |        | 5.7    |               |               |            |        |  |
|            |          | 22.5        |        | 5.7    |               |               |            |        |  |
| 27-Sep-15  | 2        | 22.4        |        | 5.6    |               |               |            |        |  |
|            |          | 22.6        |        | 5.6    |               |               |            |        |  |
| 28-Sep-15  | 3        | 22.6        |        | 6.3    |               |               |            |        |  |
|            |          | 22.6        |        | 6.0    |               |               |            |        |  |
| 29-Sep-15  | 4        | 22.4        |        | 5.2    |               |               |            |        |  |
|            |          | 22.5        |        | 4.9    |               |               |            |        |  |
| 30-Sep-15  | 5        | 22.4        |        | 4.2    |               |               |            |        |  |
|            |          | 22.5        |        | 4.6    |               |               |            |        |  |
| 1-Oct-15   | 6        | 22.4        |        | 4.6    |               |               |            |        |  |
|            |          | 22.5        |        | 4.6    |               |               |            |        |  |
| 2-Oct-15   | 7        | 22.6        |        | 6.1    |               |               |            |        |  |
|            |          | 22.6        |        | 5.0    |               |               |            |        |  |
| 3-Oct-15   | 8        | 22.4        |        | 3.1    |               |               |            |        |  |
|            |          | 22.4        |        | 3.2    |               |               |            |        |  |
| 4-Oct-15   | 9        | 22.4        |        | 3.5    |               |               |            |        |  |
|            |          | 22.6        |        | 4.0    |               |               |            |        |  |
| 5-Oct-15   | 10       | 22.7        | 7.28   | 3.6    | 302           | 120           | 90         | 0.67   |  |
|            |          | 22.7        | 7.32   | 3.5    | 301           |               |            |        |  |
|            |          |             |        | 0.0    |               |               |            |        |  |

| -     |      |      |     |     |     |    |      |
|-------|------|------|-----|-----|-----|----|------|
| MEAN  | 22.5 | 7.37 | 5.0 | 290 | 118 | 84 | 0.50 |
| N=    | 22   | 4    | 22  | 4   | 2   | 2  | 2    |
| Min # | 22.4 | 7.28 | 3.1 | 274 | 116 | 78 | 0.33 |
| Max # | 22.7 | 7.45 | 7.7 | 302 | 120 | 90 | 0.67 |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL

0.08

0.59

102

106



**Project Name: Project Number:**  Bay West 2386-00

Test Dates: 10/14/2016-10/24/2016

Test Type: 10 Day Whole Sediment Toxicity Survival and Growth

Test Species: C. dilutus

Sample ID: Water Only GLEC ID: N/A

|            |          | Temperature | рН        | D.O.      | Conductivity |          | Alkalinity | Ammonia |
|------------|----------|-------------|-----------|-----------|--------------|----------|------------|---------|
| Date       | Test Day | (°C)        | (s.u.)    | (mg/L)    | (μmos)       | (mg/L)   | (mg/L)     | (mg/L)  |
| 25-Sep-15  | 0        | 22.8        | 8.25      | 8.4       | 316          | 136      | 102        | 0.08 J  |
|            |          | 22.9        | 8.30      | 8.6       | 316          |          |            |         |
| 26-Sep-15  | 1        | 22.7        |           | 6.4       |              |          |            |         |
|            |          | 22.7        |           | 6.0       |              |          |            |         |
| 27-Sep-15  | 2        | 22.6        |           | 6.1       |              |          |            |         |
|            |          | 22.6        |           | 6.3       |              |          |            |         |
| 28-Sep-15  | 3        | 22.7        |           | 7.6       |              |          |            |         |
|            |          | 22.7        |           | 7.5       |              |          |            |         |
| 29-Sep-15  | 4        | 22.9        |           | 6.1       |              |          |            |         |
|            |          | 22.8        |           | 6.1       |              |          |            |         |
| 30-Sep-15  | 5        | 22.5        |           | 5.3       |              |          |            |         |
|            |          | 22.6        |           | 5.3       |              |          |            |         |
| 1-Oct-15   | 6        | 22.6        |           | 5.3       |              |          |            |         |
|            |          | 22.6        |           | 5.2       |              |          |            |         |
| 2-Oct-15   | 7        | 22.8        |           | 6.7       |              |          |            |         |
|            |          | 22.9        |           | 6.7       |              |          |            |         |
| 3-Oct-15   | 8        | 22.7        |           | 4.3       |              |          |            |         |
|            |          | 22.7        |           | 4.7       |              |          |            |         |
| 4-Oct-15   | 9        | 22.7        |           | 5.7       |              |          |            |         |
|            |          | 22.7        |           | 5.6       |              |          |            |         |
| 5-Oct-15   | 10       | 22.3        | 7.52      | 4.2       | 323          | 140      | 106        | 0.59    |
|            |          | 22.6        | 7.58      | 3.7       | 319          |          |            |         |
|            |          |             |           |           |              |          |            |         |
| MEAN<br>N= |          | 22.7<br>22  | 7.91<br>4 | 6.0<br>22 | 319<br>4     | 138<br>2 | 104<br>2   | 0.34    |

3.7

8.6

316

323

136

140

7.52

8.30

22.3

22.9

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL

Min#

Max #



Project Name: Project Number:

Bay West 2386-00

Test Dates: 10/14/2016-10/24/2016
Test Type: 10 Day Whole Sediment Toxicity Survival and Growth

Sample ID:

BW16MLW-001-0-0.15

Test Species: C. dilutus

GLEC ID:

11080

| GLEC ID:  | ,        | 11080       |        |        |              |          |            |         |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 25-Sep-15 | 0        | 22.8        | 7.53   | 6.8    | 298          | 120      | 90         |         | J |
|           |          | 22.8        | 7.59   | 6.8    | 299          |          |            |         |   |
| 26-Sep-15 | 1        | 22.4        |        | 6.1    |              |          |            |         |   |
|           |          | 22.6        |        | 5.8    |              |          |            |         |   |
| 27-Sep-15 | 2        | 22.7        |        | 5.3    |              |          |            |         |   |
|           |          | 22.5        |        | 5.2    |              |          |            |         |   |
| 28-Sep-15 | 3        | 22.7        |        | 6.2    |              |          |            |         |   |
|           |          | 22.7        |        | 5.4    |              |          |            |         |   |
| 29-Sep-15 | 4        | 22.8        |        | 4.1    |              |          |            |         |   |
|           |          | 22.8        |        | 4.1    |              |          |            |         |   |
| 30-Sep-15 | 5        | 22.6        |        | 4.4    |              |          |            |         |   |
|           |          | 22.6        |        | 3.8    |              |          |            |         |   |
| 1-Oct-15  | 6        | 22.5        |        | 4.6    |              |          |            |         |   |
|           |          | 22.6        |        | 4.2    |              |          |            |         |   |
| 2-Oct-15  | 7        | 22.5        |        | 4.9    |              |          |            |         |   |
|           |          | 22.5        |        | 5.1    |              |          |            |         |   |
| 3-Oct-15  | 8        | 22.7        |        | 2.8    |              |          |            |         |   |
|           |          | 22.6        |        | 2.8    |              |          |            |         |   |
| 4-Oct-15  | 9        | 22.7        |        | 2.8    |              |          |            |         |   |
|           |          | 22.7        |        | 2.7    |              |          |            |         |   |
| 5-Oct-15  | 10       | 22.8        | 7.43   | 2.3    | 324          | 144      | 102        | 0.58    |   |
|           |          | 22.8        | 7.44   | 2.6    | 320          |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |

| MEAN  | 22.7 | 7.50 | 4.5 | 310 | 132 | 96  | 0.38 |
|-------|------|------|-----|-----|-----|-----|------|
| N=    | 22   | 4    | 22  | 4   | 2   | 2   | 2    |
| Min # | 22.4 | 7.43 | 2.3 | 298 | 120 | 90  | 0.18 |
| Max # | 22.8 | 7.59 | 6.8 | 324 | 144 | 102 | 0.58 |
|       |      |      |     |     |     |     |      |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Bay West 2386-00 **Project Name:** Test Dates: 10/14/2016-10/24/2016

Test Type: 10 Day Whole Sediment Toxicity Survival and Growth **Project Number:** 

Sample ID: BW16MLW-002-0-0.15 Test Species: C. dilutus

GLEC ID: 11081

| ILLO ID.   | 11001    |             |           |           |              |          |            |        |  |
|------------|----------|-------------|-----------|-----------|--------------|----------|------------|--------|--|
|            |          | Temperature | рН        | D.O.      | Conductivity | Hardness | Alkalinity |        |  |
| Date       | Test Day | (°C)        | (s.u.)    | (mg/L)    | (µmos)       | (mg/L)   | (mg/L)     | (mg/L) |  |
| 25-Sep-15  | 0        | 22.7        | 7.96      | 7.8       | 313          | 128      | 88         | 0.15   |  |
|            |          | 22.7        | 7.58      | 6.8       | 296          |          |            |        |  |
| 26-Sep-15  | 1        | 22.7        |           | 5.8       |              |          |            |        |  |
|            |          | 22.7        |           | 5.3       |              |          |            |        |  |
| 27-Sep-15  | 2        | 22.6        |           | 5.7       |              |          |            |        |  |
|            |          | 22.7        |           | 5.5       |              |          |            |        |  |
| 28-Sep-15  | 3        | 22.6        |           | 5.3       |              |          |            |        |  |
|            |          | 22.6        |           | 5.5       |              |          |            |        |  |
| 29-Sep-15  | 4        | 22.6        |           | 5.2       |              |          |            |        |  |
|            |          | 22.7        |           | 5.1       |              |          |            |        |  |
| 30-Sep-15  | 5        | 22.6        |           | 4.4       |              |          |            |        |  |
|            |          | 22.4        |           | 4.3       |              |          |            |        |  |
| 1-Oct-15   | 6        | 22.5        |           | 5.0       |              |          |            |        |  |
|            |          | 22.4        |           | 4.6       |              |          |            |        |  |
| 2-Oct-15   | 7        | 22.3        |           | 5.6       |              |          |            |        |  |
|            |          | 22.5        |           | 5.1       |              |          |            |        |  |
| 3-Oct-15   | 8        | 22.6        |           | 2.7       |              |          |            |        |  |
|            |          | 22.6        |           | 3.0       |              |          |            |        |  |
| 4-Oct-15   | 9        | 22.7        |           | 2.9       |              |          |            |        |  |
|            |          | 22.6        |           | 3.2       |              |          |            |        |  |
| 5-Oct-15   | 10       | 22.7        | 7.33      | 2.3       | 314          | 144      | 98         | 0.43   |  |
|            |          | 22.7        | 7.37      | 2.7       | 312          |          |            |        |  |
|            |          |             |           |           |              |          |            |        |  |
| IEAN<br>N= |          | 22.6<br>22  | 7.56<br>4 | 4.7<br>22 | 309<br>4     | 136<br>2 | 93<br>2    | 0.29   |  |

2.3

7.8

296

314

128

144

88

98

0.15

0.43

7.33

7.96

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

22.3

22.7

U = Below MDL

Min#

Max #



Bay West 2386-00 **Project Name:** Test Dates: 10/14/2016-10/24/2016

Test Type: 10 Day Whole Sediment Toxicity Survival and Growth **Project Number:** 

Sample ID: GLEC ID: BW16MLW-003-0-0.15 Test Species: C. dilutus

11082

| GLEC ID:  | 11          | 1082       |        |        |              |          |            |         |
|-----------|-------------|------------|--------|--------|--------------|----------|------------|---------|
|           | Temperature |            | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |
| Date      | Test Day    | (°C)       | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |
| 25-Sep-15 | 0           | 22.6       | 7.47   | 6.6    | 302          | 128      | 94         | 0.39    |
|           |             | 22.6       | 7.56   | 6.6    | 296          | 128      | 94         | 0.39    |
| 26-Sep-15 | 1           | 22.5       |        | 3.1    |              |          |            |         |
|           |             | 22.5       |        | 4.4    |              |          |            |         |
| 27-Sep-15 | 2           | 22.6       |        | 5.5    |              |          |            |         |
|           |             | 22.6       |        | 5.3    |              |          |            |         |
| 28-Sep-15 | 3           | 22.6       |        | 5.8    |              |          |            |         |
|           |             | 22.6       |        | 5.3    |              |          |            |         |
| 29-Sep-15 | 4           | 22.3       |        | 4.5    |              |          |            |         |
|           |             | 22.4       |        | 4.4    |              |          |            |         |
| 30-Sep-15 | 5           | 22.3       |        | 3.7    |              |          |            |         |
|           |             | 22.4       |        | 4.3    |              |          |            |         |
| 1-Oct-15  | 6           | 22.3       |        | 3.9    |              |          |            |         |
|           |             | 22.4       |        | 3.9    |              |          |            |         |
| 2-Oct-15  | 7           | 22.6       |        | 4.1    |              |          |            |         |
|           |             | 22.6       |        | 4.5    |              |          |            |         |
| 3-Oct-15  | 8           | 22.6       |        | 2.8    |              |          |            |         |
|           |             | 22.6       |        | 2.7    |              |          |            |         |
| 4-Oct-15  | 9           | 22.6       |        | 3.3    |              |          |            |         |
|           |             | 22.6       |        | 2.8    |              |          |            |         |
| 5-Oct-15  | 10          | 22.7       | 7.42   | 3.3    | 320          | 140      | 106        | 0.66    |
|           |             | 22.8       | 7.43   | 3.6    | 318          | 140      | 102        | 0.68    |
|           |             |            |        |        |              |          |            |         |
|           |             |            |        |        |              |          |            |         |
| MEAN      |             | 22.5<br>22 | 7.47   | 4.3    | 309<br>4     | 134<br>4 | 99         | 0.53    |
| N=        |             |            | 4      | 22     |              |          | 4          | 4       |
| Min#      |             | 22.3       | 7.42   | 2.7    | 296          | 128      | 94         | 0.39    |
| Max #     |             | 22.8       | 7.56   | 6.6    | 320          | 140      | 106        | 0.68    |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



**Project Name:** Bay West **Test Dates:** 10/19/16 - 11/16/16

**Project Number:** 2386 **Test Type:** 28-Day Whole Sediment Toxicity Survival and Growth

Test Species: H.azteca

100% Data Entry

 Date
 Initials
 Data Entered

 11/10/2016
 MLV
 Days 0-6

 11/11/2016
 MLV
 Days 7-22

 11/14/2016
 MLV
 Days 23-24

 11/17/2016
 MLV
 Days 25-28

100% Data Quality Check

 Date
 Initials
 Data QC'ed
 Found Y
 Corrected:Y

 11/17/2016
 DS
 ALL
 Y
 Y

100% Error Corrected Quality Check

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u> 12/4/2016 mwg water day 1 pH,

Data QC 10%

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u> 12/4/2061 mwg days 1, 7, 8, 13, 18, 19, 23, 24

## Appendix B2 Overlying Water Quality Summaries

• Hyalella azteca



Bay West 2386 West Bearskin Lake CS #136

**Test Dates:** 10/19/16 - 11/16/16

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

Test Species: H.azteca

| GLEC ID:  | CS #136  |             |        |        |              |          |            |         |  |  |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|--|--|
|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |  |  |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |  |  |
| 19-Oct-16 | 0        | 22.7        | 7.42   | 6.5    | 272          | 112      | 82         | 0.30    |  |  |
|           |          | 22.7        | 7.42   | 6.5    | 267          |          |            |         |  |  |
| 20-Oct-16 | 1        | 22.5        | 7.52   | 7.2    |              |          |            |         |  |  |
|           |          | 22.6        | 7.55   | 7.2    |              |          |            |         |  |  |
| 21-Oct-16 | 2        | 22.2        |        | 8.0    |              |          |            |         |  |  |
|           |          | 22.2        |        | 8.0    |              |          |            |         |  |  |
| 22-Oct-16 | 3        | 22.5        | 7.46   | 7.1    |              |          |            |         |  |  |
|           |          | 22.6        | 7.55   | 7.0    |              |          |            |         |  |  |
| 23-Oct-16 | 4        | 22.6        |        | 7.0    |              |          |            |         |  |  |
|           |          | 22.7        |        | 7.0    |              |          |            |         |  |  |
| 24-Oct-16 | 5        | 23.1        |        | 6.6    |              |          |            |         |  |  |
|           |          | 23.1        |        | 6.8    |              |          |            |         |  |  |
| 25-Oct-16 | 6        | 22.3        | 7.49   | 6.9    | 319          |          |            |         |  |  |
|           |          | 22.3        | 7.53   | 6.8    | 305          |          |            |         |  |  |
| 26-Oct-16 | 7        | 22.7        |        | 7.4    |              |          |            |         |  |  |
|           |          | 22.7        |        | 7.3    |              |          |            |         |  |  |
| 27-Oct-16 | 8        | 22.2        | 7.45   | 7.1    |              |          |            |         |  |  |
|           |          | 22.2        | 7.49   | 7.0    |              |          |            |         |  |  |
| 28-Oct-16 | 9        | 22.6        |        | 7.3    |              |          |            |         |  |  |
|           |          | 22.6        |        | 7.2    |              |          |            |         |  |  |
| 29-Oct-16 | 10       | 23.0        | 7.46   | 6.4    |              |          |            |         |  |  |
|           |          | 22.9        | 7.56   | 6.4    |              |          |            |         |  |  |
| 30-Oct-16 | 11       | 22.8        |        | 6.8    |              |          |            |         |  |  |
|           |          | 22.8        |        | 6.8    |              |          |            |         |  |  |
| 31-Oct-16 | 12       | 22.9        |        | 6.9    |              |          |            |         |  |  |
|           |          | 22.7        |        | 6.9    |              |          |            |         |  |  |
| 1-Nov-16  | 13       | 22.6        | 7.66   | 6.4    | 303          |          |            |         |  |  |
|           |          | 22.6        | 7.62   | 6.3    | 299          |          |            |         |  |  |
| 2-Nov-16  | 14       | 22.5        |        | 6.4    |              |          |            |         |  |  |
|           |          | 22.6        |        | 6.6    |              |          |            |         |  |  |
| 3-Nov-16  | 15       | 23.3        | 7.57   | 6.7    |              |          |            |         |  |  |
|           |          | 23.3        | 7.60   | 6.9    |              |          |            |         |  |  |
| 4-Nov-16  | 16       | 22.7        |        | 6.4    |              |          |            |         |  |  |
| - · · ·   | -        | 22.7        |        | 6.4    |              |          |            |         |  |  |
|           |          |             |        |        |              |          |            |         |  |  |



Project Name:

Bay West 2386

**Test Dates:** 10/19/16 - 11/16/16

Project Number: Sample ID: GLEC ID:

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

West Bearskin Lake CS #136

Test Species: H.azteca

| Date      | Test Day | Temperature (°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity (µmos) | Hardness<br>(mg/L) | Alkalinity<br>(mg/L) | Ammonia<br>(mg/L) |
|-----------|----------|------------------|--------------|----------------|---------------------|--------------------|----------------------|-------------------|
| 5-Nov-16  | 17       | 22.6             | 7.55         | 6.7            | (pinto c)           | (g. –)             | (g. –)               | (3/               |
|           |          | 22.7             | 7.62         | 6.5            |                     |                    |                      |                   |
| 6-Nov-16  | 18       | 22.6             |              | 6.8            |                     |                    |                      |                   |
|           |          | 22.6             |              | 6.1            |                     |                    |                      |                   |
| 7-Nov-16  | 19       | 22.7             |              | 7.3            |                     |                    |                      |                   |
|           |          | 23.0             |              | 7.2            |                     |                    |                      |                   |
| 8-Nov-16  | 20       | 22.9             | 7.56         | 7.2            | 313                 |                    |                      |                   |
|           |          | 22.9             | 7.66         | 6.9            | 307                 |                    |                      |                   |
| 9-Nov-16  | 21       | 22.7             |              | 6.5            |                     |                    |                      |                   |
|           |          | 22.7             |              | 6.6            |                     |                    |                      |                   |
| 10-Nov-16 | 22       | 22.6             | 7.68         | 6.7            |                     |                    |                      |                   |
|           |          | 22.5             | 7.65         | 6.5            |                     |                    |                      |                   |
| 11-Nov-16 | 23       | 23.1             |              | 7.3            |                     |                    |                      |                   |
|           |          | 23.1             |              | 7.3            |                     |                    |                      |                   |
| 12-Nov-16 | 24       | 22.5             | 7.72         | 6.8            |                     |                    |                      |                   |
|           |          | 22.5             | 7.76         | 6.9            |                     |                    |                      |                   |
| 13-Nov-16 | 25       | 22.5             |              | 6.8            |                     |                    |                      |                   |
|           |          | 22.5             |              | 6.8            |                     |                    |                      |                   |
| 14-Nov-16 | 26       | 22.8             |              | 7.8            |                     |                    |                      |                   |
|           |          | 22.9             |              | 7.4            |                     |                    |                      |                   |
| 15-Nov-16 | 27       | 22.9             | 7.64         | 7.0            | 315                 |                    |                      |                   |
|           |          | 22.9             | 7.69         | 6.7            | 311                 |                    |                      |                   |
| 16-Nov-16 | 28       | 23.1             | 7.57         | 7.2            | 311                 | 136                | 98                   | 0.09              |
|           |          | 23.1             | 7.64         | 7.0            | 308                 |                    |                      |                   |
| MEAN      |          | 22.7             | 7.57         | 6.9            | 303                 | 124                | 90                   | 0.20              |
| N=        |          | 58               | 28           | 58             | 12                  | 2                  | 2                    | 2                 |
| Min #     |          | 22.2             | 7.42         | 6.1            | 267                 | 112                | 82                   | 0.09              |
| Max #     |          | 23.3             | 7.76         | 8.0            | 319                 | 136                | 98                   | 0.30              |

## Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Bay West 2386

Test Dates: 10/19/16 - 11/16/16
Test Type: 28-Day Whole Sediment Toxicity Survival and Growth Test Species: *H.azteca* 

Water Only N/A

| GLEC ID:  | N        | /A          |        |        |              |          |            |         |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
|           | ٦        | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 19-Oct-16 | 0        | 22.7        | 8.15   | 7.5    | 308          | 132      | 102        | 0.05    | J |
|           |          | 22.6        | 8.21   | 7.7    | 309          |          |            |         |   |
| 20-Oct-16 | 1        | 22.6        | 7.95   | 7.4    |              |          |            |         |   |
|           |          | 22.6        | 7.93   | 7.2    |              |          |            |         |   |
| 21-Oct-16 | 2        | 22.4        |        | 8.9    |              |          |            |         |   |
|           |          | 22.5        |        | 8.8    |              |          |            |         |   |
| 22-Oct-16 | 3        | 22.9        | 8.01   | 7.8    |              |          |            |         |   |
|           |          | 22.9        | 8.11   | 8.0    |              |          |            |         |   |
| 23-Oct-16 | 4        | 22.9        |        | 7.5    |              |          |            |         |   |
|           |          | 22.9        |        | 7.6    |              |          |            |         |   |
| 24-Oct-16 | 5        | 22.7        |        | 8.0    |              |          |            |         |   |
|           |          | 22.9        |        | 8.0    |              |          |            |         |   |
| 25-Oct-16 | 6        | 22.6        | 8.02   | 7.9    | 317          |          |            |         |   |
|           |          | 22.6        | 8.05   | 7.9    | 318          |          |            |         |   |
| 26-Oct-16 | 7        | 22.8        |        | 8.4    |              |          |            |         |   |
|           |          | 22.7        |        | 8.5    |              |          |            |         |   |
| 27-Oct-16 | 8        | 22.4        | 7.95   | 8.5    |              |          |            |         |   |
|           |          | 22.1        | 7.99   | 8.3    |              |          |            |         |   |
| 28-Oct-16 | 9        | 22.4        |        | 8.3    |              |          |            |         |   |
|           |          | 22.5        |        | 8.3    |              |          |            |         |   |
| 29-Oct-16 | 10       | 22.8        | 7.96   | 7.3    |              |          |            |         |   |
|           |          | 22.9        | 7.95   | 7.3    |              |          |            |         |   |
| 30-Oct-16 | 11       | 22.8        |        | 7.2    |              |          |            |         |   |
|           |          | 22.9        |        | 7.2    |              |          |            |         |   |
| 31-Oct-16 | 12       | 22.7        |        | 7.1    |              |          |            |         |   |
|           |          | 22.7        |        | 7.2    |              |          |            |         |   |
| 1-Nov-16  | 13       | 22.7        | 8.05   | 7.3    | 309          |          |            |         |   |
|           |          | 22.6        | 8.08   | 7.2    | 309          |          |            |         |   |
| 2-Nov-16  | 14       | 22.5        |        | 7.0    |              |          |            |         |   |
|           |          | 22.6        |        | 6.9    |              |          |            |         |   |
| 3-Nov-16  | 15       | 23.0        | 7.76   | 7.4    |              |          |            |         |   |
|           |          | 23.1        | 7.82   | 6.9    |              |          |            |         |   |
| 4-Nov-16  | 16       | 22.8        |        | 7.0    |              |          |            |         |   |
|           |          | 23.0        |        | 6.9    |              |          |            |         |   |
|           |          |             |        |        |              |          |            |         |   |



Project Name: Project Number:

Bay West 2386

**Test Dates:** 10/19/16 - 11/16/16

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

Test Species: H.azteca

Sample ID: Water Only GLEC ID: N/A

| <b>00</b> | -        | T           | 11           | ъ.     | 0            | Handasas | A 11 11 14 | A      |   |
|-----------|----------|-------------|--------------|--------|--------------|----------|------------|--------|---|
| Data      |          | Temperature | pH<br>(a.v.) | D.O.   | Conductivity |          | Alkalinity |        |   |
| Date      | Test Day | (°C)        | (s.u.)       | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L) | _ |
| 5-Nov-16  | 17       | 22.9        | 8.25         | 7.5    |              |          |            |        |   |
|           |          | 22.9        | 8.14         | 7.0    |              |          |            |        |   |
| 6-Nov-16  | 18       | 22.9        |              | 7.4    |              |          |            |        |   |
|           |          | 23.0        |              | 7.4    |              |          |            |        |   |
| 7-Nov-16  | 19       | 23.1        |              | 8.1    |              |          |            |        |   |
|           |          | 23.2        |              | 8.2    |              |          |            |        |   |
| 8-Nov-16  | 20       | 22.3        | 8.01         | 8.0    | 315          |          |            |        |   |
|           |          | 22.5        | 7.99         | 7.7    | 314          |          |            |        |   |
| 9-Nov-16  | 21       | 22.6        |              | 7.3    |              |          |            |        |   |
|           |          | 22.6        |              | 7.1    |              |          |            |        |   |
| 10-Nov-16 | 22       | 22.6        | 8.02         | 7.3    |              |          |            |        |   |
|           |          | 22.6        | 8.01         | 7.4    |              |          |            |        |   |
| 11-Nov-16 | 23       | 23.2        |              | 8.3    |              |          |            |        |   |
|           |          | 23.2        |              | 8.2    |              |          |            |        |   |
| 12-Nov-16 | 24       | 22.5        | 7.98         | 7.4    |              |          |            |        |   |
|           |          | 22.5        | 8.06         | 7.4    |              |          |            |        |   |
| 13-Nov-16 | 25       | 22.6        |              | 7.2    |              |          |            |        |   |
|           |          | 22.6        |              | 7.3    |              |          |            |        |   |
| 14-Nov-16 | 26       | 23.0        |              | 8.2    |              |          |            |        |   |
|           |          | 23.0        |              | 8.1    |              |          |            |        |   |
| 15-Nov-16 | 27       | 22.8        | 7.90         | 7.9    | 315          |          |            |        |   |
|           |          | 23.0        | 7.91         | 7.5    | 315          |          |            |        |   |
| 16-Nov-16 | 28       | 22.9        | 7.97         | 7.9    | 315          | 136      | 104        | 0.06   | J |
|           |          | 22.8        | 7.94         | 8.0    | 319          |          |            |        |   |
| MEAN      |          | 22.7        | 8.01         | 7.7    | 314          | 134      | 103        | 0.06   | _ |
| N=        |          | 58          | 28           | 58     | 12           | 2        | 2          | 2      |   |
| Min #     |          | 22.1        | 7.76         | 6.9    | 308          | 132      | 102        | 0.05   |   |
| Max #     |          | 23.2        | 8.25         | 8.9    | 319          | 136      | 104        | 0.06   |   |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Bay West 2386 BW16MLW-001 11080

Test Dates: 10/19/16 - 11/16/16
Test Type: 28-Day Whole Sediment Toxicity Survival and Growth Test Species: *H.azteca* 

| GLEC ID:  | 1        | 1080        |        |        |              |          |            |         |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|
|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |
| 19-Oct-16 | 0        | 22.7        | 7.52   | 6.7    | 292          | 128      | 90         | 0.21    |
|           |          | 22.6        | 7.47   | 6.4    | 293          | 124      | 88         | 0.22    |
| 20-Oct-16 | 1        | 22.5        | 7.61   | 6.9    |              |          |            |         |
|           |          | 22.5        | 7.62   | 6.9    |              |          |            |         |
| 21-Oct-16 | 2        | 22.5        |        | 7.7    |              |          |            |         |
|           |          | 22.5        |        | 7.7    |              |          |            |         |
| 22-Oct-16 | 3        | 23.0        | 7.67   | 5.7    |              |          |            |         |
|           |          | 23.0        | 7.59   | 6.1    |              |          |            |         |
| 23-Oct-16 | 4        | 22.9        |        | 6.4    |              |          |            |         |
|           |          | 22.9        |        | 6.4    |              |          |            |         |
| 24-Oct-16 | 5        | 22.8        |        | 6.2    |              |          |            |         |
|           |          | 22.8        |        | 6.3    |              |          |            |         |
| 25-Oct-16 | 6        | 22.7        | 8.16   | 6.3    | 322          |          |            |         |
|           |          | 22.7        | 8.20   | 6.3    | 329          |          |            |         |
| 26-Oct-16 | 7        | 23.0        |        | 6.6    |              |          |            |         |
|           |          | 22.9        |        | 6.4    |              |          |            |         |
| 27-Oct-16 | 8        | 22.2        | 8.51   | 6.0    |              |          |            |         |
|           |          | 22.1        | 8.42   | 6.5    |              |          |            |         |
| 28-Oct-16 | 9        | 22.6        |        | 7.0    |              |          |            |         |
|           |          | 22.7        |        | 6.4    |              |          |            |         |
| 29-Oct-16 | 10       | 22.8        | 8.52   | 6.3    |              |          |            |         |
|           |          | 22.8        | 8.45   | 5.8    |              |          |            |         |
| 30-Oct-16 | 11       | 22.8        |        | 6.2    |              |          |            |         |
|           |          | 22.8        |        | 5.9    |              |          |            |         |
| 31-Oct-16 | 12       | 22.6        |        | 5.6    |              |          |            |         |
|           |          | 22.7        |        | 5.7    |              |          |            |         |
| 1-Nov-16  | 13       | 22.6        | 8.44   | 6.5    | 333          |          |            |         |
|           |          | 22.6        | 8.45   | 5.9    | 340          |          |            |         |
| 2-Nov-16  | 14       | 22.6        |        | 6.1    |              |          |            |         |
|           |          | 22.6        |        | 6.2    |              |          |            |         |
| 3-Nov-16  | 15       | 23.1        | 7.92   | 6.1    |              |          |            |         |
|           |          | 23.1        | 8.13   | 6.2    |              |          |            |         |
| 4-Nov-16  | 16       | 22.8        |        | 5.3    |              |          |            |         |
|           |          | 22.9        |        | 5.5    |              |          |            |         |
|           |          | -           |        |        |              |          |            |         |



Project Name: Project Number:

Bay West 2386

**Test Dates:** 10/19/16 - 11/16/16

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

Sample ID:

BW16MLW-001

Test Species: H.azteca

| GLEC ID: | 11080 |
|----------|-------|

|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia | 1 |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 5-Nov-16  | 17       | 22.6        | 7.89   | 6.0    |              |          |            |         |   |
|           |          | 22.6        | 7.74   | 6.5    |              |          |            |         |   |
| 6-Nov-16  | 18       | 22.7        |        | 5.4    |              |          |            |         |   |
|           |          | 22.6        |        | 6.1    |              |          |            |         |   |
| 7-Nov-16  | 19       | 23.0        |        | 5.8    |              |          |            |         |   |
|           |          | 23.1        |        | 6.0    |              |          |            |         |   |
| 8-Nov-16  | 20       | 22.5        | 7.76   | 6.6    | 329          |          |            |         |   |
|           |          | 22.6        | 7.78   | 6.2    | 335          |          |            |         |   |
| 9-Nov-16  | 21       | 22.4        |        | 6.5    |              |          |            |         |   |
|           |          | 22.4        |        | 6.0    |              |          |            |         |   |
| 10-Nov-16 | 22       | 22.5        | 7.74   | 6.5    |              |          |            |         |   |
|           |          | 22.6        | 7.77   | 6.6    |              |          |            |         |   |
| 11-Nov-16 | 23       | 22.4        |        | 7.0    |              |          |            |         |   |
|           |          | 22.6        |        | 6.9    |              |          |            |         |   |
| 12-Nov-16 | 24       | 22.4        | 7.73   | 6.4    |              |          |            |         |   |
|           |          | 22.4        | 7.73   | 6.5    |              |          |            |         |   |
| 13-Nov-16 | 25       | 22.5        |        | 6.3    |              |          |            |         |   |
|           |          | 22.3        |        | 6.5    |              |          |            |         |   |
| 14-Nov-16 | 26       | 22.8        |        | 7.1    |              |          |            |         |   |
|           |          | 22.8        |        | 6.9    |              |          |            |         |   |
| 15-Nov-16 | 27       | 22.8        | 7.69   | 7.0    | 312          |          |            |         |   |
|           |          | 22.8        | 7.65   | 6.3    | 317          |          |            |         |   |
| 16-Nov-16 | 28       | 22.8        | 7.64   | 7.3    | 319          | 136      | 98         | 0.06    | J |
|           |          | 22.8        | 7.79   | 7.0    | 321          | 136      | 98         | 0.06    | J |
| MEAN      |          | 22.7        | 7.91   | 6.4    | 320          | 131      | 94         | 0.14    | _ |
| N=        |          | 58          | 28     | 58     | 12           | 4        | 4          | 4       |   |
| Min #     |          | 22.1        | 7.47   | 5.3    | 292          | 124      | 88         | 0.06    |   |
| Max #     |          | 23.1        | 8.52   | 7.7    | 340          | 136      | 98         | 0.22    |   |
| WIGA #    |          | 20.1        | 0.32   |        | 340          | 130      | 30         | 0.22    |   |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Bay West 2386 **BW16MLW-002** 

Test Dates: 10/19/16 - 11/16/16
Test Type: 28-Day Whole Sediment Toxicity Survival and Growth Test Species: *H.azteca* 

11081

| GLEC ID:  |          | 11001       |        |        |              |          |            |         |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|
|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |
| 19-Oct-16 | 0        | 22.6        | 7.48   | 6.3    | 288          | 124      | 90         | 0.18 J  |
|           |          | 22.6        | 7.48   | 6.1    | 288          |          |            |         |
| 20-Oct-16 | 1        | 22.5        | 7.51   | 6.8    |              |          |            |         |
|           |          | 22.4        | 7.55   | 6.8    |              |          |            |         |
| 21-Oct-16 | 2        | 22.7        |        | 7.6    |              |          |            |         |
|           |          | 22.7        |        | 7.4    |              |          |            |         |
| 22-Oct-16 | 3        | 22.8        | 7.60   | 6.9    |              |          |            |         |
|           |          | 22.7        | 7.59   | 7.1    |              |          |            |         |
| 23-Oct-16 | 4        | 22.9        |        | 6.6    |              |          |            |         |
|           |          | 22.8        |        | 6.7    |              |          |            |         |
| 24-Oct-16 | 5        | 22.8        |        | 6.3    |              |          |            |         |
|           |          | 22.8        |        | 6.3    |              |          |            |         |
| 25-Oct-16 | 6        | 22.6        | 7.64   | 6.1    | 308          |          |            |         |
|           |          | 22.6        | 7.65   | 6.1    | 310          |          |            |         |
| 26-Oct-16 | 7        | 22.9        |        | 7.8    |              |          |            |         |
|           |          | 22.8        |        | 7.7    |              |          |            |         |
| 27-Oct-16 | 8        | 22.3        | 7.82   | 6.9    |              |          |            |         |
|           |          | 22.2        | 7.83   | 6.6    |              |          |            |         |
| 28-Oct-16 | 9        | 22.3        |        | 6.3    |              |          |            |         |
|           |          | 22.6        |        | 5.8    |              |          |            |         |
| 29-Oct-16 | 10       | 22.8        | 7.89   | 6.9    |              |          |            |         |
|           |          | 22.8        | 7.94   | 6.5    |              |          |            |         |
| 30-Oct-16 | 11       | 22.8        |        | 6.6    |              |          |            |         |
|           |          | 22.8        |        | 6.5    |              |          |            |         |
| 31-Oct-16 | 12       | 22.6        |        | 7.0    |              |          |            |         |
|           |          | 22.6        |        | 6.7    |              |          |            |         |
| 1-Nov-16  | 13       | 22.6        | 8.09   | 6.4    | 313          |          |            |         |
|           |          | 22.6        | 8.12   | 6.1    | 362          |          |            |         |
| 2-Nov-16  | 14       | 22.6        |        | 6.4    |              |          |            |         |
|           |          | 22.6        |        | 6.0    |              |          |            |         |
| 3-Nov-16  | 15       | 23.1        | 7.99   | 6.1    |              |          |            |         |
|           |          | 23.1        | 8.01   | 6.2    |              |          |            |         |
| 4-Nov-16  | 16       | 22.8        |        | 5.7    |              |          |            |         |
|           |          | 22.8        |        | 5.8    |              |          |            |         |
|           |          |             |        |        |              |          |            |         |



Project Name: Project Number:

Bay West 2386

**Test Dates:** 10/19/16 - 11/16/16

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

Test Species: H.azteca

Sample ID: BW16MLW-002 GLEC ID: 11081

| GLEC ID:  | 1        | 11081       |        |        |              |          |            |         |          |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|----------|
|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia | <b>a</b> |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |          |
| 5-Nov-16  | 17       | 22.6        | 7.91   | 5.9    |              |          |            |         | _        |
|           |          | 22.5        | 7.99   | 6.1    |              |          |            |         |          |
| 6-Nov-16  | 18       | 22.5        |        | 6.3    |              |          |            |         |          |
|           |          | 22.5        |        | 6.4    |              |          |            |         |          |
| 7-Nov-16  | 19       | 23.1        |        | 6.0    |              |          |            |         |          |
|           |          | 23.2        |        | 6.1    |              |          |            |         |          |
| 8-Nov-16  | 20       | 22.4        | 7.90   | 6.7    | 322          |          |            |         |          |
|           |          | 22.5        | 8.01   | 6.5    | 324          |          |            |         |          |
| 9-Nov-16  | 21       | 22.6        |        | 6.2    |              |          |            |         |          |
|           |          | 22.7        |        | 6.1    |              |          |            |         |          |
| 10-Nov-16 | 22       | 22.4        | 7.96   | 6.4    |              |          |            |         |          |
|           |          | 22.4        | 7.95   | 6.4    |              |          |            |         |          |
| 11-Nov-16 | 23       | 22.7        |        | 7.1    |              |          |            |         |          |
|           |          | 22.9        |        | 7.0    |              |          |            |         |          |
| 12-Nov-16 | 24       | 22.4        | 7.98   | 6.7    |              |          |            |         |          |
|           |          | 22.4        | 7.99   | 6.6    |              |          |            |         |          |
| 13-Nov-16 | 25       | 22.5        |        | 6.4    |              |          |            |         |          |
|           |          | 22.5        |        | 6.3    |              |          |            |         |          |
| 14-Nov-16 | 26       | 22.7        |        | 7.1    |              |          |            |         |          |
|           |          | 22.7        |        | 6.8    |              |          |            |         |          |
| 15-Nov-16 | 27       | 22.7        | 7.84   | 6.4    | 322          |          |            |         |          |
|           |          | 22.8        | 7.88   | 6.2    | 324          |          |            |         |          |
| 16-Nov-16 | 28       | 22.8        | 7.91   | 7.3    | 325          | 136      | 106        | 0.05    | J        |
|           |          | 22.8        | 7.93   | 7.0    | 327          |          |            |         |          |
| MEAN      |          | 22.7        | 7.84   | 6.5    | 318          | 130      | 98         | 0.12    | _        |
| N=        |          | 58          | 28     | 58     | 12           | 2        | 2          | 2       |          |
| Min#      |          | 22.2        | 7.48   | 5.7    | 288          | 124      | 90         | 0.05    |          |
| Max #     |          | 23.2        | 8.12   | 7.8    | 362          | 136      | 106        | 0.18    |          |
| max #     |          | 20.2        | 0.12   |        |              | .00      | .00        | 0.10    |          |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Bay West 2386 BW16MLW-003 11082

Test Dates: 10/19/16 - 11/16/16
Test Type: 28-Day Whole Sediment Toxicity Survival and Growth Test Species: *H.azteca* 

| GLEC ID:  | 1        | 1082        |        |        |              |          |            |         |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|
|           | •        | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |
| 19-Oct-16 | 0        | 22.5        | 7.26   | 4.2    | 304          | 124      | 98         | 0.37    |
|           |          | 22.5        | 7.31   | 4.1    | 306          |          |            |         |
| 20-Oct-16 | 1        | 22.5        | 7.47   | 6.5    |              |          |            |         |
|           |          | 22.5        | 7.41   | 6.4    |              |          |            |         |
| 21-Oct-16 | 2        | 22.7        |        | 7.7    |              |          |            |         |
|           |          | 22.7        |        | 7.1    |              |          |            |         |
| 22-Oct-16 | 3        | 22.8        | 7.64   | 7.0    |              |          |            |         |
|           |          | 22.8        | 7.62   | 6.9    |              |          |            |         |
| 23-Oct-16 | 4        | 22.9        |        | 6.5    |              |          |            |         |
|           |          | 22.9        |        | 6.6    |              |          |            |         |
| 24-Oct-16 | 5        | 22.8        |        | 5.9    |              |          |            |         |
|           |          | 22.9        |        | 5.5    |              |          |            |         |
| 25-Oct-16 | 6        | 22.7        | 7.82   | 6.5    | 317          |          |            |         |
|           |          | 22.6        | 7.80   | 6.1    | 317          |          |            |         |
| 26-Oct-16 | 7        | 22.8        |        | 7.8    |              |          |            |         |
|           |          | 22.5        |        | 7.3    |              |          |            |         |
| 27-Oct-16 | 8        | 22.2        | 7.73   | 6.7    |              |          |            |         |
|           |          | 22.2        | 7.87   | 6.8    |              |          |            |         |
| 28-Oct-16 | 9        | 22.5        |        | 6.4    |              |          |            |         |
|           |          | 22.6        |        | 6.2    |              |          |            |         |
| 29-Oct-16 | 10       | 22.8        | 8.24   | 6.5    |              |          |            |         |
|           |          | 22.8        | 8.04   | 4.9    |              |          |            |         |
| 30-Oct-16 | 11       | 22.8        |        | 5.9    |              |          |            |         |
|           |          | 22.8        |        | 5.8    |              |          |            |         |
| 31-Oct-16 | 12       | 22.7        |        | 5.8    |              |          |            |         |
|           |          | 22.7        |        | 5.5    |              |          |            |         |
| 1-Nov-16  | 13       | 22.6        | 8.49   | 5.6    | 335          |          |            |         |
|           |          | 22.6        | 8.41   | 5.2    | 339          |          |            |         |
| 2-Nov-16  | 14       | 22.6        |        | 5.8    |              |          |            |         |
|           |          | 22.5        |        | 5.7    |              |          |            |         |
| 3-Nov-16  | 15       | 23.2        | 7.97   | 6.0    |              |          |            |         |
|           |          | 23.2        | 8.02   | 6.2    |              |          |            |         |
| 4-Nov-16  | 16       | 22.7        |        | 5.1    |              |          |            |         |
|           |          | 22.7        |        | 5.3    |              |          |            |         |



Project Name: Project Number:

Sample ID:

GLEC ID:

Bay West 2386

BW16MLW-003

11082

Test Dates: 10/19/16 - 11/16/16

Test Type: 28-Day Whole Sediment Toxicity Survival and Growth

Test Species: H.azteca

| 0220 .2.  |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia  |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|----------|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)   |
| 5-Nov-16  | 17       | 22.5        | 8.19   | 4.7    | ,            | `        | ` •        | <u> </u> |
|           |          | 22.5        | 8.16   | 5.2    |              |          |            |          |
| 6-Nov-16  | 18       | 22.6        |        | 6.0    |              |          |            |          |
|           |          | 22.5        |        | 5.9    |              |          |            |          |
| 7-Nov-16  | 19       | 22.6        |        | 4.7    |              |          |            |          |
|           |          | 22.9        |        | 4.8    |              |          |            |          |
| 8-Nov-16  | 20       | 22.4        | 7.97   | 6.5    | 336          |          |            |          |
|           |          | 22.6        | 7.86   | 6.0    | 322          |          |            |          |
| 9-Nov-16  | 21       |             |        | 6.7    |              |          |            |          |
|           |          | 22.7        |        | 6.0    |              |          |            |          |
| 10-Nov-16 | 22       | 22.4        | 7.75   | 5.8    |              |          |            |          |
|           |          | 22.5        | 7.72   | 5.3    |              |          |            |          |
| 11-Nov-16 | 23       | 22.3        |        | 5.8    |              |          |            |          |
|           |          | 22.6        |        | 6.0    |              |          |            |          |
| 12-Nov-16 | 24       | 22.3        | 7.70   | 6.5    |              |          |            |          |
|           |          | 22.4        | 7.76   | 6.5    |              |          |            |          |
| 13-Nov-16 | 25       | 22.4        |        | 5.8    |              |          |            |          |
|           |          | 22.4        |        | 5.7    |              |          |            |          |
| 14-Nov-16 | 26       | 22.7        |        | 6.5    |              |          |            |          |
|           |          | 22.7        |        | 5.9    |              |          |            |          |
| 15-Nov-16 | 27       | 22.6        | 7.57   | 6.0    | 312          |          |            |          |
|           |          | 22.7        | 7.57   | 5.9    | 311          |          |            |          |
| 16-Nov-16 | 28       | 23.0        | 7.60   | 6.8    | 317          | 132      | 98         | 0.05 J   |
|           |          | 23.0        | 7.67   | 6.3    | 317          |          |            |          |
| MEAN      |          | 22.6        | 7.81   | 6.0    | 319          | 128      | 98         | 0.21     |
| N=        |          | 57          | 28     | 58     | 12           | 2        | 2          | 2        |
| Min#      |          | 22.2        | 7.26   | 4.1    | 304          | 124      | 98         | 0.05     |
| Max #     |          | 23.2        | 8.49   | 7.8    | 339          | 132      | 98         | 0.37     |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL

# Appendix B3 Overlying Water Quality Summaries

• 4-Day Lumbriculus variegatus

10/14/2016-10/18/2016



Project Name: Bay West Test Dates:

Project Number: 2386-00 Test Type: 4-Day Screening Survival Test

Test Species: L. variegatus

100% Data Entry

<u>Date</u> <u>Initials</u> <u>Data Entered</u>

11/10/2016 MP All

100% Data Quality Check

 Date
 Initials
 Data QC'ed
 Found Y
 Corrected:Y

 11/17/2016
 DS
 ALL
 N
 N

100% Error Corrected Quality Check

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u>

licable no errors found

Data QC 10%

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u> 11/30/2016 mwg 10% days 0 and 3 all sheets



Project Name: Project Number: Bay West 2386-00 10/14/2016-10/18/2016 4-Day Screening Survival Test Test Dates: Test Type:

Sample ID: West Bearskin Lake Test Species: L. variegatus

GLEC ID: CS #136

|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 14-Oct-16 | 0        | 22.8        | 7.26   | 7.6    | 272          | 116      | 78         | 0.33    |   |
|           |          | 22.8        | 7.43   | 7.4    | 275          |          |            |         |   |
| 15-Oct-16 | 1        | 22.5        |        | 7.1    |              |          |            |         |   |
|           |          | 22.6        |        | 7.0    |              |          |            |         |   |
| 16-Oct-16 | 2        | 22.5        |        | 6.6    |              |          |            |         |   |
|           |          | 22.5        |        | 6.8    |              |          |            |         |   |
| 17-Oct-16 | 3        | 22.4        |        | 6.9    |              |          |            |         |   |
|           |          | 22.5        |        | 6.8    |              |          |            |         |   |
| 18-Oct-16 | 4        | 22.5        | 7.35   | 6.6    | 302          | 128      | 88         | 0.16    | J |
|           |          | 22.6        | 7.46   | 6.6    | 295          |          |            |         |   |

| MEAN  | 22.6 | 7.38 | 6.9 | 286 | 122 | 83 | 0.25 |
|-------|------|------|-----|-----|-----|----|------|
| N=    | 10   | 4    | 10  | 4   | 2   | 2  | 2    |
| Min # | 22.4 | 7.26 | 6.6 | 272 | 116 | 78 | 0.16 |
| Max # | 22.8 | 7.46 | 7.6 | 302 | 128 | 88 | 0.33 |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Project Name: Project Number: Bay West 2386-00 Test Dates: 10/14/2016-10/18/2016 4-Day Screening Survival Test Test Type:

Sample ID: BW16MLW-001-0.0-0.15 Test Species: L. variegatus

GLEC ID: 11080

|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 14-Oct-16 | 0        | 22.8        | 7.47   | 6.6    | 298          | 120      | 90         | 0.18    | J |
|           |          | 22.8        | 7.48   | 6.6    | 297          |          |            |         |   |
| 15-Oct-16 | 1        | 22.8        |        | 7.0    |              |          |            |         |   |
|           |          | 22.8        |        | 6.8    |              |          |            |         |   |
| 16-Oct-16 | 2        | 22.6        |        | 6.6    |              |          |            |         |   |
|           |          | 22.6        |        | 6.7    |              |          |            |         |   |
| 17-Oct-16 | 3        | 22.5        |        | 7.1    |              |          |            |         |   |
|           |          | 22.6        |        | 6.3    |              |          |            |         |   |
| 18-Oct-16 | 4        | 22.8        | 7.62   | 6.2    | 309          | 136      | 100        | 0.07    | J |
|           |          | 22.8        | 7.62   | 6.2    | 309          |          |            |         |   |

| MEAN  | 22.7 | 7.55 | 6.6 | 303 | 128 | 95  | 0.13 |
|-------|------|------|-----|-----|-----|-----|------|
| N=    | 10   | 4    | 10  | 4   | 2   | 2   | 2    |
| Min # | 22.5 | 7.47 | 6.2 | 297 | 120 | 90  | 0.07 |
| Max # | 22.8 | 7.62 | 7.1 | 309 | 136 | 100 | 0.18 |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Project Name: Project Number: Bay West 2386-00 Test Dates: 10/14/2016-10/18/2016 Test Type: 4-Day Screening Survival Test

Sample ID: BW16MLW-002-0.0-0.15 Test Species: L. variegatus

GLEC ID: 11081

|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 14-Oct-16 | 0        | 22.9        | 7.57   | 7.0    | 297          | 128      | 88         | 0.15    | J |
|           |          | 22.9        | 7.49   | 6.8    | 290          |          |            |         |   |
| 15-Oct-16 | 1        | 22.7        |        | 7.0    |              |          |            |         |   |
|           |          | 22.7        |        | 6.9    |              |          |            |         |   |
| 16-Oct-16 | 2        | 22.5        |        | 6.9    |              |          |            |         |   |
|           |          | 22.7        |        | 6.4    |              |          |            |         |   |
| 17-Oct-16 | 3        | 22.3        |        | 7.2    |              |          |            |         |   |
|           |          | 22.5        |        | 6.4    |              |          |            |         |   |
| 18-Oct-16 | 4        | 22.3        | 7.66   | 6.0    | 304          | 136      | 100        | 0.07    | J |
|           |          | 22.5        | 7.65   | 6.2    | 307          |          |            |         |   |

| MEAN  | 22.6 | 7.59 | 6.7 | 300 | 132 | 94  | 0.11 |
|-------|------|------|-----|-----|-----|-----|------|
| N=    | 10   | 4    | 10  | 4   | 2   | 2   | 2    |
| Min # | 22.3 | 7.49 | 6.0 | 290 | 128 | 88  | 0.07 |
| Max # | 22.9 | 7.66 | 7.2 | 307 | 136 | 100 | 0.15 |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL



Project Name: Project Number: Bay West 2386-00 Test Dates: 10/14/2016-10/18/2016 Test Type: 4-Day Screening Survival Test

Sample ID: BW16MLW-003-0.0-0.15 Test Species: L. variegatus

GLEC ID: 11082

|           |          | Temperature | pН     | D.O.   | Conductivity | Hardness | Alkalinity | Ammonia |   |
|-----------|----------|-------------|--------|--------|--------------|----------|------------|---------|---|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | (mg/L)   | (mg/L)     | (mg/L)  |   |
| 14-Oct-16 | 0        | 22.7        | 7.49   | 6.8    | 306          | 128      | 94         | 0.39    |   |
|           |          | 22.7        | 7.54   | 6.6    | 304          | 128      | 94         | 0.39    |   |
| 15-Oct-16 | 1        | 22.6        |        | 7.0    |              |          |            |         |   |
|           |          | 22.7        |        | 6.8    |              |          |            |         |   |
| 16-Oct-16 | 2        | 22.7        |        | 6.6    |              |          |            |         |   |
|           |          | 22.8        |        | 6.5    |              |          |            |         |   |
| 17-Oct-16 | 3        | 22.3        |        | 6.4    |              |          |            |         |   |
|           |          | 22.5        |        | 6.0    |              |          |            |         |   |
| 18-Oct-16 | 4        | 22.7        | 7.64   | 5.4    | 316          | 144      | 100        | 0.15    | J |
|           |          | 22.7        | 7.68   | 5.3    | 312          | 132      | 98         | 0.15    | J |

| MEAN  | 22.6 | 7.59 | 6.3 | 310 | 133 | 97  | 0.27 |
|-------|------|------|-----|-----|-----|-----|------|
| N=    | 10   | 4    | 10  | 4   | 4   | 4   | 4    |
| Min # | 22.3 | 7.49 | 5.3 | 304 | 128 | 94  | 0.15 |
| Max # | 22.8 | 7.68 | 7.0 | 316 | 144 | 100 | 0.39 |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L)

MDL = Minimum Detection Limit (0.02 mg/L)

U = Below MDL

# Appendix B4 Overlying Water Quality Summaries

• 28-Day Lumbriculus variegatus



**Project Name:** Bay West

2386-01 **Project Number:** 

Test Dates: 10/25/16 - 11/22/16

Test Type: 28 Day Whole Sediment Toxicity Survival

Test Species: Lumbriculus variegatus

ammonia data not entered

## 100% Data Entry

| <u>Date</u> | <u>Initials</u> | Data Entered |
|-------------|-----------------|--------------|
| 11/14/2016  | MLV             | Days 0-18    |
| 11/17/2016  | MLV             | Days 19-21   |
| 11/21/2016  | MLV             | Days 22-27   |
| 11/30/2016  | MWG             | Days 28      |

### 100% Data Quality Check

Errors Errors Found; Y Corrected:

<u>Date</u> 11/18/2016  $Y \ \text{or} \ N$ or N <u>Initials</u> Data QC'ed DS 0-21 n n 11/30/2016 MWG 22-27 n n 12/5/2016 MLV Day 28 у У

11080, alkalinity value was in the hardness column under the hardness

100% Error Corrected Quality Check

<u>Initials</u> Data QC'ed 12/5/2016 NS day 28

Data QC 10%

Data QC'ed <u>Date</u> <u>Initials</u> 11/30/2016 all data on days: mwg

3,4,8,9,14,17,18



Bay West 2386-01 Control - West Bearskin Lake CS # 136

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:          |          | CS # 136     |                       |               |               |               |               |               |                          |
|-------------------|----------|--------------|-----------------------|---------------|---------------|---------------|---------------|---------------|--------------------------|
| 5.4.              | T D      | Temperature  | pΗ                    | D.O.          | Conductivity  | Flow          |               |               | Ammonia                  |
| Date<br>25 Oct 16 | Test Day | (°C)<br>22.2 | <b>(s.u.)</b><br>7.96 | (mg/L)<br>8.5 | (μmos)<br>303 | ml/min<br>3.8 | (mg/L)<br>132 | (mg/L)<br>102 | ( <b>mg/L)</b><br>0.13 J |
| 25-Oct-16         | U        | 22.2         | 7.96                  | 8.4           | 303           | 3.6           | 132           | 102           | 0.13 J                   |
|                   |          | 22.2         | 7.52                  | 0.4           | 303           | 4.0           |               |               |                          |
|                   |          |              |                       |               |               | 4.0           |               |               |                          |
|                   |          |              |                       |               |               | 4.0           |               |               |                          |
| 26-Oct-16         | 1        | 22.0         |                       | 7.2           |               | 4.4           |               |               |                          |
|                   |          | 22.0         |                       | 7.0           |               | 4.6           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
| 27-Oct-16         | 2        | 22.3         |                       | 8.0           |               | 4.4<br>4.4    |               |               |                          |
| 27-001-10         | 2        | 22.3         |                       | 8.4           |               | 4.6           |               |               |                          |
|                   |          | 22.0         |                       | 0.4           |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.8           |               |               |                          |
|                   |          |              |                       |               |               | 4.8           |               |               |                          |
| 28-Oct-16         | 3        | 22.4         |                       | 7.6           |               | 4.4           |               |               |                          |
|                   |          | 22.5         |                       | 8.1           |               | 4.6           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4<br>4.8    |               |               |                          |
| 29-Oct-16         | 4        | 22.6         |                       | 7.6           |               | 4.0           |               |               |                          |
| 29-001-10         | 7        | 22.6         |                       | 7.3           |               | 4.0           |               |               |                          |
|                   |          | 22.0         |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 3.8           |               |               |                          |
| 30-Oct-16         | 5        | 22.6         |                       | 7.2           |               | 4.0           |               |               |                          |
|                   |          | 22.6         |                       | 7.7           |               | 4.0           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
| 31-Oct-16         | 6        | 22.2         |                       | 7.8           |               | 4.0<br>4.2    |               |               |                          |
| 31-001-10         | O        | 22.1         |                       | 7.6           |               | 4.5           |               |               |                          |
|                   |          |              |                       |               |               | 4.7           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.2           |               |               |                          |
| 1-Nov-16          | 7        | 22.3         | 7.81                  | 6.9           | 305           | 4.1           | 132           | 98            | 0.84                     |
|                   |          | 22.5         | 7.85                  | 6.9           | 304           | 4.3           |               |               |                          |
|                   |          |              |                       |               |               | 4.5           |               |               |                          |
|                   |          |              |                       |               |               | 4.4<br>4.1    |               |               |                          |
| 2-Nov-16          | 8        | 22.4         |                       | 7.7           |               | 4.1           |               |               |                          |
| 2.101.10          | · ·      | 22.5         |                       | 7.9           |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.0           |               |               |                          |
| 3-Nov-16          | 9        | 23.4         |                       | 7.7           |               | 4.2           |               |               |                          |
|                   |          | 23.3         |                       | 7.4           |               | 4.3           |               |               |                          |
|                   |          |              |                       |               |               | 4.6<br>4.7    |               |               |                          |
|                   |          |              |                       |               |               | 4.7           |               |               |                          |
| 4-Nov-16          | 10       | 22.8         |                       | 7.9           |               | 4.0           |               |               |                          |
|                   |          | 22.8         |                       | 7.9           |               | 4.3           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.4           |               |               |                          |
|                   |          |              |                       |               |               | 4.0           |               |               |                          |
| 5-Nov-16          | 11       | 22.5         |                       | 7.7           |               | 4.1           |               |               |                          |
|                   |          | 22.6         |                       | 7.6           |               | 3.9           |               |               |                          |
|                   |          |              |                       |               |               | 4.4<br>4.5    |               |               |                          |
|                   |          |              |                       |               |               | 4.2           |               |               |                          |
| 6-Nov-16          | 12       | 22.6         |                       | 7.6           |               | 4.1           |               |               |                          |
|                   |          | 22.6         |                       | 7.7           |               | 4.3           |               |               |                          |
|                   |          |              |                       |               |               | 4.0           |               |               |                          |
|                   |          |              |                       |               |               | 3.7           |               |               |                          |
| 7.11              | 4.5      | 00.1         |                       | 7.0           |               | 4.0           |               |               |                          |
| 7-Nov-16          | 13       | 23.1         |                       | 7.8           |               | 3.3           |               |               |                          |
|                   |          | 23.1         |                       | 7.6           |               | 3.7<br>3.8    |               |               |                          |
|                   |          |              |                       |               |               | 3.8           |               |               |                          |
|                   |          |              |                       |               |               | 3.7           |               |               |                          |
|                   |          |              |                       |               |               |               |               |               |                          |



Bay West 2386-01 Control - West Bearskin Lake CS # 136

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:   |                | CS # 136     |                |               |                       |               |               |               |                |
|------------|----------------|--------------|----------------|---------------|-----------------------|---------------|---------------|---------------|----------------|
|            |                | Temperature  | pΗ             | D.O.          | Conductivity          | Flow          |               |               | Ammonia        |
| B-Nov-16   | Test Day<br>14 | (°C)<br>23.1 | (s.u.)<br>8.02 | (mg/L)<br>7.8 | (μ <b>mos)</b><br>310 | ml/min<br>4.0 | (mg/L)<br>132 | (mg/L)<br>104 | (mg/L)<br>0.75 |
| 0-INOV- 10 | 14             | 23.1         | 8.02           | 7.8<br>7.8    | 308                   | 4.0           | 132           | 104           | 0.75           |
|            |                | 22.0         | 0.00           | 7.0           | 000                   | 4.4           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
| 9-Nov-16   | 15             | 22.6         |                | 7.1           |                       | 3.9           |               |               |                |
|            |                | 22.5         |                | 7.2           |                       | 4.2           |               |               |                |
|            |                |              |                |               |                       | 3.8           |               |               |                |
|            |                |              |                |               |                       | 4.1           |               |               |                |
|            |                |              |                |               |                       | 4.2           |               |               |                |
| 10-Nov-16  | 16             | 22.3         |                | 7.6           |                       | 3.2           |               |               |                |
|            |                | 22.3         |                | 7.5           |                       | 3.6           |               |               |                |
|            |                |              |                |               |                       | 3.8<br>3.9    |               |               |                |
|            |                |              |                |               |                       | 3.9<br>3.6    |               |               |                |
| 11-Nov-16  | 17             | 22.7         |                | 8.1           |                       | 3.9           |               |               |                |
| 11-1404-10 | .,,            | 22.6         |                | 8.0           |                       | 3.9           |               |               |                |
|            |                | 22.0         |                | 0.0           |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 4.0           |               |               |                |
| 12-Nov-16  | 18             | 22.2         |                | 7.8           |                       | 5.6           |               |               |                |
|            |                | 22.2         |                | 7.7           |                       | 5.6           |               |               |                |
|            |                |              |                |               |                       | 5.4           |               |               |                |
|            |                |              |                |               |                       | 5.6           |               |               |                |
|            |                |              |                |               |                       | 4.8           |               |               |                |
| 13-Nov-16  | 19             | 22.4         |                | 7.7           |                       | 5.0           |               |               |                |
|            |                | 22.4         |                | 7.7           |                       | 5.0           |               |               |                |
|            |                |              |                |               |                       | 4.6           |               |               |                |
|            |                |              |                |               |                       | 4.6           |               |               |                |
| 14 Nov 16  | 20             | 22.2         |                | 7.0           |                       | 5.0           |               |               |                |
| 14-Nov-16  | 20             | 23.3<br>23.1 |                | 7.9<br>7.7    |                       | 3.8<br>3.8    |               |               |                |
|            |                | 23.1         |                | 7.7           |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 6.0           |               |               |                |
| 15-Nov-16  | 21             | 22.5         | 8.09           | 7.9           | 317                   | 4.0           | 132           | 106           | 0.64           |
|            |                | 22.5         | 8.03           | 7.6           | 313                   | 4.3           |               |               |                |
|            |                |              |                |               |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 6.4           |               |               |                |
| 16-Nov-16  | 22             | 22.8         |                | 7.0           |                       | 5.0           |               |               |                |
|            |                | 22.9         |                | 7.0           |                       | 5.0           |               |               |                |
|            |                |              |                |               |                       | 5.4           |               |               |                |
|            |                |              |                |               |                       | 5.2           |               |               |                |
| 47 Nov. 40 | 00             | 00.7         |                | 7.0           |                       | 6.8           |               |               |                |
| 17-Nov-16  | 23             | 22.7<br>22.7 |                | 7.2<br>7.3    |                       | 4.2<br>4.6    |               |               |                |
|            |                | 22.1         |                | 7.3           |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 6.0           |               |               |                |
| 18-Nov-16  | 24             | 23.0         |                | 7.1           |                       | 4.3           |               |               |                |
|            |                | 22.9         |                | 7.3           |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 5.1           |               |               |                |
|            |                |              |                |               |                       | 5.2           |               |               |                |
|            |                |              |                |               |                       | 6.4           |               |               |                |
| 19-Nov-16  | 25             | 22.2         |                | 7.6           |                       | 3.6           |               |               |                |
|            |                | 22.3         |                | 7.6           |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 4.4           |               |               |                |
|            |                |              |                |               |                       | 4.8           |               |               |                |
|            |                |              |                |               |                       | 6.0           |               |               |                |
|            |                |              |                |               |                       |               |               |               |                |



Project Name: Project Number:

Bay West

**Test Dates:** 10/25/16 - 11/22/16

Test Type: 28 Day Whole Sediment Toxicity Survival and Growth

| Day West                     | 163t Dates. 10/23/10 - 11/22/10     |
|------------------------------|-------------------------------------|
| 2386-01                      | Test Type: 28 Day Whole Sediment    |
| Control - West Bearskin Lake | Test Species: Lumbriculus variegatu |
| CS # 136                     |                                     |

| Sample ID:<br>GLEC ID: |          | Control - West E | Bearskin Lal | ke             | Test Species: Lumbriculus variegatus |                |                    |                      |                |  |  |
|------------------------|----------|------------------|--------------|----------------|--------------------------------------|----------------|--------------------|----------------------|----------------|--|--|
| Date                   | Test Day | Temperature (°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity (µmos)                  | Flow<br>ml/min | Hardness<br>(mg/L) | Alkalinity<br>(mg/L) | Ammonia (mg/L) |  |  |
| 20-Nov-16              | 26       | 22.0             |              | 8.1            |                                      | 4.0            |                    |                      |                |  |  |
|                        |          | 22.2             |              | 8.1            |                                      | 4.0            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.4            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.4            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 5.6            |                    |                      |                |  |  |
| 21-Nov-16              | 27       | 22.1             |              | 8.2            |                                      | 4.0            |                    |                      |                |  |  |
|                        |          | 22.2             |              | 8.0            |                                      | 4.2            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.2            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.2            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.5            |                    |                      |                |  |  |
| 22-Nov-16              | 28       | 22.7             | 8.26         | 8.3            | 315                                  | 4.0            | 128                | 106                  | 0.48           |  |  |
|                        |          | 22.7             | 8.21         | 8.0            | 316                                  | 4.2            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.2            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.0            |                    |                      |                |  |  |
|                        |          |                  |              |                |                                      | 4.0            |                    |                      |                |  |  |
| MEAN<br>N=             |          | 22.6<br>58       | 8.02<br>10   | 7.7<br>58      | 309<br>10                            | 4.4<br>145     | 131<br>5           | 103<br>5             | 0.57<br>5      |  |  |
| Min #                  |          | 22.0             | 7.81         | 6.9            | 303                                  | 3.2            | 128                | 98                   | 0.13           |  |  |
| Max #                  |          | 23.4             | 8.26         | 8.5            | 317                                  | 6.8            | 132                | 106                  | 0.84           |  |  |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)
U = Below MDL
J = ≥MDL and <RL



Bay West 2386-01 BW16MLW-001 11080

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:  |          | 11080               |              |                |                        |                |            | 3         |                   |        |
|-----------|----------|---------------------|--------------|----------------|------------------------|----------------|------------|-----------|-------------------|--------|
| Date      | Test Day | Temperature<br>(°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity<br>(µmos) | Flow<br>ml/min | (mg/L)     | (mg/L)    | Ammonia<br>(mg/L) | _      |
| 25-Oct-16 | 0        | 22.2<br>22.2        | 8.17<br>8.13 | 8.6<br>8.7     | 306<br>307             | 3.8<br>4.0     | 140<br>140 | 100<br>98 | 0.12<br>0.11      | J<br>J |
|           |          |                     |              |                |                        | 4.2            |            |           | •                 |        |
|           |          |                     |              |                |                        | 4.2<br>4.2     |            |           |                   |        |
| 26-Oct-16 | 1        | 22.1                |              | 6.9            |                        | 4.2            |            |           |                   |        |
|           |          | 22.0                |              | 6.7            |                        | 4.2            |            |           |                   |        |
|           |          |                     |              |                |                        | 4.0<br>3.8     |            |           |                   |        |
|           |          |                     |              |                |                        | 3.6            |            |           |                   |        |
| 27-Oct-16 | 2        | 22.3                |              | 8.6            |                        | 4.4            |            |           |                   |        |
|           |          | 22.3                |              | 8.6            |                        | 4.2<br>4.0     |            |           |                   |        |
|           |          |                     |              |                |                        | 3.8            |            |           |                   |        |
| 28-Oct-16 | 3        | 22.4                |              | 8.1            |                        | 3.8<br>4.0     |            |           |                   |        |
| 20-001-10 | 3        | 22.2                |              | 8.0            |                        | 4.0            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.8            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.8<br>3.6     |            |           |                   |        |
| 29-Oct-16 | 4        | 22.6                |              | 7.7            |                        | 3.8            |            |           |                   |        |
|           |          | 22.6                |              | 7.7            |                        | 3.8            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.8<br>3.6     |            |           |                   |        |
|           |          |                     |              |                |                        | 4.8            |            |           |                   |        |
| 30-Oct-16 | 5        | 22.4                |              | 7.7            |                        | 4.0            |            |           |                   |        |
|           |          | 22.3                |              | 7.7            |                        | 3.6<br>3.8     |            |           |                   |        |
|           |          |                     |              |                |                        | 3.0            |            |           |                   |        |
| 31-Oct-16 | 6        | 22.0                |              | 7.4            |                        | 4.0<br>4.2     |            |           |                   |        |
| 31-001-10 | Ü        | 22.0                |              | 7.4            |                        | 3.8            |            |           |                   |        |
|           |          |                     |              |                |                        | 5.8            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.1<br>4.4     |            |           |                   |        |
| 1-Nov-16  | 7        | 22.7                | 7.87         | 7.3            | 305                    | 4.0            | 124        | 94        | 1.16              |        |
|           |          | 22.6                | 7.90         | 7.2            | 305                    | 4.1            |            |           |                   |        |
|           |          |                     |              |                |                        | 5.6<br>3.1     |            |           |                   |        |
|           |          |                     |              |                |                        | 4.4            |            |           |                   |        |
| 2-Nov-16  | 8        | 22.3<br>22.4        |              | 8.0<br>7.8     |                        | 4.0<br>3.8     |            |           |                   |        |
|           |          | 22.4                |              | 7.0            |                        | 5.6            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.0            |            |           |                   |        |
| 3-Nov-16  | 9        | 23.1                |              | 7.4            |                        | 4.4<br>3.9     |            |           |                   |        |
| 3-1404-10 | 3        | 23.1                |              | 7.5            |                        | 3.6            |            |           |                   |        |
|           |          |                     |              |                |                        | 5.2            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.0<br>4.2     |            |           |                   |        |
| 4-Nov-16  | 10       | 22.6                |              | 7.6            |                        | 3.9            |            |           |                   |        |
|           |          | 22.6                |              | 7.4            |                        | 3.6<br>5.2     |            |           |                   |        |
|           |          |                     |              |                |                        | 3.2            |            |           |                   |        |
|           |          |                     |              |                |                        | 4.2            |            |           |                   |        |
| 5-Nov-16  | 11       | 22.6<br>22.3        |              | 7.4<br>7.4     |                        | 4.0<br>4.3     |            |           |                   |        |
|           |          | 22.0                |              |                |                        | 4.9            |            |           |                   |        |
|           |          |                     |              |                |                        | 4.4            |            |           |                   |        |
| 6-Nov-16  | 12       | 22.6                |              | 7.2            |                        | 4.1<br>3.8     |            |           |                   |        |
|           |          | 22.5                |              | 7.2            |                        | 4.3            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.6<br>4.0     |            |           |                   |        |
|           |          |                     |              |                |                        | 4.0            |            |           |                   |        |
| 7-Nov-16  | 13       | 22.6                |              | 7.7            |                        | 3.7            |            |           |                   |        |
|           |          | 22.8                |              | 7.3            |                        | 3.2<br>4.4     |            |           |                   |        |
|           |          |                     |              |                |                        | 4.0            |            |           |                   |        |
|           |          |                     |              |                |                        | 3.5            |            |           |                   |        |
|           |          |                     |              |                |                        |                |            |           |                   |        |



Bay West 2386-01 BW16MLW-001 11080

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:   | •        | 11080       |        |        |              |        |          |            |         |  |  |
|------------|----------|-------------|--------|--------|--------------|--------|----------|------------|---------|--|--|
|            |          | Temperature | pН     | D.O.   | Conductivity | Flow   | Hardness | Alkalinity | Ammonia |  |  |
| Date       | Test Day | (°C)        | (s.u.) | (mg/L) | (µmos)       | ml/min | (mg/L)   | (mg/L)     | (mg/L)  |  |  |
| 8-Nov-16   | 14       | 22.7        | 7.93   | 7.4    | 312          | 4.0    | 128      | 98         | 1.21    |  |  |
|            |          | 22.8        | 7.92   | 7.3    | 312          | 4.0    |          |            |         |  |  |
|            |          |             |        |        |              | 5.2    |          |            |         |  |  |
|            |          |             |        |        |              | 3.2    |          |            |         |  |  |
|            |          |             |        |        |              | 4.4    |          |            |         |  |  |
| 9-Nov-16   | 15       | 22.5        |        | 7.4    |              | 4.3    |          |            |         |  |  |
| 0 1407 10  | 10       | 22.3        |        | 7.5    |              | 4.9    |          |            |         |  |  |
|            |          | 22.5        |        | 7.5    |              | 3.9    |          |            |         |  |  |
|            |          |             |        |        |              | 4.1    |          |            |         |  |  |
|            |          |             |        |        |              |        |          |            |         |  |  |
| 40.11. 40  | 40       | 00.0        |        | 7.0    |              | 3.8    |          |            |         |  |  |
| 10-Nov-16  | 16       | 22.3        |        | 7.8    |              | 3.2    |          |            |         |  |  |
|            |          | 22.3        |        | 7.6    |              | 3.0    |          |            |         |  |  |
|            |          |             |        |        |              | 4.6    |          |            |         |  |  |
|            |          |             |        |        |              | 3.0    |          |            |         |  |  |
|            |          |             |        |        |              | 3.7    |          |            |         |  |  |
| 11-Nov-16  | 17       | 22.3        |        | 7.9    |              | 4.0    |          |            |         |  |  |
|            |          | 22.2        |        | 7.7    |              | 3.6    |          |            |         |  |  |
|            |          |             |        |        |              | 5.2    |          |            |         |  |  |
|            |          |             |        |        |              | 3.4    |          |            |         |  |  |
|            |          |             |        |        |              | 4.4    |          |            |         |  |  |
| 12-Nov-16  | 18       | 22.1        |        | 7.8    |              | 5.6    |          |            |         |  |  |
| 12-1100-10 | 10       | 22.1        |        | 7.7    |              |        |          |            |         |  |  |
|            |          | 22.1        |        | 7.7    |              | 5.2    |          |            |         |  |  |
|            |          |             |        |        |              | 5.8    |          |            |         |  |  |
|            |          |             |        |        |              | 5.4    |          |            |         |  |  |
|            |          |             |        |        |              | 5.2    |          |            |         |  |  |
| 13-Nov-16  | 19       | 22.3        |        | 7.7    |              | 4.8    |          |            |         |  |  |
|            |          | 22.3        |        | 7.3    |              | 4.4    |          |            |         |  |  |
|            |          |             |        |        |              | 4.4    |          |            |         |  |  |
|            |          |             |        |        |              | 4.2    |          |            |         |  |  |
|            |          |             |        |        |              | 4.6    |          |            |         |  |  |
| 14-Nov-16  | 20       | 22.3        |        | 7.8    |              | 3.6    |          |            |         |  |  |
|            |          | 22.3        |        | 7.7    |              | 3.6    |          |            |         |  |  |
|            |          | 22.0        |        |        |              | 3.6    |          |            |         |  |  |
|            |          |             |        |        |              | 3.2    |          |            |         |  |  |
|            |          |             |        |        |              |        |          |            |         |  |  |
| 45 N. 40   | 04       | 00.4        | 0.00   |        | 040          | 4.4    | 100      | 404        | 0.05    |  |  |
| 15-Nov-16  | 21       | 22.4        | 8.02   | 7.7    | 319          | 4.0    | 136      | 104        | 0.95    |  |  |
|            |          | 22.3        | 8.01   | 7.5    | 318          | 4.0    |          |            |         |  |  |
|            |          |             |        |        |              | 4.4    |          |            |         |  |  |
|            |          |             |        |        |              | 3.5    |          |            |         |  |  |
|            |          |             |        |        |              | 4.8    |          |            |         |  |  |
| 16-Nov-16  | 22       | 22.8        |        | 7.0    |              | 4.8    |          |            |         |  |  |
|            |          | 22.8        |        | 7.0    |              | 4.2    |          |            |         |  |  |
|            |          |             |        |        |              | 4.6    |          |            |         |  |  |
|            |          |             |        |        |              | 3.8    |          |            |         |  |  |
|            |          |             |        |        |              | 4.4    |          |            |         |  |  |
| 17-Nov-16  | 23       | 22.5        |        | 7.6    |              | 4.4    |          |            |         |  |  |
| 17 1404 10 | 20       | 22.4        |        | 7.6    |              | 4.0    |          |            |         |  |  |
|            |          | 22.4        |        | 7.0    |              | 4.4    |          |            |         |  |  |
|            |          |             |        |        |              |        |          |            |         |  |  |
|            |          |             |        |        |              | 5.2    |          |            |         |  |  |
|            |          |             |        |        |              | 5.4    |          |            |         |  |  |
| 18-Nov-16  | 24       | 22.3        |        | 5.9    |              | 4.8    |          |            |         |  |  |
|            |          | 22.5        |        | 6.8    |              | 4.6    |          |            |         |  |  |
|            |          |             |        |        |              | 4.7    |          |            |         |  |  |
|            |          |             |        |        |              | 3.9    |          |            |         |  |  |
|            |          |             |        |        |              | 3.6    |          |            |         |  |  |
| 19-Nov-16  | 25       | 22.0        |        | 7.9    |              | 4.0    |          |            |         |  |  |
|            |          | 22.0        |        | 7.9    |              | 4.0    |          |            |         |  |  |
|            |          |             |        | * * *  |              | 4.4    |          |            |         |  |  |
|            |          |             |        |        |              | 3.6    |          |            |         |  |  |
|            |          |             |        |        |              | 3.6    |          |            |         |  |  |
|            |          |             |        |        |              | 3.0    |          |            |         |  |  |
|            |          |             |        |        |              |        |          |            |         |  |  |



Bay West 2386-01 **BW16MLW-001** 

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:  |          | 11080               |              |                | rest species. Lumbriculus variegatus |                |                    |                      |                   |  |  |
|-----------|----------|---------------------|--------------|----------------|--------------------------------------|----------------|--------------------|----------------------|-------------------|--|--|
| Date      | Test Day | Temperature<br>(°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity (µmos)                  | Flow<br>ml/min | Hardness<br>(mg/L) | Alkalinity<br>(mg/L) | Ammonia<br>(mg/L) |  |  |
| 20-Nov-16 | 26       | 22.0                |              | 8.1            |                                      | 4.0            |                    |                      |                   |  |  |
|           |          | 22.0                |              | 8.0            |                                      | 4.0            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 4.0            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 4.0            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.6            |                    |                      |                   |  |  |
| 21-Nov-16 | 27       | 22.1                |              | 8.2            |                                      | 4.0            |                    |                      |                   |  |  |
|           |          | 22.0                |              | 8.1            |                                      | 3.6            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 4.0            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.2            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.2            |                    |                      |                   |  |  |
| 22-Nov-16 | 28       | 22.6                | 8.16         | 8.2            | 317                                  | 4.0            | 136                | 102                  | 0.52              |  |  |
|           |          | 22.6                | 8.14         | 8.2            | 316                                  | 4.2            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.8            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.8            |                    |                      |                   |  |  |
|           |          |                     |              |                |                                      | 3.8            |                    |                      |                   |  |  |
| MEAN      |          | 22.4                | 8.03         | 7.6            | 312                                  | 4.1            | 134                | 99                   | 0.68              |  |  |
| N=        |          | 58                  | 10           | 58             | 10                                   | 145            | 6                  | 6                    | 6                 |  |  |
| Min #     |          | 22.0                | 7.87         | 5.9            | 305                                  | 3.0            | 124                | 94                   | 0.11              |  |  |
| Max #     |          | 23.1                | 8.17         | 8.7            | 319                                  | 5.8            | 140                | 104                  | 1.21              |  |  |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)
U = Below MDL
J = ≥MDL and <RL



Bay West 2386-01 BW16MLW-002 11081

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:  |          | 1081                |              |                 |                      |                |                    |               |                |
|-----------|----------|---------------------|--------------|-----------------|----------------------|----------------|--------------------|---------------|----------------|
| Date      | Test Day | Temperature<br>(°C) | pH<br>(s.u.) | D.O.<br>(mg/l.) | Conductivity (µmos)  | Flow<br>ml/min | Hardness<br>(mg/L) |               | Ammonia        |
| 25-Oct-16 | 0        | 22.2                | 8.15         | (mg/L)<br>8.5   | <u>(µmos)</u><br>306 | 4.6            | 136                | (mg/L)<br>100 | (mg/L)<br>0.20 |
|           |          | 22.4                | 8.19         | 8.5             | 306                  | 4.6            |                    |               |                |
|           |          |                     |              |                 |                      | 5.2            |                    |               |                |
|           |          |                     |              |                 |                      | 5.2            |                    |               |                |
| 26-Oct-16 | 1        | 22.1                |              | 6.9             |                      | 5.0<br>5.0     |                    |               |                |
| 20 000 10 |          | 22.1                |              | 7.2             |                      | 4.8            |                    |               |                |
|           |          |                     |              |                 |                      | 4.8            |                    |               |                |
|           |          |                     |              |                 |                      | 4.6            |                    |               |                |
| 27-Oct-16 | 2        | 22.8                |              | 8.6             |                      | 4.6<br>4.4     |                    |               |                |
| 27-001-10 | 2        | 22.9                |              | 8.4             |                      | 4.4            |                    |               |                |
|           |          |                     |              |                 |                      | 4.6            |                    |               |                |
|           |          |                     |              |                 |                      | 4.4            |                    |               |                |
| 20 Oct 16 | 2        | 22.7                |              | 7.0             |                      | 4.4            |                    |               |                |
| 28-Oct-16 | 3        | 22.7<br>22.6        |              | 7.9<br>7.6      |                      | 4.0<br>4.0     |                    |               |                |
|           |          | 22.0                |              | 7.0             |                      | 3.8            |                    |               |                |
|           |          |                     |              |                 |                      | 3.8            |                    |               |                |
|           | _        |                     |              |                 |                      | 3.6            |                    |               |                |
| 29-Oct-16 | 4        | 22.7                |              | 7.7<br>7.4      |                      | 5.4            |                    |               |                |
|           |          | 22.8                |              | 7.4             |                      | 5.6<br>5.4     |                    |               |                |
|           |          |                     |              |                 |                      | 5.4            |                    |               |                |
|           |          |                     |              |                 |                      | 5.0            |                    |               |                |
| 30-Oct-16 | 5        | 22.4                |              | 7.0             |                      | 6.4            |                    |               |                |
|           |          | 22.6                |              | 6.9             |                      | 6.4<br>7.0     |                    |               |                |
|           |          |                     |              |                 |                      | 6.8            |                    |               |                |
|           |          |                     |              |                 |                      | 5.6            |                    |               |                |
| 31-Oct-16 | 6        | 22.5                |              | 7.4             |                      | 4.0            |                    |               |                |
|           |          | 22.6                |              | 7.2             |                      | 4.0            |                    |               |                |
|           |          |                     |              |                 |                      | 4.0<br>4.3     |                    |               |                |
|           |          |                     |              |                 |                      | 3.2            |                    |               |                |
| 1-Nov-16  | 7        | 22.8                | 7.81         | 6.7             | 304                  | 4.2            | 124                | 94            | 1.06           |
|           |          | 22.8                | 7.80         | 6.8             | 299                  | 4.2            |                    |               |                |
|           |          |                     |              |                 |                      | 4.3<br>4.0     |                    |               |                |
|           |          |                     |              |                 |                      | 3.2            |                    |               |                |
| 2-Nov-16  | 8        | 22.9                |              | 7.3             |                      | 3.6            |                    |               |                |
|           |          | 22.9                |              | 7.2             |                      | 3.4            |                    |               |                |
|           |          |                     |              |                 |                      | 3.4            |                    |               |                |
|           |          |                     |              |                 |                      | 3.3<br>3.2     |                    |               |                |
| 3-Nov-16  | 9        | 23.0                |              | 7.3             |                      | 3.9            |                    |               |                |
|           |          | 23.2                |              | 7.1             |                      | 3.8            |                    |               |                |
|           |          |                     |              |                 |                      | 4.0            |                    |               |                |
|           |          |                     |              |                 |                      | 3.9<br>3.1     |                    |               |                |
| 4-Nov-16  | 10       | 22.8                |              | 7.3             |                      | 3.9            |                    |               |                |
|           |          | 22.9                |              | 6.7             |                      | 3.7            |                    |               |                |
|           |          |                     |              |                 |                      | 4.3            |                    |               |                |
|           |          |                     |              |                 |                      | 4.2            |                    |               |                |
| 5-Nov-16  | 11       | 22.8                |              | 7.3             |                      | 3.9<br>3.6     |                    |               |                |
| 0 1101 10 |          | 22.8                |              | 7.3             |                      | 3.9            |                    |               |                |
|           |          |                     |              |                 |                      | 3.7            |                    |               |                |
|           |          |                     |              |                 |                      | 3.7            |                    |               |                |
| 6-Nov-16  | 12       | 22.7                |              | 6.6             |                      | 4.1            |                    |               |                |
| 0-1404-10 | 12       | 22.7<br>22.7        |              | 6.6<br>6.6      |                      | 4.3<br>4.1     |                    |               |                |
|           |          | 22.,                |              | 0.0             |                      | 3.9            |                    |               |                |
|           |          |                     |              |                 |                      | 4.0            |                    |               |                |
| 7.11      | 40       | 00.5                |              |                 |                      | 3.7            |                    |               |                |
| 7-Nov-16  | 13       | 22.8                |              | 7.4<br>7.3      |                      | 3.9            |                    |               |                |
|           |          | 23.0                |              | 7.3             |                      | 3.7<br>4.2     |                    |               |                |
|           |          |                     |              |                 |                      | 4.3            |                    |               |                |
|           |          |                     |              |                 |                      | 3.9            |                    |               |                |
|           |          |                     |              |                 |                      |                |                    |               |                |



Bay West 2386-01 BW16MLW-002 11081

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:   |          | 11081        |        |            |              |            |          |            |         |  |  |
|------------|----------|--------------|--------|------------|--------------|------------|----------|------------|---------|--|--|
|            |          | Temperature  | pН     | D.O.       | Conductivity | Flow       | Hardness | Alkalinity | Ammonia |  |  |
| Date       | Test Day | (°C)         | (s.u.) | (mg/L)     | (µmos)       | ml/min     | (mg/L)   | (mg/L)     | (mg/L)  |  |  |
| 8-Nov-16   | 14       | 23.1         | 7.82   | 7.0        | 309          | 4.1        | 132      | 96         | 1.19    |  |  |
|            |          | 23.2         | 7.80   | 6.8        | 309          | 3.9        |          |            |         |  |  |
|            |          |              |        |            |              | 4.4        |          |            |         |  |  |
|            |          |              |        |            |              | 4.0        |          |            |         |  |  |
|            |          |              |        |            |              | 4.0        |          |            |         |  |  |
| 9-Nov-16   | 15       | 22.7         |        | 7.0        |              | 3.7        |          |            |         |  |  |
|            |          | 22.6         |        | 6.9        |              | 3.4        |          |            |         |  |  |
|            |          |              |        |            |              | 3.5        |          |            |         |  |  |
|            |          |              |        |            |              | 4.1        |          |            |         |  |  |
|            |          |              |        |            |              | 3.1        |          |            |         |  |  |
| 10-Nov-16  | 16       | 22.2         |        | 7.4        |              | 3.2        |          |            |         |  |  |
|            |          | 22.3         |        | 7.2        |              | 3.0        |          |            |         |  |  |
|            |          |              |        |            |              | 3.4        |          |            |         |  |  |
|            |          |              |        |            |              | 3.2        |          |            |         |  |  |
| 44 Nov. 40 | 47       | 00.0         |        | 7.0        |              | 3.0        |          |            |         |  |  |
| 11-Nov-16  | 17       | 22.6         |        | 7.6        |              | 4.4        |          |            |         |  |  |
|            |          | 22.7         |        | 7.5        |              | 4.4        |          |            |         |  |  |
|            |          |              |        |            |              | 5.2        |          |            |         |  |  |
|            |          |              |        |            |              | 4.8        |          |            |         |  |  |
| 40 Nov. 40 | 40       | 00.0         |        | 7.5        |              | 4.4        |          |            |         |  |  |
| 12-Nov-16  | 18       | 22.2<br>22.1 |        | 7.5<br>7.4 |              | 5.2<br>4.8 |          |            |         |  |  |
|            |          | 22.1         |        | 7.4        |              | 4.8        |          |            |         |  |  |
|            |          |              |        |            |              | 4.6<br>4.4 |          |            |         |  |  |
|            |          |              |        |            |              | 5.2        |          |            |         |  |  |
| 13-Nov-16  | 19       | 22.5         |        | 7.1        |              | 5.0        |          |            |         |  |  |
| 13-1104-10 | 19       | 22.4         |        | 7.1        |              | 5.0        |          |            |         |  |  |
|            |          | 22.7         |        | 7.0        |              | 4.8        |          |            |         |  |  |
|            |          |              |        |            |              | 4.6        |          |            |         |  |  |
|            |          |              |        |            |              | 5.0        |          |            |         |  |  |
| 14-Nov-16  | 20       | 22.5         |        | 7.8        |              | 4.2        |          |            |         |  |  |
|            |          | 22.5         |        | 7.6        |              | 4.0        |          |            |         |  |  |
|            |          |              |        |            |              | 4.0        |          |            |         |  |  |
|            |          |              |        |            |              | 3.6        |          |            |         |  |  |
|            |          |              |        |            |              | 4.4        |          |            |         |  |  |
| 15-Nov-16  | 21       | 22.4         | 7.95   | 7.6        | 317          | 3.4        | 132      | 100        | 0.82    |  |  |
|            |          | 22.5         | 7.96   | 7.3        | 315          | 3.2        |          |            |         |  |  |
|            |          |              |        |            |              | 3.6        |          |            |         |  |  |
|            |          |              |        |            |              | 3.0        |          |            |         |  |  |
|            |          |              |        |            |              | 3.6        |          |            |         |  |  |
| 16-Nov-16  | 22       | 22.8         |        | 7.0        |              | 4.0        |          |            |         |  |  |
|            |          | 22.9         |        | 7.0        |              | 4.4        |          |            |         |  |  |
|            |          |              |        |            |              | 5.2        |          |            |         |  |  |
|            |          |              |        |            |              | 5.0        |          |            |         |  |  |
|            |          |              |        |            |              | 5.4        |          |            |         |  |  |
| 17-Nov-16  | 23       | 22.5         |        | 7.6        |              | 5.0        |          |            |         |  |  |
|            |          | 22.7         |        | 7.6        |              | 4.6        |          |            |         |  |  |
|            |          |              |        |            |              | 5.2        |          |            |         |  |  |
|            |          |              |        |            |              | 4.6        |          |            |         |  |  |
|            |          |              |        |            |              | 4.8        |          |            |         |  |  |
| 18-Nov-16  | 24       | 22.5         |        | 7.2        |              | 4.3        |          |            |         |  |  |
|            |          | 22.7         |        | 7.2        |              | 3.8        |          |            |         |  |  |
|            |          |              |        |            |              | 4.4        |          |            |         |  |  |
|            |          |              |        |            |              | 4.0        |          |            |         |  |  |
| 40 N= 40   | 25       | 22.4         |        | 7.5        |              | 4.6        |          |            |         |  |  |
| 19-Nov-16  | 25       | 22.1<br>22.2 |        | 7.5<br>7.5 |              | 4.0        |          |            |         |  |  |
|            |          | 22.2         |        | 7.5        |              | 3.2<br>4.0 |          |            |         |  |  |
|            |          |              |        |            |              | 4.0<br>3.6 |          |            |         |  |  |
|            |          |              |        |            |              | 3.6<br>4.0 |          |            |         |  |  |
|            |          |              |        |            |              | 4.0        |          |            |         |  |  |
|            |          |              |        |            |              |            |          |            |         |  |  |



Bay West 2386-01 **BW16MLW-002** 11081

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

|           |          | Temperature | pН     | D.O.   | Conductivity | Flow   | Hardnoss | Alkalinity | Ammonia |
|-----------|----------|-------------|--------|--------|--------------|--------|----------|------------|---------|
| Date      | Test Day | (°C)        | (s.u.) | (mg/L) | (μmos)       | ml/min | (mg/L)   | (mg/L)     | (mg/L)  |
| 20-Nov-16 | 26       | 22.2        |        | 8.1    | *            | 3.6    | -        |            |         |
|           |          | 22.3        |        | 7.9    |              | 3.2    |          |            |         |
|           |          |             |        |        |              | 3.6    |          |            |         |
|           |          |             |        |        |              | 3.2    |          |            |         |
|           |          |             |        |        |              | 4.0    |          |            |         |
| 21-Nov-16 | 27       | 22.1        |        | 8.2    |              | 3.8    |          |            |         |
|           |          | 22.1        |        | 8.0    |              | 3.2    |          |            |         |
|           |          |             |        |        |              | 3.6    |          |            |         |
|           |          |             |        |        |              | 3.2    |          |            |         |
|           |          |             |        |        |              | 4.0    |          |            |         |
| 22-Nov-16 | 28       | 22.4        | 8.14   | 8.2    | 316          | 4.0    | 140      | 102        | 0.61    |
|           |          | 22.6        | 8.12   | 8.2    | 317          | 3.8    |          |            |         |
|           |          |             |        |        |              | 3.6    |          |            |         |
|           |          |             |        |        |              | 3.8    |          |            |         |
|           |          |             |        |        |              | 4.0    |          |            |         |
| MEAN      |          | 22.6        | 7.97   | 7.4    | 310          | 4.2    | 133      | 98         | 0.78    |
| N=        |          | 58          | 10     | 58     | 10           | 145    | 5        | 5          | 5       |
| Min #     |          | 22.1        | 7.80   | 6.6    | 299          | 3.0    | 124      | 94         | 0.20    |
| Max #     |          | 23.2        | 8.19   | 8.6    | 317          | 7.0    | 140      | 102        | 1.19    |

Ammonia Reporting Limits: RL = Reporting Limit (0.20 mg/L) MDL = Minimum Detection Limit (0.02 mg/L) U = Below MDL  $J = \Delta MDL$  and  $\Delta RL$ 



Bay West 2386-01 BW16MLW-003 11082

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:  |          | 11082        |                |               |                       |                      |               |                      |                |
|-----------|----------|--------------|----------------|---------------|-----------------------|----------------------|---------------|----------------------|----------------|
| Data      | T 1 D    | Temperature  | pH             | D.O.          | Conductivity          | Flow                 |               |                      | Ammonia        |
| 25-Oct-16 | Test Day | (°C)<br>22.4 | (s.u.)<br>8.22 | (mg/L)<br>8.6 | (μ <b>mos)</b><br>309 | <b>ml/min</b><br>4.8 | (mg/L)<br>140 | ( <b>mg/L)</b><br>96 | (mg/L)<br>0.22 |
| 20 000 10 | Ü        | 22.4         | 8.13           | 8.5           | 309                   | 4.8                  | 140           | 00                   | 0.22           |
|           |          |              |                |               |                       | 5.2                  |               |                      |                |
|           |          |              |                |               |                       | 5.0                  |               |                      |                |
| 26 Oct 16 | 4        | 22.0         |                | 7.0           |                       | 5.0                  |               |                      |                |
| 26-Oct-16 | 1        | 22.0<br>22.0 |                | 7.0<br>7.0    |                       | 4.6<br>4.8           |               |                      |                |
|           |          | 22.0         |                | 7.0           |                       | 4.4                  |               |                      |                |
|           |          |              |                |               |                       | 4.6                  |               |                      |                |
|           |          |              |                |               |                       | 4.6                  |               |                      |                |
| 27-Oct-16 | 2        | 22.8         |                | 8.2           |                       | 4.6                  |               |                      |                |
|           |          | 22.8         |                | 8.0           |                       | 4.4<br>4.6           |               |                      |                |
|           |          |              |                |               |                       | 4.6                  |               |                      |                |
|           |          |              |                |               |                       | 4.6                  |               |                      |                |
| 28-Oct-16 | 3        | 22.7         |                | 7.7           |                       | 3.8                  |               |                      |                |
|           |          | 22.8         |                | 7.8           |                       | 3.8<br>3.6           |               |                      |                |
|           |          |              |                |               |                       | 3.6                  |               |                      |                |
|           |          |              |                |               |                       | 3.8                  |               |                      |                |
| 29-Oct-16 | 4        | 22.9         |                | 6.5           |                       | 6.0                  |               |                      |                |
|           |          | 23.0         |                | 6.4           |                       | 7.0                  |               |                      |                |
|           |          |              |                |               |                       | 5.2                  |               |                      |                |
|           |          |              |                |               |                       | 7.0<br>3.6           |               |                      |                |
| 30-Oct-16 | 5        | 22.7         |                | 7.4           |                       | 7.0                  |               |                      |                |
|           |          | 22.7         |                | 7.5           |                       | 5.2                  |               |                      |                |
|           |          |              |                |               |                       | 5.2                  |               |                      |                |
|           |          |              |                |               |                       | 4.0                  |               |                      |                |
| 31-Oct-16 | 6        | 22.5         |                | 6.7           |                       | 4.0<br>4.4           |               |                      |                |
| 31 001 10 | O        | 22.6         |                | 6.6           |                       | 6.0                  |               |                      |                |
|           |          |              |                |               |                       | 4.4                  |               |                      |                |
|           |          |              |                |               |                       | 4.0                  |               |                      |                |
| 4 Nav. 40 | 7        | 22.4         | 7.05           | 7.4           | 204                   | 3.6                  | 400           | 00                   | 4.44           |
| 1-Nov-16  | 7        | 23.1<br>23.0 | 7.85<br>7.69   | 7.1<br>5.8    | 304<br>307            | 4.0<br>6.6           | 128<br>120    | 98<br>100            | 1.14<br>1.12   |
|           |          | 20.0         | 7.00           | 0.0           | 007                   | 4.6                  | 120           | 100                  | 2              |
|           |          |              |                |               |                       | 4.0                  |               |                      |                |
|           | _        |              |                |               |                       | 3.6                  |               |                      |                |
| 2-Nov-16  | 8        | 22.9         |                | 6.2           |                       | 4.0                  |               |                      |                |
|           |          | 22.9         |                | 6.5           |                       | 6.6<br>4.4           |               |                      |                |
|           |          |              |                |               |                       | 3.8                  |               |                      |                |
|           |          |              |                |               |                       | 3.8                  |               |                      |                |
| 3-Nov-16  | 9        | 23.2         |                | 7.8           |                       | 4.1                  |               |                      |                |
|           |          | 23.3         |                | 6.3           |                       | 6.3<br>4.4           |               |                      |                |
|           |          |              |                |               |                       | 3.5                  |               |                      |                |
|           |          |              |                |               |                       | 3.3                  |               |                      |                |
| 4-Nov-16  | 10       | 22.9         |                | 7.4           |                       | 4.3                  |               |                      |                |
|           |          | 22.9         |                | 7.5           |                       | 5.9                  |               |                      |                |
|           |          |              |                |               |                       | 4.4<br>3.4           |               |                      |                |
|           |          |              |                |               |                       | 3.0                  |               |                      |                |
| 5-Nov-16  | 11       | 22.6         |                | 7.8           |                       | 4.0                  |               |                      |                |
|           |          | 22.8         |                | 6.7           |                       | 4.7                  |               |                      |                |
|           |          |              |                |               |                       | 4.8                  |               |                      |                |
|           |          |              |                |               |                       | 4.0<br>4.1           |               |                      |                |
| 6-Nov-16  | 12       | 22.5         |                | 7.1           |                       | 3.8                  |               |                      |                |
|           |          | 22.5         |                | 7.4           |                       | 4.3                  |               |                      |                |
|           |          |              |                |               |                       | 5.0                  |               |                      |                |
|           |          |              |                |               |                       | 4.7                  |               |                      |                |
| 7-Nov-16  | 13       | 23.2         |                | 6.8           |                       | 4.7<br>4.0           |               |                      |                |
| , 1,00 10 | 10       | 23.3         |                | 6.6           |                       | 6.4                  |               |                      |                |
|           |          |              |                |               |                       | 4.7                  |               |                      |                |
|           |          |              |                |               |                       | 3.2                  |               |                      |                |
|           |          |              |                |               |                       | 3.5                  |               |                      |                |



Bay West 2386-01 BW16MLW-003 11082

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLEC ID:   |          |                     |              |                |                        |                |                    |                   |                   |
|------------|----------|---------------------|--------------|----------------|------------------------|----------------|--------------------|-------------------|-------------------|
| Date       | Test Day | Temperature<br>(°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity<br>(µmos) | Flow<br>ml/min | Hardness<br>(mg/L) | Alkalinity (mg/L) | Ammonia<br>(mg/L) |
| 8-Nov-16   | 14       | 23.2                | 7.98         | 7.4            | 306                    | 4.4            | 128                | 96                | 1.33              |
|            |          | 23.1                | 8.03         | 7.5            | 306                    | 6.4            | 128                | 98                | 1.32              |
|            |          |                     |              |                |                        | 4.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.2            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.4            |                    |                   |                   |
| 9-Nov-16   | 15       | 22.5                |              | 7.1            |                        | 4.0            |                    |                   |                   |
|            |          | 22.5                |              | 6.4            |                        | 4.0            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.9            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.2            |                    |                   |                   |
| 40 N 40    | 40       | 00.4                |              | 7.4            |                        | 3.8            |                    |                   |                   |
| 10-Nov-16  | 16       | 22.4                |              | 7.1<br>6.8     |                        | 3.6            |                    |                   |                   |
|            |          | 22.5                |              | 0.0            |                        | 3.4            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.9<br>3.2     |                    |                   |                   |
|            |          |                     |              |                |                        | 3.0            |                    |                   |                   |
| 11-Nov-16  | 17       | 22.6                |              | 7.8            |                        | 4.4            |                    |                   |                   |
| 11-1404-10 | 17       | 22.7                |              | 7.4            |                        | 6.8            |                    |                   |                   |
|            |          | 22.1                |              | 7.4            |                        | 5.2            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.5            |                    |                   |                   |
| 12-Nov-16  | 18       | 22.2                |              | 7.1            |                        | 5.2            |                    |                   |                   |
| .2         | .0       | 22.2                |              | 7.2            |                        | 6.2            |                    |                   |                   |
|            |          |                     |              |                |                        | 6.4            |                    |                   |                   |
|            |          |                     |              |                |                        | 5.2            |                    |                   |                   |
|            |          |                     |              |                |                        | 5.2            |                    |                   |                   |
| 13-Nov-16  | 19       | 22.3                |              | 7.4            |                        | 4.4            |                    |                   |                   |
|            |          | 22.3                |              | 7.4            |                        | 5.0            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.4            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.6            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.6            |                    |                   |                   |
| 14-Nov-16  | 20       | 22.6                |              | 7.6            |                        | 4.4            |                    |                   |                   |
|            |          | 22.6                |              | 7.3            |                        | 6.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.8            |                    |                   |                   |
| 15-Nov-16  | 21       | 22.5                | 8.05         | 7.7            | 314                    | 4.0            | 136                | 102               | 0.81              |
|            |          | 22.6                | 7.86         | 7.1            | 313                    | 6.0            | 136                | 100               | 0.83              |
|            |          |                     |              |                |                        | 4.0            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.2            |                    |                   |                   |
| 40 Nov. 40 | 20       | 22.0                |              | 7.4            |                        | 3.0            |                    |                   |                   |
| 16-Nov-16  | 22       | 22.9                |              | 7.1<br>7.1     |                        | 5.2            |                    |                   |                   |
|            |          | 22.9                |              | 7.1            |                        | 5.6<br>5.4     |                    |                   |                   |
|            |          |                     |              |                |                        | 5.4            |                    |                   |                   |
|            |          |                     |              |                |                        | 5.8            |                    |                   |                   |
| 17-Nov-16  | 23       | 22.6                |              | 7.5            |                        | 5.0            |                    |                   |                   |
| 17 1407 10 | 20       | 22.7                |              | 7.1            |                        | 4.4            |                    |                   |                   |
|            |          | 22.1                |              | 7.1            |                        | 4.0            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.4            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.2            |                    |                   |                   |
| 18-Nov-16  | 24       | 22.8                |              | 7.4            |                        | 4.8            |                    |                   |                   |
|            |          | 22.9                |              | 7.1            |                        | 4.4            |                    |                   |                   |
|            |          | · <del>-</del>      |              |                |                        | 3.9            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.8            |                    |                   |                   |
|            |          |                     |              |                |                        | 4.0            |                    |                   |                   |
| 19-Nov-16  | 25       | 22.2                |              | 7.8            |                        | 4.0            |                    |                   |                   |
|            |          | 22.3                |              | 7.5            |                        | 3.6            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.2            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.6            |                    |                   |                   |
|            |          |                     |              |                |                        | 3.2            |                    |                   |                   |
|            |          |                     |              |                |                        |                |                    |                   |                   |



Project Name: Project Number: Sample ID: GLEC ID: Bay West 2386-01 BW16MLW-003

11082

Test Dates: 10/25/16 - 11/22/16
Test Type: 28 Day Whole Sediment Toxicity Survival and Growth
Test Species: Lumbriculus variegatus

| GLLC ID.  |          | 11002               |              |                |                     |                |                    |                      |                   |
|-----------|----------|---------------------|--------------|----------------|---------------------|----------------|--------------------|----------------------|-------------------|
| Date      | Test Day | Temperature<br>(°C) | pH<br>(s.u.) | D.O.<br>(mg/L) | Conductivity (µmos) | Flow<br>ml/min | Hardness<br>(mg/L) | Alkalinity<br>(mg/L) | Ammonia<br>(mg/L) |
| 20-Nov-16 | 26       | 22.3                | ` '          | 8.1            | <b>"</b>            | 3.6            | , , ,              | `                    | , , ,             |
|           |          | 22.4                |              | 8.1            |                     | 3.2            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.6            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.2            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.2            |                    |                      |                   |
| 21-Nov-16 | 27       | 22.1                |              | 7.8            |                     | 4.0            |                    |                      |                   |
|           |          | 22.2                |              | 7.7            |                     | 3.2            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.2            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.2            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.2            |                    |                      |                   |
| 22-Nov-16 | 28       | 22.4                | 8.12         | 8.1            | 320                 | 3.8            | 132                | 100                  | 0.71              |
|           |          | 22.4                | 8.13         | 7.9            | 320                 | 3.8            | 132                | 100                  | 0.66              |
|           |          |                     |              |                |                     | 3.6            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.8            |                    |                      |                   |
|           |          |                     |              |                |                     | 3.8            |                    |                      |                   |
| MEAN      |          | 22.6                | 8.01         | 7.3            | 311                 | 4.4            | 131                | 99                   | 0.90              |
| N=        |          | 58                  | 10           | 58             | 10                  | 145            | 9                  | 9                    | 9                 |
| Min#      |          | 22.0                | 7.69         | 5.8            | 304                 | 3.0            | 120                | 96                   | 0.22              |
| Max #     |          | 23.3                | 8.22         | 8.6            | 320                 | 7.0            | 140                | 102                  | 1.33              |

Ammonia Reporting Limits:
RL = Reporting Limit (0.20 mg/L)
MDL = Minimum Detection Limit (0.02 mg/L)
U = Below MDL

J = ≥MDL and <RL

# Appendix C1 Chironomus dilutus 10-Day Bench Sheets

- Survival
- Weight



Page \_\_7\_\_of \_\_\_\_\_

QC'd by: NV

### Chironomus dilutus 10-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:     |                     | Project Name: | Bay West         |             | Test Method-Manual:       |                           | EPA 100.2-EPA        | /600/R-99/06                                           | 4                        |
|---------------------|---------------------|---------------|------------------|-------------|---------------------------|---------------------------|----------------------|--------------------------------------------------------|--------------------------|
| GLC#:               | CS#136              |               |                  |             | Test Photoperiod: 16:8    |                           |                      |                                                        |                          |
| Sample ID:          | West Bearskin       | Lake          |                  |             |                           | -100 mL and Overlying     | Water-175mL Ma       | nual Delivery                                          |                          |
| Test Species: CI    | hironomus dilutus   |               |                  |             | Test Temperature: 23±     | 1°C                       |                      |                                                        |                          |
| Date Addition of    | Sediment:           | 10/13/2016    |                  |             | Test Organism Source/A    | ige:                      | ABS: 10 days         |                                                        |                          |
| Test Initiation Dat | te:                 | 10/14/2016    |                  |             | Test Termination Date:    |                           | 10/24/2016           |                                                        |                          |
| Test Day: Da        | ıy 10               |               |                  |             | Number Daily Renewals     | :: <b>\</b> Air: □ yes    | . <b>≰</b> no        |                                                        |                          |
| Date:               | 10/24/2016          |               |                  |             |                           | newal time/Initials —     |                      | iewal-                                                 |                          |
| Overlying Water:    |                     |               |                  |             |                           | newal time/Initials □     | rer                  | iewal-                                                 | <del></del>              |
|                     | Batch ID (GLC Nu    | nber): NA     |                  |             | Food: -TFS#-(4g/L)-       | <del>a F</del> o          | eed 1.5 ml/replicate |                                                        | <del></del>              |
|                     | chemistries time/Ir |               |                  |             | Screens Cleaned:   yes    | s <b>S</b> no             |                      |                                                        | · · · · ·                |
| Replicate           | Temperature         | pН            | Dissolved Oxygen | Specific    | Hardness                  | Alkalinity                | Ammonia              | Observ                                                 | ations/                  |
|                     | (23± 1°C)*          | *             | (mg/L)*          | Conductance | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)               | # Surv                                                 | viving                   |
|                     | (23±1 €)            |               | ( <u></u> -)     | (µmhos/cm)  | (mg/L caco <sub>3</sub> ) | (mg/L cacca)              | (4511)               | Organ                                                  |                          |
| Record              |                     |               |                  |             |                           |                           |                      | Init:                                                  |                          |
| Meter ID            | 40                  | 203           | 536              | 236         | N/A                       | 903                       | 4                    | J. U                                                   | nut                      |
| 1                   | /                   | /             |                  |             | 120                       | 90                        | 0.67                 | Larvae:10<br>Punae: 6<br>Midge                         | 10/10                    |
| 2                   |                     |               |                  |             | end: 13-8                 | end:                      | /                    | Larvae: (0<br>Punae: &<br>Midge: ©                     | 10/10                    |
| 3                   |                     |               |                  |             | start; 10.8               | start: 17.6               |                      | Larvae: 10<br>Punae: 6<br>Midøe: 0                     | <b>10</b> /10            |
| 4                   |                     |               |                  |             | Titrant used (mL): 3.3    | Titrant<br>used (mL): 4.5 |                      | Larvae: 10<br>Punae: 5<br>Midge: 5                     | <b>10</b> /10            |
| 5                   |                     |               |                  |             | Sample volume (mL): 35    | Sample volume (mL): 50    |                      | Larvae: 10<br>Punae: =><br>Midge: 4                    | 10 /10                   |
| 6                   |                     | /             | /                |             | /                         | /                         |                      | Larvae: <b>G</b><br>Punae: <b>G</b><br>Midge: <b>O</b> | <b>c</b> <sub>1/10</sub> |
| 7                   | 22.7                | 7.38          | 3.6              | 302         |                           |                           |                      | Larvae: <b>G</b><br>Punae: <b>G</b><br>Midøe: <b>O</b> | <b>%</b> 0               |
| 8                   | 22 T                | 7.32          | 3.5              | 301         |                           |                           |                      | Larvae: 10<br>Punae: 0<br>Midge: 0                     | 10 /10                   |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_1 + s_2)/2}$  x 100 =

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 8 replicates.

#### Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \geq \text{MDL and} < \text{RL}.$ 

#### KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible



Page \_ 7\_ of \_ **7** QC'd by:

### Chironomus dilutus 10-Day Survival and Growth Whole Sediment Toxicity Test of QQC mur-

| Project Number:     | 2386-00            | Project Name:    | Bay West                                              |                                                        | Test Method-Manual:                                          |                                            | EPA 100.2-EPA       | /600/R-99/064                          |
|---------------------|--------------------|------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|---------------------|----------------------------------------|
| GLC#:               | N/A                |                  |                                                       |                                                        | Test Photoperiod: 16:8                                       |                                            |                     |                                        |
| Sample ID:          | Water Only         |                  |                                                       |                                                        | ,                                                            | -100 mL and Overlying                      | Water-175mL Ma      | nual Delivery                          |
| Test Species: CI    | hironomus dilutus  |                  |                                                       |                                                        | Test Temperature: 23±                                        | 1°C                                        |                     |                                        |
| Date Addition of S  | Sediment:          | 10/13/2016       |                                                       |                                                        | Test Organism Source/A                                       | \ge:                                       | ABS: 10 days        |                                        |
| Test Initiation Dat | te:                | 10/14/2016       |                                                       |                                                        | Test Termination Date:                                       |                                            | 10/24/2016          |                                        |
|                     |                    |                  |                                                       |                                                        |                                                              |                                            |                     |                                        |
| Test Day: Da        | ıy 10              |                  |                                                       |                                                        | Number Daily Renewals                                        |                                            | <b>k</b> no         |                                        |
| Date:               | 10/24/2016         |                  |                                                       |                                                        | MONDALIN.                                                    | newal time/Initials 🕀                      | rer                 | <del>iewal-</del>                      |
| Overlying Water:    | Dechlor            |                  |                                                       |                                                        | = re                                                         | newal time/Initials — =                    | rer                 | <del>iewal-</del>                      |
| Overlying Water I   | Batch ID (GLC Nui  | nber): <b>NA</b> |                                                       |                                                        | Food: TFS# (4g/L)                                            |                                            | ed 1.5 ml/replicate |                                        |
| ₽0725W. 0           | hemistries time/Ir | nitial           |                                                       |                                                        | Screens Cleaned:   yes                                       | s <b>x</b> no                              |                     |                                        |
| Replicate           | Temperature        | pН               | Dissolved Oxygen                                      | Specific                                               | Hardness                                                     | Alkalinity                                 | Ammonia             | Observations/                          |
|                     | (23± 1°C)*         | _                | (mg/L)*                                               | Conductance                                            | (mg/L CaCO <sub>3</sub> )                                    | (mg/L CaCO <sub>3</sub> )                  | (as N)              | # Surviving                            |
|                     |                    |                  |                                                       | (µmhos/cm)                                             | m,                                                           | kuk)                                       |                     | Organisms                              |
| Record              |                    |                  |                                                       |                                                        |                                                              | , , ,                                      |                     | Init:                                  |
| Meter ID            | 40                 | 203              | 236                                                   | 2310                                                   | N/A                                                          | 103                                        | 4                   | mult                                   |
| 1                   | 7                  | 1                |                                                       |                                                        | 140                                                          | 201                                        | 0.59                | Larvae: 9<br>Punae: 0<br>Midge: 6      |
| 2                   |                    |                  |                                                       |                                                        | end: 31.0                                                    | end: 429                                   | Í                   | Larvae: 10 10/10 Punae: 0 /10 Midge: 0 |
| 3                   |                    |                  |                                                       |                                                        | start: 2e.\                                                  | start: 37-6                                |                     | Larvae: 10<br>Punae: 0<br>Midge: 0     |
| 4                   |                    |                  |                                                       | /                                                      | Titrant used (mL): 3.5                                       | Titrant used (mL): 6.3                     |                     | Larvae: (0 10/10 Midge: 0              |
| 5                   | 1                  |                  |                                                       |                                                        | Sample volume (mL): 25                                       | Sample volume (mL):                        |                     | Larvae: <b>9</b>                       |
| 6                   |                    |                  |                                                       |                                                        |                                                              |                                            |                     | Larvae: 10 10 /10 Midge: 8             |
| 7.                  | 11.3               | 7.52             | 4.2                                                   | 313                                                    |                                                              |                                            |                     | Larvae: 10 10 0 Midge: 3               |
| 8                   | 22.0               | 7.58             | 37                                                    | 319                                                    |                                                              |                                            |                     | Larvae: 10<br>Punae: 10<br>Midge: 10   |
| Relative % Dif      | ference: RPD ≤15   | 5%               | * Contact Laboratory Coo<br>*Alkalinity, hardness and | ordinator if Dissolved Oxyg<br>ammonia analyzed from a | gen level is $< 2.5 \text{ mg/L}$ or composite sample of all | r if Temperature is out of a 8 replicates. | range.              | KEY:                                   |

x 100 =

#### Ammonia Reporting Limits:

RL =Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

 $J = \geq MDL$  and  $\leq RL$ . U = Below MDL.

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible



### Chironomus dilutus 10-Day Survival and Growth Whole Sediment Toxicity Test

0% QC= muo-

| Project Number:     | 2386-00            | Project Name: | Bay West         |             | Test Method-Manual:                |                                    | EPA 100.2-EPA        | /600/R-99/064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
|---------------------|--------------------|---------------|------------------|-------------|------------------------------------|------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| GLC#:               | 11080              |               |                  |             | Test Photoperiod: 16:8             | ·                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Sample ID:          | BW16MLW-00         |               |                  |             |                                    | -100 mL and Overlying              | Water-175mL Ma       | nual Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
| Test Species: Ch    | iironomus dilutus  |               |                  |             | Test Temperature: 23±              |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Date Addition of S  | Sediment:          | 10/13/2016    |                  |             | Test Organism Source/A             | ige:                               | ABS: 10 days         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Test Initiation Dat | e:                 | 10/14/2016    |                  |             | Test Termination Date:             |                                    | 10/24/2016           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                     | 40                 |               |                  |             | Noushan Daile Day and              | s: <b>\</b> Air: □ yes             | had no               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Test Day: Date:     | y 10<br>10/24/2016 |               |                  | •           | Number Daily Renewals              | newal time/Initials —              |                      | <br>newal-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Overlying Water:    |                    |               |                  | •           | <u> </u>                           | newal time/Initials   □            |                      | newal-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
|                     | Batch ID (GLC Nu   | mber): NA     |                  |             | Food: TFS# (4g/L)                  |                                    | eed 1.5 ml/replicate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| , ,                 | hemistries time/I  |               |                  |             | Screens Cleaned:   yes             |                                    | The management       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| Replicate           | Temperature        | pН            | Dissolved Oxygen | Specific    | Hardness                           | Alkalinity                         | Ammonia              | Observati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ons/                             |
| •                   | (23± 1°C)*         | •             | (mg/L)*          | Conductance | (mg/L CaCO <sub>3</sub> )          | (mg/L CaCO <sub>3</sub> )          | (as N)               | # Surviv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing                              |
|                     | (20210)            |               | , g              | (µmhos/cm)  | W                                  | im                                 |                      | Organis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ms                               |
| Record              | 9.3 -              |               |                  | 001         | N/A                                |                                    | 4 C                  | Init: Mult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| Meter ID            | 40                 | 203           | 23Le             | 236         | IN/A                               | 203                                | Ч                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 1                   | /                  |               | 1                |             | 149                                | 102                                | 0.58                 | Larvae: 10<br>Punae: 0<br>Midge: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0/10                             |
| 2                   | /                  | /             | /                |             |                                    |                                    | 1                    | Larvae: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                |
|                     | /                  | /             |                  |             | end: 13.5                          | end: 723                           |                      | Punae: 6<br>Midge: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O /10                            |
| 3                   |                    |               |                  |             | end: 13.5                          | end: 72.3                          |                      | Punae: 6<br>Midge: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o <sub>/10</sub>                 |
| 3                   |                    |               |                  |             | 129                                | 170                                |                      | Punae: 6 Larvae: 10 Punae: 6 Midge: 0 Larvae: 10 Larvae: 10 Punae: C Midge: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o <sub>/10</sub>                 |
|                     |                    |               |                  |             | start: 13.9                        | start: 12.2                        |                      | Punae: 6 Midge: 6 Larvae: 10 Punae: G Midge: J Larvae: 10 Punae: C Midge: G Larvae: G Midge: G Midge: G Midge: G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 /10<br>0 /10<br>10 /10         |
| 4.                  |                    |               |                  |             | start: 13.9 Titrant used (mL): 3.4 | start: 17.2 Titrant used (mL): S.\ |                      | Punae: 6 Midge: 6 Larvae: 10 Punae: C Midge: 9 Larvae: 10 Punae: C Midge: G Larvae: Q Punae: O Midge: G Larvae: Q Midge: G Midge: G Midge: G Midge: G Midge: G Midge: G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 /10<br>0 /10<br>9 /10<br>0 /10 |
| 5                   | 11.8               | 7.43          | 2.3              | 324         | start: 13.9 Titrant used (mL): 3.4 | start: 17.2 Titrant used (mL): S.\ |                      | Punae: 6 Midge: 6 Larvae: 10 Punae: C Midge: 9 Larvae: 10 Punae: C Midge: 9 Larvae: 0 Punae: 0 Midge: 9 Larvae: 10 Punae: 0 Midge: 9 Larvae: 10 Punae: 0 Midge: 9 Mid | 0 /10<br>0 /10<br>10 /10         |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_1 + s_2)/2}$  x 100  $\hat{z}$ 

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 8 replicates.

#### Ammonia Reporting Limits:

RL =Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \geq \text{MDL and} < \text{RL}.$ 

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible



### 2386-00

Page \_\_7\_\_of \_\_\_\_\_

### Bay West Chironomus dilutus 10-Day Survival and Growth Whole Sediment Toxicity Test 107, QC-mut-

| Project Number:    | 2386-00                | Project Name: | Bay West                                                                                      |             | Test Method-Manual:       |                                           | EPA 100.2-EPA        | \/600/R-99/064                                                                                     |
|--------------------|------------------------|---------------|-----------------------------------------------------------------------------------------------|-------------|---------------------------|-------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|
| GLC#:              | 11081                  |               |                                                                                               |             | Test Photoperiod: 16:8    |                                           |                      |                                                                                                    |
| Sample ID:         | BW16MLW-00             | 2-0-0.15      |                                                                                               |             | Test System: Sediment-    | -100 mL and Overlying                     | Water-175mL Ma       | anual Delivery                                                                                     |
| Test Species: Ca   | hironomus dilutus      |               |                                                                                               |             | Test Temperature: 23±     | 1°C                                       |                      | AND                                                            |
| Date Addition of   | Sediment:              | 10/13/2016    |                                                                                               |             | Test Organism Source/A    | ige:                                      | ABS: 10 days         |                                                                                                    |
| Test Initiation Da | te:                    | 10/14/2016    |                                                                                               |             | Test Termination Date:    |                                           | 10/24/2016           |                                                                                                    |
|                    |                        |               |                                                                                               |             |                           |                                           |                      |                                                                                                    |
| Test Day: Da       | ıy 10                  |               |                                                                                               |             | Number Daily Renewals     | <u> </u>                                  |                      |                                                                                                    |
| Date:              | 10/24/2016             |               |                                                                                               |             | 7 7 1 3 1 1 1             | newal time/Initials —                     |                      | newal-                                                                                             |
| Overlying Water:   |                        |               |                                                                                               |             |                           | newal time/Initials   —                   |                      | newal-                                                                                             |
|                    | Batch ID (GLC Nui      |               |                                                                                               |             | Food: TFS# (4g/L)         |                                           | eed 1.5 ml/replicate | <u> </u>                                                                                           |
| \$0775 m.          | chemistries time/Ir    |               |                                                                                               |             | Screens Cleaned:   yes    |                                           | T                    |                                                                                                    |
| Replicate          | Temperature            | pН            | Dissolved Oxygen                                                                              | Specific    | Hardness                  | Alkalinity                                | Ammonia              | Observations/                                                                                      |
|                    | (23± 1°C)*             |               | (mg/L)*                                                                                       | Conductance | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> )                 | (as N)               | # Surviving                                                                                        |
|                    |                        |               |                                                                                               | (µmhos/cm)  | ud;                       | m.                                        |                      | Organisms                                                                                          |
| Record             |                        |               |                                                                                               |             |                           |                                           | ,                    | Init:                                                                                              |
| Meter ID           | 40                     | 203           | 2360                                                                                          | 230         | N/A                       | 203                                       | 4                    | mit. Mw                                                                                            |
| 1                  | 1                      | 1.1           | 1                                                                                             | 1           | 144                       | 98                                        | 0.43                 | Larvae: 9<br>Punae: 9<br>Midge: 10                                                                 |
| 2                  |                        | 1             |                                                                                               |             | end: 21.1                 | end: 21.2                                 | j                    | Larvae: (O Punae: O Midge &                                                                        |
| 3                  |                        |               |                                                                                               |             | start: 17-5               | start: 22.3                               | /                    | Larvae: 10 10/10<br>Punae: 6<br>Midge: 8                                                           |
| 4                  | 1                      |               |                                                                                               |             | Titrant used (mL): 3.6    | Titrant<br>used (mL):                     |                      | Larvae: O 10/10                                                                                    |
| 5                  | / .                    |               |                                                                                               |             | Sample volume (mL): 25    | Sample volume (mL):                       |                      | Larvae: 10 Punae: 0 /10 Midge: 6                                                                   |
| 6                  | 1                      |               |                                                                                               |             |                           |                                           |                      | Larvae: 8 Punae: 9 Midge: 2                                                                        |
| 7                  | 22.7                   | 7.33          | 23                                                                                            | 314         |                           |                                           |                      | Larvae: 10<br>Punae: 0<br>Midge: 0                                                                 |
| 8                  | 22.2                   | 7.37          | 2.2                                                                                           | . 312       | 1                         |                                           | 1                    | Larvae: 0 10 Punae: 0 /10 Midge: 0                                                                 |
|                    | ference: RPD $\leq 15$ | 5%            | *Alkalinity, hardness and Ammonia Reporting Lin RL = Reporting Limit (0. MDL = Minimum Detect |             | a composite sample of all | if Temperature is out of<br>8 replicates. | range.               | KEY: AV: Animals Visible NAV: No Animals Visible FOV: Foreign Organism Vis BHV: Bore Holes Visible |



Page \_ 7\_ of \_\_\_\_\_\_ QC'd by: M-

### Chironomus dilutus 10-Day Survival and Growth Whole Sediment Toxicity Test 10% QC = mul-

| Project Number:     | 2386-00                              | Project Name:                         | Bay West                                                        |                                                          | Test Method                    |             |                       |                    | EPA 100.2-EPA           | /600/R-99/06                                           | <u>4</u>                          |
|---------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------|-------------|-----------------------|--------------------|-------------------------|--------------------------------------------------------|-----------------------------------|
| GLC#:               | 11082                                |                                       |                                                                 |                                                          | Test Photope                   |             |                       |                    |                         |                                                        |                                   |
| Sample ID:          | BW16MLW-00                           |                                       |                                                                 |                                                          |                                |             |                       | Overlying          | Water-175mL Ma          | nual Delivery                                          |                                   |
|                     | hironomus dilutus                    |                                       |                                                                 |                                                          | Test Tempera                   |             |                       |                    |                         |                                                        |                                   |
| Date Addition of    |                                      | 10/13/2016                            |                                                                 |                                                          | Test Organism Source/Age: ABS: |             |                       |                    |                         |                                                        |                                   |
| Test Initiation Dat | te:                                  | 10/14/2016                            |                                                                 |                                                          | Test Termina                   | tion Date:  |                       |                    | 10/24/2016              |                                                        |                                   |
| Test Day: Da        | ıy 10                                | ŧ                                     |                                                                 |                                                          | Number Dail                    | y Renewals  | : <b>\</b>            | Air: □ yes         | <b>t</b> e no           |                                                        |                                   |
| Date:               | 10/24/2016                           | · · · · · · · · · · · · · · · · · · · |                                                                 | •                                                        | ×0457                          | con rer     | newal time/In         | itials —           | rer                     | newal-                                                 | _                                 |
| Överlying Water:    |                                      |                                       |                                                                 | =                                                        | 0                              |             | newal time/In         | itials 🗆           | rer                     | newal-                                                 |                                   |
|                     | Batch ID (GLC Nu                     | mber): NA                             |                                                                 | =                                                        | Food: TFS#                     | (4g/L)-     |                       | □ Fo               | eed 1.5 ml/replicate    |                                                        |                                   |
|                     | chemistries time/L                   |                                       |                                                                 | -                                                        | Screens Clea                   | ned: □ yes  | no                    |                    |                         | <del></del>                                            |                                   |
| Replicate           | Temperature                          |                                       | Dissolved Oxygen                                                | Specific                                                 | Hard                           |             | Alkal                 | inity              | Ammonia                 | Observ                                                 | ations/                           |
| Tephence            | (23± 1°C)*                           | F                                     | (mg/L)*                                                         | Conductance                                              | (mg/L C                        | aCOJ        | (mg/L C               | aCO <sub>2</sub> ) | (as N)                  | # Surv                                                 | viving                            |
|                     | (23±1 €)                             |                                       | (                                                               | (µmhos/cm)                                               | (mg/L)                         |             | (mg/2                 |                    | (4.5 2 1.)              | Orgai                                                  | _ 11                              |
|                     |                                      |                                       |                                                                 | ,                                                        |                                |             |                       |                    |                         |                                                        |                                   |
| Record<br>Meter ID  | 40                                   | 203                                   | 236                                                             | 236                                                      | N/.                            | A           | 20                    | ) 3                | ધ                       | · · · · · · · · · · · · · · · · · · ·                  | ub                                |
| 1                   | 1                                    | /                                     |                                                                 | /                                                        | 140                            | 140         | 152                   | 106                | 0.66                    | Larvae: 0<br>Punae 0<br>Midge: 0                       | i <sup>b</sup> /10                |
| 2                   |                                      |                                       |                                                                 |                                                          | end Zeal                       | 246         | 37.U                  | 315                | dup 0.68                | Larvae: 0<br>Punae:0<br>Midge:0                        | 10 <sub>/10</sub>                 |
| 3                   |                                      |                                       |                                                                 |                                                          | start 24.16                    |             | 32.5                  | 27.2               | 1                       | Larvae: 9<br>Punae:0<br>Midge:0                        | 9 /10                             |
| 4 ,                 |                                      | -/                                    |                                                                 |                                                          | Titrant<br>used 3mL3:          | 3.5         | Titrant<br>used (mE): | 53                 |                         | Larvae: 0<br>Punae: 0<br>Midge: 0                      | 10 <sub>/10</sub>                 |
| 5                   |                                      |                                       | . /                                                             |                                                          | Sample volume (inL)            | 75          | Sample volume (mL):   | •                  |                         | Larvae: [0]<br>Punae: 6<br>Midge: 0                    | <b>10</b> /10                     |
| 6                   | 1                                    |                                       |                                                                 |                                                          | 3                              | /           | RPD-3                 | 2.61               |                         | Larvae: 9<br>Punae: 5<br>Midge: 0                      | $\mathbf{q}_{/10}$                |
| 7                   | 22.3                                 | 7.42                                  | 3.3                                                             | 320                                                      |                                |             |                       |                    |                         | Larvae: <b>G</b><br>Punae: <b>€</b><br>Midge: <b>€</b> | 9/10                              |
| 8                   | *128                                 | 7.43                                  | 3.0                                                             | 318                                                      |                                |             |                       |                    |                         | Larvae: 9<br>Punae: 9<br>Midge: 6                      | 9/10                              |
| Relative % Dif      | ference: RPD ≤15                     | 5%                                    | * Contact Laboratory Co.                                        | ordinator if Dissolved Oxy                               | gen level is <                 | 2.5 mg/L or | if Temperatu          | re is out of       | range.                  | ranga.                                                 |                                   |
|                     |                                      | 1                                     | d ammonia analyzed from a composite sample of all 8 replicates. |                                                          |                                |             |                       |                    | <b>KEY:</b> AV: Animals | Vicible                                                |                                   |
| RPD =               | $\frac{(s_1 - s_2)}{(s_{1+} s_2)/2}$ | x 100 =                               | Ammonia Reporting Li                                            |                                                          |                                |             |                       |                    |                         | NAV: No An                                             |                                   |
|                     | $(s_{1} + s_{2})/2$                  |                                       | RL = Reporting Limit (0.                                        |                                                          | at undated 212                 | 016         |                       |                    |                         |                                                        | nnais visible<br>1 Organism Visil |
|                     |                                      |                                       |                                                                 | tion Limit (0.02 mg/L) - last $J = \ge MDL$ and $< RL$ . | si upaatea 3/2                 | V10.        |                       |                    |                         | BHV: Bore H                                            | 0                                 |

10/14/2016-10/24/2016



Project Name: Bay West-West Bear Skin

**Project Number:** 2386-00 **Test Type:** 10 Day Whole Sediment Toxicity Survival and Growth

Test Species: Chironomus dilutus

Test Dates:

100% Data Entry

<u>Date</u> <u>Initials</u> <u>Data Entered</u>

12/5/2016 MWG ALL

100% Data Quality Check

Errors Errors

Found Y Corrected:Y

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u> <u>or N</u> <u>List Error locations</u>

12/5/2016 NS weight sheets Y Y Control Rep 6; 10 should be 9

100% Error Corrected Quality Check

<u>Date</u> <u>Initials</u> <u>Data QC'ed</u> 12/5/2016 MWG Control Rep 6; survival



### 2386-00 Bay West Chironomus dilutus WEIGHT DATA

Page \_\_\_\_i of \_\_\_\_2 QC'd by:\_\_\_\_\_\_\_i

| Project Number | : <b>238</b> 6-00  | Type/Model of Drying Oven: Blue M                | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |
|----------------|--------------------|--------------------------------------------------|-----------------------------------------------------|
| Project Name:  |                    | Oven Temperature: 60 °C                          | Muffle Furnace Temperature: 550 °C                  |
| GLC#:          | CS#136             | Drying Duration (Hours): ~24 hrs                 | Drying Duration (Hours): 2 hrs                      |
| Sample ID:     | West Bearskin Lake | Date/Time in: 10/24/10 1245                      | Date/Time in: W/3/W 1020                            |
| <u></u>        |                    | Date/Time out: 10/25/16 1300                     | Date/Time out: 11/3/10 1221                         |
| Test Species:  | Chironomus dilutus | Dessicator: # 126                                | Dessicator: #128                                    |
| Test Date:     | 10/14/2016         | Date/Time in: 1012511 @ 1760                     | Date/Time in: 11/3/14 1534                          |
|                | 10/24/2016         | Date/Time out: 10131114 1216                     | Date/Time out: Wolve 1517                           |
|                |                    | Dry Weigh Date / Technician's Initials: 163/16 A | Ashed Weigh Date / Technician's Initials: Wiolio 🖚. |

|                    |           | A               | В             | С               | В-С            | D         | B-C/D            | E                    | (B-C) / (A-E) |
|--------------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|----------------------|---------------|
|                    | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | _                    | 1             |
|                    | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at Day 10 | (mg)          |
|                    |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10               |               |
| Sample ID:         | 1         | 10              | 0.628010      | 01743.0         | 0.00000        | 10        | #DIV/0!          | 0                    | 0.00000       |
| West Bearskin Lake | 2         | 10              | 0.85316       | 0.84375         | 0.00000        | 10        | #DIV/0!          | 0                    | 0.00000       |
| GLC Number:        | 3         | 10              | 0.86177       | 0.85114         | 0.00000        | 10        | #DIV/0!          | 0                    | 0.00000       |
| CS#136             | 4         | 10              | 0.86307       | 0.85340         | 0.00000        | 10.       | #DIV/0!          | 0                    | 0.00000       |
|                    | 5         | 10              | 6.24914       | 0.23972         | 0.00000        | 10        | #DIV/0!          | 0                    | 0.00000       |
|                    | 6         | 10              | 684048        | 0.83810         | 0.00000        | 9         | #DIV/0!          | 0                    | 0.00000       |
|                    | 7         | 10              | 0.65330       | 0.84401         | 0.00000        | 9         | #DIV/0!          | 0                    | 0.00000       |
|                    | 8         | 10              | 6.୧५୫୫/       | 0.83904         | 0.00000        | 0         | #DIV/0!          | 0                    | 0.00000       |
|                    |           |                 |               |                 |                | AVERAGE:  | #DIV/0!          |                      | 0.00000       |

| 5). 4         |    | 0.86341 | 0.83676 | 0 | Average at Day 0 | 0.33313 | 0        |
|---------------|----|---------|---------|---|------------------|---------|----------|
| Day 0 weights | 80 | 0.00011 | 07000   | U | 80 (mg)          | 10.000  | <u> </u> |



## 2386 Bay West Chironomus dilutus WEIGHT DATA

| Page      | of <u>2</u> |
|-----------|-------------|
| QC'd by:_ | _MWG        |

| Project Number | :                         | 2386 Type/Model of Drying Oven: Blue M   |              | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |               |  |  |
|----------------|---------------------------|------------------------------------------|--------------|-----------------------------------------------------|---------------|--|--|
| Project Name:  | Bay West                  | Oven Temperature: 60 °C                  |              | Muffle Furnace Temperature: 550 °C                  |               |  |  |
| GLC#:          | CS 136                    | Drying Duration (Hours): ~ 24 hrs        |              | Drying Duration (Hours): 2 hrs                      |               |  |  |
| Sample ID:     | West Bear Skin            | Date/Time in: 10/24/2016                 | 12:45        | Date/Time in: 11/3/2016 10:20                       |               |  |  |
|                | <b>Laboratory Control</b> | Date/Time out: 10/25/2016                | 13:00        | Date/Time out 11/3/2016 12:21                       |               |  |  |
| Test Species:  | Chironomus dilutus        | Dessicator: # 128                        |              | Dessicator: # 128                                   |               |  |  |
| Test Date:     | 10/14/2016                | Date/Time in: 10/25/2016                 | 13:00        | Date/Time in: 11/3/2016 15:34                       |               |  |  |
|                | 10/24/2016                | Date/Time out: 10/31/2016                | 12:10        | Date/Time out 11/10/2016 15:17                      |               |  |  |
|                |                           | Dry Weigh Date / Technician's Initials 1 | 0/31/2016 mp | Ashed Weigh Date / Technician's Initials:           | 11/10/2016 mp |  |  |

|                       |           | A               | В             | С             | В-С            | D         | B-C/D           | E             | (B-C) / (A-E) |
|-----------------------|-----------|-----------------|---------------|---------------|----------------|-----------|-----------------|---------------|---------------|
|                       | Replicate | Number of       | Dry Weight of | _             |                | Number of | _               | •             |               |
|                       | Number    | Organisms at    | Pan and       | Pan and       | Dry Weight (g) | Organisms | Dry Weight (mg) | and Midges at | (mg)          |
|                       |           | Test Initiation | Organisms (g) | Organisms (g) |                | Weighed   |                 | Day 10        |               |
|                       |           |                 |               |               |                |           |                 |               |               |
| Sample ID:            | 1         | 10              | 0.85806       | 0.84716       | 0.01090        | 10        | 1.09000         | 0             | 1.09000       |
| West Bear<br>Skin Lab |           |                 |               |               |                |           |                 |               |               |
| Control               | 2         | 10              | 0.85316       | 0.84375       | 0.00941        | 10        | 0.94100         | 0             | 0.94100       |
| GLC Number:           | 3         | 10              | 0.86177       | 0.85114       | 0.01063        | 10        | 1.06300         | 0             | 1.06300       |
| CS 136                | 4         | 10              | 0.86307       | 0.85340       | 0.00967        | 10        | 0.96700         | 0             | 0.96700       |
|                       | 5         | 10              | 0.84914       | 0.83972       | 0.00942        | 10        | 0.94200         | 0             | 0.94200       |
|                       | 6         | 10              | 0.84648       | 0.83816       | 0.00832        | 9         | 0.92444         | 0             | 0.83200       |
|                       | 7         | 10              | 0.85330       | 0.84401       | 0.00929        | 9         | 1.03222         | 0             | 0.92900       |
|                       | 8         | 10              | 0.84881       | 0.83904       | 0.00977        | 10        | 0.97700         | 0             | 0.97700       |
|                       |           |                 |               |               |                | AVERAGE:  | 0.99208         |               | 0.96762       |

|                |    |         |         |         | Average at Day 0 |             |
|----------------|----|---------|---------|---------|------------------|-------------|
| Day 10 weights | 80 | 0.86341 | 0.83676 | 0.02665 | 80 (mg)          | <br>0.33313 |



## 2386-00 Bay West Chironomus dilutus WEIGHT DATA

Page 1 of 3

QC'd by: mult

| Project Number | : 2386-00          | Type/Model of Drying Oven: Blue M                  | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |
|----------------|--------------------|----------------------------------------------------|-----------------------------------------------------|
| Project Name:  | Bay West           | Oven Temperature: 60 °C                            | Muffle Furnace Temperature: 550 °C                  |
| GLC#:          | N/A                | Drying Duration (Hours): ~24 hrs                   | Drying Duration (Hours): 2 hrs                      |
| Sample ID:     | Water Only         | Date/Time in: 10/24/14 1245                        | Date/Time in: 14/3/1020 11/3/16 1020 mar 12/5/10    |
|                |                    | Date/Time out: 10/25/16 1300                       | Date/Time out: \\\3\\\&\2\\                         |
| Test Species:  | Chironomus dilutus | Dessicator: # 17&                                  | Dessicator: #128                                    |
| Test Date:     | 10/14/2016         | Date/Time in: 10125 \\ 1360                        | Date/Time in: 11/3/16 1534                          |
|                | 10/24/2016         | Date/Time out: 60(3)(10 1710                       | Date/Time out: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|                |                    |                                                    | 11/10/10 1944 12/5/10                               |
|                |                    | Dry Weigh Date / Technician's Initials: 10/31/16 M | Ashed Weigh Date / Technician's Initials: Wholio w. |

|             |           | A               | В             | C               | В-С            | D         | B-C/D            | E             | (B-C) / (A-E) |
|-------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|             | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | _             |               |
|             | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|             |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
| Sample ID:  | 1         | 10              | 0.66251       | 0.5531          | 0.00000        | 9         | #DIV/0!          | 0             | 0.00000       |
| Sample ID.  | -         | 10              | U.54 251      | 0.0.2           | 0.0000         |           |                  |               |               |
| Water Only  | 2         | 10              | 6.67173       | 0.86293         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| GLC Number: | 3         | 10              | ०१५५१         | 0.85745         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| N/A         | 4         | 10              |               | 0.86279         | 0.00000        | ю         | #DIV/0!          | 0             | 0.00000       |
|             | 5         |                 |               | 0.86360         | 0.00000        | q         | #DIV/0!          | 0             | 0.00000       |
|             | 6         |                 | 0.95997       |                 | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
|             | 7         | 10              | 0.816319      | 0.85570         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
|             | 8         | 10              |               | 087698          | 0.00000        | N         | #DIV/0!          | 0             | 0.00000       |
|             |           |                 |               |                 |                | AVERAGE:  | #DIV/0!          | -             | 0.00000       |

| Day 0 weights | 80 0.86341 | 0.83676 | 0 | Average at Day 0 (mg) | 033313 | 0 |
|---------------|------------|---------|---|-----------------------|--------|---|
|---------------|------------|---------|---|-----------------------|--------|---|



## 2386 Bay West Chironomus dilutus WEIGHT DATA

Page <u>2</u> of <u>2</u> QC'd by:\_\_MWG\_\_\_\_

| Project Number |                    | 2386 Type/Model of Drying Oven: Blue M  |               | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |                   |  |  |
|----------------|--------------------|-----------------------------------------|---------------|-----------------------------------------------------|-------------------|--|--|
| Project Name:  | Bay West           | Oven Temperature: 60 °C                 |               | Muffle Furnace Temperature: 550 °C                  |                   |  |  |
| GLC#:          | NA                 | Drying Duration (Hours): ~ 24 hrs       |               | Drying Duration (Hours): 2 hrs                      |                   |  |  |
| Sample ID:     | Water Only Control | Date/Time in: 10/24/2016                | 12:45         | Date/Time in: 11/3/2016                             | 10:20             |  |  |
|                |                    | Date/Time out: 10/25/2016               | 13:00         | Date/Time out 11/3/2016                             | 12:21             |  |  |
| Test Species:  | Chironomus dilutus | Dessicator: # 128                       |               | Dessicator: # 128                                   |                   |  |  |
| Test Date:     | 10/14/2016         | Date/Time in: 10/25/2016                | 13:00         | Date/Time in: 11/3/2016                             | 15:34             |  |  |
|                | 10/24/2016         | Date/Time out: 10/31/2016               | 12:10         | Date/Time out 11/10/2016                            | 15:17             |  |  |
|                |                    | Dry Weigh Date / Technician's Initials: | 10/31/2016 mp | Ashed Weigh Date / Technician's Initia              | ds: 11/10/2016 mp |  |  |

|                                              |           | A               | В             | С               | В-С            | D         | B-C/D            | E             | (B-C) / (A-E) |
|----------------------------------------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|                                              | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | -             | _             |
|                                              | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|                                              |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
|                                              |           |                 |               |                 |                |           |                  |               |               |
| Sample ID:                                   | 1         | 10              | 0.86251       | 0.85311         | 0.00940        | 9         | 1.04444          | 0             | 0.94000       |
| Water Only                                   |           |                 |               |                 |                |           |                  |               |               |
| Control                                      | 2         | 10              | 0.87173       | 0.86293         | 0.00880        | 10        | 0.88000          | 0             | 0.88000       |
| GLC Number:                                  | 3         | 10              | 0.86699       | 0.85745         | 0.00954        | 10        | 0.95400          | 0             | 0.95400       |
| GLC Number:                                  | 3         | 10              | 0.80099       | 0.83743         | 0.00934        | 10        | 0.93400          | 0             | 0.93400       |
| NA                                           | 4         | 10              | 0.87267       | 0.86279         | 0.00988        | 10        | 0.98800          | 0             | 0.98800       |
|                                              | 5         | 10              | 0.87262       | 0.86360         | 0.00902        | 9         | 1.00222          | 0             | 0.90200       |
|                                              | 6         | 10              | 0.85997       | 0.85157         | 0.00840        | 10        | 0.84000          | 0             | 0.84000       |
|                                              | 7         | 10              | 0.86519       | 0.85570         | 0.00949        | 10        | 0.94900          | 0             | 0.94900       |
|                                              | 8         | 10              | 0.88633       | 0.87698         | 0.00935        | 10        | 0.93500          | 0             |               |
| <u>,                                    </u> |           |                 |               |                 |                | AVERAGE:  | 0.94908          |               | 0.92350       |

|               |    |         |         |         | Average at Day 0 |         |
|---------------|----|---------|---------|---------|------------------|---------|
| Day 0 weights | 80 | 0.86341 | 0.83676 | 0.02665 | 80 (mg)          | 0.33313 |



### 2386-00 Bay West Chironomus dilutus WEIGHT DATA

| Page 1    | of | <u>3</u> |  |
|-----------|----|----------|--|
| QC'd by:_ |    |          |  |

| Project Number | 2386-00            | Type/Model of Drying Oven: Blue M                | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |
|----------------|--------------------|--------------------------------------------------|-----------------------------------------------------|
| Project Name:  | Bay West           | Oven Temperature: 60 °C                          | Muffle Furnace Temperature: 550 °C                  |
|                |                    |                                                  |                                                     |
| GLC#:          | 11080              | Drying Duration (Hours): ~24 hrs                 | Drying Duration (Hours): 2 hrs                      |
| Sample ID:     | BW16MLW-001-0-0.15 | Date/Time in: 1012414 1246                       | Date/Time in: \\\3\\& \020                          |
|                |                    | Date/Time out: 1012511 4 1300                    | Date/Time out: \\\3\\&\\2\\                         |
|                |                    |                                                  |                                                     |
| Test Species:  | Chironomus dilutus | Dessicator: # (2%)                               | Dessicator: # 128                                   |
| Test Date:     | 10/14/2016         | Date/Time in: 10/25/10 1300                      | Date/Time in: W3/CO1634                             |
|                | 10/24/2016         | Date/Time out: 10131/16 1210                     | Date/Time out: 111610 1517                          |
|                |                    |                                                  | Augusta Calabian Ma                                 |
|                |                    | Dry Weigh Date / Technician's Initials: 10/5/100 | Ashed Weigh Date / Technician's Initials: [1] W     |

|                    |           | A               | В             | C               | В-С            | D         | B-C/D            |               | (B-C) / (A-E) |
|--------------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|                    | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free |               | 1             |
|                    | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|                    |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
|                    |           |                 |               |                 |                |           |                  |               |               |
| Sample ID:         | 1         | 10              | 0,24523       | 0.23052         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| BW16MLW-001-0-0.15 | 2         | 10              |               | 0.44620         | 0.00000        | 10        | #DIV/0!          | o             | 0.00000       |
| GLC Number:        | 3         | 10              |               | 0.81428         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| 11080              | 4         | 10              |               | 0.85017         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| 11000              | 5         | 10              | 0.85691       |                 | 0.00000        | 9         | #DIV/0!          | ð             | 0.00000       |
|                    | 6         | 10              |               | 0.84835         | 0.00000        | $\wp$     | #DIV/0!          | 0             | 0.00000       |
|                    | 7         |                 |               | 0.84670         | 0.00000        | 10        | #DIV/0!          | O             | 0.00000       |
|                    | 8         | 10              |               | 6.84162         | 0.00000        | 9         | #DIV/0!          | 0             | 0.00000       |
|                    |           |                 |               |                 |                | AVERAGE:  | #DIV/0!          |               | 0.00000       |

|               |            |         |   | Average at Day 0 |         |   |
|---------------|------------|---------|---|------------------|---------|---|
| Day 0 weights | 80 0.86341 | 0.83676 | 0 | 80 (mg)          | 0,33313 | 0 |



### 2386 Bay West Chironomus dilutus WEIGHT DATA

| Page _ | 2    | _of2_ |  |
|--------|------|-------|--|
| QC'd t | oy:_ | _MWG  |  |

| Project Number: |                                         | 2386 Type/Model of Drying Oven: 1 | Blue M                                               | Type/Model of Muffle Furnace: <b>F6020 Thermolyne MOD</b> . |                                |               |  |  |
|-----------------|-----------------------------------------|-----------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------|---------------|--|--|
| Project Name:   | Bay West                                | Oven Temperature: 60 °C           |                                                      | Muffle Furnace Temperature: 550 °C                          |                                |               |  |  |
| GLC#:           | 11080 Drying Duration (Hours): ~ 24 hrs |                                   |                                                      |                                                             | Drying Duration (Hours): 2 hrs |               |  |  |
| Sample ID:      | BW16MLW-001-0-0.15                      | Date/Time in: 10/24/2             | 016 12:45                                            | Date/Time in:                                               | 11/3/2016                      | 10:20         |  |  |
|                 |                                         | Date/Time out: 10/25/2            | 016 13:00                                            | Date/Time out                                               | 11/3/2016                      | 12:21         |  |  |
| Test Species:   | Chironomus dilutus                      | Dessicator: # 128                 |                                                      | Dessicator: #                                               | 128                            |               |  |  |
| Test Date:      | 10/14/2016                              | Date/Time in: 10/25/2             | 016 13:00                                            | Date/Time in:                                               | 11/3/2016                      | 15:34         |  |  |
|                 | 10/24/2016                              | Date/Time out: 10/31/2            | 016 12:10                                            | Date/Time out                                               | 11/10/2016                     | 15:17         |  |  |
|                 |                                         | Dry Weigh Date / Technician's     | p Ashed Weigh Date / Technician's Initials: 11/10/20 |                                                             |                                | 11/10/2016 mp |  |  |

|             |           | A               | В             | C               | В-С            | D         | B-C/D           | E             | (B-C) / (A-E) |
|-------------|-----------|-----------------|---------------|-----------------|----------------|-----------|-----------------|---------------|---------------|
|             | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | _               | •             | _             |
|             | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg) | and Midges at | (mg)          |
|             |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                 | Day 10        |               |
|             |           |                 |               |                 |                |           |                 |               |               |
| Sample ID:  | 1         | 10              | 0.84523       | 0.83052         | 0.01471        | 10        | 1.47100         | 0             | 1.47100       |
| BW16MLW-    |           | 10              |               |                 |                |           |                 |               |               |
| 001-0-0.15  | 2         | 10              | 0.85730       | 0.84620         | 0.01110        | 10        | 1.11000         | 0             | 1.11000       |
| GLC Number: | 3         | 10              | 0.82770       | 0.81428         | 0.01342        | 10        | 1.34200         | 0             | 1.34200       |
| 11080       | 4         | 10              | 0.86493       | 0.85017         | 0.01476        | 10        | 1.47600         | 0             | 1.47600       |
|             | 5         | 10              | 0.85591       | 0.83839         | 0.01752        | 9         | 1.94667         | 0             | 1.75200       |
|             | 6         | 10              | 0.86081       | 0.84835         | 0.01246        | 10        | 1.24600         | 0             | 1.24600       |
|             | 7         | 10              | 0.86050       | 0.84670         | 0.01380        | 10        | 1.38000         | 0             | 1.38000       |
|             | 8         | 10              | 0.85387       | 0.84162         | 0.01225        | 9         | 1.36111         | 0             | 1.22500       |
|             |           |                 |               |                 |                | AVERAGE:  | 1.41660         |               | 1.37525       |

|               |    |         |         |         | Average at Day 0 |         |
|---------------|----|---------|---------|---------|------------------|---------|
| Day 0 weights | 80 | 0.86341 | 0.83676 | 0.02665 | 80 (mg)          | 0.33313 |



## 2386-00 Bay West Chironomus dilutus WEIGHT DATA

Page 1 of 2

QC'd by: 1144-

| Project Number | : 2386-00          | Type/Model of Drying Oven: Blue M                 | Type/Model of Muffle Furnace: F6020 Thermolyne MOD. |
|----------------|--------------------|---------------------------------------------------|-----------------------------------------------------|
| Project Name:  | Bay West           | Oven Temperature: 60 °C                           | Muffle Furnace Temperature: 550 °C                  |
| GLC#:          | 11081              | Drying Duration (Hours): ~24 hrs                  | Drying Duration (Hours): 2 hrs                      |
| Sample ID:     | BW16MLW-002-0-0.15 | Date/Time in: 16/24/10 1246                       | Date/Time in: 11/3/14 1020                          |
|                |                    | Date/Time out: 10/25/10 12co                      | Date/Time out: w/3/16 v22/                          |
| Test Species:  | Chironomus dilutus | Dessicator: # \7\frac{Q}{2}                       | Dessicator: #128                                    |
| Test Date:     | 10/14/2016         | Date/Time in: 10/15/16/13co                       | Date/Time in: 11/3/10 1534                          |
|                | 10/24/2016         | Date/Time out: 10/3/10/12/10                      | Date/Time out: Whole 1517                           |
|                |                    | Dry Weigh Date / Technician's Initials: 16/3/10 M | Ashed Weigh Date / Technician's Initials: Work M.   |

|                    |           | A               | В                | С               | В-С            | D         | B-C/D            | E               | (B-C) / (A-E)   |
|--------------------|-----------|-----------------|------------------|-----------------|----------------|-----------|------------------|-----------------|-----------------|
|                    | Replicate | Number of       | Dry Weight of    | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | Number of Pupae | *Biomass weight |
|                    | Number    | Organisms at    | Pan and          | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at   | (mg)            |
|                    |           | Test Initiation | Organisms (g)    | Organisms (g)   |                | Weighed   |                  | Day 10          |                 |
|                    |           |                 |                  |                 |                |           |                  |                 |                 |
| Sample ID:         | 1         | 10              | 6,65524          | 0.842285        | 0.00000        | 9         | #DIV/0!          | 0               | 0.00000         |
| Sample ID.         | <u>_</u>  | 10              | 0,055            | 0.0 1220        | 0.00000        |           |                  |                 |                 |
| BW16MLW-002-0-0.15 | 2         | 10              | 8FP43.0          | 0.53633         | 0.00000        | 10        | #DIV/0!          | ð.              | 0.00000         |
| GLC Number:        | 3         | 10              | <i>୪.୧.७/୫</i> / | <i>43848</i> ,0 | 0.00000        | 10        | #DIV/0!          | 0               | 0.00000         |
| GEO Trumber.       |           |                 | 0.00 (0.1        |                 |                |           |                  | 0               |                 |
| 11081              | 4         | 10              | 0.05159          | 0.24027         | 0.00000        | 10        | #DIV/0!          | 0               | 0.00000         |
|                    | 5         | 10              | 6.85746          | 0.84507         | 0.00000        | 10        | #DIV/0!          | 0               | 0.00000         |
|                    | 6         | 10              | 6.85932          | 0.84837         | 0.00000        | 8         | #DIV/0!          | 0               | 0.00000         |
|                    | 7         | 10              | 6.85947          |                 | 0.00000        | 10        | #DIV/0!          | 0               | 0.00000         |
|                    | 8         |                 |                  | 0.63963         | 0.00000        | 10        | #DIV/0!          |                 | 0.00000         |
| l                  |           |                 |                  |                 |                | AVERAGE:  | #DIV/0!          |                 | 0.00000         |

|               |            |         |   | Average at Da | y 0     |   |
|---------------|------------|---------|---|---------------|---------|---|
| Day 0 weights | 80 0.86341 | 0.83676 | 0 | 80 (mg)       | 0.33313 | 0 |



## 2386 Bay West Chironomus dilutus WEIGHT DATA

| Page | 2   | _of _ | <u>2</u> |  |
|------|-----|-------|----------|--|
| QC'd | by: | MW    | G        |  |

| Project Number |                      | 2386 Type/Model of Drying Oven: Blue M  |               | Type/Model of Muffle Furnace: F6020 T    | hermolyne MOD.  |
|----------------|----------------------|-----------------------------------------|---------------|------------------------------------------|-----------------|
| Project Name:  | Bay West             | Oven Temperature: 60 °C                 |               | Muffle Furnace Temperature: 550 °C       |                 |
| GLC#:          | 11081                | Drying Duration (Hours): ~ 24 hrs       |               | Drying Duration (Hours): 2 hrs           |                 |
| Sample ID:     | BW16MLW-002-0.0-0.15 | Date/Time in: 10/24/2016                | 12:45         | Date/Time in: 11/3/2016                  | 10:20           |
|                |                      | Date/Time out: 10/25/2016               | 13:00         | Date/Time out 11/3/2016                  | 12:21           |
| Test Species:  | Chironomus dilutus   | Dessicator: # 128                       |               | Dessicator: # 128                        |                 |
| Test Date:     | 10/14/2016           | Date/Time in: 10/25/2016                | 13:00         | Date/Time in: 11/3/2016                  | 15:34           |
|                | 10/24/2016           | Date/Time out: 10/31/2016               | 12:10         | Date/Time out 11/10/2016                 | 15:17           |
|                |                      | Dry Weigh Date / Technician's Initials: | 10/31/2016 mp | Ashed Weigh Date / Technician's Initials | : 11/10/2016 mp |

|                          |           | A               | В             | C               | В-С            | D         | B-C/D            | E             | (B-C) / (A-E) |
|--------------------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|                          | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | -             | _             |
|                          | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|                          |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
|                          |           |                 |               |                 |                |           |                  |               |               |
| Sample ID:               | 1         | 10              | 0.85524       | 0.84228         | 0.01296        | 9         | 1.44000          | 0             | 1.29600       |
| BW16MLW-<br>002-0.0-0.15 | 2         | 10              | 0.84978       | 0.83633         | 0.01345        | 10        | 1.34500          | 0             | 1.34500       |
| -                        |           |                 |               |                 |                |           |                  |               |               |
| GLC Number:              | 3         | 10              | 0.86181       | 0.84884         | 0.01297        | 10        | 1.29700          | 0             | 1.29700       |
| 11081                    | 4         | 10              | 0.85159       | 0.84027         | 0.01132        | 10        | 1.13200          | 0             | 1.13200       |
|                          | 5         | 10              | 0.85746       | 0.84507         | 0.01239        | 10        | 1.23900          | 0             | 1.23900       |
|                          | 6         | 10              | 0.85972       | 0.84837         | 0.01135        | 8         | 1.41875          | 0             | 1.13500       |
|                          | 7         | 10              | 0.85947       | 0.84453         | 0.01494        | 10        | 1.49400          | 0             | 1.49400       |
|                          | 8         | 10              | 0.85337       | 0.83983         | 0.01354        | 10        | 1.35400          | 0             | 1.35400       |
|                          |           |                 |               |                 |                | AVERAGE:  | 1.33997          |               | 1.28650       |

|               |    |         |         |         | Average at Day 0 |         |
|---------------|----|---------|---------|---------|------------------|---------|
| Day 0 weights | 80 | 0.86341 | 0.83676 | 0.02665 | 80 (mg)          | 0.33313 |



## 2386-00 Bay West Chironomus dilutus WEIGHT DATA

Page of O

| Project Number: | 2386-00            | Type/Model of Drying Oven: Blue M                   | Type/Model of Muffle Furnace: F6020 Thermolyne MOD.   |
|-----------------|--------------------|-----------------------------------------------------|-------------------------------------------------------|
| Project Name:   | Bay West           | Oven Temperature: 60 °C                             | Muffle Furnace Temperature: 550 °C                    |
|                 |                    |                                                     |                                                       |
| GLC#:           | 11082              | Drying Duration (Hours): ~24 hrs                    | Drying Duration (Hours): 2 hrs                        |
| Sample ID:      | BW16MLW-003-0-0.15 | Date/Time in: 10/24/16 1245                         | Date/Time in: \\\3\\\\\\02\\\02\\\02\\\02\\\02\\\02\\ |
|                 |                    | Date/Time out: 10/25/16 1300                        | Date/Time out: \\(\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|                 |                    |                                                     |                                                       |
| Test Species:   | Chironomus dilutus | Dessicator: # 128                                   | Dessicator: # 128                                     |
| Test Date:      | 10/14/2016         | Date/Time in: 125 lue 1300                          | Date/Time in: 11/3/15 1534                            |
|                 | 10/24/2016         | Date/Time out: 10/31/10 1210                        | Date/Time out: 1113/110 1517                          |
|                 |                    | Dry Weigh Date / Technician's Initials: 10/3/1/40 M | Ashed Weigh Date / Technician's Initials: wholie &.   |

|                    |           | A               | В             | С               | В-С            | D         | B-C/D            | E             | (B-C) / (A-E) |
|--------------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|                    | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free |               | _             |
|                    | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|                    |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
|                    |           |                 |               |                 |                |           |                  |               |               |
| Sample ID:         | 1         | 10              | 0.86570       | 0.85518         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| BW16MLW-003-0-0.15 | 2         | 10              | 0,25700       | 0.84397         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
| GLC Number:        | 3         | 10              | 0.25802       | 0.84406         | 0.00000        | 9         | #DIV/0!          | 0             | 0.00000       |
| 11082              | 4         | 10              | مرورلو کالولو | ०.९५७३९         | 0.00000        | 10        | #DIV/0!          | 0             | 0.00000       |
|                    | 5         |                 |               | 0.85363         | 0.00000        | b         | #DIV/0!          | ગ             | 0.00000       |
|                    | 6         | 10              |               | 0.84558         | 0.00000        | 9         | #DIV/0!          | 0             | 0.00000       |
|                    | 7         | 10              | 0.65430       | 0.84242         | 0.00000        | 9         | #DIV/0!          | 0             | 0.00000       |
|                    | 8         | 10              | 0.84935       | 0.83854         | 0.00000        | 1111109   | #DIV/0!          | 0             | 0.00000       |
| <u> </u>           |           |                 |               |                 |                | AVERAGE:  | #DIV/0!          |               | 0.00000       |

| Day 0 weights | 80 086341     | 0.83676 | 0        | Average at Day 0<br>80 (mg) | 0.33313 | 0 |
|---------------|---------------|---------|----------|-----------------------------|---------|---|
| Day 0 weights | 00 U,C 0 C 11 | 0.00010 | <u> </u> | 001(8)                      |         |   |



### 2386 Bay West Chironomus dilutus WEIGHT DATA

Page <u>2</u> of <u>2</u> QC'd by: <u>MWG</u>

| Project Number: |                      | 2386 Type/Model of Drying Oven: Blue M    |              | Type/Model of Muffle Furnace: F6020 Thermo | lyne MOD.     |
|-----------------|----------------------|-------------------------------------------|--------------|--------------------------------------------|---------------|
| Project Name:   | Bay West             | Oven Temperature: 60 °C                   |              | Muffle Furnace Temperature: 550 °C         |               |
| GLC#:           | 11082                | Drying Duration (Hours): ~ 24 hrs         |              | Drying Duration (Hours): <b>2 hrs</b>      |               |
| Sample ID:      | BW16MLW-003-0.0-0.15 | Date/Time in: 10/24/2016                  | 12:45        | Date/Time in: 11/3/2016 10:20              | )             |
|                 |                      | Date/Time out: 10/25/2016                 | 13:00        | Date/Time out 11/3/2016 12:21              |               |
| Test Species:   | Chironomus dilutus   | Dessicator: # 128                         |              | Dessicator: # 128                          |               |
| Test Date:      | 10/14/2016           | Date/Time in: 10/25/2016                  | 13:00        | Date/Time in: 11/3/2016 15:34              |               |
|                 | 10/24/2016           | Date/Time out: 10/31/2016                 | 12:10        | Date/Time out 11/10/2016 15:17             | 1             |
|                 |                      | Dry Weigh Date / Technician's Initials: 1 | 0/31/2016 mp | Ashed Weigh Date / Technician's Initials:  | 11/10/2016 mp |

|              |           | A               | В             | C               | В-С            | D         | B-C/D            | E             | (B-C) / (A-E) |
|--------------|-----------|-----------------|---------------|-----------------|----------------|-----------|------------------|---------------|---------------|
|              | Replicate | Number of       | Dry Weight of | Ashed Weight of | Total Ash-Free | Number of | Average Ash-Free | -             | _             |
|              | Number    | Organisms at    | Pan and       | Pan and         | Dry Weight (g) | Organisms | Dry Weight (mg)  | and Midges at | (mg)          |
|              |           | Test Initiation | Organisms (g) | Organisms (g)   |                | Weighed   |                  | Day 10        |               |
|              |           |                 |               |                 |                |           |                  |               |               |
| Sample ID:   | 1         | 10              | 0.86570       | 0.85518         | 0.01052        | 10        | 1.05200          | 0             | 1.05200       |
| BW16MLW-     |           |                 |               |                 |                |           |                  |               |               |
| 003-0.0-0.15 | 2         | 10              | 0.85706       | 0.84397         | 0.01309        | 10        | 1.30900          | 0             | 1.30900       |
| GLC Number:  | 3         | 10              | 0.85802       | 0.84406         | 0.01396        | 9         | 1.55111          | 0             | 1.39600       |
| 11082        | 4         | 10              | 0.86066       | 0.84879         | 0.01187        | 10        | 1.18700          | 0             | 1.18700       |
|              | 5         | 10              | 0.86616       | 0.85363         | 0.01253        | 10        | 1.25300          | 0             | 1.25300       |
|              | 6         | 10              | 0.85666       | 0.84558         | 0.01108        | 9         | 1.23111          | 0             | 1.10800       |
|              | 7         | 10              | 0.85430       | 0.84242         | 0.01188        | 9         | 1.32000          | 0             | 1.18800       |
|              | 8         | 10              | 0.84935       | 0.83854         | 0.01081        | 9         | 1.20111          | 0             | 1.08100       |
|              |           |                 |               |                 |                | AVERAGE:  | 1.26304          |               | 1.19675       |

|               |    |         |         |         | Average at Day 0 |         |
|---------------|----|---------|---------|---------|------------------|---------|
| Day 0 weights | 80 | 0.86341 | 0.83676 | 0.02665 | 80 (mg)          | 0.33313 |

# Appendix C2 Chironomus dilutus 10-Day Statistical Data

Test: EPA 100.2-Chironomus dilutus 10d Survival and Growth Test Test ID: 2386cd16

Species: CDIL-Chironomus dilutus Protocol: EPA 600/R-99/064

Sample ID: MUD LAKE W Sample Type: -WHOLE SEDIMENT

Start Date: 10/14/2016 End Date: 10/24/2016 Lab ID: -GREAT LAKES ENVIRONMENTAL CENTER

| Start | Date: | 10/14 | /2016 E       | nd Date     | e: 10/24    | /2016  |            | Labil     | ): -GREAT LA | KES ENVIRO    | NIMENTAL C         | INIER    |               |                     |
|-------|-------|-------|---------------|-------------|-------------|--------|------------|-----------|--------------|---------------|--------------------|----------|---------------|---------------------|
| Pos   | ID.   | Bon   | Group         | Day         | Day 4       | Day 10 | Day 10 Day | 20 Day 21 | d# nunae + M | Alive in Sedi | Remain in Se       | Emerged  | Weight pan/d\ | Veight ashed pan/or |
| -05   | 1     |       | CS 136 West E |             |             |        |            | ZUDay Z   | 0 n          |               | il Celliani ili Oc | Lineigeu | 0.85806       | 0.84716             |
|       | 2     |       | CS 136 West E |             |             | 1      |            |           | 0            |               |                    |          | 0.85316       | 0.84375             |
|       | 3     |       | CS 136 West E | <del></del> |             |        |            |           | 0            |               |                    |          | 0.86177       | 0.85114             |
|       | 4     |       | CS 136 West E |             |             |        |            |           | 0            |               |                    |          | 0.86307       | 0.8534              |
|       | 5     |       | CS 136 West E | <del></del> |             |        |            |           | 0            |               |                    |          | 0.84914       | 0.83972             |
|       | 6     |       | CS 136 West E |             |             |        | 9          |           | 0            |               |                    |          | 0.84648       | 0.83816             |
|       | 7     |       | CS 136 West E |             |             |        | 9          |           | 0            |               |                    |          | 0.8533        | 0.84401             |
|       | 8     |       | CS 136 West E |             |             |        | 10         |           | 0            |               |                    |          | 0.84881       | 0.83904             |
| -     | 9     |       | Water only    | 10          |             |        | 9          |           | 0            |               |                    |          | 0.86251       | 0.85311             |
|       | 10    |       | Water only    | 10          |             |        | 10         |           | 0            |               |                    |          | 0.87173       | 0.86293             |
|       | 11    |       | Water only    | 10          |             |        |            |           | 0            |               |                    |          | 0.86699       | 0.85745             |
|       | 12    |       | Water only    | 10          |             | 10     | 10         |           | 0            |               |                    |          | 0.87267       | 0.86279             |
|       | 13    |       | Water only    | 10          | 10          | 9      | 9          |           | 0            |               |                    |          | 0.87262       | 0.8636              |
|       | 14    |       | Water only    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.85997       | 0.85157             |
|       | 15    |       | Water only    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.86519       | 0.8557              |
|       | 16    | 8     | Water only    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.88633       | 0.87698             |
|       | 17    | 1     | BW16MLW-00    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.84523       | 0.83052             |
|       | 18    | 2     | BW16MLW-00    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.8573        | 0.8462              |
|       | 19    | 3     | BW16MLW-00    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.8277        | 0.81428             |
|       | 20    | 4     | BW16MLW-00    | 10          | 10          | 10     | 10         |           | 0            |               |                    |          | 0.86493       | 0.85017             |
|       | 21    | 5     | BW16MLW-00    | 10          |             |        | 9          |           | 0            |               |                    |          | 0.85591       | 0.83839             |
|       | 22    | 6     | BW16MLW-00    | 10          |             |        | 10         |           | 0            |               |                    |          | 0.86081       | 0.84835             |
|       | 23    | 7     | BW16MLW-00    | 10          |             |        | 10         |           | 0            | <del> </del>  |                    |          | 0.8605        | 0.8467              |
|       | 24    | 8     | BW16MLW-00    | 10          |             |        | 9          |           | 0            |               |                    |          | 0.85387       | 0.84162             |
|       | 25    | 1     | BW16MLW-00    | 10          |             |        | 9          |           | 0            |               |                    |          | 0.85524       | 0.84228             |
|       | 26    | 2     | BW16MLW-00    | 10          | 1           |        |            |           | 0            |               |                    |          | 0.84978       | 0.83633             |
|       | 27    | 3     | BW16MLW-00    |             |             |        | 10         |           | 0            | <del> </del>  |                    |          | 0.86181       | 0.84884             |
|       | 28    | 4     | BW16MLW-00    |             |             |        | 10         |           | 0            |               |                    |          | 0.85159       | 0.84027             |
|       | 29    | 5     | BW16MLW-00    |             | 1           |        |            |           | 0            | ļ             |                    |          | 0.85746       | 0.84507             |
|       | 30    |       | BW16MLW-00    |             |             |        | 8          |           | 0            |               |                    | ļ        | 0.85972       | 0.84837             |
|       | 31    |       | BW16MLW-00    |             |             |        | 10         |           | 0            |               |                    |          | 0.85947       | 0.84453             |
|       | 32    |       | BW16MLW-00    |             |             |        | 10         |           | 0            |               |                    |          | 0.85337       | 0.83983             |
|       | 33    |       | BW16MLW-00    |             |             |        | 10         |           | 0            |               |                    |          | 0.8657        | 0.85518             |
|       | 34    | -     | BW16MLW-00    |             | 1           |        | 10         |           | 0            | <u> </u>      |                    |          | 0.85706       | 0.84397             |
|       | 35    |       | BW16MLW-00    |             |             |        | 9          |           | 0            |               | ļ                  |          | 0.85802       | 0.84406             |
|       | 36    |       | BW16MLW-00    |             |             |        | 10         |           | 0            | <del></del>   | <u> </u>           |          | 0.86066       | 0.84879             |
|       | 37    |       | BW16MLW-00    | _           | <del></del> | +      | 10         | _         | 0            |               |                    |          | 0.86616       | 0.85363             |
|       | 38    | 6     | BW16MLW-00    | 10          | 10          | 9      | 9          |           | 0            | <u> </u>      |                    | L        | 0.85666       | 0.84558             |

0.83854

0.84935

| Test: EPA 100.2-Chironomus dilutus 10d Survival and Growth Test Test ID: 2386cd16 |                                                                   |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Species: CDIL-Chironomus dilutus Protocol: EPA 600/R-99/06                        | 4                                                                 |
| Sample ID: MUD LAKE W Sample Type: -WHOLE SE                                      | DIMENT                                                            |
| Start Date: 10/14/2016                                                            | NVIRONMENTAL CENTER                                               |
|                                                                                   |                                                                   |
| Pos ID Rep Group Day 0 Day 4 Day 1 Day 2 Day 2 Pupae + MAlive in                  | n Sedir Remain in SeEmerged Weight pan/dWeight ashed pan/orgs aft |
| 39 7 BW16MLW-003 10 10 9 9 9 0                                                    | 0.8543 0.84242                                                    |

40 8 BW16MLW-003 10 10 9 9 Comments: Bay West Mud Lake West 10 day Cdilutus survival and growth Oct 2016

### Page 59 of 140

| -                      |           |          | hironom   | us dilutus  | 10d Surv    | ival and   | Growth Te  | est-10-da | ay survival             |
|------------------------|-----------|----------|-----------|-------------|-------------|------------|------------|-----------|-------------------------|
| Start Date:            | 10/14/201 |          |           | 2386cd16    |             |            | Sample ID  |           | Mud Lake West           |
| End Date:              | 10/24/201 | 6        | Lab ID:   | -GREAT L    | AKES EN     | VIRONM     | Sample Ty  | /pe:      | -WHOLE SEDIMENT         |
| Sample Date:           |           |          | Protocol: | EPA 100.4   | 4-EPA 600   | /R-94/02   | Test Spec  | ies:      | CDIL-Chironomus dilutus |
| Comments:              | Bay West  | Mud Lake | e West 10 | ) day Cdilu | tus surviva | al and gro | wth Oct 20 | 16        |                         |
| Conc-%                 | 1         | 2        | 3         | 4           | 5           | 6          | 7          | 8         |                         |
| CS 136 West Bear Cor   | 1.0000    | 1.0000   | 1.0000    | 1.0000      | 1.0000      | 0.9000     | 0.9000     | 1.0000    |                         |
| Water only             | 0.9000    | 1.0000   | 1.0000    | 1.0000      | 0.9000      | 1.0000     | 1.0000     | 1.0000    |                         |
| BW16MLW-001 GLC #11080 | 1.0000    | 1.0000   | 1.0000    | 1.0000      | 0.9000      | 1.0000     | 1.0000     | 0.9000    |                         |
| BW16MLW-002 GLC #1108  | 0.9000    | 1.0000   | 1.0000    | 1.0000      | 1.0000      | 0.8000     | 1.0000     | 1.0000    |                         |
| BW16MLW-003 GLC #11082 | 2 1.0000  | 1.0000   | 0.9000    | 1.0000      | 1.0000      | 0.9000     | 0.9000     | 0.9000    |                         |

| ; <del>************************************</del> |                |      |        | Tra    | ansform: | Arcsin Sq | uare Root |   | Rank  | 1-Tailed |
|---------------------------------------------------|----------------|------|--------|--------|----------|-----------|-----------|---|-------|----------|
| Con                                               | c-% <b>M</b> e | ean  | N-Mean | Mean   | Min      | Max       | CV%       | N | Sum   | Critical |
| CS 136 West Be                                    | ar Con 0.9     | 9750 | 1.0000 | 1.3713 | 1.2490   | 1.4120    | 5.501     | 8 | *     |          |
| Wat                                               | eronly 0.9     | 9750 | 1.0000 | 1.3713 | 1.2490   | 1.4120    | 5.501     | 8 |       |          |
| BW16MLW-001 GLC #                                 | 11080 0.9      | 9750 | 1.0000 | 1.3713 | 1.2490   | 1.4120    | 5.501     | 8 | 68.00 | 48.00    |
| BW16MLW-002 GLC #                                 | £11081 0.9     | 9625 | 0.9872 | 1.3535 | 1.1071   | 1.4120    | 8.476     | 8 | 67.00 | 48.00    |
| BW16MLW-003 GLC #                                 | t11082 0.9     | 9500 | 0.9744 | 1.3305 | 1.2490   | 1.4120    | 6.547     | 8 | 60.00 | 48.00    |

| Auxiliary Tests                                                   | Statistic | Critical | Skew    | Kurt    |
|-------------------------------------------------------------------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) | 0.77407   | 0.904    | -1.1908 | 0.51842 |
| Bartlett's Test indicates equal variances (p = 0.64)              | 1.66885   | 7.81473  |         |         |
| The control means are not significantly different (p = 1.00)      | 0         | 2.14479  |         |         |
| Hypothesis Test (1-tail, 0.05)                                    |           |          |         |         |
| Steel's Many-One Rank Test indicates no significant differences   |           |          |         |         |
| Treatments vs CS 136 West Bear Con                                |           |          |         |         |

### Page 60 of 140

| ************************************** |              | Chiro       | nomus d   | ilutus 10d  | Survival  | and Grov              | vth Test-1 | 0-Day G | rowth (AFDW)            |
|----------------------------------------|--------------|-------------|-----------|-------------|-----------|-----------------------|------------|---------|-------------------------|
| Start Date: 1                          | 10/14/2016   | -           | Test ID:  | 2386cd16    |           | (                     | Sample ID  | :       | Mud Lake West           |
| End Date: 1                            | 10/24/2016   | I           | Lab ID:   | -GREAT L    | AKES EN   | VIRONM S              | Sample Ty  | rpe:    | -WHOLE SEDIMENT         |
| Sample Da                              |              | I           | Protocol: | EPA 100.4   | 1-EPA 600 | /R-94/02 <sup>-</sup> | Test Spec  | ies:    | CDIL-Chironomus dilutus |
| Comments                               | Bay West Mud | d Lake West | 10 day C  | dilutus sur | vival and | growth Oc             | t 2016     |         |                         |
| Conc-%                                 | 1            | 2           | 3         | 4           | 5         | 6                     | 7          | 8       |                         |
| CS 136 West Bear Con                   | 1.0900       | 0.9410      | 1.0630    | 0.9670      | 0.9420    | 0.9244                | 1.0322     | 0.9770  |                         |
| Water only                             | 1.0444       | 0.8800      | 0.9540    | 0.9880      | 1.0022    | 0.8400                | 0.9490     | 0.9350  |                         |
| BW16MLW-001 GLC #11080                 | 1.4710       | 1.1100      | 1.3420    | 1.4760      | 1.9467    | 1.2460                | 1.3800     | 1.3611  |                         |
| BW16MLW-002 GLC #11081                 | 1.4400       | 1.3450      | 1.2970    | 1.1320      | 1.2390    | 1.4188                | 1.4940     | 1.3540  |                         |
| 3W16MLW-003 GLC #11082                 | 1.0520       | 1.3090      | 1.5511    | 1.1870      | 1.2530    | 1.2311                | 1.3200     | 1.2011  |                         |

|                        |        |        |        | Transform | n: Untran | sformed |   | Rank   | 1-Tailed |
|------------------------|--------|--------|--------|-----------|-----------|---------|---|--------|----------|
| Conc-%                 | Mean   | N-Mean | Mean   | Min       | Max       | CV%     | N | Sum    | Critical |
| CS 136 West Bear Con   | 0.9921 | 1.0453 | 0.9921 | 0.9244    | 1.0900    | 6.234   | 8 | *      |          |
| Water only             | 0.9491 | 1.0000 | 0.9491 | 0.8400    | 1.0444    | 6.935   | 8 |        |          |
| BW16MLW-001 GLC #11080 | 1.4166 | 1.4926 | 1.4166 | 1.1100    | 1.9467    | 17.303  | 8 | 100.00 | 48.00    |
| BW16MLW-002 GLC #11081 | 1.3400 | 1.4119 | 1.3400 | 1.1320    | 1.4940    | 8.715   | 8 | 100.00 | 48.00    |
| BW16MLW-003 GLC #11082 | 1.2630 | 1.3308 | 1.2630 | 1.0520    | 1.5511    | 11.341  | 8 | 98.00  | 48.00    |

| Auxiliary Tests                                                   | Statistic | Critical | Skew    | Kurt    |
|-------------------------------------------------------------------|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) | 0.89395   | 0.904    | 1.30312 | 4.70951 |
| Bartlett's Test indicates unequal variances (p = 9.74E-03)        | 11.4015   | 7.81473  |         |         |
| The control means are not significantly different ( $p = 0.20$ )  | 1.34657   | 2.14479  |         |         |
| Hypothesis Test (1-tail, 0.05)                                    |           |          |         |         |
| Steel's Many-One Rank Test indicates no significant differences   |           |          |         |         |
| Treatments vs CS 136 West Bear Con                                |           |          |         |         |

### Page 61 of 140

|                        |                                                                       |           |            |                  |            |           |            |        | 7                       |  |  |
|------------------------|-----------------------------------------------------------------------|-----------|------------|------------------|------------|-----------|------------|--------|-------------------------|--|--|
|                        | Chironomus dilutus 10d Survival and Growth Test-10-Day Biomass (AFDW) |           |            |                  |            |           |            |        |                         |  |  |
| Start Date: 1          | 10/14/2016                                                            | _         | Γest ID:   | 2386cd16         |            |           | Sample ID  | :      | Mud Lake West           |  |  |
| End Date: 1            | 10/24/2016                                                            | l         | ∟ab ID:    | -GREAT LAKES     | SENVIRO    | NMENT/    | Sample Ty  | rpe:   | -WHOLE SEDIMENT         |  |  |
| Sample Da              |                                                                       | F         | Protocol:  | EPA 100.4-EPA    | 4 600/R-94 | 4/025     | Test Speci | ies:   | CDIL-Chironomus dilutus |  |  |
| Comments               | Bay West Mi                                                           | ud Lake W | est 10 day | Cdilutus surviva | al and gro | wth Oct 2 | 016        |        |                         |  |  |
| Conc-%                 | 1                                                                     | 2         | 3          | 4                | 5          | 6         | 7          | 8      |                         |  |  |
| CS 136 West Bear Con   | 1.0900                                                                | 0.9410    | 1.0630     | 0.9670           | 0.9420     | 0.8320    | 0.9290     | 0.9770 |                         |  |  |
| Water only             | 0.9400                                                                | 0.8800    | 0.9540     | 0.9880           | 0.9020     | 0.8400    | 0.9490     | 0.9350 |                         |  |  |
| BW16MLW-001 GLC #11080 | 1.4710                                                                | 1.1100    | 1.3420     | 1.4760           | 1.7520     | 1.2460    | 1.3800     | 1.2250 |                         |  |  |
| BW16MLW-002 GLC #11081 | 1.2960                                                                | 1.3450    | 1.2970     | 1.1320           | 1.2390     | 1.1350    | 1.4940     | 1.3540 |                         |  |  |
| BW16MLW-003 GLC #11082 | 1.0520                                                                | 1.3090    | 1.3960     | 1.1870           | 1.2530     | 1.1080    | 1.1880     | 1.0810 |                         |  |  |

| *************************************** |        |        | Transform: Untransformed |        |        |        |   |        | 1-Tailed |        |
|-----------------------------------------|--------|--------|--------------------------|--------|--------|--------|---|--------|----------|--------|
| Conc-%                                  | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | N | t-Stat | Critical | MSD    |
| CS 136 West Bear Con                    | 0.9676 | 1.0478 | 0.9676                   | 0.8320 | 1.0900 | 8.324  | 8 | *      |          |        |
| Water only                              | 0.9235 | 1.0000 | 0.9235                   | 0.8400 | 0.9880 | 5.091  | 8 |        |          |        |
| BW16MLW-001 GLC #11080                  | 1.3753 | 1.4892 | 1.3753                   | 1.1100 | 1.7520 | 14.334 | 8 | -6.008 | 2.156    | 0.1463 |
| BW16MLW-002 GLC #11081                  | 1.2865 | 1.3931 | 1.2865                   | 1.1320 | 1.4940 | 9.305  | 8 | -4.700 | 2.156    | 0.1463 |
| BW16MLW-003 GLC #11082                  | 1.1968 | 1.2959 | 1.1968                   | 1.0520 | 1.3960 | 9.880  | 8 | -3.377 | 2.156    | 0.1463 |

| Auxiliary Tests                                              | Statistic |         | Critical |         | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.96526   |         | 0.904    |         | 0.6036  | 1.23454 |
| Bartlett's Test indicates equal variances (p = 0.14)         | 5.43546   |         | 7.81473  |         |         |         |
| The control means are not significantly different (p = 0.20) | 1.33822   |         | 2.14479  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df      |
| Dunnett's Test indicates no significant differences          | 0.14627   | 0.15116 | 0.24542  | 0.01841 | 1.4E-05 | 3, 28   |
| Treatments vs CS 136 West Bear Con                           |           |         |          |         |         |         |

# Appendix D1 *Hyalella azteca*28-Day Bench sheets

- Survival
- Weight



Page <u>18</u> of **\%** QC'd by: **ML\** 

### Hvalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| est Species: Hyalella azteca ate Addition of Sediment: 10/18/2016 est Initiation Date: 10/19/2016  est Day: 28 ate: 11/16/2016  verlying Water: Dechlor verlying Water Batch ID (GLC Number): NA                                                                             | Conductance                  | Food: -YTC#- Screens Cleaned: - yes  Hardness                                                                                                           | 1°C .ge:  .:                                                               | In House 7/8 day  11/23/2016 | wal-         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|--------------|
| est Species: Hyalella azteca  ate Addition of Sediment: 10/18/2016 est Initiation Date: 10/19/2016  est Day: 28  ate: 11/16/2016  verlying Water: Dechlor verlying Water Batch ID (GLC Number): NA  Constitution Date: 10/19/2016  Replicate Temperature pH Dissolved Oxyget | Conductance                  | Test Temperature: 23± Test Organism Source/A Test Termination Date:  Number Daily Renewals  Y 0800 mak ren Food: YTC#— Screens Cleaned: □ yes  Hardness | 1°C                                                                        | In House 7/8 day  11/23/2016 | wal-         |
| est Initiation Date: 10/19/2016  est Day: 28  ate: 11/16/2016  everlying Water: Dechlor  everlying Water Batch ID (GLC Number): NA  EVER 6 (Mar) chemistries time/Initial  Replicate Temperature pH Dissolved Oxygen                                                         | Conductance                  | Test Organism Source/A Test Termination Date:  Number Daily Renewals  Y 0800 musk ren Food: YTC#— Screens Cleaned: □ yes  Hardness                      | ge:  newal time/Initials □ newal time/Initials □ □ Feed 1.  s ≱no ün/a     | ren 0 ml/replicate           | ewal-        |
| est Initiation Date: 10/19/2016  est Day: 28  ate: 11/16/2016  everlying Water: Dechlor  everlying Water Batch ID (GLC Number): NA  EVER Similar chemistries time/Initial  Replicate Temperature pH Dissolved Oxygen                                                         | Conductance                  | Number Daily Renewals    Number Daily Renewals   Number Daily Renewals   Power Properties   Power Properties                                            | newal time/Initials — □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                  | ren 0 ml/replicate           | ewal-        |
| Sest Day: 28 Date: 11/16/2016 Overlying Water: Dechlor Overlying Water Batch ID (GLC Number): NA  CONTROL Chemistries time/Initial  Replicate Temperature pH Dissolved Oxygen                                                                                                | Conductance                  | Number Daily Renewals    () () () () () () () () () () () () ()                                                                                         | newal time/Initials ──<br>newal time/Initials □<br>□ Feed 1.<br>s ≱no ün/a | ren<br>ren<br>0 ml/replicate | ewal-        |
| Oate: 11/16/2016 Overlying Water: Dechlor Overlying Water Batch ID (GLC Number): NA  CCC 6 (wir chemistries time/Initial  Replicate Temperature pH Dissolved Oxygen                                                                                                          | Conductance                  | Food: YTC#— Screens Cleaned: □ yes  Hardness                                                                                                            | newal time/Initials ──<br>newal time/Initials □<br>□ Feed 1.<br>s ≱no ün/a | ren<br>0 ml/replicate        | ewal         |
| verlying Water: Dechlor verlying Water Batch ID (GLC Number): NA  COC 6 mar chemistries time/Initial  Replicate Temperature pH Dissolved Oxyget                                                                                                                              | Conductance                  | Food: YTC#— Screens Cleaned: □ yes  Hardness                                                                                                            | newal time/Initials ──<br>newal time/Initials □<br>□ Feed 1.<br>s ≱no ün/a | ren<br>0 ml/replicate        | ewal         |
| rverlying Water: Dechlor rverlying Water Batch ID (GLC Number): NA  COCO 6 (NA) chemistries time/Initial  Replicate Temperature pH Dissolved Oxyget                                                                                                                          | Conductance                  | Food: -YTC#- Screens Cleaned: -yes Hardness                                                                                                             | newal time/Initials □<br>□ Feed 1.<br>s ≰no ü n/a                          | ren<br>0 ml/replicate        | ewal         |
| verlying Water Batch ID (GLC Number): NA  CC 6 (Mair chemistries time/Initial  Replicate Temperature pH Dissolved Oxygen                                                                                                                                                     | Conductance                  | Food: YTC#— Screens Cleaned: □ yes  Hardness                                                                                                            | ⊟ Feed 1.<br>s ≰vno ün/a                                                   | 0 ml/replicate               |              |
| Replicate Temperature pH Dissolved Oxygen                                                                                                                                                                                                                                    | Conductance                  | Screens Cleaned:                                                                                                                                        | s ¥≰no ün/a                                                                |                              |              |
| Replicate Temperature pH Dissolved Oxyget                                                                                                                                                                                                                                    | Conductance                  | Hardness                                                                                                                                                |                                                                            | Ammonio                      |              |
|                                                                                                                                                                                                                                                                              | Conductance                  | 1                                                                                                                                                       | Alkalinity                                                                 |                              |              |
| (23± 1°C )* (mg/L)*                                                                                                                                                                                                                                                          |                              |                                                                                                                                                         | *                                                                          | 1                            | Observations |
|                                                                                                                                                                                                                                                                              |                              | (mg/L CaCO <sub>3</sub> )                                                                                                                               | (mg/L CaCO <sub>3</sub> )                                                  | (as N)                       | # Surviving  |
|                                                                                                                                                                                                                                                                              | (µmhos/cm)                   |                                                                                                                                                         |                                                                            |                              | Organisms    |
| Record                                                                                                                                                                                                                                                                       |                              | 27/4                                                                                                                                                    |                                                                            |                              | Init:        |
| Meter ID 40 203 2310                                                                                                                                                                                                                                                         | 236                          | N/A                                                                                                                                                     | Je 3                                                                       | Ч                            | mu           |
|                                                                                                                                                                                                                                                                              | /                            | 121                                                                                                                                                     | 90                                                                         | 0,09 J                       | i C          |
|                                                                                                                                                                                                                                                                              | /                            | 136                                                                                                                                                     | 98                                                                         | 0,010                        |              |
| 2                                                                                                                                                                                                                                                                            |                              |                                                                                                                                                         |                                                                            | /                            | 10,          |
|                                                                                                                                                                                                                                                                              |                              | end: 30.8                                                                                                                                               | end: 22.6                                                                  |                              |              |
| 3 /                                                                                                                                                                                                                                                                          |                              |                                                                                                                                                         |                                                                            | /                            | 9            |
| 3 / / / /                                                                                                                                                                                                                                                                    |                              | start: 27.4                                                                                                                                             | start: 17.7                                                                |                              |              |
|                                                                                                                                                                                                                                                                              |                              | Titrant                                                                                                                                                 | Titrant used (mL): 4.9                                                     | /                            | 10 /         |
| 4                                                                                                                                                                                                                                                                            |                              | used (mL): 3. 4                                                                                                                                         |                                                                            | L/                           |              |
| 5 331 7.57 7.3                                                                                                                                                                                                                                                               | 30 ( 4                       | Sample volume (mL): 25                                                                                                                                  | Sample volume (mL): 50                                                     | /                            | 10/          |
| 5   33.1   7.51   7.2                                                                                                                                                                                                                                                        | 311                          | volume (Int.).                                                                                                                                          | volume (mb). 50                                                            |                              |              |
| 2 2 2 2                                                                                                                                                                                                                                                                      |                              |                                                                                                                                                         |                                                                            | /                            | 10 /         |
| 6 231 764 70                                                                                                                                                                                                                                                                 | 308                          |                                                                                                                                                         |                                                                            | /                            | ,            |
|                                                                                                                                                                                                                                                                              |                              |                                                                                                                                                         |                                                                            | /                            | 10           |
|                                                                                                                                                                                                                                                                              |                              |                                                                                                                                                         |                                                                            |                              | 1            |
|                                                                                                                                                                                                                                                                              |                              |                                                                                                                                                         |                                                                            | /                            | 10           |
| 8                                                                                                                                                                                                                                                                            | Coordinator if Dissolved Oxy |                                                                                                                                                         |                                                                            | /                            | <u></u>      |

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L). MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

 $J = \ge MDL$  and  $\le RL$ . U = Below MDL.

NAV: No Animals Visible

FOV: Foreign Organism Visible



Page <u>18</u> of <u>18</u> QC'd by: ML√

### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:    | 2386-01             | Project Name: | Bay West         |             | Test Method-Manual:       |                           | EPA 100.4-EPA/   | 600/R-99/064      |
|--------------------|---------------------|---------------|------------------|-------------|---------------------------|---------------------------|------------------|-------------------|
| GLC#:              | Water Only          |               |                  |             | Test Photoperiod: 16:8    |                           |                  |                   |
| Sample ID:         | N/A                 |               |                  |             | Test System: Sediment-    |                           | Water-175mL Mai  | nual Delivery     |
| Test Species: H    | yalella azteca      |               |                  |             | Test Temperature: 23±     |                           |                  |                   |
| Date Addition of   | Sediment:           | 10/18/2016    |                  |             | Test Organism Source/A    | ge:                       | In House 7/8 day |                   |
| Test Initiation Da | te:                 | 10/19/2016    |                  |             | Test Termination Date:    |                           | 11/23/2016 11 W  | 10 mus illiallo   |
| Test Day: 28       |                     |               |                  |             | Number Daily Renewals     | : <b>\</b>                |                  |                   |
| Date:              | 11/16/2016          |               |                  |             |                           | newal time/Initials —     | ren              | ewal-             |
| Overlying Water:   |                     |               |                  |             |                           | newal time/Initials ==    | ren              | ewal-             |
|                    | Batch ID (GLC Nur   | nber): NA     |                  |             | Food: YTC#                | □ Feed 1.                 | 0 ml/replicate   |                   |
|                    | chemistries time/Ir |               |                  |             | Screens Cleaned:   yes    | s <u>≮</u> no ün⁄a        |                  |                   |
| Replicate          | Temperature         | pН            | Dissolved Oxygen | Specific    | Hardness                  | Alkalinity                | Ammonia          | Observations/     |
| Kephcate           | 1 - 1               | pm            | (mg/L)*          | Conductance | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)           | # Surviving       |
|                    | (23± 1°C)*          |               | (g, 2)           | (µmhos/cm)  | (mg/L caco <sub>3</sub> ) | (mg/2 on o o j)           | (-2-1)           | Organisms         |
|                    |                     |               |                  | (1          |                           |                           |                  |                   |
| Record<br>Meter ID | 236 mg              | ° 703         | 236              | 236         | N/A                       | 953                       | 4                | Init:             |
| 1                  |                     |               |                  |             | 136                       | 104                       | 0.065            | 10 /10            |
| 2                  |                     |               |                  |             | end: 34 2                 | end: จา. ชั               | ĺ                | 9 /10             |
| 3                  |                     |               |                  |             | start: 30.8               | start: 92.6               |                  | 10 <sub>/10</sub> |
| 4                  |                     |               |                  |             | Titrant used (mL): 3,4    | Titrant used (mL): 5 - 3  |                  | IG /10            |
| 5                  | 22.9                | 7.97          | 7.9              | 315         | Sample volume (mL): 35    | Sample volume (mL):       |                  | 10 <sub>/10</sub> |
| 6                  | 22.80               | 7.94          | 8.0              | 319         |                           |                           |                  | ( <b>O</b> /10    |
| 7                  | /                   |               |                  |             |                           |                           |                  | <b>10</b> /10     |
| 8                  |                     |               |                  |             |                           |                           | 1                | <i>lo</i> /10     |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_1 + s_2)/2}$  x 100 =

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 8 replicates.

#### Ammonia Reporting Limits:

RL =Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \geq \text{MDL and} < \text{RL}.$ 

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible



Page <u>18</u> of <u>K</u>

QC'd by: MLV

### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:     | 2386-01            | Project Name: | Bay West                 |                                                           | Test Method-Manua                                                      | al:                                           | EPA 100.4-EPA          | /600/R-99/064                                |  |
|---------------------|--------------------|---------------|--------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|------------------------|----------------------------------------------|--|
| GLC#:               | 11080              |               |                          | Test Photoperiod: 16:8                                    |                                                                        |                                               |                        |                                              |  |
| Sample ID:          | BW16MLW-00         | )1            |                          |                                                           | Test System: Sediment-100 mL and Overlying Water-175mL Manual Delivery |                                               |                        |                                              |  |
| Test Species: H     | yalella azteca     |               |                          |                                                           | Test Temperature: 23                                                   |                                               |                        |                                              |  |
| Date Addition of    | Sediment:          | 10/18/2016    |                          |                                                           | Test Organism Source                                                   | e/Age:                                        | In House 7/8 day       |                                              |  |
| Test Initiation Da  | te:                | 10/19/2016    |                          |                                                           | Test Termination Dat                                                   | e:                                            | 11/23/2016             | 6110 mw Wille                                |  |
| Test Day: 28        | ) · ·              |               |                          |                                                           | Number Daily Renew                                                     | vals:                                         |                        |                                              |  |
| Date:               | 11/16/2016         |               |                          |                                                           | doecem renewal time/Initials — renewal                                 |                                               |                        |                                              |  |
| Overlying Water:    | Dechlor            |               |                          |                                                           | □ renewal time/Initials □ renewal                                      |                                               |                        |                                              |  |
| Overlying Water     | Batch ID (GLC Nu   | mber): NA     |                          |                                                           | Food: -YTC#-                                                           |                                               |                        |                                              |  |
| \$6752m             | chemistries time/I | nitial        |                          |                                                           | Screens Cleaned: □ yes □ vao ü n/a                                     |                                               |                        |                                              |  |
| Replicate           | Temperature        | pН            | Dissolved Oxygen         | Specific                                                  | Hardness                                                               | Alkalinity                                    | Ammonia                | Observations/                                |  |
| Replicate           | (23± 1°C)*         | <b>P</b>      | (mg/L)*                  | Conductance<br>(µmhos/cm)                                 | (mg/L CaCO <sub>3</sub> )                                              | (mg/L CaCO <sub>3</sub> )                     | (as N)                 | # Surviving<br>Organisms                     |  |
| Record<br>Meter ID  | 236 m              | · 203         | 236                      | 236                                                       | N/A                                                                    | Je3                                           | 4                      | Init:                                        |  |
| 1                   | /                  | /             |                          |                                                           | 136 136                                                                | 98 98                                         | 0.06 J                 | <b>(10</b> /10                               |  |
| 2                   |                    |               |                          |                                                           | end: 37.6                                                              | end: 377                                      | DUP=0.06J              | 10 /10                                       |  |
| 3                   |                    |               |                          |                                                           | start: 34.7                                                            | start: 27 X                                   |                        | <b>9</b> /10                                 |  |
| 4                   |                    |               |                          |                                                           | Titrant used (mL): 3, 4                                                | Titrant used (mL): 49                         |                        | 10/10                                        |  |
| 5                   | 12.8               | 7.64          | 7.3                      | 319                                                       | Sample volume (mL): 25                                                 | Sample volume (mL): 50                        |                        | 9 /10                                        |  |
| 6                   | 22.8               | 2,701         | 7.0                      | 321                                                       |                                                                        |                                               |                        | 10/10                                        |  |
| 7                   | /                  |               |                          |                                                           |                                                                        |                                               |                        | 0/10                                         |  |
| 8                   |                    |               |                          |                                                           | /                                                                      |                                               | 1 %                    | 10/10                                        |  |
| Relative % Di       | fference: RPD ≤1:  | 5%            | * Contact Laboratory Coo | ordinator if Dissolved Oxy<br>ammonia analyzed from a     | gen level is < 2.5 mg/L<br>a composite sample of                       | or if Temperature is out of all 8 replicates. |                        | KEY:                                         |  |
| RPD =               |                    |               |                          | mits:<br>20 mg/L).                                        |                                                                        | Hard dup                                      | auk dup                | AV: Animals Visible  NAV: No Animals Visible |  |
| revised: June 2012  |                    |               |                          | ion Limit (0.02 mg/L) - la:<br>$J = \ge MDL$ and $< RL$ . | st updated 3/2016.                                                     |                                               | Sav 327                | FOV: Foreign Organism Visible                |  |
| revised, Julie 2012 |                    |               |                          |                                                           | 3                                                                      | sample 25                                     | tinal-4.9<br>Sumpli 50 |                                              |  |



Page <u>18</u> of <u>\</u> QC'd by: <u>ML</u>√

### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number: 2386-01 Project Name: Bay West                                                                                                                                                                                                                                                                                                                                                                                      |                     |            |                  | •                  | Test Method-Manual:                                                   |                            | EPA 100.4-EPA/600/R-99/064                                               |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------------|--------------------|-----------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|---------------------------------------|
| GLC#:                                                                                                                                                                                                                                                                                                                                                                                                                               | 11081               |            |                  | <u>. ,</u>         | Test Photoperiod: 16:8                                                |                            |                                                                          |                                       |
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                          | BW16MLW-00          | 2          |                  |                    | Test System: Sediment-100 mL and Overlying Water-175mL Manual Deliver |                            |                                                                          |                                       |
| Test Species: H                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |            |                  |                    | Test Temperature: 23± 1°C                                             |                            |                                                                          |                                       |
| Date Addition of                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | 10/18/2016 |                  |                    | Test Organism Source/                                                 | Age:                       | In House 7/8 day                                                         |                                       |
| rest Initiation Da                                                                                                                                                                                                                                                                                                                                                                                                                  | ite:                | 10/19/2016 |                  |                    | Test Termination Date:                                                |                            | 11/23/2016 11/16/16 MULTINIO                                             |                                       |
| Γest Day: 28                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                   |            |                  |                    | Number Daily Renewal                                                  | s: <b>\</b>                |                                                                          |                                       |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/16/2016          |            |                  |                    | hotog m re                                                            | newal time/Initials -      | renewal                                                                  |                                       |
| Overlying Water: Dechlor                                                                                                                                                                                                                                                                                                                                                                                                            |                     |            |                  |                    | □ renewal time/Initials □ renewal                                     |                            |                                                                          | ewal-                                 |
| Overlying Water Batch ID (GLC Number): NA                                                                                                                                                                                                                                                                                                                                                                                           |                     |            |                  |                    | Food: YTC#-    Feed 1.0 ml/replicate                                  |                            |                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | chemistries time/Ir |            |                  |                    | Screens Cleaned:   ye                                                 | s a⊈no ün/a                |                                                                          | · · · · · · · · · · · · · · · · · · · |
| Replicate                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperature         | pН         | Dissolved Oxygen | Specific           | Hardness                                                              | Alkalinity                 | Ammonia                                                                  | Observations/                         |
| Replicate                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | PAA        | (mg/L)*          | Conductance        | (mg/L CaCO <sub>3</sub> )                                             | (mg/L CaCO <sub>3</sub> )  | (as N)                                                                   | # Surviving                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | (23± 1°C)*          |            | (mg/L)           | (µmhos/cm)         | (IIIg/L CaCO <sub>3</sub> )                                           | (mg/Li CacO <sub>3</sub> ) | (43 11)                                                                  | Organisms                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |            |                  | (штозлет)          |                                                                       |                            |                                                                          |                                       |
| Record<br>Meter ID                                                                                                                                                                                                                                                                                                                                                                                                                  | 736                 | 203        | 236              | 236                | N/A                                                                   | 303                        | 4                                                                        | Init: Nub-                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                   | /                   | /          |                  |                    | 136                                                                   | 106                        | 0.051                                                                    | (0 /10                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |                  |                    | end: 44,4                                                             | end: 43,9                  | /                                                                        | 9 /10                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |                  |                    | start: 41. 0                                                          | start: 37:6                |                                                                          | 9 /10                                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |                  |                    | Titrant used (mL): 3.4                                                | Titrant used (mL): 5.3     |                                                                          | 0/10                                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                   | 228                 | 7.91       | 73               | 325                | Sample volume (mL): 35                                                | Sample volume (mL): 50     |                                                                          | (0 /10                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128                 | 3,93       | 7.0              | 327                |                                                                       |                            |                                                                          | <b>O</b> /10                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |                  |                    |                                                                       |                            |                                                                          | 9 /10                                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |            |                  |                    |                                                                       |                            | <u>                                     </u>                             | 10/10                                 |
| RPD = $(s_1 - s_2)$ $(s_1 + s_2)/2$ |                     |            |                  | mits:<br>20 mg/L). | a composite sample of all                                             | f range.                   | KEY: AV: Animals Visible NAV: No Animals Visible FOV: Foreign Organism V |                                       |



Page <u>18</u> of <u>8</u> QC'd by: MLV

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:    |                        | Project Name: | Bay West                                                                                         |                                       | Test Method-Manual:                      |                                         | EPA 100.4-EPA      | /600/R-99/064                                                            |
|--------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------|
| GLC#:              | 11082                  |               |                                                                                                  |                                       | Test Photoperiod: 16:8                   | ·                                       |                    |                                                                          |
| Sample ID:         | BW16MLW-00             | 3             |                                                                                                  |                                       |                                          | -100 mL and Overlying                   | Water-175mL Ma     | nual Delivery                                                            |
| Γest Species: Η    |                        |               |                                                                                                  |                                       | Test Temperature: 23± 1°C                |                                         |                    |                                                                          |
| Date Addition of   | Sediment:              | 10/18/2016    |                                                                                                  |                                       | Test Organism Source/Age: In House 7/8 c |                                         |                    |                                                                          |
| Γest Initiation Da | te:                    | 10/19/2016    |                                                                                                  |                                       | Test Termination Date:                   |                                         | -11/23/2016  \\\\\ | 11111111 will all                                                        |
| Гest Day: 28       |                        |               |                                                                                                  |                                       | Number Daily Renewals                    | : <b>\</b>                              |                    |                                                                          |
| Date:              | 11/16/2016             |               |                                                                                                  | <u>-</u>                              | ROZECM rei                               | newal time/Initials —                   | rer                | ewal-                                                                    |
| Overlying Water:   | Dechlor                |               |                                                                                                  | •                                     |                                          | newal time/Initials 🗆                   | rer                | ewal-                                                                    |
|                    | Batch ID (GLC Nur      | nber): NA     |                                                                                                  | •                                     | Food: <del>YTC#</del>                    | □ Feed 1.                               | 0 ml/replicate     |                                                                          |
|                    | chemistries time/Ir    |               |                                                                                                  | •                                     | Screens Cleaned: pes                     | se∕no ün/a                              |                    |                                                                          |
| Replicate          | Temperature (23± 1°C)* | рН            | Dissolved Oxygen<br>(mg/L)*                                                                      | Specific<br>Conductance<br>(µmhos/cm) | Hardness<br>(mg/L CaCO <sub>3</sub> )    | Alkalinity<br>(mg/L CaCO <sub>3</sub> ) | Ammonia<br>(as N)  | Observations/<br># Surviving<br>Organisms                                |
| Record<br>Meter ID | 236                    | 203           | 236                                                                                              | 236                                   | N/A                                      | 203                                     | 4                  | Init:                                                                    |
| 1                  |                        |               |                                                                                                  | /                                     | 132                                      | 98                                      | 0.05 J             | (O /10                                                                   |
| 2                  |                        |               |                                                                                                  |                                       | end: 47.7                                | end: 47.8                               |                    | 10 /10                                                                   |
| 3                  |                        |               |                                                                                                  |                                       | start: 44.4                              | start: 429                              |                    | <b>10</b> /10                                                            |
| 4                  |                        |               |                                                                                                  |                                       | Titrant used (mL):                       | Titrant<br>used (mL):                   |                    | <i>[0</i> /10                                                            |
| 5                  | 23.0                   | 7.60          | 6-8                                                                                              | 317                                   | Sample volume (mL): 35                   | Sample volume (mL): 50                  |                    | 9 /10                                                                    |
| 6                  | 23.0                   | テシェ           | 63                                                                                               | 317                                   |                                          |                                         |                    | <b>%</b> /10                                                             |
| 7                  | /                      |               |                                                                                                  |                                       |                                          |                                         |                    | <b>j</b> 0/10                                                            |
| 8                  |                        |               |                                                                                                  |                                       |                                          |                                         |                    | 10/10                                                                    |
|                    | ference: RPD $\leq$ 15 | 1             | *Alkalinity, hardness and Ammonia Reporting Link RL = Reporting Limit (0.1) MDL = Minimum Detect |                                       | a composite sample of all                | if Temperature is out of 8 replicates.  | range.             | KEY: AV: Animals Visible NAV: No Animals Visible FOV: Foreign Organism V |



Page <u>18</u> of **\%** QC'd by: **ML** 

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:     | 2386-01                     | Project Name: | Bay West                 |                            | Test Method-Manual:                        |                               | EPA 100.4-EPA/ | 600/R-99/064                           |  |
|---------------------|-----------------------------|---------------|--------------------------|----------------------------|--------------------------------------------|-------------------------------|----------------|----------------------------------------|--|
| GLC#:               | CS 136                      |               |                          |                            | Test Photoperiod: 16:8                     |                               |                |                                        |  |
| Sample ID:          | West Bearskin               | Lake          |                          |                            | Test System: Sediment                      |                               | Water-175mL Ma | nual Delivery                          |  |
| Test Species: H     | yalella azteca              |               |                          |                            | Test Temperature: 23±                      |                               |                |                                        |  |
| Date Addition of S  | Sediment:                   | 10/18/2016    |                          |                            | Test Organism Source/Age: In House 7/8 day |                               |                |                                        |  |
| Test Initiation Dat | te:                         | 10/19/2016    |                          |                            | Test Termination Date:                     |                               | 41/23/2016     | 11111111111111111111111111111111111111 |  |
| Test Day: 28        |                             |               |                          |                            | Number Daily Renewals                      |                               |                |                                        |  |
| Date:               | 11/16/2016                  |               |                          |                            |                                            | newal time/Initials 💶         | ren            | ewal-                                  |  |
| verlying Water:     | Dechlor                     |               |                          |                            | n rei                                      | newal time/Initials 🗆 —       | ren            | ewal-                                  |  |
| Overlying Water I   | Batch ID (GLC Nur           | nber): NA     |                          |                            | Food: <del>YTC#</del>                      | □ Feed 1.                     | 0 ml/replicate |                                        |  |
| COS 5 Muir 9        | chemistries time/Ir         | nitial        |                          |                            | Screens Cleaned: u yes                     | <b>≰</b> no ün⁄a              |                |                                        |  |
| Replicate           | Temperature                 |               | Dissolved Oxygen         | Specific                   | Hardness                                   | Alkalinity                    | Ammonia        | Observations/                          |  |
| <u>.</u>            | (23± 1°C)*                  | •             | (mg/L)*                  | Conductance                | (mg/L CaCO <sub>3</sub> )                  | (mg/L CaCO <sub>3</sub> )     | (as N)         | # Surviving                            |  |
|                     | (252 1 € )                  |               | ( ) /                    | (µmhos/cm)                 | (                                          | (                             |                | Organisms                              |  |
| Record              |                             |               |                          |                            |                                            |                               |                | Init:                                  |  |
| Meter ID            | 40                          | २०३           | 236                      | 236                        | N/A                                        | Je 3                          | 4              | mu                                     |  |
| 1                   |                             | /             |                          |                            | 136                                        | 98                            | 0.09 1         | <b>f C</b> /10                         |  |
| 2                   |                             |               |                          |                            | end: 30.3                                  | end: 32. 6                    | /              | 10/10                                  |  |
| 3                   |                             |               |                          |                            | 27.11                                      | <b>177</b>                    |                | 9 /10                                  |  |
| 4                   |                             |               |                          |                            | Start: Titrant used (mL):                  | start: Titrant used (mL): 4.9 |                | ÎO /10                                 |  |
| 5                   | 33.1                        | 7.57          | 7.2                      | 311                        | Sample volume (mL): 25                     | Sample<br>volume (mL): 50     |                | [O /1                                  |  |
| 6                   | 23.1                        | 7.64          | •                        | 308                        |                                            | /                             |                | 10 /10                                 |  |
| 7                   | /                           | 1.01          |                          | 300                        |                                            |                               |                | <b>i</b> O /10                         |  |
| 8                   |                             |               |                          |                            |                                            |                               | /              | 10/1                                   |  |
| D 1 (1 0/ D)        | <u>X</u><br>Terence: RPD≤15 | 50%           | * Contact Laboratory Coo | ordinator if Dissolved Oxy | gen level is < 2.5 mg/L or                 | if Temperature is out of      | range.         |                                        |  |

x 100 =RPD = $(s_1 + s_2)/2$ 

RL =Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

 $J = \ge MDL$  and  $\le RL$ . U = Below MDL.

NAV: No Animals Visible

FOV: Foreign Organism Visible



Page <u>18</u> of <u>18</u> QC'd by: ML✓

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| SAMPLE STORY STORY | mga) Center        | нуа            | ietta azteca 26-1 | Jay Survivai an           | u Growin who                                                           | ne Seament 1              | oxicity lest              |                          |  |  |
|--------------------|--------------------|----------------|-------------------|---------------------------|------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------|--|--|
| Project Number:    | 2386-01            | Project Name:  | Bay West          |                           | Test Method-Manual:                                                    |                           | EPA 100.4-EPA/            | /600/R-99/064_           |  |  |
| GLC#:              | Water Only         | 110,000 11.00. | J                 |                           | Test Photoperiod: 16:8                                                 |                           |                           |                          |  |  |
| Sample ID:         | N/A                |                |                   |                           | Test System: Sediment-100 mL and Overlying Water-175mL Manual Delivery |                           |                           |                          |  |  |
|                    | valella azteca     |                |                   |                           | Test Temperature: 23±                                                  | 1°C                       |                           |                          |  |  |
| Date Addition of   |                    | 10/18/2016     |                   |                           | Test Organism Source/A                                                 | Age:                      | In House 7/8 day          |                          |  |  |
| Test Initiation Da | te:                | 10/19/2016     |                   |                           | Test Termination Date:                                                 |                           | 11/23/2016 11/6           | is mus illially          |  |  |
| Test Day: 28       |                    |                |                   |                           | Number Daily Renewals                                                  |                           |                           |                          |  |  |
| Date:              | 11/16/2016         |                |                   | •                         | FO00 C14                                                               | newal time/Initials 🗕     | ren                       | ewal-                    |  |  |
| Overlying Water:   | Dechlor            |                |                   | '                         | e re                                                                   | newal time/Initials 🗆 🗀   | ren                       | ewal                     |  |  |
|                    | Batch ID (GLC Nu   | mber): NA      |                   | •                         | Food: YTC#                                                             | □ Feed 1.                 | <del>0 ml/replicate</del> |                          |  |  |
|                    | chemistries time/I |                |                   |                           | Screens Cleaned:   yes                                                 | s s⊈no ün/a               |                           |                          |  |  |
| Replicate          | Temperature        |                | Dissolved Oxygen  | Specific                  | Hardness                                                               | Alkalinity                | Ammonia                   | Observations/            |  |  |
|                    | (23± 1°C)*         | •              | (mg/L)*           | Conductance<br>(µmhos/cm) | (mg/L CaCO <sub>3</sub> )                                              | (mg/L CaCO <sub>3</sub> ) | (as N)                    | # Surviving<br>Organisms |  |  |
| Record<br>Meter ID | 236 mg             | * 203          | 236               | 236                       | N/A                                                                    | 903                       | 4                         | Init:                    |  |  |
| 1                  | /                  |                |                   |                           | 136                                                                    | 104                       | 0.065                     | 10 /10                   |  |  |
| 2                  |                    |                |                   |                           | end: 34.2                                                              | end: จา. 🖇                |                           | 9 /10                    |  |  |
| 3                  |                    |                |                   |                           | start: 30.8                                                            | start: 99.6               |                           | 10 <sub>/10</sub>        |  |  |
| 4                  |                    |                |                   |                           | Titrant used (mL): 3,4                                                 | Titrant used (mL): 5 - 3  |                           | 10 /10                   |  |  |
| 5                  | 22.9               | ナシナ            | 7.9               | 315                       | Sample volume (mL): 35                                                 | Sample volume (mL):       |                           | 10 /10                   |  |  |
| 6                  | 12.8               | 7.94           | 8.0               | 319                       | /                                                                      |                           |                           | (O /10                   |  |  |
|                    | +                  | <del> </del>   |                   |                           |                                                                        |                           | 1 T                       | 1                        |  |  |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_{1+} s_2)/2}$   $\times 100 =$ 

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 8 replicates.

#### Ammonia Reporting Limits:

RL =Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \geq \text{MDL and } \leq \text{RL}.$ 

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

10 /10

*lO* /10

8



Page <u>18</u> of **K** QC'd by: **MLV** 

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:                    | 2386-01                                                                                 | Project Name:                                | Bay West                                                                               |                                                        | Test Method-Manua                          | 1:                             | EPA 100.4-EPA               | /600/R-99/064                                    |  |
|------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------|-----------------------------|--------------------------------------------------|--|
| îLC#:                              | 11080                                                                                   |                                              |                                                                                        |                                                        | Test Photoperiod: 16:                      | 8                              |                             |                                                  |  |
| ample ID:                          | BW16MLW-00                                                                              | )1                                           |                                                                                        |                                                        | Test System: Sedime                        | nt-100 mL and Overlying        | Water-175mL Ma              | nual Delivery                                    |  |
| est Species: H                     | yalella azteca                                                                          |                                              |                                                                                        |                                                        | Test Temperature: 23                       | ± 1°C                          |                             |                                                  |  |
| ate Addition of                    |                                                                                         | 10/18/2016                                   |                                                                                        |                                                        | Test Organism Source/Age: In House 7/8 day |                                |                             |                                                  |  |
| est Initiation Da                  |                                                                                         | 10/19/2016                                   | -4-1-                                                                                  |                                                        | Test Termination Date                      | <b>:</b>                       | 11/23/2016 \\\\             | ully mus vilally                                 |  |
| est Day: 28 Date: Overlying Water: | 11/16/2016<br>Dechlor                                                                   |                                              |                                                                                        |                                                        |                                            | renewal time/Initials ——       |                             | ewal-                                            |  |
|                                    | Batch ID (GLC Nur                                                                       |                                              |                                                                                        |                                                        | Screens Cleaned:   y                       |                                | . <del>o mirrepricate</del> |                                                  |  |
|                                    | chemistries time/Ir                                                                     |                                              |                                                                                        |                                                        |                                            |                                | T                           |                                                  |  |
| Replicate                          | Temperature                                                                             | pН                                           | Dissolved Oxygen                                                                       | Specific                                               | Hardness                                   | Alkalinity                     | Ammonia                     | Observations/                                    |  |
|                                    | (23± 1°C)*                                                                              |                                              | (mg/L)*                                                                                | Conductance                                            | (mg/L CaCO <sub>3</sub> )                  | (mg/L CaCO <sub>3</sub> )      | (as N)                      | # Surviving                                      |  |
|                                    |                                                                                         |                                              |                                                                                        | (µmhos/cm)                                             |                                            |                                |                             | Organisms                                        |  |
| Record                             | . 236 m                                                                                 |                                              |                                                                                        |                                                        |                                            |                                |                             | Init:                                            |  |
| Meter ID                           | 1 Duliet                                                                                | · 203                                        | 236                                                                                    | 236                                                    | N/A                                        | Je3                            | 4                           | mue                                              |  |
| 1                                  | /                                                                                       | /                                            |                                                                                        |                                                        | 136 136                                    | 98 98                          | 0.06 J                      | <b>(O</b> /10                                    |  |
| 2                                  |                                                                                         |                                              |                                                                                        |                                                        | 13 mm 1                                    | 200                            | Dup=0.065                   | 10 /10                                           |  |
| 3                                  |                                                                                         |                                              |                                                                                        |                                                        | one.                                       |                                | /                           | <b>9</b> /10                                     |  |
| <i>J</i>                           |                                                                                         |                                              |                                                                                        |                                                        | start: 34.7                                | start: つって                     |                             |                                                  |  |
| 4                                  |                                                                                         |                                              |                                                                                        |                                                        | Titrant used (mL): 3, 4                    | Titrant<br>used (mL): 4,9      |                             | 10/10                                            |  |
| 5                                  | 12.%                                                                                    | 7.64                                         | 7.3                                                                                    | 319                                                    | Sample volume (mL): 25                     | Sample volume (mL): 50         |                             | <b>9</b> /10                                     |  |
| 6                                  | 22.8                                                                                    | 7,79                                         | 7.0                                                                                    | 321                                                    |                                            |                                |                             | 10/10                                            |  |
| 7                                  | /                                                                                       |                                              |                                                                                        |                                                        |                                            |                                | /                           | 10/10                                            |  |
| 8                                  |                                                                                         |                                              |                                                                                        |                                                        |                                            |                                | 1                           | 10/10                                            |  |
| Relative % Di                      | Ference: RPD ≤15                                                                        | <u>r                                    </u> | * Contact Laboratory Cod                                                               | ordinator if Dissolved Oxv                             | gen level is < 2.5 mg/L                    | or if Temperature is out of    | range.                      |                                                  |  |
|                                    | $\begin{array}{ c c c }\hline (s_1 - s_2) \\\hline (s_{1+} s_2)/2 \\\hline \end{array}$ | •                                            | *Alkalinity, hardness and <b>Ammonia Reporting Lin</b> <i>RL</i> = Reporting Limit (0. | l ammonia analyzed from a<br>mits:<br>20 mg/L).        | a composite sample of a                    | II 8 replicates.<br>Havid Cluy | Cuk dup                     | KEY: AV: Animals Visible NAV: No Animals Visible |  |
|                                    |                                                                                         |                                              |                                                                                        | ion Limit (0.02 mg/L) - las $J = \ge MDL$ and $< RL$ . | st updated 3/2016.                         | md 41.0                        | and 376<br>Stur 327         | FOV: Foreign Organism Vis                        |  |
| vised: June 2012                   |                                                                                         |                                              |                                                                                        |                                                        |                                            | ithur: 3.4                     | tinal-4.9<br>Sumpli 50      |                                                  |  |



Page <u>18</u> of <u>18</u> QC'd by: <u>MLV</u>

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

| Project Number:    | *****                                                        | Project Name: | Bay West                                                                                        |                       | Test Method-Manua         |                                                  | EPA 100.4-EPA      | /600/R-99/064                                                                |
|--------------------|--------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|-----------------------|---------------------------|--------------------------------------------------|--------------------|------------------------------------------------------------------------------|
| GLC#:              | 11081                                                        |               |                                                                                                 |                       | Test Photoperiod: 16:     | s8<br>nt-100 mL and Overlying                    | Water 175ml Ma     | must Delivery                                                                |
| Sample ID:         | BW16MLW-00                                                   | 2             |                                                                                                 | 32.821 9.1990 · · · · | Test Temperature: 23      |                                                  | water-1/5ml Ma     | Inual Delivery                                                               |
| Test Species: H    |                                                              | 10/10/2016    |                                                                                                 |                       | <u> </u>                  |                                                  | In House 7/8 day   |                                                                              |
| Date Addition of   |                                                              | 10/18/2016    |                                                                                                 |                       | 9                         |                                                  |                    | illestic                                                                     |
| Test Initiation Da | ate:                                                         | 10/19/2016    |                                                                                                 |                       | Test Termination Date     | 2:                                               | -11/23/2010 - [[]] | who mustillally                                                              |
| Test Day: 2        | 8                                                            |               |                                                                                                 |                       | Number Daily Renewa       | <del></del>                                      |                    |                                                                              |
| Date:              | 11/16/2016                                                   |               |                                                                                                 |                       | 000011                    | renewal time/Initials -=                         |                    | newal-                                                                       |
| Overlying Water    |                                                              |               |                                                                                                 |                       |                           | renewal-time/Initials 🗆                          |                    | newal-                                                                       |
| Overlying Water    | Overlying Water Batch ID (GLC Number): NA                    |               |                                                                                                 |                       | Food: <del>YTC#</del>     |                                                  | .0-ml/replicate    |                                                                              |
| \$6752 mg          | chemistries time/In                                          | nitial        |                                                                                                 |                       | Screens Cleaned:   y      |                                                  |                    |                                                                              |
| Replicate          | Temperature                                                  | pН            | Dissolved Oxygen                                                                                | Specific              | Hardness                  | Alkalinity                                       | Ammonia            | Observations/                                                                |
|                    | (23± 1°C)*                                                   |               | (mg/L)*                                                                                         | Conductance           | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> )                        | (as N)             | # Surviving                                                                  |
|                    |                                                              |               |                                                                                                 | (µmhos/cm)            |                           |                                                  |                    | Organisms                                                                    |
| Record             |                                                              |               |                                                                                                 |                       |                           |                                                  | 4.1                | Init:                                                                        |
| Meter ID           | 736                                                          | 203           | 236                                                                                             | 236                   | N/A                       | 303                                              | 4                  | nut-                                                                         |
| 1                  | /                                                            | /             |                                                                                                 | /                     | 136                       | 106                                              | 0.05 J             | (0 /10                                                                       |
| 2                  |                                                              |               |                                                                                                 |                       | end: 44,4                 | end: 43,9                                        | /                  | 9 /10                                                                        |
| 3                  |                                                              |               |                                                                                                 |                       | start: 41. 0              | start: 37:6                                      |                    | 9 /10                                                                        |
| 4                  |                                                              |               |                                                                                                 |                       | Titrant used (mL): 3.4    | Titrant used (mL): 5.3                           |                    | (Q /10°°                                                                     |
| 5                  | 228                                                          | 7.91          | 73                                                                                              | 325                   | Sample volume (mL): 35    | Sample volume (mL): 50                           |                    | (0 /10                                                                       |
| 6                  | 128                                                          | 3.93          | 7.0                                                                                             | 327                   |                           |                                                  |                    | [0/10                                                                        |
| 7                  |                                                              |               |                                                                                                 |                       |                           |                                                  |                    | 9 /10                                                                        |
| 8                  |                                                              |               |                                                                                                 |                       |                           |                                                  | /                  | 10/10                                                                        |
|                    | fference: RPD $\leq 15$<br>$(s_1 - s_2)$<br>$(s_{1+} s_2)/2$ |               | *Alkalinity, hardness and Ammonia Reporting Links RL = Reporting Limit (0. MDL = Minimum Detect |                       | a composite sample of a   | or if Temperature is out of<br>all 8 replicates. | range.             | KEY: AV: Animals Visible NAV: No Animals Visible FOV: Foreign Organism Visit |



Page <u>18</u> of <u>18</u> QC'd by: <u>MLV</u>

#### Hyalella azteca 28-Day Survival and Growth Whole Sediment Toxicity Test

|                    |                                   | •             |                                                                                | •                               |                                                                        |                            | -                |                                                                        |  |
|--------------------|-----------------------------------|---------------|--------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|----------------------------|------------------|------------------------------------------------------------------------|--|
| Project Number:    | 2386-01                           | Project Name: | Bay West                                                                       |                                 | Test Method-Manual:                                                    |                            | EPA 100.4-EPA    | /600/ <b>R</b> -99/064                                                 |  |
| GLC#:              | 11082                             |               |                                                                                |                                 | Test Photoperiod: 16:8                                                 |                            |                  |                                                                        |  |
| Sample ID:         | BW16MLW-00                        | 13            |                                                                                |                                 | Test System: Sediment-100 mL and Overlying Water-175mL Manual Delivery |                            |                  |                                                                        |  |
| Test Species: H    | yalella azteca                    |               |                                                                                |                                 | Test Temperature: 23± 1°C                                              |                            |                  |                                                                        |  |
| Date Addition of   | Sediment:                         | 10/18/2016    |                                                                                |                                 | Test Organism Source/A                                                 | Age:                       | In House 7/8 day |                                                                        |  |
| Test Initiation Da | te:                               | 10/19/2016    |                                                                                |                                 | Test Termination Date:                                                 |                            | 11/23/2016       | 0117111 - www ally                                                     |  |
| Test Day: 28       |                                   |               |                                                                                | _                               | Number Daily Renewals                                                  |                            |                  |                                                                        |  |
| Date:              | 11/16/2016                        |               |                                                                                |                                 | ROSOCW TO                                                              | newal time/Initials 🗕      | rei              | newal-                                                                 |  |
| Overlying Water:   | Dechlor                           |               |                                                                                |                                 |                                                                        | newal time/Initials 🗆      |                  | newal-                                                                 |  |
| Overlying Water    | Batch ID (GLC Nui                 | mber): NA     |                                                                                |                                 | Food: <del>YTC#</del>                                                  |                            | 0 ml/replicate   |                                                                        |  |
| 20752m             | chemistries time/Ir               | nitial        |                                                                                |                                 | Screens Cleaned:   yes                                                 |                            |                  |                                                                        |  |
| Replicate          | Temperature                       | pН            | Dissolved Oxygen                                                               | Specific                        | Hardness                                                               | Alkalinity                 | Ammonia          | Observations/                                                          |  |
| •                  | (23± 1°C)*                        | _             | (mg/L)*                                                                        | Conductance<br>(µmhos/cm)       | (mg/L CaCO <sub>3</sub> )                                              | (mg/L CaCO <sub>3</sub> )  | (as N)           | # Surviving<br>Organisms                                               |  |
|                    |                                   |               |                                                                                | (µmnos/cm)                      |                                                                        |                            |                  |                                                                        |  |
| Record<br>Meter ID | 236                               | 203           | 236                                                                            | 236                             | N/A                                                                    | 203                        | 4                | Init:                                                                  |  |
| 1                  | /                                 |               |                                                                                |                                 | 132                                                                    | 98                         | 0.05 J           | [0 /10                                                                 |  |
| 2                  |                                   |               |                                                                                |                                 | end: 41.7                                                              | end: 47.8                  | /                | 10 /10                                                                 |  |
| 3                  |                                   |               |                                                                                |                                 | start: 44.4                                                            | start: 42.9                |                  | 10 /10                                                                 |  |
| 4                  |                                   |               |                                                                                |                                 | Titrant used (mL):                                                     | Titrant used (mL): 49      |                  | 10 /10                                                                 |  |
| 5                  | 23.0                              | 7.60          | 6-8                                                                            | 317                             | Sample volume (mL): 35                                                 | Sample volume (mL): 50     |                  | 9 /10                                                                  |  |
| 6                  | 23.0                              | テルテ           | 63                                                                             | 317                             |                                                                        |                            |                  | 8 /10                                                                  |  |
| 7                  | /                                 |               |                                                                                |                                 |                                                                        | 100                        |                  | j0/10                                                                  |  |
| 8                  |                                   |               |                                                                                |                                 |                                                                        |                            |                  | 10 /10                                                                 |  |
| Relative % Dit     | ference: RPD ≤1:                  | 5%            | * Contact Laboratory Cod                                                       | ordinator if Dissolved Oxy      | gen level is < 2.5 mg/L or                                             | r if Temperature is out of | range.           |                                                                        |  |
|                    | $(s_1 - s_2)$<br>$(s_{1+} s_2)/2$ |               | *Alkalinity, hardness and <b>Ammonia Reporting Li</b> RL = Reporting Limit (0. | l ammonia analyzed from a mits: | a composite sample of all                                              | 8 replicates.              |                  | KEY: AV: Animals Visible NAV: No Animals Visible FOV: Foreign Organism |  |

 $J = \ge MDL$  and  $\le RL$ .



Project Name: Bay West

Test Dates: 10/19/2016-11/16/2016

Test Type: 28 Day Whole Sediment Toxicity Survival and Growth Project Number: 2386-01

Test Species: Hyalella azteca

100% Data Entry

Data Entered <u>Initials</u> <u>Date</u>

MWG ALL 11/10/2015

100% Data Quality Check

| <u>Errors</u> | Errors      |
|---------------|-------------|
| Found Y       | Corrected:Y |

Data QC'ed or N List Error locations <u>Date</u> <u>Initials</u> or N

12/5/2016 Weight sheets NS Ν



Page of 2

QC'd by: Mut-

| Project Number | 2386-01            | Type/Model of Drying Oven: Blue M                   |                                   |
|----------------|--------------------|-----------------------------------------------------|-----------------------------------|
| Project Name:  | Bay West           | Oven Temperature: 60 °C                             |                                   |
| GLC#:          | CS 136             | Drying Duration (Hours): ~24 hrs                    | Dessicator: # 128                 |
| Sample ID:     | West Bearskin Lake | Date/Time in: While West                            | Date/Time in: WATE 1101           |
| Test Species:  | Hyalella azteca    | Date/Time out: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Date/Time out: 11/23/110 1100     |
| Test Dates:    | 10/19/2016         | Technician's Initials: va.                          | Weigh Date / Initials: W23/110 PM |
|                | de manage it he he |                                                     |                                   |

11/23/2016 11/10/16 mat 11/17/10

| Replicate | Α               | В             | С                    | В-С           | D         | B-C/D    | B-C/A                                 |
|-----------|-----------------|---------------|----------------------|---------------|-----------|----------|---------------------------------------|
| Number    | Number of       | Dry Weight    | Dry                  | Total Dry     | Number of | Average  | Biomass                               |
|           | Organisms at    | of Pan and    | Weight               | Weight of     | Organisms | Weight   | Weight                                |
|           | Test Initiation | Organisms (g) | of Pan (g)           | Organisms (g) | Weighed   | (mg)     | (mg)                                  |
| 1         | 10              | 0.83404       | 0.63213              |               | 10        | #DIV/0!  | e de la grande                        |
| 2         | 10              | 0.81254       | 6.810 <del>7</del> 8 |               | 10        | #DIV/0!  | e e e e e e e e e e e e e e e e e e e |
| 3         | 10              | 0.84190       | 6. E4037             |               | 9         | #DIV/0!  | 128 73 25 E                           |
| 4         | 10              | 0.83736       | 0.83573              |               | 10        | #DIV/0!  |                                       |
| 5         | 10              | 0. 82420      | 0.87151              |               | 10        | #DIV/0!  | 10.00 (10.00)<br>10.00 (10.00)        |
| 6         | 10              | 0,611681      | 0.81512              |               | 10        | #DIV/0!  |                                       |
| 7         | 10              | 6.62620       | 6.82457              | Section 2     | 10        | #DIV/0!  |                                       |
| 8         | 10              | 6.84023       | 0.83874              |               | 10        | #DIV/0!  | ing sa selection and a<br>The Haritan |
|           |                 |               |                      |               |           | AVERAGE: |                                       |

|               |             |         |   |    | Average at Day 0 | 0.01950              |
|---------------|-------------|---------|---|----|------------------|----------------------|
| Day 0 weights | 80 6.8345 8 | 0.83302 | 0 | 80 | (mg)             | 0 <del>0000</del> .Q |

See Attached sheet for calculated weights.

12/5/10



Page  $\underline{\phantom{a}}$  of  $\underline{\phantom{a}}$ 

QC'd by:\_\_MWG\_\_\_

| Project Number: | 2386-01                    | Type/Model of Dryir | ng Oven: Blue M         |       |                        |               |       |  |
|-----------------|----------------------------|---------------------|-------------------------|-------|------------------------|---------------|-------|--|
| Project Name:   | Bay West                   | Oven Temperature:   | Oven Temperature: 60 °C |       |                        |               |       |  |
| GLC#:           | CS 136                     | Drying Duration (Ho | ours): ~ 24 hrs         |       | Dessicator: # 186      |               |       |  |
| Sample ID:      | West Bear Skin Lab Control | Date/Time in:       | 11/16/2016              | 10:50 | Date/Time in:          | 11/17/2016    | 11:01 |  |
| Test Species:   | Hyalella azteca            | Date/Time out:      | 11/17/2016              | 11:01 | Date/Time out:         | 11/23/2016    | 11:00 |  |
| Test Dates:     | 10/16/2016                 | Technician's Initia | mp                      |       | Weigh Date / Initials: | 11/23/2016 mp |       |  |
|                 | 11/16/2016                 |                     |                         | •     | •                      |               |       |  |

| Replicate | Α               | В             | С          | B-C           | D         | B-C/D    | B-C/A   |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|---------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight  |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)    |
| 1         |                 |               |            |               |           |          |         |
|           | 10              | 0.83404       | 0.83213    | 0.00191       | 10        | 0.19100  | 0.19100 |
| 2         |                 |               |            |               |           |          |         |
|           | 10              | 0.81254       | 0.81078    | 0.00176       | 10        | 0.17600  | 0.17600 |
| 3         | 10              | 0.04100       | 0.04025    | 0.00152       |           | 0.15000  | 0.15200 |
|           | 10              | 0.84190       | 0.84037    | 0.00153       | 9         | 0.17000  | 0.15300 |
| 4         | 10              | 0.83736       | 0.83573    | 0.00163       | 10        | 0.16300  | 0.16300 |
|           | 10              | 0.03730       | 0.03373    | 0.00103       | 10        | 0.10300  | 0.10500 |
| 5         | 10              | 0.82420       | 0.82251    | 0.00169       | 10        | 0.16900  | 0.16900 |
| 6         |                 |               |            |               |           |          |         |
|           | 10              | 0.81684       | 0.81512    | 0.00172       | 10        | 0.17200  | 0.17200 |
| 7         |                 |               |            |               |           |          |         |
|           | 10              | 0.82620       | 0.82457    | 0.00163       | 10        | 0.16300  | 0.16300 |
| 8         |                 |               |            |               |           |          |         |
|           | 10              | 0.84023       | 0.83874    | 0.00149       | 10        | 0.14900  | 0.14900 |
|           | •               |               | •          |               | ·         | AVERAGE: |         |

|               |    |         |         |         |    | Average at Day 0 |        |
|---------------|----|---------|---------|---------|----|------------------|--------|
| Day 0 weights | 80 | 0.83458 | 0.83302 | 0.00156 | 80 | (mg)             | 0.0195 |



Page 1 of 2

QC'd by: Muc

| Project Number | r: <b>2386-01</b> | Type/Model of Drying Oven: Blue M |                                                             |
|----------------|-------------------|-----------------------------------|-------------------------------------------------------------|
| Project Name:  | Bay West          | Oven Temperature: 60 °C           |                                                             |
| GLC#:          | Water Only        | Drying Duration (Hours): ~24 hrs  | Dessicator: # 128                                           |
| Sample ID:     | N/A               | Date/Time in: Www. 1050           | Date/Time in: whale wor                                     |
| Test Species:  | Hyalella azteca   | Date/Time out: N/21/10 101        | Date/Time out: W 2316 Nov                                   |
| Test Dates:    | 10/19/2016        | Technician's Initials:            | Weigh Date / Initials: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

|           | ma intitue      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |                                          |
|-----------|-----------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------------------------------------|
| Replicate | Α               | В             | С          | B-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D         | B-C/D    | B-C/A                                    |
| Number    | Number of       | Dry Weight    | Dry        | Total Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of | Average  | Biomass                                  |
|           | Organisms at    | of Pan and    | Weight     | Weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organisms | Weight   | Weight                                   |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weighed   | (mg)     | (mg)                                     |
| 1         | 10              | 0.53179       | 0.21920    | Control of  | 10        | #DIV/0!  | 7000                                     |
| 2         | 10              | 0.81783       | 6.6120A    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٩         | #DIV/0!  | and the programme.                       |
| 3         | 10              | 0,62753       | 0, 6,7404  | 10.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10        | #DIV/0!  | ACCEN                                    |
| 4         | 10              | 0.22906       | ૦.૬૨૫૫૬    | TO DESCRIPTION OF THE STREET,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10        | #DIV/0!  | T. T. Liberto                            |
| 5         | 10              | 0.62400       | 0.82032    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | #DIV/0!  | Section 1                                |
| 6         | 10              | 0.518746      | 0.81540    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | #DIV/0!  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 7         | 10              | 0.53597       | 0.22767    | The state of the s | 10        | #DIV/0!  | 1-17-24                                  |
| 8         | 10              | 0.8320        | 0,62998    | 13.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10        | #DIV/0!  | The state of the state of                |
|           |                 |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | AVERAGE: |                                          |

|               |                     |           |   |    | Average at Day 0 | 0.01950          |
|---------------|---------------------|-----------|---|----|------------------|------------------|
| Day 0 weights | 80 <b>().</b> 93458 | o. 6333১১ | 0 | 80 | (mg)             | , <u>0.00000</u> |

See Attached sheet for calculated weights.

Mut 12/5/16



Page  $\underline{\phantom{a}}$  of  $\underline{\phantom{a}}$ 

QC'd by:\_\_MWG\_\_

| Project Number: | 2386-01            | Type/Model of Dryir | ng Oven: Blue M         |       |                        |               |       |  |
|-----------------|--------------------|---------------------|-------------------------|-------|------------------------|---------------|-------|--|
| Project Name:   | Bay West           | Oven Temperature:   | Oven Temperature: 60 °C |       |                        |               |       |  |
| GLC#:           | N/A                | Drying Duration (Ho | ours): ~ <b>24 hrs</b>  |       | Dessicator: # 186      |               |       |  |
| Sample ID:      | Water Only Control | Date/Time in:       | 11/16/2016              | 10:50 | Date/Time in:          | 11/17/2016    | 11:01 |  |
| Test Species:   | Hyalella azteca    | Date/Time out:      | 11/17/2016              | 11:01 | Date/Time out:         | 11/23/2016    | 11:00 |  |
| Test Dates:     | 10/16/2016         | Technician's Initia | mp                      |       | Weigh Date / Initials: | 11/23/2016 mp |       |  |
|                 | 11/16/2016         | •                   |                         |       |                        |               |       |  |

| Replicate | Α               | В             | С          | B-C           | D         | B-C/D    | B-C/A   |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|---------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight  |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)    |
| 1         | 10              | 0.83179       | 0.82920    | 0.00259       | 10        | 0.25900  | 0.25900 |
|           | 10              | 0.03177       | 0.02720    | 0.00237       | 10        | 0.23700  | 0.23700 |
| 2         | 10              | 0.81783       | 0.81504    | 0.00279       | 9         | 0.31000  | 0.27900 |
| 3         | 10              | 0.82753       | 0.82404    | 0.00349       | 10        | 0.34900  | 0.34900 |
| 4         | 10              | 0.82906       | 0.82448    | 0.00458       | 10        | 0.45800  | 0.45800 |
| 5         | 10              | 0.82400       | 0.82032    | 0.00368       | 10        | 0.36800  | 0.36800 |
| 6         | 10              | 0.81876       | 0.81540    | 0.00336       | 10        | 0.33600  | 0.33600 |
| 7         | 10              | 0.83597       | 0.83267    | 0.0033        | 10        | 0.33000  | 0.33000 |
| 8         | 10              | 0.83290       | 0.82998    | 0.00292       | 10        | 0.29200  | 0.29200 |
|           |                 |               |            |               |           | AVERAGE: |         |

|               |    |         |         |         |    | Average at Day 0 |        |
|---------------|----|---------|---------|---------|----|------------------|--------|
| Day 0 weights | 80 | 0.83458 | 0.83302 | 0.00156 | 80 | (mg)             | 0.0195 |



Page 1 of 3

QC'd by: Yhut

| Project Number | : <b>2386-01</b> | Type/Model of Drying Oven: Blue M |                                     |
|----------------|------------------|-----------------------------------|-------------------------------------|
| Project Name:  | Bay West         | Oven Temperature: 60 °C           |                                     |
| GLC#:          | 11080            | Drying Duration (Hours): ~24 hrs  | Dessicator: # 128                   |
| Sample ID:     | BW16MLW-001      | Date/Time in: which to so         | Date/Time in: which we wo           |
| Test Species:  | Hyalella azteca  | Date/Time out: 1/17/10 1101       | Date/Time out: 11/21/0 1/00         |
| Test Dates:    | 10/19/2016       | Technician's Initials: www.       | Weigh Date / Initials: W 2311 6 002 |

11/23/2016 11/16/16 Mis 11/17/10

|           | • • • • • • • • • • • • • • • • • • • • |                       |            |                           |           |          |                                        |
|-----------|-----------------------------------------|-----------------------|------------|---------------------------|-----------|----------|----------------------------------------|
| Replicate | Α                                       | В                     | С          | B-C                       | D         | B-C/D    | B-C/A                                  |
| Number    | Number of                               | Dry Weight            | Dry        | Total Dry                 | Number of | Average  | Biomass                                |
|           | Organisms at                            | of Pan and            | Weight     | Weight of                 | Organisms | Weight   | Weight                                 |
|           | Test Initiation                         | Organisms (g)         | of Pan (g) | Organisms (g)             | Weighed   | (mg)     | (mg)                                   |
| 1         | 10                                      | 0.21066               | ०.५०५८।    |                           | 10        | #DIV/0!  | 100 Tu 110                             |
| 2         | 10                                      | 0. 51033              | 0,5002     |                           | 10        | #DIV/0!  | nation (Colombia                       |
| 3         | 10                                      | 1 11311 0 0 C 21730 8 | 0.81120    |                           | 9         | #DIV/0!  | 100 (100 (100 (100 (100 (100 (100 (100 |
| 4         | 10                                      | 0.82765               | 0,42560    |                           | 10        | #DIV/0!  | energy of the second                   |
| 5         | 10                                      | 0.82539               | 0.82364    | a charge at the second    | 9         | #DIV/0!  | and the early                          |
| 6         | 10                                      |                       | 0.63628    |                           | 10        | #DIV/0!  | and the                                |
| 7         | 10                                      | 0.84137               | 0.83947    |                           | 10        | #DIV/0!  |                                        |
| 8         | 10                                      | 0.53909               | 6.63740    | Application of the second | 10        | #DIV/0!  |                                        |
|           |                                         |                       |            |                           |           | AVERAGE: |                                        |

|               |               |         |    |     | Average at Day 0 | 0.01950 700-12/5/16 |
|---------------|---------------|---------|----|-----|------------------|---------------------|
|               | 80 0.63458    | 0.83767 |    | 0.0 | (ma)             | 0.00000             |
| Day 0 weights | 80  W @ 34.3° | 0.63383 | 0] | 80  | (mg)             |                     |



Page  $\underline{\hspace{1cm}}$  of  $\underline{\hspace{1cm}}$ 

QC'd by:\_\_MWG\_

| Project Number: | 2386-01              | Type/Model of Dryii | ng Oven: Blue M         |       |                        |               |       |  |
|-----------------|----------------------|---------------------|-------------------------|-------|------------------------|---------------|-------|--|
| Project Name:   | Bay West             | Oven Temperature:   | Oven Temperature: 60 °C |       |                        |               |       |  |
| GLC#:           | 11080                | Drying Duration (Ho | ours): ~ <b>24 hrs</b>  |       | Dessicator: # 186      |               |       |  |
| Sample ID:      | BW16MLW-001-0.0-0.15 | Date/Time in:       | 11/16/2016              | 10:50 | Date/Time in:          | 11/17/2016    | 11:01 |  |
| Test Species:   | Hyalella azteca      | Date/Time out:      | 11/17/2016              | 11:01 | Date/Time out:         | 11/23/2016    | 11:00 |  |
| Test Dates:     | 10/16/2016           | Technician's Initia | mp                      |       | Weigh Date / Initials: | 11/23/2016 mp |       |  |
|                 | 11/16/2016           |                     |                         | •     | •                      |               | _     |  |

| Replicate | Α               | В             | С          | B-C           | D         | B-C/D    | B-C/A   |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|---------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight  |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)    |
| 1         | 10              | 0.01066       | 0.00001    | 0.00105       | 10        | 0.19500  | 0.10500 |
|           | 10              | 0.81066       | 0.80881    | 0.00185       | 10        | 0.18500  | 0.18500 |
| 2         | 10              | 0.81033       | 0.80872    | 0.00161       | 10        | 0.16100  | 0.16100 |
| 3         | 10              | 0.81308       | 0.81120    | 0.00188       | 9         | 0.20889  | 0.18800 |
| 4         | 10              | 0.82765       | 0.82560    | 0.00205       | 10        | 0.20500  | 0.20500 |
| 5         | 10              | 0.82539       | 0.82364    | 0.00175       | 9         | 0.19444  | 0.17500 |
| 6         | 10              | 0.83790       | 0.83628    | 0.00162       | 10        | 0.16200  | 0.16200 |
| 7         | 10              | 0.84137       | 0.83947    | 0.0019        | 10        | 0.19000  | 0.19000 |
| 8         | 10              | 0.83909       | 0.83740    | 0.00169       | 10        | 0.16900  | 0.16900 |
|           |                 | ·             |            |               |           | AVERAGE: |         |

|               |    |         |         |         |    | Average at Day 0 |        |
|---------------|----|---------|---------|---------|----|------------------|--------|
| Day 0 weights | 80 | 0.83458 | 0.83302 | 0.00156 | 80 | (mg)             | 0.0195 |



Page \_\_lof\_\_\_

QC'd by: **MW**&

| Project Number: | 2386-01         | Type/Model of Drying Oven: Blue M |                                  |
|-----------------|-----------------|-----------------------------------|----------------------------------|
| Project Name:   | Bay West        | Oven Temperature: 60 °C           |                                  |
| GLC#:           | 11081           | Drying Duration (Hours): ~24 hrs  | Dessicator: # 128                |
| Sample ID:      | BW16MLW-002     | Date/Time in: 11/16/16/1050       | Date/Time in: whithoring         |
| Test Species:   | Hyalella azteca | Date/Time out: 11/2/16 101        | Date/Time out: 1/23/16 1100      |
| Test Dates:     | 10/19/2016      | Technician's Initials: 😘          | Weigh Date / Initials: W23110 m. |

1+/23/2016 11/10/16 mub 11/17/16

| Replicate | Α               | В             | С          | B-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D         | B-C/D    | B-C/A                         |
|-----------|-----------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------------------------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of | Average  | Biomass                       |
|           | Organisms at    | of Pan and    | Weight     | Weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organisms | Weight   | Weight                        |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weighed   | (mg)     | (mg)                          |
| 1         | 10              | હ. સ્ટ્રાવિધ  | v.57339    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | #DIV/0!  | A PERMITTE                    |
| 2         | 10              | 0,83234       | 0,53076    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | q         | #DIV/0!  | e arrigination                |
| 3         | 10              | 0.87313       | 0.82537    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         | #DIV/0!  | en some                       |
| 4         | 10              | 0.82537       | 092390     | The state of the s | 10        | #DIV/0!  |                               |
| 5         | 10              | 081757        | 0.61594    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | #DIV/0!  | Single State of               |
| 6         | 10              | 0.81784       | 081619     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | #DIV/0!  | STORY                         |
| 7         | 10              | 0.82836       | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٩         | #DIV/0!  | Aller State of State of Aller |
| 8         | 10              | 0.82514       |            | Carrier Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10        | #DIV/0!  | 1969 (1969)                   |
|           |                 |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | AVERAGE: |                               |

| Day 0 weights | 80 0.93458 | 0.83302 | 0 | Average at Day 0 (mg) | 0.01754<br>0.00000 |
|---------------|------------|---------|---|-----------------------|--------------------|
|               |            |         |   |                       | (N.E 1715)         |



Page  $\underline{\hspace{1cm}}$  of  $\underline{\hspace{1cm}}$ 

QC'd by:\_\_MWG\_\_

| Project Number: | 2386-01              | Type/Model of Dryii                                 | ng Oven: Blue M         |       |                        |               |       |  |  |
|-----------------|----------------------|-----------------------------------------------------|-------------------------|-------|------------------------|---------------|-------|--|--|
| Project Name:   | Bay West             | Oven Temperature:                                   | Oven Temperature: 60 °C |       |                        |               |       |  |  |
| GLC#:           | 11081                | Drying Duration (Hours): ~ 24 hrs Dessicator: # 186 |                         |       |                        |               |       |  |  |
| Sample ID:      | BW16MLW-002-0.0-0.15 | Date/Time in:                                       | 11/16/2016              | 10:50 | Date/Time in:          | 11/17/2016    | 11:01 |  |  |
| Test Species:   | Hyalella azteca      | Date/Time out:                                      | 11/17/2016              | 11:01 | Date/Time out:         | 11/23/2016    | 11:00 |  |  |
| Test Dates:     | 10/16/2016           | Technician's Initia                                 | mp                      |       | Weigh Date / Initials: | 11/23/2016 mp |       |  |  |
|                 | 11/16/2016           |                                                     |                         |       | •                      |               |       |  |  |

| Replicate | Α               | В             | С          | B-C           | D         | B-C/D    | B-C/A         |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|---------------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass       |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight        |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)          |
| 1         |                 |               |            |               |           |          |               |
| _         | 10              | 0.82494       | 0.82339    | 0.00155       | 10        | 0.15500  | 0.15500       |
| 2         | 10              | 0.83234       | 0.83078    | 0.00156       | 9         | 0.17333  | 0.15600       |
| 3         | 10              | 0.82713       | 0.82537    | 0.00176       | 9         | 0.19556  | 0.17600       |
| 4         | 10              | 0.82537       | 0.82390    | 0.00147       | 10        | 0.14700  | 0.14700       |
| 5         | 10              | 0.81757       | 0.81594    | 0.00163       | 10        | 0.16300  | 0.16300       |
| 6         | 10              | 0.81784       | 0.81619    | 0.00165       | 10        | 0.16500  | 0.16500       |
| 7         | 10              | 0.82836       | 0.82668    | 0.00168       | 9         | 0.18667  | 0.16800       |
| 8         | 10              | 0.82514       | 0.82358    | 0.00156       | 10        | 0.15600  | 0.15600       |
|           | ·               | ·             | •          | ·             | -         | AVERAGE: | <del></del> - |

|               |    |         |         |         |    | Average at Day 0 |        |
|---------------|----|---------|---------|---------|----|------------------|--------|
| Day 0 weights | 80 | 0.83458 | 0.83302 | 0.00156 | 80 | (mg)             | 0.0195 |



Page \_\_lof\_2\_

QC'd by: MW

| Project Number: | 2386-01         | Type/Model of Drying Oven: Blue M |                                                             |
|-----------------|-----------------|-----------------------------------|-------------------------------------------------------------|
| Project Name:   | Bay West        | Oven Temperature: 60 °C           |                                                             |
| GLC#:           | 11082           | Drying Duration (Hours): ~24 hrs  | Dessicator: # 128                                           |
| Sample ID:      | BW16MLW-003     | Date/Time in: 11(10) 1050         | Date/Time in: 11/17/101103                                  |
| Test Species:   | Hyalella azteca | Date/Time out: William in 61      | Date/Time out: u\23\\w\\oo                                  |
| Test Dates:     | 10/19/2016      | Technician's Initials: 😘          | Weigh Date / Initials: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

11/23/2016 11/16/16 mut 11/17/16

| Replicate | A               | В             | С          | B-C           | D         | B-C/D    | B-C/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1         | 10              | 0.85771       | 6.85067    |               | 10        | #DIV/0!  | PO STOCKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2         | 10              | 0. 23154      | 0.629EU    |               | io        | #DIV/0!  | 20 8 1 50 5 (Ka)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3         | 10              | 0.83067       | ૦.૬૮૬વ /   |               | 10        | #DIV/0!  | THE STATE OF THE S |
| 4         | 10              | 0.5238        | 0.82592    |               | 10        | #DIV/0!  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5         | 10              | 0.44242       | 9570718    |               | 9         | #DIV/0!  | - 18 7 (DEI)(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6         | 10              | 0.62624       | 6.821056   | 300 C         | 8         | #DIV/0!  | - minking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7         | 10              | 0.82900       | 0.67753    |               | 10        | #DIV/0!  | 1. 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8         | 10              | 0.83159       | 0.22983    |               | 10        | #DIV/0!  | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                 |               |            |               |           | AVERAGE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|               |            |         |   | Average at Day 0 | 0.0199          |
|---------------|------------|---------|---|------------------|-----------------|
| Day 0 weights | 80 D.83458 | 0.93350 | 0 | 80 (mg)          | <u>√0.00000</u> |



Page  $\underline{\phantom{a}}$  of  $\underline{\phantom{a}}$ 

QC'd by:\_\_MWG\_\_

| Project Number: | 2386-01              | Type/Model of Dryii                                 | ng Oven: Blue M         |       |                        |               |       |  |  |
|-----------------|----------------------|-----------------------------------------------------|-------------------------|-------|------------------------|---------------|-------|--|--|
| Project Name:   | Bay West             | Oven Temperature:                                   | Oven Temperature: 60 °C |       |                        |               |       |  |  |
| GLC#:           | 11082                | Drying Duration (Hours): ~ 24 hrs Dessicator: # 186 |                         |       |                        |               |       |  |  |
| Sample ID:      | BW16MLW-003-0.0-0.15 | Date/Time in:                                       | 11/16/2016              | 10:50 | Date/Time in:          | 11/17/2016    | 11:01 |  |  |
| Test Species:   | Hyalella azteca      | Date/Time out:                                      | 11/17/2016              | 11:01 | Date/Time out:         | 11/23/2016    | 11:00 |  |  |
| Test Dates:     | 10/16/2016           | Technician's Initia                                 | mp                      |       | Weigh Date / Initials: | 11/23/2016 mp |       |  |  |
|                 | 11/16/2016           | •                                                   |                         | •     | •                      |               | _     |  |  |

| Replicate | Α               | В             | С          | B-C           | D         | B-C/D    | B-C/A   |
|-----------|-----------------|---------------|------------|---------------|-----------|----------|---------|
| Number    | Number of       | Dry Weight    | Dry        | Total Dry     | Number of | Average  | Biomass |
|           | Organisms at    | of Pan and    | Weight     | Weight of     | Organisms | Weight   | Weight  |
|           | Test Initiation | Organisms (g) | of Pan (g) | Organisms (g) | Weighed   | (mg)     | (mg)    |
| 1         | 10              | 0.85272       | 0.85067    | 0.00205       | 10        | 0.20500  | 0.20500 |
| 2         | 10              | 0.83154       | 0.82984    | 0.0017        | 10        | 0.17000  | 0.17000 |
| 3         | 10              | 0.83067       | 0.82891    | 0.00176       | 10        | 0.17600  | 0.17600 |
| 4         | 10              | 0.82738       | 0.82592    | 0.00146       | 10        | 0.14600  | 0.14600 |
| 5         | 10              | 0.84242       | 0.84076    | 0.00166       | 9         | 0.18444  | 0.16600 |
| 6         | 10              | 0.82874       | 0.82656    | 0.00218       | 8         | 0.27250  | 0.21800 |
| 7         | 10              | 0.82900       | 0.82753    | 0.00147       | 10        | 0.14700  | 0.14700 |
| 8         | 10              | 0.83159       | 0.82983    | 0.00176       | 10        | 0.17600  | 0.17600 |
|           |                 |               |            |               |           | AVERAGE: |         |

|               |    |         |         |         |    | Average at Day 0 |        |
|---------------|----|---------|---------|---------|----|------------------|--------|
| Day 0 weights | 80 | 0.83458 | 0.83302 | 0.00156 | 80 | (mg)             | 0.0195 |

# Appendix D2 Hyalella azteca 28-Day Statistical Data

Test: EPA 100.1M-Hyalella azteca 28d Survival and Growth TeTest ID: 2386ha16

Species: HA-Hyalella azteca

Protocol: EPA 600/R-99/064

Sample ID: Mud Lake West

Sample Type: -WHOLE SEDIMENT

Start Date: 10/19/2016 End Date: 11/17/2016 Lab ID: -GREAT LAKES ENVIRONMENTAL CENTER

| Start    | Date: | 10/19 | /2016 E       | nd Date | e: 11/1 <i>/</i> | /2016  |          | Lab ID: -GRE | AT LAKES E  | NVIRO        | NMENI | AL CENTER    |
|----------|-------|-------|---------------|---------|------------------|--------|----------|--------------|-------------|--------------|-------|--------------|
| D        |       | D     | 0             | D 0     | _ ,              | D 46   | . 06     | <b>-</b>     |             |              |       | 0.00 11.     |
| Pos      |       |       | Group         |         |                  | Day 10 |          | Total Weight |             | Weigh        |       | Ct 28- Notes |
|          | 1     |       | CS 136 West B |         |                  |        | 10       | 0.83404      |             |              | 10    |              |
|          | 2     |       | CS 136 West B |         |                  |        | 10       | 0.81254      |             |              | 10    |              |
|          | 3     |       | CS 136 West B |         | 10               |        | 9        | 0.8419       | 0.84037     |              | 9     |              |
|          | 4     |       | CS 136 West B |         | 10               |        | 10       | 0.83736      |             |              | 10    |              |
|          | 5     |       | CS 136 West B |         | 10               |        | 10       | 0.8242       |             |              | 10    |              |
|          | 6     |       | CS 136 West B |         |                  |        | 10       | 0.81684      | 0.81512     |              | 10    |              |
|          | 7     |       | CS 136 West B |         | 10               |        | 10       | 0.8262       | 0.82457     |              | 10    |              |
|          | 8     |       | CS 136 West B |         | 10               |        | 10       | 0.84023      | 0.83874     |              | 10    |              |
|          | 9     |       | Water only    | 10      | 10               |        | 10       | 0.83179      |             |              | 10    |              |
|          | 10    |       | Water only    | 10      |                  |        | 9        | 0.81783      |             |              | 9     |              |
|          | 11    |       | Water only    | 10      | 10               |        | 10       | 0.82753      | 0.82404     |              | 10    |              |
|          | 12    |       | Water only    | 10      | 10               |        | 10       | 0.82906      | 0.82448     |              | 10    |              |
|          | 13    |       | Water only    | 10      | 10               |        | 10       | 0.824        | 0.82032     |              | 10    |              |
|          | 14    |       | Water only    | 10      | 10               |        | 10       | 0.81876      |             |              | 10    |              |
|          | 15    | 7     | Water only    | 10      | 10               |        | 10       | 0.83597      | 0.83267     |              | 10    |              |
|          | 16    | 8     | Water only    | 10      | 10               |        | 10       | 0.8329       | 0.82998     |              | 10    |              |
|          | 17    | 1     | BW16MLW-001   | 10      | 10               |        | 10       | 0.81066      | 0.80881     |              | 10    |              |
|          | 18    | 2     | BW16MLW-001   | 10      | 10               |        | 10       | 0.81033      | 0.80872     |              | 10    |              |
|          | 19    | 3     | BW16MLW-001   | 10      | 10               |        | 9        | 0.81308      | 0.8112      |              | 9     |              |
|          | 20    | 4     | BW16MLW-001   | 10      | 10               |        | 10       | 0.82765      | 0.8256      |              | 10    |              |
|          | 21    | 5     | BW16MLW-001   | 10      | 10               |        | 9        | 0.82539      | 0.82364     |              | 9     |              |
|          | 22    | 6     | BW16MLW-001   | 10      | 10               |        | 10       | 0.8379       |             |              | 10    |              |
|          | 23    | 7     | BW16MLW-001   | 10      | 10               |        | 10       | 0.84137      | 0.83947     |              | 10    |              |
|          | 24    | 8     | BW16MLW-001   | 10      | 10               |        | 10       | 0.83909      |             |              | 10    |              |
|          | 25    | 1     | BW16MLW-002   | 10      | 10               |        | 10       | 0.82494      |             |              | 10    |              |
|          | 26    |       | BW16MLW-002   | 10      | 10               |        | 9        | 0.83234      |             |              | 9     |              |
|          | 27    |       | BW16MLW-002   |         | 10               |        | 9        | 0.82713      |             |              | 9     |              |
|          | 28    |       | BW16MLW-002   |         | 10               |        | 10       | 0.82537      | 0.8239      |              | 10    |              |
|          | 29    |       | BW16MLW-002   |         | 10               |        | 10       | 0.81757      |             |              | 10    |              |
|          | 30    |       | BW16MLW-002   |         | 10               |        | 10       | 0.81784      |             |              | 10    |              |
|          | 31    |       | BW16MLW-002   |         |                  |        | 9        | 0.82836      | <del></del> |              | 9     |              |
|          | 32    |       | BW16MLW-002   | 10      |                  |        | 10       |              |             |              | 10    |              |
| -        | 33    |       | BW16MLW-003   | 10      |                  |        | 10       |              | 0.85067     |              | 10    |              |
|          | 34    |       | BW16MLW-003   | 10      |                  |        | 10       | 0.83154      |             | <u> </u>     | 10    |              |
|          | 35    |       | BW16MLW-003   | 10      |                  |        | 10       |              |             | ļ            | 10    |              |
|          | 36    |       | BW16MLW-003   | 10      |                  |        | 10       | 0.82738      |             |              | 10    |              |
|          | 37    |       | BW16MLW-003   | 10      |                  |        | 9        |              |             | -            | 9     |              |
|          | 38    |       | BW16MLW-003   |         |                  |        | 8        |              |             |              | 8     |              |
|          | 39    |       | BW16MLW-003   | 10      |                  | ļ      | 10       |              |             | <del></del>  | 10    |              |
|          | 40    |       | BW16MLW-003   |         |                  |        | 10       |              |             | <del>+</del> | 10    |              |
| <u> </u> |       |       | Nest Mud Lake |         | <del></del>      | L      | <u> </u> |              |             | L            | 10    |              |

Comments: Bay West Mud Lake West 28 day H azteca survival and growth Oct 2016

#### Page 84 of 140

| <del></del>            |             |            |           | 1-114 6       | 10-1-0       | 1 1 0       |                            | D C      | -d1                |
|------------------------|-------------|------------|-----------|---------------|--------------|-------------|----------------------------|----------|--------------------|
| Start Date:            | 10/19/2016  |            |           | 2386ha16      | 280 Surviva  |             | wth Test-28-<br>Sample ID: | Day Surv | Mud Lake West      |
| End Date:              |             |            |           |               | ES ENVIRO    |             | Sample Type:               |          | -WHOLE SEDIMENT    |
| Sample Da              |             | P          | rotocol:  | EPA 600/R-9   | 9/064        | •           | Test Species:              |          | HA-Hyalella azteca |
|                        | Bay West Mi | ıd Lake We | st 28 day | H azteca surv | ival and gro | owth Oct 20 | 016                        |          |                    |
| Conc-%                 | 1           | 2          | 3         | 4             | 5            | 6           | 7                          | 8        |                    |
| CS 136 West Bear Con   | 1.0000      | 1.0000     | 0.9000    | 1.0000        | 1.0000       | 1.0000      | 1.0000                     | 1.0000   |                    |
| Water only             | 1.0000      | 0.9000     | 1.0000    | 1.0000        | 1.0000       | 1.0000      | 1.0000                     | 1.0000   | l                  |
| BW16MLW-001 GLC #11080 | 1.0000      | 1.0000     | 0.9000    | 1.0000        | 0.9000       | 1.0000      | 1.0000                     | 1.0000   | l                  |
| BW16MLW-002 GLC #11081 | 1.0000      | 0.9000     | 0.9000    | 1.0000        | 1.0000       | 1.0000      | 0.9000                     | 1.0000   | 1                  |
| BW16MLW-003 GLC #11082 | 1.0000      | 1.0000     | 1.0000    | 1.0000        | 0.9000       | 0.8000      | 1.0000                     | 1.0000   |                    |

|                        |        |          |        | Transform: | Arcsin Squ | ıare Root |   | Rank  | 1-Tailed |  |
|------------------------|--------|----------|--------|------------|------------|-----------|---|-------|----------|--|
| Conc-%                 | Mean   | N-Mean - | Mean   | Min        | Max        | CV%       | N | Sum   | Critical |  |
| CS 136 West Bear Con   | 0.9875 | 1.0000   | 1.3916 | 1.2490     | 1.4120     | 4.140     | 8 | *     |          |  |
| Water only             | 0.9875 | 1.0000   | 1.3916 | 1.2490     | 1.4120     | 4.140     | 8 |       |          |  |
| BW16MLW-001 GLC #11080 | 0.9750 | 0.9873   | 1.3713 | 1.2490     | 1.4120     | 5.501     | 8 | 64.00 | 48.00    |  |
| BW16MLW-002 GLC #11081 | 0.9625 | 0.9747   | 1.3509 | 1.2490     | 1.4120     | 6.244     | 8 | 60.00 | 48.00    |  |
| BW16MLW-003 GLC #11082 | 0.9625 | 0.9747   | 1.3535 | 1.1071     | 1.4120     | 8.476     | 8 | 63.50 | 48.00    |  |

| Auxiliary Tests                                                   | Statistic | Critical | Skew      | Kurt     |
|-------------------------------------------------------------------|-----------|----------|-----------|----------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) | 0.731867  | 0.904    | -1.472323 | 1.291852 |
| Bartlett's Test indicates equal variances (p = 0.36)              | 3.20586   | 7.814728 |           |          |
| The control means are not significantly different (p = 1.00)      | 0         | 2.144787 |           |          |
| Hypothesis Test (1-tail, 0.05)                                    |           |          |           |          |
| Steel's Many-One Rank Test indicates no significant differences   |           |          |           |          |
| Treatments ve CS 126 West Boar Con                                |           |          |           |          |

#### Page 85 of 140

|                        |             |            | Hyalella   | azteca 28d    | Survival an   | d Growth   | Test-28-day   | Average | Growth             |  |
|------------------------|-------------|------------|------------|---------------|---------------|------------|---------------|---------|--------------------|--|
| Start Date:            | 10/19/2016  | Т          | est ID:    | 2386ha16      |               |            | Sample ID:    |         | Mud Lake West      |  |
| End Date:              | 11/17/2016  | L          | .ab ID:    | -GREAT LAK    | ES ENVIR      | NMENTA     | Sample Type:  |         | -WHOLE SEDIMENT    |  |
| Sample Da              |             | F          | Protocol:  | EPA 600/R-9   | 9/064         |            | Test Species: |         | HA-Hyalella azteca |  |
| Comments               | Bay West Mu | ud Lake We | est 28 day | H azteca surv | vival and gro | wth Oct 20 | 016           |         |                    |  |
| Conc-%                 | 1           | 2          | 3          | 4             | 5             | 6          | 7             | 8       |                    |  |
| CS 136 West Bear Con   | 0.1910      | 0.1760     | 0.1700     | 0.1630        | 0.1690        | 0.1720     | 0.1630        | 0.1490  |                    |  |
| Water only             | 0.2590      | 0.3100     | 0.3490     | 0.4580        | 0.3680        | 0.3360     | 0.3300        | 0.2920  |                    |  |
| 3W16MLW-001 GLC #11080 | 0.1850      | 0.1610     | 0.2089     | 0.2050        | 0.1944        | 0.1620     | 0.1900        | 0.1690  | 1                  |  |
| 3W16MLW-002 GLC #11081 | 0.1550      | 0.1733     | 0.1956     | 0.1470        | 0.1630        | 0.1650     | 0.1867        | 0.1560  | 1                  |  |
| BW16MLW-003 GLC #11082 | 0.2050      | 0.1700     | 0.1760     | 0.1460        | 0.1844        | 0.2725     | 0.1470        | 0.1760  | 1                  |  |

|                      |            |          |        | Transform | n: Untrans | formed |   | Rank  | 1-Tailed |  |
|----------------------|------------|----------|--------|-----------|------------|--------|---|-------|----------|--|
| _Conc-               | % Mean     | N-Mean - | Mean   | Min       | Max        | CV%    | N | Sum   | Critical |  |
| CS 136 West Bear C   | on 0.1691  | 0.5007   | 0.1691 | 0.1490    | 0.1910     | 7.119  | 8 | *     |          |  |
| Water o              | nly 0.3377 | 1.0000   | 0.3377 | 0.2590    | 0.4580     | 17.562 | 8 |       |          |  |
| BW16MLW-001 GLC #110 | 0.1844     | 0.5460   | 0.1844 | 0.1610    | 0.2089     | 10.130 | 8 | 79.00 | 48.00    |  |
| BW16MLW-002 GLC #110 | 0.1677     | 0.4965   | 0.1677 | 0.1470    | 0.1956     | 9.885  | 8 | 64.00 | 48.00    |  |
| BW16MLW-003 GLC #110 | 0.1846     | 0.5466   | 0.1846 | 0.1460    | 0.2725     | 21.866 | 8 | 75.50 | 48.00    |  |

| Auxiliary Tests                                                   | Statistic | Critical | Skew     | Kurt    |
|-------------------------------------------------------------------|-----------|----------|----------|---------|
| Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01) | 0.886947  | 0.904    | 1.602484 | 5.58003 |
| Bartlett's Test indicates unequal variances (p = 9.29E-03)        | 11.50399  | 7.814728 |          |         |
| The control means are significantly different (p = 1.63E-06)      | 7.879886  | 2.144787 |          |         |
| Hypothesis Test (1-tail, 0.05)                                    |           |          |          |         |
| Steel's Many-One Rank Test indicates no significant differences   |           |          |          |         |

Treatments vs CS 136 West Bear Con

#### Page 86 of 140

|                       |            |            | Нуа          | lella azteca 2 | 28d Surviva   | l and Grow  | vth Test-28-D | ay Bion | nass                                    |   |
|-----------------------|------------|------------|--------------|----------------|---------------|-------------|---------------|---------|-----------------------------------------|---|
| Start Date: 1         | 0/19/2016  | Ť          | est ID:      | 2386ha16       |               | 5           | Sample ID:    |         | Mud Lake West                           |   |
| End Date: 1           | 1/17/2016  | L          | ab ID:       | -GREAT LAK     | ES ENVIR      | ONMENT/ S   | Sample Type:  |         | -WHOLE SEDIMENT                         |   |
| Sample Da             |            | F          | rotocol:     | EPA 600/R-9    | 9/064         | 7           | Test Species: |         | HA-Hyalella azteca                      |   |
| Comments 8            | Bay West M | ud Lake We | est 28 day l | H azteca surv  | rival and gro | owth Oct 20 | 16            |         |                                         |   |
| Conc-%                | 1          | 2          | 3            | 4              | 5             | 6           | 7             | 8       |                                         |   |
| CS 136 West Bear Con  | 0.1910     | 0.1760     | 0.1530       | 0.1630         | 0.1690        | 0.1720      | 0.1630        | 0.1490  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |
| Water only            | 0.2590     | 0.2790     | 0.3490       | 0.4580         | 0.3680        | 0.3360      | 0.3300        | 0.2920  |                                         |   |
| W16MLW-001 GLC #11080 | 0.1850     | 0.1610     | 0.1880       | 0.2050         | 0.1750        | 0.1620      | 0.1900        | 0.1690  |                                         |   |
| W16MLW-002 GLC #11081 | 0.1550     | 0.1560     | 0.1760       | 0.1470         | 0.1630        | 0.1650      | 0.1680        | 0.1560  |                                         |   |
| W16MLW-003 GLC #11082 | 0.2050     | 0.1700     | 0.1760       | 0.1460         | 0.1660        | 0.2180      | 0.1470        | 0.1760  |                                         | , |

|                        |        |        | Transform: Untransformed |        |        |        |   |        |          |        |
|------------------------|--------|--------|--------------------------|--------|--------|--------|---|--------|----------|--------|
| Conc-%                 | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | N | t-Stat | Critical | MSD    |
| CS 136 West Bear Con   | 0.1670 | 0.5002 | 0.1670                   | 0.1490 | 0.1910 | 7.963  | 8 | *      |          |        |
| Water only             | 0.3339 | 1.0000 | 0.3339                   | 0.2590 | 0.4580 | 18.667 | 8 |        |          |        |
| BW16MLW-001 GLC #11080 | 0.1794 | 0.5373 | 0.1794                   | 0.1610 | 0.2050 | 8.538  | 8 | -1.470 | 2.156    | 0.0181 |
| BW16MLW-002 GLC #11081 | 0.1608 | 0.4815 | 0.1608                   | 0.1470 | 0.1760 | 5.641  | 8 | 0.743  | 2:156    | 0.0181 |
| BW16MLW-003 GLC #11082 | 0.1755 | 0.5256 | 0.1755                   | 0.1460 | 0.2180 | 14.415 | 8 | -1.010 | 2.156    | 0.0181 |

| Auxiliary Tests                                              | Statistic |          | Critical |          | Skew     | Kurt    |
|--------------------------------------------------------------|-----------|----------|----------|----------|----------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.01) | 0.967769  |          | 0.904    |          | 0.552671 | 0.68469 |
| Bartlett's Test indicates equal variances (p = 0.07)         | 7.159739  |          | 7.814728 |          |          |         |
| The control means are significantly different (p = 3.32E-06) | 7.406371  |          | 2.144787 |          |          |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp     | MSB      | MSE      | F-Prob   | df      |
| Dunnett's Test indicates no significant differences          | 0.018145  | 0.108655 | 0.000563 | 0.000283 | 0.139045 | 3, 28   |
| Treatments vs CS 136 West Bear Con                           |           |          |          |          |          |         |

#### Page 87 of 140

|                                                  | · · · · · · · · · · · · · · · · · · · |                  | Цул              | lalla aztana 1            | Od Cumina        | l and Cra        | wth Test-28-D                 | Nov Bior         |                                       |  |
|--------------------------------------------------|---------------------------------------|------------------|------------------|---------------------------|------------------|------------------|-------------------------------|------------------|---------------------------------------|--|
| Start Date:                                      |                                       |                  | Test ID:         | 2386ha16                  |                  |                  | Sample ID:                    |                  | Mud Lake West                         |  |
| End Date: Sample Da                              | 11/17/2016                            |                  |                  | -GREAT LAK<br>EPA 600/R-9 |                  | ONMENTA          | Sample Type:<br>Test Species: |                  | -WHOLE SEDIMENT<br>HA-Hyalella azteca |  |
| Comments Conc-%                                  | Bay West M                            | ud Lake We       | est 28 day       | H azteca surv             | vival and gro    | owth Oct 2       | 016                           | 0                |                                       |  |
| CS 136 West Bear Con                             | 0.1910                                | 0.1760           | 0.1530           | 0.1630                    | 0.1690           | 0.1720           | 0.1630                        | 0.1490           |                                       |  |
| Water only                                       | 0.2590                                | 0.2790           | 0.3490           | 0.4580                    | 0.3680           | 0.3360           | 0.3300                        | 0.2920           |                                       |  |
| BW16MLW-001 GLC #11080<br>BW16MLW-002 GLC #11081 | 0.1850<br>0.1550                      | 0.1610<br>0.1560 | 0.1880<br>0.1760 | 0.2050<br>0.1470          | 0.1750<br>0.1630 | 0.1620<br>0.1650 | 0.1900<br>0.1680              | 0.1690<br>0.1560 |                                       |  |
| BW16MLW-003 GLC #11082                           | 0.2050                                | 0.1700           | 0.1760           | 0.1460                    | 0.1660           | 0.2180           | 0.1470                        | 0.1760           |                                       |  |

|                        |        |        | Transform: Untransformed |        |        |        |   |        | 1-Tailed |        |
|------------------------|--------|--------|--------------------------|--------|--------|--------|---|--------|----------|--------|
| Conc-%                 | Mean   | N-Mean | Mean                     | Min    | Max    | CV%    | N | t-Stat | Critical | MSD    |
| CS 136 West Bear Con   | 0.1670 | 0.5002 | 0.1670                   | 0.1490 | 0.1910 | 7.963  | 8 | *      |          |        |
| Water only             | 0.3339 | 1.0000 | 0.3339                   | 0.2590 | 0.4580 | 18.667 | 8 |        |          |        |
| BW16MLW-001 GLC #11080 | 0.1794 | 0.5373 | 0.1794                   | 0.1610 | 0.2050 | 8.538  | 8 |        |          |        |
| BW16MLW-002 GLC #11081 | 0.1608 | 0.4815 | 0.1608                   | 0.1470 | 0.1760 | 5.641  | 8 | 1.098  | 1.761    | 0.0100 |
| BW16MLW-003 GLC #11082 | 0.1755 | 0.5256 | 0.1755                   | 0.1460 | 0.2180 | 14.415 | 8 |        |          |        |

| Auxiliary Tests                                              | Statistic |          | Critical |         | Skew    | Kurt     |
|--------------------------------------------------------------|-----------|----------|----------|---------|---------|----------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.05) | 0.968909  |          | 0.887    |         | 0.40084 | 0.230652 |
| F-Test indicates equal variances (p = 0.33)                  | 2.151173  |          | 4.994909 |         |         |          |
| The control means are significantly different (p = 3.32E-06) | 7.406371  |          | 2.144787 |         |         |          |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp     | MSB      | MSE     | F-Prob  | df       |
| Homoscedastic t Test indicates no significant differences    | 0.010023  | 0.060018 | 0.000156 | 0.00013 | 0.29061 | 1, 14    |
| Treatments vs CS 136 West Bear Con                           |           |          |          |         |         |          |

# Appendix E Lumbriculus variegatus 4-Day Bench Sheets

• Survival



Page <u>4</u> of 4

QC'd by: 🞷

#### Lumbriculus variegatus 4-Day Screening Survival Test

| Project Number: 2386-00 Project Name: Bay West | Test Method-Manual:                                           | EPA 100.3-EPA/600/R-99/064                 |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| GLC# CS#136                                    | Test Photoperiod: 16:8                                        | Lux: 100-1000                              |  |  |  |  |  |  |
| Sample ID: West Bearskin Lake                  | Test System: Sediment-100 mL and Overlying Water-175mL Manual |                                            |  |  |  |  |  |  |
| Test Species: Lumbriculus variegatus           | Test Temperature: 23± 1°C                                     |                                            |  |  |  |  |  |  |
| Date Addition of Sediment: 10/13/2016          | Test Organism Source/Age:                                     | DBA Cali. Blackworm Co. 10/13/2016 /Adults |  |  |  |  |  |  |
| Test Initiation Date: 10/14/2016               | Test Termination Date:                                        | 10/18/2016                                 |  |  |  |  |  |  |
| Test Day: Day 4                                | Number Daily Renewals: \                                      |                                            |  |  |  |  |  |  |
| Date: 10/18/2016                               | POROCO W. renewal time/Initials                               | □ renewal                                  |  |  |  |  |  |  |
| Overlying Water: <b>Dechlor</b>                | □ renewal time/Initials                                       | □ renewal                                  |  |  |  |  |  |  |
| Overlying Water Batch ID (GLC Number): NA      | Food: None                                                    |                                            |  |  |  |  |  |  |
| र or उभ्र ल chemistries time/Initial           | Screens Cleaned: yes on n/a                                   | · ·                                        |  |  |  |  |  |  |

| Replicate          | Temperature | pН    | Dissolved Oxygen | Specific    | Hardness                  | Alkalinity                | Ammonia | Observations |
|--------------------|-------------|-------|------------------|-------------|---------------------------|---------------------------|---------|--------------|
|                    | (23± 1°C)*  |       | (mg/L)*          | Conductance | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)  |              |
|                    |             |       |                  | (µmhos/cm)  |                           | :                         |         |              |
|                    |             |       |                  |             |                           |                           | IN.     |              |
| Record<br>Meter ID | 40          | 200 m | whether 236      | 236         | N/A                       | 263                       | 4       | Init:<br>MWb |
| 1                  | 225         | 7.35  | 6.6              | 302         | 126                       | ୧೬                        | 0.165.  | 10           |
| 2                  | 22.60       | 7.40  | لويو             | 295         | end: 3.6                  | end: <b>Ц</b> , <b>G</b>  |         | 10           |
| 3                  |             |       |                  |             | start: 6.4                | start: 0,5                |         | 10           |
| 4                  |             |       |                  |             | Titrant used (mL): 3.2    | Titrant used (mL):        |         | 10           |
| STATISTICS         | Hery Table  |       |                  |             | Sample 25 volume (mL):    | Sample volume (mL):       |         |              |

Relative % Difference: RPD ≤15%

 $RPD = \frac{(s_1 - s_2)}{(s_1 + s_2)/2} \times 100 =$ 

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 4 replicates.

#### Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL and < RL$ .

KEY:

AV: Animals Visible
NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible



Page <u>4</u> of 4

QC'd by: M.

#### Lumbriculus variegatus 4-Day Screening Survival Test

| Project Number: 2386-00 Project Name: Bay West | Test Method-Manual:                                           | EPA 100.3-EPA/600/R-99/064                 |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| GLC# 11080                                     | Test Photoperiod: 16:8                                        | Lux: 100-1000                              |  |  |  |  |  |  |
| Sample ID: BW16MLW-001-0.0-0.15                | Test System: Sediment-100 mL and Overlying Water-175mL Manual |                                            |  |  |  |  |  |  |
| Test Species: Lumbriculus variegatus           | Test Temperature: 23± 1°C                                     |                                            |  |  |  |  |  |  |
| Date Addition of Sediment: 10/13/2016          | Test Organism Source/Age:                                     | DBA Cali. Blackworm Co. 10/13/2016 /Adults |  |  |  |  |  |  |
| Test Initiation Date: 10/14/2016               | Test Termination Date:                                        | 10/18/2016                                 |  |  |  |  |  |  |
|                                                |                                                               |                                            |  |  |  |  |  |  |
| Test Day: Day 4                                | Number Daily Renewals: \forall                                |                                            |  |  |  |  |  |  |
| Date: 10/18/2016                               | * Occom- renewal time/Initials                                | renewal                                    |  |  |  |  |  |  |
| Overlying Water: <b>Dechlor</b>                | renewal time/Initials                                         | nenewal                                    |  |  |  |  |  |  |
| Overlying Water Batch ID (GLC Number): NA      | Food: None                                                    |                                            |  |  |  |  |  |  |
| *623um. chemistries time/Initial               | Screens Cleaned: □ yes of no □ n/a                            | •                                          |  |  |  |  |  |  |

| Replicate          | Temperature (23± 1°C)* | рН   | Dissolved Oxygen (mg/L)* | Specific<br>Conductance<br>(µmhos/cm) | Hardness<br>(mg/L CaCO <sub>3</sub> ) | Alkalinity<br>(mg/L CaCO <sub>3</sub> ) | Ammonia<br>(as N) | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|------------------------|------|--------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                        |      |                          |                                       |                                       |                                         | W.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Record<br>Meter ID | 40                     | 203  | 236                      | 236                                   | N/A                                   | 203                                     | 4                 | Init:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                  | 128                    | 7.62 | 62                       | 309                                   | 136                                   | 100                                     | 0.07 5.           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                  | 22.8                   | 7.62 | 6.2                      | 309                                   | end: 4.0                              | end: 99                                 |                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                  |                        |      |                          |                                       | start: 3.6                            | start: 4,9                              |                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                  |                        |      |                          |                                       | 7 11                                  | Titrant used (mL):                      |                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                        |      | 18 (A.S.)                |                                       |                                       | Sample volume (mL):                     |                   | A 200 St. 100 |

Relative % Difference: RPD ≤15%

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperal \*Alkalinity, hardness and ammonia analyzed from a composite sample of all 4 replicates.

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

RPD =  $\frac{(s_1 - s_2)}{(s_1 - s_2)/2}$  x 100 =

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.

 $J = \ge MDL$  and  $\le RL$ .

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible



Page <u>4</u>\_of 4

QC'd by: YVO

#### Lumbriculus variegatus 4-Day Screening Survival Test

| Project Number: 2386-00 Project Name: Bay West | Test Method-Manual:                                           | EPA 100.3-EPA/600/R-99/064                 |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| GLC# 11081                                     | Test Photoperiod: 16:8                                        | Lux: 100-1000                              |  |  |  |  |  |
| Sample ID: <b>BW16MLW-002-0.0-0.15</b>         | Test System: Sediment-100 mL and Overlying Water-175mL Manual |                                            |  |  |  |  |  |
| Test Species: Lumbriculus variegatus           | Test Temperature: 23± 1°C                                     |                                            |  |  |  |  |  |
| Date Addition of Sediment: 10/13/2016          | Test Organism Source/Age:                                     | DBA Cali. Blackworm Co. 10/13/2016 /Adults |  |  |  |  |  |
| Test Initiation Date: 10/14/2016               | Test Termination Date:                                        | 10/18/2016                                 |  |  |  |  |  |
| Test Day: Day 4                                | Number Daily Renewals: \                                      |                                            |  |  |  |  |  |
| Date: 10/18/2016                               | Ao Eoo m. renewal time/Initials                               | renewal                                    |  |  |  |  |  |
| Overlying Water: <b>Dechlor</b>                | □ renewal time/Initials                                       | renewal                                    |  |  |  |  |  |
| Overlying Water Batch ID (GLC Number): NA      | Food: None                                                    |                                            |  |  |  |  |  |
| chemistries time/Initial                       | Screens Cleaned: 🗆 yes 🗘 no 🗆 n/a                             |                                            |  |  |  |  |  |

| Replicate | Temperature (23± 1°C)* | pН    | Dissolved Oxygen<br>(mg/L)* | Specific<br>Conductance<br>(µmhos/cm) | Hardness<br>(mg/L CaCO <sub>3</sub> ) | Alkalinity<br>(mg/L CaCO <sub>3</sub> ) | Ammonia<br>(as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observations |
|-----------|------------------------|-------|-----------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Record    |                        | _     |                             |                                       |                                       |                                         | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Init:        |
| Meter ID  | 40                     | 203   | 236                         | 236                                   | N/A                                   | 203                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nut          |
| 1         | 223                    | 7.660 | 0.0                         | 304                                   | 1360                                  | 100                                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9            |
| 2         | 22.5                   | 7.05  | 6.2                         | 307                                   | end: <b>\O.\</b>                      | end: 14.9                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10           |
| 3         |                        | 1     |                             |                                       | ,                                     | start: 9.9                              | ATT CONTRACTOR OF THE CONTRACT | 10           |
| 4         |                        |       |                             |                                       | Titrant used (mL): 3.4                | Titrant used (mL): 5.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10           |
|           |                        |       |                             | * \$100,000 mg                        | Sample 25                             | Sample volume (mL):                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_1 + s_2)/2}$  x 100 =

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 4 replicates.

#### Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL \text{ and } \le RL$ .

KEY:

AV: Animals Visible

NAV: No Animals Visible

*FOV*: Foreign Organism Visible *BHV*: Bore Holes Visible



Page <u>4</u> of 4

QC'd by:

#### Lumbriculus variegatus 4-Day Screening Survival Test

| Project Number:                       | 2386-00            | Project Name: | Bay West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _Test M                                                       | Iethod-Manı           | ıal:               |                       | EPA 100.3-EPA/600/R-99/064         |                |  |  |
|---------------------------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|--------------------|-----------------------|------------------------------------|----------------|--|--|
| GLC#                                  | 11082              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | otoperiod: 10         |                    |                       | Lux: 100-1000                      |                |  |  |
| Sample ID:                            | BW16MLW-00         | 3-0.0-0.15    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test System: Sediment-100 mL and Overlying Water-175mL Manual |                       |                    |                       |                                    |                |  |  |
| Test Species: L                       | umbriculus varia   | sertsey.      | ent antidoxidas deservicións des la Sistema en la compagna en la Colonia de C | S CONTROL OF THE SECOND | Test Temperature: 23± 1°C                                     |                       |                    |                       |                                    |                |  |  |
| Date Addition of                      | Sediment:          | 10/13/2016    | Commission to the commission of the commission o | anceranica I i columbia numbrida nome di <del>della della della</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Or                                                       | ganism Sourc          | ce/Age:            |                       | DBA Cali. Blackworm Co. 10/13/2016 |                |  |  |
| Test Initiation Da                    | te:                | 10/14/2016    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test T                                                        | ermination I          | Date:              |                       | 10/18/2016                         |                |  |  |
| Test Day: Da                          | ny 4               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Numbe                                                         | r Daily Renev         | vals: \            |                       |                                    |                |  |  |
| Date:                                 | 10/18/2016         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROE                                                           | 0 m                   |                    | time/Initials         |                                    | renewal        |  |  |
| Overlying Water:                      | Dechlor            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                       | renewal            | time/Initials         |                                    | renewal        |  |  |
|                                       | Batch ID (GLC Nun  | nber): NA     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Food:                                                         | None                  |                    |                       |                                    |                |  |  |
| XOTZUM.                               | chemistries time/I | nitial        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Screens                                                       | Cleaned: □            | yes 🗹              | <del>n</del> o □ n/a  |                                    |                |  |  |
|                                       | Im.                |               | Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | П                                                             | ardness               | AI                 | kalinity              | Ammonia                            | Observations   |  |  |
| Replicate                             | Temperature        | pН            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į                                                             |                       | 1                  | •                     | į.                                 | 0.0501,4010.05 |  |  |
|                                       | (23± 1°C)*         |               | (mg/L)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/)                                                         | L CaCO <sub>3</sub> ) | (mg/               | L CaCO <sub>3</sub> ) | (as N)                             |                |  |  |
|                                       |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (µmhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                       |                    |                       | Cu.                                |                |  |  |
|                                       |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                             |                       |                    |                       | 14.                                | Tuite          |  |  |
| Record<br>Meter ID                    | 40                 | 203           | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | N/A                   | *                  | 203                   | 4                                  | Init: pow      |  |  |
| Meter ib                              | 1.0                | 200           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D-0.                                                          | Ť                     | DUR.               |                       | *-                                 |                |  |  |
| 1                                     | 22.7               | 7.64          | 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 144                                                           | 132                   | 160                | 96                    | 0.15                               | 8              |  |  |
| 2                                     | 27.3               | 7.60          | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h3<br>end:                                                    | 13.7                  | 24.6<br>end:       | 19.8                  | 0.155                              | 0              |  |  |
| 3                                     | 1                  | -00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.7                                                          |                       | 19.8               |                       |                                    | Ю              |  |  |
| 3                                     |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | start:                                                        | 10.4                  | start:             | 14.1                  |                                    |                |  |  |
| 4                                     |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fitrant<br>used (m                                            | 33                    | Titrant<br>used (m | ): <b>4.9</b>         |                                    | 10             |  |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    |               | 200 July 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                        | 25<br>(mL):           | Sample<br>volume   | 50<br>(mL):           |                                    |                |  |  |
| Relative % Dif                        | ference: RPD≤15    | 5%            | * Contact Laboratory Coc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l<br>ordinator if Dissolved (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 890                                                           | 3                     |                    |                       | is out of range.                   |                |  |  |

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 4 replicates.

#### Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.

 $J = \ge MDL$  and < RL.

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible

### Appendix F Lumbriculus variegatus

### 28-Day Depurated Wet Weight

• Weights



#### **Bay West** 2386-01

Page 17 of 18 QC'd by: Mur

#### Lumbriculus variegatus 28-Day Survival Test

Project Number: 2386-01 Bay West Project Name: GLC#: **CS 136** Control-West Bearskin Lake Sample ID: Test Species: Lumbriculus variegatus Date Addition of Sediment: 10/24/2016 10/25/2016 Test Initiation Date:

28 Test Day: Date:

11/22/2016 chemistries time/Initial

X 440

Test Method-Manual: EPA 100.3-EPA/600/R-99/064 Test Photoperiod: 16:8 Lux: 100-1000 Test System: Sediment-1.5 L, Overlying Water-1.5 L, Automatic Renewal Test Temperature: 23±1°C Test Organism Source/Age: DBA Cali. Blackworm Co. 10/20/2016 Adults 11/22/2016 Test Termination Date: Overlying Water: Dechlor Overlying Water Batch ID (GLC Number): NA Food: none

| Replicate          | Temperature | pН           | Dissolved         | Specific<br>Conductance | Flow<br>(3-7 mL per | Hardness                  | Alkalinity                | Ammonia | Observations/            | Depuration Period         |
|--------------------|-------------|--------------|-------------------|-------------------------|---------------------|---------------------------|---------------------------|---------|--------------------------|---------------------------|
|                    | (23± 1°C)*  |              | Oxygen<br>(mg/L)* | (µmhos/cm)              | minute)             | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)  | Date/Time In<br>Initials | Date/Time Out<br>Initials |
|                    |             | n)cc))/      |                   |                         |                     | m "1/2                    | ilvo                      |         | Initials                 | Intials                   |
| Record<br>Meter ID | 40          | <b>5</b> 0₹3 | 936               | 236                     | N/A                 | N/A                       | 203                       | 4       |                          |                           |
| 1                  | 32.7        | 8.26         | 8.3               | 315                     | 40                  | 120                       | 106                       | 0.48    | MW 11/22116              | Mult 11/23/14<br>0500     |
| 2                  | うぶつ         | 8.20         | 8.0               | 316                     | 4,2                 | end: 20.1                 | end: 30.7                 |         | 11/22/10<br>0055 DS      | 0200<br>WALT 11/33/18     |
| 3                  |             | `\           |                   | 1                       | 4.2                 | start: 16.9               | start: 25.4               |         | MLV DADS                 | 0600                      |
| 4                  |             |              |                   |                         | 4.0                 | Titrant used (mL): 3.2    | Titrant used (mL): 5.3    | /       | 0800<br>of 162111 may    | 0500                      |
| 5                  |             | ,1           |                   |                         | Un                  | Sample volume (mL).       | Sample volume (mL):       |         | C.637                    | Mur 11/23/16              |

Relative % Difference: RPD ≤15%

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 5 replicates.

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL$  and  $\le RL$ .

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible BHV: Bore Holes Visible



## 2386-01 Bay West Lumbriculus variegatus 28-Day Survival Test

pg 18 g 18

Project Number: 2386-01 Project Name: Bay West

GLC#: CS 136

Sample ID: Control-West Bearskin Lake

Test Method-Manual: EPA100.3

EVA/600/ C-99/004

Test Species: Lumbriculus variegatus

Date Addition of Sediment: 10/24/2016

Test Initiation Date: 10/25/2016

Test Day: 29

Date: 11/23/2016

Scale Used: PJ4W

Location: Freezer # \\00

| Replicate | (A)                      | (B)                                                | A-B                                 |                        |                           |                            |
|-----------|--------------------------|----------------------------------------------------|-------------------------------------|------------------------|---------------------------|----------------------------|
|           | Weight of Jar<br>(grams) | Weight of Jar<br>and <i>Lumbriculus</i><br>(grams) | Weight of<br>Lumbriculus<br>(grams) | Technician<br>Initials | Date/Time In:<br>Initials | Date/Time Out:<br>Initials |
| 1         | 176.47                   | 196.19                                             | 19.72                               | mw                     | NW 0640                   | mult<br>11/23/16 0500      |
| 2         | 196.09                   | 215.09                                             | 19.00                               | mut                    | 11/22/10 0055             | mut 11/23/14 0510          |
| 3         | 6.81                     | 26.11                                              | 19.30                               | mu                     | MLV 0835                  | 11/23/16 0500              |
| 4         | 7.53                     | 24.89                                              | 17.36                               | Mub                    | 11/22/11 0800             | muir<br>142316 0500        |
| 5         | 7.65                     | 23.64                                              | 15.99                               | mut                    | 11/23/10 0836<br>MP       | MUS 116 0500               |



## Bay West 2386-01

Page of Y QC'd by: Mw

#### Lumbriculus variegatus 28-Day Survival Test

Test Method-Manual: EPA 100.3-EPA/600/R-99/064 Project Number: 2386-01 Project Name: Bay West Test Photoperiod: 16:8 Lux: 100-1000 GLC#: 11080 Test System: Sediment-1.5 L, Overlying Water-1.5 L, Automatic Renewal BW16MLW-001 Sample ID: Test Temperature: 23±1°C Lumbriculus variegatus Test Species: Test Organism Source/Age: DBA Cali, Blackworm Co. 10/20/2016 Adults Date Addition of Sediment: 10/24/2016 11/22/2016 Test Termination Date: 10/25/2016 Test Initiation Date: Overlying Water: Dechlor Test Day: 28 Overlying Water Batch ID (GLC Number): NA 11/22/2016 Date: Food: none chemistries time/Initial × 440

| Replicate          | Temperature | pН              | Dissolved         | Specific<br>Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flow<br>(3-7 mL per | Hardness                  | Alkalinity                | Ammonia | Observations/            | Depuration Period         |
|--------------------|-------------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|---------------------------|---------|--------------------------|---------------------------|
|                    | (23± 1°C)*  |                 | Oxygen<br>(mg/L)* | (µmhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | minute)             | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)  | Date/Time In<br>Initials | Date/Time Out<br>Initials |
|                    |             |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | rm ill                    | illo                      |         |                          |                           |
| Record<br>Meter ID | 40          | 70 <sup>3</sup> | 936               | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                 | N/A                       | 203                       | 4       |                          |                           |
| 1                  | 33.6        | 8.16            | 8.0               | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                 | 136                       | 102                       | 0.57    | 1027 NS                  | 11/23/16 MW-              |
| 2                  | 32 C        | 8.14            | 8.3               | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                  | end: 23.5                 | end: 35.C                 | /       | 117416<br>957 Ls         | 11/23/10 mus              |
| 3                  |             | W.              | 1                 | No. of the last of | 3.8                 | start: 20.\               | start: 30,7               |         | 0301 A1122111            | 11/23/10 mus              |
| 4                  |             |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8                 | Titrant used (mL): 3.4    | Titrant used (mL): 5.\    |         | 1030 win                 | 1830 WAR                  |
| 5                  |             |                 |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                  | Sample volume (mL): 25    | Sample volume (mL):       |         | MGM 12017                | JUM 0001                  |

Relative % Difference: RPD ≤15%

 $RPD = \frac{(s_1 - s_2)}{(s_1 + s_2)/2} \times 100 =$ 

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 5 replicates.

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL$  and < RL.

KEY:

AV: Animals Visible

NAV: No Animals Visible FOV: Foreign Organism Visible

BHV: Bore Holes Visible



# 2386-01 Bay West Lumbriculus variegatus 28-Day Survival Test

Pg 18 02 18

| Project Number: 2386-01    | Project Name: | Bay West | Test Method-Manual: | EPA 100,3<br>EPA/600/R-99/064 |
|----------------------------|---------------|----------|---------------------|-------------------------------|
| GLC#: 11080                |               |          |                     | EPA/600/R-99/064              |
| Sample ID: <b>BW16MLW</b>  | -001          |          |                     | 211376627                     |
| Test Species: Lumbriculus  | variegatus    |          |                     |                               |
| Date Addition of Sediment: | 10/24/2016    |          |                     |                               |
| Test Initiation Date:      | 10/25/2016    |          |                     |                               |
|                            |               |          |                     |                               |
| Test Day: 29               |               |          |                     |                               |
| Date: 11/23/2016           |               |          |                     |                               |
| Scale Used: DT400          |               |          |                     |                               |
| Location: Freezer # 64     |               |          |                     |                               |

| Replicate | (A)                      | (B) ·                                              | A-B                                 |                        |                           |                            |
|-----------|--------------------------|----------------------------------------------------|-------------------------------------|------------------------|---------------------------|----------------------------|
|           | Weight of Jar<br>(grams) | Weight of Jar<br>and <i>Lumbriculus</i><br>(grams) | Weight of<br>Lumbriculus<br>(grams) | Technician<br>Initials | Date/Time In:<br>Initials | Date/Time Out:<br>Initials |
| 1         | 6.89                     | <u> </u>                                           | 17.29                               | Mub-                   | 1601 11166/11<br>54       | WM-<br>11/33/11/ 0230      |
| 2         | 7.40                     | 21.62                                              | 14.22                               | mur                    | 1173/16 957<br>KS         | MMP. 0830                  |
| 3         | 7,53                     | 33.81                                              | 15.28                               | Mu-                    | 50<br>0601 21   CE   II   | M73116 0830                |
| 4         | 7.45                     | 22.54                                              | 15.09                               | Muss                   | mg.<br>1030 11166/11      | mur<br>193110 0830         |
| 5         | 6.85                     | 90 37                                              | 1352                                | Muis                   | Men<br>11/39/16 1308      | mm.<br>1939112 1000        |



## Bay West 2386-01

Page of 18

QC'd by: Mult

#### Lumbriculus variegatus 28-Day Survival Test

| Project Number: 2386-01 Project Name: Bay West | Test Method-Manual: EPA 100.3-EPA/600/R-99/064                        |
|------------------------------------------------|-----------------------------------------------------------------------|
| GLC#: 11081                                    | Test Photoperiod: 16:8 Lux: 100-1000                                  |
| Sample ID: BW16MLW-002                         | Test System: Sediment-1.5 L, Overlying Water-1.5 L, Automatic Renewal |
| Test Species: Lumbriculus variegatus           | Test Temperature: 23±1°C                                              |
| Date Addition of Sediment: 10/24/2016          | Test Organism Source/Age: DBA Cali. Blackworm Co. 10/20/2016 Adults   |
| Test Initiation Date: 10/25/2016               | Test Termination Date: 11/22/2016                                     |
|                                                |                                                                       |
| Test Day: 28                                   | Overlying Water: Dechlor                                              |
| Date: 11/22/2016                               | Overlying Water Batch ID (GLC Number): NA                             |
| * Yww.chemistries time/Initial                 | Food: none                                                            |

| Replicate          | Temperature | pН   | Dissolved<br>Oxygen | Specific<br>Conductance | Flow<br>(3-7 mL per | Hardness                  | Alkalinity             | Ammonia | Observations/                | Depuration Period                                  |
|--------------------|-------------|------|---------------------|-------------------------|---------------------|---------------------------|------------------------|---------|------------------------------|----------------------------------------------------|
|                    | (23± 1°C)*  |      | (mg/L)*             | (μmhos/cm)              | minute)             | (mg/L CaCO <sub>3</sub> ) |                        | (as N)  | Date/Time In<br>Initials     | Date/Time Out<br>Initials                          |
|                    |             |      |                     |                         |                     | mi 11/5                   | Ilico                  |         |                              |                                                    |
| Record<br>Meter ID | 40          | 203  | 236                 | 236                     | N/A                 | N/A                       | 203                    | Ц       |                              | T-CHESTAGE AND |
| 1                  | 22.4        | 814  | 8.3                 | 316                     | 4.0                 | 140                       | 102                    | 0.61    | 12240 1/22/1<br>12260 03/5/1 | u 1030 Mur                                         |
| 2                  | 22.4        | 8-12 | 8.3                 | 317                     | 3.8                 | end: 27-0                 | end: 409               | ]       | 123 Km/22/110                | 11/33/16 NW                                        |
| 3                  |             |      |                     |                         | 3.6                 | start: 23,5               | start: 35.9            | /       | 1359 65                      | 11/23/16 must                                      |
| 4                  |             |      |                     |                         | 3.8                 | Titrant 3.5               | Titrant used (mL): 5.1 |         | 11/22/16 NS<br>1333          | 1030 mm                                            |
| 5                  |             |      |                     |                         | 4.0                 |                           | Sample volume (mL):    | 1       | 11/2216 DS                   | 11)30 KON                                          |

Relative % Difference: RPD ≤15%

RPD =  $\frac{(s_1 - s_2)}{(s_1 - s_2)/2}$   $\times 100 =$ 

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 5 replicates.

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL$  and < RL.

out of range. (SEY:

@ Imp work wrong spot.

AV: Animals Visible

s Visible

NAV: No Animals Visible FOV: Foreign Organism Visible BHV: Bore Holes Visible



# 2386-01 Bay West Lumbriculus variegatus 28-Day Survival Test

pg 18 % 18

EPA/600/R-99/064

| Project Number:    | 2386-01            | Project Name: | Bay West | Test Method-Manual: | EPA 100.3<br>EPA/600/R |
|--------------------|--------------------|---------------|----------|---------------------|------------------------|
| GLC#:              | 11081              |               |          |                     | EPA/600/R              |
| Sample ID:         | BW16MLW-002        |               |          |                     | 0,                     |
| Test Species:      | Lumbriculus varieg | atus          |          |                     |                        |
| Date Addition of   | Sediment:          | 10/24/2016    |          |                     |                        |
| Test Initiation Da | ate:               | 10/25/2016    |          |                     |                        |
|                    |                    |               |          |                     |                        |
| Test Day:          | 29                 |               |          |                     |                        |
| Date:              | 11/23/2016         |               |          |                     |                        |
| Scale Used:        | RT4W               |               |          |                     |                        |
| Location: Freez    | er# 109            |               |          |                     |                        |

| Replicate | (A) Weight of Jar (grams) | (B) Weight of Jar and <i>Lumbriculus</i> (grams) | A-B<br>Weight of<br>Lumbriculus<br>(grams) | Technician<br>Initials | Date/Time In:<br>Initials | Date/Time Out:<br>Initials |
|-----------|---------------------------|--------------------------------------------------|--------------------------------------------|------------------------|---------------------------|----------------------------|
| 1         | 6.93                      | 22.55                                            | 15.62                                      | Mult                   | 1315 MW                   | 11/23/16<br>11/23/16       |
| 2         | 7.13                      | 23.30                                            | 16.17                                      | mu                     | 1 936 MP                  | 11/23/16 1030              |
| 3         | 7.38                      | 21.58                                            | 14.30                                      | mus                    | 11/22/16 KS               | 1629 n 1030                |
| 4         | 7.44                      | 23, 18                                           | 15.74                                      | Mul-                   | 54 Mechi                  | 11/32/10 1030              |
| 5         | 7.41                      | 23.60                                            | 16.19                                      | mus                    | 1420<br>11/221/4 D2       | M73116 1030                |



#### **Bay West** 2386-01

QC'd by: Mu

#### Lumbriculus variegatus 28-Day Survival Test

| Project Number: 2386-01 Project Name: Bay West | Test Method-Manual: EPA 100.3-EPA/600/R-99/064                        |
|------------------------------------------------|-----------------------------------------------------------------------|
| GLC#: 11082                                    | Test Photoperiod: 16:8 Lux: 100-1000                                  |
| Sample ID: BW16MLW-003                         | Test System: Sediment-1.5 L, Overlying Water-1.5 L, Automatic Renewal |
| Test Species: Lumbriculus variegatus           | Test Temperature: 23±1°C                                              |
| Date Addition of Sediment: 10/24/2016          | Test Organism Source/Age: DBA Cali. Blackworm Co. 10/20/2016 Adults   |
| Test Initiation Date: 10/25/2016               | Test Termination Date: 11/22/2016                                     |
| Test Day: 28                                   | Overlying Water: Dechlor                                              |
| Date: 11/22/2016                               | Overlying Water Batch ID (GLC Number): NA                             |
| X 440 mu chemistries time/Initial              | Food: none                                                            |

| Replicate          | Temperature | рН   | Dissolved<br>Oxygen | Specific<br>Conductance | Flow<br>(3-7 mL per | Hardness                  | Alkalinity                | Ammonia   | Observations/            | Depuration        | Period |
|--------------------|-------------|------|---------------------|-------------------------|---------------------|---------------------------|---------------------------|-----------|--------------------------|-------------------|--------|
|                    | (23± 1°C)*  |      | (mg/L)*             | (µmhos/cm)              | minute)             | (mg/L CaCO <sub>3</sub> ) | (mg/L CaCO <sub>3</sub> ) | (as N)    | Date/Time In<br>Initials | Date/Tir<br>Initi |        |
|                    |             |      |                     |                         |                     | w 1951                    | ne                        |           |                          |                   |        |
| Record<br>Meter ID | 40          | 903  | 236                 | 936                     | N/A                 | N/A                       | 203                       | 4         |                          |                   | _      |
| 1                  | 22.4        | 8.13 | 8.1                 | 390                     | 3.8                 | 132                       | 100                       | 0.71      | MWT<br>11/20/14/30       | 1312              | mwb    |
| 2                  | P.66        | 8-13 | 7.9                 | 3.00                    | 3.8                 | end: 30.3                 | end: 45,9                 | dup: o.ch | 11/55/10 1002            | 330               | Mur    |
| 3                  |             |      |                     |                         | 3.6                 | start: 27.0               |                           | RPP=      | 1455/16 1036             | 1330              | Yuse   |
| 4                  |             |      |                     |                         | 3.8                 | Titrant used (mL): 3.3    | Titrant used (mL):        | 7,3%      | NS 11/22/14              | 320               | my     |
| 5                  |             |      |                     |                         | 3.8                 |                           |                           |           | ००० गाटिमा               | 11/33/10          | hop    |

Relative % Difference: RPD ≤15%

\* Contact Laboratory Coordinator if Dissolved Oxygen level is < 2.5 mg/L or if Temperature is out of range.

\*Alkalinity, hardness and ammonia analyzed from a composite sample of all 5 replicates.

Ammonia Reporting Limits:

RL = Reporting Limit (0.20 mg/L).

MDL = Minimum Detection Limit (0.02 mg/L) - last updated 3/2016.

U = Below MDL.  $J = \ge MDL$  and  $\le RL$ .

KEY:

AV: Animals Visible

NAV: No Animals Visible

FOV: Foreign Organism Visible

BHV: Bore Holes Visible

WC: Overlying water visibly clear

DUPLICATES\_ ACHALINITY HARDINESS 100 *څخ*ۍ. 33.6 2013 START しみしつ.



# 2386-01 Bay West Lumbriculus variegatus 28-Day Survival Test

bd 18 218

| Project Number:   | 2386-01           | Project Name: | Bay West | Test Method-Manual: | EPA 100.3<br>EPA/L00/R-99/064 |
|-------------------|-------------------|---------------|----------|---------------------|-------------------------------|
| GLC#:             | 11082             |               |          |                     | EPA/600/K-11/001              |
| Sample ID:        | BW16MLW-003       | 3             |          |                     |                               |
| Test Species:     | Lumbriculus varie | egatus        |          |                     |                               |
| Date Addition of  | f Sediment:       | 10/24/2016    |          |                     |                               |
| Test Initiation D | ate:              | 10/25/2016    |          |                     |                               |
|                   |                   |               |          |                     |                               |
| Test Day:         | 29                |               |          |                     |                               |
| Date:             | 11/23/2016        |               |          |                     |                               |
| Scale Used:       | R5400             |               |          |                     |                               |
| Location: Free    | zer# \09          |               |          |                     |                               |

| Replicate | (A)                      | (B)                                                | A-B                                 |                        |                           | •                          |
|-----------|--------------------------|----------------------------------------------------|-------------------------------------|------------------------|---------------------------|----------------------------|
|           | Weight of Jar<br>(grams) | Weight of Jar<br>and <i>Lumbriculus</i><br>(grams) | Weight of<br>Lumbriculus<br>(grams) | Technician<br>Initials | Date/Time In:<br>Initials | Date/Time Out:<br>Initials |
| 1         | 6,29                     | 22.93                                              | 14.63                               | mul                    | oehi nileelii             | 11/23/16<br>2181 Juny      |
| 2         | 7.39                     | 21:96                                              | 14.67                               | mub                    | 1004 Wb                   | mm 1330                    |
| 3         | 7.44                     | Da.87                                              | 15,43                               | mill                   | 11/22/16 1636<br>MLV      | 1330                       |
| 4         | 7.48                     | 22.52                                              | 15.04                               | Phwb-                  | 11/22/16<br>1450/ 20      | M/23116<br>Nux 1330        |
| 5         | 7.84                     | 23.47                                              | 15.43                               | mub                    | 1100 DZ                   | 1330 Mec/11                |

# Appendix G Lumbriculus variegatus Tissue Analysis

• Analytical Results

(920)469-2436



December 12, 2016

Mailee Garton GLEC 739 Hastings Street Traverse City, MI 49686

RE: Project: 2386.00 BAY WEST

Pace Project No.: 40142670

# Dear Mailee Garton:

Enclosed are the analytical results for sample(s) received by the laboratory on November 29, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer

Tod nottemeyor

tod.noltemeyer@pacelabs.com

**Project Manager** 

**Enclosures** 

cc: Dennis McCauley, Great Lakes Environmental Center, Inc.



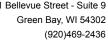


Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436



# **CERTIFICATIONS**

Project: 2386.00 BAY WEST


Pace Project No.: 40142670

# **Green Bay Certification IDs**

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Virginia VELAP ID: 460263
South Carolina Certification #: 83006001
Texas Certification #: T104704529-14-1
Wisconsin Certification #: 405132750
Wisconsin DATCP Certification #: 105-444
USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0





# **SAMPLE SUMMARY**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

| Lab ID      | Sample ID                         | Matrix | Date Collected | Date Received  |
|-------------|-----------------------------------|--------|----------------|----------------|
| 40142670001 | BACKGROUND DAY 0 10/25/16         | Tissue | 11/23/16 13:30 | 11/29/16 10:05 |
| 40142670002 | CS 136 (CONTROL WEST BEAR<br>SKIN | Tissue | 11/23/16 13:30 | 11/29/16 10:05 |
| 40142670003 | 11080 (BW16MLW-001)               | Tissue | 11/23/16 13:30 | 11/29/16 10:05 |
| 40142670004 | 11081 (BW16MLW-002)               | Tissue | 11/23/16 13:30 | 11/29/16 10:05 |
| 40142670005 | 11082 (BW16MLW-003)               | Tissue | 11/23/16 13:30 | 11/29/16 10:05 |





# **SAMPLE ANALYTE COUNT**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

| Lab ID      | Sample ID                      | Method   | Analysts | Analytes<br>Reported |
|-------------|--------------------------------|----------|----------|----------------------|
| 40142670001 | BACKGROUND DAY 0 10/25/16      | EPA 6020 | DS1      | 2                    |
| 40142670002 | CS 136 (CONTROL WEST BEAR SKIN | EPA 6020 | DS1      | 2                    |
| 40142670003 | 11080 (BW16MLW-001)            | EPA 6020 | DS1      | 2                    |
| 40142670004 | 11081 (BW16MLW-002)            | EPA 6020 | DS1      | 2                    |
| 40142670005 | 11082 (BW16MLW-003)            | EPA 6020 | DS1      | 2                    |



Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 104 of 140 acc Analytical Services, LLC |
| Page 105 acc Analytical Services, LLC |
| Page 105 acc Analytical Services, LLC |
| Page 106 acc Analytical Services, LLC |
| Page 107 acc Analytical Services |
| Page 107 acc Analytical Services |
| Page 108 acc Analytical Services |
|

(920)469-2436

**PROJECT NARRATIVE** 

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Method: EPA 6020

Description: 6020 MET ICPMS

Client: Great Lakes Environmental Center

Date: December 12, 2016

#### **General Information:**

5 samples were analyzed for EPA 6020. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### **Sample Preparation:**

The samples were prepared in accordance with EPA 3050B with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

#### **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

# Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

## **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.





Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Sample: BACKGROUND DAY 0 Lab ID: 40142670001 Collected: 11/23/16 13:30 Received: 11/29/16 10:05 Matrix: Tissue

10/25/16

Date: 12/12/2016 04:43 PM

| Parameters     | Results     | Units          | PQL          | MDL           | DF      | Prepared | Analyzed                         | CAS No. | Qual |
|----------------|-------------|----------------|--------------|---------------|---------|----------|----------------------------------|---------|------|
| 6020 MET ICPMS | Analytical  | Method: EPA    | 6020 Prepar  | ation Metho   | od: EPA | ₹3050B   |                                  |         |      |
| Nickel<br>Zinc | 1.0<br>21.4 | mg/kg<br>mg/kg | 0.099<br>2.0 | 0.030<br>0.64 | 1<br>1  |          | 12/08/16 20:10<br>12/08/16 20:10 |         |      |





Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Sample: CS 136 (CONTROL WEST Lab ID: 40142670002 Collected: 11/23/16 13:30 Received: 11/29/16 10:05 Matrix: Tissue

**BEAR SKIN** 

Date: 12/12/2016 04:43 PM

| Parameters     | Results     | Units          | PQL _        | MDL           | DF      | Prepared | Analyzed | CAS No. | Qual |
|----------------|-------------|----------------|--------------|---------------|---------|----------|----------|---------|------|
| 6020 MET ICPMS | Analytical  | Method: EPA    | 6020 Prepar  | ation Metho   | od: EPA | A 3050B  |          |         |      |
| Nickel<br>Zinc | 1.1<br>18.2 | mg/kg<br>mg/kg | 0.094<br>1.9 | 0.028<br>0.61 | 1<br>1  |          |          |         |      |





Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Date: 12/12/2016 04:43 PM

Sample: 11080 (BW16MLW-001) Lab ID: 40142670003 Collected: 11/23/16 13:30 Received: 11/29/16 10:05 Matrix: Tissue

| Parameters     | Results    | Units       | PQL _       | MDL         | DF      | Prepared       | Analyzed       | CAS No.   | Qual |
|----------------|------------|-------------|-------------|-------------|---------|----------------|----------------|-----------|------|
| 6020 MET ICPMS | Analytical | Method: EPA | 6020 Prepar | ation Metho | od: EPA | ₹3050B         |                |           |      |
| Nickel         | 0.72       | mg/kg       | 0.088       | 0.026       | 1       | 12/07/16 10:53 | 12/08/16 21:04 | 7440-02-0 |      |
| Zinc           | 18.0       | mg/kg       | 1.8         | 0.56        | 1       | 12/07/16 10:53 | 12/08/16 21:04 | 7440-66-6 |      |



# **ANALYTICAL RESULTS**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Date: 12/12/2016 04:43 PM

Sample: 11081 (BW16MLW-002) Lab ID: 40142670004 Collected: 11/23/16 13:30 Received: 11/29/16 10:05 Matrix: Tissue

Results reported on a "wet-weight" basis

| Units             | PQL                | MDL                                               | DF                                                                 | Prepared                                                                  | Analyzed                                                                                             | CAS No.                                                                                                             | Qual                                                                                                                          |
|-------------------|--------------------|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ytical Method: EP | A 6020 Prepa       | ration Meth                                       | od: EPA                                                            | A 3050B                                                                   |                                                                                                      |                                                                                                                     |                                                                                                                               |
| 3 3               | 0.089              | 0.027                                             | 1                                                                  |                                                                           |                                                                                                      |                                                                                                                     |                                                                                                                               |
| ly                | lytical Method: EF | lytical Method: EPA 6020 Prepa<br>2.1 mg/kg 0.089 | lytical Method: EPA 6020 Preparation Method  2.1 mg/kg 0.089 0.027 | lytical Method: EPA 6020 Preparation Method: EPA  2.1 mg/kg 0.089 0.027 1 | lytical Method: EPA 6020 Preparation Method: EPA 3050B <b>2.1</b> mg/kg 0.089 0.027 1 12/07/16 10:53 | lytical Method: EPA 6020 Preparation Method: EPA 3050B <b>2.1</b> mg/kg 0.089 0.027 1 12/07/16 10:53 12/08/16 21:10 | lytical Method: EPA 6020 Preparation Method: EPA 3050B <b>2.1</b> mg/kg 0.089 0.027 1 12/07/16 10:53 12/08/16 21:10 7440-02-0 |





Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Date: 12/12/2016 04:43 PM

Sample: 11082 (BW16MLW-003) Lab ID: 40142670005 Collected: 11/23/16 13:30 Received: 11/29/16 10:05 Matrix: Tissue

| Parameters     | Results    | Units       | PQL _       | MDL         | DF      | Prepared       | Analyzed       | CAS No.   | Qual |
|----------------|------------|-------------|-------------|-------------|---------|----------------|----------------|-----------|------|
| 6020 MET ICPMS | Analytical | Method: EPA | 6020 Prepar | ation Metho | od: EPA | ₹3050B         |                |           |      |
| Nickel         | 0.46       | mg/kg       | 0.098       | 0.029       | 1       | 12/07/16 10:53 | 12/08/16 21:17 | 7440-02-0 |      |
| Zinc           | 21.3       | mg/kg       | 2.0         | 0.63        | 1       | 12/07/16 10:53 | 12/08/16 21:17 | 7440-66-6 |      |

ellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436



#### **QUALITY CONTROL DATA**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Zinc

Date: 12/12/2016 04:43 PM

QC Batch: 243498 Analysis Method: EPA 6020
QC Batch Method: EPA 3050B Analysis Description: 6020 MET TISSUE

Associated Lab Samples: 40142670001, 40142670002, 40142670003, 40142670004, 40142670005

METHOD BLANK: 1442087 Matrix: Tissue

Associated Lab Samples: 40142670001, 40142670002, 40142670003, 40142670004, 40142670005

mg/kg

 Parameter
 Units
 Blank Reporting Result
 Reporting Limit
 MDL
 Analyzed
 Qualifiers

 I
 mg/kg
 <0.030</td>
 0.10
 0.030
 12/08/16 19:36

 Nickel
 mg/kg
 <0.030</th>
 0.10
 0.030
 12/08/16 19:36

 Zinc
 mg/kg
 <0.64</td>
 2.0
 0.64
 12/08/16 19:36

LABORATORY CONTROL SAMPLE: 1442088 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nickel 20 19.6 98 80-120 mg/kg

20

LABORATORY CONTROL SAMPLE: 1442090

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Nickel 90 76-120 mg/kg 5.3 4.8 Zinc mg/kg 136 148 109 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1442092 1442091 MS MSD 40142670001 MS MS % Rec MSD MSD Spike Spike Max Units RPD Parameter Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Nickel 1.0 21.1 21.4 20 20 19.9 101 102 75-125 1 mg/kg 46.2 Zinc mg/kg 21.4 20 19.9 124 75-125 5 44.1 113 20

20.5

102

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





#### **QUALIFIERS**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/12/2016 04:43 PM





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 2386.00 BAY WEST

Pace Project No.: 40142670

Date: 12/12/2016 04:43 PM

| Lab ID      | Sample ID                         | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------------------------------|-----------------|----------|-------------------|---------------------|
| 40142670001 | BACKGROUND DAY 0 10/25/16         | EPA 3050B       | 243498   | EPA 6020          | 243560              |
| 40142670002 | CS 136 (CONTROL WEST BEAR<br>SKIN | EPA 3050B       | 243498   | EPA 6020          | 243560              |
| 40142670003 | 11080 (BW16MLW-001)               | EPA 3050B       | 243498   | EPA 6020          | 243560              |
| 40142670004 | 11081 (BW16MLW-002)               | EPA 3050B       | 243498   | EPA 6020          | 243560              |
| 40142670005 | 11082 (BW16MLW-003)               | EPA 3050B       | 243498   | EPA 6020          | 243560              |

140

 $\mathbf{of}$ 

6.0 06/14/06

# **Sample Condition Upon Receipt**

Page 114 of 140 ace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Pace Analytical\* Project / 1104 · 404 42670

| Client Name: (TLEC                                                                                       | MO# - 401420/0 |          |                                                                     |
|----------------------------------------------------------------------------------------------------------|----------------|----------|---------------------------------------------------------------------|
| Courier: Fed Ex F UPS F Client F Page                                                                    | ce Other:      | -        | !  <b>!  </b>       <b>!                                       </b> |
| Tracking #: <u>98025318 (1282</u>                                                                        |                |          |                                                                     |
| Custody Seal on Cooler/Box Present: yes                                                                  | <b>4</b>       |          |                                                                     |
| Custody Seal on Samples Present: Tyes 7                                                                  |                |          | ∷                                                                   |
| Packing Material:  Bubble Wrap Bub                                                                       |                |          |                                                                     |
| Thermometer Used 5R-53                                                                                   |                |          | Blue Dry None Samples on ice, cooling process has begun             |
| Cooler Temperature Uncorr: (). 5 /Corr:                                                                  | 0,5            | Biolo    | ogical Tissue is Frozen: Tyes                                       |
| Temp Blank Present: yes no                                                                               |                |          | Person examining contents:  Date: <u>#12911 (4</u>                  |
| Temp should be above freezing to 6°C for all sample ex<br>Frozen Biota Samples should be received ≤ 0°C. | cept Biota.    |          | Comments:                                                           |
| Chain of Custody Present:                                                                                | ZYes □No       | □n/a     | 1.                                                                  |
| Chain of Custody Filled Out:                                                                             | ØYes □No       | □n/a     | 2.                                                                  |
| Chain of Custody Relinquished:                                                                           | ØYes □No       | □n/a     | 3.                                                                  |
| Sampler Name & Signature on COC:                                                                         | ØYes □No       | □n/a     | 4.                                                                  |
| Samples Arrived within Hold Time:                                                                        | ZYes □No       | □n/a     | 5.                                                                  |
| - VOA Samples frozen upon receipt                                                                        | □Yes □No       |          | Date/Time:                                                          |
| Short Hold Time Analysis (<72hr):                                                                        | □Yes ⊅No       | □n/a     | 6.                                                                  |
| Rush Turn Around Time Requested:                                                                         | □Yes ØNo       | □n/a     | 7.12/12 KA 11/29/16                                                 |
| Sufficient Volume:                                                                                       | 2              | □n/a     |                                                                     |
| Correct Containers Used:                                                                                 | Z<br>Yes □No   | □n/a     | 9.                                                                  |
| -Pace Containers Used:                                                                                   | ZYes □No       | □n/a     |                                                                     |
| -Pace IR Containers Used:                                                                                | Yes □No        | ØN/A     |                                                                     |
| Containers Intact:                                                                                       | ZYes □No       | □n/a     | 10.                                                                 |
| Filtered volume received for Dissolved tests                                                             | □Yes □No       | ØN/A     | 11.                                                                 |
| Sample Labels match COC:                                                                                 | ZYes □No       | □n/a     | 12 matrix is worms                                                  |
| -Includes date/time/ID/Analysis Matrix:                                                                  | B              | _        | KA 4129116                                                          |
| All containers needing preservation have been checked.<br>(Non-Compliance noted in 13.)                  | □Yes □No       | ⊠N/A     | 13. F HNO3 F H2SO4 F NaOH F NaOH +ZnAct                             |
| All containers needing preservation are found to be in                                                   |                |          | 13.                                                                 |
| compliance with EPA recommendation.<br>(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)                         | □Yes □No       | ØN/A     |                                                                     |
| exceptions: VOA, coliform, TOC, TOX, TOH,                                                                |                |          | Initial when Lab Std #ID of Date/                                   |
| D&G, WIDROW, Phenolics, OTHER:                                                                           | □Yes ZNo       |          | completed preservative Time:                                        |
| Headspace in VOA Vials ( >6mm):                                                                          | □Yes □No       | ØN/A     | 14.                                                                 |
| Trip Blank Present:                                                                                      | □Yes □No       | ZN/A     | 15.                                                                 |
| Trip Blank Custody Seals Present                                                                         | □Yes □No       | ZN/A     |                                                                     |
| Pace Trip Blank Lot # (if purchased):                                                                    |                |          |                                                                     |
| Client Notification/ Resolution:                                                                         |                |          | If checked, see attached form for additional comments               |
| Person Contacted:                                                                                        |                | Date/T   | lime:                                                               |
| Comments/ Resolution:                                                                                    |                |          |                                                                     |
|                                                                                                          |                |          |                                                                     |
|                                                                                                          |                |          |                                                                     |
|                                                                                                          | . / .          |          |                                                                     |
| Project Manager Review:                                                                                  | 11/2           | 71/1     | D-4: 11-20-11                                                       |
|                                                                                                          | N 100          | <u> </u> | Date: 11-24-16                                                      |

# Appendix H Sediment Sample Chemistry Analysis

• Analytical Results

(920)469-2436



December 13, 2016

Mailee Garton GLEC 739 Hastings Street Traverse City, MI 49686

RE: Project: 2386-00 BAY WEST

Pace Project No.: 40140160

# Dear Mailee Garton:

Enclosed are the analytical results for sample(s) received by the laboratory on October 14, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

TOC Analysis subcontracted to Keystone Laboratories.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christopher Hyska for

Chushpher Hyske

Tod Noltemeyer

tod.noltemeyer@pacelabs.com

Project Manager

Enclosures

cc: Dennis McCauley, Great Lakes Environmental Center, Inc.







# **CERTIFICATIONS**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

# **Green Bay Certification IDs**

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Virginia VELAP ID: 460263
South Carolina Certification #: 83006001
Texas Certification #: T104704529-14-1
Wisconsin Certification #: 405132750
Wisconsin DATCP Certification #: 105-444

USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0





# **SAMPLE SUMMARY**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

| Lab ID      | Sample ID            | Matrix | Date Collected | Date Received  |
|-------------|----------------------|--------|----------------|----------------|
| 40140160001 | CS136 WEST BEAR SKIN | Solid  | 10/13/16 10:00 | 10/14/16 09:05 |
| 40140160002 | BW16MLW001-0.0-0.15  | Solid  | 10/13/16 10:30 | 10/14/16 09:05 |
| 40140160003 | BW16MLW002-0.0-0.15  | Solid  | 10/13/16 11:00 | 10/14/16 09:05 |
| 40140160004 | BW16MLW003-0.0-0.15  | Solid  | 10/13/16 11:30 | 10/14/16 09:05 |





# **SAMPLE ANALYTE COUNT**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

|             |                      |               |          | Analytes |
|-------------|----------------------|---------------|----------|----------|
| Lab ID      | Sample ID            | Method        | Analysts | Reported |
| 40140160001 | CS136 WEST BEAR SKIN | ASTM D2974-87 | втн      | 1        |
| 40140160002 | BW16MLW001-0.0-0.15  | ASTM D2974-87 | втн      | 1        |
| 40140160003 | BW16MLW002-0.0-0.15  | ASTM D2974-87 | втн      | 1        |
| 40140160004 | BW16MLW003-0.0-0.15  | ASTM D2974-87 | BTH      | 1        |



Page 119 of 140 ace Analytical Services, LLC 1241 Bellevue Street - Suite 9
Green Bay, WI 54302

Green Bay, WI 54302 (920)469-2436

# **PROJECT NARRATIVE**

| Project: Pace Project No.:         |  |
|------------------------------------|--|
| Method: Description: Client: Date: |  |

This data package has been reviewed for quality and completeness and is approved for release.



# **ANALYTICAL RESULTS**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

Date: 12/13/2016 08:06 AM

Sample: CS136 WEST BEAR SKIN Lab ID: 40140160001 Collected: 10/13/16 10:00 Received: 10/14/16 09:05 Matrix: Solid

| Parameters       | Results    | Units      | PQL         | MDL  | DF | Prepared | Analyzed       | CAS No. | Qual |
|------------------|------------|------------|-------------|------|----|----------|----------------|---------|------|
| Percent Moisture | Analytical | Method: AS | TM D2974-87 |      |    |          |                |         |      |
| Percent Moisture | 86.6       | %          | 0.10        | 0.10 | 1  |          | 10/14/16 18:02 |         |      |



# **ANALYTICAL RESULTS**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

Date: 12/13/2016 08:06 AM

Sample: BW16MLW001-0.0-0.15 Lab ID: 40140160002 Collected: 10/13/16 10:30 Received: 10/14/16 09:05 Matrix: Solid

| Parameters       | Results    | Units      | PQL _       | MDL  | DF | Prepared | Analyzed       | CAS No. | Qual |
|------------------|------------|------------|-------------|------|----|----------|----------------|---------|------|
| Percent Moisture | Analytical | Method: AS | TM D2974-87 |      |    |          |                |         |      |
| Percent Moisture | 84.8       | %          | 0.10        | 0.10 | 1  |          | 10/14/16 18:02 |         |      |





Project: 2386-00 BAY WEST

Pace Project No.: 40140160

Date: 12/13/2016 08:06 AM

Sample: BW16MLW002-0.0-0.15 Lab ID: 40140160003 Collected: 10/13/16 11:00 Received: 10/14/16 09:05 Matrix: Solid

| Parameters       | Results    | Units       | PQL        | MDL  | DF | Prepared | Analyzed       | CAS No. | Qual |
|------------------|------------|-------------|------------|------|----|----------|----------------|---------|------|
| Percent Moisture | Analytical | Method: AST | M D2974-87 |      |    |          |                |         |      |
| Percent Moisture | 79.9       | %           | 0.10       | 0.10 | 1  |          | 10/14/16 18:02 |         |      |



# **ANALYTICAL RESULTS**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

Date: 12/13/2016 08:06 AM

Sample: BW16MLW003-0.0-0.15 Lab ID: 40140160004 Collected: 10/13/16 11:30 Received: 10/14/16 09:05 Matrix: Solid

| Parameters       | Results    | Units       | PQL         | MDL  | DF | Prepared | Analyzed       | CAS No. | Qual |
|------------------|------------|-------------|-------------|------|----|----------|----------------|---------|------|
| Percent Moisture | Analytical | Method: AST | TM D2974-87 |      |    |          |                |         |      |
| Percent Moisture | 87.7       | %           | 0.10        | 0.10 | 1  |          | 10/14/16 18:03 |         |      |

Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436



#### **QUALITY CONTROL DATA**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

QC Batch: 238213 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40140160001, 40140160002, 40140160003, 40140160004

SAMPLE DUPLICATE: 1411462

Date: 12/13/2016 08:06 AM

Percent Moisture 40140097001 Dup Max Result RPD Qualifiers 8.7 8.7 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





#### **QUALIFIERS**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/13/2016 08:06 AM





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: 2386-00 BAY WEST

Pace Project No.: 40140160

Date: 12/13/2016 08:06 AM

| Lab ID      | Sample ID            | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------------|-----------------|----------|-------------------|---------------------|
| 40140160001 | CS136 WEST BEAR SKIN | ASTM D2974-87   | 238213   |                   |                     |
| 40140160002 | BW16MLW001-0.0-0.15  | ASTM D2974-87   | 238213   |                   |                     |
| 40140160003 | BW16MLW002-0.0-0.15  | ASTM D2974-87   | 238213   |                   |                     |
| 40140160004 | BW16MLW003-0.0-0.15  | ASTM D2974-87   | 238213   |                   |                     |

Intact / Not Intact

/ersion 6.0. 06/14/06

Sample Condition Upon Receipt Page 128 of 140 Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Pace Analytical Green Bay, WI 54302 Project #: WO#: 40140160 Client Name: Courier: MEed Ex T UPS T Client T Pace Other: Tracking #: Custody Seal on Cooler/Box Present: 1 yes - no Seals intact: Xes I no Custody Seal on Samples Present: Tyes The Seals intact: T ves T no Packing Material: Bubble Wrap Bubble Bags None Other Thermometer Used Type of ice: Wel Blue Dry None Samples on ice, cooling process has begun Cooler Temperature Biological Tissue is Frozen: Tyes Temp Blank Present: yes Tono T no Person examining contents: Temp should be above freezing to 6°C for all sample except Biota. Date: Frozen Biota Samples should be received ≤ 0°C. Comments: Initials: Chain of Custody Present: Yes □No □N/A Chain of Custody Filled Out: ØYes □No □N/A Chain of Custody Relinquished: ¥Yes □No □N/A Sampler Name & Signature on COC: Ø (es □ No □N/A Samples Arrived within Hold Time: DaKes □No □n/a - VOA Samples frozen upon receipt □Yes □No Date/Time: Short Hold Time Analysis (<72hr): □Yes □No □N/A Rush Turn Around Time Requested: □Yes ØÑo □N/A 1074-10 Sufficient Volume: Ø%es □No □N/A Correct Containers Used: ØYes □No □N/A 9 -Pace Containers Used: ØYes □No □N/A -Pace IR Containers Used: □Yes □No DAN/A Containers Intact: Yes INO □n/a Filtered volume received for Dissolved tests □Yes □No ZINIA 11. Sample Labels match COC: □Yes ØΝο -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. (Non-Compliance noted in 13.) □Yes □No ØN/A All containers needing preservation are found to be in compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) □Yes □No ØN/A exceptions: VOA, coliform, TOC, TOX, TOH, Initial when O&G, WIDROW, Phenolics, Lab Std #ID of Date/ OTHER: ☐Yes ZNo completed preservative Time: Headspace in VOA Vials ( >6mm): ☐Yes ☐No ZNA 14. Trip Blank Present: □Yes □No N/A 15. Trip Blank Custody Seals Present □Yes □No ☑N/A

Date/Time:

F-GB-C-031-Rev.03 (9April2015) SCUR Form

Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution:

Person Contacted:

Project Manager Review:

Comments/ Resolution:

If checked, see attached form for additional comments

Date:







October 21 2016

Tod Noltemeyer Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302

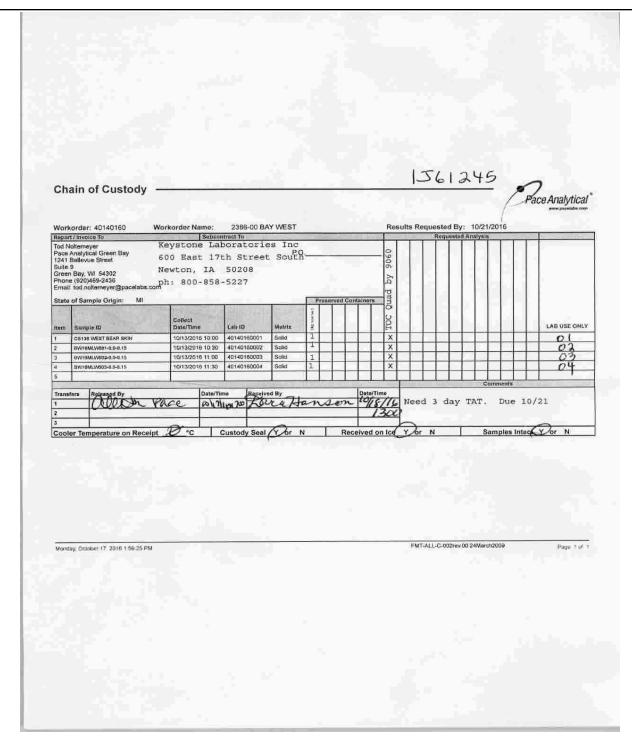
RE: Subcontract - TN 40140160

Enclosed are the results of analyses for samples received by the laboratory on 10/18/16 13:00. If you have any questions concerning this report, please feel free to contact me at 1-800-858-5227.

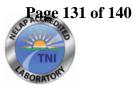
# ANALYTICAL REPORT FOR SAMPLES

| Client Sample ID     | Laboratory ID | Matrix | <b>Date Sampled</b> | <b>Date Received</b> |
|----------------------|---------------|--------|---------------------|----------------------|
| CS136 West Bear Skin | 1J61245-01    | Soil   | 10/13/16 10:00      | 10/18/16 13:00       |
| BW16MLW001-0.0-0.15  | 1J61245-02    | Soil   | 10/13/16 10:30      | 10/18/16 13:00       |
| BW16MLW002-0.0-0.15  | 1J61245-03    | Soil   | 10/13/16 11:00      | 10/18/16 13:00       |
| BW16MLW003-0.0-0.15  | 1J61245-04    | Soil   | 10/13/16 11:30      | 10/18/16 13:00       |

Client Supplied Containers






Pace Analytical-WIProject:Subcontract - TN1241 Bellevue St, Suite 9Project Number:40140160Green Bay, WI 54302Project Manager:Tod Noltemeyer

Reported 10/21/16 16:54

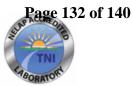








Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302 Project: Subcontract - TN
Project Number: 40140160
Project Manager: Tod Noltemeyer


Reported 10/21/16 16:54

# CS136 West Bear Skin 1J61245-01 (Soil)

# Date Sampled:10/13/2016 10:00:00AM

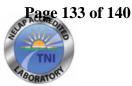
| Analyte                                   | Result           | Reporting    | Units         | Dilution | Batch   | Prepared | Analyzad       | Method    | Notes |
|-------------------------------------------|------------------|--------------|---------------|----------|---------|----------|----------------|-----------|-------|
| Anaryte                                   | Result           | Limit        | Ullits        | Dilution | Datcii  | riepaieu | Analyzed       | Method    | Notes |
|                                           | K                | eystone Labo | oratories, In | ıc Newto | on      |          |                |           |       |
| <b>Determination of Conventional Chem</b> | istry Parameters |              |               |          |         |          |                |           |       |
| % Solids                                  | 86.6             | 0.1          | %             | 1        | 1ZJ0697 | 10/14/16 | 10/14/16 18:02 | SM 2540 G | A-01  |
| Total Organic Carbon (1 of 4)             | 15100            | 100          | mg/kg dry     | "        | 1ZJ0888 | 10/21/16 | 10/21/16 15:47 | EPA 9060  |       |
| Total Organic Carbon (2 of 4)             | 15500            | 100          | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (3 of 4)             | 14500            | 100          | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (4 of 4)             | 14400            | 100          | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (Mean)               | 14900            | 100          | "             | "        | "       | "        | "              | "         |       |







Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302 Project: Subcontract - TN
Project Number: 40140160
Project Manager: Tod Noltemeyer


Reported 10/21/16 16:54

# BW16MLW001-0.0-0.15 1J61245-02 (Soil)

# Date Sampled:10/13/2016 10:30:00AM

| Analyte                                   | Result            | Reporting<br>Limit | Units         | Dilution | Batch   | Prepared | Analyzed       | Method    | Notes |
|-------------------------------------------|-------------------|--------------------|---------------|----------|---------|----------|----------------|-----------|-------|
|                                           | K                 | eystone Labo       | oratories, In | ıc Newto | n       |          |                |           |       |
| <b>Determination of Conventional Chem</b> | nistry Parameters |                    |               |          |         |          |                |           |       |
| % Solids                                  | 84.8              | 0.1                | %             | 1        | 1ZJ0697 | 10/14/16 | 10/14/16 18:02 | SM 2540 G | A-01  |
| Total Organic Carbon (1 of 4)             | 24600             | 100                | mg/kg dry     | "        | 1ZJ0888 | 10/21/16 | 10/21/16 15:47 | EPA 9060  |       |
| Total Organic Carbon (2 of 4)             | 25600             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (3 of 4)             | 26300             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (4 of 4)             | 27600             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (Mean)               | 26100             | 100                | "             | "        | "       | "        | "              | "         |       |







Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302 Project Number: Subcontract - TN
Project Number: 40140160
Project Manager: Tod Noltemeyer

Reported 10/21/16 16:54

#### BW16MLW002-0.0-0.15 1J61245-03 (Soil)

#### Date Sampled:10/13/2016 11:00:00AM

| Analyte                                   | Result            | Reporting<br>Limit | Units         | Dilution | Batch   | Prepared | Analyzed       | Method    | Notes |
|-------------------------------------------|-------------------|--------------------|---------------|----------|---------|----------|----------------|-----------|-------|
|                                           | K                 | Eevstone Labo      | oratories, In | ıc Newto | on      |          |                |           |       |
| Determination of Comment and Cham         |                   | .,                 | ,             |          |         |          |                |           |       |
| <b>Determination of Conventional Chem</b> | listry Parameters |                    |               |          |         |          |                |           |       |
| % Solids                                  | 79.9              | 0.1                | %             | 1        | 1ZJ0697 | 10/14/16 | 10/14/16 18:02 | SM 2540 G | A-0   |
| Total Organic Carbon (1 of 4)             | 24000             | 100                | mg/kg dry     | "        | 1ZJ0888 | 10/21/16 | 10/21/16 15:47 | EPA 9060  |       |
| Total Organic Carbon (2 of 4)             | 24500             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (3 of 4)             | 25000             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (4 of 4)             | 24300             | 100                | "             | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (Mean)               | 24500             | 100                | "             | "        | "       | "        | "              | "         |       |







Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302 Project Number: Subcontract - TN
Project Number: 40140160
Project Manager: Tod Noltemeyer

Reported 10/21/16 16:54

#### BW16MLW003-0.0-0.15 1J61245-04 (Soil)

#### Date Sampled:10/13/2016 11:30:00AM

| Analyte                                    | Result <b>F</b> | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed       | Method    | Notes |
|--------------------------------------------|-----------------|--------------------|-----------|----------|---------|----------|----------------|-----------|-------|
| <b>Determination of Conventional Chemi</b> | stry Parameters |                    |           |          |         |          |                |           |       |
| % Solids                                   | 87.7            | 0.1                | %         | 1        | 1ZJ0697 | 10/14/16 | 10/14/16 18:03 | SM 2540 G | A-01  |
| Total Organic Carbon (1 of 4)              | 27600           | 100                | mg/kg dry | "        | 1ZJ0888 | 10/21/16 | 10/21/16 15:47 | EPA 9060  |       |
| Total Organic Carbon (2 of 4)              | 31000           | 100                | "         | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (3 of 4)              | 31400           | 100                | "         | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (4 of 4)              | 30800           | 100                | "         | "        | "       | "        | "              | "         |       |
| Total Organic Carbon (Mean)                | 30200           | 100                | "         | "        | "       | "        | "              | "         |       |







Pace Analytical-WIProject:Subcontract - TN1241 Bellevue St, Suite 9Project Number:40140160Green Bay, WI 54302Project Manager:Tod Noltemeyer

Reported 10/21/16 16:54

#### **Determination of Conventional Chemistry Parameters - Quality Control**

#### **Keystone Laboratories, Inc. - Newton**

|                               |        | Reporting    |           | Spike      | Source    |          | %REC   |       | RPD   |       |
|-------------------------------|--------|--------------|-----------|------------|-----------|----------|--------|-------|-------|-------|
| Analyte                       | Result | Limit        | Units     | Level      | Result    | %REC     | Limits | RPD   | Limit | Notes |
| Batch 1ZJ0888 - TOC/DOC       |        |              |           |            |           |          |        |       |       |       |
| Blank (1ZJ0888-BLK1)          |        |              |           | Prepared & | Analyzed: | 10/21/16 |        |       |       |       |
| Total Organic Carbon (1 of 4) | ND     | 100          | mg/kg wet |            |           |          |        |       |       |       |
| Total Organic Carbon (2 of 4) | ND     | 100          | "         |            |           |          |        |       |       |       |
| Total Organic Carbon (3 of 4) | ND     | 100          | "         |            |           |          |        |       |       |       |
| Total Organic Carbon (4 of 4) | ND     | 100          | "         |            |           |          |        |       |       |       |
| Total Organic Carbon (Mean)   | ND     | 100          | "         |            |           |          |        |       |       |       |
| LCS (1ZJ0888-BS1)             |        |              |           | Prepared & | Analyzed: | 10/21/16 |        |       |       |       |
| Total Organic Carbon (1 of 4) | 5000   |              | mg/kg wet | 3440.00    |           | 145      | 63-146 |       |       |       |
| LCS Dup (1ZJ0888-BSD1)        |        |              |           | Prepared & | Analyzed: | 10/21/16 |        |       |       |       |
| Total Organic Carbon (1 of 4) | 4400   |              | mg/kg wet | 3440.00    |           | 128      | 63-146 | 12.8  | 16    |       |
| Duplicate (1ZJ0888-DUP1)      | Sour   | rce: 1J61245 | -04       | Prepared & | Analyzed: | 10/21/16 |        |       |       |       |
| Total Organic Carbon (1 of 4) | 27820  | 100          | mg/kg dry | -          | 27590     |          |        | 0.823 | 17    |       |
| Total Organic Carbon (2 of 4) | 30330  | 100          | "         |            | 31010     |          |        | 2.23  | 200   |       |
| Total Organic Carbon (3 of 4) | 30670  | 100          | "         |            | 31360     |          |        | 2.21  | 200   |       |
| Total Organic Carbon (4 of 4) | 29760  | 100          | "         |            | 30790     |          |        | 3.39  | 200   |       |
| Total Organic Carbon (Mean)   | 29650  | 100          | "         |            | 30220     |          |        | 1.90  | 200   |       |

#### **Certified Analyses Included in This Report**

| Method/Matrix      | Analyte  | Certifications |
|--------------------|----------|----------------|
| SM 2540 G in Solid |          |                |
|                    | % Solids | SIA1X          |

| Code  | Certifying Authority                               | Certificate Number | Expires    |
|-------|----------------------------------------------------|--------------------|------------|
| KS-KC | Kansas Department of Health and Environment-KC     | E-10110            | 04/30/2017 |
| KS-NT | Kansas Department of Health and Environment (NELAP | E-10287            | 10/31/2016 |
| MO-KC | Missouri Department of Natural Resources           | 140                | 04/30/2015 |
| SIA1X | Iowa Department of Natural Resources               | 95                 | 02/01/2017 |

The results in this report apply to the samples analyzed in accordance with the Chain-of-Custody record. This report must be reproduced in its entirety.







Pace Analytical-WIProject:Subcontract - TN1241 Bellevue St, Suite 9Project Number:40140160Green Bay, WI 54302Project Manager:Tod Noltemeyer

Reported 10/21/16 16:54

#### **Notes and Definitions**

A-01 Analysis performed by Pace Analytical Inc. Green Bay Wisconsin.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

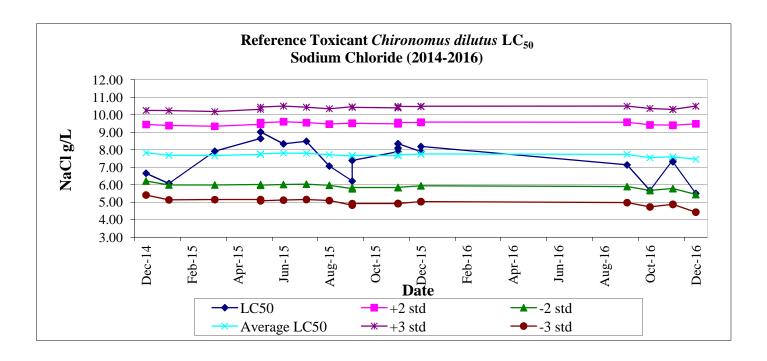


Sue Thompson



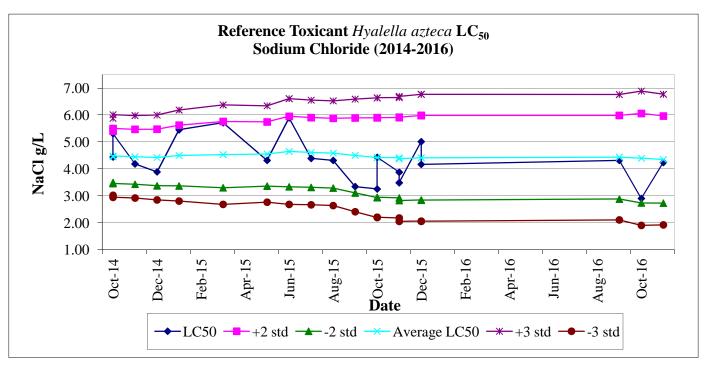


Pace Analytical-WI 1241 Bellevue St, Suite 9 Green Bay, WI 54302 Project Number: Subcontract - TN
Project Number: 40140160
Project Manager: Tod Noltemeyer


Reported 10/21/16 16:54

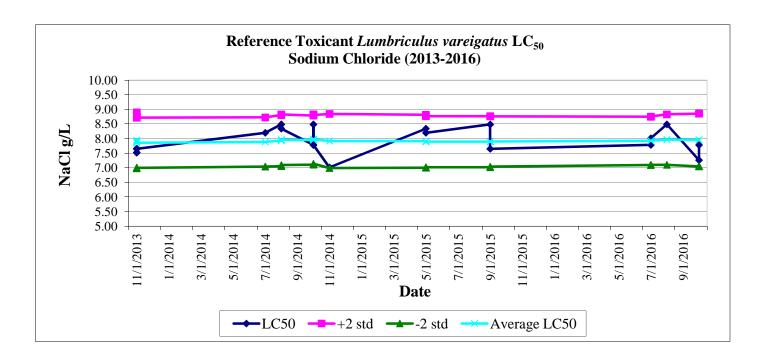
Sue Thompson

Project Manager II


# **Appendix I Reference Toxicant Data**






| 96-Hour Acute Toxicity Data for<br>Chironomus dilutus |                            |                                |                                        |        |        |  |  |
|-------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------|--------|--------|--|--|
| Date                                                  | Control<br>Survival<br>(%) | LC <sub>50</sub><br>(g/L NaCl) | Average LC <sub>50</sub><br>(g/L NaCl) | +2 std | -2 std |  |  |
| September 23, 2016                                    | 100.0                      | 7.14                           | 7.74                                   | 9.58   | 5.90   |  |  |
| October 14, 2016                                      | 100.0                      | 5.67                           | 7.55                                   | 9.43   | 5.67   |  |  |
| November 11, 2016                                     | 95.0                       | 7.42                           | 7.60                                   | 9.41   | 5.79   |  |  |
| November 29, 2016                                     | 92.5                       | 7.32                           | 7.59                                   | 9.40   | 5.78   |  |  |
| December 2, 2016                                      | 95.0                       | 5.50                           | 7.46                                   | 9.49   | 5.44   |  |  |





| 96-Hour Acute Toxicity Data for<br>Hyalella azteca |                            |                                |                                        |        |        |  |
|----------------------------------------------------|----------------------------|--------------------------------|----------------------------------------|--------|--------|--|
| Date                                               | Control<br>Survival<br>(%) | LC <sub>50</sub><br>(g/L NaCl) | Average LC <sub>50</sub><br>(g/L NaCl) | +2 std | -2 std |  |
| December 2, 2015                                   | 92.5                       | 5.02                           | 4.42                                   | 5.99   | 2.85   |  |
| December 9, 2015                                   | 100.0                      | 4.17                           | 4.41                                   | 5.98   | 2.84   |  |
| September 27, 2016                                 | 100.0                      | 4.32                           | 4.44                                   | 5.99   | 2.88   |  |
| October 24, 2016                                   | 97.5                       | 2.91                           | 4.40                                   | 6.06   | 2.74   |  |
| November 11, 2016                                  | 100.0                      | 4.24                           | 4.35                                   | 5.97   | 2.73   |  |





| 96-Hour Acute Toxicity Data for<br>Lumbriculus vareigatus |                            |                                |                                        |        |        |  |  |
|-----------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------|--------|--------|--|--|
| Date                                                      | Control<br>Survival<br>(%) | LC <sub>50</sub><br>(g/L NaCl) | Average LC <sub>50</sub><br>(g/L NaCl) | +2 std | -2 std |  |  |
| July 8, 2016                                              | 100.0                      | 7.781                          | 7.92                                   | 8.75   | 7.09   |  |  |
| July 14, 2016                                             | 100.0                      | 8.0095                         | 7.93                                   | 8.75   | 7.10   |  |  |
| August 3, 2016                                            | 100.0                      | 8.4853                         | 7.96                                   | 8.83   | 7.10   |  |  |
| October 18, 2016                                          | 100.0                      | 7.26                           | 7.95                                   | 8.85   | 7.05   |  |  |
| October 24, 2016                                          | 100.0                      | 7.78201                        | 7.96                                   | 8.85   | 7.06   |  |  |

# Appendix C Disposal Documentation

June 2017 BWJ160749



#### WASTESTREAM INFORMATION PROFILE

| Recertification                                        | //                                                                                                    |                                                                                                                        | 221/200000000                                                        | Disposal Code                                                                                                 |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Veolia ES LOCATI  Invoice Addres  Manifest from        | ADDRESS                                                                                               | CITY                                                                                                                   | ST                                                                   |                                                                                                               |
| Veolia ES TSDF rec                                     | questedTechnology request                                                                             | ed Generator No                                                                                                        | Generator EPA                                                        | A ID No. MND982612368                                                                                         |
| 1. Generator Nam Address 525 City Duluth               | ne MPCA-Duluth South Lake Ave, Suit                                                                   | e<br>State <u>MN</u>                                                                                                   | State Wastestr Country USA ZIP 558                                   |                                                                                                               |
|                                                        | ting Waste Investigation                                                                              | n river sediment samp: azardous WastePG RQ amtlb                                                                       |                                                                      | vaste Area                                                                                                    |
| RQ Desc: 1.                                            |                                                                                                       | 2                                                                                                                      |                                                                      |                                                                                                               |
| DOT Desc: 1.                                           |                                                                                                       | 2                                                                                                                      |                                                                      |                                                                                                               |
| 5. Waste Codes  Wastewater   6. Physical and ch  pH  a | Non Wastewater                                                                                        | Sub Category    Check all that apply    Flash Point (F)                                                                | Solids % suspended % settleable % dissolved  Free Liquid Range 0% to | % ash water solubility BTU/lb                                                                                 |
| Physical S  s                                          | a air reacti w water rea c cyanide r f sulfide re e explosive o oxidizing p peroxide  quid CFR 268.45 | active s shock sens reactive t temp sensite eactive m polymeriza e n OSHA care g acid I infectious former h inhalation | tive<br>ation/monomer<br>cinogen<br>hazard Zone: NO                  | Odor a none X b mild  c strong  describe  Halogens Br 0 % Bromine Cl 0 % Chlorine F 0 % Fluorine I 0 % Iodine |
| Viscosity by Layer:                                    | multilayered:                                                                                         | b bi-layered:  Second Layer  high (syrup) medium (oil) low (water) solid                                               | Bottom Layer high (syrup) medium (oil) low (water)                   | Color                                                                                                         |
| Used oil y                                             | HOC <1000 ppm or > 1000 p                                                                             |                                                                                                                        | 2                                                                    | WIP No.                                                                                                       |

| River sediment                                                                                                                                                                                                                                                                                     |                                                        | Units                                                | Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Range | Un    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|                                                                                                                                                                                                                                                                                                    | 100                                                    | %                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| al Composition Must Equal or Exceed 100%                                                                                                                                                                                                                                                           |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _     |
| ther:                                                                                                                                                                                                                                                                                              |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     |       |
| Is the wastestream being imported into the USA?                                                                                                                                                                                                                                                    |                                                        |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| Does the wastestream contain PCBs regulated by                                                                                                                                                                                                                                                     | 40CFR?                                                 |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| PCB concentrationppm  Is the wastestream subject to the Marine Pollutant                                                                                                                                                                                                                           | Dogulations?                                           |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7     |       |
| Is the wastestream subject to the Marine Pollutant Is the wastestream subject to Benzene NESHAP?                                                                                                                                                                                                   |                                                        |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| If yes, is the wastestream subject to Notification a                                                                                                                                                                                                                                               |                                                        | irements?                                            | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| Benzene concentration ppm                                                                                                                                                                                                                                                                          |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Is the wastestream subject to RCRA subpart CC c                                                                                                                                                                                                                                                    |                                                        |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| Volatile organic concentration, if known p                                                                                                                                                                                                                                                         |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| CC approved analytical method Generator Is the wastestream from a CERCLA or state mand                                                                                                                                                                                                             |                                                        |                                                      | Yes No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a     |       |
| Container Information (Identify UN container                                                                                                                                                                                                                                                       |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Site:<br>St. Louis River Reservoirs (                                                                                                                                                                                                                                                              | SLR)                                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Duluth, MN 55802                                                                                                                                                                                                                                                                                   |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Duluth, MN 55802                                                                                                                                                                                                                                                                                   |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Duluth, MN 55802                                                                                                                                                                                                                                                                                   |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| Duluth, MN 55802                                                                                                                                                                                                                                                                                   |                                                        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                    | wacte?                                                 | Ves 😨 No                                             | If was please attach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| analytical or an MSDS available that describes the                                                                                                                                                                                                                                                 | waste?                                                 | Yes 🗷 No [                                           | If yes, please attach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this                                                                                                                                                                     | and all attached                                       | documents cont                                       | ains true and accurate descriptions of this waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix                                                                                                                  | and all attached ox I or by using a                    | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this                                                                                                                                                                     | and all attached ox I or by using a                    | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  Sthod. All relevant information regarding known of the street |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix                                                                                                                  | and all attached ox I or by using a                    | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  Sthod. All relevant information regarding known of the street |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed.  Heidi Bauman                                                | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  ethod. All relevant information regarding known of the state shipment for purposes of recertification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendict the possession of the generator has been disclosed.                                                             | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the state shipment for purposes of recertification.  218-302-6607  PHONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this epresentative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed.  Heidi Bauman                                                 | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  ethod. All relevant information regarding known of the state shipment for purposes of recertification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed.  Heidi Bauman                                                | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the state shipment for purposes of recertification.  218-302-6607  PHONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed.  Heich Bauman  NAME (PRINT OR TYPE)  Which Bauman  SIGNATURE | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me                    | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the state shipment for purposes of recertification.  218-302-6607  PHONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed.  Heich Bauman  NAME (PRINT OR TYPE)  WHICH BAUMAN  SIGNATURE | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me<br>pling of any wa | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the steen shipment for purposes of recertification.  218-302-6607  PHONE  Project Manager  TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE  | hazar |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed.  Heich Bauman  NAME (PRINT OR TYPE)  Which Bauman  SIGNATURE | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me<br>pling of any wa | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the steen shipment for purposes of recertification.  218-302-6607  PHONE  Project Manager  TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE  | haza  |
| analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed.  Heidi Bauman  NAME (PRINT OR TYPE)  WHAT SIGNATURE          | and all attached on X I or by using an I authorize sam | documents cont<br>n equivalent me<br>pling of any wa | tains true and accurate descriptions of this waste.  Sethod. All relevant information regarding known of the steen shipment for purposes of recertification.  218-302-6607  PHONE  Project Manager  TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE  | haza  |

| FINONHIAZARDONA                                                                                          | 1 Gerérator IO Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ' ' i                          | 3 Emergency Pespon                                                              |                         |                       | recking Numb                  | <del></del>   |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------------|---------------|
| WASTE MANIFEST 1 5 Gundalors Name and Mailing 10-CA - Include 5.75 South Lanks Districts, NEW 55.        | m Ave, Bullu 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | JR: \$00-4<br>Generator's Site Acting<br>81-R ACC<br>84 Service<br>On Not to 18 | se (faifferent<br>Rives | than making active    | 253;                          | <del></del>   |
| Generator's Prone 18 7<br>6 Trunsporter 1 Company Name<br>BAY MERT (LLC)<br>7 Tin sporter 2 Company Name |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                         | US EPAID              | 120543                        | <u> </u>      |
| 8 Despaid factly terminal<br>Ventils RG feet<br>Will 8945: Boo                                           | huleal (tolui.toma-tWD<br>undary Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                 |                         | WATUR S<br>U.S. EPAID | 063136<br>Number              | 9             |
| We no monde                                                                                              | <u>55 5897 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 10 Co-                                                                          |                         | 11 Total Opanity      | 396714<br>  12 Um<br>  WI,Vol | <u> </u>      |
| How Dray, H                                                                                              | on PCPS many done Maste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •.                             | 0° <br>  <b>20</b>                                                              | Type<br>Life            | 250                   | P                             | <b></b>       |
| MOUDOS !                                                                                                 | NIN RCRA HAZArdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | usivaste                       | 01                                                                              | LP                      | رتو در                | ام ا                          |               |
| -                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 |                         | <br>                  |                               |               |
| 13 Sperial Handing Instructors                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                 | <br>                    | <u> </u>              |                               |               |
| 14. GENERATOR'S/OFFEROR'                                                                                 | LR dediment 2.) 06  contracted by Bay Me  S CERTIFICATION. Hereby decrare that the co d, and are mail respects in surper condition for the condition of the con | nienia of this consignment are | さられていること。特<br>fully and accurately de                                           | SSF 71                  | by me pruper shir     | ping name, en                 | <u> </u>      |
| General's SOfteror's Printed Typ                                                                         | ed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | able                                                                            |                         | -                     | ·                             |               |
| 15 International Stepments  Transporter Signature (for export  16 Trans, order Acknowledgment            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Export from U                  |                                                                                 | niryesif                |                       |                               |               |
| Transporter 1 Phreed Typed Ner                                                                           | ne<br>≤-2≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>                       | akne                                                                            | <u> </u>                |                       |                               | Month Day Y   |
| 17 Elsov sancy<br>17a Disc (pancy Indication Spec                                                        | > Cuarety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Туре                           | Residue                                                                         | <i>,</i><br>            | Pan al Pe             | ecion                         | Ful Reactor   |
| 176. Allerrate Facility (or General<br>Facility's Prione                                                 | mor!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | Monfest Relorence                                                               | Number                  | US FPA D              | Yumbar                        |               |
| 17c. Signal use of Attended Facilities                                                                   | ty for Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                 |                         | <b>-</b>              |                               | Morth Day Y   |
| 18 Design, 1ad Facility Owner or<br>Project/Typed Name                                                   | Coerato: Cerchication of receipt of materials co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _,                             | is roled in Hem 179                                                             |                         |                       |                               | March Day Y   |
| FIDELRI'                                                                                                 | LKINN JR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | Tolul                                                                           |                         | <u> </u>              | $\rightarrow$                 | 1212811<br>co |

# Appendix D Laboratory Analytical Reports

June 2017 BWJ160749





October 24, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

#### Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

**Project Manager** 

Low Carre

**Enclosures** 

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc







#### **CERTIFICATIONS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

**Minnesota Certification IDs** 

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 Alaska Certification UST-107 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680

California Certification #: 01155CA
Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Virginia Minnesota Certification ID's

315 Chestnut Street, Virginia, MN 55792

Alaska Certification UST-107 Alaska Certification UST-107 Alaska Certification #MN01084

Arizona Department of Health Certification #AZ0785 Minnesota Dept of Health Certification #: 027-137-445 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN 00064

Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

North Dakota Certification: # R-203

Wisconsin DNR Certification #: 998027470 WA Department of Ecology Lab ID# C1007

Nevada DNR #MN010842015-1

Oklahoma Department of Environmental Quality





#### **SAMPLE SUMMARY**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

| Lab ID      | Sample ID             | Matrix | Date Collected | Date Received  |
|-------------|-----------------------|--------|----------------|----------------|
| 10365180001 | BW16MLW-001-0.0-0.15  | Solid  | 10/04/16 10:08 | 10/06/16 20:25 |
| 10365180002 | BW16MLW-002-0.0-0.15  | Solid  | 10/04/16 10:48 | 10/06/16 20:25 |
| 10365180003 | BW16MLW-003-0.0-0.15  | Solid  | 10/04/16 11:07 | 10/06/16 20:25 |
| 10365180004 | BW16MLW-005-0.90-0.15 | Solid  | 10/04/16 13:09 | 10/06/16 20:25 |
| 10365180005 | BW16MLW-006-1.75-2.0  | Solid  | 10/04/16 12:58 | 10/06/16 20:25 |
| 10365180006 | BW16MLW-007-1.6-1.85  | Solid  | 10/04/16 12:42 | 10/06/16 20:25 |
| 10365180007 | BW16MLW-008-1.15-1.40 | Solid  | 10/04/16 12:26 | 10/06/16 20:25 |
| 10365180008 | BW16MLW-009-1.75-2.0  | Solid  | 10/04/16 12:03 | 10/06/16 20:25 |
| 10365180009 | BW16MLW-010-1.45-1.70 | Solid  | 10/04/16 11:38 | 10/06/16 20:25 |





#### **SAMPLE ANALYTE COUNT**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

| Lab ID      | Sample ID             | Method     | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------------------|------------|----------|----------------------|------------|
| 10365180004 | BW16MLW-005-0.90-0.15 | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |
| 10365180005 | BW16MLW-006-1.75-2.0  | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |
| 10365180006 | BW16MLW-007-1.6-1.85  | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |
| 10365180007 | BW16MLW-008-1.15-1.40 | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |
| 10365180008 | BW16MLW-009-1.75-2.0  | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |
| 10365180009 | BW16MLW-010-1.45-1.70 | ASTM D2974 | JDL      | 1                    | PASI-M     |
|             |                       | EPA 9060A  | KRV      | 5                    | PASI-V     |



Minneapolis, MN 55414 (612)607-1700

#### **PROJECT NARRATIVE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

Method: EPA 9060A

**Description:** Total Organic Carbon Quad

Client: Bay West, Inc.

Date: October 24, 2016

#### **General Information:**

6 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

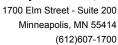
All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 97596

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379001,10365383012


M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

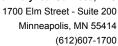
• MSD (Lab ID: 386209)

• Mean Total Organic Carbon

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.






Project: J160139 SLR Sediment AOCs

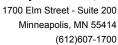
Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

| Results reported on a dry weight | busis and are | aujusieu re | n percent inc | nstare, sar | ipic 3iz | c and any and | uons.          |           |      |
|----------------------------------|---------------|-------------|---------------|-------------|----------|---------------|----------------|-----------|------|
|                                  |               |             | Report        |             |          |               |                |           |      |
| Parameters                       | Results       | Units       | Limit         | MDL         | DF       | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                       | Analytical    | Method: AST | M D2974       |             |          |               |                |           |      |
| Percent Moisture                 | 86.9          | %           | 0.10          | 0.10        | 1        |               | 10/17/16 15:38 |           |      |
| Total Organic Carbon Quad        | Analytical    | Method: EPA | 9060A         |             |          |               |                |           |      |
| Total Organic Carbon             | 154000        | mg/kg       | 8960          | 1430        | 1        |               | 10/19/16 07:19 | 7440-44-0 |      |
| Total Organic Carbon             | 147000        | mg/kg       | 8700          | 1390        | 1        |               | 10/19/16 07:27 | 7440-44-0 |      |
| Total Organic Carbon             | 69900         | mg/kg       | 7790          | 1250        | 1        |               | 10/19/16 07:34 | 7440-44-0 |      |
| Total Organic Carbon             | 47100         | mg/kg       | 7890          | 1260        | 1        |               | 10/19/16 07:41 | 7440-44-0 |      |
| Mean Total Organic Carbon        | 104000        | mg/kg       | 8330          | 1330        | 1        |               | 10/19/16 07:41 | 7440-44-0 |      |






Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

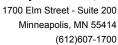
Date: 10/24/2016 11:14 AM

Sample: BW16MLW-006-1.75-2.0 Lab ID: 10365180005 Collected: 10/04/16 12:58 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a dry weigh | Duoio una un | aujustou ie | •       |      |    | c and any and |                |           |      |
|---------------------------------|--------------|-------------|---------|------|----|---------------|----------------|-----------|------|
|                                 |              |             | Report  |      |    |               |                |           |      |
| Parameters                      | Results      | Units       | Limit   | MDL  | DF | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                      | Analytical   | Method: AST | M D2974 |      |    |               |                |           |      |
| Percent Moisture                | 82.1         | %           | 0.10    | 0.10 | 1  |               | 10/17/16 15:38 |           |      |
| Total Organic Carbon Quad       | Analytical   | Method: EPA | 9060A   |      |    |               |                |           |      |
| Total Organic Carbon            | 49000        | mg/kg       | 6940    | 1110 | 1  |               | 10/19/16 07:49 | 7440-44-0 |      |
| Total Organic Carbon            | 197000       | mg/kg       | 5630    | 901  | 1  |               | 10/19/16 07:56 | 7440-44-0 |      |
| Total Organic Carbon            | 41000        | mg/kg       | 6260    | 1000 | 1  |               | 10/19/16 08:03 | 7440-44-0 |      |
| Total Organic Carbon            | 54000        | mg/kg       | 6100    | 976  | 1  |               | 10/19/16 08:10 | 7440-44-0 |      |
| Mean Total Organic Carbon       | 85300        | mg/kg       | 6230    | 997  | 1  |               | 10/19/16 08:10 | 7440-44-0 |      |






Project: J160139 SLR Sediment AOCs

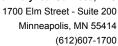
Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

Sample: BW16MLW-007-1.6-1.85 Lab ID: 10365180006 Collected: 10/04/16 12:42 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a dry weigh | c basis and are | aujusicu it | n percent int | Jistui C, Sui | ipic 3izi | c and any and | dons.          |           |      |
|---------------------------------|-----------------|-------------|---------------|---------------|-----------|---------------|----------------|-----------|------|
|                                 |                 |             | Report        |               |           | _             |                |           |      |
| Parameters                      | Results         | Units       | Limit         | MDL           | DF        | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                      | Analytical      | Method: AST | M D2974       |               |           |               |                |           |      |
| Percent Moisture                | 81.9            | %           | 0.10          | 0.10          | 1         |               | 10/17/16 15:38 |           |      |
| Total Organic Carbon Quad       | Analytical      | Method: EPA | A 9060A       |               |           |               |                |           |      |
| Total Organic Carbon            | 188000          | mg/kg       | 6580          | 1050          | 1         |               | 10/19/16 08:18 | 7440-44-0 |      |
| Total Organic Carbon            | 195000          | mg/kg       | 10200         | 1630          | 1         |               | 10/19/16 08:25 | 7440-44-0 |      |
| Total Organic Carbon            | 32900           | mg/kg       | 10900         | 1740          | 1         |               | 10/19/16 08:32 | 7440-44-0 |      |
| Total Organic Carbon            | 54300           | mg/kg       | 11000         | 1760          | 1         |               | 10/19/16 08:40 | 7440-44-0 |      |
| Mean Total Organic Carbon       | 117000          | mg/kg       | 9650          | 1540          | 1         |               | 10/19/16 08:40 | 7440-44-0 |      |






Project: J160139 SLR Sediment AOCs

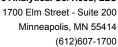
Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

| Results reported on a dry weight | basis and are | aujusieu re | n percent in | nstare, sar | ipic 3iz | c and any and | uons.          |           |      |
|----------------------------------|---------------|-------------|--------------|-------------|----------|---------------|----------------|-----------|------|
|                                  |               |             | Report       |             |          |               |                |           |      |
| Parameters                       | Results       | Units       | Limit        | MDL         | DF       | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                       | Analytical    | Method: AST | TM D2974     |             |          |               |                |           |      |
| Percent Moisture                 | 82.7          | %           | 0.10         | 0.10        | 1        |               | 10/17/16 15:38 |           |      |
| Total Organic Carbon Quad        | Analytical    | Method: EPA | A 9060A      |             |          |               |                |           |      |
| Total Organic Carbon             | 26900         | mg/kg       | 13600        | 2170        | 1        |               | 10/19/16 08:47 | 7440-44-0 |      |
| Total Organic Carbon             | 275000        | mg/kg       | 9120         | 1460        | 1        |               | 10/19/16 08:55 | 7440-44-0 |      |
| Total Organic Carbon             | 66300         | mg/kg       | 9710         | 1550        | 1        |               | 10/19/16 09:02 | 7440-44-0 |      |
| Total Organic Carbon             | 28400         | mg/kg       | 10300        | 1650        | 1        |               | 10/19/16 09:10 | 7440-44-0 |      |
| Mean Total Organic Carbon        | 99200         | mg/kg       | 10700        | 1710        | 1        |               | 10/19/16 09:10 | 7440-44-0 |      |






Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

Sample: BW16MLW-009-1.75-2.0 Lab ID: 10365180008 Collected: 10/04/16 12:03 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a dry weight | basis and are | aujusieu re | n percent in | nstare, sar | ipic 3iz | c and any and | uons.          |           |      |
|----------------------------------|---------------|-------------|--------------|-------------|----------|---------------|----------------|-----------|------|
|                                  |               |             | Report       |             |          |               |                |           |      |
| Parameters                       | Results       | Units       | Limit        | MDL         | DF       | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                       | Analytical    | Method: AST | TM D2974     |             |          |               |                |           |      |
| Percent Moisture                 | 88.1          | %           | 0.10         | 0.10        | 1        |               | 10/17/16 15:39 |           |      |
| Total Organic Carbon Quad        | Analytical    | Method: EPA | A 9060A      |             |          |               |                |           |      |
| Total Organic Carbon             | 154000        | mg/kg       | 11800        | 1880        | 1        |               | 10/19/16 09:17 | 7440-44-0 |      |
| Total Organic Carbon             | 303000        | mg/kg       | 12100        | 1940        | 1        |               | 10/19/16 09:25 | 7440-44-0 |      |
| Total Organic Carbon             | 65100         | mg/kg       | 12000        | 1920        | 1        |               | 10/19/16 09:33 | 7440-44-0 |      |
| Total Organic Carbon             | 85900         | mg/kg       | 12700        | 2030        | 1        |               | 10/19/16 09:40 | 7440-44-0 |      |
| Mean Total Organic Carbon        | 152000        | mg/kg       | 12100        | 1940        | 1        |               | 10/19/16 09:40 | 7440-44-0 |      |





Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

**Sample: BW16MLW-010-1.45-1.70 Lab ID: 10365180009**Collected: 10/04/16 11:38 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a dry weight | Dasis and are | aujusteu it | n bercent und | nstuie, sail | ipie sizi | e and any did | iioris.        |           |      |
|----------------------------------|---------------|-------------|---------------|--------------|-----------|---------------|----------------|-----------|------|
|                                  |               |             | Report        |              |           |               |                |           |      |
| Parameters                       | Results       | Units       | Limit         | MDL          | DF        | Prepared      | Analyzed       | CAS No.   | Qual |
| Dry Weight                       | Analytical    | Method: AST | M D2974       |              |           |               | _              | ,         |      |
| Percent Moisture                 | 89.1          | %           | 0.10          | 0.10         | 1         |               | 10/17/16 15:39 |           |      |
| Total Organic Carbon Quad        | Analytical    | Method: EPA | 9060A         |              |           |               |                |           |      |
| Total Organic Carbon             | 132000        | mg/kg       | 11700         | 1880         | 1         |               | 10/19/16 09:47 | 7440-44-0 |      |
| Total Organic Carbon             | 306000        | mg/kg       | 11400         | 1820         | 1         |               | 10/19/16 09:54 | 7440-44-0 |      |
| Total Organic Carbon             | 79200         | mg/kg       | 11400         | 1820         | 1         |               | 10/19/16 10:02 | 7440-44-0 |      |
| Total Organic Carbon             | 93600         | mg/kg       | 13600         | 2180         | 1         |               | 10/19/16 10:09 | 7440-44-0 |      |
| Mean Total Organic Carbon        | 153000        | mg/kg       | 12000         | 1920         | 1         |               | 10/19/16 10:09 | 7440-44-0 |      |

(612)607-1700



**QUALITY CONTROL DATA** 

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

QC Batch: 441541 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture Associated Lab Samples: 10365180004, 10365180005, 10365180006, 10365180007, 10365180008, 10365180009

SAMPLE DUPLICATE: 2403248

10365048013 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers % 26.6 3 Percent Moisture 25.8 30

SAMPLE DUPLICATE: 2403249

Date: 10/24/2016 11:14 AM

|                  |       | 10365188006 | Dup    |     | Max |            |
|------------------|-------|-------------|--------|-----|-----|------------|
| Parameter        | Units | Result      | Result | RPD | RPD | Qualifiers |
| Percent Moisture | %     | 37.1        | 35.8   | 4   | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

QC Batch: 97596 Analysis Method: EPA 9060A

QC Batch Method: EPA 9060A Analysis Description: 9060 TOC Average

Associated Lab Samples: 10365180004, 10365180005, 10365180006, 10365180007, 10365180008, 10365180009

METHOD BLANK: 386204 Matrix: Solid

Associated Lab Samples: 10365180004, 10365180005, 10365180006, 10365180007, 10365180008, 10365180009

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersMean Total Organic Carbonmg/kgND30148.210/19/16 20:22

LABORATORY CONTROL SAMPLE: 386205

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 77 Mean Total Organic Carbon mg/kg 5820 4490 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386206 386207

MS MSD 10365379001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 44700 45700 83900 74700 70-130 12 25 Mean Total Organic Carbon 33000 114 91 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386208 386209

MS MSD 10365383012 Spike MS MS % Rec Spike MSD MSD Max Parameter Units % Rec RPD Qual Result Conc. Conc. Result Result % Rec Limits RPD Mean Total Organic Carbon mg/kg 42500 31600 31100 68700 60100 83 70-130 13 25 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **LABORATORIES**

PASI-M Pace Analytical Services - Minneapolis
PASI-V Pace Analytical Services - Virginia

#### **ANALYTE QUALIFIERS**

Date: 10/24/2016 11:14 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

(612)607-1700



#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365180

Date: 10/24/2016 11:14 AM

| ab ID      | Sample ID             | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|------------|-----------------------|-----------------|----------|-------------------|---------------------|
| 0365180004 | BW16MLW-005-0.90-0.15 | ASTM D2974      | 441541   |                   |                     |
| 0365180005 | BW16MLW-006-1.75-2.0  | ASTM D2974      | 441541   |                   |                     |
| 0365180006 | BW16MLW-007-1.6-1.85  | ASTM D2974      | 441541   |                   |                     |
| 0365180007 | BW16MLW-008-1.15-1.40 | ASTM D2974      | 441541   |                   |                     |
| 0365180008 | BW16MLW-009-1.75-2.0  | ASTM D2974      | 441541   |                   |                     |
| 0365180009 | BW16MLW-010-1.45-1.70 | ASTM D2974      | 441541   |                   |                     |
| 0365180004 | BW16MLW-005-0.90-0.15 | EPA 9060A       | 97596    |                   |                     |
| 0365180004 | BW16MLW-005-0.90-0.15 | EPA 9060A       | 97656    |                   |                     |
| 0365180005 | BW16MLW-006-1.75-2.0  | EPA 9060A       | 97596    |                   |                     |
| 0365180005 | BW16MLW-006-1.75-2.0  | EPA 9060A       | 97656    |                   |                     |
| 0365180006 | BW16MLW-007-1.6-1.85  | EPA 9060A       | 97596    |                   |                     |
| 0365180006 | BW16MLW-007-1.6-1.85  | EPA 9060A       | 97656    |                   |                     |
| 0365180007 | BW16MLW-008-1.15-1.40 | EPA 9060A       | 97596    |                   |                     |
| 0365180007 | BW16MLW-008-1.15-1.40 | EPA 9060A       | 97656    |                   |                     |
| 0365180008 | BW16MLW-009-1.75-2.0  | EPA 9060A       | 97596    |                   |                     |
| 0365180008 | BW16MLW-009-1.75-2.0  | EPA 9060A       | 97656    |                   |                     |
| 0365180009 | BW16MLW-010-1.45-1.70 | EPA 9060A       | 97596    |                   |                     |
| 0365180009 | BW16MLW-010-1.45-1.70 | EPA 9060A       | 97656    |                   |                     |

### CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|          | etion A<br>puired Client Information:            | :                                          | Secti<br>Requi                                                                            | ion B<br>ired Project I | Informa     | ition:                         |                |            |            |                 | ction<br>sice In | <b>C</b><br>formal             | tion:                                 |                    |                                               |              |             |                                      | Section EQuiS               |                    | nation:           |      |          |             |          |          |              |                 | 103      | وصأد | 5/6                                              | 9                     |                      |                      |
|----------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|-------------|--------------------------------|----------------|------------|------------|-----------------|------------------|--------------------------------|---------------------------------------|--------------------|-----------------------------------------------|--------------|-------------|--------------------------------------|-----------------------------|--------------------|-------------------|------|----------|-------------|----------|----------|--------------|-----------------|----------|------|--------------------------------------------------|-----------------------|----------------------|----------------------|
|          | npany: Bay West, LL                              |                                            | Repor                                                                                     | tTo:<br>To: Paul F      |             | y McDi                         | onald          |            |            | Atte            | ntion:           |                                |                                       |                    |                                               | ts Pa        |             |                                      | Facility<br>Facility        |                    | 01.1              |      | iver Se  |             | Areas of | f Concer | m            | Page            |          |      | 1                                                | of                    | 1                    | i                    |
|          | Paul, MN 55103                                   |                                            |                                                                                           |                         |             |                                |                |            |            | Adk             | ress:            |                                |                                       |                    |                                               | oire D       |             |                                      | Facility                    | / ID:              |                   | 7023 | INVO     |             |          |          |              | COC#            |          |      |                                                  |                       |                      |                      |
| 1        | ail To: nmcdonald@                               | hausuart com                               | Purch                                                                                     | ase Order N             | n.:         | 10800                          | 12             |            |            |                 |                  | Referen                        | nce:                                  |                    |                                               | 30000        |             |                                      | Subfac                      |                    |                   | 1023 |          |             |          |          |              | -               | •        |      | S                                                | LR-MLW                | 2                    | į                    |
|          |                                                  |                                            |                                                                                           | t Name:                 |             |                                |                |            |            | 上               |                  | t Manag                        |                                       |                    |                                               |              |             |                                      |                             | ·                  |                   |      |          |             |          |          |              | 825805211       | 875475 C |      | North Control                                    |                       | _                    |                      |
| Phor     |                                                  | 51-291-3483                                |                                                                                           |                         |             |                                | ent AOCs       |            |            | Ľ               | ,                |                                |                                       |                    | Oye                                           | eyem         | i Od        | ujole                                |                             |                    |                   |      |          |             |          |          |              |                 |          |      | ocation                                          |                       | MN                   |                      |
| Keq      | uested Due Date/TAT:                             | Standard                                   | - iojec                                                                                   | ct Number:              | J160        | 139                            |                |            |            | L               |                  |                                |                                       |                    |                                               |              | - 1         | over to feet                         |                             | 201 10 20          | erroll I          |      | 450      | ا داد       | Maria La |          |              |                 |          |      | STATE:                                           |                       | ,,,,,,,              | ,,,,,,               |
|          |                                                  | tion E<br>ient Information                 | MATRIX                                                                                    | Matrix<br>des<br>CODE   |             |                                | (              | Collection |            | Γ               |                  | F                              | Pres                                  | erva               | tives                                         | ;            |             | ometer)                              |                             | 1 1/4              | 251 (815          |      | Kequ     | estea       | Analy    | SIS      |              |                 |          |      |                                                  |                       |                      |                      |
| ITEM#    | Sample<br>Location ID<br>(sys_loc_code)          | Sample ID<br>(sys_sample_code)             | Drinking W<br>Waste Wat<br>Product<br>Soil/Solid<br>Oil<br>Wipe<br>Air<br>Tissue<br>Other |                         | MATRIX CODE | SAMPLE TYPE<br>(G=GRAB C=COMP) | DATE           | -          | Time       | # OF CONTAINERS | Unpreserved      | H <sub>2</sub> SO <sub>4</sub> | HNO3                                  | NaOH               | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol     | Other       | Grain Size (ASTM D422 w/ hydrometer) | TOC (SW-846 9060A Quad Bum) |                    |                   |      |          |             |          |          |              |                 |          |      |                                                  | Comn                  | nents                |                      |
| Ex.      | . BW15MLW-005                                    | BW14MLW-005-0                              | -0.15                                                                                     |                         | so          | G                              | 3/12/15        | - "        | 1204       | T               |                  |                                |                                       |                    |                                               |              |             |                                      |                             |                    |                   |      |          | ·           |          |          |              |                 |          |      |                                                  |                       |                      |                      |
| T-       | 1                                                | BW16MLW-001-0                              | .0-0.15                                                                                   |                         | so          | G                              | 10/4/16        |            | 1008       | T               | 1                |                                | 1                                     |                    |                                               |              |             | 1                                    |                             |                    |                   |      |          |             |          |          |              |                 |          |      |                                                  | وبرا                  |                      |                      |
| Ι.       | BW16MLW-002                                      | BW16MLW-002-0                              |                                                                                           |                         | so          | G                              | 10/4/16        |            | 1048       | 1               | 1                |                                |                                       |                    |                                               |              |             | 1                                    |                             |                    |                   |      |          |             |          |          |              |                 |          |      |                                                  | 2                     | 1                    |                      |
| ľ        | <u> </u>                                         | 1                                          |                                                                                           |                         |             |                                |                |            | -          | ✝               | П                |                                | $^{+}$                                | +                  | +-                                            | $^{\dagger}$ | 1           |                                      | 1                           | +                  | $\top$            | -    |          | :           |          | <b>-</b> |              | <u> </u>        |          |      | t                                                | - ر <sub>ي</sub>      |                      |                      |
| 3        | BW16MLW-003                                      | BW16MLW-003-0                              | 1.0-0.15                                                                                  |                         | so          | G.                             | 10/4/16        | -          | 1107       | 1               | H                | +                              | +                                     | +                  | +                                             | H            | $\dashv$    | 1                                    | ┼                           | ╁                  | +                 | _    |          |             |          |          | ╁┈           | 1               | +        |      | <del>                                     </del> |                       | -                    |                      |
| 4        | BW16MLW-005                                      | BW16MLW-005-0                              | .90-1.15                                                                                  |                         | so          | G                              | 10/4/16        |            | 1309       | 2               | 2                | $\dashv$                       | +                                     | -                  | -                                             | +            | $\dashv$    | 1                                    | 1                           | -                  | +                 | _    |          |             |          |          | -            | -               | +        |      | ┢                                                | ئىن ئ                 | <del>{</del>         | ·                    |
| 5        | BW16MLW-006                                      | BW16MLW-006-1                              | .75-2.0                                                                                   |                         | so          | G                              | 10/4/16        |            | 1258       | 2               | 2                |                                | $\perp$                               | $\bot$             | _                                             |              | Ц           | 1                                    | 1                           | $oldsymbol{\perp}$ |                   | _    |          |             |          |          | Ь            |                 |          |      | 1                                                | ا س                   | <u> </u>             |                      |
| 6        | BW16MLW-007                                      | BW16MLW-007-1                              | .6-1.85                                                                                   |                         | so          | G                              | 10/4/16        |            | 1242       | 2               | 2                |                                |                                       |                    |                                               |              |             | 1                                    | 1                           |                    |                   |      |          |             |          |          |              |                 |          |      | <u> </u>                                         | نہ: ﴿                 | >                    |                      |
| <b>1</b> | BW16MLW-008                                      | BW16MLW-008-1                              | .15-1.40                                                                                  |                         | so          | G                              | 10/4/16        |            | 1226       | 2               | 2                |                                |                                       |                    |                                               |              |             | 1                                    | 1                           |                    |                   |      |          |             |          |          |              |                 |          |      |                                                  | " ئى                  | 7                    |                      |
| -        | BW16MLW-009                                      | BW16MLW-009-1                              |                                                                                           |                         | so          | G                              | 10/4/16        |            | 1203       | 1               | 1                |                                | 1                                     | 1                  |                                               | П            | $\sqcap$    |                                      | 1                           | 1                  |                   |      |          |             |          |          |              |                 |          |      |                                                  | ట {                   | · ,                  |                      |
|          | <u> </u>                                         |                                            |                                                                                           |                         |             |                                |                |            |            | †               | Т                |                                | _                                     | $\top$             |                                               | П            | ┪           | *                                    | 1                           | +                  |                   | 十    |          |             |          |          |              |                 |          |      |                                                  | 0 6 9                 |                      |                      |
| l-°      | BW16MLW-010                                      | BW16MLW-010-1                              | 1.45-1.70                                                                                 |                         | ŞO          | G                              | 10/4/16        |            | 1138       | ╀               | 1                |                                | 十                                     | +                  | +                                             | +            | $\dashv$    | 7<br>7                               | <del> '-</del>              | +                  | -                 | +    |          |             |          |          | <del> </del> | +               | +        |      | <b>-</b>                                         |                       |                      |                      |
| 10       | <u> </u>                                         |                                            |                                                                                           |                         | -           | -                              |                |            |            | ╀               | ┢                |                                | +                                     | $\dashv$           |                                               | +            | _           |                                      | -                           | ÷                  |                   |      | $\dashv$ | ····        |          | <u> </u> | +            | +               | <u> </u> |      | ╁                                                |                       | ****                 |                      |
| 11       | <u> </u>                                         |                                            |                                                                                           |                         |             | <u> </u>                       |                |            |            | 1               | $\vdash$         | $\dashv$                       | 4                                     | $\perp$            | $\bot$                                        |              | _           |                                      | -                           | +                  |                   |      | _        |             |          | ļ        | <del> </del> |                 |          |      | ╀.                                               |                       |                      |                      |
| 12       |                                                  |                                            |                                                                                           |                         |             |                                |                |            |            | L               |                  | Ц                              |                                       | 丄                  | $\perp$                                       | Ш            |             | § .                                  |                             |                    | <u> </u>          |      |          | :           |          |          |              | 1               | <u> </u> |      | <u> </u>                                         |                       |                      |                      |
|          | ADDITIO                                          | NAL COMMENTS                               |                                                                                           | RE                      | LING        | JISHED E                       | Y / AFFILIATIO | N          | DATE       | -               | TIME             |                                | : : : : : : : : : : : : : : : : : : : | $\curvearrowright$ | 7                                             |              | ACCE        | PTED B                               | Y' AFFI                     | LIATIC             | ADVISA<br>TENERAL |      |          | . 1         | DATE     | 200      | -            | TIME            |          | /'a  | SAMF                                             | LE COND               | ITIONS               |                      |
|          |                                                  |                                            |                                                                                           | <u> </u>                | m           | MAG                            |                |            | 10/6/16    | _               | 144              | 1                              | k                                     |                    | <u>\</u>                                      |              | _           | <u> </u>                             |                             |                    |                   |      | _        | NI          | ell      | 2        | 114          | 45              | )        | -    |                                                  |                       | N                    | 4                    |
|          | erence Subcontractor (<br>ler Form signed by Bay | Goods and/or Services I<br>West on 9/19/16 | Purchase                                                                                  | Kus                     | tu.         | سما                            | Pollo1         | <u>^</u>   | 10/6/10    | 1               | 7 <i>()</i>      |                                | 6                                     | Z                  |                                               | إلام         | 11          | A                                    |                             | $\geq$             |                   |      |          | <u>10/4</u> | 119      |          | 12           | 7/5             |          |      | .9                                               | 1                     | 70                   | 7                    |
| 2        | D<br>ש                                           |                                            |                                                                                           | g                       | \_          | $\overline{}$                  |                |            | Clay       | /2              | 92               | <b>'</b>                       |                                       |                    | (                                             | 1/2          | 1           | ler                                  |                             |                    |                   |      |          | 100         | 19       |          | 20           | <u>ژ ⁄د ٔ د</u> |          | O.   | T                                                | (N)                   | Cooler               | Ę                    |
| 8        | P<br>ace                                         |                                            |                                                                                           |                         |             |                                |                |            |            |                 |                  |                                |                                       |                    | v                                             |              |             | •                                    |                             |                    |                   |      |          |             |          |          |              |                 |          |      | <del>-</del> -                                   | ) lce (               | eled C               | lact ()              |
|          | n<br>0                                           |                                            |                                                                                           |                         |             |                                | <u> </u>       |            | ME AND SI  |                 | TURE             | 9°5 ° 1                        | -                                     | ¥1.                |                                               |              | 1 44<br>1 5 |                                      |                             | 35/38              |                   |      | 788G     |             |          | 6,807    | 9 a y 3      |                 |          | E    | <u></u>                                          | Received on Ice (Y/N) | ly Sealed (<br>(Y/N) | Samplee Inlact (Y/N) |
| 1        | of 42                                            |                                            |                                                                                           |                         |             |                                | <u> </u>       |            | f SAMPLER: |                 | _                |                                | _(                                    |                    | $\Delta \Delta$                               | CAG          | 5_          | M                                    |                             |                    |                   |      | 11       |             | f.       |          |              |                 |          |      |                                                  | Receix                | Custody              | Ѕашр                 |
|          |                                                  |                                            |                                                                                           |                         |             |                                | SIG            | NATURE of  | f SAMPLER: |                 |                  | 1                              | ٧                                     | 1                  |                                               |              |             | DATE                                 | Signed                      | (MM/C              | DAY):             | (O   | 11       | 11          | U        |          |              |                 |          |      |                                                  | - · ·                 | ا ت                  | 1                    |

## Pace Analytical\*

### Document Name: Sample Condition Upon Receipt Form

Document No.; F-MN-I -213-rev 17 Document Revised: 02Aug2016
Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

|                                                                                                                                                              | F-I               | VIN-L-21:                             | 3-rev.17                 | Pace Minnesota Quality Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Condition Upon Receipt  Client Name:                                                                                                                  | 1 C               |                                       | Project                  | # WO# : 10365180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Courier: Feed Ev Dups                                                                                                                                        |                   |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              | USPS              | П                                     | lient                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Commercial Pace SpeeDee Tracking Number:                                                                                                                     | Other:            |                                       |                          | 10365180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Custody Seal on Cooler/Box Present?                                                                                                                          | ]No               | Seals Int                             | act?                     | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Packing Material: Bubble Wrap Bubble B                                                                                                                       | ags Non           | e 🔲                                   | Other:                   | Temp Blank? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermometer                                                                                                                                                  |                   | e of Ice:                             | □we                      | et 🔲 Blue 🔲 None 🔲 Samples on ice, cooling process has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cooler-Temp Read (°C): 09,0 (24,7 Cooler Temp                                                                                                                | Corrected (°C     | :(4.1                                 | 8.0                      | YG Biological Tissue Frozen? Tyes No PN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Temp should be above freezing to 6°C Correction                                                                                                              | Factor:           | 7.                                    | Dat                      | te and Initials of Person Examining Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| USDA Regulated Soil ( N/A, water sample)                                                                                                                     | 7                 | · · · · · · · · · · · · · · · · · · · |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did samples originate in a quarantine zone within the Uni<br>MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?<br>If Yes to either question, fill out a |                   |                                       | ☐Yes                     | ID, LA. Did samples originate from a foreign source (internationally,<br>☑No including Hawaii and Puerto Rico)? ☐Yes ☑No<br>-Q-338} and include with SCUR/COC paperwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                              |                   |                                       |                          | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain of Custody Present?                                                                                                                                    | <b>∑</b> Yes      | □No                                   | □N/A                     | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Filled Out?                                                                                                                                 | ¥Yes              | □No                                   | □n/a                     | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Relinquished?                                                                                                                               | XYes              | □No                                   | □n/a                     | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampler Name and/or Signature on COC?                                                                                                                        | <b>X</b> 1Yes     | □No                                   | □N/A                     | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samples Arrived within Hold Time?                                                                                                                            | ₩Yes              | □No                                   | □n/a                     | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Short Hold Time Analysis (<72 hr)?                                                                                                                           | ∐Yes              | ΧNο                                   | □N/A                     | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rush Turn Around Time Requested?                                                                                                                             | □Yes              | √No                                   | □N/A                     | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5ufficient Volume?                                                                                                                                           | ✓Yes              | □No                                   | □N/A                     | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Correct Containers Used?                                                                                                                                     | ∑Yes              | <br>□No                               |                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -Pace Containers Used?                                                                                                                                       | —<br><b>⊠</b> Yes | ☑No                                   | □N/A                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Containers Intact?                                                                                                                                           | <b>∑</b> Yes      | □No                                   | □N/A                     | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Filtered Volume Received for Dissolved Tests?                                                                                                                | ∐Yes              | □No                                   | ØN/A                     | 11. Note if sediment is visible in the dissolved container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Labels Match COC?                                                                                                                                     | ₩Yes              | □No                                   | □n/a                     | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -Includes Date/Time/ID/Analysis Matrix: 51                                                                                                                   | L                 |                                       | _                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All containers needing acid/base preservation have been                                                                                                      | )<br>             |                                       |                          | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| checked? All containers needing preservation are found to be in                                                                                              | □Yes              | □No                                   | Ĭ N/A                    | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| compliance with EPA recommendation?                                                                                                                          |                   |                                       |                          | запре и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyania                                                                  | de) 🔲 Yes         | □No                                   | N/A                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC                                                                                         | ∐Yes              | □No                                   | N/A                      | Initial when Lot # of added completed: preservative:_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Headspace in VOA Vials ( >6mm)?                                                                                                                              | ☐Yes              | No                                    | <u>□</u> XN/A            | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Present?                                                                                                                                          | □Yes              | □No                                   | <u>. La N/A</u><br>→ N/A | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Custody Seals Present?                                                                                                                            | □Yes              | □No                                   | ☑N/A                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pace Trip Blank Lot # (if purchased):                                                                                                                        |                   |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                               |                   |                                       |                          | Field Data Required? ☐ Yes ☐ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Person Contacted:                                                                                                                                            |                   |                                       |                          | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Comments/Resolution:                                                                                                                                         |                   |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              |                   |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                              |                   |                                       |                          | The state of the s |

Project Manager Review: Date: 10/7/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

### Intra-Regional Chain of Custody





| AAO                       | rkorder: 10365180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vvorkorder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name: 3160138            | STR Sealine                                              | ent AUCS |       | O                                                 | wner ke  | ceiv   | ed Date: 10/6/2016 | Due Date: 10 | /20/2016     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------|----------|-------|---------------------------------------------------|----------|--------|--------------------|--------------|--------------|
| Rec                       | eived at:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Send To La               | ab:                                                      |          |       |                                                   |          | I      | Requested A        | Analysis     |              |
| 170<br>Suit<br>Min<br>Pho | e Analytical Minnesota<br>0 Elm Street<br>e 200<br>neapolis, MN 55414<br>ne (612)607-1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 N Nir<br>Billings, N | nlytical Billings Noth Street<br>NT 59101<br>06)254-7226 | ИΤ       |       |                                                   |          | M D422 |                    |              |              |
| Oye                       | yemi Odujole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                          |          | Pre   | served Con                                        | tainers  | ASTM   |                    |              |              |
| Item                      | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Collect<br>Date/Time     | Lab ID                                                   | Matrix   | Other |                                                   |          |        |                    |              | LAB USE ONLY |
| 1                         | BW16MLW-001-0.0-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 10:08          | 10365180001                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 2                         | BW16MLW-002-0.0-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 10:48          | 10365180002                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 3                         | BW16MLW-003-0.0-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 11:07          | 10365180003                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 4                         | BW16MLW-005-0.90-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 13:09          | 10365180004                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 5                         | BW16MLW-006-1.75-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 12:58          | 10365180005                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 6                         | BW16MLW-007-1.6-1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 12:42          | 10365180006                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
| 7                         | BW16MLW-008-1.15-1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/4/2016 12:26          | 10365180007                                              | Solid    | 1     |                                                   |          | X      |                    |              |              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                          |          |       |                                                   | 1        |        |                    | Comments     |              |
| Tran                      | sfers Released By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time                | Received E                                               | Ву       |       | 1000000 ATM 1000000000000000000000000000000000000 | Date/Tin | ne     | Admin v            | vones        |              |
| 1                         | majo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ctar Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ace 10/7/16 12           |                                                          |          |       | 7                                                 |          |        |                    |              |              |
| 2                         | Seden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Ru                                                       | cole     | 0-1   | aco                                               | 10/8/    | 16     | 0930               |              |              |
| 3                         | and the second s | SANS MAN OF THE PROPERTY OF TH |                          |                                                          |          |       | -                                                 | -        | -      |                    |              |              |
| 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                          | 23       |       |                                                   |          | -      | 73                 |              |              |
| Cod                       | ler Temperature on I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Receipt ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _°C   Cus                | stody Seal 🔇                                             | or N     | 1     | Rece                                              | eived or | lce    | Or N               | Samples Inta | act O or N   |

<sup>\*\*\*</sup>In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

## Pace Analytical

hold, incorrect preservative, out of temp, incorrect containers)

#### Document Name: Sample Condition Upon Receipt Form

Document No.: F-MT-C-184-Rev.10 Document Revised: 04Aug2016 Page 1 of 1

Issuing Authority:
Pace Montana Quality Office

| Sample Condition Client Name:  Dipon Receipt  One MIN                                                                                                                                    |                         | P       | roject #: | 10365180                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----------|--------------------------------------------------------------|
| Courier: Fed Ex UPS [ Commercial Pace [ Tracking Number: 675/58264944,                                                                                                                   | USPS<br>Other:_<br>4993 | □Clie   | ent       | 10060100                                                     |
| Custody Seal on Cooler/Box Present? Yes N                                                                                                                                                | Seals                   | Intact? | Yes       | No Optional: Proj. Due Date: Proj. Name:                     |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                                | No                      | ne 🔲    | Other:    | Temp Blank? ☑Yes ☐No                                         |
| Thermometer Used: 160285052 140279186                                                                                                                                                    | Type of Ic              | e: 📈 w  | /et 🔲     | Blue None Samples on ice, cooling process has begun          |
| Cooler Temp Read: 2.6, 2.2                                                                                                                                                               |                         |         | Dat       | te and Initials of Person Examining Contents: Red 10/8       |
| Cooler Temp Corrected: 2.1, 1, 7                                                                                                                                                         |                         |         |           | Biological Tissue Frozen? Yes No                             |
| Temp should be above freezing to 6°C                                                                                                                                                     |                         |         |           | Comments:                                                    |
| Chain of Custody Present?                                                                                                                                                                | XYes                    | □No     | □N/A      | 1.                                                           |
| Chain of Custody Filled Out?                                                                                                                                                             | ₩Yes                    | □No     | □N/A      | 2.                                                           |
| Chain of Custody Relinquished?                                                                                                                                                           | ₩Yes                    | □No     | □N/A      | 3.                                                           |
| Sampler Name and Signature on COC?                                                                                                                                                       | Yes                     | K No    | □N/A      | 4.                                                           |
| Samples Arrived within Hold Time?                                                                                                                                                        | Yes                     | □ No    | □N/A      | 5.                                                           |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                                       | Yes                     | No      | □N/A      | 6.                                                           |
| Rush Turn Around Time Requested?                                                                                                                                                         | Yes                     | MNO     | □N/A      | 7.                                                           |
| Sufficient Volume?                                                                                                                                                                       | XYes                    | □No     | □N/A      | 8.                                                           |
| Correct Containers Used?                                                                                                                                                                 | ₩Yes                    | □No     | □N/A      | 9.                                                           |
| -Pace Containers Used?                                                                                                                                                                   | Yes                     | No      | □N/A      |                                                              |
| Containers Intact?                                                                                                                                                                       | Yes                     | □No     | □N/A      | 10.                                                          |
| Filtered Volume Received for Dissolved Tests?                                                                                                                                            | □Yes                    | No      | ⊠N/A      | 11. Note if sediment is visible in the dissolved container.  |
| Sample Labels Match COC?                                                                                                                                                                 | Yes                     | □No     | □N/A      | 12.                                                          |
| -Includes Date/Time/ID/Analysis Matrix: 50/                                                                                                                                              |                         |         |           |                                                              |
| All containers needing acid/base preservation have been checked?                                                                                                                         | Yes                     | □No     | ⊠N/A      | 13. HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> NaOH HCI |
| All containers needing preservation are found to be in compliance with EPA recommendation? (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) | □Yes                    | □No     | ₩N/A      | Sample #                                                     |
| Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water)                                                                                                                           | □Yes                    | ⊠(No    |           | Lot # of added Initial when completed: preservative:         |
| Headspace in VOA Vials ( >6mm)?                                                                                                                                                          | Yes                     | No      | ₩N/A      | 14.                                                          |
| Trip Blank Present?                                                                                                                                                                      | □Yes                    | □No     | ⊠N/A      | 15.                                                          |
| Trip Blank Custody Seals Present?                                                                                                                                                        | Yes                     | No      | N/A       |                                                              |
| Pace Trip Blank Lot # (if purchased):                                                                                                                                                    |                         | =       |           |                                                              |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                                           |                         |         |           | Field Data Required? Yes No                                  |
| Person Contacted:                                                                                                                                                                        |                         |         |           | Date/Time:                                                   |
| Comments/Resolution:                                                                                                                                                                     |                         |         |           |                                                              |
| Project Manager Review: Law Car                                                                                                                                                          | te                      |         |           | Date: 10/14/16                                               |

WO#:1276612

PM: CLJ

Due Date: 10/20/16

CLIENT: PACE MPLS



10/6/2016 Results Requested By: 10/20/2016 Owner Received Date: Workorder: 10365180 Workorder Name: J160139 SLR Sediment AOCs Requested Analysis Report To Subcontract To Oyeyemi Odujole Pace Analytical Virginia MN 315 Chestnut Street Pace Analytical Minnesota 1700 Elm Street Virginia, MN 55792 Suite 200 Phone (218)742-1042 Minneapolis, MN 55414 Phone (612)607-1700 Preserved Containers Collect ပို Sample LAB USE ONLY **Item** Sample ID Туре Date/Time Lab ID Matrix Χ BW16MLW-005-0.90-0.15 PS 10/4/2016 13:09 10365180004 Solid 1 Х PS 2 10/4/2016 12:58 10365180005 Solid 1 BW16MLW-006-1.75-2.0 X PS 1 BW16MLW-007-1.6-1.85 10/4/2016 12:42 10365180006 Solid Χ BW16MLW-008-1.15-1.40 PS 10/4/2016 12:26 10365180007 Solid 1 PS Χ Solid 5 BW16MLW-009-1.75-2.0 10/4/2016 12:03 10365180008 1 PS 10/4/2016 11:38 10365180009 Solid BW16MLW-010-1.45-1.70 Comments **Transfers** Released By Date/Time Received By Date/Time \*\*Admin Work\*\* 10/7/16 1240 10/7/19/1985 Pace 1017/102338 2 10-8-16 11:00 Received on Ice Ov or N Cooler Temperature on Receipt 3.4 °C Samples Intact 4 or N Custody Seal / or N

<sup>\*\*\*</sup>In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

## Pace Analytical

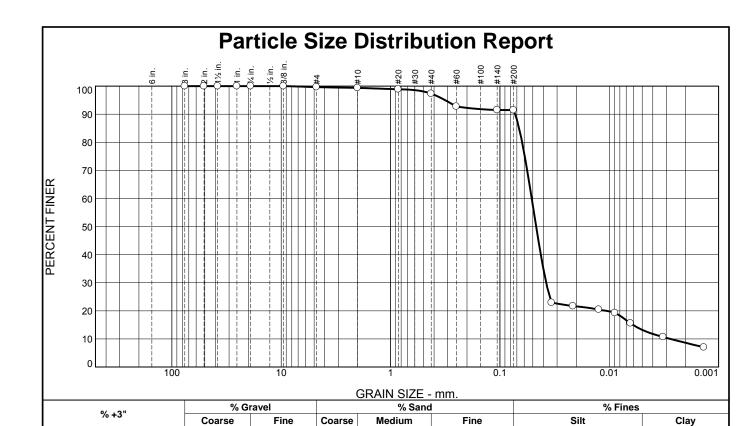
#### Document Name:

Sample Condition Upon Receipt Form

Document No.: F-VM-C-001-Rev.09 Document Revised: 23Fe b2015 Page 1 of 1

Issuing Authority:

Pace Virginia, Minnesota Quality Office


| Simple contition   Client Name:  Upon Recer   MIV                                               |             |             | Project - | W0#:1276612                                                                                              |
|-------------------------------------------------------------------------------------------------|-------------|-------------|-----------|----------------------------------------------------------------------------------------------------------|
| Courier: Fed Ex UPS  Commercial Pace                                                            | USPS Other: |             | Client    |                                                                                                          |
| Tracking Number:                                                                                |             |             |           | 12/6612                                                                                                  |
| Custody Seal on Cooler/Box Present? Yes                                                         | 10          | Seals       | ntact? [  | Yes No Optional: Proj. Due Date: Proj. Name:                                                             |
| Packing Material: Mubble Wrap Bubble 8ag                                                        | N z         | one 🏌       | //Other:  | HaZPaJ Temp Blank? ☐Yes ☐No                                                                              |
| Thermometer Used: 140792808                                                                     | Type of     | ice: 🔽      | ]Wet [    | Blue None Samples on ice, cooling process has begun                                                      |
| Cooler Temp Read °C:                                                                            |             |             |           | Biological Tissue Frozen? Yes No VNA d Initials of Person Examining Contents: VICTICE  Comments: VICTICE |
| Chain of Custody Present?                                                                       | Yes         | □No         | - □n/a    | 1.                                                                                                       |
| Chain of Custody Filled Out?                                                                    | Z Yes       | □No         | □n/a      | 2                                                                                                        |
| Chain of Custody Relinquished?                                                                  | ZYes        | □No         | □n/a      | 3.                                                                                                       |
| Sampler Name and Signature on COC?                                                              | Yes         | ZNo         | □n/a      | ٩.                                                                                                       |
| Samples Arrived within Hold Time?                                                               | Yes         | □No         | □n/A      | 5.                                                                                                       |
| Short Hold Time Analysis (<72 hr)?                                                              | MY W        | - No        | □n/a      | 6                                                                                                        |
| Rush Turn Around Time Requested?                                                                | Yes         | ZNo         | □N/A      | 7.                                                                                                       |
| Sufficient Volume?                                                                              | Yes         | □No         | □N/A      | В.                                                                                                       |
| Correct Containers Used?                                                                        | Yes         | ШNо         | □n/a      | 9.                                                                                                       |
| -Pace Containers Used?                                                                          | Yes         | □No         | □N/A      | ·                                                                                                        |
| Containers Intact?                                                                              | Yes         | □No         | □n/a      | 10.                                                                                                      |
| Filtered Volume Received for Dissolved Tests?                                                   | Yes         | □No         | ØN/A      | 11. Note if sediment is visible in the dissolved containers.                                             |
| Sample Labels Match COC?                                                                        | □¥es        | □No         | □n/a      | 12.                                                                                                      |
| -Includes Date/Time/ID/Analysis Matrix: 5/                                                      |             |             |           |                                                                                                          |
| All containers needing acid/base preservation will be checked and documented in the pH logbook. | Yes         | □No         | ØN/A      | See pH log for results and additional preservation documentation                                         |
| Headspace in Methyl Mercury Container                                                           | Yes         | □No         | DN/A      | 13.                                                                                                      |
| Head space in VOA Vials ( >6mm)?                                                                | Yes         | □No         | Z]N/A     | 14.                                                                                                      |
| Trip Blank Present?                                                                             | Yes         | □No         | N/A       | 15.                                                                                                      |
| Trip Blank Custody Seals Present?                                                               | Yes         | □No         | ĎN/A      |                                                                                                          |
| Pace Trip Blank Lot # (if purchased):                                                           |             | ·           |           |                                                                                                          |
| CLIENT NOTIFICATION/RESOLUTION  Person Contacted:  Comments/Resolution:                         |             |             |           | Field Data Required? Yes No                                                                              |
|                                                                                                 |             | <del></del> |           |                                                                                                          |
|                                                                                                 |             |             |           |                                                                                                          |
|                                                                                                 | <del></del> | <del></del> |           |                                                                                                          |
|                                                                                                 |             |             |           |                                                                                                          |
| ECAL WAIVER ON FILE Y N                                                                         | ·           | TEME        | PERATUR   | E WAIVER ON FILE Y N                                                                                     |

Project Manager Review:

Date: 10/10/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Page 21 of 42



| TEST RESULTS (ASTM D422) |         |           |          |  |
|--------------------------|---------|-----------|----------|--|
| Opening                  | Percent | Spec.*    | Pass?    |  |
| Size                     | Finer   | (Percent) | (X=Fail) |  |
| 3                        | 100     |           |          |  |
| 2                        | 100     |           |          |  |
| 1.5                      | 100     |           |          |  |
| 1                        | 100     |           |          |  |
| .75                      | 100     |           |          |  |
| .375                     | 100     |           |          |  |
| #4                       | 100     |           |          |  |
| #10                      | 99      |           |          |  |
| #20                      | 99      |           |          |  |
| #40                      | 97      |           |          |  |
| #60                      | 93      |           |          |  |
| #140                     | 92      |           |          |  |
| #200                     | 91      |           |          |  |
| 0.0337 mm.               | 23      |           |          |  |
| 0.0214 mm.               | 22      |           |          |  |
| 0.0125 mm.               | 20      |           |          |  |
| 0.0089 mm.               | 19      |           |          |  |
| 0.0064 mm.               | 16      |           |          |  |
| 0.0032 mm.               | 11      |           |          |  |
| 0.0014 mm.               | 7.0     |           |          |  |
|                          |         |           |          |  |

0

0

0

| Material Description                                        |                                                               |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------|--|--|
| silt                                                        |                                                               |  |  |
|                                                             |                                                               |  |  |
| A 44.                                                       | orhova Limito (ASTM D 4240)                                   |  |  |
| PL= NP                                                      | erberg Limits (ASTM D 4318)<br>LL= NV PI=                     |  |  |
|                                                             | Classification                                                |  |  |
| USCS (D 2487)=                                              | ML <b>AASHTO</b> (M 145)= A-4(0)                              |  |  |
|                                                             | Coefficients                                                  |  |  |
| <b>D<sub>90</sub>=</b> 0.0725                               | <b>D<sub>85</sub></b> = 0.0667 <b>D<sub>60</sub></b> = 0.0512 |  |  |
| <b>D<sub>50</sub>=</b> 0.0466 <b>D<sub>10</sub>=</b> 0.0028 | <b>D<sub>30</sub></b> = 0.0377                                |  |  |
| 10                                                          | Remarks                                                       |  |  |
|                                                             | Remarks                                                       |  |  |
|                                                             |                                                               |  |  |
|                                                             |                                                               |  |  |
| Date Received:                                              | 10/6/16 <b>Date Tested:</b> 10/18/16                          |  |  |
| Tested By:                                                  | Will Thomas                                                   |  |  |
| Checked By: Rhonda Johnson                                  |                                                               |  |  |
| Title: Lab Manager                                          |                                                               |  |  |
|                                                             |                                                               |  |  |

78

Location: BW16MLW-001-0.0-0.15
Sample Number: 10365180-1

(no specification provided)

Pace Analytical Services, Inc.

Billings, MT

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Project No:

Figure

**Date Sampled:** 10/4/16

13

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-001-0.0-0.15 Sample Number: 10365180-1 Material Description: silt Sample Date: 10/4/16

Date Received: 10/6/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

**Grain Size Test Method:** ASTM D422

Tested By: Will ThomasTest Date: 10/18/16Checked By: Rhonda JohnsonTitle: Lab Manager

### Sieve Test Data

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|
| 768.18                               | 566.46          | 3                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |
|                                      |                 | #4                       | 0.70                          | 0.00                       | 100              |
|                                      |                 | #10                      | 0.59                          | 0.00                       | 99               |
| 81.33                                | 0.00            | #20                      | 0.39                          | 0.00                       | 99               |
|                                      |                 | #40                      | 1.28                          | 0.00                       | 97               |
|                                      |                 | #60                      | 3.76                          | 0.00                       | 93               |
|                                      |                 | #140                     | 1.00                          | 0.00                       | 92               |
|                                      |                 | #200                     | 0.03                          | 0.00                       | 91               |

### **Hydrometer Test Data**

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =81.33

Automatic temperature correction

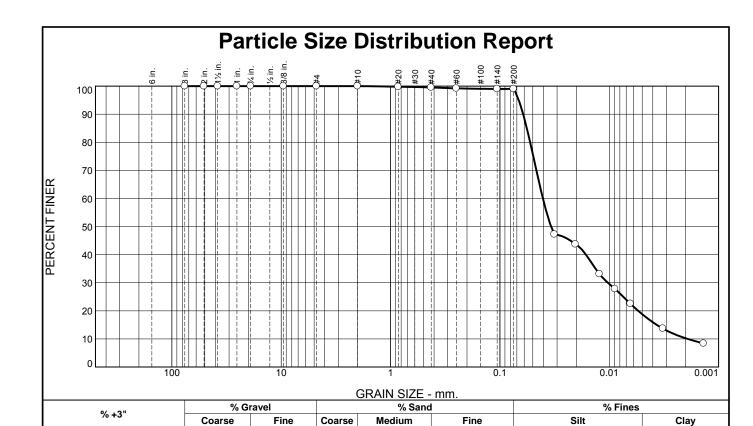
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | ĸ      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 27.0              | 18.8                 | 0.0138 | 27.0 | 11.9          | 0.0337         | 22.9             |
| 5.00                   | 19.0               | 26.0              | 17.8                 | 0.0138 | 26.0 | 12.0          | 0.0214         | 21.7             |
| 15.00                  | 19.0               | 25.0              | 16.8                 | 0.0138 | 25.0 | 12.2          | 0.0125         | 20.5             |
| 30.00                  | 19.0               | 24.0              | 15.8                 | 0.0138 | 24.0 | 12.4          | 0.0089         | 19.2             |
| 60.00                  | 19.0               | 21.0              | 12.8                 | 0.0138 | 21.0 | 12.9          | 0.0064         | 15.6             |
| 250.00                 | 19.0               | 17.0              | 8.8                  | 0.0138 | 17.0 | 13.5          | 0.0032         | 10.7             |
| 1440.00                | 19.0               | 14.0              | 5.8                  | 0.0138 | 14.0 | 14.0          | 0.0014         | 7.0              |
|                        |                    |                   |                      |        |      | -             |                |                  |

Pace Analytical Services, Inc. \_\_\_\_\_


# Fractional Components

| Cobbles |        | Gravel |       |        | Sa     | nd   |       |      | Fines |       |  |
|---------|--------|--------|-------|--------|--------|------|-------|------|-------|-------|--|
| Copples | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt | Clay  | Total |  |
| 0       | 0      | 0      | 0     | 1      | 2      | 6    | 9     | 78   | 13    | 91    |  |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | 0.0028          | 0.0061          | 0.0106          | 0.0377          | 0.0423          | 0.0466          | 0.0512          | 0.0626          | 0.0667          | 0.0725          | 0.3167          |

| Fineness<br>Modulus | c <sub>u</sub> | cc    |  |
|---------------------|----------------|-------|--|
| 0.17                | 18.56          | 10.10 |  |

Pace Analytical Services, Inc.



0

| TEST RESULTS (ASTM D422) |                                                      |                                                                   |  |  |  |  |  |
|--------------------------|------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Percent                  | Spec.*                                               | Pass?                                                             |  |  |  |  |  |
| Finer                    | (Percent)                                            | (X=Fail)                                                          |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 100                      |                                                      |                                                                   |  |  |  |  |  |
| 99                       |                                                      |                                                                   |  |  |  |  |  |
| 99                       |                                                      |                                                                   |  |  |  |  |  |
| 99                       |                                                      |                                                                   |  |  |  |  |  |
| 47                       |                                                      |                                                                   |  |  |  |  |  |
| 44                       |                                                      |                                                                   |  |  |  |  |  |
| 33                       |                                                      |                                                                   |  |  |  |  |  |
| 28                       |                                                      |                                                                   |  |  |  |  |  |
| 23                       |                                                      |                                                                   |  |  |  |  |  |
| 14                       |                                                      |                                                                   |  |  |  |  |  |
| 8.4                      |                                                      |                                                                   |  |  |  |  |  |
|                          | Percent Finer  100 100 100 100 100 100 100 100 100 1 | Percent   Spec.* (Percent)  100 100 100 100 100 100 100 100 100 1 |  |  |  |  |  |

0

|                                                             | Material Description                                                                      |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| sandy silt                                                  |                                                                                           |  |  |  |  |  |  |  |  |
|                                                             |                                                                                           |  |  |  |  |  |  |  |  |
| Atterberg Limits (ASTM D 4318)                              |                                                                                           |  |  |  |  |  |  |  |  |
| PL= NP                                                      | LL= NV PI= NP                                                                             |  |  |  |  |  |  |  |  |
| USCS (D 2487)=                                              | ML AASHTO (M 145)= A-4(0)                                                                 |  |  |  |  |  |  |  |  |
|                                                             | <u>Coefficients</u>                                                                       |  |  |  |  |  |  |  |  |
| <b>D<sub>90</sub>=</b> 0.0612                               | <b>D<sub>85</sub>=</b> 0.0567 <b>D<sub>60</sub>=</b> 0.0404 <b>D<sub>15</sub>=</b> 0.0037 |  |  |  |  |  |  |  |  |
| <b>D<sub>50</sub>=</b> 0.0341 <b>D<sub>10</sub>=</b> 0.0019 | <b>D30</b> = 0.0103                                                                       |  |  |  |  |  |  |  |  |
| Remarks                                                     |                                                                                           |  |  |  |  |  |  |  |  |
|                                                             |                                                                                           |  |  |  |  |  |  |  |  |
|                                                             |                                                                                           |  |  |  |  |  |  |  |  |
| Date Received:                                              | 10/6/16 <b>Date Tested:</b> 10/18/16                                                      |  |  |  |  |  |  |  |  |
| Tested By:                                                  | Will Thomas                                                                               |  |  |  |  |  |  |  |  |
| Checked By:                                                 | Rhonda Johnson                                                                            |  |  |  |  |  |  |  |  |
| Title:                                                      | Lab Manager                                                                               |  |  |  |  |  |  |  |  |
|                                                             |                                                                                           |  |  |  |  |  |  |  |  |

80

Location: BW16MLW-002-0.0-0.15 Sample Number: 10365180-2

Pace Analytical Services, Inc. Clie Proj

Billings, MT

(no specification provided)

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Project No:

Figure

**Date Sampled:** 10/4/16

19

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-002-0.0-0.15 Sample Number: 10365180-2 Material Description: sandy silt

Sample Date: 10/4/16

**Grain Size Test Method:** ASTM D422

Tested By: Will Thomas

Checked By: Rhonda Johnson

Test Date: 10/18/16

Title: Lab Manager

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|
| 633.82                               | 563.56          | 3                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |
|                                      |                 | #4                       | 0.00                          | 0.00                       | 100              |
|                                      |                 | #10                      | 0.00                          | 0.00                       | 100              |
| 56.64                                | 0.00            | #20                      | 0.13                          | 0.00                       | 100              |
|                                      |                 | #40                      | 0.13                          | 0.00                       | 100              |
|                                      |                 | #60                      | 0.19                          | 0.00                       | 99               |
|                                      |                 | #140                     | 0.11                          | 0.00                       | 99               |

### **Hydrometer Test Data**

0.00

99

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =56.64 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

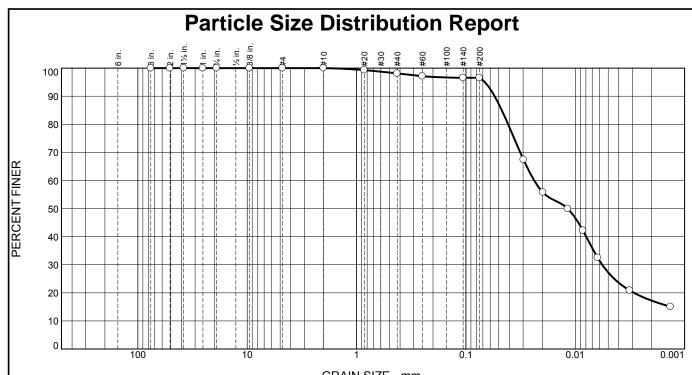
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | K      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 35.0              | 26.8                 | 0.0138 | 35.0 | 10.6          | 0.0317         | 47.2             |
| 5.00                   | 19.0               | 33.0              | 24.8                 | 0.0138 | 33.0 | 10.9          | 0.0204         | 43.7             |
| 15.00                  | 19.0               | 27.0              | 18.8                 | 0.0138 | 27.0 | 11.9          | 0.0123         | 33.1             |
| 30.00                  | 19.0               | 24.0              | 15.8                 | 0.0138 | 24.0 | 12.4          | 0.0089         | 27.8             |
| 60.00                  | 19.0               | 21.0              | 12.8                 | 0.0138 | 21.0 | 12.9          | 0.0064         | 22.5             |
| 250.00                 | 19.0               | 16.0              | 7.8                  | 0.0138 | 16.0 | 13.7          | 0.0032         | 13.7             |
| 1440.00                | 19.0               | 13.0              | 4.8                  | 0.0138 | 13.0 | 14.2          | 0.0014         | 8.4              |
|                        |                    |                   |                      |        |      |               |                |                  |

0.00

\_ Pace Analytical Services, Inc. \_\_


# Fractional Components

| Cobbles |        | Gravel |       |        | Sand   |      |       | Fines |      |       |
|---------|--------|--------|-------|--------|--------|------|-------|-------|------|-------|
| Copples | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0       | 0      | 0      | 0     | 0      | 0      | 1    | 1     | 80    | 19   | 99    |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | 0.0019          | 0.0037          | 0.0054          | 0.0103          | 0.0163          | 0.0341          | 0.0404          | 0.0529          | 0.0567          | 0.0612          | 0.0672          |

| Fineness<br>Modulus | c <sub>u</sub> | cc   |  |
|---------------------|----------------|------|--|
| 0.02                | 21.09          | 1.37 |  |

\_\_\_\_\_ Pace Analytical Services, Inc. \_\_\_\_\_



| GRAIN SIZE - mm. |          |      |        |        |      |         |      |  |
|------------------|----------|------|--------|--------|------|---------|------|--|
| % +3"            | % Gravel |      |        | % Sand | I    | % Fines |      |  |
|                  | Coarse   | Fine | Coarse | Medium | Fine | Silt    | Clay |  |
| 0                | 0        | 0    | 0      | 2      | 1    | 70      | 27   |  |

|            | TEST RESULTS (ASTM D422) |           |          |  |  |  |  |  |  |  |
|------------|--------------------------|-----------|----------|--|--|--|--|--|--|--|
| Opening    | Percent                  | Spec.*    | Pass?    |  |  |  |  |  |  |  |
| Size       | Finer                    | (Percent) | (X=Fail) |  |  |  |  |  |  |  |
| 3          | 100                      |           |          |  |  |  |  |  |  |  |
| 2          | 100                      |           |          |  |  |  |  |  |  |  |
| 1.5        | 100                      |           |          |  |  |  |  |  |  |  |
| 1          | 100                      |           |          |  |  |  |  |  |  |  |
| .75        | 100                      |           |          |  |  |  |  |  |  |  |
| .375       | 100                      |           |          |  |  |  |  |  |  |  |
| #4         | 100                      |           |          |  |  |  |  |  |  |  |
| #10        | 100                      |           |          |  |  |  |  |  |  |  |
| #20        | 99                       |           |          |  |  |  |  |  |  |  |
| #40        | 98                       |           |          |  |  |  |  |  |  |  |
| #60        | 97                       |           |          |  |  |  |  |  |  |  |
| #140       | 97                       |           |          |  |  |  |  |  |  |  |
| #200       | 97                       |           |          |  |  |  |  |  |  |  |
| 0.0297 mm. | 67                       |           |          |  |  |  |  |  |  |  |
| 0.0198 mm. | 56                       |           |          |  |  |  |  |  |  |  |
| 0.0117 mm. | 50                       |           |          |  |  |  |  |  |  |  |
| 0.0085 mm. | 42                       |           |          |  |  |  |  |  |  |  |
| 0.0062 mm. | 32                       |           |          |  |  |  |  |  |  |  |
| 0.0032 mm. | 21                       |           |          |  |  |  |  |  |  |  |
| 0.0013 mm. | 15                       |           |          |  |  |  |  |  |  |  |
|            |                          |           |          |  |  |  |  |  |  |  |

| silt                                                                      | <u>Material Descrip</u>                                                         | <u>ition</u>                                                      |  |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| SIIL                                                                      |                                                                                 |                                                                   |  |  |  |  |  |  |
| A.,                                                                       |                                                                                 | TT D 4040)                                                        |  |  |  |  |  |  |
| PL= NP                                                                    | erberg Limits (AST<br>LL= NV                                                    | M D 4318)<br>Pl=                                                  |  |  |  |  |  |  |
| USCS (D 2487)=                                                            | Classification ML AASHTO                                                        | <u>n</u><br>O (M 145)= A-4(0)                                     |  |  |  |  |  |  |
| D <sub>90</sub> = 0.0546<br>D <sub>50</sub> = 0.0117<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 0.0470 D <sub>30</sub> = 0.0057 C <sub>u</sub> = | D <sub>60</sub> = 0.0237<br>D <sub>15</sub> =<br>C <sub>c</sub> = |  |  |  |  |  |  |
| Remarks                                                                   |                                                                                 |                                                                   |  |  |  |  |  |  |
|                                                                           |                                                                                 |                                                                   |  |  |  |  |  |  |
| Date Received:                                                            | 10/6/16 <b>Date</b>                                                             | <b>Tested:</b> 10/18/16                                           |  |  |  |  |  |  |
| Tested By:                                                                | Will Thomas                                                                     |                                                                   |  |  |  |  |  |  |
| Checked By:                                                               | Rhonda Johnson                                                                  |                                                                   |  |  |  |  |  |  |
| Title:                                                                    | Lab Manager                                                                     |                                                                   |  |  |  |  |  |  |

(no specification provided)

 Location: BW16MLW-003-0.0-0.15
 Date Sampled:
 104/16

 Sample Number: 10365180-3
 104/16

Pace Analytical Services, Inc.

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Billings, MT

Project No: Figure

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-003-0.0-0.15 Sample Number: 10365180-3 Material Description: silt Sample Date: 104/16

Date Received: 10/6/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

**Grain Size Test Method:** ASTM D422

Tested By: Will ThomasTest Date: 10/18/16Checked By: Rhonda JohnsonTitle: Lab Manager

| Sieve | Test | Data |
|-------|------|------|
|       |      |      |

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|
| 661.63                               | 572.25          | 3                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |
|                                      |                 | #4                       | 0.00                          | 0.00                       | 100              |
|                                      |                 | #10                      | 0.00                          | 0.00                       | 100              |
| 51.57                                | 0.00            | #20                      | 0.37                          | 0.00                       | 99               |
|                                      |                 | #40                      | 0.60                          | 0.00                       | 98               |
|                                      |                 | #60                      | 0.53                          | 0.00                       | 97               |
|                                      |                 | #140                     | 0.28                          | 0.00                       | 97               |
|                                      |                 | #200                     | 0.00                          | 0.00                       | 97               |

### **Hydrometer Test Data**

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.57 Automatic temperature correction

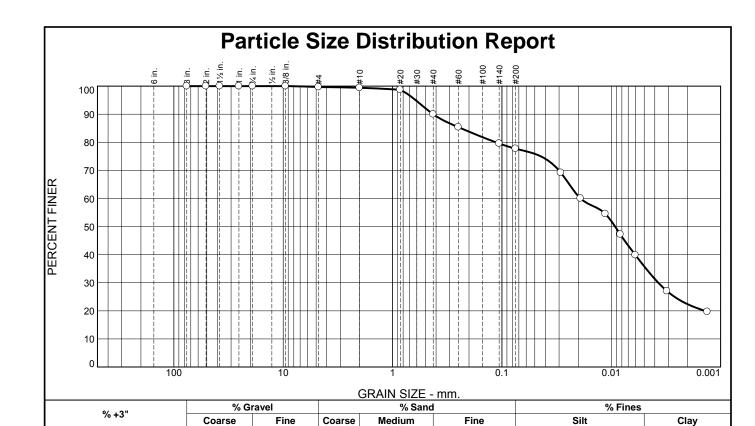
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | K      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 43.0              | 34.8                 | 0.0138 | 43.0 | 9.2           | 0.0297         | 67.4             |
| 5.00                   | 19.0               | 37.0              | 28.8                 | 0.0138 | 37.0 | 10.2          | 0.0198         | 55.8             |
| 15.00                  | 19.0               | 34.0              | 25.8                 | 0.0138 | 34.0 | 10.7          | 0.0117         | 49.9             |
| 30.00                  | 19.0               | 30.0              | 21.8                 | 0.0138 | 30.0 | 11.4          | 0.0085         | 42.2             |
| 60.00                  | 19.0               | 25.0              | 16.8                 | 0.0138 | 25.0 | 12.2          | 0.0062         | 32.5             |
| 250.00                 | 19.0               | 19.0              | 10.8                 | 0.0138 | 19.0 | 13.2          | 0.0032         | 20.8             |
| 1440.00                | 19.0               | 16.0              | 7.8                  | 0.0138 | 16.0 | 13.7          | 0.0013         | 15.0             |
|                        |                    |                   |                      |        |      |               |                |                  |

\_\_\_ Pace Analytical Services, Inc. \_\_\_


# Fractional Components

| Cobbles | Gravel |      |       | Sand   |        |      |       | Fines |      |       |
|---------|--------|------|-------|--------|--------|------|-------|-------|------|-------|
| Copples | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0       | 0      | 0    | 0     | 0      | 2      | 1    | 3     | 70    | 27   | 97    |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.0029          | 0.0057          | 0.0079          | 0.0117          | 0.0237          | 0.0411          | 0.0470          | 0.0546          | 0.0670          |

| Fineness |
|----------|
| Modulus  |
| 0.07     |

Pace Analytical Services, Inc.



|            | TEST RESULTS (ASTM D422) |           |          |  |  |  |  |  |  |
|------------|--------------------------|-----------|----------|--|--|--|--|--|--|
| Opening    | Percent                  | Spec.*    | Pass?    |  |  |  |  |  |  |
| Size       | Finer                    | (Percent) | (X=Fail) |  |  |  |  |  |  |
| 3          | 100                      |           |          |  |  |  |  |  |  |
| 2          | 100                      |           |          |  |  |  |  |  |  |
| 1.5        | 100                      |           |          |  |  |  |  |  |  |
| 1          | 100                      |           |          |  |  |  |  |  |  |
| .75        | 100                      |           |          |  |  |  |  |  |  |
| .375       | 100                      |           |          |  |  |  |  |  |  |
| #4         | 100                      |           |          |  |  |  |  |  |  |
| #10        | 99                       |           |          |  |  |  |  |  |  |
| #20        | 99                       |           |          |  |  |  |  |  |  |
| #40        | 90                       |           |          |  |  |  |  |  |  |
| #60        | 85                       |           |          |  |  |  |  |  |  |
| #140       | 80                       |           |          |  |  |  |  |  |  |
| #200       | 78                       |           |          |  |  |  |  |  |  |
| 0.0289 mm. | 69                       |           |          |  |  |  |  |  |  |
| 0.0191 mm. | 60                       |           |          |  |  |  |  |  |  |
| 0.0113 mm. | 55                       |           |          |  |  |  |  |  |  |
| 0.0083 mm. | 47                       |           |          |  |  |  |  |  |  |
| 0.0060 mm. | 40                       |           |          |  |  |  |  |  |  |
| 0.0031 mm. | 27                       |           |          |  |  |  |  |  |  |
| 0.0013 mm. | 20                       |           |          |  |  |  |  |  |  |
|            |                          |           |          |  |  |  |  |  |  |

0

0

| Material Description |                                                             |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------------|--|--|--|--|--|--|
| silt with sand       |                                                             |  |  |  |  |  |  |
|                      |                                                             |  |  |  |  |  |  |
|                      |                                                             |  |  |  |  |  |  |
|                      | erg Limits (ASTM D 4318)                                    |  |  |  |  |  |  |
| PL= NP               | LL= NV PI=                                                  |  |  |  |  |  |  |
|                      | <u>Classification</u>                                       |  |  |  |  |  |  |
| USCS (D 2487)= M     | L AASHTO (M 145)= A-4(0)                                    |  |  |  |  |  |  |
|                      | Coefficients                                                |  |  |  |  |  |  |
| <b>D90=</b> 0.4248   | <b>P85</b> = 0.2368 <b>P60</b> = 0.0191                     |  |  |  |  |  |  |
|                      | D <sub>30</sub> = 0.0037 D <sub>15</sub> = C <sub>c</sub> = |  |  |  |  |  |  |
| - 10                 |                                                             |  |  |  |  |  |  |
|                      | Remarks                                                     |  |  |  |  |  |  |
|                      |                                                             |  |  |  |  |  |  |
|                      |                                                             |  |  |  |  |  |  |
| Date Received: 10/6  | 5/16 <b>Date Tested:</b> 10/18/16                           |  |  |  |  |  |  |
|                      | ,, - , - , - , - , - , - , - , - , - ,                      |  |  |  |  |  |  |
| Tested By: Wil       |                                                             |  |  |  |  |  |  |
| Checked By: Rho      | nda Johnson                                                 |  |  |  |  |  |  |
| Title: Lab           | Manager                                                     |  |  |  |  |  |  |
|                      |                                                             |  |  |  |  |  |  |

42

12

Location: BW16MLW-005-0.90-0.15
Sample Number: 10365180-4

Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Billings, MT

Project No: Figure

**Date Sampled:** 10/4/16

36

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-005-0.90-0.15 Sample Number: 10365180-4 Material Description: silt with sand

**Sample Date:** 10/4/16

Date Received: 10/6/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

**Grain Size Test Method:** ASTM D422

Tested By: Will Thomas

Checked By: Rhonda Johnson

Test Date: 10/18/16

Title: Lab Manager

|                                      |                 |                          | Sie                           | eve Test Dat               | a                |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |
| 659.74                               | 580.53          | 3                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |
|                                      |                 | #4                       | 0.27                          | 0.00                       | 100              |
|                                      |                 | #10                      | 0.20                          | 0.00                       | 99               |
| 54.24                                | 0.00            | #20                      | 0.38                          | 0.00                       | 99               |
|                                      |                 | #40                      | 4.75                          | 0.00                       | 90               |
|                                      |                 | #60                      | 2.52                          | 0.00                       | 85               |
|                                      |                 | #140                     | 3.17                          | 0.00                       | 80               |

### **Hydrometer Test Data**

0.00

78

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =54.24

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

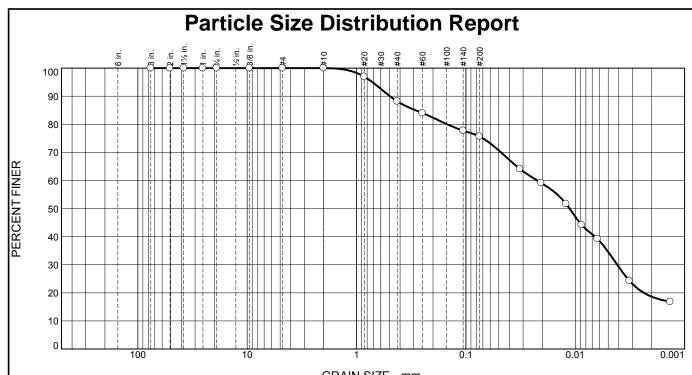
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | K      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 46.0              | 37.8                 | 0.0138 | 46.0 | 8.8           | 0.0289         | 69.2             |
| 5.00                   | 19.0               | 41.0              | 32.8                 | 0.0138 | 41.0 | 9.6           | 0.0191         | 60.0             |
| 15.00                  | 19.0               | 38.0              | 29.8                 | 0.0138 | 38.0 | 10.1          | 0.0113         | 54.5             |
| 30.00                  | 19.0               | 34.0              | 25.8                 | 0.0138 | 34.0 | 10.7          | 0.0083         | 47.2             |
| 60.00                  | 19.0               | 30.0              | 21.8                 | 0.0138 | 30.0 | 11.4          | 0.0060         | 39.9             |
| 250.00                 | 19.0               | 23.0              | 14.8                 | 0.0138 | 23.0 | 12.5          | 0.0031         | 27.0             |
| 1440.00                | 19.0               | 19.0              | 10.8                 | 0.0138 | 19.0 | 13.2          | 0.0013         | 19.7             |
|                        |                    |                   |                      |        |      |               |                |                  |

1.01

\_\_\_ Pace Analytical Services, Inc. \_\_\_


# Fractional Components

| Cobbles | Gravel |      |       |        | Sa     | ınd  | Fines |      |      |       |
|---------|--------|------|-------|--------|--------|------|-------|------|------|-------|
| Copples | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt | Clay | Total |
| 0       | 0      | 0    | 0     | 1      | 9      | 12   | 22    | 42   | 36   | 78    |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.0014          | 0.0037          | 0.0061          | 0.0092          | 0.0191          | 0.1136          | 0.2368          | 0.4248          | 0.6148          |

| Fineness<br>Modulus |
|---------------------|
| 0.39                |

\_\_\_\_\_ Pace Analytical Services, Inc. \_\_\_\_\_



| L | GRAIN SIZE - mm. |        |       |        |        |      |         |      |  |  |
|---|------------------|--------|-------|--------|--------|------|---------|------|--|--|
| ſ | % +3"            | % Gı   | ravel |        | % Sand |      | % Fines |      |  |  |
| ı |                  | Coarse | Fine  | Coarse | Medium | Fine | Silt    | Clay |  |  |
|   | 0                | 0      | 0     | 0      | 12     | 12   | 41      | 35   |  |  |

|            | TEST RESULTS | 6 (ASTM D422) |          |
|------------|--------------|---------------|----------|
| Opening    | Percent      | Spec.*        | Pass?    |
| Size       | Finer        | (Percent)     | (X=Fail) |
| 3          | 100          |               |          |
| 2          | 100          |               |          |
| 1.5        | 100          |               |          |
| 1          | 100          |               |          |
| .75        | 100          |               |          |
| .375       | 100          |               |          |
| #4         | 100          |               |          |
| #10        | 100          |               |          |
| #20        | 97           |               |          |
| #40        | 88           |               |          |
| #60        | 84           |               |          |
| #140       | 78           |               |          |
| #200       | 76           |               |          |
| 0.0320 mm. | 64           |               |          |
| 0.0205 mm. | 59           |               |          |
| 0.0121 mm. | 52           |               |          |
| 0.0088 mm. | 44           |               |          |
| 0.0063 mm. | 39           |               |          |
| 0.0032 mm. | 24           |               |          |
| 0.0014 mm. | 17           |               |          |
|            |              |               |          |

|                                                                           | Material Descri                                                                 | <u>ption</u>                                                      |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|
| silt with sand                                                            |                                                                                 |                                                                   |
| Att                                                                       | erberg Limits (AS                                                               | ГМ D 4318)                                                        |
| PL= NP                                                                    | LL= NV                                                                          | PI=                                                               |
| USCS (D 2487)=                                                            | Classification ML AASHT                                                         | on<br>O (M 145)= A-4(0)                                           |
| D <sub>90</sub> = 0.4948<br>D <sub>50</sub> = 0.0113<br>D <sub>10</sub> = | Coefficients D <sub>85</sub> = 0.2886 D <sub>30</sub> = 0.0041 C <sub>u</sub> = | D <sub>60</sub> = 0.0223<br>D <sub>15</sub> =<br>C <sub>c</sub> = |
|                                                                           | Remarks                                                                         |                                                                   |
| Date Received:                                                            | 10/6/16 <b>Date</b>                                                             | e Tested: 10/18/16                                                |
| Tested By:                                                                | Will Thomas                                                                     |                                                                   |
| Checked By:                                                               | Rhonda Johnson                                                                  |                                                                   |
|                                                                           |                                                                                 |                                                                   |

(no specification provided)

**Location:** BW16MLW-006-1.75-2.0 **Date Sampled:** 10/4/16 **Sample Number:** 10365180-5

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOCs

Billings, MT

Project No: Figure

### **GRAIN SIZE DISTRIBUTION TEST DATA**

**Sieve Test Data** 

10/20/2016

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs Location: BW16MLW-006-1.75-2.0 **Sample Number:** 10365180-5 **Material Description:** silt with sand

Sample Date: 10/4/16

Date Received: 10/6/16PL: NP LL: NV

**USCS Classification: ML AASHTO Classification:** A-4(0)

**Grain Size Test Method:** ASTM D422

**Tested By:** Will Thomas **Test Date:** 10/18/16**Checked By:** Rhonda Johnson Title: Lab Manager

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percer<br>Finer |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|-----------------|
| 626.21                               | 583.62          | 3                        | 0.00                          | 0.00                       | 100             |
|                                      |                 | _                        |                               |                            |                 |

| and Tare<br>(grams) | Tare<br>(grams) | Opening<br>Size | Retained<br>(grams) | Weight<br>(grams) | Percent<br>Finer |
|---------------------|-----------------|-----------------|---------------------|-------------------|------------------|
| 626.21              | 583.62          | 3               | 0.00                | 0.00              | 100              |
|                     |                 | 2               | 0.00                | 0.00              | 100              |
|                     |                 | 1.5             | 0.00                | 0.00              | 100              |
|                     |                 | 1               | 0.00                | 0.00              | 100              |
|                     |                 | .75             | 0.00                | 0.00              | 100              |
|                     |                 | .375            | 0.00                | 0.00              | 100              |
|                     |                 | #4              | 0.00                | 0.00              | 100              |
|                     |                 | #10             | 0.00                | 0.00              | 100              |
| 40.17               | 0.00            | #20             | 1.22                | 0.00              | 97               |
|                     |                 | #40             | 3.53                | 0.00              | 88               |
|                     |                 | #60             | 1.67                | 0.00              | 84               |
|                     |                 | #140            | 2.52                | 0.00              | 78               |
|                     |                 | #200            | 0.84                | 0.00              | 76               |

### **Hydrometer Test Data**

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

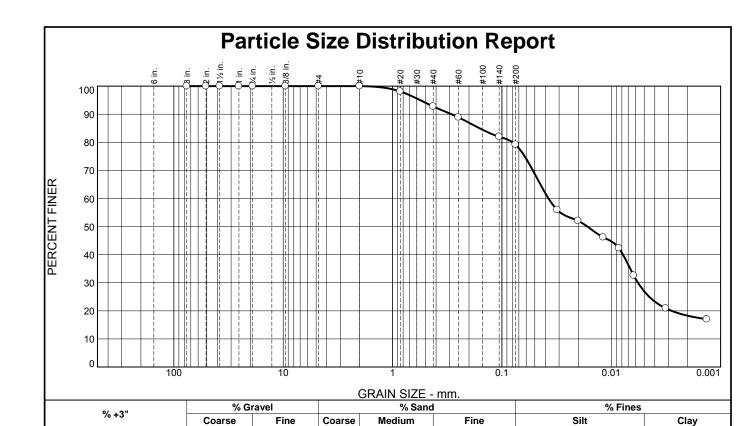
Weight of hydrometer sample =40.17Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | ĸ         | Rm      | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|-----------|---------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 34.0              | 25.8                 | 0.0138    | 34.0    | 10.7          | 0.0320         | 64.1             |
| 5.00                   | 19.0               | 32.0              | 23.8                 | 0.0138    | 32.0    | 11.0          | 0.0205         | 59.1             |
| 15.00                  | 19.0               | 29.0              | 20.8                 | 0.0138    | 29.0    | 11.5          | 0.0121         | 51.7             |
| 30.00                  | 19.0               | 26.0              | 17.8                 | 0.0138    | 26.0    | 12.0          | 0.0088         | 44.2             |
| 60.00                  | 19.0               | 24.0              | 15.8                 | 0.0138    | 24.0    | 12.4          | 0.0063         | 39.2             |
| 250.00                 | 19.0               | 18.0              | 9.8                  | 0.0138    | 18.0    | 13.3          | 0.0032         | 24.3             |
| 1440.00                | 19.0               | 15.0              | 6.8                  | 0.0138    | 15.0    | 13.8          | 0.0014         | 16.8             |
|                        |                    |                   | Pace Ar              | nalytical | Service | es, Inc       |                |                  |


# Fractional Components

| Cobbles | Gravel |      |       | Sand   |        |      |       | Fines |      |       |
|---------|--------|------|-------|--------|--------|------|-------|-------|------|-------|
| Copples | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0       | 0      | 0    | 0     | 0      | 12     | 12   | 24    | 41    | 35   | 76    |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.0024          | 0.0041          | 0.0066          | 0.0113          | 0.0223          | 0.1482          | 0.2886          | 0.4948          | 0.7160          |

| <b>Fineness</b> |
|-----------------|
| Modulus         |
| 0.43            |

Pace Analytical Services, Inc.



| TEST RESULTS (ASTM D422) |       |           |          |  |  |  |  |
|--------------------------|-------|-----------|----------|--|--|--|--|
| Opening Percent          |       | Spec.*    | Pass?    |  |  |  |  |
| Size                     | Finer | (Percent) | (X=Fail) |  |  |  |  |
| 3                        | 100   |           |          |  |  |  |  |
| 2                        | 100   |           |          |  |  |  |  |
| 1.5                      | 100   |           |          |  |  |  |  |
| 1                        | 100   |           |          |  |  |  |  |
| .75                      | 100   |           |          |  |  |  |  |
| .375                     | 100   |           |          |  |  |  |  |
| #4                       | 100   |           |          |  |  |  |  |
| #10                      | 100   |           |          |  |  |  |  |
| #20                      | 98    |           |          |  |  |  |  |
| #40                      | 93    |           |          |  |  |  |  |
| #60                      | 89    |           |          |  |  |  |  |
| #140                     | 82    |           |          |  |  |  |  |
| #200                     | 79    |           |          |  |  |  |  |
| 0.0312 mm.               | 56    |           |          |  |  |  |  |
| 0.0201 mm.               | 52    |           |          |  |  |  |  |
| 0.0119 mm.               | 46    |           |          |  |  |  |  |
| 0.0085 mm.               | 42    |           |          |  |  |  |  |
| 0.0062 mm.               | 33    |           |          |  |  |  |  |
| 0.0032 mm.               | 21    |           |          |  |  |  |  |
| 0.0013 mm.               | 17    |           |          |  |  |  |  |
|                          |       |           |          |  |  |  |  |

0

0

0

0

| Material Description                                  |  |  |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|--|--|
| silt with sand                                        |  |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |  |
| Attachana Limita (ACTM D 4240)                        |  |  |  |  |  |  |  |
| Atterberg Limits (ASTM D 4318) PL= NP                 |  |  |  |  |  |  |  |
| USCS (D 2487)= ML                                     |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |
| Remarks                                               |  |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |  |
| Date Received: 10/6/16 Date Tested: 10/18/16          |  |  |  |  |  |  |  |
| Tested By: Will Thomas                                |  |  |  |  |  |  |  |
| Checked By: Rhonda Johnson                            |  |  |  |  |  |  |  |
| Title: Lab Manager                                    |  |  |  |  |  |  |  |
|                                                       |  |  |  |  |  |  |  |

52

14

**Location:** BW16MLW-007-1.6-1.85 **Sample Number:** 10365180-6

(no specification provided)

Pace Analytical Services, Inc.

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Billings, MT Project No:

Figure

**Date Sampled:** 10/4/16

27

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-007-1.6-1.85 Sample Number: 10365180-6 Material Description: silt with sand

Sample Date: 10/4/16

Date Received: 10/6/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

**Grain Size Test Method:** ASTM D422

Tested By: Will Thomas

Checked By: Rhonda Johnson

Test Date: 10/18/16

Title: Lab Manager

|                                      |                 | Sieve Test Data          |                               |                            |                  |  |  |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|--|--|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |  |  |
| 635.41                               | 571.56          | 3                        | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | #4                       | 0.00                          | 0.00                       | 100              |  |  |
|                                      |                 | #10                      | 0.00                          | 0.00                       | 100              |  |  |
| 51.40                                | 0.00            | #20                      | 0.98                          | 0.00                       | 98               |  |  |
|                                      |                 | #40                      | 2.74                          | 0.00                       | 93               |  |  |
|                                      |                 | #60                      | 2.00                          | 0.00                       | 89               |  |  |
|                                      |                 | #140                     | 3.54                          | 0.00                       | 82               |  |  |
|                                      |                 | #200                     | 1.44                          | 0.00                       | 79               |  |  |

### **Hydrometer Test Data**

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.4 Automatic temperature correction

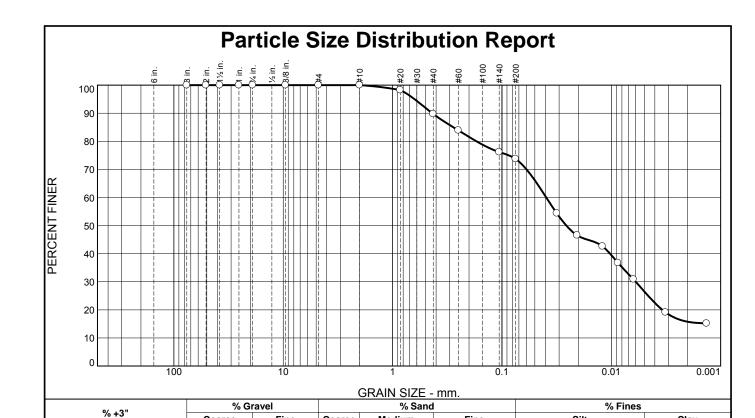
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | ĸ      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 37.0              | 28.8                 | 0.0138 | 37.0 | 10.2          | 0.0312         | 55.9             |
| 5.00                   | 19.0               | 35.0              | 26.8                 | 0.0138 | 35.0 | 10.6          | 0.0201         | 52.0             |
| 15.00                  | 19.0               | 32.0              | 23.8                 | 0.0138 | 32.0 | 11.0          | 0.0119         | 46.2             |
| 30.00                  | 19.0               | 30.0              | 21.8                 | 0.0138 | 30.0 | 11.4          | 0.0085         | 42.3             |
| 60.00                  | 19.0               | 25.0              | 16.8                 | 0.0138 | 25.0 | 12.2          | 0.0062         | 32.6             |
| 250.00                 | 19.0               | 19.0              | 10.8                 | 0.0138 | 19.0 | 13.2          | 0.0032         | 20.9             |
| 1440.00                | 19.0               | 17.0              | 8.8                  | 0.0138 | 17.0 | 13.5          | 0.0013         | 17.0             |
|                        |                    |                   |                      |        |      |               |                |                  |

\_\_\_\_\_ Pace Analytical Services, Inc. \_\_\_\_\_


# Fractional Components

| Cobbles | Gravel |      |       |        | Sand   |      |       | Fines |      |       |
|---------|--------|------|-------|--------|--------|------|-------|-------|------|-------|
| Copples | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0       | 0      | 0    | 0     | 0      | 7      | 14   | 21    | 52    | 27   | 79    |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.0028          | 0.0057          | 0.0078          | 0.0165          | 0.0375          | 0.0796          | 0.1600          | 0.2901          | 0.5585          |

| Fineness<br>Modulus |
|---------------------|
| 0.30                |

\_\_\_\_\_ Pace Analytical Services, Inc. \_\_\_\_\_



| Opening Percent |       | Spec.*    | Pass?    |
|-----------------|-------|-----------|----------|
| Size            | Finer | (Percent) | (X=Fail) |
| 3               | 100   |           |          |
| 2               | 100   |           |          |
| 1.5             | 100   |           |          |
| 1               | 100   |           |          |
| .75             | 100   |           |          |
| .375            | 100   |           |          |
| #4              | 100   |           |          |
| #10             | 100   |           |          |
| #20             | 98    |           |          |
| #40             | 90    |           |          |
| #60             | 84    |           |          |
| #140            | 76    |           |          |
| #200            | 74    |           |          |
| 0.0315 mm.      | 54    |           |          |
| 0.0205 mm.      | 47    |           |          |
| 0.0120 mm.      | 43    |           |          |
| 0.0087 mm.      | 37    |           |          |
| 0.0063 mm.      | 31    |           |          |
| 0.0032 mm.      | 19    |           |          |
| 0.0013 mm.      | 15    |           |          |

Coarse

0

0

Fine

0

Coarse

0

Medium

10

Fine

16

|                                               | <b>Material Des</b>                          | <u>cription</u>                       |          |  |  |  |  |
|-----------------------------------------------|----------------------------------------------|---------------------------------------|----------|--|--|--|--|
| silt with sand                                |                                              |                                       |          |  |  |  |  |
|                                               |                                              |                                       |          |  |  |  |  |
| Atte                                          | erberg Limits (A                             | ASTM D 4318)<br>PI=                   |          |  |  |  |  |
|                                               | Classifier                                   | otion                                 |          |  |  |  |  |
| USCS (D 2487)=                                | Classifica<br>ML AAS                         | 6HTO (M 145)=                         | A-4(0)   |  |  |  |  |
|                                               | Coefficie                                    | ents                                  |          |  |  |  |  |
| <b>D90=</b> 0.4334                            | $D_{85} = 0.2782$                            | D <sub>60</sub> = (                   | 0.0393   |  |  |  |  |
| D <sub>50</sub> = 0.0258<br>D <sub>10</sub> = | D <sub>30</sub> = 0.0060<br>C <sub>U</sub> = | D <sub>15</sub> =<br>C <sub>c</sub> = |          |  |  |  |  |
| 10                                            | Remarks                                      |                                       |          |  |  |  |  |
|                                               | Keman                                        | 13                                    |          |  |  |  |  |
|                                               |                                              |                                       |          |  |  |  |  |
|                                               |                                              |                                       |          |  |  |  |  |
| Date Received:                                |                                              | Date Tested:                          | 10/18/16 |  |  |  |  |
| Tested By:                                    | Will Thomas                                  |                                       |          |  |  |  |  |
| Checked By:                                   | Rhonda Johnson                               |                                       |          |  |  |  |  |
| Title:                                        | Lab Manager                                  |                                       |          |  |  |  |  |
|                                               |                                              |                                       | <u> </u> |  |  |  |  |

Silt

47

Clay

27

Location: BW16MLW-008-1.15-1.40 Sample Number: 10365180-7

(no specification provided)

Pace Analytical Services, Inc. Client

Billings, MT

Client: Bay West, Inc

**Project:** J160139 SLR Sediment AOCs

Project No:

Figure

**Date Sampled:** 10/4/16

### **GRAIN SIZE DISTRIBUTION TEST DATA**

10/20/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOCs Location: BW16MLW-008-1.15-1.40 Sample Number: 10365180-7 Material Description: silt with sand

Sample Date: 10/4/16

Date Received: 10/6/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

**Grain Size Test Method:** ASTM D422

Tested By: Will ThomasTest Date: 10/18/16Checked By: Rhonda JohnsonTitle: Lab Manager

| Sieve | Test | Data |
|-------|------|------|
|       |      |      |

| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|
| 623.12                               | 569.26          | 3                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 2                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1.5                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | 1                        | 0.00                          | 0.00                       | 100              |
|                                      |                 | .75                      | 0.00                          | 0.00                       | 100              |
|                                      |                 | .375                     | 0.00                          | 0.00                       | 100              |
|                                      |                 | #4                       | 0.00                          | 0.00                       | 100              |
|                                      |                 | #10                      | 0.00                          | 0.00                       | 100              |
| 51.03                                | 0.00            | #20                      | 0.89                          | 0.00                       | 98               |
|                                      |                 | #40                      | 4.34                          | 0.00                       | 90               |
|                                      |                 | #60                      | 2.99                          | 0.00                       | 84               |
|                                      |                 | #140                     | 3.94                          | 0.00                       | 76               |
|                                      |                 | #200                     | 1.24                          | 0.00                       | 74               |

### **Hydrometer Test Data**

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.03 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

| Elapsed<br>Time (min.) | Temp.<br>(deg. C.) | Actual<br>Reading | Corrected<br>Reading | K      | Rm   | Eff.<br>Depth | Diameter (mm.) | Percent<br>Finer |
|------------------------|--------------------|-------------------|----------------------|--------|------|---------------|----------------|------------------|
| 2.00                   | 19.0               | 36.0              | 27.8                 | 0.0138 | 36.0 | 10.4          | 0.0315         | 54.4             |
| 5.00                   | 19.0               | 32.0              | 23.8                 | 0.0138 | 32.0 | 11.0          | 0.0205         | 46.5             |
| 15.00                  | 19.0               | 30.0              | 21.8                 | 0.0138 | 30.0 | 11.4          | 0.0120         | 42.6             |
| 30.00                  | 19.0               | 27.0              | 18.8                 | 0.0138 | 27.0 | 11.9          | 0.0087         | 36.7             |
| 60.00                  | 19.0               | 24.0              | 15.8                 | 0.0138 | 24.0 | 12.4          | 0.0063         | 30.9             |
| 250.00                 | 19.0               | 18.0              | 9.8                  | 0.0138 | 18.0 | 13.3          | 0.0032         | 19.1             |
| 1440.00                | 19.0               | 16.0              | 7.8                  | 0.0138 | 16.0 | 13.7          | 0.0013         | 15.2             |
|                        |                    |                   |                      |        |      |               |                |                  |

\_\_\_ Pace Analytical Services, Inc. \_\_\_

# Fractional Components

| Cobbles |        | Gravel |       |                       | Sa | nd | Fines |                 |    |    |
|---------|--------|--------|-------|-----------------------|----|----|-------|-----------------|----|----|
| Copples | Coarse | Fine   | Total | Coarse Medium Fine To |    |    |       | Silt Clay Total |    |    |
| 0       | 0      | 0      | 0     | 0                     | 10 | 16 | 26    | 47              | 27 | 74 |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.0034          | 0.0060          | 0.0103          | 0.0258          | 0.0393          | 0.1709          | 0.2782          | 0.4334          | 0.6297          |

| Fineness<br>Modulus |
|---------------------|
| 0.42                |

\_\_\_\_\_ Pace Analytical Services, Inc. \_\_\_\_\_



### Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

## **Report Prepared for:**

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

# **Report Information:**

Pace Project #: 10365194

Sample Receipt Date: 10/06/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: 108002 State Cert #: 027-053-137

### **Invoicing & Reporting Options:**

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

This report has been reviewed by:

slyne haut October 18, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com



# **Report of Laboratory Analysis**

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 18, 2016



Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

## **DISCUSSION**

This report presents the results from the analyses performed on six samples submitted by a representative of Bay West LLC. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations. The samples were received above the recommended temperature range of 0-6 degrees Celsius.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 32-97%. Except for two low values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 82-117%. These results were within the target range for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

The response obtained for the native OCDF in calibration standard analyses U161012A\_17 was outside the target range. As specified in our procedures, the average of the daily response factors for this compound was used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables.

### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.



# Minnesota Laboratory Certifications

| Authority      | Certificate # | Authority       | Certificate # |
|----------------|---------------|-----------------|---------------|
| A2LA           | 2926.01       | Mississippi     | MN00064       |
| Alabama        | 40770         | Montana         | 92            |
| Alaska         | MN00064       | Nebraska        | NE-OS-18-06   |
| Arizona        | AZ0014        | Nevada          | MN_00064_200  |
| Arkansas       | 88-0680       | New Jersey (NE  | MN002         |
| California     | 01155CA       | New York (NEL   | 11647         |
| Colorado       | MN00064       | North Carolina  | 27700         |
| Connecticut    | PH-0256       | North Dakota    | R-036         |
| EPA Region 8   | 8TMS-Q        | Ohio            | 4150          |
| Florida (NELAP | E87605        | Oklahoma        | D9922         |
| Georgia (DNR)  | 959           | Oregon (ELAP)   | MN200001-005  |
| Guam           | 959           | Oregon (OREL    | MN300001-001  |
| Hawaii         | SLD           | Pennsylvania    | 68-00563      |
| Idaho          | MN00064       | Puerto Rico     | MN00064       |
| Illinois       | 200012        | Saipan          | MP0003        |
| Indiana        | C-MN-01       | South Carolina  | 74003001      |
| Indiana        | C-MN-01       | Tennessee       | TN02818       |
| Iowa           | 368           | Texas           | T104704192-08 |
| Kansas         | E-10167       | Utah (NELAP)    | MN00064       |
| Kentucky       | 90062         | Virginia        | 00251         |
| Louisiana      | 03086         | Washington      | C755          |
| Maine          | 2007029       | West Virginia # | 9952C         |
| Maryland       | 322           | West Virginia D | 382           |
| Michigan       | 9909          | Wisconsin       | 999407970     |
| Minnesota      | 027-053-137   | Wyoming         | 8TMS-Q        |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10365194

# Appendix A

Sample Management

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|               | ction A<br>quired Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n:                                                                                                              |                                     | Section B<br>Required Projec                  | t Inform          | nation:                        |                 |                                 |                 | ctio                                             |                    | madie-           |          |                |          |          |                 | Secti                        |                        | ······                                           |                                         | l                    |              |                      |                |              |                                                  |          | los          | کیارد                 | 144                            | i                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-------------------|--------------------------------|-----------------|---------------------------------|-----------------|--------------------------------------------------|--------------------|------------------|----------|----------------|----------|----------|-----------------|------------------------------|------------------------|--------------------------------------------------|-----------------------------------------|----------------------|--------------|----------------------|----------------|--------------|--------------------------------------------------|----------|--------------|-----------------------|--------------------------------|----------------------|
| _             | mpany: Bay West, Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                     | Report To:                                    |                   | ncy McE                        | Donald          | <u> </u>                        |                 | entio                                            |                    | nation           |          | ccour          | nts Pa   | ayab     | le              |                              | S Informa<br>ly_Name:  |                                                  | ris River                               | Sedime               | nt Areas     | of Conce             | m              | Page         |                                                  |          |              |                       | i i                            |                      |
| Add           | fress: 5 Empire Dri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ve                                                                                                              |                                     | Copy To: Paul                                 | Rayn              | naker                          |                 |                                 | C <sub>0</sub>  | mpar                                             | ny Na              | me:              |          | Bay            | / Wes    | st, LL   | .c              | Facility_Code: St Louis Rive |                        |                                                  |                                         | er Sed               |              |                      | rage           | 9            |                                                  | 1        | of           |                       | 1                              |                      |
| St.           | Paul, MN 55103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                                     |                                               |                   |                                |                 |                                 | Ad              | dress                                            | 52                 |                  |          | 5 Em           | pire (   | Orive    |                 | Facility                     | y_ID:                  | 5470                                             |                                         |                      |              |                      |                | COC          | #                                                |          |              |                       |                                |                      |
| Em            | ail To: nmcdonald@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | baywest.com                                                                                                     |                                     | Purchase Order i                              | No.:              | 1080                           | 02              |                                 | Lat             | Lab Quote Reference: 3000017136                  |                    |                  | Subfa    | cility_coc     | e:       |          |                 |                              |                        |                                                  | 1                                       |                      |              | SL                   | LR-MLV         | N-1.         |                                                  |          |              |                       |                                |                      |
| Pho           | one:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 551-291-3483                                                                                                    |                                     | Project Name:                                 | SLF               | R Sedim                        | ent AOCs        |                                 | i.at            | Proje                                            | ot Ma              | nager:           |          | Oy             | /eyen    | ni Od    | lujole          | +                            |                        |                                                  |                                         | -                    |              |                      |                |              |                                                  | Site     | ocation      |                       |                                |                      |
| Red           | quested Due Date/TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard                                                                                                        |                                     | Project Number:                               | J16               | 0139                           |                 |                                 |                 |                                                  |                    |                  | _        |                |          |          | en het de de    | 1875an - 1824an - 18         | 116 (6-9° 5 313 no.    | South fire done                                  | To target and page 2                    | r action was control |              | union and the second | nurses Inc. in |              | 1100                                             |          | STATE        |                       | MN                             |                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ction E<br>Dient information                                                                                    |                                     | Valid Matrix Codes TRIX CODE                  |                   |                                | C               | collection                      |                 |                                                  |                    | Pre              |          | atives         | s        |          |                 |                              |                        |                                                  | Ret                                     | lueste               | d Anah       | /sis                 |                |              |                                                  |          |              |                       |                                |                      |
| ITEM #        | Sample<br>Location ID<br>(sys_loc_code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample ID<br>(sys_sample_code)                                                                                  | Was                                 | ste Water W duct WW /Solid P SO e OL WP ue AR | MATRIX CODE       | SAMPLE TYPE<br>(G=GRAB C=COMP) | DATE            | Time                            | # OF CONTAINERS | Unpreserved                                      | H <sub>2</sub> SO₄ | HNO <sub>3</sub> | HCI      | NaoH<br>Nasso, | Methenol | Other    | Nickel (6020A)  | Zinc (6020A)                 | Dioxins/furans (8290A) | % Moisture                                       |                                         |                      |              |                      |                |              |                                                  |          |              | Comr                  | ments                          | ,                    |
| Ex.           | BW15MLW-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW14MLW-005-0                                                                                                   | -0.15                               | 5                                             | 50                | G                              | 3/12/15         | 1204                            | 1               |                                                  |                    |                  | T        |                |          |          | Suche<br>Suches |                              | <b>-</b>               |                                                  |                                         |                      |              |                      |                |              |                                                  | 1        |              |                       | ·                              | , ,                  |
| 4             | BW16MLW-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-005-0                                                                                                   | 90-                                 | 1.15                                          | so                |                                | 10/4/16         | 1309                            | 3               | 3                                                | <u> </u>           | $\Box$           | 1        |                |          |          |                 | +                            | 1                      |                                                  | <del> </del>                            |                      | 1            |                      |                |              | 1                                                | wi       | Callant      | t % moist             |                                | d anias              |
| 2             | BW16MLW-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-006-1                                                                                                   |                                     |                                               | so                | 1                              | 10/4/16         | 1258                            | 3               | 3                                                |                    |                  |          | +              | T        |          | 1               | 1                            | 1                      |                                                  |                                         |                      |              |                      |                |              | <del>                                     </del> | الاش     | <b>1</b>     | t % moist             |                                |                      |
|               | BW16MLW-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-007-1                                                                                                   |                                     |                                               | so                | <b>-</b>                       | 10/4/16         | 1242                            | 3               | 3                                                |                    |                  | -        | +              | ╁        |          | <u> </u>        | + +                          | 1.                     |                                                  |                                         |                      | +            |                      | $\vdash$       |              | +                                                | w3       |              |                       |                                |                      |
|               | BW16MLW-008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-008-1                                                                                                   |                                     |                                               | so                |                                | 10/4/16         |                                 |                 | 3                                                |                    | H                | $\top$   |                | +        |          |                 | † †                          | 1                      |                                                  |                                         |                      |              |                      |                | -            | +                                                | 4        |              | % moist               |                                |                      |
|               | BW16MLW-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-009-1                                                                                                   | _                                   |                                               | 1                 | 1                              |                 | 1226                            | $\neg$          | $\top$                                           |                    | $\vdash$         | 十        | 十              |          |          | 1               | 1                            | 1                      |                                                  |                                         |                      |              |                      |                |              | +                                                | 200      | 1            | % moisti              |                                |                      |
|               | BW16MLW-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW16MLW-010-1                                                                                                   | -                                   |                                               | so                |                                | 10/4/16         | 1203                            | 3               | T                                                |                    |                  | +        | +              | +        |          | 1               | 1                            | +                      |                                                  |                                         | +                    | +            |                      | $\vdash$       |              | +-                                               | 066      |              | % moist               |                                |                      |
| 7             | BVV TOWIEVV-0 (O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DVV TOWIEVV-0 TO-1                                                                                              | .40-                                | 1.70                                          | so                | G                              | 10/4/16         | 1138                            | 3               | 3                                                | <u> </u>           |                  | +        |                | H        |          | 1               | 1                            | ╁╌                     |                                                  |                                         |                      | <del> </del> |                      | <del> </del>   | -            | -                                                | 0.0      | Collect      | % moist               | ure from                       | 4 oz jar             |
| 8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     |                                               | 1                 |                                |                 |                                 | 1               |                                                  |                    |                  | $\top$   |                |          |          |                 |                              | -                      | <del>                                     </del> |                                         |                      |              |                      |                |              | -                                                |          | <b> </b>     |                       |                                |                      |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | •                                   |                                               |                   |                                |                 | -                               | 十               | Г                                                |                    |                  | $\top$   | 1              |          |          |                 |                              |                        |                                                  |                                         |                      |              |                      |                |              | 1                                                | 1        |              |                       |                                |                      |
| 10            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                     |                                               | T                 | <b>-</b>                       |                 |                                 | 十               | <del>                                     </del> |                    | $\Box$           | $\dashv$ |                |          | -        |                 | 1                            |                        |                                                  | İ                                       |                      | 1            |                      |                |              |                                                  | $\vdash$ |              | -                     |                                |                      |
| 11            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     |                                               | T                 |                                |                 |                                 | 十               | 十                                                |                    |                  | 1        | +              | T        |          |                 |                              |                        |                                                  |                                         |                      |              |                      |                |              | 1                                                | 1        |              |                       |                                |                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l<br>I                                                                                                          |                                     |                                               | ╁┈                | <del> </del>                   |                 |                                 | +               | $\vdash$                                         |                    | H                | +        | +              | +        |          |                 | +-                           | 1                      |                                                  |                                         | +                    | -            | _                    | -              | <del> </del> | +                                                | ┼        | <del> </del> |                       |                                |                      |
| 12            | The second secon | NAL COMMENTS                                                                                                    | 2500                                | B                                             | <u> </u><br>ELINO | JISHEO I                       | Y / AFFILIATION | DATE                            |                 | TIMI                                             | L<br>Biggs         |                  | 5 F W    | 127 AS         | 257      | CCE      | PTED B          | //AFFR                       | LIATION                |                                                  |                                         | 37 W.                | DATE         | l<br>h (S)           | 1500           | TIME         |                                                  | ╁─┤      | SAMPL        | E COND                | ITIONS                         |                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 to | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3                                             | m                 | Tout                           | <b>/</b>        | ide/ie                          |                 |                                                  |                    |                  |          | _              |          |          |                 | sov                          |                        |                                                  | 10.000000000000000000000000000000000000 |                      | وادل         |                      |                | 45           | 3330) Lago.                                      |          |              |                       |                                |                      |
| Refe<br>9/16/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tor Order Form signed by                                                                                        | Pace                                | on Lus                                        | êu.               | به کور                         | lson            | 10/6/                           |                 |                                                  |                    |                  | 2        |                |          | $\vec{}$ | \               |                              | •                      |                                                  |                                         |                      | 9/10         |                      |                | 218          |                                                  | 4 _ 1    | 9            | 7                     | И                              | 4                    |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     | 0                                             | 1                 | ~                              |                 | 1961                            | 1a 25           | Ü                                                | }`                 |                  |          |                |          |          | _               |                              |                        |                                                  |                                         |                      |              |                      |                |              |                                                  |          |              | Received on Ica (Y/N) | Custady Sealed Cooter<br>(Y/N) | Samples Inlact (Y/N) |
| <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     | 1 .                                           |                   |                                | SAM             | PLER NAME AND                   | I<br>SIGNA      | URE                                              |                    | 1                |          | 容機             |          |          |                 | 機能                           | 系列数                    |                                                  |                                         | \$ 100 pt            |              |                      | May A          |              |                                                  | Ē        | <u>6</u>     | ol no l               | Sealed<br>(Y/N)                | 3 in Lac             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     | -                                             |                   |                                | PRINT           | PRINT Name of SAMPLER: CMS MUSS |                 |                                                  |                    |                  |          |                |          |          | [ [             |                              | celvac                 | stody )                                          | in ples                                 |                      |              |                      |                |              |                                                  |          |              |                       |                                |                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                     |                                               |                   |                                | SIGNA           | TURE of SAMPLER                 | t:              | _                                                |                    | - A              | _        |                |          |          |                 |                              | MM/DD/                 |                                                  | 1.6                                     | 16                   | 111          |                      |                |              |                                                  | 1        | i            | 2                     | Cut                            | ß                    |



### Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016
Page 1 of 2

lssuing Authority:
Pace Minnesota Quality Office

| Sample Condition Upon Receipt Client Name:                                                                 | C                     | Projec             | '#: WO#:10365194                                                                                                           |
|------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| Courier: Ged 5                                                                                             | <u></u>               | <del>-</del>       |                                                                                                                            |
| □leg Ex □053                                                                                               |                       | Client             |                                                                                                                            |
| ☐Commercial ☐Pace ☐SpeeDee Tracking Number:                                                                | Other:                | <del></del>        | 10365194                                                                                                                   |
| Custody Seal on Cooler/Box Present?                                                                        | No Seals i            | ntact?             | Yes No Optional: Proj. Due Date: Proj. Name:                                                                               |
| Packing Material: Bubble Wrap Bubble Ba                                                                    | gs None [             | Other:_            | Temp Blank? Yes No                                                                                                         |
| Thermometer                                                                                                | 0098                  |                    |                                                                                                                            |
| Cooler-Temp Read (°C): 69,06,47 Cooler-Temp (                                                              | Corrected (°C):())    | 8.0                | YES Biological Tissue Frozen? Yes No AN/A                                                                                  |
| Temp should be above freezing to 6°C Correction F                                                          | actor: +0.7           | Da                 | THO Biological Tissue-Frozen? Yes No PN/A te and Initials of Person Examining Contents:                                    |
| USDA Regulated Soil ( \sum N/A, water sample)  Did samples originate in a quarantine zone within the Unite | •                     |                    |                                                                                                                            |
| MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?                                                     | d States: AL, AR, AZ, | CA, FL, GA<br>☐Yes | , ID, LA. Did samples originate from a foreign source (internationally,<br>☑No including Hawaii and Puerto Rico)? ☐Yes ☑No |
| If Yes to either question, fill out a R                                                                    | egulated Soil Check   | list (F-MN         | -Q-338) and include with SCUR/COC paperwork.                                                                               |
|                                                                                                            |                       |                    | COMMENTS:                                                                                                                  |
| Chain of Custody Present?                                                                                  | XYes No               | □N/A               | 1.                                                                                                                         |
| Chain of Custody Filled Out?                                                                               |                       | □N/A               | 2.                                                                                                                         |
| Chain of Custody Relinquished?                                                                             | X Yes □ No            | □N/A               | 3.                                                                                                                         |
| Sampler Name and/or Signature on COC?                                                                      | XYes □ No             | □N/A               | 4                                                                                                                          |
| Samples Arrived within Hold Time?                                                                          | ☑Yes 🔲 No             | □N/A               | 5.                                                                                                                         |
| Short Hold Time Analysis (<72 hr)?                                                                         | ☐Yes 🗷 No             | N/A                | 6.                                                                                                                         |
| Rush Turn Around Time Requested?                                                                           | Yes No                | □N/A               | 7.                                                                                                                         |
| Sufficient Volume?                                                                                         | ☑ Yes 🔲 No            | N/A                | 8.                                                                                                                         |
| Correct Containers Used?                                                                                   | ĭZYes ☐ No            | □n/a               | 9.                                                                                                                         |
| -Pace Containers Used?                                                                                     | ▼Yes ✓ No             | □N/A               |                                                                                                                            |
| Containers Intact?                                                                                         | ∑¶Yes □ No            | N/A                | 10.                                                                                                                        |
| Filtered Volume Received for Dissolved Tests?                                                              | ☐Yes ☐No              | <b>丞</b> N/A       | 11. Note if sediment is visible in the dissolved container                                                                 |
| Sample Labels Match COC?                                                                                   | ∑Yes □No              | □n/a               | 12.                                                                                                                        |
| -Includes Date/Time/ID/Analysis Matrix: SL                                                                 |                       |                    | •                                                                                                                          |
| All containers needing acid/base preservation have been                                                    |                       | <u>.</u>           | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                                                                |
| checked?  All containers needing preservation are found to be in                                           | □Yes □No              | [X]N/A             | Sample #                                                                                                                   |
| compliance with EPA recommendation?                                                                        |                       |                    | Janipic W                                                                                                                  |
| (HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide<br>Exceptions: VOA, Coliform, TOC, Oil and Grease,   | e) Yes No             | Ŋ/A                | late-last-                                                                                                                 |
| DRO/8015 (water) DOC                                                                                       | ∐Yes □No              | Ŋ/A                | Initial when Lot # of added completed: preservative:                                                                       |
| Headspace in VOA Vials ( >6mm)?                                                                            | □Yes □No              | ■ N/A              | 14.                                                                                                                        |
| Trip Blank Present?                                                                                        | ∐Yes ∏No              | ŢN/A               | 15.                                                                                                                        |
| Trip Blank Custody Seals Present?                                                                          | ∐Yes ∏No              | ⊠N/A               |                                                                                                                            |
| Pace Trip Blank Lot # (if purchased):                                                                      |                       |                    |                                                                                                                            |
| CLIENT NOTIFICATION/RESOLUTION                                                                             |                       |                    | Field Data Required? Yes No                                                                                                |
| Person Contacted:                                                                                          |                       |                    | Date/Time:                                                                                                                 |
| Comments/Resolution:                                                                                       |                       |                    |                                                                                                                            |
|                                                                                                            |                       |                    |                                                                                                                            |
|                                                                                                            | ,                     |                    |                                                                                                                            |
| Project Manager Review:                                                                                    | compliance samples,   | a copy of th       | Date: 10/101/6  ois form will be sent to the North Carolina DEHNR Certification Office (i.e. out of                        |

hold, incorrect preservative, out of temp, incorrect containers).



# **Reporting Flags**

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- \* = See Discussion

# **Appendix B**

Sample Analysis Summary



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-005-0.90-1.15

Lab Sample ID 10365194001 Filename U161012A\_08 Injected By SMT

Total Amount Extracted 15.3 g Matrix Solid % Moisture 71.4 Dilution NA

4.38 g Collected Dry Weight Extracted 10/04/2016 13:09 **ICAL ID** U161011 Received 10/06/2016 20:25 U161012A 01 & U161012A 17 CCal Filename(s) Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 15:27

**Native** Conc **EMPC EDL** Internal ng's Percent **Standards** Added **Isomers** ng/Kg ng/Kg ng/Kg Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 0.83 0.180 2.00 59 **Total TCDF** 3.70 2,3,7,8-TCDD-13C 2.00 78 0.180 1,2,3,7,8-PeCDF-13C 2.00 69 2.00 2,3,7,8-TCDD ND 0.180 2,3,4,7,8-PeCDF-13C 66 Total TCDD 3.60 1,2,3,7,8-PeCDD-13C 86 0.180 2.00 1,2,3,4,7,8-HxCDF-13C 2.00 67 1,2,3,7,8-PeCDF 0.22 0.190 1,2,3,6,7,8-HxCDF-13C 62 2.00 65 2,3,4,7,8-PeCDF 0.26 0.087 2,3,4,6,7,8-HxCDF-13C 2.00 54 Total PeCDF 2.90 0.140 J 1,2,3,7,8,9-HxCDF-13C 2.00 74 1,2,3,4,7,8-HxCDD-13C 2.00 1,2,3,7,8-PeCDD 0.24 61 0.210 2.00 1,2,3,6,7,8-HxCDD-13C Total PeCDD 3.00 0.210 J 1,2,3,4,6,7,8-HpCDF-13C 2.00 61 1,2,3,4,7,8,9-HpCDF-13C 2.00 65 2.00 1,2,3,4,7,8-HxCDF 0.40 0.300 1,2,3,4,6,7,8-HpCDD-13C 81 1,2,3,6,7,8-HxCDF 1.00 0.420 J OCDD-13C 4.00 54 2,3,4,6,7,8-HxCDF ND 0.140 1,2,3,7,8,9-HxCDF ND 0.150 1,2,3,4-TCDD-13C 2.00 NA Total HxCDF 11.00 0.250 J 1,2,3,7,8,9-HxCDD-13C 2.00 NA 72 1,2,3,4,7,8-HxCDD ND 0.140 2,3,7,8-TCDD-37Cl4 0.20 1,2,3,6,7,8-HxCDD 0.56 0.180 0.30 0.180 IJ 1,2,3,7,8,9-HxCDD 6.10 Total HxCDD 0.160 1,2,3,4,6,7,8-HpCDF 14.00 0.560 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND 0.510 Equivalence: 0.88 ng/Kg 25.00 0.540 (Using 2005 WHO Factors) Total HpCDF 1,2,3,4,6,7,8-HpCDD 7.80 0.240 Total HpCDD 16.00 0.240 **OCDF** 6.60 0.810 JY **OCDD** 74.00 0.870

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-006-1.75-2.0

Lab Sample ID 10365194002 Filename U161012A\_09 Injected By SMT

Total Amount Extracted 13.6 g Matrix Solid % Moisture 82.0 Dilution NA

10/04/2016 12:58 Dry Weight Extracted 2.45 g Collected ICÁL ID U161011 Received 10/06/2016 20:25 CCal Filename(s) U161012A\_01 & U161012A\_17 Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 16:14

| Native<br>Isomers                                                                | <b>Conc</b><br>ng/Kg        | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                | Internal<br>Standards                                                                            | ng's<br>Added                | Percent<br>Recovery  |
|----------------------------------------------------------------------------------|-----------------------------|-------------------|------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                       | 2.20<br>9.40                |                   | 0.25 J<br>0.25                     | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00         | 63<br>84<br>71       |
| 2,3,7,8-TCDD<br>Total TCDD                                                       | 0.47<br>3.00                |                   | 0.39 J<br>0.39 J                   | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00         | 64<br>81<br>65       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                | 0.92<br>15.00               | 0.52<br>          | 0.36 IJ<br>0.29 J<br>0.32 J        | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00 | 55<br>66<br>56<br>74 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                   | 4.00                        | 0.39              | 0.24 J<br>0.24 J                   | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00 | 56<br>59<br>65       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 1.70<br>8.40<br>2.10<br>ND  | <br>              | 0.84 J<br>0.87 J<br>0.32 J<br>0.39 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                          | 2.00<br>4.00<br>2.00         | 77<br>47<br>NA       |
| Total HxCDF                                                                      | 57.00                       |                   | 0.61                               | 1,2,3,7,8,9-HxCDD-13C                                                                            | 2.00                         | NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD       | ND<br>3.20<br>1.90<br>21.00 | <br>              | 1.00<br>0.60 J<br>0.67 J<br>0.76   | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                         | 77                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                        | 94.00<br><br>170.00         | 1.10              | 0.60<br>1.10 JJ<br>0.84            | Total 2,3,7,8-TCDD<br>Equivalence: 4.6 ng/Kg<br>(Using 2005 WHO Factors)                         |                              |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                               | 39.00<br>84.00              |                   | 0.47<br>0.47                       |                                                                                                  |                              |                      |
| OCDF<br>OCDD                                                                     | 47.00<br>410.00             |                   | 2.80 Y<br>4.00                     |                                                                                                  |                              |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-007-1.6-1.85

Lab Sample ID 10365194003 Filename U161012A\_10 Injected By **SMT** 

14.2 g **Total Amount Extracted** Matrix Solid % Moisture 81.4 Dilution NA

10/04/2016 12:42 Dry Weight Extracted Collected 2.64 g ICÁL ID U161011 Received 10/06/2016 20:25 CCal Filename(s) U161012A\_01 & U161012A\_17 Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 17:01

| Native<br>Isomers                                                                | <b>Conc</b><br>ng/Kg          | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                | Internal<br>Standards                                                                            | ng's<br>Added                | Percent<br>Recovery  |
|----------------------------------------------------------------------------------|-------------------------------|-------------------|------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                       | 2.60<br>18.00                 |                   | 0.34 J<br>0.34                     | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00         | 68<br>92<br>79       |
| 2,3,7,8-TCDD<br>Total TCDD                                                       | 4.30                          | 0.60              | 0.36 IJ<br>0.36                    | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00         | 73<br>96<br>72       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                | 1.20<br>1.50<br>35.00         | <br>              | 0.37 J<br>0.20 J<br>0.29           | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00 | 58<br>71<br>65<br>81 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                   | 1.00<br>15.00                 |                   | 0.34 J<br>0.34 J                   | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00         | 68<br>68<br>74       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 3.30<br>18.00<br>3.80<br>ND   | <br>              | 0.72 J<br>0.59 J<br>0.58 J<br>0.37 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                          | 2.00<br>4.00<br>2.00         | 89<br>52<br>NA       |
| Total HxCDF                                                                      | 150.00                        |                   | 0.56                               | 1,2,3,7,8,9-HxCDD-13C                                                                            | 2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD       | 0.67<br>6.00<br>3.40<br>44.00 | <br>              | 0.43 J<br>0.71 J<br>0.30 J<br>0.48 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                         | 85                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                        | 230.00<br>2.60<br>400.00      |                   | 0.52<br>1.00 J<br>0.77             | Total 2,3,7,8-TCDD<br>Equivalence: 9.3 ng/Kg<br>(Using 2005 WHO Factors)                         |                              |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                               | 79.00<br>170.00               |                   | 0.90<br>0.90                       |                                                                                                  |                              |                      |
| OCDF<br>OCDD                                                                     | 110.00<br>840.00              |                   | 1.90 Y<br>2.70                     |                                                                                                  |                              |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-008-1.15-1.40

Lab Sample ID 10365194004 Filename U161012A\_11 Injected By SMT

Total Amount Extracted 16.5 g Matrix Solid % Moisture 85.7 Dilution NA

10/04/2016 12:26 Dry Weight Extracted 2.36 g Collected ICÁL ID U161011 Received 10/06/2016 20:25 CCal Filename(s) U161012A\_01 & U161012A\_17 Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 17:48

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg   | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                | Internal<br>Standards                                                                                | ng's<br>Added                | Percent<br>Recovery  |
|----------------------------------------------------------------------------|------------------------|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 1.70<br>5.10           |                   | 0.27 J<br>0.27                     | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.00<br>2.00<br>2.00         | 68<br>92<br>77       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>0.52             |                   | 0.35<br>0.35 J                     | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.00<br>2.00<br>2.00         | 70<br>89<br>59       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | ND<br><br>4.50         | 0.34<br>          | 0.30<br>0.18 IJ<br>0.24 J          | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C                              | 2.00<br>2.00<br>2.00         | 60<br>71<br>63       |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | ND<br>3.20             |                   | 0.24<br>0.24 J                     | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.00<br>2.00<br>2.00<br>2.00 | 78<br>64<br>64<br>69 |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | ND<br><br>ND           | 0.92              | 0.87<br>0.81 IJ<br>0.66            | 1,2,3,4,7,6,9-11pCDF-13C<br>1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                      | 2.00<br>4.00                 | 82<br>63             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | ND<br>15.00            |                   | 0.36<br>0.68 J                     | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                            | 2.00<br>2.00                 | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | ND<br>1.10<br><br>9.40 | 0.64              | 0.62<br>0.41 J<br>0.31 J<br>0.45 J | 2,3,7,8-TCDD-37Cl4                                                                                   | 0.20                         | 83                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 23.00<br>ND<br>40.00   |                   | 1.50<br>1.50<br>1.50               | Total 2,3,7,8-TCDD<br>Equivalence: 0.94 ng/Kg<br>(Using 2005 WHO Factors)                            |                              |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 12.00<br>28.00         |                   | 0.71 J<br>0.71                     |                                                                                                      |                              |                      |
| OCDF<br>OCDD                                                               | 130.00                 | 11.00             | 1.50 IJY<br>2.30                   |                                                                                                      |                              |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-009-1.75-2.0

Lab Sample ID 10365194005 Filename U161012A\_12 Injected By SMT

Total Amount Extracted 15.6 g Matrix Solid % Moisture 91.0 Dilution NA

Dry Weight Extracted 1.40 g Collected 10/04/2016 12:03 **ICAL ID** U161011 Received 10/06/2016 20:25 U161012A 01 & U161012A 17 CCal Filename(s) Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 18:34

**Native** Conc **EMPC EDL** Internal ng's Percent **Standards Isomers** ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 2.70 0.63 2.00 61 **Total TCDF** 10.00 2,3,7,8-TCDD-13C 2.00 75 0.63 1,2,3,7,8-PeCDF-13C 2.00 72 2.00 67 2,3,7,8-TCDD ND 0.66 2,3,4,7,8-PeCDF-13C Total TCDD 1,2,3,7,8-PeCDD-13C 84 0.66 J 2.00 1.50 1,2,3,4,7,8-HxCDF-13C 2.00 64 58 70 1,2,3,7,8-PeCDF ND 0.58 1,2,3,6,7,8-HxCDF-13C 2.00 2,3,4,7,8-PeCDF 0.86 0.35 2,3,4,6,7,8-HxCDF-13C 2.00 54 Total PeCDF 15.00 0.47 1,2,3,7,8,9-HxCDF-13C 2.00 78 1,2,3,4,7,8-HxCDD-13C 2.00 65 1,2,3,7,8-PeCDD 0.61 0.26 2.00 1,2,3,6,7,8-HxCDD-13C 63 Total PeCDD 5.00 0.26 J 1,2,3,4,6,7,8-HpCDF-13C 2.00 1,2,3,4,7,8,9-HpCDF-13C 2.00 69 2.00 83 1,2,3,4,7,8-HxCDF 1.70 0.95 1,2,3,4,6,7,8-HpCDD-13C 1,2,3,6,7,8-HxCDF 1.30 J 32 R 2.80 OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 1.10 0.94 1,2,3,7,8,9-HxCDF ND 0.50 1,2,3,4-TCDD-13C 2.00 NA Total HxCDF 50.00 0.91 1,2,3,7,8,9-HxCDD-13C 2.00 NA 1,2,3,4,7,8-HxCDD ND 0.74 2,3,7,8-TCDD-37Cl4 0.20 68 1,2,3,6,7,8-HxCDD 3.20 0.91 J 1.50 1,2,3,7,8,9-HxCDD 1.00 J Total HxCDD 24.00 0.88 71.00 1,2,3,4,6,7,8-HpCDF 1.80 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND 1.80 Equivalence: 3.3 ng/Kg 120.00 1.80 (Using 2005 WHO Factors) Total HpCDF 1,2,3,4,6,7,8-HpCDD 35.00 1.20 Total HpCDD 70.00 1.20 **OCDF** 34.00 4.20 JY **OCDD** 380.00 4.50

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

Y = Calculated using average of daily RFs



### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-010-1.45-1.70

Lab Sample ID 10365194006 Filename U161012A\_13 Injected By

**SMT** 

**Total Amount Extracted** 15.6 g Matrix Solid % Moisture 92.2 Dilution NA

1.22 g 10/04/2016 11:38 Dry Weight Extracted Collected ICÁL ID U161011 Received 10/06/2016 20:25 CCal Filename(s) U161012A\_01 & U161012A\_17 Extracted 10/10/2016 16:10 Method Blank ID BLANK-52316 Analyzed 10/12/2016 19:21

| Native<br>Isomers                                                                | Conc<br>ng/Kg         | EMPC<br>ng/Kg | <b>EDL</b><br>ng/Kg            | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------------|-----------------------|---------------|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                       | 2.9<br>8.2            |               | 0.42 J<br>0.42                 | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 70<br>93<br>83       |
| 2,3,7,8-TCDD<br>Total TCDD                                                       | ND<br>2.9             |               | 0.51<br>0.51 J                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 76<br>97<br>67       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                | ND<br><br>3.4         | 0.59<br>      | 0.63<br>0.32 JJ<br>0.48 J      | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 54<br>71<br>66<br>80 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                   | ND<br>2.5             |               | 0.64<br>0.64 J                 | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 68<br>67<br>71       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | ND<br>ND<br>ND<br>ND  | <br>          | 1.30<br>1.50<br>1.00<br>0.73   | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                          | 2.00<br>4.00<br>2.00                 | 83<br>36 R<br>NA     |
| Total HxCDF                                                                      | 11.0                  |               | 1.10 J                         | 1,2,3,7,8,9-HxCDD-13C                                                                            | 2.00                                 | NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD       | ND<br>ND<br>ND<br>9.1 | <br><br>      | 1.70<br>0.85<br>1.30<br>1.30 J | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 84                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                        | 19.0<br>ND<br>32.0    |               | 1.40 J<br>3.00<br>2.20 J       | Total 2,3,7,8-TCDD<br>Equivalence: 0.79 ng/Kg<br>(Using 2005 WHO Factors)                        |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                               | 11.0<br>22.0          |               | 1.10 J<br>1.10 J               |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                                     | 13.0<br>95.0          |               | 4.60 JY<br>3.60                |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

Y = Calculated using average of daily RFs



# Method 8290 Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52316 U161012A\_06 10.2 g U161011

U161012A\_01 & U161012A\_17

Matrix Solid Dilution NA

Extracted 10/10/2016 16:10 Analyzed 10/12/2016 13:53

Injected By SMT

| Native<br>Isomers                                                                               | <b>Conc</b><br>ng/Kg       | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                       | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|-------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                                      | ND<br>0.054                |                   | 0.046<br>0.046 J                          | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 64<br>89<br>73       |
| 2,3,7,8-TCDD<br>Total TCDD                                                                      | ND<br>ND                   |                   | 0.064<br>0.064                            | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00<br>2.00         | 69<br>92<br>69       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                               | ND<br>ND<br>ND             |                   | 0.059<br>0.040<br>0.049                   | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 66<br>70<br>64<br>77 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                  | ND<br>ND                   |                   | 0.044<br>0.044                            | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 66<br>68<br>69       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF | ND<br>ND<br>ND<br>ND<br>ND |                   | 0.063<br>0.068<br>0.060<br>0.063<br>0.063 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                 | 2.00<br>4.00<br>2.00<br>2.00         | 84<br>58<br>NA<br>NA |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                      | ND<br>ND<br>ND<br>0.270    |                   | 0.074<br>0.076<br>0.079<br>0.076 J        | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 77                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                       | ND<br>ND<br>ND             |                   | 0.140<br>0.180<br>0.160                   | Total 2,3,7,8-TCDD<br>Equivalence: 0.00087 ng/Kg<br>(Using 2005 WHO Factors)                     |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                              | 0.087<br>0.087             |                   | 0.086 J<br>0.086 J                        |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                                                    | ND<br>ND                   |                   | 0.170<br>0.290                            |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value



# **Method 8290 Laboratory Control Spike Results**

Lab Sample ID Filename **Total Amount Extracted** 

ICAL ID

CCal Filename(s) Method Blank ID

LCS-52317 U161012A\_04 10.4 g

U161011 U161012A\_01 & U161012A\_17 BLANK-52316

Matrix Dilution Extracted Analyzed

Injected By

Solid NA

10/10/2016 16:10 10/12/2016 12:20

| Native<br>Isomers                                                                               | <b>Qs</b><br>(ng)        | <b>Qm</b><br>(ng)        | %<br>Rec.                | Internal<br>Standards                                                                                | ng's<br>Added                   | Percent<br>Recovery  |
|-------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                                      | 0.20                     | 0.21                     | 103                      | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.0<br>2.0<br>2.0               | 67<br>95<br>79       |
| 2,3,7,8-TCDD<br>Total TCDD                                                                      | 0.20                     | 0.16                     | 82                       | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.0<br>2.0<br>2.0               | 73<br>94<br>73       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                               | 1.0<br>1.0               | 1.00<br>1.1              | 100<br>108               | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C     | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 69<br>71<br>64<br>83 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                  | 1.0                      | 0.93                     | 93                       | 1,2,3,4,7,8-HXCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.0<br>2.0<br>2.0<br>2.0        | 69<br>70<br>72       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF | 1.0<br>1.0<br>1.0<br>1.0 | 1.1<br>1.0<br>1.0<br>1.0 | 112<br>102<br>102<br>100 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                     | 2.0<br>4.0<br>2.0<br>2.0<br>2.0 | 87<br>63<br>NA<br>NA |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                      | 1.0<br>1.0<br>1.0        | 1.0<br>1.1<br>1.1        | 101<br>112<br>108        | 2,3,7,8-TCDD-37Cl4                                                                                   | 0.20                            | 84                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                       | 1.0<br>1.0               | 1.1<br>0.98              | 106<br>98                |                                                                                                      |                                 |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                              | 1.0                      | 1.0                      | 101                      |                                                                                                      |                                 |                      |
| OCDF<br>OCDD                                                                                    | 2.0<br>2.0               | 2.3<br>2.2               | 117 Y<br>108             |                                                                                                      |                                 |                      |

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable \* = See Discussion





October 19, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

# Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 06, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

**Project Manager** 

Low Carre

**Enclosures** 

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc







#### **CERTIFICATIONS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256

EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

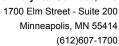
Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN\_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700


North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Oregon Certification #: MN300001
Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970





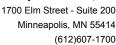
# **SAMPLE SUMMARY**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

| Lab ID      | Sample ID             | Matrix | Date Collected | Date Received  |
|-------------|-----------------------|--------|----------------|----------------|
| 10365195001 | BW16MLW-005-0.90-1.15 | Solid  | 10/04/16 13:09 | 10/06/16 20:25 |
| 10365195002 | BW16MLW-006-1.75-2.0  | Solid  | 10/04/16 12:58 | 10/06/16 20:25 |
| 10365195003 | BW16MLW-007-1.6-1.85  | Solid  | 10/04/16 12:42 | 10/06/16 20:25 |
| 10365195004 | BW16MLW-008-1.15-1.40 | Solid  | 10/04/16 12:26 | 10/06/16 20:25 |
| 10365195005 | BW16MLW-009-1.75-2.0  | Solid  | 10/04/16 12:03 | 10/06/16 20:25 |
| 10365195006 | BW16MLW-010-1.45-1.70 | Solid  | 10/04/16 11:38 | 10/06/16 20:25 |

(612)607-1700




# **SAMPLE ANALYTE COUNT**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

| Lab ID      | Sample ID             | Method     | Analysts | Analytes<br>Reported |
|-------------|-----------------------|------------|----------|----------------------|
| 10365195001 | BW16MLW-005-0.90-1.15 | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |
| 10365195002 | BW16MLW-006-1.75-2.0  | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |
| 10365195003 | BW16MLW-007-1.6-1.85  | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |
| 10365195004 | BW16MLW-008-1.15-1.40 | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |
| 10365195005 | BW16MLW-009-1.75-2.0  | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |
| 10365195006 | BW16MLW-010-1.45-1.70 | EPA 6020A  | RJS      | 2                    |
|             |                       | ASTM D2974 | JDL      | 1                    |





#### **PROJECT NARRATIVE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

Method: EPA 6020A

Description: 6020A MET ICPMS
Client: Bay West, Inc.
Date: October 19, 2016

#### **General Information:**

6 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### **Sample Preparation:**

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

#### **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**

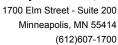
All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 439755

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10364962001


M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 2390875)
  - Zinc

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.

10/18/16 10:59





#### **ANALYTICAL RESULTS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

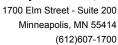
**Dry Weight** 

Percent Moisture

Date: 10/19/2016 01:02 PM

Sample: BW16MLW-005-0.90-1.15 Lab ID: 10365195001 Collected: 10/04/16 13:09 Received: 10/06/16 20:25 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 62.0 6.8 1.2 20 10/12/16 10:24 10/13/16 10:27 7440-02-0 mg/kg Zinc 9.1 20 10/12/16 10:24 10/13/16 10:27 7440-66-6 176 mg/kg 68.4

0.10


0.10

1

Analytical Method: ASTM D2974

%

93.2





Project: J160139 SLR Sediment AOCs

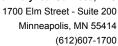
83.4

%

Pace Project No.: 10365195

Percent Moisture

Date: 10/19/2016 01:02 PM


Sample: BW16MLW-006-1.75-2.0 Lab ID: 10365195002 Collected: 10/04/16 12:58 Received: 10/06/16 20:25 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 39.0 2.4 0.42 20 10/12/16 10:24 10/13/16 10:31 7440-02-0 mg/kg Zinc 3.2 20 10/12/16 10:24 10/13/16 10:31 7440-66-6 108 mg/kg 24.2 **Dry Weight** Analytical Method: ASTM D2974

0.10

0.10

1

10/18/16 11:00





Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

**Dry Weight** 

Percent Moisture

Date: 10/19/2016 01:02 PM

Sample: BW16MLW-007-1.6-1.85 Lab ID: 10365195003 Collected: 10/04/16 12:42 Received: 10/06/16 20:25 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 28.4 2.5 0.43 20 10/12/16 10:24 10/13/16 10:36 7440-02-0 mg/kg Zinc 84.5 3.3 20 10/12/16 10:24 10/13/16 10:36 7440-66-6 mg/kg 25.1

0.10

0.10

1

10/18/16 11:00

Analytical Method: ASTM D2974

%

84.7





Project: J160139 SLR Sediment AOCs

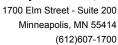
85.5

%

Pace Project No.: 10365195

Percent Moisture

Date: 10/19/2016 01:02 PM


Sample: BW16MLW-008-1.15-1.40 Lab ID: 10365195004 Collected: 10/04/16 12:26 Received: 10/06/16 20:25 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 38.7 2.8 0.49 20 10/12/16 10:24 10/13/16 10:40 7440-02-0 mg/kg Zinc 20 10/12/16 10:24 10/13/16 10:40 7440-66-6 67.3 mg/kg 28.0 3.7 **Dry Weight** Analytical Method: ASTM D2974

0.10

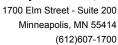
0.10

1

10/18/16 11:00






Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

Date: 10/19/2016 01:02 PM

Sample: BW16MLW-009-1.75-2.0 Lab ID: 10365195005 Collected: 10/04/16 12:03 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.  Report |            |             |             |             |         |                |                |           |      |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|---------|----------------|----------------|-----------|------|--|--|
| Parameters                                                                                                             | Results    | Units       | Limit       | MDL         | DF      | Prepared       | Analyzed       | CAS No.   | Qual |  |  |
| 6020A MET ICPMS                                                                                                        | Analytical | Method: EPA | 6020A Prepa | aration Met | hod: El | PA 3050        |                |           |      |  |  |
| Nickel                                                                                                                 | 13.5       | mg/kg       | 3.3         | 0.57        | 20      | 10/12/16 10:24 | 10/13/16 10:45 | 7440-02-0 |      |  |  |
| Zinc                                                                                                                   | 27.4J      | mg/kg       | 32.8        | 4.4         | 20      | 10/12/16 10:24 | 10/13/16 10:45 | 7440-66-6 |      |  |  |
| Dry Weight                                                                                                             | Analytical | Method: AST | M D2974     |             |         |                |                |           |      |  |  |
| Percent Moisture                                                                                                       | 87.9       | %           | 0.10        | 0.10        | 1       |                | 10/18/16 11:00 |           |      |  |  |





Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

Date: 10/19/2016 01:02 PM

Sample: BW16MLW-010-1.45-1.70 Lab ID: 10365195006 Collected: 10/04/16 11:38 Received: 10/06/16 20:25 Matrix: Solid

| Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.  Report |            |             |             |             |         |                |                |           |      |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|---------|----------------|----------------|-----------|------|--|--|
| Parameters                                                                                                             | Results    | Units       | Limit       | MDL         | DF      | Prepared       | Analyzed       | CAS No.   | Qual |  |  |
| 6020A MET ICPMS                                                                                                        | Analytical | Method: EPA | 6020A Prepa | aration Met | hod: El | PA 3050        |                |           |      |  |  |
| Nickel                                                                                                                 | 17.1       | mg/kg       | 3.4         | 0.59        | 20      | 10/12/16 10:24 | 10/13/16 10:49 | 7440-02-0 |      |  |  |
| Zinc                                                                                                                   | 30.9J      | mg/kg       | 34.2        | 4.5         | 20      | 10/12/16 10:24 | 10/13/16 10:49 | 7440-66-6 |      |  |  |
| Dry Weight                                                                                                             | Analytical | Method: AST | M D2974     |             |         |                |                |           |      |  |  |
| Percent Moisture                                                                                                       | 88.3       | %           | 0.10        | 0.10        | 1       |                | 10/18/16 11:01 |           |      |  |  |

(612)607-1700



#### **QUALITY CONTROL DATA**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

Date: 10/19/2016 01:02 PM

QC Batch: 439755 Analysis Method: EPA 6020A

QC Batch Method: EPA 3050 Analysis Description: 6020A Solids UPD4

Associated Lab Samples: 10365195001, 10365195002, 10365195003, 10365195004, 10365195005, 10365195006

METHOD BLANK: 2390873 Matrix: Solid

Associated Lab Samples: 10365195001, 10365195002, 10365195003, 10365195004, 10365195005, 10365195006

Blank Reporting

Limit MDL Qualifiers Parameter Units Result Analyzed Nickel ND 0.50 10/13/16 10:08 mg/kg 0.087 Zinc mg/kg ND 5.0 0.66 10/13/16 10:08

LABORATORY CONTROL SAMPLE: 2390874

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nickel 49 49.9 102 80-120 mg/kg Zinc 49 47.8 98 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2390876 2390875 MS MSD 10364962001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nickel mg/kg 17.6 55.7 58.9 80.5 77.0 113 101 80-120 20 Zinc mg/kg 232 55.7 58.9 269 287 66 93 80-120 6 20 M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



**QUALITY CONTROL DATA** 

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

QC Batch: 441644 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture Associated Lab Samples: 10365195001, 10365195002, 10365195003, 10365195004, 10365195005, 10365195006

SAMPLE DUPLICATE: 2404092

10365195006 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 88.3 % Percent Moisture 88.5 0 30

SAMPLE DUPLICATE: 2404495

Date: 10/19/2016 01:02 PM

|                  |       | 10366384001 | Dup    |     | Max |            |
|------------------|-------|-------------|--------|-----|-----|------------|
| Parameter        | Units | Result      | Result | RPD | RPD | Qualifiers |
| Percent Moisture | %     | 17.9        | 16.5   | 8   | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

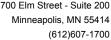
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 10/19/2016 01:02 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365195

Date: 10/19/2016 01:02 PM

| Lab ID      | Sample ID             | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------------------|-----------------|----------|-------------------|---------------------|
| 10365195001 | BW16MLW-005-0.90-1.15 | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195002 | BW16MLW-006-1.75-2.0  | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195003 | BW16MLW-007-1.6-1.85  | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195004 | BW16MLW-008-1.15-1.40 | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195005 | BW16MLW-009-1.75-2.0  | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195006 | BW16MLW-010-1.45-1.70 | EPA 3050        | 439755   | EPA 6020A         | 440829              |
| 10365195001 | BW16MLW-005-0.90-1.15 | ASTM D2974      | 441644   |                   |                     |
| 10365195002 | BW16MLW-006-1.75-2.0  | ASTM D2974      | 441644   |                   |                     |
| 10365195003 | BW16MLW-007-1.6-1.85  | ASTM D2974      | 441644   |                   |                     |
| 10365195004 | BW16MLW-008-1.15-1.40 | ASTM D2974      | 441644   |                   |                     |
| 10365195005 | BW16MLW-009-1.75-2.0  | ASTM D2974      | 441644   |                   |                     |
| 10365195006 | BW16MLW-010-1.45-1.70 | ASTM D2974      | 441644   |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Req                                                                                                | ction A<br>cuired Client Information |                                |         | Section  <br>Required | B<br>Project Info              | mati           | ion:                           |             |                                                  |                 |                                      | on C<br>e Infor                               | matloi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n:          |                                                       |                |           |                   | Section EQuiS         | on D<br>Informat              | ion:                 |      |                                                  |                                                  |          |            |            |                                                  | <u> </u>        | 03(                  | 051       | 95       | <i>-</i>  |
|----------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|---------|-----------------------|--------------------------------|----------------|--------------------------------|-------------|--------------------------------------------------|-----------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------|----------------|-----------|-------------------|-----------------------|-------------------------------|----------------------|------|--------------------------------------------------|--------------------------------------------------|----------|------------|------------|--------------------------------------------------|-----------------|----------------------|-----------|----------|-----------|
| L                                                                                                  | ress: 5 Empire Driv                  |                                |         | Report To:            | : Na<br>Paul Ray               | -              | y McDor<br>ker                 | naid        |                                                  |                 | tenti                                | on:<br>any Na                                 | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ac          |                                                       | ts Pay<br>West |           |                   |                       | _Name:<br>_Code:              |                      |      | Sedimer<br>er Sed                                | nt Areas o                                       | of Conce | ern        | Page       |                                                  |                 | 1                    | of        |          | 1         |
| St.                                                                                                | Paul, MN 55103                       |                                |         |                       |                                |                |                                |             |                                                  | A               | idre                                 | 58:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 5 Emp                                                 | oire Di        | rive      |                   | Facility              | acility_ID: 547023            |                      |      |                                                  | COC                                              |          |            |            |                                                  |                 |                      |           |          |           |
| Ema                                                                                                | ail To: <u>nmcdonald@</u>            | baywest.com                    | P       | urchase               | Order No.:                     |                | 108002                         | <del></del> | ,                                                | La              | b Qu                                 | ote Re                                        | erence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :           | 3                                                     | 0000           | 1713      | 36                | Subfacility_code:     |                               |                      |      |                                                  |                                                  | 1000     | ,          |            | SL                                               | R-MLW           | <i>I-</i> 1.         |           |          |           |
| Phor                                                                                               | ne: 6                                | 51-291-3483                    | P       | roject Na             | ame: SI                        | LR S           | Sedimer                        | t AOCs      |                                                  | i.e             | Lab Project Manager: Oyeyemi Odujole |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uiole       |                                                       |                |           |                   |                       |                               |                      | Site |                                                  |                                                  | ocation  |            |            |                                                  |                 |                      |           |          |           |
| Requ                                                                                               | uested Due Date/TAT:                 | Standard                       | P       | Project Nu            | umber: J1                      | 1601           | 139                            |             |                                                  |                 |                                      | -                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | -,                                                    | -,             |           | -,                | <del> </del>          |                               |                      |      |                                                  |                                                  |          |            |            |                                                  |                 | STATE:               |           | MN       |           |
| _                                                                                                  |                                      |                                |         |                       |                                |                |                                |             |                                                  |                 |                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       |                |           |                   |                       | 11112                         | :\$1,550             | Rec  | ueste                                            | d Analy                                          | /sis     | 44.5.E     |            |                                                  |                 | /////                |           |          |           |
|                                                                                                    |                                      | tion E<br>lient Information    | MATRI   |                       | CODE                           |                |                                | Coll        | ection                                           |                 |                                      |                                               | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eserva      | atives                                                |                | 3.7       |                   |                       |                               |                      |      |                                                  |                                                  |          |            |            |                                                  |                 |                      |           |          |           |
| ITEM#                                                                                              | Sample Location ID (sys_loc_code)    | Sample ID<br>(sys_sample_code) |         | ct<br>olid            | W<br>WW<br>P<br>SO<br>OL<br>WP | MATRIX CODE    | SAMPLE TYPE<br>(G=GRAB C=COMP) | DATE        | Time                                             | # OF CONTAINEDS |                                      | Unpreserved<br>H <sub>2</sub> SO <sub>4</sub> | HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HCI         | Nach<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol       | Other     | Nickel (6020A)    | Zinc (6020A)          | Dioxins/furans (8290A)        | % Moisture           |      |                                                  |                                                  |          |            |            |                                                  |                 | :                    | Comm      | nents    |           |
| Ex.                                                                                                | BW15MLW-005                          | BW14MLW-005-0-                 | 0.15    | -                     | s                              | 30             | G                              | 3/12/15     | 1204                                             |                 | Ť                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       | $\Box$         |           |                   |                       |                               |                      |      |                                                  |                                                  |          |            |            | <b>†</b>                                         |                 |                      |           |          |           |
|                                                                                                    | BW16MLW-005                          | BW16MLW-005-0.                 | 90-1    | 15                    |                                | 50             |                                | 10/4/16     | <u> </u>                                         | <u> </u>        | , :                                  | ,                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       |                | 1         |                   |                       |                               |                      |      | <u> </u>                                         | 1                                                |          |            |            | 1                                                |                 |                      |           |          | $\Box$    |
|                                                                                                    |                                      |                                |         |                       |                                | 寸              | G                              | 10/4/16     | 1309                                             |                 | Τ                                    | $\top$                                        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | +                                                     | H              | $\exists$ | 1                 | 1                     | 1                             |                      |      | <del>                                     </del> | <del> </del>                                     |          |            |            | <del>  </del>                                    | 1               | Collect              | % moistu  | ire mom  | 4 oz jar, |
| 2                                                                                                  | BW16MLW-006                          | BW16MLW-006-1.                 | 75-2.0  | 0                     | S                              | <u>;</u>       | G                              | 10/4/16     | 1258                                             | - 3             | ;                                    | 3                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | +                                                     | Н              |           | _1                | 1                     | 1                             |                      | ļ. — | -                                                |                                                  |          | 1          | ļ <u>.</u> | <del> </del>                                     | ا احزا          | Collect              | % moistu  | ire from | 4 oz jar  |
| 3                                                                                                  | BW16MLW-007                          | BW16MLW-007-1.                 | 6-1.8   | 5                     | s                              | 30             | G                              | 10/4/16     | 1242                                             | 3               | 3   3                                | 3                                             | ┡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш           | -                                                     | Н              | _         | 1                 | 1                     | 1                             |                      |      |                                                  | <u> </u>                                         | !        |            | ļ          | <u>ا</u> (ب                                      | j 3             | Collect <sup>4</sup> | % moistu  | re from  | 4 oz jar  |
| 41,                                                                                                | BW16MLW-008                          | BW16MLW-008-1.                 | 15-1.4  | 40                    | s                              | <del>2</del> 0 | G                              | 10/4/16     | 1226                                             | 3               | 4                                    | 3                                             | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}$ |             | ┸                                                     | Ш              |           | 1                 | 1                     | 1                             |                      |      |                                                  |                                                  |          |            | <u> </u>   | <u>ر</u>                                         | 14              | Collect              | % moistu  | ire from | 4 oz jar  |
| 5                                                                                                  | BW16MLW-009                          | BW16MLW-009-1.                 | 75-2.0  | 0                     | s                              | io             | G                              | 10/4/16     | 1203                                             | 3               | Ŀ                                    | 3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       |                | _         | 1                 | 1                     | 1                             |                      |      |                                                  |                                                  |          |            |            | ~                                                | 25              | Collect              | % moistu  | ıre from | 4 oz jar  |
| 6                                                                                                  | BW16MLW-010                          | BW16MLW-010-1.                 | 45-1.7  | 70                    | s                              | ,o             | G                              | 10/4/16     | 1138                                             | 3               | ;                                    | 3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       |                | 4         | 1                 | 1                     | 1                             |                      |      |                                                  |                                                  |          | İ          |            | 01                                               | 06              | Collect              | % moistu  | ire from | 4 oz jar  |
| 7                                                                                                  |                                      |                                |         |                       |                                |                |                                |             |                                                  |                 |                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       |                |           |                   |                       |                               |                      |      |                                                  |                                                  |          |            |            |                                                  |                 |                      |           |          |           |
| 8                                                                                                  |                                      |                                |         |                       |                                | $\top$         |                                |             | İ                                                |                 | Ť                                    | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\vdash$    | 1                                                     |                |           |                   |                       |                               |                      |      |                                                  |                                                  |          | <u> </u>   |            | $\vdash$                                         |                 |                      |           |          |           |
| _                                                                                                  |                                      |                                |         |                       |                                | $\dashv$       |                                |             | 1                                                | <del> </del> -  | $^{+}$                               | +                                             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +           |                                                       | $\vdash$       | - (3)     | <b>-</b>          |                       |                               |                      |      | ╁                                                | <del>                                     </del> |          |            |            | $\vdash$                                         | $\vdash \vdash$ |                      |           |          | $\dashv$  |
| 9                                                                                                  |                                      |                                |         |                       |                                | $\dashv$       |                                |             | <del>                                     </del> |                 | +                                    | -                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | +                                                     | ╁╌╅╴           | -         |                   |                       |                               |                      |      | <del> </del>                                     | -                                                |          |            |            | <del>                                     </del> | $\vdash$        |                      |           |          | -         |
| 10                                                                                                 | ļ <u>.</u>                           |                                |         |                       |                                | +              |                                |             |                                                  | -               |                                      | -                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           | +                                                     | $\vdash$       | - Ş       |                   | <del> </del>          |                               |                      |      | ├                                                |                                                  |          | 1          |            | ┟─ं                                              | igwdapprox      | $\vdash$             |           |          | $\dashv$  |
| 11                                                                                                 |                                      |                                |         |                       |                                | 4              |                                |             |                                                  | _               | -                                    | -                                             | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _           |                                                       |                |           | _                 | <u> </u>              |                               |                      |      | <u> </u>                                         | _                                                |          |            |            | <u> </u>                                         | igsqcup         | <u> </u>             |           |          |           |
| 12                                                                                                 |                                      |                                |         |                       |                                |                |                                |             | <u> </u>                                         |                 |                                      | <u>.l.</u>                                    | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ           | 1,                                                    | Щ              | Ţ         | <u> </u>          |                       |                               |                      |      |                                                  |                                                  |          |            |            |                                                  | igsqcup         |                      |           |          |           |
| _                                                                                                  | ADDITIO                              | NAL COMMENTS                   |         | +-                    | RELIN                          | QUIS           | HEDE                           | AFFILIATION |                                                  | TE I            | - 7.7                                | MES!                                          | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                       |                | -         |                   | /AFFIL                |                               |                      |      |                                                  | DATE                                             |          |            | TIME       | e man                                            | ├─              | SAMPLE               | E CONDI   | TIONS    |           |
| Refer<br>9/16/                                                                                     |                                      | or Order Form signed by F      | Pace on | . <u>.</u><br>  d/    | uste                           | W.             | Pol                            |             | 1061                                             | املاما          | 7/9                                  | <u>14</u>                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> 2 -</u> | <u>sti</u>                                            | ua<br>—        | +         | %.L               | son                   | )                             |                      |      | 10/0                                             | 2/10                                             | •        | 14         | 15<br>18   |                                                  | 4.              | 9                    | 4         | И        | 4         |
| Page                                                                                               | 1                                    |                                |         | (                     |                                |                | 7                              |             | G/(a 2                                           | C2              | <u>"</u>                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                       | _              |           |                   |                       |                               |                      | V.1. | ,,, <b>,,</b>                                    |                                                  | , (      | <i>V</i> . |            |                                                  |                 | Ice (Y/N)            | ed Cooler |          |           |
| SAMPLER NAME AND SIGNATURE  PRINT Name of SAMPLER:  SIGNATURE of SAMPLER:  DATE Signed (MM/DD/YY): |                                      |                                |         |                       | LER:                           |                | JV \                           |             | W                                                |                 | · ( (a                               | TV                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                       |                | Temp      | (O <sub>2</sub> ) | Received on Ice (Y/N) | Custody Seated Coole<br>(Y/N) | Samples Intact (Y/N) |      |                                                  |                                                  |          |            |            |                                                  |                 |                      |           |          |           |

# Pace Analytical\*

# Document Name:

# Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Client Name:                                                                                                     | <i>n</i>        |                | Project             | # WO#: 10365195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bay west LL                                                                                                                       |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Courier: Fed Ex UPS                                                                                                               | USPS            |                | Client              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • · · · · · · · · · · · · · · · · · · ·                                                                                           | Other:          |                |                     | 10365195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tracking Number:                                                                                                                  |                 |                |                     | A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |
| Custody Seal on Cooler/Box Present? Wes No                                                                                        |                 | Seals Int      | tact?               | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Packing Material: Bubble Wrap Bubble Bags                                                                                         | ∏Nor            | ne 🔲           | Other:              | Temp Blank? ☐Yes ☐No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thermometer 151401163                                                                                                             |                 | e of Ice:      | Ū₩e                 | et 🔲 Blue 🔲 None 🔲 Samples on ice, cooling process has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cooler Temp Read (°C): 09-0 (- 4-7 Cooler Temp Cor                                                                                | o<br>rected:/°C | ·A1            | <b>R.</b> 0         | YG Biological Tissue Frozen? Yes No WN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Temp should be above freezing to 6°C Correction Factor                                                                            | or: 10          | , <del>0</del> | Da                  | te and Initials of Person Examining Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| USDA Regulated Soil ( N/A, water sample)                                                                                          | ,               |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Did samples originate in a quarantine zone within the United S MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?             | tates: AL,      | AR, AZ, C.     | A, FL, GA,<br>□\Yes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                   | ılated Soi      | l Checkli      |                     | 以No including Hawaii and Puerto Rico)? UYes 以No -Q-338) and include with SCUR/COC paperwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                   |                 |                |                     | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain of Custody Present?                                                                                                         | Yes             | No             | □N/A                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain of Custody Filled Out?                                                                                                      | Yes             | □No            | □N/A                | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chain of Custody Relinquished?                                                                                                    | Yes             | □No            | □n/a                | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sampler Name and/or Signature on COC?                                                                                             | ¥Yes            | □No            | □N/A                | 4. //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Samples Arrived within Hold Time?                                                                                                 | ₹ZYes           | □No            | □N/A                | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Short Hold Time Analysis (<72 hr)?                                                                                                | ☐Yes            | No             | □N/A                | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rush Turn Around Time Requested?                                                                                                  | Yes             | √No            | □N/A                | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sufficient Volume?                                                                                                                | ☑Yes            | □No            | □N/A                | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Correct Containers Used?                                                                                                          | Yes             | □No            | □N/A                | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -Pace Containers Used?                                                                                                            | XYes            | ∠No            | □N/A                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Containers Intact?                                                                                                                | Yes             | □No            | □N/A                | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Filtered Volume Received for Dissolved Tests?                                                                                     | Yes             | No             | <b>≯</b> N/A        | 11. Note if sediment is visible in the dissolved container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Labels Match COC?                                                                                                          | ¥Yes            | □No            | □n/a                | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -Includes Date/Time/ID/Analysis Matrix: 5L                                                                                        |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All containers needing acid/base preservation have been checked?                                                                  | ∏yes            | □No            | Ĭ¥]N/A              | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| All containers needing preservation are found to be in                                                                            | <u> </u>        |                | ШМА                 | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| compliance with EPA recommendation? (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) | Γ"]ν            | Пы             | □ lu ta             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Exceptions: VOA, Coliform, TOC, Oil and Grease,                                                                                   | ∐Yes            | □No            | ¥ N/A               | initial when Lot # of added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DRO/8015 (water) DOC                                                                                                              | □Yes            | □No            | Ŋ/A                 | completed: preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Headspace in VOA Vials ( >6mm)?                                                                                                   | Yes             | □No            | XN/A                | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank Present?                                                                                                               | ∐Yes            | □No            | DN/A                | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank Custody Seals Present?                                                                                                 | □Yes            | □No            | ⊠N/A                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pace Trip Blank Lot # (if purchased):                                                                                             |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                    |                 |                |                     | Field Data Required? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Person Contacted:                                                                                                                 |                 |                |                     | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Comments/Resolution:                                                                                                              |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                   |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                   |                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project Manager Review                                                                                                            | 7               |                |                     | Data: 40/7/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).





October 27, 2016

Nancy McDonald Bay West 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

# Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 14, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

**Project Manager** 

Low Carre

**Enclosures** 

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc







#### **CERTIFICATIONS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680

California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

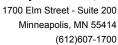
Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN\_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700


North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382

West Virginia DHHR #:9952C Wisconsin Certification #: 999407970





# **SAMPLE SUMMARY**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

| Lab ID      | Sample ID          | Matrix | Date Collected | Date Received  |
|-------------|--------------------|--------|----------------|----------------|
| 10366128001 | BW16MLW-001-0-0.15 | Solid  | 10/13/16 10:30 | 10/14/16 09:45 |
| 10366128002 | BW16MLW-002-0-0.15 | Solid  | 10/13/16 11:00 | 10/14/16 09:45 |
| 10366128003 | BW16MLW-003-0-0.15 | Solid  | 10/13/16 11:30 | 10/14/16 09:45 |





# **SAMPLE ANALYTE COUNT**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

| Lab ID      | Sample ID          | Method     | Analysts | Analytes<br>Reported |
|-------------|--------------------|------------|----------|----------------------|
| 10366128001 | BW16MLW-001-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |
| 10366128002 | BW16MLW-002-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |
| 10366128003 | BW16MLW-003-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |



1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### **PROJECT NARRATIVE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Method: EPA 6020A

Description: 6020A MET ICPMS
Client: Bay West, Inc.
Date: October 27, 2016

#### **General Information:**

3 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### **Sample Preparation:**

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

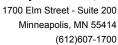
#### **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**


All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.





Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

**Dry Weight** 

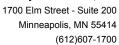
Percent Moisture

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-001-0-0.15 Lab ID: 10366128001 Collected: 10/13/16 10:30 Received: 10/14/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 32.5 2.8 0.49 20 mg/kg Zinc 20 165 mg/kg 28.2 3.7

0.10

0.10


1

10/26/16 14:11

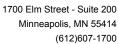
Analytical Method: ASTM D2974

%

85.8






Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-002-0-0.15 Lab ID: 10366128002 Collected: 10/13/16 11:00 Received: 10/14/16 09:45 Matrix: Solid

| Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. |            |             |              |             |        |                |                |           |      |  |  |
|----------------------------------------------------------------------------------------------------------------|------------|-------------|--------------|-------------|--------|----------------|----------------|-----------|------|--|--|
|                                                                                                                |            |             | Report       |             |        |                |                |           |      |  |  |
| Parameters                                                                                                     | Results    | Units       | Limit        | MDL         | DF     | Prepared       | Analyzed       | CAS No.   | Qual |  |  |
| 6020A MET ICPMS                                                                                                | Analytical | Method: EPA | A 6020A Prep | aration Met | hod: E | PA 3050        |                |           |      |  |  |
| Nickel                                                                                                         | 40.0       | mg/kg       | 3.0          | 0.52        | 20     | 10/19/16 14:18 | 10/20/16 10:07 | 7440-02-0 |      |  |  |
| Zinc                                                                                                           | 185        | mg/kg       | 30.2         | 4.0         | 20     | 10/19/16 14:18 | 10/20/16 10:07 | 7440-66-6 |      |  |  |
| Dry Weight                                                                                                     | Analytical | Method: AST | TM D2974     |             |        |                |                |           |      |  |  |
| Percent Moisture                                                                                               | 85.2       | %           | 0.10         | 0.10        | 1      |                | 10/26/16 14:11 |           |      |  |  |





Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-003-0-0.15 Lab ID: 10366128003 Collected: 10/13/16 11:30 Received: 10/14/16 09:45 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

| Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.  Report |            |             |             |             |         |                |                |           |      |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|---------|----------------|----------------|-----------|------|--|--|
| Parameters                                                                                                             | Results    | Units       | Limit       | MDL .       | DF      | Prepared       | Analyzed       | CAS No.   | Qual |  |  |
| 6020A MET ICPMS                                                                                                        | Analytical | Method: EPA | 6020A Prepa | aration Met | hod: El | PA 3050        |                |           |      |  |  |
| Nickel                                                                                                                 | 50.6       | mg/kg       | 2.9         | 0.51        | 20      | 10/19/16 14:18 | 10/20/16 10:11 | 7440-02-0 |      |  |  |
| Zinc                                                                                                                   | 328        | mg/kg       | 29.2        | 3.9         | 20      | 10/19/16 14:18 | 10/20/16 10:11 | 7440-66-6 |      |  |  |
| Dry Weight                                                                                                             | Analytical | Method: AST | M D2974     |             |         |                |                |           |      |  |  |
| Percent Moisture                                                                                                       | 84.1       | %           | 0.10        | 0.10        | 1       |                | 10/26/16 14:11 |           |      |  |  |

Minneapolis, MN 55414 (612)607-1700



#### **QUALITY CONTROL DATA**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

QC Batch: 441310 Analysis Method: EPA 6020A

QC Batch Method: EPA 3050 Analysis Description: 6020A Solids UPD4

Associated Lab Samples: 10366128001, 10366128002, 10366128003

METHOD BLANK: 2402404 Matrix: Solid

Associated Lab Samples: 10366128001, 10366128002, 10366128003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

ckel mg/kg 0.16J 0.46 0.080 10/20/16 09:36

 Nickel
 mg/kg
 0.16J
 0.46
 0.080
 10/20/16 09:36

 Zinc
 mg/kg
 ND
 4.6
 0.61
 10/20/16 09:36

LABORATORY CONTROL SAMPLE: 2402405

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nickel 46.3 50.2 108 80-120 mg/kg Zinc 46.3 48.2 104 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2402406 2402407 MSD MS 10366241001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nickel mg/kg 17.1 50.8 56.6 62.4 75.6 89 103 80-120 19 20 Zinc mg/kg 41.5 50.8 56.6 86.8 102 89 107 80-120 16 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



**QUALITY CONTROL DATA** 

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

QC Batch: 443355 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10366128001, 10366128002, 10366128003

SAMPLE DUPLICATE: 2416822

 Parameter
 Units
 10367183012 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 2.1
 2.1
 1
 30

SAMPLE DUPLICATE: 2416823

Date: 10/27/2016 04:12 PM

10366203021 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 12.0 11.5 4 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



#### **QUALIFIERS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

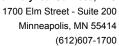
MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up


U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/27/2016 04:12 PM





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

| Lab ID      | Sample ID          | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------------|-----------------|----------|-------------------|---------------------|
| 10366128001 | BW16MLW-001-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128002 | BW16MLW-002-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128003 | BW16MLW-003-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128001 | BW16MLW-001-0-0.15 | ASTM D2974      | 443355   |                   |                     |
| 10366128002 | BW16MLW-002-0-0.15 | ASTM D2974      | 443355   |                   |                     |
| 10366128003 | BW16MLW-003-0-0.15 | ASTM D2974      | 443355   |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A Required Client Information:                                                                                                 | Section B<br>Required Project Info  | ormation:                                     |                    |                |                 | ion C<br>e Infon                                         | mation   | 1:             |                                               |                                           |                                       |                                           | Secti              | on D<br>Informa                         | tion:                                            |                                                  |                |                |                                             |                    |              |                        |          | ĺ          | 03                    | ( )                            | 012                  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|--------------------|----------------|-----------------|----------------------------------------------------------|----------|----------------|-----------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|--------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|----------------|---------------------------------------------|--------------------|--------------|------------------------|----------|------------|-----------------------|--------------------------------|----------------------|
| Company: Bay West, LLC Address: 5 Empire Drive                                                                                         | С                                   | Center                                        |                    |                |                 | Attention: Accounts Payable  Company Name: Bay West, LLC |          |                |                                               |                                           | F954 - O4                             |                                           |                    |                                         |                                                  |                                                  | Page           | ,              | ĺ                                           | 1                  | of           |                        | 1        |            |                       |                                |                      |
| <u> </u>                                                                                                                               |                                     |                                               | -                  |                |                 |                                                          |          | -              |                                               |                                           |                                       |                                           |                    |                                         |                                                  |                                                  | ver Sed        | '.<br>·        |                                             |                    | -            | _                      |          |            |                       |                                |                      |
| St. Paul, MN 55103  Email To: mgarton@glec.com                                                                                         | Purchase Order No.:                 | oy mosomata say rroot                         |                    |                |                 | <u> </u>                                                 |          |                |                                               |                                           | Facility_ID: 547023 Subfacility_code: |                                           |                    |                                         |                                                  |                                                  | COC#           |                | SLR-ToxBio-MLW-01                           |                    |              |                        |          |            |                       |                                |                      |
| Phone: 231-941-2230                                                                                                                    |                                     |                                               | ent AQCs           |                |                 | oject Ma                                                 |          |                |                                               |                                           |                                       |                                           | -                  |                                         |                                                  |                                                  |                |                |                                             |                    | Q28253       | ********************** |          |            | ×                     |                                |                      |
|                                                                                                                                        | 2 : 10 :                            |                                               | ICITI ACCS         | _              |                 |                                                          |          |                | Оує                                           | eyemi                                     | ı Oq                                  | ujole                                     | +                  |                                         |                                                  |                                                  |                |                |                                             |                    |              |                        |          | Locatio    | ¢.                    | MN                             |                      |
|                                                                                                                                        | J1                                  | 160139                                        |                    | L              |                 |                                                          |          |                |                                               |                                           | 5                                     | use en value                              | 700 cm 50          |                                         | al of the first                                  | SOAL.                                            | uested         | Anabe          | anii ka ka ka ka ka ka ka ka ka ka ka ka ka | 2000 10 KJ 200     |              |                        |          | STATE      |                       |                                | //////               |
| Section E Required Client Information MATI                                                                                             |                                     |                                               | Collection         |                |                 |                                                          | Pre      | serva          | tives                                         |                                           | 1                                     | 90A)                                      |                    |                                         |                                                  | - ivedi                                          | Jesicu         | Anaty          |                                             | 130.640            |              |                        |          |            |                       |                                |                      |
| Sample Location ID (sys_loc_code)  Sample ID (sys_sample_code)  (sys_sample_code)  ** Will Sample ID (sys_sample_code)  Air Tisst Othe | er W te Water WW luct P Solid SO OL | MATIMA CODE<br>SAMPLE TYPE<br>(G=GRAB C=COMP) | DATE               |                | # OF CONTAINERS | Unpreserved<br>H <sub>2</sub> SO <sub>4</sub>            | HNO3     | HCI<br>NaOH    | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol                                  | Other                                 | Dioxins and furans (SW-846 8290A)         | Nickel (6020A)     | Zinc (6020A)                            | % Moisture                                       |                                                  |                |                |                                             |                    |              |                        |          |            | Com                   | ments                          |                      |
| Ex. BW15MLW-005 BW14MLW-005-0-0.1                                                                                                      | 5 s                                 | 60 G                                          | 3/12/15 1204       |                | 1               | Ť                                                        |          |                |                                               | Ħ                                         |                                       |                                           |                    |                                         |                                                  |                                                  |                |                |                                             |                    |              |                        | Ħ        |            |                       |                                |                      |
|                                                                                                                                        |                                     |                                               |                    |                | 4               | +                                                        | П        |                | -                                             | 11                                        |                                       | <u> </u>                                  | <b>+</b> _         | <u> </u>                                | <del>                                     </del> | 1                                                |                |                |                                             |                    |              |                        | $\top$   | 1          | 00                    | <br>!                          |                      |
| 1 BW16MLW-001 BW16MLW-001-0.0-0                                                                                                        |                                     | io G                                          | 10/13/16 10:30     |                |                 |                                                          |          | +              |                                               | H                                         | $\dashv$                              | X                                         | X                  | X                                       | X                                                |                                                  | +              | <del> </del>   |                                             | $\vdash$           |              | $\vdash$               | +        | 1          | 007                   |                                |                      |
| 2 BW16MLW-002 BW16MLW-002-0.0-0                                                                                                        |                                     | 60 G                                          | 10/13/16 11:00     | <del></del>    | 4               |                                                          | H        | +              | +                                             | ╂╌┼                                       |                                       | <u>X</u> _                                | X                  | Х                                       | X                                                |                                                  | -              |                |                                             |                    | +            | ┼                      | ╂┽       | - <b></b>  |                       |                                |                      |
| 3 BW16MLW-003 BW16MLW-003-0.0-0                                                                                                        | .15 s                               | 60 G                                          | 10/13/16 11:30     |                | 4               |                                                          | $\sqcup$ | _ -            |                                               | $\vdash$                                  |                                       | x                                         | X                  | х                                       | X_                                               | 1                                                | ╀              | -              |                                             |                    | 1            |                        | $\dashv$ | -          | 003                   | >                              |                      |
| 4.                                                                                                                                     | •                                   |                                               | ļ                  |                |                 | _                                                        |          | _              |                                               | Ш                                         |                                       | Š                                         |                    |                                         | <u> </u>                                         |                                                  | <u> </u>       |                |                                             |                    | <u> </u>     | <u> </u>               |          |            |                       |                                |                      |
|                                                                                                                                        |                                     |                                               |                    |                |                 |                                                          |          |                |                                               |                                           | 833                                   |                                           |                    |                                         |                                                  |                                                  |                |                |                                             |                    |              |                        |          |            |                       |                                |                      |
| 2.7.4<br>19 <b>6</b> 0                                                                                                                 |                                     |                                               |                    |                |                 |                                                          |          | .   -          |                                               | $  \  $                                   | 200                                   | N. S. S. S. S. S. S. S. S. S. S. S. S. S. |                    |                                         |                                                  |                                                  |                | •              | 1                                           |                    |              |                        |          |            |                       |                                | - 1                  |
| <b>*</b>                                                                                                                               |                                     |                                               |                    |                | T               |                                                          |          |                |                                               | П                                         |                                       |                                           |                    |                                         | - "                                              | Ī                                                |                |                |                                             |                    |              |                        |          |            |                       |                                |                      |
|                                                                                                                                        |                                     |                                               |                    |                | +               | _                                                        | 1        |                | +                                             | $\Box$                                    |                                       |                                           | 1                  |                                         | <u> </u>                                         | <del> </del>                                     |                |                |                                             | 1                  | <del> </del> | 1                      | Ħ        | 1          |                       |                                |                      |
| 9 <b>8</b> .                                                                                                                           |                                     |                                               |                    | <del>-  </del> | +               | +                                                        | H        | +              | +                                             | H                                         | _                                     | $\vdash$                                  | +                  |                                         |                                                  | <del>                                     </del> | <del> </del> - | <del> </del> - | -                                           |                    | ╁──          | +                      | +        | +          |                       |                                |                      |
| [ <b>9</b> ]                                                                                                                           |                                     |                                               |                    |                | +               | $\perp$                                                  | $\vdash$ | +              | +                                             | + +                                       | $\dashv$                              | Š ——                                      | ┼                  |                                         | -                                                | <u> </u>                                         | 1              |                |                                             | 1                  | <del> </del> |                        | +        | +          |                       |                                |                      |
| 10                                                                                                                                     |                                     |                                               |                    |                | 4               | $\bot$                                                   |          | _              | -                                             | $\sqcup$                                  | _                                     |                                           | _                  | ļ                                       |                                                  | <u> </u>                                         | _              |                |                                             |                    | ↓            |                        | 4        |            |                       |                                |                      |
| in                                                                                                                                     |                                     |                                               |                    |                |                 |                                                          |          | _ _            |                                               | Ш                                         |                                       |                                           |                    |                                         |                                                  | <u> </u>                                         | <u> </u>       | <u> </u>       | ļ                                           |                    | <u> </u>     |                        | $\perp$  |            |                       |                                |                      |
| 12                                                                                                                                     |                                     |                                               |                    |                |                 |                                                          |          |                |                                               |                                           | 100                                   | Š.                                        |                    |                                         |                                                  |                                                  |                |                |                                             |                    |              |                        |          |            |                       |                                |                      |
| ADDITIONAL COMMENTS                                                                                                                    | RELIN                               | QUISHED I                                     |                    | ATE            |                 | ME                                                       | . (8)    | ,,,            | ,                                             |                                           | CCE                                   | at the Street                             | Y / AFFIL          | . % .                                   | A 150 LEV                                        |                                                  |                | DATE           |                                             | Sept. A            | TIME         |                        | 1        |            | PLE COI               | DITION                         | s                    |
| Reference Pace Subcontractor Order Form signed by Pace 9/16/16                                                                         | mull                                | 1 (s)                                         | form/file loke     | 3/16           | 14              | : ao                                                     | ر (      | <i>[Vi</i>     | 2 6                                           |                                           | 7                                     |                                           | Pe                 | CE                                      |                                                  |                                                  | 10             | 14             | (0                                          | 00                 | 154          | <u>C</u>               |          | •1         | 1                     | N                              | 4                    |
|                                                                                                                                        |                                     |                                               |                    |                |                 |                                                          |          |                |                                               |                                           |                                       |                                           |                    |                                         |                                                  |                                                  |                |                |                                             |                    |              |                        |          |            | (A//N)                | Custody Sealed Cooler<br>(Y/N) | (N/A)                |
| Page                                                                                                                                   |                                     |                                               | SAMPLER NAME A     | NDSIGN         | ΔТІ             | RE                                                       | <u> </u> | 18.6%          | -054 T.C                                      | i i fiziki                                |                                       | bivier"                                   | <u> </u>           |                                         | es North                                         | 570.65                                           | (5)\$1347      | No. 1995 - T   |                                             | 17.65              | o jak        | .22 % s.2              |          | GC)        | Received on Ice (Y/N) | aled (                         | Samples Intact (Y/N) |
| చే                                                                                                                                     |                                     |                                               | PRINT Name of SAMP | 11, 134, 1936  |                 |                                                          | 300 -    | . <u></u><br>• | 5 18.653                                      | 13 18 18 18 18 18 18 18 18 18 18 18 18 18 | 827                                   | 1007 T.                                   | <u> 1800 - 180</u> | .152 30                                 | 184 1848<br>1                                    | · Albania                                        | 3488 Q         | 34142000       | Tarter C.                                   | , 31.1 34 <u>f</u> | 8.9777.86    | essisti.               | 4        | <u>=</u> = | ived o                | dy Se                          | ples i.              |
| 13 of 14                                                                                                                               |                                     |                                               | SIGNATURE of SAMP  |                |                 | lailee<br>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \          |          |                | +                                             | 42                                        | <del>,</del>                          | DATE                                      | Signed (           | MM/DD                                   |                                                  |                                                  |                |                |                                             |                    |              |                        | -        |            | Recei                 | Custo                          | Sam                  |
| 4                                                                                                                                      |                                     |                                               | SIGNATURE OF SAMP  |                | Ļ               | ull                                                      | i ()     | ₩              | JM)                                           | <u>y</u>                                  |                                       | PATE                                      | orgineu (          | וטטוווווווווווווווווווווווווווווווווווו | , .                                              |                                                  | 10/13/2        | 016            |                                             |                    |              |                        | 1        |            |                       | <u> </u>                       | <u> </u>             |



# Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Client Name:                                                                                                                                                               |                      |          | Project    | * W0#:10366128                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Courier: Fed Ex UPS  Commercial Pace SpeeDee  Tracking Number: 78025378                                                                                                                                   | USPS Other:          |          | Client     | 10366128                                                                                                                                                       |
| Custody Seal on Cooler/Box Present?                                                                                                                                                                       | ,<br>o :             | Seals In | tact?      | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                                   |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                                                 | None                 | e 🗀      | Other:     | Temp Blank? Yes No                                                                                                                                             |
| Thermometer 151401163 B88A9121675 Used: 151401164 B88A0143310 Cooler Temp Read (°C): Cooler Temp Co Temp should be above freezing to 6°C Correction Fac USDA Regulated Soil ( N/A, water sample)          | 098<br>orrected (°C) |          | Dat        | Biological Tissue Frozen? Yes No NA te and Initials of Person Examining Contents                                                                               |
| Did samples originate in a quarantine zone within the United MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?                                                                                       |                      |          | Yes        | ID, LA. Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)? Yes No Q-338) and include with SCUR/COC paperwork. |
|                                                                                                                                                                                                           | _                    |          | -          | COMMENTS:                                                                                                                                                      |
| Chain of Custody Present?                                                                                                                                                                                 | Yes                  | □No      | □N/A       | 1.                                                                                                                                                             |
| Chain of Custody Filled Out?                                                                                                                                                                              | Yes                  | □No      | □N/A       | 2.                                                                                                                                                             |
| Chain of Custody Relinquished?                                                                                                                                                                            | Yes                  | □No      | □N/A       | 3.                                                                                                                                                             |
| Sampler Name and/or Signature on COC?                                                                                                                                                                     | Yes                  | □No      | □N/A       | 4.                                                                                                                                                             |
| Samples Arrived within Hold Time?                                                                                                                                                                         | Yes                  | □No      | □N/A       | 5.                                                                                                                                                             |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                                                        | Yes                  | No       | □n/a       | 6.                                                                                                                                                             |
| Rush Turn Around Time Requested?                                                                                                                                                                          | ☐Yes                 |          | □N/A       | 7.                                                                                                                                                             |
| Sufficient Volume?                                                                                                                                                                                        |                      | No       | □N/A       | 8.                                                                                                                                                             |
| Correct Containers Used?                                                                                                                                                                                  | Yes                  | □No      | □N/A       | 9.                                                                                                                                                             |
| -Pace Containers Used?                                                                                                                                                                                    | Yes                  |          | □N/A       |                                                                                                                                                                |
| Containers Intact?                                                                                                                                                                                        | Yes                  | □No      | N/A        | 10.                                                                                                                                                            |
| Filtered Volume Received for Dissolved Tests?                                                                                                                                                             | ☐Yes                 | □No      | N/A        | 11. Note if sediment is visible in the dissolved container                                                                                                     |
| Sample Labels Match COC?                                                                                                                                                                                  | / Yes                | □No      | □N/A       | 12.                                                                                                                                                            |
| -Includes Date/Time/ID/Analysis Matrix: 7                                                                                                                                                                 |                      |          |            |                                                                                                                                                                |
| All containers needing acid/base preservation have been checked?  All containers needing preservation are found to be in                                                                                  | ∐Yes                 | □No      | ⊠N/A       | 13. ☐HNO <sub>3</sub> ☐H₂SO <sub>4</sub> ☐NaOH ☐HCI<br>Sample #                                                                                                |
| compliance with EPA recommendation?  (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)  Exceptions: VOA, Coliform, TOC, Oil and Grease,  DRO/8015 (water) DOC | □Yes<br>□Yes         | •        | N/A<br>N/A | Initial when Lot # of added completed: preservative:                                                                                                           |
| Headspace in VOA Vials ( >6mm)?                                                                                                                                                                           | □Yes                 | □No      | N/A        | 14.                                                                                                                                                            |
| Trip Blank Present?                                                                                                                                                                                       | Yes                  | □No      |            | 15.                                                                                                                                                            |
| Trip Blank Custody Seals Present?                                                                                                                                                                         | <br>Yes              | _<br>□No | √N/A       |                                                                                                                                                                |
| Pace Trip Blank Lot # (if purchased):                                                                                                                                                                     |                      |          | _/         |                                                                                                                                                                |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                                                            |                      |          |            | Field Data Required? Yes No                                                                                                                                    |
| Person Contacted:                                                                                                                                                                                         |                      |          |            | Date/Time:                                                                                                                                                     |
| Comments/Resolution:                                                                                                                                                                                      |                      |          |            |                                                                                                                                                                |
|                                                                                                                                                                                                           |                      |          |            |                                                                                                                                                                |
| Project Manager Review: _ Low Catt                                                                                                                                                                        |                      |          |            | Date: 10/14/16                                                                                                                                                 |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).





October 27, 2016

Nancy McDonald Bay West 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

# Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 14, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

**Project Manager** 

Low Carre

**Enclosures** 

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc







#### **CERTIFICATIONS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680

California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

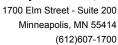
Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN\_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700


North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382

West Virginia DHHR #:9952C Wisconsin Certification #: 999407970





# **SAMPLE SUMMARY**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

| Lab ID      | Sample ID          | Matrix | Date Collected | Date Received  |
|-------------|--------------------|--------|----------------|----------------|
| 10366128001 | BW16MLW-001-0-0.15 | Solid  | 10/13/16 10:30 | 10/14/16 09:45 |
| 10366128002 | BW16MLW-002-0-0.15 | Solid  | 10/13/16 11:00 | 10/14/16 09:45 |
| 10366128003 | BW16MLW-003-0-0.15 | Solid  | 10/13/16 11:30 | 10/14/16 09:45 |





# **SAMPLE ANALYTE COUNT**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

| Lab ID      | Sample ID          | Method     | Analysts | Analytes<br>Reported |
|-------------|--------------------|------------|----------|----------------------|
| 10366128001 | BW16MLW-001-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |
| 10366128002 | BW16MLW-002-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |
| 10366128003 | BW16MLW-003-0-0.15 | EPA 6020A  | RJS      | 2                    |
|             |                    | ASTM D2974 | JDL      | 1                    |



1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### **PROJECT NARRATIVE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Method: EPA 6020A

Description: 6020A MET ICPMS
Client: Bay West, Inc.
Date: October 27, 2016

#### **General Information:**

3 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### **Sample Preparation:**

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

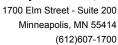
#### **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### **Laboratory Control Spike:**


All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.





#### **ANALYTICAL RESULTS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

**Dry Weight** 

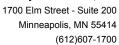
Percent Moisture

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-001-0-0.15 Lab ID: 10366128001 Collected: 10/13/16 10:30 Received: 10/14/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **6020A MET ICPMS** Analytical Method: EPA 6020A Preparation Method: EPA 3050 Nickel 32.5 2.8 0.49 20 mg/kg Zinc 20 165 mg/kg 28.2 3.7

0.10

0.10


1

10/26/16 14:11

Analytical Method: ASTM D2974

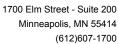
%

85.8





#### **ANALYTICAL RESULTS**


Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-002-0-0.15 Lab ID: 10366128002 Collected: 10/13/16 11:00 Received: 10/14/16 09:45 Matrix: Solid

| Results reported on a "dry weigh | nt" basis and are | adjusted fo | or percent mo | oisture, sar | nple s | ize and any diluti | ons.           |           |      |
|----------------------------------|-------------------|-------------|---------------|--------------|--------|--------------------|----------------|-----------|------|
|                                  |                   |             | Report        |              |        |                    |                |           |      |
| Parameters                       | Results           | Units       | Limit         | MDL          | DF     | Prepared           | Analyzed       | CAS No.   | Qual |
| 6020A MET ICPMS                  | Analytical        | Method: EPA | A 6020A Prep  | aration Met  | hod: E | PA 3050            |                |           |      |
| Nickel                           | 40.0              | mg/kg       | 3.0           | 0.52         | 20     | 10/19/16 14:18     | 10/20/16 10:07 | 7440-02-0 |      |
| Zinc                             | 185               | mg/kg       | 30.2          | 4.0          | 20     | 10/19/16 14:18     | 10/20/16 10:07 | 7440-66-6 |      |
| Dry Weight                       | Analytical        | Method: AST | TM D2974      |              |        |                    |                |           |      |
| Percent Moisture                 | 85.2              | %           | 0.10          | 0.10         | 1      |                    | 10/26/16 14:11 |           |      |





#### **ANALYTICAL RESULTS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

Sample: BW16MLW-003-0-0.15 Lab ID: 10366128003 Collected: 10/13/16 11:30 Received: 10/14/16 09:45 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

| Results reported on a "dry weigh | t" basis and are | e aajustea to | Report mo   | oisture, san | npie si | ize and any diluti | ons.           |           |      |
|----------------------------------|------------------|---------------|-------------|--------------|---------|--------------------|----------------|-----------|------|
| Parameters                       | Results          | Units         | Limit       | MDL .        | DF      | Prepared           | Analyzed       | CAS No.   | Qual |
| 6020A MET ICPMS                  | Analytical       | Method: EPA   | 6020A Prepa | aration Met  | hod: El | PA 3050            |                |           |      |
| Nickel                           | 50.6             | mg/kg         | 2.9         | 0.51         | 20      | 10/19/16 14:18     | 10/20/16 10:11 | 7440-02-0 |      |
| Zinc                             | 328              | mg/kg         | 29.2        | 3.9          | 20      | 10/19/16 14:18     | 10/20/16 10:11 | 7440-66-6 |      |
| Dry Weight                       | Analytical       | Method: AST   | M D2974     |              |         |                    |                |           |      |
| Percent Moisture                 | 84.1             | %             | 0.10        | 0.10         | 1       |                    | 10/26/16 14:11 |           |      |

Minneapolis, MN 55414 (612)607-1700



#### **QUALITY CONTROL DATA**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

QC Batch: 441310 Analysis Method: EPA 6020A

QC Batch Method: EPA 3050 Analysis Description: 6020A Solids UPD4

Associated Lab Samples: 10366128001, 10366128002, 10366128003

METHOD BLANK: 2402404 Matrix: Solid

Associated Lab Samples: 10366128001, 10366128002, 10366128003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

ckel mg/kg 0.16J 0.46 0.080 10/20/16 09:36

 Nickel
 mg/kg
 0.16J
 0.46
 0.080
 10/20/16 09:36

 Zinc
 mg/kg
 ND
 4.6
 0.61
 10/20/16 09:36

LABORATORY CONTROL SAMPLE: 2402405

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nickel 46.3 50.2 108 80-120 mg/kg Zinc 46.3 48.2 104 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2402406 2402407 MSD MS 10366241001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nickel mg/kg 17.1 50.8 56.6 62.4 75.6 89 103 80-120 19 20 Zinc mg/kg 41.5 50.8 56.6 86.8 102 89 107 80-120 16 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



**QUALITY CONTROL DATA** 

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

QC Batch: 443355 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10366128001, 10366128002, 10366128003

SAMPLE DUPLICATE: 2416822

 Parameter
 Units
 10367183012 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 2.1
 2.1
 1
 30

SAMPLE DUPLICATE: 2416823

Date: 10/27/2016 04:12 PM

10366203021 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 12.0 11.5 4 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



#### **QUALIFIERS**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

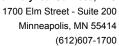
MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up


U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/27/2016 04:12 PM





#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366128

Date: 10/27/2016 04:12 PM

| Lab ID      | Sample ID          | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------------|-----------------|----------|-------------------|---------------------|
| 10366128001 | BW16MLW-001-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128002 | BW16MLW-002-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128003 | BW16MLW-003-0-0.15 | EPA 3050        | 441310   | EPA 6020A         | 442244              |
| 10366128001 | BW16MLW-001-0-0.15 | ASTM D2974      | 443355   |                   |                     |
| 10366128002 | BW16MLW-002-0-0.15 | ASTM D2974      | 443355   |                   |                     |
| 10366128003 | BW16MLW-003-0-0.15 | ASTM D2974      | 443355   |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A Required Client Information:                                                              | Section B<br>Required Project Info  | ormation:                                     |                            |                | Section C Section D Invoice Information: EQuIS Information: |                                                 |          |                |                                               |                                           |               | 1034617                                   |                    |                                         | 012                                              |                                                  |                            |              |                                             |                    |              |              |          |            |                       |                                |                      |
|-----------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------|----------------|-------------------------------------------------------------|-------------------------------------------------|----------|----------------|-----------------------------------------------|-------------------------------------------|---------------|-------------------------------------------|--------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------|--------------|---------------------------------------------|--------------------|--------------|--------------|----------|------------|-----------------------|--------------------------------|----------------------|
| Company: Bay West, LLC Address: 5 Empire Drive                                                      |                                     | enter                                         | ton - Great Lake Environme |                | Attent                                                      | tion:<br>any Na                                 | me.      | Ac             |                                               | ts Pa                                     |               |                                           |                    | y_Name:<br>y_Code:                      | St. Loi                                          |                                                  | r Sedime                   |              | of Cond                                     | em                 | Page         | <b>.</b>     | ĺ        | 1          | of                    |                                | 1                    |
| <u> </u>                                                                                            | Nancy McDonald                      |                                               | -                          |                | ddre                                                        |                                                 |          | -              |                                               | oire D                                    |               |                                           | Facilit            |                                         |                                                  |                                                  | er Sed                     |              |                                             |                    | -            |              |          |            |                       |                                |                      |
| St. Paul, MN 55103  Email To: mgarton@glec.com                                                      | Purchase Order No.:                 |                                               |                            |                |                                                             | ote Ref                                         | erence   |                |                                               | 30000                                     |               |                                           |                    | :ility_cod                              | 5470:<br>le:                                     | 23                                               |                            |              |                                             |                    | COC          | #            |          | SLR        | -ToxBio               | -MLW-                          | .01                  |
| Phone: 231-941-2230                                                                                 |                                     |                                               | ent AQCs                   |                |                                                             | oject Ma                                        |          |                |                                               |                                           |               |                                           | -                  |                                         |                                                  |                                                  |                            |              |                                             |                    | Q28253       | STATE OF     |          |            | ×                     |                                |                      |
|                                                                                                     | 2 : 10 :                            |                                               | ICITI ACCS                 | _              |                                                             |                                                 |          |                | Оує                                           | eyemi                                     | ) Uq          | ujole                                     | +                  |                                         |                                                  |                                                  |                            |              |                                             |                    |              |              |          | Locatio    | ¢.                    | MN                             |                      |
|                                                                                                     | J1                                  | 160139                                        |                            | L              |                                                             |                                                 |          |                |                                               |                                           | 15            | use en salve                              | 700 cm 50          |                                         | al of the first                                  | SOAL.                                            | rested                     | Anaba        | anii ka ka ka ka ka ka ka ka ka ka ka ka ka | 2000 10 KJ 200     |              |              |          | STATE      |                       |                                | //////               |
| Section E Required Client Information MATI                                                          |                                     |                                               | Collection                 | -              |                                                             |                                                 | Pre      | serva          | tives                                         |                                           | 1             | 90A)                                      |                    | ilitinak naka<br>                       |                                                  | Kedi                                             | Jesteu                     | Anaty        | 313                                         |                    |              |              | 32.5.1   |            |                       |                                |                      |
| Sample Location ID (sys_loc_code)  ** Wall  Sample ID (sys_sample_code)  (sys_sample_code)  ** Othe | er W te Water WW luct P Solid SO OL | MATRIX CODE<br>SAMPLE TYPE<br>(G=GRAB C=COMP) | DATE                       |                | # OF CONTAINERS                                             | Unpreserved<br>H <sub>2</sub> SO <sub>4</sub>   | HNO3     | HCI<br>NaOH    | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol                                  | Other         | Dioxins and furens (SW-846 8290A)         | Nickel (6020A)     | Zinc (6020A)                            | % Moisture                                       |                                                  | 5<br>5<br>5<br>5<br>5<br>5 |              |                                             |                    |              |              |          |            | Com                   | ments                          |                      |
| Ex. BW15MLW-005 BW14MLW-005-0-0.1                                                                   | 5 s                                 | 50 G                                          | 3/12/15 1204               |                | 1                                                           | Ť                                               |          |                |                                               | Ħ                                         |               |                                           |                    |                                         |                                                  |                                                  |                            |              |                                             |                    |              | $\dagger$    | Ħ        |            |                       |                                |                      |
|                                                                                                     |                                     |                                               |                            |                | 4                                                           | +                                               | П        |                | -                                             | 11                                        | 1             | <u> </u>                                  | <b>+</b> _         | <u> </u>                                | <del>                                     </del> | 1                                                |                            |              |                                             |                    |              | T            | $\top$   | 1          | 00                    | <br>!                          |                      |
| 1 BW16MLW-001 BW16MLW-001-0.0-0                                                                     |                                     | 50 G                                          | 10/13/16 10:30             |                |                                                             |                                                 |          | +              |                                               | H                                         | $\dashv$      | X                                         | X                  | X                                       | X                                                |                                                  | ┼                          | <del> </del> |                                             | $\vdash$           |              | +            | +        | 1          | 007                   |                                |                      |
| 2 BW16MLW-002 BW16MLW-002-0.0-0                                                                     |                                     | 30 G                                          | 10/13/16 11:00             | <del></del>    | 4                                                           |                                                 | H        | +              | +                                             | ╂╌┼                                       |               | <u>X</u> _                                | X                  | Х                                       | X                                                |                                                  | 1                          |              |                                             |                    | +            | +            | ╂┽       | - <b></b>  |                       |                                |                      |
| 3 BW16MLW-003 BW16MLW-003-0.0-0                                                                     | .15 s                               | 80 G                                          | 10/13/16 11:30             |                | 4                                                           |                                                 | $\sqcup$ | _ -            |                                               | $\vdash$                                  |               | x                                         | X                  | х                                       | X_                                               | 1                                                | ╀                          |              |                                             |                    | 1            | +            | $\dashv$ | -          | 003                   | >                              |                      |
| 4.                                                                                                  | •                                   |                                               | ļ                          |                |                                                             | _                                               |          | _              |                                               | Ш                                         |               | Š                                         |                    |                                         | <u> </u>                                         |                                                  | <u> </u>                   | 1            |                                             |                    | <u> </u>     |              |          |            |                       |                                |                      |
|                                                                                                     |                                     |                                               |                            |                |                                                             |                                                 |          |                |                                               |                                           | 83            |                                           |                    |                                         |                                                  |                                                  |                            |              |                                             |                    |              |              |          |            |                       |                                |                      |
| 2.7.4<br>19 <b>6</b> 0                                                                              |                                     |                                               |                            |                |                                                             |                                                 |          | .   -          |                                               | $  \  $                                   | 2200          | N. S. S. S. S. S. S. S. S. S. S. S. S. S. |                    |                                         |                                                  |                                                  |                            |              | 1                                           |                    |              |              |          |            |                       |                                | - 1                  |
| <b>*</b>                                                                                            |                                     |                                               |                            |                | T                                                           |                                                 |          |                |                                               | П                                         |               |                                           |                    |                                         | - "                                              | Ī                                                |                            |              |                                             |                    |              |              |          |            |                       |                                |                      |
|                                                                                                     |                                     |                                               |                            |                | +                                                           | _                                               | 1        |                | +                                             | $\Box$                                    |               |                                           | 1                  |                                         | <u> </u>                                         | <del> </del>                                     |                            |              |                                             | 1                  | <del> </del> | 1            | Ħ        | 1          |                       |                                |                      |
| 9 <b>8</b> .                                                                                        |                                     |                                               |                            | <del>-  </del> | +                                                           | +                                               | H        | +              | +                                             | H                                         | -             | $\vdash$                                  | +                  |                                         |                                                  | <del>                                     </del> | <del> </del> -             |              | -                                           |                    | ╁──          | +-           | +        | +          |                       |                                |                      |
| [ <b>9</b> ]                                                                                        |                                     |                                               |                            |                | +                                                           | $\perp$                                         | $\vdash$ | +              | +                                             | + +                                       | $\dashv$      | Š ——                                      | ┼                  |                                         | -                                                | <u> </u>                                         |                            |              |                                             |                    | <del> </del> | +-           | +        | +          |                       |                                |                      |
| 10                                                                                                  |                                     |                                               |                            |                | 4                                                           | $\bot$                                          |          | _              | -                                             | $\sqcup$                                  | _             |                                           | _                  | ļ                                       |                                                  | <u> </u>                                         | 1                          |              |                                             |                    | ↓            | ₩            | 4        |            |                       |                                |                      |
| in                                                                                                  |                                     |                                               |                            |                |                                                             |                                                 |          | _ _            |                                               | Ш                                         | _             |                                           |                    |                                         |                                                  | <u> </u>                                         | <u> </u>                   |              | ļ                                           |                    | <u> </u>     | <del> </del> | $\perp$  |            |                       |                                |                      |
| 12                                                                                                  |                                     |                                               |                            |                |                                                             |                                                 |          |                |                                               |                                           | 100           | Š.                                        |                    |                                         |                                                  |                                                  |                            |              |                                             |                    |              |              |          |            |                       |                                |                      |
| ADDITIONAL COMMENTS                                                                                 | RELIN                               | QUISHED 1                                     |                            | ATE            |                                                             | ME                                              | . (8)    | ,,,            | ,                                             |                                           | CCEI          | at the Street                             | Y / AFFIL          | . % .                                   | A 150 LEV                                        |                                                  |                            | DATE         |                                             | Sept.              | TIME         |              | 1        |            | PLE COI               | DITION                         | s                    |
| Reference Pace Subcontractor Order Form signed by Pace 9/16/16                                      | mull                                | 1 (x)                                         | form/file loke             | 3/16           | 14                                                          | : ao                                            | ۲        | <i>[Vi</i>     | 2 6                                           |                                           | <b>5</b>      |                                           | Pe                 | CE                                      |                                                  |                                                  | 10                         | 14           | (0                                          | 00                 | 154          | <u>)</u>     |          | •1         | 1                     | N                              | 4                    |
|                                                                                                     |                                     |                                               |                            |                |                                                             |                                                 |          |                |                                               |                                           |               |                                           |                    |                                         |                                                  |                                                  |                            |              |                                             |                    |              |              |          |            | (Y/N)                 | Custody Sealed Cooler<br>(Y/N) | (N/A)                |
| Page                                                                                                |                                     |                                               | SAMPLER NAME A             | NDSIGN         | ΔТΙ                                                         | RE                                              | <u> </u> | 18.6%          | -054 T.C                                      | i i fiziki                                |               | bivier"                                   | <u> </u>           |                                         | es North                                         | 570.65                                           |                            | N. YAY       |                                             | 17.65              | o jak        | 126 A 4.5    |          | GC)        | Received on Ice (Y/N) | aled (                         | Samples Intact (Y/N) |
| చే                                                                                                  |                                     |                                               | PRINT Name of SAMP         | 11, 134, 1936  |                                                             |                                                 | 300 -    | . <u></u><br>• | 5 18.653<br>-                                 | 13 18 18 18 18 18 18 18 18 18 18 18 18 18 | 90 )          | 1007 T.                                   | <u> 1800 - 180</u> | .152 30                                 | 184 1848<br>1                                    | · Albania                                        | 3708 A.L                   | #1#C0        | Tarter C.                                   | , 31.1 34 <u>f</u> | 8.9777.86    | ensulativi   | 4        | <u>=</u> = | ived o                | dy Se                          | ples i.              |
| 13 of 14                                                                                            |                                     |                                               | SIGNATURE of SAMP          |                |                                                             | lailee<br>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |          |                | +                                             | 42                                        | $\mathcal{T}$ | DATE                                      | Signed (           | MM/DD                                   |                                                  |                                                  |                            |              |                                             |                    |              |              | -        |            | Recei                 | Custo                          | Sam                  |
| 4                                                                                                   |                                     |                                               | SIGNATURE OF SAMP          |                | Ļ                                                           | ull                                             | i ()     | ₩              | JM)                                           | <u>y</u>                                  |               | PATE                                      | orgineu i          | וטטוווווווווווווווווווווווווווווווווווו | , .                                              |                                                  | 10/13/2                    | 016          |                                             |                    |              |              | 1        |            |                       | <u> </u>                       | <u> </u>             |



#### Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Client Name:                                                                                                                              |                |            | Project      | * W0#:10366128                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Courier: Fed Ex UPS  Commercial Pace SpeeDee  Tracking Number: 480253/8                                                                                                  | USPS<br>Other: |            | Client       | 10366128                                                                                                                                                  |
| Custody Seal on Cooler/Box Present?                                                                                                                                      | ,<br>o :       | Seals In   | tact?        | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                              |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                | □Non           | e [        | Other:       | Temp Blank? Yes No                                                                                                                                        |
| Thermometer 151401163 B88A9121675 Used: 151401164 B88A01433100 Cooler Temp Read (°C): Cooler Temp Co Temp should be above freezing to 6°C Correction Fac                 | ope (°C)       |            | Dat          | Biological Tissue Frozen? Yes No NA te and Initials of Person Examining Contents                                                                          |
| MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?                                                                                                                   |                |            | Yes          | ID, LA.  Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)?  Q-338) and include with SCUR/COC paperwork. |
|                                                                                                                                                                          |                |            |              | COMMENTS:                                                                                                                                                 |
| Chain of Custody Present?                                                                                                                                                | Yes            | □No        | □N/A         | 1.                                                                                                                                                        |
| Chain of Custody Filled Out?                                                                                                                                             | Yes            | ∐No        | □N/A         | 2.                                                                                                                                                        |
| Chain of Custody Relinquished?                                                                                                                                           | Yes            | □No        | □N/A         | 3.                                                                                                                                                        |
| Sampler Name and/or Signature on COC?                                                                                                                                    | Yes            |            | □N/A         | 4.                                                                                                                                                        |
| Samples Arrived within Hold Time?                                                                                                                                        | <b>~</b> ∰Ves  | □No        | □N/A         | 5.                                                                                                                                                        |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                       | Yes            | No<br>—    | N/A<br>      | 6.                                                                                                                                                        |
| Rush Turn Around Time Requested?                                                                                                                                         | Yes            | <b>₩</b> 0 | □N/A         | 7.                                                                                                                                                        |
| Sufficient Volume?                                                                                                                                                       | ? Yes'         | y ∏No      | □N/A         | 8.                                                                                                                                                        |
| Correct Containers Used?                                                                                                                                                 | Yes            | . □No      | ∐N/A         | 9.                                                                                                                                                        |
| -Pace Containers Used?                                                                                                                                                   | Yes            |            | □N/A         |                                                                                                                                                           |
| Containers intact?                                                                                                                                                       | Yes            | □No        | N/A          | 10.                                                                                                                                                       |
| Filtered Volume Received for Dissolved Tests?                                                                                                                            | Yes            | □No        | <u>√</u> N/A | 11. Note if sediment is visible in the dissolved container                                                                                                |
| Sample Labels Match COC?                                                                                                                                                 | Yes            | ∐No        | □N/A         | 12.                                                                                                                                                       |
| -Includes Date/Time/ID/Analysis Matrix: / All containers needing acid/base preservation have been                                                                        |                |            |              |                                                                                                                                                           |
| checked?  All containers needing preservation are found to be in compliance with EPA recommendation?                                                                     | □Yes           | □No        | ØN/A         | 13. □HNO₃ □H₂SO₄ □NaOH □HCl<br>Sample#                                                                                                                    |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)<br>Exceptions: VOA, Coliform, TOC, Oil and Grease,<br>DRO/8015 (water) DOC | □Yes           | •          | N/A          | Initial when Lot # of added                                                                                                                               |
| Headspace in VOA Vials ( >6mm)?                                                                                                                                          | ∐Yes<br>□Yes   |            | N/A<br>N/A   | _completed: preservative:                                                                                                                                 |
| Trip Blank Present?                                                                                                                                                      | Yes            | No         |              | 15.                                                                                                                                                       |
| Trip Blank Custody Seals Present?                                                                                                                                        | Yes            | □No        | N/A          |                                                                                                                                                           |
| Pace Trip Blank Lot # (if purchased):                                                                                                                                    |                |            |              | ·                                                                                                                                                         |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                           |                |            |              | Field Data Required? Yes No                                                                                                                               |
| Person Contacted:                                                                                                                                                        |                |            |              | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |
| Comments/Resolution:                                                                                                                                                     |                |            |              |                                                                                                                                                           |
|                                                                                                                                                                          |                |            |              |                                                                                                                                                           |
| Project Manager Review: _ Low Eatt                                                                                                                                       |                |            |              | Date: 10/14/16                                                                                                                                            |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).



# Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

# **Report Prepared for:**

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

# **Report Information:**

Pace Project #: 10366129

Sample Receipt Date: 10/14/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: N/A State Cert #: 027-053-137

# **Invoicing & Reporting Options:**

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

This report has been reviewed by:

lyne haut October 28, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com



# **Report of Laboratory Analysis**

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 28, 2016



Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

# DISCUSSION

This report presents the results from the analyses performed on three samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 62-88%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean reference matrix or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 71-122% with relative percent differences (RPDs) generally from 0.0-5.2%. The background-subtracted recovery values obtained for OCDD in the matrix spike analyses were below the 70-130% target range. This deviation may be due to the level of this congener in the sample material.

The responses obtained for selected labeled congeners in calibration standard analyses F161027B\_18 were outside the target range. As specified in our procedures, the averages of the daily response factors for these compounds were used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables. It should be noted that the accuracy of the native congener determinations was not impacted by these deviations.

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.



# Minnesota Laboratory Certifications

| Authority      | Certificate # | Authority       | Certificate # |
|----------------|---------------|-----------------|---------------|
| A2LA           | 2926.01       | Mississippi     | MN00064       |
| Alabama        | 40770         | Montana         | 92            |
| Alaska         | MN00064       | Nebraska        | NE-OS-18-06   |
| Arizona        | AZ0014        | Nevada          | MN_00064_200  |
| Arkansas       | 88-0680       | New Jersey (NE  | MN002         |
| California     | 01155CA       | New York (NEL   | 11647         |
| Colorado       | MN00064       | North Carolina  | 27700         |
| Connecticut    | PH-0256       | North Dakota    | R-036         |
| EPA Region 8   | 8TMS-Q        | Ohio            | 4150          |
| Florida (NELAP | E87605        | Oklahoma        | D9922         |
| Georgia (DNR)  | 959           | Oregon (ELAP)   | MN200001-005  |
| Guam           | 959           | Oregon (OREL    | MN300001-001  |
| Hawaii         | SLD           | Pennsylvania    | 68-00563      |
| Idaho          | MN00064       | Puerto Rico     | MN00064       |
| Illinois       | 200012        | Saipan          | MP0003        |
| Indiana        | C-MN-01       | South Carolina  | 74003001      |
| Indiana        | C-MN-01       | Tennessee       | TN02818       |
| Iowa           | 368           | Texas           | T104704192-08 |
| Kansas         | E-10167       | Utah (NELAP)    | MN00064       |
| Kentucky       | 90062         | Virginia        | 00251         |
| Louisiana      | 03086         | Washington      | C755          |
| Maine          | 2007029       | West Virginia # | 9952C         |
| Maryland       | 322           | West Virginia D | 382           |
| Michigan       | 9909          | Wisconsin       | 999407970     |
| Minnesota      | 027-053-137   | Wyoming         | 8TMS-Q        |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

# Appendix A

Sample Management

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A                                |                                |                                                                                         | ostion 9                      |                                                |             |                 |                                       |                               |                 | 42             | - 6                   |          |             |                                               |          |             |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |
|------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------|-------------|-----------------|---------------------------------------|-------------------------------|-----------------|----------------|-----------------------|----------|-------------|-----------------------------------------------|----------|-------------|-----------------------------------|--------------------------------------------------|---------------------|-------------|-------------|------------|---------------------|----------------|-------------|--------------|--------------------------------------------------|--------|--------------------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------|
| Required Client Informatio               | n:                             |                                                                                         | ection B<br>equired Pr        | oject info                                     | ormation    | ı:              |                                       |                               |                 | ectio<br>voice | eπ <b>C</b><br>Inform | nation   | ):          |                                               |          |             |                                   |                                                  | tion D<br>IS Inform | ration.     |             |            |                     |                |             |              |                                                  |        | 1                                                | 030                   | lala                                         | 170                                          |
| Company: Bay West, L                     | ĹĊ                             |                                                                                         | eport To:                     | M                                              |             |                 | n - Great Lake                        | Environmental                 |                 | tentio         |                       |          |             | cour                                          | nts P    | ayabl       | e                                 |                                                  | ity_Nam             | n.,         | uis Riv     | er Sedin   | ent Area            | s of Cor       | cern        | T_           |                                                  |        |                                                  |                       | <i>\$</i>                                    | <u>.                                    </u> |
| Address: 5 Empire Dri                    | ive                            |                                                                                         | ору То: Р                     |                                                |             | - Ва            | y West                                |                               | Co              | mpar           | ny Nar                | me:      | -           | Bay                                           | We       | st, LL      | .c                                | Facili                                           | ity_Code            |             |             | iver Se    |                     |                |             | Page         | <b>.</b>                                         |        | 1                                                | of                    |                                              | 1                                            |
| St. Paul, MN 55103                       | 1                              |                                                                                         | lancy Mc                      | Donald                                         | - Bay       | West            | t                                     |                               | Ad              | idress         | 5:                    |          | 5           | Em                                            | pire l   | Drive       |                                   | Facili                                           | ity_ID:             | 547         |             |            |                     |                |             | COC          | #                                                |        |                                                  |                       |                                              |                                              |
| Email To: mgarton@gl                     | ес.сот                         | ~                                                                                       | urchase Or                    | der No.:                                       | 10          | 3002            |                                       |                               | Lat             | b Quot         | te Refe               | rence    | :           | . 3                                           | 3000     | 0171        | 36                                | Subfa                                            | acility_c           |             |             | -          |                     |                |             | -            | •                                                |        | SLR-                                             | ToxBio                | -MLW-                                        | 01                                           |
| Phone: 2                                 | 31-941-2230                    | P                                                                                       | roject Nam                    | e: SI                                          | LR Sec      | limer           | nt AOCs                               |                               | Lal             | ь Ргоје        | ect Mar               | nager.   |             | Ov                                            | even     | ni Ođ       | uiole                             | +                                                |                     |             |             |            |                     |                |             |              | 6.0                                              | Site   | ocation                                          |                       |                                              |                                              |
| Requested Due Date/TAT                   | : Standard                     | P                                                                                       | roject Numi                   | ber: J1                                        | 60139       | ı               | <del></del>                           |                               | ╁               |                |                       |          |             |                                               |          |             | •                                 | +                                                | <del>-</del>        |             |             |            | -                   |                |             |              |                                                  | ote la | STATE                                            | į.                    | MN                                           |                                              |
|                                          |                                |                                                                                         |                               |                                                |             |                 |                                       |                               | ٠               |                |                       |          |             |                                               |          |             |                                   |                                                  | SA DA               |             | Rec         | queste:    | d Analy             | /sis           |             | Sale (S      |                                                  |        | V///                                             |                       |                                              |                                              |
|                                          | ction E<br>Hent Information    | MATRI)                                                                                  |                               | ODE                                            |             |                 | Colle                                 | ction                         |                 |                |                       | Pre.     | serva       | itives                                        | 1        |             | ( <b>4</b> 0                      |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |
| Sample Location ID (sys_loc_code)  ** WB | Sample ID<br>(sys_sample_code) | Drinkin<br>Water<br>Waste<br>Produc<br>Soil/So<br>Oil<br>Wipe<br>Air<br>Tissue<br>Other | Water Wit Plid SC<br>OL<br>WI | w 0 - P 10 00 00 00 00 00 00 00 00 00 00 00 00 | SAMPLE TYPE | (G=GRAB C=COMP) | DATE                                  | Time                          | # OF CONTAINERS | Unpreserved    | H₂SO₄                 | HNO3     | HCI         | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Methanol | Other       | Dioxins and furans (SW-846 8290A) | Nickel (6020A)                                   | Zinc (6020A)        | % Moisture  |             |            |                     |                |             |              |                                                  |        |                                                  | Com                   | ments                                        |                                              |
| Ex. BW15MLW-005                          | BW14MLW-005-0                  | 0-0.15                                                                                  |                               | - Is                                           | 0 0         | $\top$          | 3/12/15                               | 1204                          | T               |                |                       |          |             |                                               |          | 100         | 40.40                             |                                                  |                     |             | $\dagger$   |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |
| 1 BW16MLW-001                            | BW16MLW-001-                   |                                                                                         | <u> </u>                      |                                                |             |                 |                                       |                               | 1               | $\dagger$      | 1                     |          | _           | Ť                                             |          |             |                                   | <del>                                     </del> | <del> </del>        | 1.          | $\dagger$   | 1          |                     | 1              | 1           |              |                                                  |        |                                                  | 00                    | . 1                                          |                                              |
|                                          |                                |                                                                                         |                               |                                                |             |                 | 10/13/16                              | 10:30                         | ╁               | +-             | $\forall$             | $\dashv$ | +           | +                                             | $\vdash$ |             | ×                                 | X                                                | <del>  ×</del>      |             | +           | 1          |                     |                |             | +            | <del>                                     </del> |        | $\vdash$                                         |                       |                                              |                                              |
| 2 BW16MLW-002                            | BW16MLW-002-0                  |                                                                                         |                               | s                                              | 0 0         | -               | 10/13/16                              | 11:00                         | 14              | ╁┈             | ++                    | +        | -           |                                               |          |             | ×                                 | X                                                | X                   | Х           | +           | -          | +                   | -              |             | +            |                                                  | -      | <del>                                     </del> | 00                    | <u>,                                    </u> |                                              |
| 3 BW16MLW-003                            | BW16MLW-003-0                  | 0.0-0.1                                                                                 | 5                             | s                                              | 0 0         | }               | 10/13/16                              | 11;30                         | 4               | +              |                       |          | (A)         | +                                             |          | _           | <u> </u>                          | X                                                | ×                   | <u>_x</u>   | ┼           | -          | +                   | +              |             |              | -                                                |        | $\vdash$                                         | වර                    | <u> </u>                                     |                                              |
| 4                                        | <b></b>                        |                                                                                         |                               | _                                              | $\bot$      | _               |                                       |                               | ┞               | ╄              | $\square$             | 4        | _           | +                                             |          | - 80        |                                   | ļ                                                | _                   | ļ           | -           | <u> </u>   | <del> </del>        | <b> </b>       |             | <del> </del> | <u> </u>                                         | Н      | —                                                |                       |                                              |                                              |
| .5                                       |                                |                                                                                         |                               |                                                |             |                 |                                       |                               | ┞               | <u> </u>       |                       | 1        | +           |                                               |          | 3,107,6     |                                   | <del> </del>                                     | _                   | -           |             |            | <b>-</b>            | <u> </u>       | <b></b>     | ļ            | -                                                |        | <u> </u>                                         |                       |                                              |                                              |
| 6                                        |                                |                                                                                         |                               |                                                |             |                 |                                       |                               | ┖               |                |                       | 4        |             |                                               | 1.       |             |                                   |                                                  |                     |             | <u> </u>    | _          |                     |                | ــــــ      |              |                                                  |        | <u> </u>                                         |                       |                                              |                                              |
| 7                                        |                                |                                                                                         |                               |                                                |             |                 |                                       |                               | L               |                |                       |          |             | -                                             |          | Zesy        |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        | <u> </u>                                         |                       |                                              |                                              |
| 8                                        |                                |                                                                                         |                               |                                                |             |                 |                                       |                               | l               |                |                       |          |             |                                               |          |             |                                   |                                                  |                     |             |             |            |                     | 1              |             |              |                                                  |        | l                                                |                       |                                              |                                              |
| 9<br>9                                   |                                |                                                                                         |                               |                                                |             |                 |                                       |                               |                 |                |                       |          |             | Т                                             |          | 200         |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |
| 36                                       |                                | ·                                                                                       |                               |                                                |             |                 |                                       |                               | T               |                |                       | T        |             | T                                             |          |             |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |
| 9<br>10                                  |                                |                                                                                         | <del></del>                   |                                                | _           | +               |                                       |                               | ۲               | T              | H                     | +        | +           |                                               | H        |             |                                   | <del> </del>                                     |                     |             |             | +          | +                   |                |             |              |                                                  |        | i                                                |                       |                                              |                                              |
| 411.                                     |                                |                                                                                         |                               | +                                              | +           | +               |                                       | •                             | ┞               | -              | H                     | 1        | +           |                                               | H        |             | <del>-</del>                      |                                                  |                     | +           |             | +          | +                   |                | +           | 1            |                                                  |        | <del> </del>                                     |                       |                                              |                                              |
| 12                                       | VAL COMMENTS                   | \$555 00°                                                                               | es progress                   | DEI MI                                         | Orne DE     | n BV            | /AFFILIATION                          | DATE                          | 8 1263          | TIME           | erene s               |          | EGENTAL:    | 200785                                        | 200      | CCE         | TEN EX                            | CAEEL                                            | LIATION             | Barra ar    | Werselfe.   |            | OATE                | -<br>          | 3 (25)33(2) | TIME         | SB1282394                                        |        | SAME                                             | LE CON                | DITION                                       |                                              |
| Actino.                                  | CAL COMMILE TO                 | 1908-06-10                                                                              | \<br>N^<                      | - 4                                            |             |                 | 4:                                    | September of the September 25 | 111             | 11.0           | 100                   |          |             | 1  <br>1                                      | 1_       | 755         |                                   | $\overline{\Omega}$                              | ERALISA<br>N        | <u> </u>    |             |            |                     |                |             | 1:4          |                                                  | 1      | 4 1                                              | 1                     | Dittoit                                      | . 1                                          |
| Reference Pace Subcontrac<br>9/16/16     | ctor Order Form signed b       | y Pace or                                                                               | 1111                          |                                                |             |                 | town ec                               | EL lolistic                   |                 | 7,             | ဃ                     | 7        | <i> V E</i> |                                               |          | <u>ン</u>    |                                   | <u> </u>                                         | Ţ <u>C</u> .        |             |             | 10         | 7 7                 | . •            |             | 1,4          | <u> </u>                                         | N      | <b>'\</b>                                        | Y                     | N                                            | 4                                            |
|                                          |                                |                                                                                         |                               |                                                |             |                 |                                       |                               |                 |                | $\perp$               |          |             |                                               |          |             |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  | (Ž)                   | acter                                        | (N)                                          |
|                                          |                                |                                                                                         |                               |                                                |             |                 | ··· ·· ·· ··· ··· · · · · · · · · · · |                               |                 | ····           |                       |          |             | e do see                                      | .co.one  |             | S                                 |                                                  |                     | entiques de | teng Januar |            | da Securita - de di | egilijaki na r | 28.228.7    |              |                                                  | ,      | <sub></sub>                                      | Received on Ice (Y/N) | Custody Sealed Cooler<br>(Y/N)               | Samples intact (Y/N)                         |
|                                          |                                |                                                                                         |                               |                                                |             |                 | 1                                     | R NAME AND SIG                | GNA             | TUR            | <b>E</b> , 3.         |          | *           | 955E                                          | 148      | - 520       | ne.                               |                                                  | ELEK                | 2000年       | N. D. C.    | la di Cari |                     |                |             |              | EMPA                                             |        | <u> </u>                                         | ed on                 | ly Sea<br>(Y/h                               | les int                                      |
|                                          |                                |                                                                                         |                               |                                                |             |                 |                                       | me of SAMPLER:                | 4               |                | ilee V                |          |             | 1-                                            | A        | <del></del> | T                                 |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        | ļ                                                | Receiv                | ustod                                        | Ѕатр                                         |
|                                          |                                |                                                                                         |                               |                                                |             |                 | ISIGNATU                              | RE of SAMPLER:                | ĮY.             | ) Žz           | <u>دلالا</u>          | (A       | 4           | M.                                            | y s      |             | DATE                              | Signed                                           | (MM/DE              | I/YY):      |             | 10/13/     | 2016                |                |             |              |                                                  |        | :                                                |                       | L'                                           | ·                                            |
|                                          |                                |                                                                                         |                               |                                                |             |                 |                                       |                               |                 |                |                       |          | Y)          | X.                                            |          |             |                                   |                                                  |                     |             |             |            |                     |                |             |              |                                                  |        |                                                  |                       |                                              |                                              |

# Pace Analytical\*

#### Document Name:

### Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Client Name:                                                                           |                            | Project             | #: W0#:10366129                                                                          |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|------------------------------------------------------------------------------------------|
| Courier:                                                                                                              | □USPS [<br>□Other:<br>9.30 | Client              | 10366129                                                                                 |
| Custody Seal on Cooler/Box Present?                                                                                   | Seals                      | Intact?             | Yes No Optional: Proj. Due Date: Proj. Name:                                             |
| Packing Material: Bubble Wrap Bubble Bags                                                                             | □None                      | Other:              | Temp Blank? Yes No                                                                       |
| Thermometer 151401163                                                                                                 | ו אחבי חדוני               | e: We               | t Blue None Samples on ice, cooling process has begun                                    |
| Used: 151401164 B88A01433100 Cooler Temp Read (°C): Cooler Temp Cor                                                   |                            | (                   | ,                                                                                        |
| Temp should be above freezing to 6°C Correction Fact                                                                  |                            | <u>\v/</u> Dat      | Biological Tissue Frozen? Yes No N/A e and Initials of Person Examining Contents         |
| USDA Regulated Soil ( N/A, water sample)                                                                              |                            |                     |                                                                                          |
| Did samples originate in a quarantine zone within the United S MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? | tates: AL, AR, AZ          |                     | D, LA. Did samples originate from a foreign source (internationally,                     |
|                                                                                                                       | ulated Soil Chec           | Yes<br>klist (F-MN- | No including Hawaii and Puerto Rico)? Yes No Q-338) and include with SCUR/COC paperwork. |
|                                                                                                                       |                            |                     | COMMENTS:                                                                                |
| Chain of Custody Present?                                                                                             | Yes 🔲 N                    | o                   | 1.                                                                                       |
| Chain of Custody Filled Out?                                                                                          | Yes □N                     | o □N/A              | 2.                                                                                       |
| Chain of Custody Relinquished?                                                                                        | Yes □N                     | o □N/A              | 3.                                                                                       |
| Sampler Name and/or Signature on COC?                                                                                 | Yes ON                     |                     | 4.                                                                                       |
| Samples Arrived within Hold Time?                                                                                     | "⊠xes □N                   |                     | 5.                                                                                       |
| Short Hold Time Analysis (<72 hr)?                                                                                    | ∐Yes ☑N                    | _                   | 6.                                                                                       |
| Rush Turn Around Time Requested?                                                                                      | Yes 🗔                      |                     | 7.                                                                                       |
| Sufficient Volume?                                                                                                    | ØYes □N                    |                     | 8.                                                                                       |
| Correct Containers Used?                                                                                              | Yes DN                     |                     | 9.                                                                                       |
| -Pace Containers Used?                                                                                                | Yes ON                     | 1                   |                                                                                          |
| Containers Intact?                                                                                                    | Yes DN                     |                     | 10.                                                                                      |
| Filtered Volume Received for Dissolved Tests?                                                                         | Yes □N                     |                     | Note if sediment is visible in the dissolved container                                   |
| Sample Labels Match COC?                                                                                              | Yes □N                     |                     | 12.                                                                                      |
| Includes Date/Time/ID/Analysis Matrix:                                                                                |                            | , mi//              |                                                                                          |
| All containers needing acid/base preservation have been                                                               |                            |                     |                                                                                          |
| checked?                                                                                                              | ∏Yes □N                    | □ ZN/A              | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                              |
| All containers needing preservation are found to be in compliance with EPA recommendation?                            |                            | <i>\</i>            | _Sample #                                                                                |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)                         | ∐Yes                       | N/A                 |                                                                                          |
| Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC                                                  | □Yes □No                   | N/A                 | Initial when Lot # of added completed: preservative:                                     |
| Headspace in VOA Vials ( >6mm)?                                                                                       | ☐Yes ☐No                   |                     | _completed: preservative:                                                                |
| Trip Blank Present?                                                                                                   | YesNe                      |                     | 15.                                                                                      |
| Trip Blank Custody Seals Present?                                                                                     | ☐Yes ☐No                   |                     |                                                                                          |
| Pace Trip Blank Lot # (if purchased):                                                                                 |                            |                     |                                                                                          |
| CLIENT NOTIFICATION/RESOLUTION                                                                                        |                            |                     | Field Data Required? Yes No                                                              |
| Person Contacted:                                                                                                     |                            |                     | Date/Time:                                                                               |
| Comments/Resolution:                                                                                                  |                            | ,,                  |                                                                                          |
|                                                                                                                       | <del> </del>               | <del></del>         |                                                                                          |
|                                                                                                                       |                            |                     |                                                                                          |
| Project Manager Review: Carolina 6                                                                                    | ant                        |                     | Date: 10/17/16                                                                           |

hold, incorrect preservative, out of temp, incorrect containers).

# Pace Container Order #172174

|                                                                                                                                                                                                                                                                     | -                                                                                            |                                                               |                                       |                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|
| Order By :                                                                                                                                                                                                                                                          | Ship To :                                                                                    |                                                               | Return                                |                                                            |
| Company Bay West, Inc.                                                                                                                                                                                                                                              | Company Great Lakes E                                                                        |                                                               | - ' '                                 | Pace Analytical Minnesota                                  |
| Contact Raymaker, Paul                                                                                                                                                                                                                                              | Contact Mailee Garton                                                                        |                                                               |                                       | Odujole, Oyeyemi                                           |
| Email praymaker@baywest.com                                                                                                                                                                                                                                         | Email mgarton@gled                                                                           | c.com                                                         | _                                     | oyeyemi.odujole@pacelabs.com                               |
| Address 5 Empire Drive                                                                                                                                                                                                                                              | Address 739 Hastings                                                                         | Street                                                        | Address                               | 1700 Elm Street                                            |
| Address 2                                                                                                                                                                                                                                                           | Address 2                                                                                    |                                                               | Address 2                             | Suite 200                                                  |
| City Saint Paul                                                                                                                                                                                                                                                     | City Traverse City                                                                           |                                                               | City                                  | Minneapolis                                                |
| State MN Zip 55103                                                                                                                                                                                                                                                  | State MI Zij                                                                                 | 49686                                                         | State                                 | MN Zip 55414                                               |
| Phone NONE                                                                                                                                                                                                                                                          | Phone (231) 941-223                                                                          | 0                                                             | Phone                                 | (612) 360-0714                                             |
| Info                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      |                                                               |                                       |                                                            |
| Project Name SLR                                                                                                                                                                                                                                                    | Due Date 10/10/2016                                                                          | Profile 24380                                                 |                                       | Quote                                                      |
| Project Manager Odujole, Oyeyemi                                                                                                                                                                                                                                    | Return                                                                                       | Carrier Most E                                                | Economical                            | Location MI                                                |
| — Trip Blanks —                                                                                                                                                                                                                                                     | Bottle La                                                                                    | ibels —                                                       | Bo                                    | ottles —                                                   |
| <u> </u>                                                                                                                                                                                                                                                            | ) (                                                                                          |                                                               |                                       | Boxed Cases                                                |
| Include Trip Blanks                                                                                                                                                                                                                                                 |                                                                                              | inted No Sample IDs                                           |                                       | Individually Wrapped                                       |
| ,<br>,                                                                                                                                                                                                                                                              | L L                                                                                          | inted With Sample IDs                                         |                                       | Grouped By Sample                                          |
|                                                                                                                                                                                                                                                                     | ) [ <sup></sup>                                                                              | - 17-1-1                                                      |                                       |                                                            |
| Return Shipping Labels ————                                                                                                                                                                                                                                         | Misc —                                                                                       |                                                               |                                       |                                                            |
| <del></del>                                                                                                                                                                                                                                                         | ) ( _                                                                                        |                                                               |                                       | Forter Divibile Miner                                      |
| No Shipper Number                                                                                                                                                                                                                                                   |                                                                                              | ing Instructions                                              | •                                     | Extra Bubble Wrap                                          |
| With Shipper Number                                                                                                                                                                                                                                                 | /   122                                                                                      | dy Seal                                                       |                                       | Short Hold/Rush Stickers                                   |
| COC Options                                                                                                                                                                                                                                                         |                                                                                              | Blanks                                                        |                                       | DI Water Liter(s) USDA Regulated Soils                     |
| X Number of Blanks 1                                                                                                                                                                                                                                                | X Cooled                                                                                     |                                                               |                                       | Tooba Regulated Solis                                      |
| Pre-Printed                                                                                                                                                                                                                                                         | Syring                                                                                       | jes                                                           | · · · · · · · · · · · · · · · · · · · |                                                            |
|                                                                                                                                                                                                                                                                     |                                                                                              |                                                               |                                       |                                                            |
| # of Samples Matrix Test                                                                                                                                                                                                                                            | Container                                                                                    | Total # of Q0                                                 | Lot#                                  | Notes                                                      |
| 9 (I) SL Dioxin High Res 8290                                                                                                                                                                                                                                       | 9oz, Amber Wide Mouth Ja                                                                     | r unpres 9 0                                                  | 082916-1LH                            |                                                            |
| 9 SL Dioxin High Res 8290 3 SL Metals - 6020A Nickel                                                                                                                                                                                                                | 4oz Soil Jar                                                                                 | 3 0                                                           | 080816-1KM                            |                                                            |
| 6 SL Mercury - Mercury                                                                                                                                                                                                                                              | 4oz Soil Jar                                                                                 | 6 0                                                           | 080816-1KM                            |                                                            |
| 3 (SL Metals - 6020A Zinc                                                                                                                                                                                                                                           | 4oz Soil Jar                                                                                 | 3 0                                                           | 080816-1KM                            |                                                            |
| 6 SL TOC - 9060A Quad run                                                                                                                                                                                                                                           | 4oz. Amber Wide Mouth Ja                                                                     | 0 0                                                           | 080816-1KM                            |                                                            |
| 9 SL Moisture/ Dry weight                                                                                                                                                                                                                                           | 4oz. Plastic                                                                                 | 9 0                                                           | 080116-5                              | <del>                                     </del>           |
| 9 SL Moisture/ Dry weight                                                                                                                                                                                                                                           | None                                                                                         | 0 0                                                           |                                       |                                                            |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                               | pamplo.                                                                                      | 10/13/16                                                      |                                       |                                                            |
| @ only sent in 3 will ship remaine                                                                                                                                                                                                                                  | ng Samples Return v                                                                          | Later 1                                                       | naile                                 | Garthu<br>1-941-2-30                                       |
| @ only sent in 3 will ship remaine                                                                                                                                                                                                                                  | ng Samples<br>Return v                                                                       | Later - 1                                                     | naila<br>23                           | Gartnu<br>1-941-2-30                                       |
| •                                                                                                                                                                                                                                                                   |                                                                                              | Later 1                                                       | naila<br>23                           | Gartnu<br>1-941-2-30                                       |
| Hazard Shipping Placard Ir                                                                                                                                                                                                                                          | n Place : NO                                                                                 |                                                               |                                       |                                                            |
| Hazard Shipping Placard In *Sample receiving hours are Mon-Fri 7:30am-7:00                                                                                                                                                                                          | n Place: NO<br>pm and Sat 9:00am-1:00pm                                                      | unless special arrangen                                       |                                       |                                                            |
| Hazard Shipping Placard In *Sample receiving hours are Mon-Fri 7:30am-7:00 *Pace Analytical reserves the right to charge for un                                                                                                                                     | n Place: NO<br>opm and Sat 9:00am-1:00pm<br>dous, toxic, or radioactive sa                   | unless special arrangen                                       | nents are made                        | with your project manager.                                 |
| Hazard Shipping Placard Ir *Sample receiving hours are Mon-Fri 7:30am-7:00 *Pace Analytical reserves the right to return hazar                                                                                                                                      | ppm and Sat 9:00am-1:00pm<br>dous, toxic, or radioactive sa<br>nused bottles, as well as cos | unless special arrangemmples to you. t associated with sample | nents are made                        | with your project manager.                                 |
| Hazard Shipping Placard Ir *Sample receiving hours are Mon-Fri 7:30am-7:00 *Pace Analytical reserves the right to return hazar *Pace Analytical reserves the right to charge for us *Payment term are net 30 days.                                                  | ppm and Sat 9:00am-1:00pm<br>dous, toxic, or radioactive sa<br>nused bottles, as well as cos | unless special arrangemmples to you. t associated with sample | nents are made                        | with your project manager.                                 |
| *Sample receiving hours are Mon-Fri 7:30am-7:00 *Pace Analytical reserves the right to return hazar *Pace Analytical reserves the right to charge for us *Payment term are net 30 days. *Please include the proposal number on the chain                            | ppm and Sat 9:00am-1:00pm<br>dous, toxic, or radioactive sa<br>nused bottles, as well as cos | unless special arrangemmples to you. t associated with sample | nents are made                        | with your project manager.  sposal.  Ship Date: 10/06/2016 |
| Hazard Shipping Placard Ir *Sample receiving hours are Mon-Fri 7:30am-7:00 *Pace Analytical reserves the right to return hazar *Pace Analytical reserves the right to charge for us *Payment term are net 30 days. *Please include the proposal number on the chain | ppm and Sat 9:00am-1:00pm<br>dous, toxic, or radioactive sa<br>nused bottles, as well as cos | unless special arrangemmples to you. t associated with sample | nents are made                        | with your project manager.  sposal.  Ship Date: 10/06/2016 |



# **Reporting Flags**

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- \* = See Discussion

# **Appendix B**

Sample Analysis Summary



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-001-0.0-0.15

Lab Sample ID 10366129001 Filename F161027B\_10 Injected By SMT

Total Amount Extracted 19.7 g Matrix Solid % Moisture 86.7 Dilution NA

Dry Weight Extracted Collected 10/13/2016 10:30 2.62 g ICAL ID F161011 Received 10/14/2016 09:45 CCal Filename(s) F161027B\_03 & F161027B\_18 Extracted 10/24/2016 17:35 Method Blank ID **BLANK-52487** Analyzed 10/27/2016 23:24

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg         | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg              | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery    |
|----------------------------------------------------------------------------|------------------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 6.9<br>68.0                  |                   | 0.33<br>0.33                     | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 67<br>74<br>80         |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 1.6<br>15.0                  |                   | 0.11 J<br>0.11                   | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 81<br>87<br>66 Y       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 2.8<br>6.2<br>130.0          |                   | 0.29 J<br>0.18 J<br>0.23         | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 76<br>68 Y<br>67<br>76 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 3.6<br>43.0                  |                   | 0.49 J<br>0.49                   | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 63<br>62<br>71         |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 9.5<br>28.0<br>10.0          |                   | 0.36 J<br>0.40<br>0.30 J         | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 83<br>69               |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 3.0<br>400.0                 |                   | 0.40 J<br>0.36                   | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA               |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 3.4<br>21.0<br>10.0<br>190.0 | <br>              | 0.52 J<br>1.10<br>1.00 J<br>0.88 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 66                     |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 580.0<br>5.5<br>1000.0       |                   | 0.63<br>0.58 J<br>0.60           | Total 2,3,7,8-TCDD<br>Equivalence: 27 ng/Kg<br>(Using 2005 WHO Factors)                          |                                      |                        |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 350.0<br>770.0               |                   | 1.20<br>1.20                     |                                                                                                  |                                      |                        |
| OCDF<br>OCDD                                                               | 250.0<br>3900.0              |                   | 0.40<br>0.44                     |                                                                                                  |                                      |                        |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-002-0.0-0.15

Lab Sample ID 10366129002 Filename F161027B\_11 Injected By SMT

Total Amount Extracted 19.1 g Matrix Solid % Moisture 85.5 Dilution NA

Dry Weight Extracted 2.77 g Collected 10/13/2016 11:00 ICÁL ID F161011 Received 10/14/2016 09:45 CCal Filename(s) F161027B\_03 & F161027B\_18 Extracted 10/24/2016 17:35 Method Blank ID **BLANK-52487** Analyzed 10/28/2016 00:13

| Native<br>Isomers                                                          | Conc<br>ng/Kg               | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg              | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery    |
|----------------------------------------------------------------------------|-----------------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 5.8<br>64.0                 |                   | 0.41<br>0.41                     | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 68<br>74<br>79         |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 13.0                        | 1.3               | 0.43 IJ<br>0.43                  | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 80<br>88<br>69 Y       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 2.9<br>5.9<br>120.0         | <br>              | 0.42 J<br>0.26 J<br>0.34         | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 79<br>70 Y<br>68<br>80 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 2.9<br>45.0                 |                   | 0.33 J<br>0.33                   | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 64<br>64<br>74         |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 9.1<br>28.0<br>9.8          | <br>              | 0.38 J<br>0.54<br>0.49 J         | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 82<br>73               |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 3.3<br>370.0                |                   | 0.35 J<br>0.44                   | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA               |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 3.1<br>20.0<br>9.6<br>180.0 | <br>              | 0.33 J<br>0.27<br>0.42 J<br>0.34 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 66                     |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 560.0<br>5.5<br>970.0       | <br>              | 0.22<br>0.53 J<br>0.38           | Total 2,3,7,8-TCDD<br>Equivalence: 24 ng/Kg<br>(Using 2005 WHO Factors)                          |                                      |                        |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 250.0<br>530.0              |                   | 1.10<br>1.10                     |                                                                                                  |                                      |                        |
| OCDF<br>OCDD                                                               | 270.0<br>2800.0             |                   | 0.36<br>0.36                     |                                                                                                  |                                      |                        |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16MLW-003-0.0-0.15

Lab Sample ID 10366129003 Filename F161027B\_12 Injected By SMT

Total Amount Extracted 19.4 g Matrix Solid % Moisture 81.2 Dilution NA

10/13/2016 11:30 Dry Weight Extracted Collected 3.65 gICAL ID F161011 Received 10/14/2016 09:45 CCal Filename(s) F161027B\_03 & F161027B\_18 Extracted 10/24/2016 17:35 Method Blank ID **BLANK-52487** Analyzed 10/28/2016 01:01

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg         | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg            | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery    |
|----------------------------------------------------------------------------|------------------------------|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 11.0<br>110.0                |                   | 0.37<br>0.37                   | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 69<br>74<br>77         |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 2.6<br>34.0                  |                   | 0.23 J<br>0.23                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 78<br>85<br>72 Y       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 8.3<br>10.0<br>230.0         | <br>              | 0.19 J<br>0.39 J<br>0.29       | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 78<br>72 Y<br>74<br>83 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 5.5<br>76.0                  |                   | 0.44 J<br>0.44                 | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 68<br>65<br>75         |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 19.0<br>84.0<br>20.0         |                   | 0.46<br>0.41<br>0.45           | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 86<br>74               |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 5.7<br>810.0                 |                   | 0.42 J<br>0.43                 | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA               |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 5.4<br>39.0<br>18.0<br>330.0 | <br>              | 0.96 J<br>0.80<br>0.41<br>0.73 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 67                     |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 1300.0<br>11.0<br>2200.0     |                   | 0.23<br>2.10 J<br>1.20         | Total 2,3,7,8-TCDD<br>Equivalence: 51 ng/Kg<br>(Using 2005 WHO Factors)                          |                                      |                        |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 460.0<br>990.0               |                   | 1.10<br>1.10                   |                                                                                                  |                                      |                        |
| OCDF<br>OCDD                                                               | 570.0<br>5400.0              |                   | 0.31<br>0.47                   |                                                                                                  |                                      |                        |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs



# Method 8290 Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCAL File

CCal Filename(s)

BLANK-52487 U161026B\_10 20.2 g U161025

U161026B\_01 & U161026B\_18

Matrix Solid Dilution NA

Extracted 10/24/2016 17:35 Analyzed 10/26/2016 23:46

Injected By SMT

| Native<br>Isomers                                                                               | <b>Conc</b><br>ng/Kg       | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                       | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|-------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                                      | ND<br>0.040                |                   | 0.029<br>0.029 J                          | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 80<br>89<br>81       |
| 2,3,7,8-TCDD<br>Total TCDD                                                                      | ND<br>ND                   |                   | 0.043<br>0.043                            | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00<br>2.00         | 81<br>87<br>73       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                               | ND<br>ND<br>ND             |                   | 0.031<br>0.023<br>0.027                   | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 75<br>79<br>85<br>73 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                  | ND<br>ND                   |                   | 0.038<br>0.038                            | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 67<br>65<br>73       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF | ND<br>ND<br>ND<br>ND<br>ND | <br><br>          | 0.023<br>0.022<br>0.016<br>0.018<br>0.020 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                 | 2.00<br>2.00<br>4.00<br>2.00<br>2.00 | 75<br>64<br>NA<br>NA |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                      | ND<br>ND<br>ND<br>0.042    | <br>              | 0.030<br>0.027<br>0.030<br>0.029 J        | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 86                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                       | ND<br>ND<br>ND             |                   | 0.027<br>0.031<br>0.029                   | Total 2,3,7,8-TCDD<br>Equivalence: 0.000043 ng/K(<br>(Using 2005 WHO Factors)                    | 9                                    |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                              | ND<br>0.083                |                   | 0.027<br>0.027 J                          |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                                                    | ND<br>0.140                |                   | 0.047<br>0.062 J                          |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value



# **Method 8290 Laboratory Control Spike Results**

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID CCal Filename(s) Method Blank ID

LCS-52488 U161026B\_06 20.7 g U161025

U161026B\_01 & U161026B\_18 BLANK-52487 Matrix Dilution Extracted

Solid NA

Extracted 10/24/2016 17:35 Analyzed 10/26/2016 20:38 Injected By SMT

| Wethod Blank IB                                                            | DLA               | ((VIX-32-10)      |                   | injected by                                                                                                               | VII                             |                            |
|----------------------------------------------------------------------------|-------------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| Native<br>Isomers                                                          | <b>Qs</b><br>(ng) | <b>Qm</b><br>(ng) | %<br>Rec.         | Internal<br>Standards                                                                                                     | ng's<br>Added                   | Percent<br>Recovery        |
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 0.20              | 0.22              | 110               | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                                               | 2.0<br>2.0<br>2.0               | 83<br>95<br>79             |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 0.20              | 0.19              | 95                | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                                       | 2.0<br>2.0<br>2.0<br>2.0        | 79<br>86<br>73             |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 1.0<br>1.0        | 1.1<br>1.2        | 111<br>117        | 1,2,3,6,7,8-HxCDF-13C<br>1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 73<br>72<br>78<br>84<br>75 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 1.0               | 1.0               | 104               | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                                               | 2.0<br>2.0<br>2.0               | 68<br>70<br>76             |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 1.0<br>1.0<br>1.0 | 1.1<br>1.2<br>1.1 | 113<br>116<br>108 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                                                       | 2.0<br>4.0                      | 77<br>68                   |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 1.0               | 1.1               | 109               | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                                                 | 2.0<br>2.0                      | NA<br>NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 1.0<br>1.0<br>1.0 | 1.2<br>1.2<br>1.2 | 115<br>121<br>121 | 2,3,7,8-TCDD-37Cl4                                                                                                        | 0.20                            | 98                         |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 1.0<br>1.0        | 1.1<br>1.0        | 114<br>104        |                                                                                                                           |                                 |                            |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 1.0               | 1.0               | 104               |                                                                                                                           |                                 |                            |
| OCDF<br>OCDD                                                               | 2.0<br>2.0        | 2.3<br>2.4        | 115<br>121        |                                                                                                                           |                                 |                            |

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
\* = See Discussion



# Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample İD Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID BW16MLW-001-0.0-0.15-MS

10366129001-MS

F161027B\_06 19.8 g F161011 F161027B\_03 & F161027B\_18

F161027B\_03 & F161027B\_18 BLANK-52487 Matrix Solid Dilution NA

Extracted 10/24/2016 17:35 Analyzed 10/27/2016 20:09

Injected By SMT

| Native<br>Isomers                      | <b>Q</b> s<br>(ng) | <b>Qm</b><br>(ng) | %<br>Rec.  | Internal<br>Standards                                                   | ng's<br>Added        | Percent<br>Recovery |
|----------------------------------------|--------------------|-------------------|------------|-------------------------------------------------------------------------|----------------------|---------------------|
| 2,3,7,8-TCDF                           | 0.20               | 0.24              | 119        | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C             | 2.00<br>2.00<br>2.00 | 66<br>73<br>78      |
| 2,3,7,8-TCDD                           | 0.20               | 0.17              | 83         | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C     | 2.00<br>2.00<br>2.00 | 81<br>89<br>65 Y    |
| 1,2,3,7,8-PeCDF                        | 1.00               | 1.15              | 115        | 1,2,3,6,7,8-HxCDF-13C                                                   | 2.00                 | 82                  |
| 2,3,4,7,8-PeCDF                        | 1.00               | 1.21              | 121        | 2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00 | 69 Y<br>68<br>77    |
| 1,2,3,7,8-PeCDD                        | 1.00               | 1.00              | 100        | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C                        | 2.00<br>2.00         | 71<br>65            |
| 1,2,3,4,7,8-HxCDF                      | 1.00               | 1.22              | 122        | 1,2,3,4,7,8,9-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDD-13C                      | 2.00<br>2.00         | 75<br>85            |
| 1,2,3,6,7,8-HxCDF                      | 1.00               | 1.21              | 121        | OCDD-13C                                                                | 4.00                 | 75                  |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 1.00<br>1.00       | 1.08<br>1.10      | 108<br>110 | 1,2,3,4-TCDD-13C                                                        | 2.00                 | NA                  |
| ,,=,0,,,0,0                            |                    |                   |            | 1,2,3,7,8,9-HxCDD-13C                                                   | 2.00                 | NA                  |
| 1,2,3,4,7,8-HxCDD                      | 1.00               | 1.21              | 121        | 2,3,7,8-TCDD-37Cl4                                                      | 0.20                 | 68                  |
| 1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD | 1.00<br>1.00       | 1.23<br>1.09      | 123<br>109 |                                                                         |                      |                     |
| 1,2,0,7,0,0-110000                     | 1.00               | 1.00              | 100        |                                                                         |                      |                     |
| 1,2,3,4,6,7,8-HpCDF                    | 1.00               | 2.64              | 264        |                                                                         |                      |                     |
| 1,2,3,4,7,8,9-HpCDF                    | 1.00               | 0.98              | 98         |                                                                         |                      |                     |
| 1,2,3,4,6,7,8-HpCDD                    | 1.00               | 1.62              | 162        |                                                                         |                      |                     |
| OCDF                                   | 2.00               | 2.99              | 150        |                                                                         |                      |                     |
| OCDD                                   | 2.00               | 10.02             | 501        |                                                                         |                      |                     |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. Y = Calculated using average of daily RFs



# Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID Lab Sample ID

Filename **Total Amount Extracted** 

**ICAL ID** 

CCal Filename(s) Method Blank ID

BW16MLW-001-0.0-0.15-MSD

10366129001-MSD F161027B\_07

19.7 g F161011

F161027B\_03 & F161027B\_18 BLANK-52487

Matrix Solid Dilution NA

10/24/2016 17:35 Extracted 10/27/2016 20:58 Analyzed

Injected By SMT

| Native<br>Isomers                      | <b>Q</b> s<br>(ng) | <b>Qm</b><br>(ng) | %<br>Rec.  | Internal<br>Standards                                                   | ng's<br>Added        | Percent<br>Recovery |
|----------------------------------------|--------------------|-------------------|------------|-------------------------------------------------------------------------|----------------------|---------------------|
| 2,3,7,8-TCDF                           | 0.20               | 0.24              | 119        | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C             | 2.00<br>2.00<br>2.00 | 69<br>74<br>79      |
| 2,3,7,8-TCDD                           | 0.20               | 0.17              | 86         | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C     | 2.00<br>2.00<br>2.00 | 82<br>89<br>68 Y    |
| 1,2,3,7,8-PeCDF                        | 1.00               | 1.13              | 113        | 1,2,3,6,7,8-HxCDF-13C                                                   | 2.00                 | 81                  |
| 2,3,4,7,8-PeCDF                        | 1.00               | 1.24              | 124        | 2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00 | 71 Y<br>69<br>81    |
| 1,2,3,7,8-PeCDD                        | 1.00               | 1.03              | 103        | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C                        | 2.00<br>2.00         | 69<br>65            |
| 1,2,3,4,7,8-HxCDF                      | 1.00               | 1.21              | 121        | 1,2,3,4,7,8,9-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDD-13C                      | 2.00<br>2.00         | 75<br>84            |
| 1,2,3,6,7,8-HxCDF                      | 1.00               | 1.18              | 118        | OCDD-13C                                                                | 4.00                 | 73                  |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 1.00<br>1.00       | 1.10<br>1.05      | 110<br>105 | 1,2,3,4-TCDD-13C                                                        | 2.00                 | NA                  |
| , ,-, ,-,-                             |                    |                   |            | 1,2,3,7,8,9-HxCDD-13C                                                   | 2.00                 | NA                  |
| 1,2,3,4,7,8-HxCDD                      | 1.00               | 1.18              | 118        | 2,3,7,8-TCDD-37Cl4                                                      | 0.20                 | 65                  |
| 1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD | 1.00<br>1.00       | 1.23<br>1.08      | 123<br>108 |                                                                         |                      |                     |
| 1,2,3,7,0,9-11,000                     | 1.00               | 1.00              | 100        |                                                                         |                      |                     |
| 1,2,3,4,6,7,8-HpCDF                    | 1.00               | 2.61              | 261        |                                                                         |                      |                     |
| 1,2,3,4,7,8,9-HpCDF                    | 1.00               | 0.99              | 99         |                                                                         |                      |                     |
| 1,2,3,4,6,7,8-HpCDD                    | 1.00               | 1.68              | 168        |                                                                         |                      |                     |
| OCDF                                   | 2.00               | 3.04              | 152        |                                                                         |                      |                     |
| OCDD                                   | 2.00               | 10.21             | 511        |                                                                         |                      |                     |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. Y = Calculated using average of daily RFs

Tel: 612-607-1700

Fax: 612- 607-6444



# Method 8290 Spike Sample Results

Client - Bay West, Inc.

Client Sample ID Lab Sample ID MS ID

MSD ID

BW16MLW-001-0.0-0.15

10366129001 10366129001-MS 10366129001-MSD Sample Filename MS Filename MSD Filename

F161027B 10 F161027B 06 F161027B\_07 Dry Weights

Sample Amount 2.62 g MS Amount 2.6 g 2.6 g MSD Amount

|                     | Sample Conc. | MS/MSD Qs | MS Qm | MSD Qm |     | Background Subtracted |            |       |  |
|---------------------|--------------|-----------|-------|--------|-----|-----------------------|------------|-------|--|
| Analyte             | ng/Kg        | (ng)      | (ng)  | (ng)   | RPD | MS % Rec.             | MSD % Rec. | RPD   |  |
| 2,3,7,8-TCDF        | 6.872        | 0.20      | 0.24  | 0.24   | 0.3 | 110                   | 110        | 0.3   |  |
| 2,3,7,8-TCDD        | 1.631        | 0.20      | 0.17  | 0.17   | 3.5 | 81                    | 84         | 3.6   |  |
| 1,2,3,7,8-PeCDF     | 2.813        | 1.00      | 1.15  | 1.13   | 1.5 | 114                   | 112        | 1.5   |  |
| 2,3,4,7,8-PeCDF     | 6.165        | 1.00      | 1.21  | 1.24   | 2.3 | 119                   | 122        | 2.3   |  |
| 1,2,3,7,8-PeCDD     | 3.609        | 1.00      | 1.00  | 1.03   | 3.4 | 99                    | 102        | 3.5   |  |
| 1,2,3,4,7,8-HxCDF   | 9.501        | 1.00      | 1.22  | 1.21   | 1.1 | 120                   | 119        | 1.1   |  |
| 1,2,3,6,7,8-HxCDF   | 28.272       | 1.00      | 1.21  | 1.18   | 2.9 | 114                   | 110        | 3.0   |  |
| 2,3,4,6,7,8-HxCDF   | 10.388       | 1.00      | 1.08  | 1.10   | 1.5 | 105                   | 107        | 1.5   |  |
| 1,2,3,7,8,9-HxCDF   | 3.005        | 1.00      | 1.10  | 1.05   | 5.2 | 110                   | 104        | 5.3   |  |
| 1,2,3,4,7,8-HxCDD   | 3.370        | 1.00      | 1.21  | 1.18   | 2.9 | 120                   | 117        | 2.9   |  |
| 1,2,3,6,7,8-HxCDD   | 20.507       | 1.00      | 1.23  | 1.23   | 0.0 | 117                   | 117        | 0.0   |  |
| 1,2,3,7,8,9-HxCDD   | 10.058       | 1.00      | 1.09  | 1.08   | 8.0 | 106                   | 105        | 8.0   |  |
| 1,2,3,4,6,7,8-HpCDF | 582.118      | 1.00      | 2.64  | 2.61   | 1.1 | 110                   | 108        | 2.0   |  |
| 1,2,3,4,7,8,9-HpCDF | 5.462        | 1.00      | 0.98  | 0.99   | 0.7 | 97                    | 98         | 0.7   |  |
| 1,2,3,4,6,7,8-HpCDD | 345.145      | 1.00      | 1.62  | 1.68   | 3.9 | 71                    | 78         | 9.3   |  |
| OCDF                | 251.261      | 2.00      | 2.99  | 3.04   | 1.5 | 117                   | 119        | 2.1   |  |
| OCDD                | 3881.063     | 2.00      | 10.02 | 10.21  | 1.9 | 0                     | 2          | 200.0 |  |

#### **Definitions**

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated

T = Tetra Pe = Penta Hx = Hexa

Hp = Hepta

CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

O = Octa



2045 Mills Road West Sidney, BC, Canada V8L5X2

TEL: (250) 655-5800 TOLL-FREE: 1-888-373-0881

AXYS Client No.: 4819

Client Address: Bay West LLC

5 Empire Drive

St. Paul, MN, US, 55103

The AXYS contact for these data is Andrew Porat.

# **DIOXIN/FURAN ANALYSIS**

# **TISSUE SAMPLES**

PROJECT NAME: SLR AOC DATA GAP INVESTIGATION

WORK ORDER #: 3000017136

Contract: 4819
Data Package Identification: DPWG57987

**Analysis WG57620** 

20 January 2017

BAY WEST INC. TISSUE SAMPLES

DIOXIN/FURAN ANALYSIS AXYS METHODS: MLA-017

4819: L26338-1 to -5

Project: SLR AOC Data Gap Investigation Work Order #: 3000017136

19 January 2017

#### NARRATIVE

This narrative describes the analysis of five tissue samples for the determination of polychlorinated dibenzodioxins and dibenzofurans using high-resolution gas chromatography / high-resolution mass spectrometry (HRGC/HRMS).

#### SAMPLE RECEIPT, STORAGE AND DESCRIPTION

The samples were received on the 29th of November 2016. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in the sample documentation section of this data package. Prior to sample preparation and analysis, the samples were stored at -20°C.

It was noted that '#' on the original sample IDs have been removed for programming reasons. Sample ID discrepancies between the Chain of Custody (COC) and the sample container labelling for L26338-1 was noted by the receiving chemist, the sample ID was logged in based on COC.

#### SAMPLE ANALYSIS

The samples and QC samples (a procedural blank and two Ongoing Precision and Recovery (OPR) samples) were analyzed in one batch named WG57620. The composition of the analysis batch is shown on the Correlation Table included in this data package.

Extraction and analysis procedures were in accordance with AXYS Method MLA-017: Analytical Method for the Determination of Polychlorinated Dibenzodioxins and Dibenzofurans by EPA Method 1613B, EPA Method 8290/8290A OR EPA Method DLM02.2. The method summary, MSU-017, is included following this narrative.

The samples were accurately weighed, spiked with isotopically-labeled quantification standards and Soxhlet extracted with 1:1 DCM:Hexane. The resulting extract was spiked with 13C-labeled cleanup standards, sub-sampled for lipid analysis, and cleaned up using acid/base Silica, Florisil, Alumina and Carbon Celite chromatographic columns. Following cleanup, the extracts were reduced in volume and spiked with 13C-labeled recovery (internal) standards prior to instrumental analysis. The final extract volume was 20μL. 1μL was injected for the DB5 column analysis; 2μL were injected for the DB225 column analysis.

#### REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 4819. The samples were assigned a unique laboratory identifier of the form L26338-X, where X = numeral. All data reports reference this unique AXYS ID plus the client's sample identifier. To assist with locating data, a table correlating AXYS ID with the client sample number is included in this data package. The report forms were generated using Laboratory Information Management Software (LIMS).

The following laboratory qualifier flags are used in this data package:

U = identifies a compound that was not detected

J = indicates an estimated value where the concentration of the analyte is less than

the LMCL but greater than the SDL

K = identifies a target that could not be confirmed by virtue of not satisfying all method required criteria, the reported value may be interpreted as an estimated maximum analyte concentration.

Results are reported in concentration units of picograms per gram (pg/g) on a wet weight basis. Concentration and detection limits are provided to three significant figures. Analysis results for each sample are provided on Analysis Report form 1A/2.

#### QA/QC NOTES

Samples and QC samples analyzed in one analysis batch were carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected. Sample data should be evaluated with consideration of the procedural blank results.
- By virtue of the isotope dilution/internal standard quantification procedures, data are recovery corrected for possible losses during extraction and cleanup.
- All linearity, CAL/VER, OPRs, duplicate and labeled compound recovery specifications were met with following exception.

Data are not blank corrected. 1,2,3,4,6,7,8-HPCDD and OCDD were detected above the method control limit for the lab blank (AXYS ID WG57620-101), sample data should be reviewed with consideration of the blank levels.

#### ANALYTICAL DISCUSSION

No analytical difficulties were encountered.

#### DATA PACKAGE

This data package is assigned a unique identifier, DPWG57987, shown on the title page of the data package. Included in the data package after this narrative are the following documents:

- Method summaries
- Sample 'Correlation Table'
- Sample receiving documentation
- Sample data reports
- Laboratory QC data reports
- Instrumental QC data reports (organized by analysis date)
- Accreditation Scope

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Henry Huang, Ph.D., Data Validation Chemist

19 Jan. 2017 Date Signed

### AXYS Analytical Services Ltd.

#### SUMMARY OF AXYS METHOD MLA-017 REV. 20 VER. 09:

# ANALYTICAL METHOD FOR THE DETERMINATION OF POLYCHLORINATED DIBENZODIOXINS AND DIBENZOFURANS BY EPA METHOD 1613B, 8290/8290A OR DLM02.2

AXYS Method MLA-017 describes the analysis of polychlorinated (tetra-octa) dibenzodioxins and dibenzofurans in solids (sediment, soil, biosolid, pulp), tissues (including blood, serum, plasma and milk), aqueous samples, XAD-2 columns, air samples, particulate filters and solvent extracts.

#### **Target Analytes**

| Dioxins (PCDD)                                 | Furans (PCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2,3,7,8 Tetrachlorodibenzodioxin (TCDD)        | 2,3,7,8 Tetrachlorodibenzofuran (TCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total TCDD                                     | Total TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,3,7,8 Pentachlorodibenzodioxin (PeCDD)     | 1,2,3,7,8 Pentachlorodibenzofuran (PeCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total PeCDD                                    | 2,3,4,7,8 PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | Total PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,2,3,4,7,8 Hexachlorodibenzodioxin (HxCDD)    | 1,2,3,4,7,8 Hexachlorodibenzofuran (HxCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,3,6,7,8 HxCDD                              | 1,2,3,6,7,8 HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2,3,7,8,9 HxCDD                              | 1,2,3,7,8,9 HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total HxCDD                                    | 2,3,4,6,7,8 HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | Total HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,2,3,4,6,7,8 Heptachlorodibenzodioxin (HpCDD) | 1,2,3,4,6,7,8 Heptachlorodibenzofuran (HpCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total HpCDD                                    | 1,2,3,4,7,8,9 HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                | Total HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Octachlorodibenzodioxin (OCDD)                 | Octachlorodibenzofuran (OCDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                | Air control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co |

#### 1.0 EXTRACTION AND CLEANUP PROCEDURES

All samples are spiked with <sup>13</sup>C-labelled surrogate standards prior to extraction and extracted as per the table below. Optional extraction procedures are shown within parentheses.

## AXYS Analytical Services Ltd.

## Sample Extraction

| Matrix                                                        | Extraction                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Aqueous samples                                               | Liquid-liquid extraction with dichloromethane. (If visible particulates are present the sample is filtered prior to extraction and the particulate fraction separately extracted by Soxhlet extraction or Dean-Stark Soxhlet extraction. The two extracts are then combined.) |  |  |  |  |  |
| Solid (sediment, soil, sludge, particles on filter paper)     | Soxhlet extraction with toluene:acetone 80:20. (optional: Dean-Stark Soxhlet extraction with toluene)                                                                                                                                                                         |  |  |  |  |  |
| Solid (pulp, black liquor)                                    | Soxhlet extraction with toluene:acetone 80:20.                                                                                                                                                                                                                                |  |  |  |  |  |
| Solid (ash, slag)                                             | Sonication with hydrochloric acid and filtering. Liquid-liquid extraction of filtrate using dichloromethane, Soxhlet extraction of particulate using toluene:acetone 80:20. The two extracts are combined.                                                                    |  |  |  |  |  |
| Tissue                                                        | Soxhlet extraction with dichloromethane:hexane 1:1 (optional: Base digestion and liquid-liquid extraction with hexane)                                                                                                                                                        |  |  |  |  |  |
| Whole blood/serum                                             | Liquid-liquid extraction with ethanol:hexane:saturated ammonium sulfate.                                                                                                                                                                                                      |  |  |  |  |  |
| Milk                                                          | Liquid-liquid extraction with acetone and hexane.                                                                                                                                                                                                                             |  |  |  |  |  |
| XAD-2 column and filter                                       | XAD-2 adsorbent is dried and Soxhlet extracted (with toluene:acetone 80:20) or Dean-Stark Soxhlet extracted (with toluene). The filter is extracted by Dean-Stark Soxhlet extraction using toluene.                                                                           |  |  |  |  |  |
| Ambient air (PUF and filter)                                  | The PUF and filter(s) are Soxhlet extracted together using toluene:acetone 80:20.                                                                                                                                                                                             |  |  |  |  |  |
| Stationary Source Air<br>Samples (Stack Gas sample<br>trains) | The filter is sonicated with dilute hydrochloride acid and filtered.                                                                                                                                                                                                          |  |  |  |  |  |
| 7                                                             | Equipment rinsates are collected, filtered, dried and/or extracted depending on sampling conditions.                                                                                                                                                                          |  |  |  |  |  |

### AXYS Analytical Services Ltd.

The extracts are then routinely cleaned up according to the following table:

| Water Soil Sediment XAD-2 adsorbent Air samples Sludge High organic soil | (Base/acid wash →)  DX AgNO <sub>3</sub> 30g 44% →  (DX Florisil →)  Copper →  Alumina/carbon/Celite combination column |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Tissue<br>Blood/serum/<br>plasma<br>Milk                                 | (Biobead →)  DX 20g 44% →  DX Florisil →  (Copper →)  Alumina/carbon/Celite combination column                          |

Note: Items in brackets are optional procedures that may be used if needed or if required by Project Managers.

An optional Biobead clean-up may be carried out for biosolid sample extracts.

#### 2.0 INSTRUMENTATION

Instrumental analysis is performed on a DB-5 capillary chromatography column coupled to a high-resolution mass spectrometer (HRMS). The HRMS is operated at a static (10000) mass resolution in the voltage selected ion-recording mode (V-SIR) using selected PFK ions as a reference for mass lock. Two masses from the molecular ion cluster are used to monitor each of the target analytes and <sup>13</sup>C-labelled surrogate standards. A second column, DB-225, is used for confirmation of 2,3,7,8-TCDF identification. Five additional ions are monitored to check for interference from chlorinated diphenylethers.

Upon client request, the concentrations of PCDD/F may be determined using bracketing calibration procedures and a smaller suite of surrogate standards.

#### 3.0 CALIBRATION

Initial calibration (default procedure) is performed using a five point calibration series of solutions that encompass the working concentration range. Initial calibration solutions contain the suite of labelled surrogate and recovery standards and authentic target PCDDs/PCDFs. Calibration is verified at least once every 12 hours by analysis of a mid-level calibration solution. Calibration procedures use the mean RRFs determined from the initial calibration to calculate analyte concentrations.

Alternately clients may request initial calibration be performed using a six point calibration series of solutions if lower detection limits are required.

# AXYS Analytical Services Ltd.

#### Concentration of PCDD/PCDF Calibration Solutions

|                                                    |       | Authentic Standar<br>Amount added to |     |     |     |      |                                                      |
|----------------------------------------------------|-------|--------------------------------------|-----|-----|-----|------|------------------------------------------------------|
|                                                    | CS0.2 | CS1                                  | CS2 | CS3 | CS4 | CS5  | sample (pg)                                          |
| Native Compound                                    |       |                                      |     |     |     |      |                                                      |
| 2,3,7,8-TCDD                                       | 0.1   | 0.5                                  | 2   | 10  | 40  | 200  | 200                                                  |
| 2,3,7,8-TCDF                                       | 0.1   | 0.5                                  | 2   | 10  | 40  | 200  | 200                                                  |
| 1,2,3,7,8-PeCDD                                    | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,7,8-PeCDF                                    | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 2,3,4,7,8-PeCDF                                    | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,4,7,8-HxCDD                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,6,7,8-HxCDD                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,7,8,9-HXCDD                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,4,7,8-HxCDF                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,6,7,8-HxCDF                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,7,8,9-HxCDF                                  | 0.5   | 2,5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 2,3,4,6,7,8-HxCDF                                  | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,4,6,7,8-HpCDD                                | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,4,6,7,8-HpCDF                                | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| 1,2,3,4,7,8,9-HpCDF                                | 0.5   | 2.5                                  | 10  | 50  | 200 | 1000 | 1000                                                 |
| OCDD                                               | 1.0   | 5.0                                  | 20  | 100 | 400 | 2000 | 2000                                                 |
| OCDF                                               | 1.0   | 5.0                                  | 20  | 100 | 400 | 2000 | 2000                                                 |
| Surrogate Standards                                |       |                                      |     |     |     |      | Surrogate Standard<br>Amount added to<br>sample (pg) |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF        | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF     | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF   | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 100   | 100                                  | 100 | 100 | 100 | 100  | 2000                                                 |
| <sup>13</sup> C <sub>12</sub> -OCDD                | 200   | 200                                  | 200 | 200 | 200 | 200  | 4000                                                 |
| Cleanup Standard                                   |       |                                      |     |     |     |      |                                                      |
| <sup>37</sup> Cl <sub>4</sub> -2,3,7,8-TCDD        | 0.1   | 0.5                                  | 2   | 10  | 40  | 200  | 200                                                  |

#### AXYS Analytical Services Ltd.

| Recovery Standard                                |     |     | -   |     |     |     |      |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|------|
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD      | 100 | 100 | 100 | 100 | 100 | 100 | 2000 |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 2000 |

#### 4.0 QUANTIFICATION PROCEDURES

The response for any component is taken as the sum of the integrated peak areas for the two characteristic masses for that compound. Quantification is by the isotope dilution method. Target concentrations are determined with respect to labelled surrogate standards. Mean relative response factors (RRF), determined from the multi-level initial calibration series are used to convert raw peak areas in sample chromatograms to final concentrations as follows:

$$Concentration of Target = \left(\frac{\text{area of Target}}{\text{area of Qt Std}}\right) \times \left(\frac{\text{weight of Qt Std}}{\text{RRF}}\right) \times \left(\frac{1}{\text{weight of sample}}\right)$$

where RRF = 
$$\left(\frac{\text{area of Target}}{\text{area of Qt Std}}\right) \times \left(\frac{\text{weight of Qt Std}}{\text{weight of Target}}\right)$$

and the Qt Std is either the surrogate or the internal standard

Those compounds quantified against a labelled standard added at the beginning of the analysis procedure are recovery corrected by the method of quantification. Surrogate recoveries are determined similarly against the recovery (internal) standard and are used as general indicators of overall analytical quality.

#### 4.1 Reporting Limits

Concentrations and detection limits for the 2,3,7,8-polychlorinated dioxins and furans (tetra-octa) are reported. Typical reporting units for all data are pg/g, pg/L or pg/sample. Concentrations for solids are reported on a dry weight basis. Concentrations in tissues (including blood and milk) are reported on a wet weight basis and/or on a lipid weight basis when requested. Concentrations in aqueous samples are reported on a volume basis. Concentrations in XAD-2 resin, filters and stack gas samples are reported on a per sample basis or a per volume basis. Concentrations in particulate filters are reported on a per sample basis.

The following are commonly requested reporting limits:

Sample Specific Detection Limit or Sample Detection Limit (SDL) – determined individually for every sample analysis run by converting the area equivalent of 3.0 times (2.5 times for EPA 1600 series methods) the estimated chromatographic noise height to a concentration in the same manner that target peak responses are converted to final concentrations. The SDL accounts for any effect of matrix on the detection system and for recovery achieved through the analytical work-up. Equivalent term(s): Estimated Detection Limit (EDL) from EPA method 8290.

### AXYS Analytical Services Ltd.

Method Detection Limit (MDL) - determined as specified by EPA Fed. Reg. 40 CFR Part 136 Appendix B (no iteration option). The 99% confidence level MDL is determined based on analysis of a minimum of 7 replicate matrix spikes fortified at 1-10 times the estimated detection limit. MDL is determined as required based on accreditation, contract and workload requirements.

Lower Method Calibration Limit (LMCL) - determined by prorating the concentration of the lowest calibration limit for sample size and extract volume. The following equation is used. ((lowest level cal conc.) x (extract volume))/sample size. Typical extract volume for PCDDs/PCDFs is 20 µL.

For the analysis of PCDDs/PCDFs AXYS standard is to report sample concentrations using the SDL with a minimum reporting limit of 0.5 pg absolute.

### Analyte Ions Monitored, Surrogates Used and RRF Determination for Dioxins/Furans

| Analytes                                    | Quantification<br>Ion (m/z) | Confirmation<br>Ion (m/z) | Surrogate                                                                | RRF Determined From                         |  |
|---------------------------------------------|-----------------------------|---------------------------|--------------------------------------------------------------------------|---------------------------------------------|--|
| 2,3,7,8-TCDD                                | 319.8965                    | 321.8936                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD                              | 2,3,7,8-TCDD                                |  |
| 1,3,6,8-TCDD *                              | 319.8965                    | 321.8936                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD                              | 2,3,7,8-TCDD                                |  |
| 1,3,7,9-TCDD *                              | 319.8965                    | 321.8936                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD                              | 2,3,7,8-TCDD                                |  |
| 1,2,3,7,8-PeCDD                             | 353.8576                    | 355.8546                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD                           | 1,2,3,7,8-PeCDD                             |  |
| 1,2,3,4,7,8-HxCDD                           | 389.8156                    | 391.8127                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD                         | 1,2,3,4,7,8-HxCDD                           |  |
| 1,2,3,6,7,8-HxCDD                           | 389.8156                    | 391.8127                  | <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD                         | 1,2,3,6,7,8-HxCDD                           |  |
| 1,2,3,7,8,9-HxCDD                           | 389.8156                    | 391.8127                  | Mean of <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8/1,2,3,4,7,8-<br>HxCDD | 1,2,3,7,8,9-HxCDD                           |  |
| 1,2,3,4,6,7,8-HpCDD                         | 423,7767                    | 425.7737                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD                       | 1,2,3,4,6,7,8-HpCDD                         |  |
| OCDD                                        | 457.7377                    | 459.7348                  | <sup>13</sup> C <sub>12</sub> -OCDD                                      | OCDD                                        |  |
| 2,3,7,8-TCDF                                | 303.9016                    | 305.8987                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8 -TCDF                             | 2,3,7,8-TCDF                                |  |
| 1,2,7,8-TCDF *                              | 303.9016                    | 305.8987                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8 -TCDF                             | 2,3,7,8-TCDF                                |  |
| 1,2,3,7,8-PeCDF                             | 339.8597                    | 341.8568                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF                           | 1,2,3,7,8-PeCDF                             |  |
| 2,3,4,7,8-PeCDF                             | 339.8597                    | 341.8568                  | <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF                           | 2,3,4,7,8-PeCDF                             |  |
| 1,2,3,4,7,8-HxCDF                           | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF                         | 1,2,3,4,7,8-HxCDF                           |  |
| 1,2,3,6,7,8-HxCDF                           | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF                         | 1,2,3,6,7,8-HxCDF                           |  |
| 2,3,4,6,7,8-HxCDF                           | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF                         | 2,3,4,6,7,8-HxCDF                           |  |
| 1,2,3,7,8,9-HxCDF                           | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF                         | 1,2,3,7,8,9-HxCDF                           |  |
| 1,2,3,4,6,7,8-HpCDF                         | 407.7818                    | 409.7788                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF                       | 1,2,3,4,6,7,8-HpCDF                         |  |
| 1,2,3,4,7,8,9-HpCDF                         | 407.7818                    | 409.7788                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF                       | 1,2,3,4,7,8,9-HpCDF                         |  |
| OCDF                                        | 441.7428                    | 443.7398                  | <sup>13</sup> C <sub>12</sub> -OCDD                                      | OCDF                                        |  |
| Cleanup Standard                            |                             |                           |                                                                          |                                             |  |
| <sup>37</sup> Cl <sub>4</sub> -2,3,7,8-TCDD | 327.8847                    |                           | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                              |                                             |  |
| Field Standard                              |                             |                           |                                                                          |                                             |  |
| <sup>13</sup> C <sub>6</sub> -1,2,3,4-TCDD  | 325.9166                    | 327.9137                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                              | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD |  |

### AXYS Analytical Services Ltd.

| Labelled Surrogates                                | Quantification<br>Ion (m/z) | Confirmation<br>Ion (m/z) | Recovery Calculated Using                                  |
|----------------------------------------------------|-----------------------------|---------------------------|------------------------------------------------------------|
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 331.9368                    | 333.9339                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 365.8978                    | 367.8949                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD   | 401.8559                    | 403.8530                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 401.8559                    | 403.8530                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 435.8169                    | 437.8140                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -OCDD                | 469.7780                    | 471,7750                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8 -TCDF       | 315.9419                    | 317_9389                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 351,9000                    | 353.8970                  | <sup>-13</sup> C <sub>12</sub> -1,2,3,4-TCDD               |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF     | 351.9000                    | 353.8970                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD                |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 383.8639                    | 385.8610                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF   | 383.8639                    | 385.8610                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 383.8639                    | 385.8610                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>18</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF   | 383.8639                    | 385.8610                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 417.8250                    | 419.8220                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 417.8250                    | 419.8220                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD           |
| Recovery Standards                                 |                             |                           |                                                            |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD        | 331.9368                    | 333.9339                  | *Optional isomers which may be reported upon client reques |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD   | 401.8559                    | 403.8530                  |                                                            |
| CI-DPE Monitoring lons                             |                             |                           |                                                            |
| Descriptor                                         | Exact M/Z                   | M/Z Type                  | Substance                                                  |
| 3                                                  | 375.8364                    | M+2                       | HxCDPE                                                     |
| 4                                                  | 409.7974                    | M+2                       | HpCDPE                                                     |
| 5                                                  | 445.7555                    | M+4                       | OCDPE                                                      |
| 6                                                  | 479.7165                    | M+4                       | NCDPE                                                      |
| 7                                                  | 513.6775                    | M+4                       | DCDPE                                                      |

### 5.0 QUALITY ACCEPTANCE CRITERIA

Samples are analyzed in batches consisting of a maximum of twenty samples, one procedural blank and one spiked matrix (OPR) sample. A duplicate is analyzed, provided there is sufficient sample, with batches containing 7-20 samples. Matrix spike/matrix spike duplicate (MS/MSD) pairs may be analyzed on an individual contract basis. The batch is carried through the complete analytical process as a unit. For sample data to be reportable, the batch QC data must meet the established acceptance criteria presented on the analysis reports.

### AXYS Analytical Services Ltd.

# QC Specification Table: Authentic and Surrogate Standard Recoveries, CAL/VER, IPR, OPR and Samples

|                                                    | Test             | IPR      |          | OPR    | I-CAL | CAL/VER | Labelled Compound<br>(% rec. in sample) |         |
|----------------------------------------------------|------------------|----------|----------|--------|-------|---------|-----------------------------------------|---------|
|                                                    | Conc.<br>(ng/mL) | SD (%) * |          | (%)    | (%)   | (%)     | Warning<br>Limits                       | Control |
| Native Compound                                    |                  |          |          |        |       |         |                                         |         |
| 2,3,7,8-TCDD                                       | 10               | 28       | 83-129   | 70-130 | 20    | 78-125  |                                         | -       |
| 2,3,7,8-TCDF                                       | 10               | 20       | 87-137   | 75-130 | 20    | 84-120  | 194                                     | -       |
| 1,2,3,7,8-PeCDD                                    | 50               | 15       | 76-132   | 70-130 | 20    | 78-125  | T 10.T.                                 |         |
| 1,2,3,7,8-PeCDF                                    | 50               | 15       | 86-124   | 80-130 | 20    | 82-120  | , ω,                                    | 1-1     |
| 2,3,4,7,8-PeCDF                                    | 50               | 17.2     | 72-150   | 70-130 | 20    | 82-122  | - 10                                    | - A-    |
| 1,2,3,4,7,8-HxCDD                                  | 50               | 18.8     | 78-152   | 70-130 | 20    | 78-125  |                                         | 7.0     |
| 1,2,3,6,7,8-HxCDD                                  | 50               | 15.4     | 84-124   | 76-130 | 20    | 78-125  | - 4                                     | 11161   |
| 1,2,3,7,8,9-HXCDD                                  | 50               | 22.2     | 74-142   | 70-130 | 35    | 82-122  | * * * * * * * * * * * * * * * * * * * * | 1.00    |
| 1,2,3,4,7,8-HxCDF                                  | 50               | 17.4     | 82-118   | 72-130 | 20    | 90-112  | -                                       | 11040   |
| 1,2,3,6,7,8-HxCDF                                  | 50               | 13.4     | 92-120   | 84-130 | 20    | 88-114  | -                                       | -       |
| 1,2,3,7,8,9-HxCDF                                  | 50               | 12.8     | 84-122   | 78-130 | 20    | 90-112  |                                         | -       |
| 2,3,4,6,7,8-HxCDF                                  | 50               | 14.8     | 74-148   | 70-130 | 20    | 88-114  |                                         | -       |
| 1,2,3,4,6,7,8-HpCDD                                | 50               | 15.4     | 76-130   | 70-130 | 20    | 86-116  |                                         | -       |
| 1,2,3,4,6,7,8-HpCDF                                | 50               | 12.6     | 90-112   | 82-122 | 20    | 90-110  | -                                       |         |
| 1,2,3,4,7,8,9-HpCDF                                | 50               | 16.2     | 86-126   | 78-130 | 20    | 86-116  |                                         | -       |
| OCDD                                               | 100              | 19       | 89-127   | 78-130 | 20    | 79-125  | -                                       | -       |
| OCDF                                               | 100              | 27       | 74-146   | 70-130 | 35    | 75-125  |                                         | 4       |
| Surrogate Standards                                |                  |          |          |        |       |         |                                         |         |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 100              | 37       | 28-134   | 25-130 | 35    | 82-121  | 40-120                                  | 25-130  |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF        | 100              | 35       | 31-113   | 25-130 | 35    | 71-130  | 40-120                                  | 24-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 100              | 39       | 27-184   | 25-150 | 35    | 70-130  | 40-120                                  | 25-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 100              | 34       | 27-156   | 25-130 | 35    | 76-130  | 40-120                                  | 24-130  |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF     | 100              | 38       | 16-279   | 25-130 | 35    | 77-130  | 40-120                                  | 21-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD   | 100              | 41       | 29-147   | 25-130 | 35    | 85-117  | 40-120                                  | 32-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 100              | 38       | 34-122   | 25-130 | 35    | 85-118  | 40-120                                  | 28-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 100              | 43       | 27-152   | 25-130 | 35    | 76-130  | 40-120                                  | 26-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF   | 100              | 35       | 30-122   | 25-130 | 35    | 70-130  | 40-120                                  | 26-123  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF   | 100              | 40       | 24-157   | 25-130 | 35    | 74-130  | 40-120                                  | 29-130  |
| <sup>13</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF   | 100              | 37       | 29-136   | 25-130 | 35    | 73-130  | 40-120                                  | 28-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 100              | 35       | 34-129   | 26-130 | 35    | 72-130  | 40-120                                  | 23-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 100              | 41       | 32-110   | 25-130 | 35    | 78-129  | 40-120                                  | 28-130  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF | 100              | 40       | 28-141   | 25-130 | 35    | 77-129  | 40-120                                  | 26-130  |
| <sup>13</sup> C <sub>12</sub> -OCDD                | 200              | 47.5     | 20.5-138 | 25-130 | 35    | 70-130  | 25-120                                  | 17-130  |
| Cleanup Standard                                   |                  |          |          |        |       |         |                                         |         |
| <sup>37</sup> Cl <sub>4</sub> -2,3,7,8-TCDD        | 10               | 36       | 39-154   | 31-130 | 35    | 79-127  | 40-120                                  | 35-130  |

<sup>\*</sup> For comparability with EPA 1613B the precision specification for IPR is stated as %SD (=standard deviation relative to the fortification level,)

### AXYS Analytical Services Ltd.

### QC Specification Table: QC Samples, Instrumental Analysis, and Analyte Quantification

| QC Parameter                 | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis Duplicate           | Must agree to within ±20% of the mean (applicable to concentrations >10 times the DL) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                           |
| Procedural Blank             | Blood/serum/plasma and milk: TCDD/F <0.2 pg/sample, PeCDD/F <0.5 pg/sample, HxCDD/F and HpCDD/F <1.0 pg/ sample, OCDD/F<5 pg/sample.  Other matrices: TCDD/F <0.5 pg/sample, PeCDD/F, HxCDD/F, HpCDD/F <1.0 pg/sample, OCDD/F <5 pg/sample.  Higher levels acceptable where all sample concentrations are > 10X the blank concentrations.                                                                                                    |
| Detection Limit              | SDL Requirements (where target concentrations are detectable or sample extracts display atypical interference, SDL values may be higher):  Blood/serum/plasma and milk: Tetra-penta-CDD/F 0.2 pg/sample, Hexa-octa-CDD/F 0.5 pg/sample  Other matrices: 0.5 pg/sample                                                                                                                                                                        |
| Instrument Carry over and    |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Background:<br>Toluene Blank | A. 1 <sup>st</sup> toluene blank following Cal Ver must have <0.6 pg TCDD and <25 pg OCDD <sup>2</sup> . B. 2 <sup>nd</sup> toluene blank following Cal Ver must have <0.2 pg TCDD/F, <0.8 pg Pe-HpCDD/F, and <5.0 pg OCDD <sup>2</sup> .                                                                                                                                                                                                    |
|                              | Blood/serum/plasma and milk extract analysis: As many toluene blanks as necessary are run to achieve an instrument blank level of <0.1 pg TCDD/F, <0.3 pg PeCDD/F, <0.5 pg HxCDD/F, <0.5 pg HpCDD/F and <3.5 pg OCDD.                                                                                                                                                                                                                        |
| Samples                      | <10% contribution from preceding sample (based on observed instrument carryover rate).                                                                                                                                                                                                                                                                                                                                                       |
| Analyte Peak Response        | Response must be below the upper calibrated range of the instrument. Data may be taken from more than one chromatogram to get the responses in the calibrated range.                                                                                                                                                                                                                                                                         |
| Ion Ratios                   | Must be within ±15% of theoretical. For 1613B applications only (as per section 16.3 of 1613B) an alternate acceptance criteria of within ±10% of the ratio in the midpoint calibration (CS3) or calibration verification (Cal Ver), whichever is most recent., may be applied.  Exception for blood/serum/plasma samples: Ion ratios for sample responses below the lowest calibration level equivalent must be within ±35% of theoretical. |
| Sensitivity                  | S:N ≥10:1 for all compounds in CS-0.2 for 1.0 µL injected, plus for blood/serum/plasma and milk S:N ≥3:1 for 0.05 pg injected 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                  |

Duplicate criterion is a guideline; final assessment depends upon sample characteristics, overall batch QC and ongoing lab performance.

Instrument background specifications are calculated from spiking labelled standard into the toluene blank and expressed as pg in a 20 µL extract.

### AXYS Analytical Services Ltd.

### Modifications to EPA Method 1613B

The following sections of EPA Method 1613B have been modified as described below.

### Section 2.1.2

Aqueous liquid from multiphase samples is liquid/liquid extracted with DCM. The extract from the aqueous phase is then combined with the extract from the solid phase portion of the sample.

### Section 7.2.1

Anhydrous sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) is baked overnight prior to use. There is no solvent rinse with dichloromethane.

### Section 7.10

The concentration of the labelled compound solution is 100 ng/mL (except for labeled OCDD which is 200 ng/mL) and is prepared in toluene; 20 µL of the labelled compound solution is spiked to solids and tissue samples to yield the method specified concentrations in the final extracts.

### Section 7.11

The concentration of the cleanup standard spiking solution is 10 ng/mL in toluene and the sample spiking volume is 20  $\mu$ L. The resulting concentration in the final extracts is ½ of the concentration specified in the method.

### Sections 7.13, 14.0, 15.0

A modified EPA 1613B/8290 procedure is offered that includes an additional lower level calibration solution, 0.2 times the concentration of CS1 in the initial calibration series so that initial calibration is based on a six-point series. The calibration solutions are prepared in nonane. A modified EPA 1613B/8290 procedure using calibration solutions prepared in toluene is also available.

### Section 7.14

The concentration of the PAR spiking solutions is 0.2/1.0/2.0 ng/mL for tetra/penta, hexa, hepta, hexa/octas respectively and the spiking volume is 1 mL. The resulting final concentration in the extracts are as specified in the method.

### Section 9.3.3

Table 7 (EPA 1613B) specifications for the percent recovery of surrogate standards in samples that are higher than 130% have been lowered to 130%, as presented in table "QC Specification Table: Authentic and Surrogate Standard Recoveries, CAL/VER, IPR, OPR and Samples" of this document.

### Section 11.5

Multiphase, predominately aqueous, samples containing >1% suspended solids may be prepared and extracted using the same procedure as samples containing ≤1% suspended solids with client approval. This involves separating the solids and aqueous phases by filtration, extracting the solids by Soxhlet extraction, extracting the filtrate by liquid/liquid extraction, and combining the extract from the two phases. Alternatively, with client approval, multiphase, predominately particulate, samples containing >1%

### AXYS Analytical Services Ltd.

suspended solids may be processed as solids samples using Soxhlet or Soxhlet Dean-Stark extraction.

### Section 12.3

For solids samples with suitable moisture content, an option is offered for drying the sample with anhydrous sodium sulfate followed by Soxhlet extraction with 80:20 toluene:acetone. Alternatively Soxhlet Dean-Stark extraction using toluene is available

### Section 12.3.1 - 12.3.5

Silica or quartz sand is not pre-extracted in the Dean Stark apparatus. Silica is baked the lab. Quartz sand is proofed prior to use. Sand is mixed with the sample in a beaker and then loaded into the soxhlet thimble.

### Section 12.3.9.1.1

Sample extracts are reduced to approximately 1 mL after extraction, not 5 mL.

### Section 12.4

The equilibration time for the sodium sulfate drying step is sufficient to produce a dry, free-flowing powder (minimum 30 minutes). This may be less than the 12-hour minimum specified in EPA 1613B.

### Section 12.5.3

Ultra-pure water is used to rinse the extract between base and acid washes, not NaCl solution.

### Section 12.6.1.1

Rotary evaporator baths are maintained at 35°C. Trends in QC blanks are monitored and diagnostic proofing is conducted if indicated instead of collecting proofs each day and archiving. Historical proofing tests have demonstrated that routine cleaning practices between samples are sufficient to ensure rotary evaporator cleanliness; as an additional safeguard the laboratory segregates processing of samples on the basis of predicted target concentration levels.

### Section 12.7.3

Water baths are not used with the nitrogen blowdown apparatus.

### Section 12.7.4

Solvent exchange is dependent on the type of solvent present: if toluene is present the extract is reduced to 50  $\mu$ L and topped up to 1 mL with hexane; if dichloromethane is present the extract is reduced to 300  $\mu$ L and topped up to 1 mL with hexane.

### Section 12.7.7

Sample extracts are concentrated in a microvial using nitrogen to near dryness before adding the recovery standard.

### Section 13.7

Gravimetric lipid analysis is carried out on two subsamples of the extract, representing 2/15ths of the extract. A correction factor is applied to the surrogate recovery standards.

### AXYS Analytical Services Ltd.

### Sections 14.0, 15.0, 16.0, Table 8, Table 9

M/Z channels 354/356 and 366/368 are used to confirm and quantify the native and surrogate penta-substituted dioxins, respectively; this change from the method's specification is made in the instrument method in order to avoid a persistent interference in the 356/358 and 368/370 M/Z channels. The theoretical ratio for the P5CDD M/M+2 ions is 0.61; therefore, the acceptance range is 0.52 - 0.70.

### Section 14.2

The EPA 1613B/8290 procedure uses nonane to dilute extracts. Alternatively a modified EPA 1613B/8290 procedure using toluene to dilute extracts may be performed.

### Section 15.3.5

Table 6 (EPA 1613B) specifications for CAL-VER solution concentrations outside the 70-130% range have been revised to be 70-130%, as presented in table "QC Specification Table: Authentic and Surrogate Standard Recoveries, CAL/VER, IPR, OPR and Samples" on page 7 of this document.

### Section 15.4.2.2

Figure 7 (EPA 1613B) is incorrectly titled as 'on DB-5 column', should be 'on DB-225 column'. The peak annotation in figure 7 is also incorrect; the centre peak is 2,3,7,8-TCDF, not 2,3,4,8-TCDF as indicated.

### Section 15.5.3

Table 6 (EPA 1613B) specifications for OPR concentrations outside the 70-130% range have been revised to be 70-130%, as presented in table "QC Specification Table; Authentic and Surrogate Standard Recoveries, CAL/VER, IPR, OPR and Samples" on page 7 of this document.

### Section 17.0

Conci - the concentrations of target analytes, and the labelled compound concentrations and recoveries, are calculated using the equations below. These procedures are equivalent to those described in the method but are more direct.

Cong = 
$$\frac{A}{A_{si}} \times \frac{M_{si}}{RRF_{i,si}} \times \frac{1}{M_{x}}$$

where Ai = summed areas of the primary and secondary m/z's for the analyte peak of interest (compound i)

Asi = summed areas of the primary and secondary m/z's for the labelled surrogate peak used to quantify i)

Mx = mass of sample taken for analysis

Msi = mass of labelled surrogate (compound si) added to sample as calculated by the concentration of standard spiked (pg/mL) multiplied by the volume spiked (mL)

### AXYS Analytical Services Ltd.

RRFi, si =mean relative response factor of i to si from the five-point calibration range and defined individually as:

$$\frac{A_i}{A_{si}} \times \frac{M_{si}}{M_i}$$

Calculation of Surrogate Standard Concentrations and Percent Recoveries:

Concentrations of surrogate standards are calculated using the following equation:

$$Conc_{si} = \frac{A_{si}}{A_{rs}} \times \frac{M_{rs}}{RRF_{sirs}}$$

and, the percent recoveries of the surrogate standards are calculated using the following equation:

$$\%Recovery = \frac{A_{si}}{A_{rs}} \times \frac{M_{rs}}{RRF_{si,rs}} \times \frac{1}{M_{si}} \times 100$$

where  $A_{rs}$  and  $A_{si}$  are the summed peak areas (from the primary and secondary m/z channels) of recovery standard and labelled surrogate added to the sample;  $M_{rs}$  and  $M_{si}$  are the masses of recovery standard and labelled surrogate added to the sample, and;

 $RRF_{si,rs}$  is the mean relative response factor of the labelled surrogate to the recovery standard as determined by the five-point calibration range and defined individually as:

$$\frac{A_{si}}{A_{rs}} \times \frac{M_{rs}}{M_{si}}$$

### Section 17.5

Where acceptable to the client, extracts may be diluted with solvent and re-analyzed by GC/MS to bring the instrumental response to within the linear range of the instrument. Typically, no additional recovery (internal) standard is added. For very high-level samples where a smaller sample aliquot may not be representative, extracts may be diluted and respiked with labelled quantification standards and re-analyzed by GC/MS to bring the instrumental response analytes within range. Final results are recovery corrected using the mean recovery of labelled quantification standards.

### **AXYS Analytical Services Ltd.**

### Modifications to EPA Method 8290

The AXYS implementation of EPA Methods 8290 and 8290A includes the following:

- 1. A sample hold time of 30 days from time of sample collection is recommended.
- 2. Extract hold time, stored at <-10°C, is 45 days.
- The same surrogate, recovery, authentic spike and calibration solutions that are used for EPA method 1613B are used to perform EPA Methods 8290 and 8290A.
- 4. A matrix spike/matrix spike duplicate (MS/MSD) sample may be analysed with every analysis batch, as negotiated with the client and provided sufficient sample is available. This requirement may be waived by contract.
- 5. The typical final extract volume is 20 μL but may vary between 10 μL and 50 μL.
- HRGC/MS analysis is performed according to EPA 1613B protocols with the following requirements:
  - An instrumental blank is analyzed at the beginning of every 12-hour analysis sequence, injected following the CAL/VER solution.
  - Should the CAL/VER analysis fail at the end of a 12 hour period by no more than 25% RPD for the native analytes and 35% for the labelled standards, the mean RRF from the two CAL/VER analyses may be used to calculate the analyte concentrations.
- 7. Quantification of target analytes is performed using an expanded suite of surrogate standards and quantification references (listed in table "Analyte Ions Monitored, Surrogates Used and RRF Determination for Dioxins/Furans" on pages 5-6 of this document) as per method 8290A section 5.8 allowances (alternative quantification using the smaller suite of surrogate standards listed in method 8290A and in table "Analyte Ions Monitored, Surrogates Used and RRF Determination for Dioxins/Furans by EPA 8290/8290A" on page 14 of this document may be negotiated by individual customers).
- 8. The QC specifications in table "QC Criteria for PCDD/F Analysis by EPA 8290/8290A" below are used for evaluating data.

The following modifications have been made to EPA Methods 8290 and 8290A:

- Procedures described in section "Modifications to EPA Method 1613B" of this document are applicable.
- The concentrations of the initial calibration solutions, surrogate standard solution and recovery standard solution are modified to be those described in table "Concentration of PCDD/PCDF Calibration Solutions" found on pages 3-4 of this document.
- The amount of surrogate standard and recovery standard added to each sample are modified to be as described in table "Concentration of PCDD/PCDF Calibration Solutions" found on pages 3-4 of this document.

### AXYS Analytical Services Ltd.

 Sample Specific Estimated Detection Limits (EDL) are reported as Sample Specific Detection Limits (SDL), calculated as described in sections "4. Quantification Procedures" and "4.1 Reporting Limits" of this document.

### QC Criteria for PCDD/F Analysis by EPA 8290/8290A

| Initial Calibration       | Native analytes: ±20% RSD for mean RRF<br>Labelled Compounds: ±30% RSD for mean RRF                                                                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL-VER                   | Native Analytes: RRF must be ±20% of mean RRF from ICAL Labelled Compounds: RRF must be ±30% of mean RRF from ICAL                                                                                                                          |
| Sample Surrogate Recovery | 40-135% (lower or higher recoveries for the procedural blank may be accepted based on analyst professional judgement.)                                                                                                                      |
| Spiked Reference Sample   | In house specification: 70%-130% of the expected value for all targets except 1,2,3,7,8,9-HxCDF, which is 60%-140%. Professional judgement may be applied in consideration of overall QC data, including MS/MSD to determine acceptability. |
| Analysis Duplicate        | Must agree to within 25% RPD                                                                                                                                                                                                                |
| MS/MSD                    | Must agree to within 20% RPD                                                                                                                                                                                                                |
|                           |                                                                                                                                                                                                                                             |

# Analyte Ions Monitored, Surrogates Used and RRF Determination for Dioxins/Furans by EPA 8290/8290A

| Analytes            | Quantification<br>Ion (m/z) | Confirmation<br>lon (m/z) | Surrogate                                          | RRF Determined From |
|---------------------|-----------------------------|---------------------------|----------------------------------------------------|---------------------|
| 2,3,7,8-TCDD        | 319.8965                    | 321.8936                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD        | 2,3,7,8-TCDD        |
| 1,2,3,7,8-PeCDD     | 353.8576                    | 355.8546                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD     | 1,2,3,7,8-PeCDD     |
| 1,2,3,4,7,8-HxCDD   | 389.8156                    | 391.8127                  | <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 1,2,3,4,7,8-HxCDD   |
| 1,2,3,6,7,8-HxCDD   | 389.8156                    | 391.8127                  | <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 1,2,3,6,7,8-HxCDD   |
| 1,2,3,7,8,9-HxCDD   | 389.8156                    | 391.8127                  | <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD   | 1,2,3,7,8,9-HxCDD   |
| 1,2,3,4,6,7,8-HpCDD | 423.7767                    | 425.7737                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD | 1,2,3,4,6,7,8-HpCDD |
| OCDD                | 457.7377                    | 459.7348                  | <sup>13</sup> C <sub>12</sub> -OCDD                | OCDD                |
| 2,3,7,8-TCDF        | 303.9016                    | 305.8987                  | <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF        | 2,3,7,8-TCDF        |
| 1,2,3,7,8-PeCDF     | 339.8597                    | 341.8568                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 1,2,3,7,8-PeCDF     |
| 2,3,4,7,8-PeCDF     | 339.8597                    | 341.8568                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF     | 2,3,4,7,8-PeCDF     |
| 1,2,3,4,7,8-HxCDF   | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 1,2,3,4,7,8-HxCDF   |
| 1,2,3,6,7,8-HxCDF   | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 1,2,3,6,7,8-HxCDF   |
| 2,3,4,6,7,8-HxCDF   | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 2,3,4,6,7,8-HxCDF   |
| 1,2,3,7,8,9-HxCDF   | 373.8207                    | 375.8178                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF   | 1,2,3,7,8,9-HxCDF   |
| 1,2,3,4,6,7,8-HpCDF | 407.7818                    | 409.7788                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 1,2,3,4,6,7,8-HpCDF |
| 1,2,3,4,7,8,9-HpCDF | 407.7818                    | 409.7788                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF | 1,2,3,4,7,8,9-HpCDF |
| OCDF                | 441.7428                    | 443.7398                  | <sup>13</sup> C <sub>12</sub> -OCDD                | OCDF                |

### AXYS Analytical Services Ltd.

| Labelled Surrogate Stds                                | Quantification<br>Ion (m/z) | Confirmation<br>Ion (m/z) | Recovery Calculated<br>Using                      |
|--------------------------------------------------------|-----------------------------|---------------------------|---------------------------------------------------|
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF            | 315.9419                    | 317.9389                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD       |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD            | 331.9368                    | 333.9339                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF         | 351.9000                    | 353.8970                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD         | 365.8978                    | 367.8949                  | <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF       | 383.8639                    | 385.8610                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD       | 401.8559                    | 403.8530                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD  |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-<br>HpCDF | 417.8250                    | 419.8220                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9 -HxCDD |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-<br>HpCDD | 435.8169                    | 437.8140                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD  |
| <sup>13</sup> C <sub>12</sub> -OCDD                    | 469.7780                    | 471.7750                  | <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD  |
| Labelled Recovery Stds                                 |                             |                           |                                                   |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4-TCDD            | 331.9368                    | 333.9339                  |                                                   |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDD       | 401.8559                    | 403.8530                  |                                                   |

# **Bay West Inc.**

### **CORRELATION TABLE**

| DIOXIN/FURAN                                 | ANALYSIS                      |
|----------------------------------------------|-------------------------------|
| Lab Name: AXYS Analytical Services Ltd.      | Project Manager: Andrew Porat |
| Project Name: SLR AOC Data Gap Investigation | Contract No: 4819             |
| Work Order #: 3000017136                     | AXYS Method: MLA-017          |
| Data Package Identification: DPWG57987       | Program: Tissue Samples       |
|                                              |                               |
| Client Sample No.                            | Lab Sample ID                 |
|                                              |                               |
| LAB BLANK                                    | WG57620-101                   |
| OPR                                          | WG57620-102                   |
|                                              |                               |
| Control-CS136 West Bear                      | L26338-1                      |
| BW16MLW-001 (GLC 11080)                      | L26338-2                      |
| BW16MLW-002 (GLC 11081)                      | L26338-3                      |
| BW16MLW-003 (GLC 11082)                      | L26338-4                      |
| Background day 0 10/25/16                    | L26338-5                      |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |
|                                              |                               |



Axys Analytical Services Ltd

### **CHAIN OF CUSTODY**

2045 Mills Road West TEL: (250) 655-5800 AXYS CLIENT #: Sidney, British Columbia, Canada V8L 5X2 FAX: (250) 655-5811 ANALYSIS REQUESTED REPORT TO: INVOICE TO: Bay West, uc : accounts Payable Company Company Address 55103 Contact Contact Phone Phone Furans Lipids Dioxins FAX praymaker e baywest, com nmcdonald eboywest, com E-mail Sampler's Name: Maleew. Garter Project Name/Number: Bay West Signature: Preservative Sampling Sampling Container AXYS Lab ID Client Sample Identification Matrix Date Time Type/No. YIN Lab use only Control - CS136 West Beer 250ml amber L26338 -/ 11/23/16  $\sqrt{}$ 1330 N Tissue BWILINEW-DOI (ELC"11080) 1250 amber TISSUE 11/03/10 1330 BWIN MIN- DOS ( EKE HOSI) 250 amber 11/33/10 1330 1 Tissue BWILMIN- 203 (614 1108) 2 **V** 250 amber TISSUE 11/23/16 1330 1 Background days 10/25/16 11/23/16 350 Whoer Tissue 1330 Relinquished by (Signat@re) Time Received by (Signature) Courier Waybill No. Date 128/16 1330 Date 29-2016 Relinquished by (Signature) Received by (Signature) Date Time Sample Receipt Time Date Remarks / Type Of Preservative Frozux Cooler Temp °C Custody Seal # Seal Intact Y/N Sample Tags YIN



# Expanded Service International Air Waybill

| Not all services and options are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | available to all destinat         | ions.                     |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|----------------------------------------------------------|
| From  Date     38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                           |                                                          |
| Sender's Marke Gasto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phone 7                           | 119-156                   | . 9930                                                   |
| company Great Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Environm                          | vental                    | Center                                                   |
| Address 729 Hastings S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Street                            |                           |                                                          |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dept,/Floor                       |                           |                                                          |
| City Traverse City Province Your Internal Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CANADA Postal Code                | 496                       | 86                                                       |
| 28 Residential Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                           |                                                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 T N & Phone                     | 25063                     | 55800                                                    |
| Address 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL/COAS                           | ACCO                      | UNT                                                      |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                           |                                                          |
| A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR | Dept/Floor                        |                           |                                                          |
| Address 2045 MILLS RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State                             |                           |                                                          |
| City SIDNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Province                          | BC                        |                                                          |
| Country CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZIP<br>Postal Code                | VALS                      | XZ                                                       |
| Shipment Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lbs.                              |                           |                                                          |
| Total Packages Shipper's Load and Count SLAC Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kg DIM _                          |                           | i                                                        |
| Commodity Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Harmonized Code                   | Country of<br>Manufacture | Value for Custom                                         |
| 250 mi amber Glass boths<br>Contoining Fish Tissue Sample<br>For Scientific Testing Purpos<br>Only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3822.00                           | USA                       | 25.4                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                           |                                                          |
| Canada Export Declaration / B13A: No B13A required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Declared Value for C        | arriage                   | Fotal Declared Value<br>for Customs<br>(Specify Currency |
| Manual B13A strached. B13A filed electronically.  Audh. ID / Farm ID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B13A S                            | summary Reporting.        | 25.00<br>USW                                             |
| Origin Station ID Country Code/Destination Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion ID URSA Re                   | outing                    |                                                          |
| Handling Units 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Volume                      |                           |                                                          |
| At July stup July Stup Diop box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | World 5<br>Service Center Station | Forms Attached:           | Ci Co                                                    |
| FedEx Emp. # Dato Date Freight Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Del. Courier<br>Emp. #            | Date                      | Time                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                           | ital                                                     |

Origin Copy
8077 9467 8323 48 9 0426

|                  | Express Package Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ce Packages up to 150 lbs. (68 kg)                                                                                                                                                                                                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X                | FedEx International Priority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06 FedEx International First Available to select locations.                                                                                                                                                                                                                                                                                                   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03 FedEx International Economy FedEx Envelope and FedEx Pak rate not available.                                                                                                                                                                                                                                                                               |
| 5b               | Express Freight Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Packages over 150 lbs. (68 kg)                                                                                                                                                                                                                                                                                                                                |
|                  | FedEx International Priority  g Number call your local FedEx office to book shipn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |
| 5                | Packaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "These unique brown boxes with special pricing are<br>provided by FedEx for FedEx Intl. Priority only.                                                                                                                                                                                                                                                        |
| 01               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FedEx Pak 03 FedEx Box 04 FedEx Tube  15 FedEx 10kg Box* 25 FedEx 25kg Box*                                                                                                                                                                                                                                                                                   |
| 7                | Special Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Teolex long Box Fedex 23ng Box                                                                                                                                                                                                                                                                                                                                |
|                  | HOLD at FedEx Location<br>May not be in the same city.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03 SATURDAY Delivery Available to select locations for FedEx International Priority and FedEx International Priority Freight only.                                                                                                                                                                                                                            |
|                  | Does this shipment contain dangero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |
| X                | No 04 Yes 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                               |
| 73               | As per attached Shipper a Declaration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shipper's Declaration not required.  9, UN 1845 × kg                                                                                                                                                                                                                                                                                                          |
| Danger<br>edEx E | ous goods (including dry ice) cannot be shipp<br>express Drop Box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CA 🗆                                                                                                                                                                                                                                                                                                                                                          |
| 3                | Broker Selection Optional<br>Not available with FedEx International Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 International Broker Select To specify a broker other than FedEx.                                                                                                                                                                                                                                                                                          |
|                  | Broker's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                               |
|                  | City/State/Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |
|                  | ZIP/Postal Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone                                                                                                                                                                                                                                                                                                                                                         |
| Bill tr          | Payment ansportation charges to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Complete payment options for both transportation charges and duties and taves,                                                                                                                                                                                                                                                                                |
|                  | Condera - 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Enter FedEx Acct. No. or Credit Card No. below.                                                                                                                                                                                                                                                                                                               |
|                  | Section 1 will be billed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipient 3 Third Party 4 Credit Card 5 Cash / Chequ                                                                                                                                                                                                                                                                                                             |
| edEx A           | F . V . F . F . W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |
| 4                | A Pro Pois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               |
| redit Ca         | and Exp. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Credit Card Auch.  ALL shipments may be subject to Curroms                                                                                                                                                                                                                                                                                                    |
| redit Ca         | ustoms charges to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALL shipments may be subject to Customs charges, which FedEx does not estimate prior to clearance                                                                                                                                                                                                                                                             |
| redit Ca         | Sender Acet Na. in 2 Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALL shipments may be subject to Customs charges, which FedEx does not estimate prior to clearence or FedEx Acct. No. below.                                                                                                                                                                                                                                   |
| Bill C           | Customs charges to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALL shipments may be subject to Customs charges, which FedEx does not estimate prior to clearence or FedEx Acct. No. below.                                                                                                                                                                                                                                   |
| edex A           | Sender Acet No. in Section I will be billed.  Sender Acet No. in Section I will be billed.  Required Signature  Use of this Air Waybill constitutes you Certain international treaties, including for damage, loss, or delay, as described as the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th | All shipments may be subject to Curroms charges, which FedEx Acct. No. below.  prent 3 Third Party 5 Cash / Cheque  ur agreement to the Conditions of Contract on the back of this Air Waybill.  ng the Warsaw Convention, may apply to this shipment and limit our leability and in the Conditions of Contract.                                              |
| edex A           | Sender Acet Na in Section I will be billed.  Sender Acet Na in Section I will be billed.  Required Signature  Use of this Air Waybill constitutes yo Certain international treaties, includin for damage, loss, or delay, as described in the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the stage of the s | ALL shipments may be subject to Curoms charges, which FedEx does not estimate prior to clearance or FedEx Acct. No. below.  pient 3 Third Party 5 Cash / Cheque  ur agreement to the Conditions of Contract on the back of this Air Waybill, not the Warsaw Convention, may apply to this shipment and limit our liability and in the Conditions of Contract. |

Facking Number 8077 9467 8323 0426 Form

PART 157883
PART 157883
PART 157883
PART 157883
PART 157883
Page 23 of 108

# AXYS Analytical Services Ltd SAMPLE RECEIVING RECORD

| Waybill :<br>Date Shipped:                     | Yes No<br>28-NOV-16 |                         | Waybill #:<br>Date /Time Receiv | 807794<br>ved: 29-NO |                                                       |
|------------------------------------------------|---------------------|-------------------------|---------------------------------|----------------------|-------------------------------------------------------|
| AXYS Client & Contract #                       | 4819-Bay \          | West LLC                | East 1 (0) = 3/4 = 2/           | 20 110               | . 10 11129                                            |
| Project Number:                                |                     |                         | Receipt No:                     | WB212                | 66                                                    |
| Login Number:                                  |                     |                         |                                 |                      | /                                                     |
| Received By: IHARDER  Axys Sample ID's: 426338 | -1to-5              |                         | Log in by: 1, H                 | HARDER               | Signature: Un Hull                                    |
| Matrix Type: Tissue                            | 4                   |                         |                                 |                      |                                                       |
| Condition of Shipping Container:               | ntact               |                         |                                 |                      |                                                       |
| Temperature upon Receipt: 1 Celo               | cius Ice            | packs frozen, tempe     | rature blank present            |                      | Thermometer ID: 5534 Corrected Temperature: 1 Celcius |
| Custody Seals: Shipping Contain                | iners Yes No        | Intact Yes /No          | Seal Numbers Y                  | es /No               |                                                       |
| Sam                                            | nples Yes No        | Intact Yes /No          | Seal Numbers Yo                 | es /No               |                                                       |
| Chain of Custody or Documents:                 | Ves /No             | Trac                    | king Report /Packing L          | ist: Yes/No          |                                                       |
| Sample ID's                                    | Yes /No             |                         | ple Tag Numbers                 | Yes No               |                                                       |
| Collection Location                            | Yes(No              | Sam                     | ple Type                        | Yes /No              |                                                       |
| Date & Time Collection                         | Yes/No              |                         | ervative Added                  | Yes No               |                                                       |
| Collector's Name                               | Yes/No              | Pres                    | ervation Requested              | Yes Mo               |                                                       |
| Sample Tags                                    |                     | Yes (No                 |                                 |                      |                                                       |
| Sample Labels                                  |                     | Yes /No                 |                                 |                      | 0                                                     |
| Sample Labels Cross Referenced to              | COC                 | Yes /No                 | Informat                        | ion Agrees           | Yes /No                                               |
| Sample Tags Cross Referenced to S              | Sample Labels       | Yes /No                 | Informat                        | ion Agrees           | Yes /No                                               |
| Sample Tags Cross Referenced to C              | coc                 | Yes /No                 | Informat                        | ion Agrees           | Yes /No                                               |
| Comments: "#" symbo                            | ls remove           | ed from s               | ample 12s                       | for p                | orogramming reasons                                   |
|                                                | -CS136              | west bear'<br>client co | + on (abal:                     | = Yon tral           | West Bear Skin-CS136',                                |
|                                                |                     |                         |                                 |                      |                                                       |
|                                                |                     |                         |                                 |                      |                                                       |
|                                                |                     |                         | ٠                               |                      |                                                       |
| ction Taken:                                   |                     |                         |                                 |                      |                                                       |
| ction Taken:                                   |                     |                         |                                 |                      |                                                       |
| action Taken:                                  |                     |                         |                                 |                      |                                                       |
| ction Taken:                                   |                     |                         |                                 |                      |                                                       |

### AXYS Analytical Services Ltd.

### Login Chain of Custody Report (In01)

Dec. 06, 2016 08:39 AM

Login Number: L26338

Account: 4819 Bay West LLC
Project: SLR DATA GAP INVSTGN

Page: 1 of 2

| Axys ID vers                     | e Identification   | Baratana B           | DD  |
|----------------------------------|--------------------|----------------------|-----|
|                                  | c identification   | Received Due         | PR  |
| L26338-1                         | Storage: WIF-4, 5A | 29-NOV-16            |     |
| Control-CS136 V                  |                    |                      |     |
| 23-NOV-16 13:30                  |                    |                      |     |
|                                  |                    |                      |     |
| Tissue                           | 7:LIPIDS           | 2                    | USD |
| Tissue                           | 7:MOISTURE         | ž.                   | USD |
| Tissue                           | DX017.1613         | <u>\$</u>            | USD |
| Tissue                           | DX017.1613-2       | *                    | USD |
| Tissue                           | HOMOGENIZATION     | Č                    | USD |
| EDataDeliv                       | DX017 EDD          | *                    | USD |
| Data Package                     | DX017 MINI         |                      | USD |
| ANY                              | SAMPLE RECEIPT     | 1 :250 mL glass AMB  | USD |
| L26338-2                         | 0.000              | 29-NOV-16            |     |
| B                                | Storage: WIF-4, 5A |                      |     |
| BW16MLW-001 (<br>23-NOV-16 13:30 |                    |                      |     |
| Tissue                           | 7:LIPIDS           | *                    | USD |
| Tissue                           | 7:MOISTURE         |                      | USD |
| Tissue                           | DX017.1613         |                      | USD |
| Tissue                           | DX017.1613-2       | 1                    | USD |
| Tissue                           | HOMOGENIZATION     |                      | USD |
| EDataDeliv                       | DX017 EDD          | 3                    | USD |
| Data Package                     | DX017 MINI         |                      | USD |
| ANY                              | SAMPLE RECEIPT     | 1 : 250 mL glass AMB | USD |
| L26338-3                         |                    | 29-NOV-16            |     |
|                                  | Storage: WIF-4, 5A |                      |     |
| BW16MLW-002 (<br>23-NOV-16 13:30 |                    |                      |     |
| Tissue                           | 7:LIPIDS           | 4                    | USD |
| Tissue                           | 7:MOISTURE         | 82                   | USD |
| Tissue                           | DX017.1613         | 88                   | USD |
| Tissue                           | DX017.1613-2       | 18                   | USD |
| Tissue                           | HOMOGENIZATION     | (i)                  | USD |
| EDataDeliv                       | DX017 EDD          | d e                  | USD |
| Data Package                     | DX017 MINI         | t -                  | USD |
| ANY                              | SAMPLE RECEIPT     | 1 : 250 mL glass AMB | USD |

KP 6 Sec 2016 For Scanning

### AXYS Analytical Services Ltd.

### Login Chain of Custody Report (In01)

Dec. 06, 2016 08:39 AM

Login Number: L26338

Account: 4819 Bay West LLC
Project: SLR DATA GAP INVSTGN

Page: 2 of 2

| Axys ID versu<br>Client Sample | us<br>e Identification          | Received Due         | PR      |
|--------------------------------|---------------------------------|----------------------|---------|
| L26338-4                       |                                 | 29-NOV-16            |         |
|                                | Storage: WIF-4, 5A              | 130000               |         |
| BW16MLW-003                    | (GLC 11082)                     |                      |         |
| 23-NOV-16 13:30                | Project #: SLR DATA GAP INVSTGN |                      |         |
|                                | Solve                           |                      | Name of |
| Tissue                         | 7:LIPIDS                        | :                    | USD     |
| Tissue                         | 7:MOISTURE                      | Ī                    | USD     |
| Tissue                         | DX017.1613                      | ž                    | USD     |
| Tissue                         | DX017.1613-2                    |                      | USD     |
| Tissue                         | HOMOGENIZATION                  | ¥.                   | USD     |
| EDataDeliv                     | DX017 EDD                       |                      | USD     |
| Data Package                   | DX017 MINI                      | and the second       | USD     |
| ANY                            | SAMPLE RECEIPT                  | 1 ; 250 mL glass AMB | USD     |
| L26338-5                       |                                 | 29-NOV-16            |         |
|                                | Storage: WIF-4, 5A              |                      |         |
| Background day (               |                                 |                      |         |
| 23-NOV-16 13:30                | Project #: SLR DATA GAP INVSTGN |                      |         |
| Tissue                         | 7:LIPIDS                        |                      | USD     |
| Tissue                         | 7:MOISTURE                      |                      | USD     |
| Tissue                         | DX017.1613                      | 40                   | USD     |
| Tissue                         | DX017.1613-2                    | 1                    | USD     |
| Tissue                         | HOMOGENIZATION                  | 3                    | USD     |
| EDataDeliv                     | DX017 EDD                       | 2                    | USD     |
| Data Package                   | DX017 MINI                      | 4                    | USD     |
| ANY                            | SAMPLE RECEIPT                  | 1 : 250 mL glass AMB | USD     |

### Form 1A PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** Control-CS136 West Bear Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819 Contract No.:

Matrix: **TISSUE** 

**Extraction Date:** 20-Dec-2016

**Analysis Date:** 10-Jan-2017 Time: 03:35:33

29-Nov-2016

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

Concentration Units: pg/g (wet weight basis) Project No.

Lab Sample I.D.:

GC Column ID:

SLR AOC DATA GAP

INVESTIGATION

L26338-1

DB5

27-Sep-2016

Sample Size: 10.0 g (wet)

**Initial Calibration Date:** 

Instrument ID:

HR GC/MS

Sample Data Filename:

DX7M\_002 S: 20

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename:

DX7M\_002 S: 13

% Lipid: 1.01

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|---------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,7,8-PECDD <sup>4</sup> | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,4,7,8-HXCDD            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDD            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,7,8,9-HXCDD            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,4,6,7,8-HPCDD          | ΚJ                    | 0.147               | 0.0575 (Q)                           | 1.45                             | 1.001            |
| OCDD                         | J                     | 0.716               | 0.0575 (Q)                           | 0.97                             | 1.000            |
| 2,3,7,8-TCDF                 | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,7,8-PECDF              | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 2,3,4,7,8-PECDF              | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,4,7,8-HXCDF            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDF            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,7,8,9-HXCDF            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,4,6,7,8-HPCDF          | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| 1,2,3,4,7,8,9-HPCDF          | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| OCDF                         | J                     | 0.0677              | 0.0575 (Q)                           | 0.93                             | 1.002            |
| TOTAL TETRA-DIOXINS          |                       | 0.138               | 0.0575 (Q)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL HEXA-FURANS            | U                     |                     | 0.0575 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           | U                     |                     | 0.0575 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than lowest calibration equivalent.

| These data are validated and reported as accurate and ir | n accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality as | surance processes. |
|----------------------------------------------------------|-----------------------|------------------------|-------------------------------|--------------------|
| Signed:                                                  | Henry                 | Huang                  |                               |                    |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-1\_Form1A\_DX7M\_002S20\_SJ2147945.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 2 PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Control-CS136 West Bear Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Extraction Date: 20-Dec-2016

29-Nov-2016

**Analysis Date:** 10-Jan-2017 **Time:** 03:35:33

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

Concentration Units: pg absolute

Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-1

Sample Size: 10.0 g (wet)

Initial Calibration Date: 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 20

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

**% Lipid:** 1.01

This page is part of a total report that contains information necessary for accreditation compliance.

Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| LABELED COMPOUND        | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|-------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD        |                          | 2000           | 1440           | 72.1              | 0.78                             | 1.012            |
| 13C-1,2,3,7,8-PECDD 4   |                          | 2000           | 1970           | 98.3              | 0.65                             | 1.381            |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 2000           | 1460           | 72.9              | 1.27                             | 0.986            |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 2000           | 1450           | 72.7              | 1.24                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 2000           | 1750           | 87.4              | 1.07                             | 1.096            |
| 13C-OCDD                |                          | 4000           | 3600           | 89.9              | 0.90                             | 1.181            |
| 13C-2,3,7,8-TCDF        |                          | 2000           | 1340           | 66.9              | 0.78                             | 0.966            |
| 13C-1,2,3,7,8-PECDF     |                          | 2000           | 1550           | 77.3              | 1.56                             | 1.281            |
| 13C-2,3,4,7,8-PECDF     |                          | 2000           | 1500           | 75.2              | 1.55                             | 1.349            |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 2000           | 1410           | 70.5              | 0.52                             | 0.953            |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 2000           | 1430           | 71.4              | 0.52                             | 0.957            |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 2000           | 1410           | 70.6              | 0.52                             | 1.005            |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 2000           | 1410           | 70.3              | 0.53                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 2000           | 1600           | 80.1              | 0.44                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 2000           | 1720           | 86.2              | 0.46                             | 1.105            |
| CLEANUP STANDARD        |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD       |                          | 200            | 151            | 75.6              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and rep | orted as accurate and in accord | with AXYS Analytical Services Ltd | I. ISO17025 compliant quality | assurance processes |
|----------------------------------|---------------------------------|-----------------------------------|-------------------------------|---------------------|
|                                  | Signed:                         | Henry Huang                       |                               |                     |

For Axys Internal Use Only [ XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-1\_Form2\_DX7M\_002S20\_SJ2147945.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

Matrix:

**AXYS METHOD MLA-017 Rev 20** 

PCDD/PCDF ANALYSIS TEQ DATA REPORT

**CLIENT SAMPLE NO.** Control-CS136 West Bear

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA

V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

**TISSUE** 

**Sample Collection:** 

23-Nov-2016 13:30

SLR AOC DATA GAP

INVESTIGATION

Lab Sample I.D.:

Project No.

L26338-1

Sample Size: 10.0 g (wet) GC Column ID:

DB5

**Concentration Units:** 

pg/g (wet weight basis)

Sample Data Filename:

DX7M\_002 S: 20

|                     |                          |                |                         |                 |          | TEQ       |       |
|---------------------|--------------------------|----------------|-------------------------|-----------------|----------|-----------|-------|
| COMPOUND            | LAB<br>FLAG <sup>1</sup> | CONC.<br>FOUND | REPORTING<br>LIMIT (RL) | WHO 2005<br>TEF | ND=0     | ND=1/2 RL | ND=RL |
| 2,3,7,8-TCDD        | U                        |                | 0.0575                  | 1               | 0.00e+00 | 2.88e-02  |       |
| 1,2,3,7,8-PECDD     | U                        |                | 0.0575                  | 1               | 0.00e+00 | 2.88e-02  |       |
| 1,2,3,4,7,8-HXCDD   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,6,7,8-HXCDD   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,7,8,9-HXCDD   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,4,6,7,8-HPCDD | U                        |                | 0.0575                  | 0.01            | 0.00e+00 | 2.88e-04  |       |
| OCDD                |                          | 0.716          | 0.0575                  | 0.0003          | 2.15e-04 | 2.15e-04  |       |
| 2,3,7,8-TCDF        | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,7,8-PECDF     | U                        |                | 0.0575                  | 0.03            | 0.00e+00 | 8.63e-04  |       |
| 2,3,4,7,8-PECDF     | U                        |                | 0.0575                  | 0.3             | 0.00e+00 | 8.63e-03  |       |
| 1,2,3,4,7,8-HXCDF   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,6,7,8-HXCDF   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,7,8,9-HXCDF   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 2,3,4,6,7,8-HXCDF   | U                        |                | 0.0575                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,4,6,7,8-HPCDF | U                        |                | 0.0575                  | 0.01            | 0.00e+00 | 2.88e-04  |       |
| 1,2,3,4,7,8,9-HPCDF | U                        |                | 0.0575                  | 0.01            | 0.00e+00 | 2.88e-04  |       |
| OCDF                |                          | 0.0677         | 0.0575                  | 0.0003          | 2.03e-05 | 2.03e-05  |       |
|                     |                          |                | TOTAL TEQ               |                 | 0.000235 | 0.0911    |       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

| These data are validated and reported as accurate and in | accord with AXYS Ana | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|----------------------|------------------------|-------------------------------------------------|
| Signed:                                                  | Henry                | Huang                  |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613-TEQ\_L26338-1\_TEQ\_SJ2147945.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

### Form 1A PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** BW16MLW-001 (GLC 11080) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819 Contract No.:

Matrix: **TISSUE** 

**Extraction Date:** 20-Dec-2016

10-Jan-2017 Time: 04:30:48 Analysis Date:

29-Nov-2016

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

**Concentration Units:** pg/g (wet weight basis) Project No.

SLR AOC DATA GAP

INVESTIGATION

L26338-2 Lab Sample I.D.:

Sample Size: 9.98 g (wet)

**Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 21

Blank Data Filename: DX7M\_002 S: 17

1.03

Cal. Ver. Data Filename: DX7M\_002 S: 13

% Lipid:

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | KJ                    | 0.200                  | 0.0584 (S)                           | 0.54                             | 1.002            |
| 1,2,3,7,8-PECDD <sup>4</sup> | J                     | 0.216                  | 0.0635 (S)                           | 0.65                             | 1.002            |
| 1,2,3,4,7,8-HXCDD            | J                     | 0.0867                 | 0.0576 (Q)                           | 1.18                             | 1.000            |
| 1,2,3,6,7,8-HXCDD            | ΚJ                    | 0.415                  | 0.0576 (Q)                           | 1.02                             | 1.000            |
| 1,2,3,7,8,9-HXCDD            | ΚJ                    | 0.162                  | 0.0576 (Q)                           | 1.88                             | 1.011            |
| 1,2,3,4,6,7,8-HPCDD          | J                     | 1.70                   | 0.0576 (Q)                           | 0.98                             | 1.000            |
| OCDD                         | J                     | 9.14                   | 0.0897 (S)                           | 0.91                             | 1.000            |
| 2,3,7,8-TCDF                 | J                     | 0.657                  | 0.0576 (Q)                           | 0.78                             | 1.002            |
| 1,2,3,7,8-PECDF              | ΚJ                    | 0.206                  | 0.0576 (Q)                           | 1.07                             | 1.001            |
| 2,3,4,7,8-PECDF              | ΚJ                    | 0.270                  | 0.0576 (Q)                           | 1.84                             | 1.002            |
| 1,2,3,4,7,8-HXCDF            | ΚJ                    | 0.219                  | 0.0576 (Q)                           | 1.69                             | 1.001            |
| 1,2,3,6,7,8-HXCDF            | J                     | 0.450                  | 0.0576 (Q)                           | 1.18                             | 1.000            |
| 1,2,3,7,8,9-HXCDF            | U                     |                        | 0.0576 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | ΚJ                    | 0.0867                 | 0.0576 (Q)                           | 1.84                             | 1.000            |
| 1,2,3,4,6,7,8-HPCDF          | J                     | 3.67                   | 0.0576 (Q)                           | 1.00                             | 1.000            |
| 1,2,3,4,7,8,9-HPCDF          | U                     |                        | 0.0576 (Q)                           |                                  |                  |
| OCDF                         | J                     | 1.02                   | 0.0576 (Q)                           | 0.79                             | 1.002            |
| TOTAL TETRA-DIOXINS          |                       | 1.24                   | 0.0584 (S)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          |                       | 0.774                  | 0.0635 (S)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           |                       | 1.09                   | 0.0576 (Q)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          |                       | 3.71                   | 0.0576 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           |                       | 6.10                   | 0.0576 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           |                       | 5.59                   | 0.0576 (Q)                           |                                  |                  |
| TOTAL HEXA-FURANS            |                       | 5.36                   | 0.0576 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           |                       | 7.24                   | 0.0576 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than lowest calibration equivalent.

| These data are validated and reported as accurate and | I in accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|-------------------------------------------------------|--------------------------|------------------------|----------------------------|----------------------|
| Signed:                                               | Henry                    | Huang                  |                            |                      |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-2\_Form1A\_DX7M\_002S21\_SJ2147946.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

### Form 2 PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. BW16MLW-001 (GLC 11080) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Sample Receipt Date: 29-Nov-2016

Extraction Date: 20-Dec-2016

**Analysis Date:** 10-Jan-2017 **Time:** 04:30:48

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

Concentration Units: pg absolute

Project No.

GC Column ID:

SLR AOC DATA GAP

INVESTIGATION

Lab Sample I.D.: L26338-2

Sample Size: 9.98 g (wet)

Initial Calibration Date: 27-Sep-2016

Instrument ID: HR GC/MS

Sample Data Filename: DX7M\_002 S: 21

Blank Data Filename: DX7M\_002 S: 17

DB5

Cal. Ver. Data Filename: DX7M\_002 S: 13

pg absolute % **Lipid:** 1.03

This page is part of a total report that contains information necessary for accreditation compliance.

Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| LABELED COMPOUND        | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|-------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD        |                          | 2000           | 1580           | 78.9              | 0.81                             | 1.013            |
| 13C-1,2,3,7,8-PECDD 4   |                          | 2000           | 2090           | 104               | 0.64                             | 1.381            |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 2000           | 1560           | 77.8              | 1.25                             | 0.987            |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 2000           | 1540           | 77.0              | 1.28                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 2000           | 1800           | 90.0              | 1.05                             | 1.096            |
| 13C-OCDD                |                          | 4000           | 3660           | 91.6              | 0.90                             | 1.181            |
| 13C-2,3,7,8-TCDF        |                          | 2000           | 1460           | 72.9              | 0.78                             | 0.966            |
| 13C-1,2,3,7,8-PECDF     |                          | 2000           | 1670           | 83.5              | 1.59                             | 1.282            |
| 13C-2,3,4,7,8-PECDF     |                          | 2000           | 1650           | 82.3              | 1.59                             | 1.350            |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 2000           | 1500           | 75.0              | 0.52                             | 0.953            |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 2000           | 1460           | 72.9              | 0.52                             | 0.958            |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 2000           | 1540           | 76.8              | 0.53                             | 1.005            |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 2000           | 1520           | 76.1              | 0.51                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 2000           | 1750           | 87.6              | 0.45                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 2000           | 1770           | 88.3              | 0.45                             | 1.105            |
| CLEANUP STANDARD        |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD       |                          | 200            | 157            | 78.6              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and in ac | cord with AXYS Ar | nalytical Services Ltd. | ISO17025 compliant quality | assurance processes |
|-------------------------------------------------------------|-------------------|-------------------------|----------------------------|---------------------|
| Signed:                                                     | Henry             | Huang                   |                            |                     |

For Axys Internal Use Only [ XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-2\_Form2\_DX7M\_002S21\_SJ2147946.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. BW16MLW-001 (GLC 11080) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Sample Receipt Date: 29-Nov-2016
Extraction Date: 20-Dec-2016

**Analysis Date:** 10-Jan-2017 **Time:** 17:11:18

Extract Volume (uL): 20

Injection Volume (uL): 2.0

**Dilution Factor:** N/A

Concentration Units: pg/g (wet weight basis)

Project No.

Lab Sample I.D.:

GC Column ID:

SLR AOC DATA GAP

INVESTIGATION

04-Jan-2017

DB7T\_010C S: 1

**DB225** 

L26338-2 i

Sample Size: 9.98 g (wet)

Initial Calibration Date:

iai Ganbranon Bator

Instrument ID: HR GC/MS

Sample Data Filename:

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DB7T\_010B S: 2

**% Lipid:** 1.03

This page is part of a total report that contains information necessary for accreditation compliance.

Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|--------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDF | J                     | 0.492                  | 0.0576 (Q)                           | 0.89                             | 1.001            |

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than lowest calibration equivalent.

(2) Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

(3) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: Henry Huang\_\_\_\_\_\_

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB225\_L26338-2\_Form1A\_DB7T\_010CS1\_SJ2148504.html; Workgroup: WG57620; Design ID: 3006 ]

PCDD/PCDF ANALYSIS TEQ DATA REPORT

**CLIENT SAMPLE NO.** BW16MLW-001 (GLC 11080)

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA

V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819

**Sample Collection:** 

23-Nov-2016 13:30

Project No.

SLR AOC DATA GAP

INVESTIGATION

Matrix:

**TISSUE** 

Lab Sample I.D.:

L26338-2

Sample Size:

Contract No.:

9.98 g (wet)

GC Column ID(s):

DB225 DB5

**Concentration Units:** 

pg/g (wet weight basis)

Sample Data Filenames:

DB7T\_010C S: 1

DX7M\_002 S: 21

|                     |                          |                |                         |                 |          | TEQ       |       |
|---------------------|--------------------------|----------------|-------------------------|-----------------|----------|-----------|-------|
| COMPOUND            | LAB<br>FLAG <sup>1</sup> | CONC.<br>FOUND | REPORTING<br>LIMIT (RL) | WHO 2005<br>TEF | ND=0     | ND=1/2 RL | ND=RL |
| 2,3,7,8-TCDD        | U                        |                | 0.0584                  | 1               | 0.00e+00 | 2.92e-02  |       |
| 1,2,3,7,8-PECDD     |                          | 0.216          | 0.0635                  | 1               | 2.16e-01 | 2.16e-01  |       |
| 1,2,3,4,7,8-HXCDD   |                          | 0.0867         | 0.0576                  | 0.1             | 8.67e-03 | 8.67e-03  |       |
| 1,2,3,6,7,8-HXCDD   | U                        |                | 0.0576                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,7,8,9-HXCDD   | U                        |                | 0.0576                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,4,6,7,8-HPCDD |                          | 1.70           | 0.0576                  | 0.01            | 1.70e-02 | 1.70e-02  |       |
| OCDD                |                          | 9.14           | 0.0897                  | 0.0003          | 2.74e-03 | 2.74e-03  |       |
| 2,3,7,8-TCDF        |                          | 0.492          | 0.0576                  | 0.1             | 4.92e-02 | 4.92e-02  |       |
| 1,2,3,7,8-PECDF     | U                        |                | 0.0576                  | 0.03            | 0.00e+00 | 8.64e-04  |       |
| 2,3,4,7,8-PECDF     | U                        |                | 0.0576                  | 0.3             | 0.00e+00 | 8.64e-03  |       |
| 1,2,3,4,7,8-HXCDF   | U                        |                | 0.0576                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,6,7,8-HXCDF   |                          | 0.450          | 0.0576                  | 0.1             | 4.50e-02 | 4.50e-02  |       |
| 1,2,3,7,8,9-HXCDF   | U                        |                | 0.0576                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 2,3,4,6,7,8-HXCDF   | U                        |                | 0.0576                  | 0.1             | 0.00e+00 | 2.88e-03  |       |
| 1,2,3,4,6,7,8-HPCDF |                          | 3.67           | 0.0576                  | 0.01            | 3.67e-02 | 3.67e-02  |       |
| 1,2,3,4,7,8,9-HPCDF | U                        |                | 0.0576                  | 0.01            | 0.00e+00 | 2.88e-04  |       |
| OCDF                |                          | 1.02           | 0.0576                  | 0.0003          | 3.06e-04 | 3.06e-04  |       |
|                     |                          |                | TOTAL TEQ               |                 | 0.376    | 0.429     |       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

| These data are validated and reported as accurate and in a | accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|------------------------------------------------------------|---------------------|------------------------|-------------------------------------------------|
| Signed:                                                    | Henry               | Huang                  |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613-TEQ\_L26338-2\_TEQ\_SJ2147946.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

### Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. BW16MLW-002 (GLC 11081) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Sample Receipt Date: 29-Nov-2016

Extraction Date: 20-Dec-2016

**Analysis Date:** 10-Jan-2017 **Time:** 05:26:02

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-3

9.99 g (wet)

Sample Size: 9.99

Initial Calibration Date:

Instrument ID: HR G0

HR GC/MS

27-Sep-2016

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 22

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

**% Lipid:** 1.03

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | J                     | 0.350                  | 0.0581 (Q)                           | 0.72                             | 1.001            |
| 1,2,3,7,8-PECDD <sup>4</sup> | J                     | 0.155                  | 0.0581 (Q)                           | 0.54                             | 1.001            |
| 1,2,3,4,7,8-HXCDD            | J                     | 0.102                  | 0.0581 (Q)                           | 1.40                             | 1.000            |
| 1,2,3,6,7,8-HXCDD            | J                     | 0.521                  | 0.0581 (Q)                           | 1.25                             | 1.000            |
| 1,2,3,7,8,9-HXCDD            | J                     | 0.205                  | 0.0581 (Q)                           | 1.25                             | 1.010            |
| 1,2,3,4,6,7,8-HPCDD          | J                     | 1.88                   | 0.0581 (Q)                           | 1.05                             | 1.000            |
| OCDD                         | J                     | 9.28                   | 0.0581 (Q)                           | 0.84                             | 1.000            |
| 2,3,7,8-TCDF                 | J                     | 0.726                  | 0.0581 (Q)                           | 0.85                             | 1.001            |
| 1,2,3,7,8-PECDF              | J                     | 0.212                  | 0.0783 (S)                           | 1.54                             | 1.000            |
| 2,3,4,7,8-PECDF              | J                     | 0.230                  | 0.0783 (S)                           | 1.67                             | 1.001            |
| 1,2,3,4,7,8-HXCDF            | ΚJ                    | 0.206                  | 0.0581 (Q)                           | 1.01                             | 1.001            |
| 1,2,3,6,7,8-HXCDF            | J                     | 0.535                  | 0.0581 (Q)                           | 1.20                             | 1.000            |
| 1,2,3,7,8,9-HXCDF            | U                     |                        | 0.0581 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | ΚJ                    | 0.101                  | 0.0581 (Q)                           | 1.49                             | 1.000            |
| 1,2,3,4,6,7,8-HPCDF          | J                     | 3.65                   | 0.0581 (Q)                           | 1.20                             | 1.000            |
| 1,2,3,4,7,8,9-HPCDF          | U                     |                        | 0.0581 (Q)                           |                                  |                  |
| OCDF                         | J                     | 0.999                  | 0.0581 (Q)                           | 0.88                             | 1.002            |
| TOTAL TETRA-DIOXINS          |                       | 2.11                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          |                       | 1.29                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           |                       | 2.57                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          |                       | 3.90                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           |                       | 5.35                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           |                       | 5.99                   | 0.0783 (S)                           |                                  |                  |
| TOTAL HEXA-FURANS            |                       | 5.95                   | 0.0581 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           |                       | 7.42                   | 0.0581 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than lowest calibration equivalent.

| These data are validated and reported as accurate and in accurate | ccord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality assi | urance processes. |
|-------------------------------------------------------------------|--------------------|------------------------|---------------------------------|-------------------|
| Signed:                                                           | Henry              | Huang                  |                                 |                   |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-3\_Form1A\_DX7M\_002S22\_SJ2147947.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

### Form 2 PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** BW16MLW-002 (GLC 11081) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: **TISSUE** 

Sample Receipt Date: 29-Nov-2016 **Extraction Date:** 20-Dec-2016

Extract Volume (uL): 20

**Analysis Date:** 

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

**Concentration Units:** pg absolute Project No.

GC Column ID:

SLR AOC DATA GAP

INVESTIGATION

L26338-3 Lab Sample I.D.:

Sample Size: 9.99 g (wet)

**Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS

DX7M\_002 S: 22

Cal. Ver. Data Filename:

Sample Data Filename:

DX7M\_002 S: 17

DX7M\_002 S: 13

DB5

Blank Data Filename:

1.03 % Lipid:

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| LABELED COMPOUND                 | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|----------------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD                 |                          | 2000           | 1440           | 71.8              | 0.77                             | 1.013            |
| 13C-1,2,3,7,8-PECDD <sup>4</sup> |                          | 2000           | 1880           | 94.1              | 0.65                             | 1.381            |
| 13C-1,2,3,4,7,8-HXCDD            |                          | 2000           | 1450           | 72.6              | 1.30                             | 0.987            |
| 13C-1,2,3,6,7,8-HXCDD            |                          | 2000           | 1400           | 70.1              | 1.28                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD          |                          | 2000           | 1670           | 83.4              | 1.04                             | 1.096            |
| 13C-OCDD                         |                          | 4000           | 3470           | 86.7              | 0.90                             | 1.181            |
| 13C-2,3,7,8-TCDF                 |                          | 2000           | 1340           | 67.1              | 0.79                             | 0.967            |
| 13C-1,2,3,7,8-PECDF              |                          | 2000           | 1520           | 75.9              | 1.57                             | 1.282            |
| 13C-2,3,4,7,8-PECDF              |                          | 2000           | 1460           | 73.2              | 1.56                             | 1.350            |
| 13C-1,2,3,4,7,8-HXCDF            |                          | 2000           | 1420           | 71.0              | 0.53                             | 0.953            |
| 13C-1,2,3,6,7,8-HXCDF            |                          | 2000           | 1370           | 68.6              | 0.53                             | 0.958            |
| 13C-1,2,3,7,8,9-HXCDF            |                          | 2000           | 1400           | 70.2              | 0.52                             | 1.005            |
| 13C-2,3,4,6,7,8-HXCDF            |                          | 2000           | 1400           | 70.1              | 0.52                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF          |                          | 2000           | 1550           | 77.6              | 0.45                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF          |                          | 2000           | 1630           | 81.7              | 0.45                             | 1.105            |
| CLEANUP STANDARD                 |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD                |                          | 200            | 155            | 77.3              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

10-Jan-2017 Time: 05:26:02

| These data are valida | ated and reported as accurate and in accord | with AXYS Analytical Services Ltd | d. ISO17025 compliant quality | assurance processes |
|-----------------------|---------------------------------------------|-----------------------------------|-------------------------------|---------------------|
|                       | Cianad:                                     | Uanry Ullana                      |                               |                     |

For Axys Internal Use Only [ XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-3\_Form2\_DX7M\_002S22\_SJ2147947.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. BW16MLW-002 (GLC 11081) Sample Collection: 23-Nov-2016 13:30

SLR AOC DATA GAP INVESTIGATION

L26338-3

9.99 g (wet)

04-Jan-2017

HR GC/MS

DB7T\_010B S: 10

DX7M\_002 S: 17

DB7T 010B S: 2

**DB225** 

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Sample Receipt Date: 29-Nov-2016

Extraction Date: 20-Dec-2016

 Analysis Date:
 10-Jan-2017 Time: 15:39:30

 Extract Volume (uL):
 20

Extract Volume (uL): 20
Injection Volume (uL): 2.0

Injection Volume (uL): 2.0

Concentration Units:

**Dilution Factor:** 

pg/g (wet weight basis)

N/A

Sample Data Filename:

Instrument ID:

GC Column ID:

Project No.

Lab Sample I.D.:

**Initial Calibration Date:** 

Sample Size:

Blank Data Filename:

Cal. Ver. Data Filename:

% Lipid:

1.03

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|--------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDF | J                     | 0.436                  | 0.0581 (Q)                           | 0.79                             | 1.002            |

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than lowest calibration equivalent.

(2) Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

(3) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

| These data are validated and reported as accurate and | in accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|-------------------------------------------------------|------------------------|------------------------|----------------------------|----------------------|
| Signed:                                               | Henry                  | Huang                  |                            |                      |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB225\_L26338-3\_Form1A\_DB7T\_010BS10\_SJ2148502.html; Workgroup: WG57620; Design ID: 3006 ]

Matrix:

Sample Size:

**Concentration Units:** 

1,2,3,4,7,8,9-HPCDF

**OCDF** 

**AXYS METHOD MLA-017 Rev 20** 

PCDD/PCDF ANALYSIS TEQ DATA REPORT

CLIENT SAMPLE NO. BW16MLW-002 (GLC 11081)

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

TISSUE

9.99 g (wet)

pg/g (wet weight basis)

Project No.

**Sample Collection:** 

23-Nov-2016 13:30

SLR AOC DATA GAP

INVESTIGATION

Lab Sample I.D.: L26338-3

GC Column ID(s):

DB225 DB5

Sample Data Filenames:

DB7T\_010B S: 10 DX7M\_002 S: 22

**TEQ** REPORTING **COMPOUND** LAB CONC. WHO 2005 ND=0 ND=1/2 RL ND=RL **FOUND** FLAG 1 LIMIT (RL) **TEF** 3.50e-01 2,3,7,8-TCDD 0.350 0.0581 1 3.50e-01 0.155 0.0581 1.55e-01 1.55e-01 1,2,3,7,8-PECDD 1 0.1 1,2,3,4,7,8-HXCDD 0.102 0.0581 1.02e-02 1.02e-02 1,2,3,6,7,8-HXCDD 0.521 0.0581 0.1 5.21e-02 5.21e-02 0.205 0.1 2.05e-02 1,2,3,7,8,9-HXCDD 0.0581 2.05e-02 1,2,3,4,6,7,8-HPCDD 1.88 0.0581 0.01 1.88e-02 1.88e-02 0.0003 2.78e-03 OCDD 9.28 0.0581 2.78e-03 4.36e-02 2,3,7,8-TCDF 0.436 0.0581 0.1 4.36e-02 0.03 6.36e-03 6.36e-03 1,2,3,7,8-PECDF 0.212 0.0783 2,3,4,7,8-PECDF 0.230 0.0783 0.3 6.90e-02 6.90e-02 U 0.0581 0.00e+00 2.91e-03 1,2,3,4,7,8-HXCDF 0.1 1,2,3,6,7,8-HXCDF 0.535 0.0581 0.1 5.35e-02 5.35e-02 1,2,3,7,8,9-HXCDF U 0.0581 0.1 0.00e+00 2.91e-03 2,3,4,6,7,8-HXCDF U 0.0581 0.1 0.00e+00 2.91e-03 1,2,3,4,6,7,8-HPCDF 3.65 0.0581 0.01 3.65e-02 3.65e-02

0.0581

0.0581

**TOTAL TEQ** 

U

0.999

| These data are validated and reported as accurate and in | accord with AXYS Ana | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|----------------------|------------------------|-------------------------------------------------|
| Signed:                                                  | Henry                | Huang                  |                                                 |

0.01

0.0003

0.00e+00

3.00e-04

0.819

2.91e-04

3.00e-04

0.828

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613-TEQ\_L26338-3\_TEQ\_SJ2147947.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

# Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. BW16MLW-003 (GLC 11082) Sample Collection: 23-Nov-2016 13:30

### **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Extraction Date: 20-Dec-2016

**Analysis Date:** 10-Jan-2017 **Time:** 06:21:14

29-Nov-2016

Extract Volume (uL): 20

Sample Receipt Date:

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg/g (wet weight basis)

Project No.

SLR AOC DATA GAP

INVESTIGATION

Lab Sample I.D.: L26338-4

Sample Size: 10.0 g (wet)

Initial Calibration Date: 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 23

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

% Lipid: 1.27

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | KJ                    | 0.305                  | 0.0578 (Q)                           | 0.62                             | 1.001            |
| 1,2,3,7,8-PECDD <sup>4</sup> | J                     | 0.333                  | 0.0578 (Q)                           | 0.62                             | 1.002            |
| 1,2,3,4,7,8-HXCDD            | J                     | 0.155                  | 0.0625 (S)                           | 1.12                             | 1.001            |
| 1,2,3,6,7,8-HXCDD            | J                     | 0.797                  | 0.0625 (S)                           | 1.14                             | 1.000            |
| 1,2,3,7,8,9-HXCDD            | J                     | 0.287                  | 0.0625 (S)                           | 1.16                             | 1.010            |
| 1,2,3,4,6,7,8-HPCDD          | J                     | 3.45                   | 0.0578 (Q)                           | 0.93                             | 1.000            |
| OCDD                         |                       | 22.7                   | 0.0578 (Q)                           | 0.89                             | 1.000            |
| 2,3,7,8-TCDF                 | J                     | 0.921                  | 0.0578 (Q)                           | 0.72                             | 1.001            |
| 1,2,3,7,8-PECDF              | ΚJ                    | 0.427                  | 0.0578 (Q)                           | 1.83                             | 1.001            |
| 2,3,4,7,8-PECDF              | J                     | 0.372                  | 0.0578 (Q)                           | 1.73                             | 1.001            |
| 1,2,3,4,7,8-HXCDF            | ΚJ                    | 0.322                  | 0.0578 (Q)                           | 1.60                             | 1.001            |
| 1,2,3,6,7,8-HXCDF            | J                     | 1.23                   | 0.0578 (Q)                           | 1.16                             | 1.000            |
| 1,2,3,7,8,9-HXCDF            | U                     |                        | 0.0578 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | J                     | 0.158                  | 0.0578 (Q)                           | 1.10                             | 1.000            |
| 1,2,3,4,6,7,8-HPCDF          |                       | 8.72                   | 0.0578 (Q)                           | 1.06                             | 1.000            |
| 1,2,3,4,7,8,9-HPCDF          | J                     | 0.0893                 | 0.0578 (Q)                           | 1.17                             | 1.000            |
| OCDF                         | J                     | 2.26                   | 0.0578 (Q)                           | 0.87                             | 1.002            |
| TOTAL TETRA-DIOXINS          |                       | 1.93                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          |                       | 2.00                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           |                       | 3.84                   | 0.0625 (S)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          |                       | 7.40                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           |                       | 8.16                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           |                       | 8.03                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL HEXA-FURANS            |                       | 10.3                   | 0.0578 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           |                       | 16.1                   | 0.0578 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than lowest calibration equivalent.

| These data are validated and reported as | accurate and in accord | with AXYS Analytical Services Lt | d. ISO17025 compliant quality assurance processes. |
|------------------------------------------|------------------------|----------------------------------|----------------------------------------------------|
|                                          | Signed:                | Henry Huang                      |                                                    |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-4\_Form1A\_DX7M\_002S23\_SJ2147948.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

### Form 2 PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** BW16MLW-003 (GLC 11082) Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: **TISSUE** 

**Extraction Date:** 20-Dec-2016

**Analysis Date:** 10-Jan-2017 Time: 06:21:14

29-Nov-2016

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

**Concentration Units:** pg absolute Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-4

Sample Size: 10.0 g (wet)

**Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 23

**Blank Data Filename:** DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

% Lipid: 1.27

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| LABELED COMPOUND                 | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|----------------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD                 |                          | 2000           | 1550           | 77.5              | 0.78                             | 1.013            |
| 13C-1,2,3,7,8-PECDD <sup>4</sup> |                          | 2000           | 2030           | 101               | 0.64                             | 1.381            |
| 13C-1,2,3,4,7,8-HXCDD            |                          | 2000           | 1570           | 78.5              | 1.27                             | 0.987            |
| 13C-1,2,3,6,7,8-HXCDD            |                          | 2000           | 1530           | 76.5              | 1.27                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD          |                          | 2000           | 1810           | 90.6              | 1.05                             | 1.096            |
| 13C-OCDD                         |                          | 4000           | 3690           | 92.3              | 0.90                             | 1.181            |
| 13C-2,3,7,8-TCDF                 |                          | 2000           | 1470           | 73.3              | 0.80                             | 0.966            |
| 13C-1,2,3,7,8-PECDF              |                          | 2000           | 1640           | 82.1              | 1.58                             | 1.282            |
| 13C-2,3,4,7,8-PECDF              |                          | 2000           | 1610           | 80.5              | 1.57                             | 1.350            |
| 13C-1,2,3,4,7,8-HXCDF            |                          | 2000           | 1510           | 75.7              | 0.52                             | 0.953            |
| 13C-1,2,3,6,7,8-HXCDF            |                          | 2000           | 1520           | 76.1              | 0.52                             | 0.958            |
| 13C-1,2,3,7,8,9-HXCDF            |                          | 2000           | 1540           | 76.8              | 0.53                             | 1.005            |
| 13C-2,3,4,6,7,8-HXCDF            |                          | 2000           | 1510           | 75.7              | 0.52                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF          |                          | 2000           | 1720           | 86.2              | 0.45                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF          |                          | 2000           | 1770           | 88.6              | 0.45                             | 1.105            |
| CLEANUP STANDARD                 |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD                |                          | 200            | 151            | 75.5              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are valida | ated and reported as accurate and in accord | with AXYS Analytical Services Ltd | d. ISO17025 compliant quality | assurance processes |
|-----------------------|---------------------------------------------|-----------------------------------|-------------------------------|---------------------|
|                       | Cianad:                                     | Uanry Ullana                      |                               |                     |

For Axys Internal Use Only [ XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-4\_Form2\_DX7M\_002S23\_SJ2147948.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

### Form 1A PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** BW16MLW-003 (GLC 11082) Sample Collection: 23-Nov-2016 13:30

SLR AOC DATA GAP INVESTIGATION

L26338-4

10.0 g (wet)

04-Jan-2017

HR GC/MS

DB7T\_010C S: 2

DX7M\_002 S: 17

DB7T\_010B S: 2

**DB225** 

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819 Contract No.:

Matrix: **TISSUE** 

**Extraction Date:** 20-Dec-2016

**Analysis Date:** 

Extract Volume (uL): 20

Injection Volume (uL): 2.0

**Dilution Factor:** N/A

**Concentration Units:** 

10-Jan-2017 Time: 17:47:43

pg/g (wet weight basis)

29-Nov-2016

Instrument ID: GC Column ID:

Project No.

Lab Sample I.D.:

Sample Size:

Sample Data Filename:

**Blank Data Filename:** 

**Initial Calibration Date:** 

Cal. Ver. Data Filename:

% Lipid:

1.27

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND     | LAB FLAG <sup>1</sup> | CONCENTRATION FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|--------------|-----------------------|---------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDF | J                     | 0.624               | 0.0578 (Q)                           | 0.75                             | 1.002            |

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than lowest calibration equivalent.

(2) Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

(3) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes. \_Henry Huang Signed: \_\_

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB225\_L26338-4\_Form1A\_DB7T\_010CS2\_SJ2148505.html; Workgroup: WG57620; Design ID: 3006 ]

PCDD/PCDF ANALYSIS TEQ DATA REPORT

**CLIENT SAMPLE NO.** BW16MLW-003 (GLC 11082)

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA

V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: **TISSUE** 

Sample Size: 10.0 g (wet)

**Concentration Units:** pg/g (wet weight basis) **Sample Collection:** 

Project No.

23-Nov-2016 13:30

SLR AOC DATA GAP INVESTIGATION

Lab Sample I.D.: L26338-4

GC Column ID(s):

DB225 DB5

Sample Data Filenames: DB7T\_010C S: 2

DX7M\_002 S: 23

|                     |                          |                |                         |                 |          | TEQ       |       |
|---------------------|--------------------------|----------------|-------------------------|-----------------|----------|-----------|-------|
| COMPOUND            | LAB<br>FLAG <sup>1</sup> | CONC.<br>FOUND | REPORTING<br>LIMIT (RL) | WHO 2005<br>TEF | ND=0     | ND=1/2 RL | ND=RL |
| 2,3,7,8-TCDD        | U                        |                | 0.0578                  | 1               | 0.00e+00 | 2.89e-02  |       |
| 1,2,3,7,8-PECDD     |                          | 0.333          | 0.0578                  | 1               | 3.33e-01 | 3.33e-01  |       |
| 1,2,3,4,7,8-HXCDD   |                          | 0.155          | 0.0625                  | 0.1             | 1.55e-02 | 1.55e-02  |       |
| 1,2,3,6,7,8-HXCDD   |                          | 0.797          | 0.0625                  | 0.1             | 7.97e-02 | 7.97e-02  |       |
| 1,2,3,7,8,9-HXCDD   |                          | 0.287          | 0.0625                  | 0.1             | 2.87e-02 | 2.87e-02  |       |
| 1,2,3,4,6,7,8-HPCDD |                          | 3.45           | 0.0578                  | 0.01            | 3.45e-02 | 3.45e-02  |       |
| OCDD                |                          | 22.7           | 0.0578                  | 0.0003          | 6.81e-03 | 6.81e-03  |       |
| 2,3,7,8-TCDF        |                          | 0.624          | 0.0578                  | 0.1             | 6.24e-02 | 6.24e-02  |       |
| 1,2,3,7,8-PECDF     | U                        |                | 0.0578                  | 0.03            | 0.00e+00 | 8.67e-04  |       |
| 2,3,4,7,8-PECDF     |                          | 0.372          | 0.0578                  | 0.3             | 1.12e-01 | 1.12e-01  |       |
| 1,2,3,4,7,8-HXCDF   | U                        |                | 0.0578                  | 0.1             | 0.00e+00 | 2.89e-03  |       |
| 1,2,3,6,7,8-HXCDF   |                          | 1.23           | 0.0578                  | 0.1             | 1.23e-01 | 1.23e-01  |       |
| 1,2,3,7,8,9-HXCDF   | U                        |                | 0.0578                  | 0.1             | 0.00e+00 | 2.89e-03  |       |
| 2,3,4,6,7,8-HXCDF   |                          | 0.158          | 0.0578                  | 0.1             | 1.58e-02 | 1.58e-02  |       |
| 1,2,3,4,6,7,8-HPCDF |                          | 8.72           | 0.0578                  | 0.01            | 8.72e-02 | 8.72e-02  |       |
| 1,2,3,4,7,8,9-HPCDF |                          | 0.0893         | 0.0578                  | 0.01            | 8.93e-04 | 8.93e-04  |       |
| OCDF                |                          | 2.26           | 0.0578                  | 0.0003          | 6.78e-04 | 6.78e-04  |       |
|                     |                          |                | TOTAL TEQ               |                 | 0.900    | 0.935     |       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

| These data are validated and reported as accurate and | in accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|-------------------------------------------------------|------------------------|------------------------|-------------------------------------------------|
| Signed: _                                             | Henry                  | Huang                  |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613-TEQ\_L26338-4\_TEQ\_SJ2147948.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

### Form 1A PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** Background day 0 10/25/16 Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819 Contract No.:

Matrix: **TISSUE** 

Sample Receipt Date: 29-Nov-2016

**Extraction Date:** 20-Dec-2016

10-Jan-2017 Time: 07:16:27 Analysis Date:

Extract Volume (uL): 20

Injection Volume (uL): 1.0

**Dilution Factor:** N/A

**Concentration Units:** pg/g (wet weight basis) Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-5

10.1 g (wet)

Sample Size:

**Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 24

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

% Lipid: 2.00

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | KJ                    | 0.0685                 | 0.0572 (Q)                           | 0.51                             | 1.000            |
| 1,2,3,7,8-PECDD <sup>4</sup> | KJ                    | 0.0575                 | 0.0572 (Q)                           | 0.50                             | 1.002            |
| 1,2,3,4,7,8-HXCDD            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDD            | KJ                    | 0.0610                 | 0.0572 (Q)                           | 1.79                             | 1.000            |
| 1,2,3,7,8,9-HXCDD            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,4,6,7,8-HPCDD          | J                     | 0.173                  | 0.0572 (Q)                           | 1.16                             | 1.000            |
| OCDD                         | KJ                    | 0.256                  | 0.0572 (Q)                           | 1.11                             | 1.000            |
| 2,3,7,8-TCDF                 | K J                   | 0.192                  | 0.0572 (Q)                           | 0.64                             | 1.001            |
| 1,2,3,7,8-PECDF              | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 2,3,4,7,8-PECDF              | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,4,7,8-HXCDF            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDF            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,7,8,9-HXCDF            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,4,6,7,8-HPCDF          | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| 1,2,3,4,7,8,9-HPCDF          | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| OCDF                         | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL TETRA-DIOXINS          | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          |                       | 0.276                  | 0.0572 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           |                       | 0.0713                 | 0.0572 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL HEXA-FURANS            | U                     |                        | 0.0572 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           | U                     |                        | 0.0572 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; K = peak detected but did not meet quantification criteria, result reported represents the estimated maximum possible concentration; J = concentration less than lowest calibration equivalent.

| These data are validated and reported | as accurate and in acc | ord with AXYS Analytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|---------------------------------------|------------------------|----------------------------------------|-------------------------------------------------|
|                                       | Signed:                | Henry Huang                            |                                                 |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-5\_Form1A\_DX7M\_002S24\_SJ2147949.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 2 PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Background day 0 10/25/16 Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

Sample Receipt Date:

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: TISSUE

Extraction Date: 20-Dec-2016

29-Nov-2016

**Analysis Date:** 10-Jan-2017 **Time:** 07:16:27

Extract Volume (uL): 20

Injection Volume (uL): 1.0

Dilution Factor: N/A

Concentration Units: pg absolute

Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-5

Sample Size: 10.1 g (wet)

Initial Calibration Date: 27-Sep-2016

Instrument ID: HR GC/MS

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 24

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7N

DX7M\_002 S: 13

2.00

This page is part of a total report that contains information necessary for accreditation compliance.

Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

% Lipid:

| LABELED COMPOUND                 | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|----------------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD                 |                          | 2000           | 1330           | 66.4              | 0.77                             | 1.013            |
| 13C-1,2,3,7,8-PECDD <sup>4</sup> |                          | 2000           | 1800           | 89.8              | 0.64                             | 1.382            |
| 13C-1,2,3,4,7,8-HXCDD            |                          | 2000           | 1310           | 65.4              | 1.30                             | 0.987            |
| 13C-1,2,3,6,7,8-HXCDD            |                          | 2000           | 1280           | 64.1              | 1.25                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD          |                          | 2000           | 1460           | 73.2              | 1.07                             | 1.096            |
| 13C-OCDD                         |                          | 4000           | 2670           | 66.9              | 0.89                             | 1.181            |
| 13C-2,3,7,8-TCDF                 |                          | 2000           | 1290           | 64.4              | 0.79                             | 0.967            |
| 13C-1,2,3,7,8-PECDF              |                          | 2000           | 1400           | 70.2              | 1.61                             | 1.282            |
| 13C-2,3,4,7,8-PECDF              |                          | 2000           | 1400           | 69.9              | 1.58                             | 1.351            |
| 13C-1,2,3,4,7,8-HXCDF            |                          | 2000           | 1270           | 63.6              | 0.52                             | 0.953            |
| 13C-1,2,3,6,7,8-HXCDF            |                          | 2000           | 1260           | 62.9              | 0.53                             | 0.957            |
| 13C-1,2,3,7,8,9-HXCDF            |                          | 2000           | 1320           | 66.1              | 0.53                             | 1.005            |
| 13C-2,3,4,6,7,8-HXCDF            |                          | 2000           | 1280           | 63.9              | 0.52                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF          |                          | 2000           | 1460           | 72.8              | 0.45                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF          |                          | 2000           | 1440           | 71.9              | 0.43                             | 1.105            |
| CLEANUP STANDARD                 |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD                |                          | 200            | 153            | 76.7              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and in | accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|----------------------------------------------------------|---------------------|------------------------|----------------------------|----------------------|
| Signed:                                                  | Henry               | Huang                  |                            |                      |

For Axys Internal Use Only [ XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_L26338-5\_Form2\_DX7M\_002S24\_SJ2147949.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

Matrix:

**AXYS METHOD MLA-017 Rev 20** 

### Form 1A PCDD/PCDF ANALYSIS REPORT

**CLIENT SAMPLE NO.** Background day 0 10/25/16 Sample Collection: 23-Nov-2016 13:30

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Sample Receipt Date: 29-Nov-2016

**Extraction Date:** 20-Dec-2016

**Analysis Date:** 10-Jan-2017 Time: 15:02:59

**TISSUE** 

Extract Volume (uL): 20

Injection Volume (uL): 2.0

**Dilution Factor:** N/A

**Concentration Units:** pg/g (wet weight basis) Project No.

Lab Sample I.D.:

SLR AOC DATA GAP

INVESTIGATION

L26338-5

Sample Size: 10.1 g (wet)

**Initial Calibration Date:** 

Instrument ID:

GC Column ID:

**DB225** 

Sample Data Filename:

**Blank Data Filename:** 

DB7T\_010B S: 9

DX7M\_002 S: 17

04-Jan-2017

HR GC/MS

Cal. Ver. Data Filename: DB7T\_010B S: 2

2.00 % Lipid:

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND     | LAB FLAG <sup>1</sup> | CONCENTRATION<br>FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|--------------|-----------------------|------------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDF | J                     | 0.141                  | 0.0572 (Q)                           | 0.83                             | 1.002            |

(1) Where applicable, custom lab flags have been used on this report; J = concentration less than lowest calibration equivalent.

(2) Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

(3) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

| These data are validated and reported as accurate and ir | accord with AXYS Analytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Signed:                                                  | Henry Huang                               |                                                 |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB225\_L26338-5\_Form1A\_DB7T\_010BS9\_SJ2148501.html; Workgroup: WG57620; Design ID: 3006 ]

PCDD/PCDF ANALYSIS TEQ DATA REPORT

**CLIENT SAMPLE NO.** Background day 0 10/25/16

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Sample Collection:** 

23-Nov-2016 13:30

Contract No.:

4819

Project No.

SLR AOC DATA GAP

INVESTIGATION

Matrix:

**TISSUE** 

Lab Sample I.D.:

L26338-5

Sample Size:

10.1 g (wet)

GC Column ID(s):

DB225 DB5

**Concentration Units:** 

pg/g (wet weight basis)

Sample Data Filenames:

DB7T\_010B S: 9

DX7M\_002 S: 24

|                     |                          |                |                         |                 |          | TEQ       |       |
|---------------------|--------------------------|----------------|-------------------------|-----------------|----------|-----------|-------|
| COMPOUND            | LAB<br>FLAG <sup>1</sup> | CONC.<br>FOUND | REPORTING<br>LIMIT (RL) | WHO 2005<br>TEF | ND=0     | ND=1/2 RL | ND=RL |
| 2,3,7,8-TCDD        | U                        |                | 0.0572                  | 1               | 0.00e+00 | 2.86e-02  |       |
| 1,2,3,7,8-PECDD     | U                        |                | 0.0572                  | 1               | 0.00e+00 | 2.86e-02  |       |
| 1,2,3,4,7,8-HXCDD   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,6,7,8-HXCDD   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,7,8,9-HXCDD   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,4,6,7,8-HPCDD |                          | 0.173          | 0.0572                  | 0.01            | 1.73e-03 | 1.73e-03  |       |
| OCDD                | U                        |                | 0.0572                  | 0.0003          | 0.00e+00 | 8.58e-06  |       |
| 2,3,7,8-TCDF        |                          | 0.141          | 0.0572                  | 0.1             | 1.41e-02 | 1.41e-02  |       |
| 1,2,3,7,8-PECDF     | U                        |                | 0.0572                  | 0.03            | 0.00e+00 | 8.58e-04  |       |
| 2,3,4,7,8-PECDF     | U                        |                | 0.0572                  | 0.3             | 0.00e+00 | 8.58e-03  |       |
| 1,2,3,4,7,8-HXCDF   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,6,7,8-HXCDF   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,7,8,9-HXCDF   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 2,3,4,6,7,8-HXCDF   | U                        |                | 0.0572                  | 0.1             | 0.00e+00 | 2.86e-03  |       |
| 1,2,3,4,6,7,8-HPCDF | U                        |                | 0.0572                  | 0.01            | 0.00e+00 | 2.86e-04  |       |
| 1,2,3,4,7,8,9-HPCDF | U                        |                | 0.0572                  | 0.01            | 0.00e+00 | 2.86e-04  |       |
| OCDF                | U                        |                | 0.0572                  | 0.0003          | 0.00e+00 | 8.58e-06  |       |
|                     |                          |                | TOTAL TEQ               |                 | 0.0158   | 0.103     |       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

| These data are validated and reported as accurate and in | accord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|---------------------|------------------------|-------------------------------------------------|
| Signed:                                                  | Henry               | Huang                  |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613-TEQ\_L26338-5\_TEQ\_SJ2147949.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

# Form 1A PCDD/PCDF ANALYSIS REPORT

CLIENT SAMPLE NO. Lab Blank Sample Collection: N/A

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Contract No.: 4819

Matrix: TISSUE
Sample Receipt Date: N/A

Extraction Date: 20-Dec-2016

N/A

10-Jan-2017 Time: 00:49:55

Extract Volume (uL): 20

**Analysis Date:** 

**Dilution Factor:** 

Injection Volume (uL): 1.0

Concentration Units: pg/g

Project No. N/A

GC Column ID:

ject No. N/A

Lab Sample I.D.: WG57620-101

Sample Size: 10.0 g

Initial Calibration Date: 27-Sep-2016

Instrument ID: HR GC/MS

Sample Data Filename: DX7M\_002 S: 17

DB5

Blank Data Filename: DX7M\_002 S: 17

Cal. Ver. Data Filename: DX7M\_002 S: 13

This page is part of a total report that contains information necessary for accreditation compliance.

Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| COMPOUND                     | LAB FLAG <sup>1</sup> | CONCENTRATION FOUND | REPORTING<br>LIMIT (RL) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|------------------------------|-----------------------|---------------------|--------------------------------------|----------------------------------|------------------|
| 2,3,7,8-TCDD                 | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,7,8-PECDD <sup>4</sup> | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,4,7,8-HXCDD            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDD            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,7,8,9-HXCDD            | J                     | 0.0793              | 0.0615 (Q)                           | 1.12                             | 1.010            |
| 1,2,3,4,6,7,8-HPCDD          | J                     | 0.262               | 0.0615 (Q)                           | 1.07                             | 1.000            |
| OCDD                         | J                     | 0.596               | 0.0615 (Q)                           | 0.87                             | 1.000            |
| 2,3,7,8-TCDF                 | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,7,8-PECDF              | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 2,3,4,7,8-PECDF              | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,4,7,8-HXCDF            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,6,7,8-HXCDF            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,7,8,9-HXCDF            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 2,3,4,6,7,8-HXCDF            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,4,6,7,8-HPCDF          | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| 1,2,3,4,7,8,9-HPCDF          | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| OCDF                         | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL TETRA-DIOXINS          | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL PENTA-DIOXINS          | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL HEXA-DIOXINS           |                       | 0.178               | 0.0615 (Q)                           |                                  |                  |
| TOTAL HEPTA-DIOXINS          |                       | 0.937               | 0.0615 (Q)                           |                                  |                  |
| TOTAL TETRA-FURANS           | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL PENTA-FURANS           | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL HEXA-FURANS            | U                     |                     | 0.0615 (Q)                           |                                  |                  |
| TOTAL HEPTA-FURANS           | U                     |                     | 0.0615 (Q)                           |                                  |                  |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL; J = concentration less than lowest calibration equivalent.

(4) Alternate confirmation and quantitation ions used for native and labeled PECDD.

| These data are validated and reported as a | ccurate and in acco | ord with AXYS An | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|--------------------------------------------|---------------------|------------------|------------------------|----------------------------|----------------------|
|                                            | Signed:             | Henry            | Huang                  |                            |                      |

For Axys Internal Use Only [ XSL Template: Form1A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-101\_Form1A\_DX7M\_002S17\_SJ2147941.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Reporting Limit (Code): S = sample detection limit; M = method detection limit; L = lowest calibration level equivalent; Q = contract defined limit.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613.

# Form 2 PCDD/PCDF ANALYSIS REPORT

Project No.

**CLIENT SAMPLE NO.** Lab Blank Sample Collection: N/A

N/A

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

4819 Contract No.: Lab Sample I.D.:

WG57620-101

**TISSUE** Matrix: Sample Size: 10.0 g

**Initial Calibration Date:** Sample Receipt Date: N/A 27-Sep-2016

**Extraction Date:** 20-Dec-2016 Instrument ID: HR GC/MS

10-Jan-2017 Time: 00:49:55 **Analysis Date:** GC Column ID: DB5

Extract Volume (uL): 20 Sample Data Filename: DX7M\_002 S: 17 Blank Data Filename: Injection Volume (uL): 1.0 DX7M\_002 S: 17

**Dilution Factor:** N/A Cal. Ver. Data Filename: DX7M 002 S: 13

**Concentration Units:** pg absolute

This page is part of a total report that contains information necessary for accreditation compliance. Results are compliant with NELAP accreditation described in the total report. Sample results relate only to the sample tested.

| LABELED COMPOUND        | LAB<br>FLAG <sup>1</sup> | SPIKE<br>CONC. | CONC.<br>FOUND | R(%) <sup>2</sup> | ION ABUND.<br>RATIO <sup>3</sup> | RRT <sup>3</sup> |
|-------------------------|--------------------------|----------------|----------------|-------------------|----------------------------------|------------------|
| 13C-2,3,7,8-TCDD        |                          | 2000           | 1610           | 80.3              | 0.75                             | 1.012            |
| 13C-1,2,3,7,8-PECDD 4   |                          | 2000           | 2160           | 108               | 0.65                             | 1.381            |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 2000           | 1650           | 82.6              | 1.25                             | 0.986            |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 2000           | 1680           | 83.8              | 1.25                             | 0.990            |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 2000           | 1970           | 98.4              | 1.05                             | 1.096            |
| 13C-OCDD                |                          | 4000           | 4210           | 105               | 0.91                             | 1.180            |
| 13C-2,3,7,8-TCDF        |                          | 2000           | 1520           | 75.8              | 0.80                             | 0.966            |
| 13C-1,2,3,7,8-PECDF     |                          | 2000           | 1770           | 88.6              | 1.57                             | 1.281            |
| 13C-2,3,4,7,8-PECDF     |                          | 2000           | 1720           | 86.2              | 1.56                             | 1.349            |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 2000           | 1630           | 81.6              | 0.51                             | 0.954            |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 2000           | 1620           | 81.1              | 0.51                             | 0.957            |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 2000           | 1640           | 81.9              | 0.53                             | 1.004            |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 2000           | 1600           | 79.9              | 0.53                             | 0.980            |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 2000           | 1810           | 90.7              | 0.47                             | 1.063            |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 2000           | 1940           | 97.2              | 0.46                             | 1.105            |
| CLEANUP STANDARD        |                          |                |                |                   |                                  |                  |
| 37CL-2,3,7,8-TCDD       |                          | 200            | 152            | 76.1              |                                  | 1.001            |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and in | accord with AXYS Analytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Signed:                                                  | Henry Huang                               |                                                 |

 $For Axys Internal Use Only [XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-101\_Form2\_DX7M\_002S17\_SJ2147941.html; Workgroup: WG57620; Design ID: 3006] Internal Use Only [XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-101\_Form2\_DX7M\_002S17\_SJ2147941.html; Workgroup: WG57620; Design ID: 3006] Internal Use Only [XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-101\_Form2\_DX7M\_002S17\_SJ2147941.html; Workgroup: WG57620; Design ID: 3006] Internal Use Only [XSL Template: Form2.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-101\_Form2\_DX7M\_002S17\_SJ2147941.html; Workgroup: WG57620; Design ID: 3006] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Internal Use Only [XSL Template: Form2.xsl] Int$ 

<sup>(2)</sup> Contract-required limits for percent recovery (R) are specified in Section 9.3.3, Method 1613.

<sup>(3)</sup> Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for 37Cl4-2,3,7,8-TCDD

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

PCDD/PCDF ANALYSIS TEQ DATA REPORT

**CLIENT SAMPLE NO.** 

Lab Blank

N/A

N/A

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819

Matrix: **TISSUE** 

pg/g

Sample Size: 10.0 g

**Concentration Units:** 

Sample Collection:

Project No.

Lab Sample I.D.: WG57620-101

GC Column ID: DB5

Sample Data Filename: DX7M\_002 S: 17

|                     |                          |                |                         |                 |          | TEQ       |       |
|---------------------|--------------------------|----------------|-------------------------|-----------------|----------|-----------|-------|
| COMPOUND            | LAB<br>FLAG <sup>1</sup> | CONC.<br>FOUND | REPORTING<br>LIMIT (RL) | WHO 2005<br>TEF | ND=0     | ND=1/2 RL | ND=RL |
| 2,3,7,8-TCDD        | U                        |                | 0.0615                  | 1               | 0.00e+00 | 3.08e-02  |       |
| 1,2,3,7,8-PECDD     | U                        |                | 0.0615                  | 1               | 0.00e+00 | 3.08e-02  |       |
| 1,2,3,4,7,8-HXCDD   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,6,7,8-HXCDD   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,7,8,9-HXCDD   |                          | 0.0793         | 0.0615                  | 0.1             | 7.93e-03 | 7.93e-03  |       |
| 1,2,3,4,6,7,8-HPCDD |                          | 0.262          | 0.0615                  | 0.01            | 2.62e-03 | 2.62e-03  |       |
| OCDD                |                          | 0.596          | 0.0615                  | 0.0003          | 1.79e-04 | 1.79e-04  |       |
| 2,3,7,8-TCDF        | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,7,8-PECDF     | U                        |                | 0.0615                  | 0.03            | 0.00e+00 | 9.23e-04  |       |
| 2,3,4,7,8-PECDF     | U                        |                | 0.0615                  | 0.3             | 0.00e+00 | 9.23e-03  |       |
| 1,2,3,4,7,8-HXCDF   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,6,7,8-HXCDF   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,7,8,9-HXCDF   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 2,3,4,6,7,8-HXCDF   | U                        |                | 0.0615                  | 0.1             | 0.00e+00 | 3.08e-03  |       |
| 1,2,3,4,6,7,8-HPCDF | U                        |                | 0.0615                  | 0.01            | 0.00e+00 | 3.08e-04  |       |
| 1,2,3,4,7,8,9-HPCDF | U                        |                | 0.0615                  | 0.01            | 0.00e+00 | 3.08e-04  |       |
| OCDF                | U                        |                | 0.0615                  | 0.0003          | 0.00e+00 | 9.23e-06  |       |
|                     |                          |                | TOTAL TEQ               |                 | 0.0107   | 0.105     |       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report; U = not detected at RL.

| These data are validated and reported as accurate and in | accord with AXYS Ana | alytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|----------------------|------------------------|-------------------------------------------------|
| Signed:                                                  | Henry                | Huang                  |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: TEQ.xsl; Created: 12-Jan-2017 15:30:42; Application: XMLTransformer-1.15.33; Report Filename:  $1613\_DIOXINS\_1613-TEQ\_WG57620-101\_TEQ\_SJ2147941.html$ ; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Concentrations that do not meet quantification criteria are not included in the TEQ calculations.

# Form 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819 OPR Data Filename: DX7M\_002 S: 14

Matrix: TISSUE Lab Sample I.D.: WG57620-102

**Extraction Date:** 20-Dec-2016 **Analysis Date:** 09-Jan-2017 **Time:** 22:06:59

#### ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

|                              | LAB               | ION ABUND.         | SPIKE CONC. | CONC.<br>FOUND | OPR CONC.<br>LIMITS <sup>3</sup> | .,         |
|------------------------------|-------------------|--------------------|-------------|----------------|----------------------------------|------------|
| COMPOUND                     | FLAG <sup>1</sup> | RATIO <sup>2</sup> | (ng/mL)     | (ng/mL)        | (ng/mL)                          | % RECOVERY |
| 2 2 7 0 TCDD                 |                   | 0.77               | 10.0        | 9.79           | 6.70 - 15.8                      | 97.9       |
| 2,3,7,8-TCDD                 |                   |                    |             |                |                                  |            |
| 1,2,3,7,8-PECDD <sup>4</sup> |                   | 0.62               | 50.0        | 51.5           | 35.0 - 71.0                      | 103        |
| 1,2,3,4,7,8-HXCDD            |                   | 1.23               | 50.0        | 48.3           | 35.0 - 82.0                      | 96.6       |
| 1,2,3,6,7,8-HXCDD            |                   | 1.21               | 50.0        | 48.9           | 38.0 - 67.0                      | 97.7       |
| 1,2,3,7,8,9-HXCDD            |                   | 1.22               | 50.0        | 51.5           | 32.0 - 81.0                      | 103        |
| 1,2,3,4,6,7,8-HPCDD          |                   | 1.04               | 50.0        | 46.3           | 35.0 - 70.0                      | 92.6       |
| OCDD                         |                   | 0.89               | 100         | 93.4           | 78.0 - 144                       | 93.4       |
| 2,3,7,8-TCDF                 |                   | 0.77               | 10.0        | 9.78           | 7.50 - 15.8                      | 97.8       |
| 1,2,3,7,8-PECDF              |                   | 1.55               | 50.0        | 49.6           | 40.0 - 67.0                      | 99.3       |
| 2,3,4,7,8-PECDF              |                   | 1.53               | 50.0        | 49.7           | 34.0 - 80.0                      | 99.5       |
| 1,2,3,4,7,8-HXCDF            |                   | 1.24               | 50.0        | 49.2           | 36.0 - 67.0                      | 98.3       |
| 1,2,3,6,7,8-HXCDF            |                   | 1.24               | 50.0        | 50.6           | 42.0 - 65.0                      | 101        |
| 1,2,3,7,8,9-HXCDF            |                   | 1.25               | 50.0        | 49.8           | 39.0 - 65.0                      | 99.6       |
| 2,3,4,6,7,8-HXCDF            |                   | 1.22               | 50.0        | 50.5           | 35.0 - 78.0                      | 101        |
| 1,2,3,4,6,7,8-HPCDF          |                   | 1.02               | 50.0        | 50.9           | 41.0 - 61.0                      | 102        |
| 1,2,3,4,7,8,9-HPCDF          |                   | 1.04               | 50.0        | 50.1           | 39.0 - 69.0                      | 100        |
| OCDF                         |                   | 0.91               | 100         | 91.4           | 63.0 - 170                       | 91.4       |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and ir | accord with AXYS Analytical Services Ltd. | ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Signed:                                                  | Henry Huang                               |                                                 |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: Form8A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-102\_Form8A\_SJ2147937.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.

<sup>(3)</sup> Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under OPR.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 8B PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Contract No.: 4819 OPR Data Filename: DX7M\_002 S: 14

Matrix: TISSUE Lab Sample I.D.: WG57620-102

**Extraction Date:** 20-Dec-2016 **Analysis Date:** 09-Jan-2017 **Time:** 22:06:59

# ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT, BASED ON A 20 uL EXTRACT VOLUME.

| LABELED<br>COMPOUND     | LAB<br>FLAG <sup>1</sup> | ION ABUND.<br>RATIO <sup>2</sup> | SPIKE CONC.<br>(ng/mL) | CONC.<br>FOUND<br>(ng/mL) | OPR CONC.<br>LIMITS <sup>3</sup><br>(ng/mL) | % RECOVERY    |
|-------------------------|--------------------------|----------------------------------|------------------------|---------------------------|---------------------------------------------|---------------|
| COMIN COND              | ILAO                     | KATIO                            | (lig/ili_)             | (IIg/IIIL)                | (119/1112)                                  | 70 INLOOVEINT |
| 13C-2,3,7,8-TCDD        |                          | 0.77                             | 100                    | 75.7                      | 20.0-175                                    | 75.7          |
| 13C-1,2,3,7,8-PECDD 4   |                          | 0.66                             | 100                    | 104                       | 21.0-227                                    | 104           |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 1.26                             | 100                    | 76.7                      | 21.0-193                                    | 76.7          |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 1.28                             | 100                    | 76.0                      | 25.0-163                                    | 76.0          |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 1.03                             | 100                    | 89.5                      | 26.0-166                                    | 89.5          |
| 13C-OCDD                |                          | 0.88                             | 200                    | 189                       | 26.0-397                                    | 94.5          |
| 13C-2,3,7,8-TCDF        |                          | 0.78                             | 100                    | 71.6                      | 22.0-152                                    | 71.6          |
| 13C-1,2,3,7,8-PECDF     |                          | 1.56                             | 100                    | 85.2                      | 21.0-192                                    | 85.2          |
| 13C-2,3,4,7,8-PECDF     |                          | 1.59                             | 100                    | 82.7                      | 13.0-328                                    | 82.7          |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 0.52                             | 100                    | 74.2                      | 19.0-202                                    | 74.2          |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 0.53                             | 100                    | 73.5                      | 21.0-159                                    | 73.5          |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 0.51                             | 100                    | 73.3                      | 17.0-205                                    | 73.3          |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 0.53                             | 100                    | 74.1                      | 22.0-176                                    | 74.1          |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 0.45                             | 100                    | 82.3                      | 21.0-158                                    | 82.3          |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 0.44                             | 100                    | 86.4                      | 20.0-186                                    | 86.4          |
| CLEANUP STANDARD        |                          |                                  |                        |                           |                                             |               |
| 37CL-2,3,7,8-TCDD       |                          |                                  | 10.0                   | 7.73                      | 3.10-19.1                                   | 77.3          |

| (1) Where applicable, | custom lab | flags have | been used | on this report. |
|-----------------------|------------|------------|-----------|-----------------|

| These data are validated and reported as accurate and | in accord with AXYS An | alytical Services Ltd. ISO | 17025 compliant quality | assurance processes. |
|-------------------------------------------------------|------------------------|----------------------------|-------------------------|----------------------|
| Signed:                                               | Henry                  | Huang                      | _                       |                      |

These pages are part of a larger report that may contain information necessary for full data evaluation. Results reported relate only to the sample tested.

For Axys Internal Use Only [ XSL Template: Form8B.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_1613DB5\_WG57620-102\_Form8B\_SJ2147937.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> Contract-required Ion Abundance Ratios are specified in Table 9, Method 1613.

<sup>(3)</sup> Contract-required concentration limits for OPR as specified in Table 6, Method 1613. Labeled compound concentrations limits are based on required percent recovery (Section 15.5, Method 1613).

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 3A PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA **CS0** Data Filename: N/A V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Initial Calibration Date:** 27-Sep-2016 **CS1 Data Filename:** DX6M\_125 S: 5 Instrument ID: HR GC/MS **CS2 Data Filename:** DX6M\_125 S: 6

**GC Column ID:** DB5 CS3 Data Filename: DX6M\_125 S: 4

> **CS4 Data Filename:** DX6M\_125 S: 7

> **CS5 Data Filename:** DX6M\_125 S: 8

CS6 Data Filename: N/A

|                                |                   | RELATIVE RESPONSE (RR) |      |      |      |      |      |     |            |                           |
|--------------------------------|-------------------|------------------------|------|------|------|------|------|-----|------------|---------------------------|
|                                |                   | CS0                    | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 | MEAN<br>RR | CV<br>(%RSD) <sup>2</sup> |
| COMPOUND                       | LAB               |                        |      |      |      |      |      |     |            |                           |
|                                | FLAG <sup>1</sup> |                        |      |      |      |      |      |     |            |                           |
| 2,3,7,8-TCDD                   |                   |                        | 0.96 | 0.96 | 0.99 | 1.00 | 1.00 |     | 0.98       | 2.00                      |
| 1,2,3,7,8-PECDD <sup>3</sup>   |                   |                        | 1.08 | 0.98 | 1.04 | 1.08 | 1.06 |     | 1.05       | 3.77                      |
| 1,2,3,4,7,8-HXCDD              |                   |                        | 1.07 | 0.95 | 1.02 | 1.04 | 1.03 |     | 1.02       | 4.32                      |
| 1,2,3,6,7,8-HXCDD              |                   |                        | 0.93 | 0.88 | 0.91 | 0.96 | 0.93 |     | 0.92       | 2.98                      |
| 1,2,3,7,8,9-HXCDD <sup>4</sup> |                   |                        | 0.99 | 0.88 | 0.94 | 0.95 | 0.94 |     | 0.94       | 4.16                      |
| 1,2,3,4,6,7,8-HPCDD            |                   |                        | 1.04 | 0.95 | 0.99 | 1.02 | 1.01 |     | 1.00       | 3.36                      |
| OCDD                           |                   |                        | 1.11 | 1.02 | 1.06 | 1.10 | 1.07 |     | 1.07       | 3.24                      |
| 2,3,7,8-TCDF                   |                   |                        | 0.96 | 0.88 | 0.92 | 0.93 | 0.91 |     | 0.92       | 3.28                      |
| 1,2,3,7,8-PECDF                |                   |                        | 0.87 | 0.83 | 0.90 | 0.92 | 0.93 |     | 0.89       | 4.60                      |
| 2,3,4,7,8-PECDF                |                   |                        | 0.95 | 0.86 | 0.92 | 0.97 | 0.96 |     | 0.93       | 4.52                      |
| 1,2,3,4,7,8-HXCDF              |                   |                        | 1.06 | 1.02 | 1.11 | 1.12 | 1.08 |     | 1.08       | 3.84                      |
| 1,2,3,6,7,8-HXCDF              |                   |                        | 1.04 | 0.99 | 1.02 | 1.11 | 1.04 |     | 1.04       | 4.05                      |
| 1,2,3,7,8,9-HXCDF              |                   |                        | 1.06 | 0.95 | 0.96 | 1.06 | 1.01 |     | 1.01       | 5.16                      |
| 2,3,4,6,7,8-HXCDF              |                   |                        | 1.07 | 0.99 | 1.05 | 1.09 | 1.06 |     | 1.05       | 3.46                      |
| 1,2,3,4,6,7,8-HPCDF            |                   |                        | 1.30 | 1.15 | 1.27 | 1.28 | 1.22 |     | 1.25       | 4.76                      |
| 1,2,3,4,7,8,9-HPCDF            |                   |                        | 1.18 | 1.13 | 1.20 | 1.20 | 1.16 |     | 1.17       | 2.54                      |
| OCDF 5                         |                   |                        | 1.24 | 1.19 | 1.21 | 1.35 | 1.34 |     | 1.27       | 5.86                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as acc | curate and in accord | with AXYS Ana | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|----------------------------------------------|----------------------|---------------|------------------------|----------------------------|----------------------|
|                                              | Signed:              | Robert        | Tones                  |                            |                      |

For Axys Internal Use Only [ XSL Template: Form3A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_27-Sep-2016\_DX6M\_\_Form3A\_GS67950.html; Workgroup: WG57620; Design ID: 3006]

<sup>(2)</sup> For contract CV specifications, see Section 10.5.4, Method 1613.

<sup>(3)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

<sup>(4)</sup> Response ratios are calculated relative to the labeled analogs of the other two HXCDDs (Section 17.1.2, Method 1613). (5) Response ratios are calculated relative to the labeled analog of OCDD (Section 17.1.1, Method 1613).

# Form 3B PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA **CS0** Data Filename: N/A V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811 **Initial Calibration Date:** 27-Sep-2016 CS1 Data Filename: DX6M\_125 S: 5 Instrument ID: HR GC/MS CS2 Data Filename: DX6M\_125 S: 6 **GC Column ID:** DB5 **CS3 Data Filename:** DX6M\_125 S: 4 CS4 Data Filename: DX6M\_125 S: 7 **CS5 Data Filename:** DX6M\_125 S: 8

CS6 Data Filename: N/A

|                                  |                   | RELATIVE RESPONSE (RR) |      |      |      |      |      |     |            |                           |
|----------------------------------|-------------------|------------------------|------|------|------|------|------|-----|------------|---------------------------|
|                                  |                   | CS0                    | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 | MEAN<br>RR | CV<br>(%RSD) <sup>2</sup> |
| LABELED COMPOUND                 | LAB               |                        |      |      |      |      |      |     |            | ` ,                       |
|                                  | FLAG <sup>1</sup> |                        |      |      |      |      |      |     |            |                           |
| 13C-2,3,7,8-TCDD                 |                   |                        | 0.98 | 0.98 | 1.02 | 0.99 | 1.03 |     | 1.00       | 2.53                      |
| 13C-1,2,3,7,8-PECDD <sup>3</sup> |                   |                        | 0.56 | 0.58 | 0.59 | 0.61 | 0.68 |     | 0.60       | 7.48                      |
| 13C-1,2,3,4,7,8-HXCDD            |                   |                        | 0.93 | 0.96 | 0.93 | 0.95 | 0.96 |     | 0.94       | 1.64                      |
| 13C-1,2,3,6,7,8-HXCDD            |                   |                        | 1.03 | 1.07 | 1.06 | 1.05 | 1.09 |     | 1.06       | 2.07                      |
| 13C-1,2,3,4,6,7,8-HPCDD          |                   |                        | 0.72 | 0.73 | 0.69 | 0.72 | 0.73 |     | 0.72       | 2.71                      |
| 13C-OCDD                         |                   |                        | 0.58 | 0.56 | 0.57 | 0.60 | 0.68 |     | 0.60       | 7.94                      |
| 13C-2,3,7,8-TCDF                 |                   |                        | 1.50 | 1.51 | 1.52 | 1.47 | 1.58 |     | 1.51       | 2.54                      |
| 13C-1,2,3,7,8-PECDF              |                   |                        | 1.01 | 1.04 | 1.05 | 1.06 | 1.17 |     | 1.07       | 5.93                      |
| 13C-2,3,4,7,8-PECDF              |                   |                        | 0.99 | 1.03 | 1.01 | 1.03 | 1.14 |     | 1.04       | 5.94                      |
| 13C-1,2,3,4,7,8-HXCDF            |                   |                        | 1.22 | 1.23 | 1.20 | 1.20 | 1.20 |     | 1.21       | 1.20                      |
| 13C-1,2,3,6,7,8-HXCDF            |                   |                        | 1.34 | 1.41 | 1.37 | 1.34 | 1.43 |     | 1.38       | 2.91                      |
| 13C-1,2,3,7,8,9-HXCDF            |                   |                        | 1.08 | 1.10 | 1.08 | 1.10 | 1.15 |     | 1.10       | 2.57                      |
| 13C-2,3,4,6,7,8-HXCDF            |                   |                        | 1.27 | 1.30 | 1.23 | 1.23 | 1.28 |     | 1.26       | 2.60                      |
| 13C-1,2,3,4,6,7,8-HPCDF          |                   |                        | 0.87 | 0.89 | 0.86 | 0.87 | 0.91 |     | 0.88       | 2.40                      |
| 13C-1,2,3,4,7,8,9-HPCDF          |                   |                        | 0.72 | 0.72 | 0.68 | 0.72 | 0.75 |     | 0.72       | 3.47                      |
| CLEANUP STANDARD                 |                   |                        |      |      |      |      |      |     |            |                           |
| 37CL-2,3,7,8-TCDD                |                   |                        | 1.13 | 1.04 | 1.08 | 1.03 | 1.08 |     | 1.07       | 3.68                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_Robert Tones\_\_\_\_\_

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 3B.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_27-Sep-2016\_DX6M\_Form 3B\_GS67950.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> For contract CV specifications, see Section 10.5.4, Method 1613.

<sup>(3)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 3C PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA CS0 Data Filename: N/A V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 27-Sep-2016 CS1 Data Filename: DX6M\_125 S: 5

Instrument ID: HR GC/MS CS2 Data Filename: DX6M\_125 S: 6

GC Column ID: DB5 CS3 Data Filename: DX6M\_125 S: 4

CS4 Data Filename: DX6M\_125 S: 7

CS5 Data Filename: DX6M\_125 S: 8

CS6 Data Filename: N/A

|                              |                   |                    | CS0 | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 | -                   |
|------------------------------|-------------------|--------------------|-----|------|------|------|------|------|-----|---------------------|
| COMPOUND                     | LAB               | M/Z's              |     |      |      |      |      |      |     | QC                  |
|                              | FLAG <sup>1</sup> | FORMING            |     |      |      |      |      |      |     | LIMITS <sup>3</sup> |
|                              |                   | RATIO <sup>2</sup> |     |      |      |      |      |      |     |                     |
| 2,3,7,8-TCDD                 |                   | M/M+2              |     | 0.70 | 0.77 | 0.79 | 0.78 | 0.78 |     | 0.65-0.89           |
| 1,2,3,7,8-PECDD <sup>4</sup> |                   | M/M+2              |     | 0.58 | 0.60 | 0.62 | 0.62 | 0.62 |     | 0.52-0.70           |
| 1,2,3,4,7,8-HXCDD            |                   | M+2/M+4            |     | 1.26 | 1.25 | 1.27 | 1.25 | 1.24 |     | 1.05-1.43           |
| 1,2,3,6,7,8-HXCDD            |                   | M+2/M+4            |     | 1.25 | 1.23 | 1.22 | 1.24 | 1.25 |     | 1.05-1.43           |
| 1,2,3,7,8,9-HXCDD            |                   | M+2/M+4            |     | 1.28 | 1.28 | 1.23 | 1.24 | 1.23 |     | 1.05-1.43           |
| 1,2,3,4,6,7,8-HPCDD          |                   | M+2/M+4            |     | 1.01 | 1.01 | 1.04 | 1.04 | 1.03 |     | 0.88-1.20           |
| OCDD                         |                   | M+2/M+4            |     | 0.81 | 0.88 | 0.88 | 0.88 | 0.88 |     | 0.76-1.02           |
| 2,3,7,8-TCDF                 |                   | M/M+2              |     | 0.74 | 0.78 | 0.76 | 0.76 | 0.77 |     | 0.65-0.89           |
| 1,2,3,7,8-PECDF              |                   | M+2/M+4            |     | 1.42 | 1.49 | 1.54 | 1.52 | 1.50 |     | 1.32-1.78           |
| 2,3,4,7,8-PECDF              |                   | M+2/M+4            |     | 1.56 | 1.50 | 1.50 | 1.51 | 1.47 |     | 1.32-1.78           |
| 1,2,3,4,7,8-HXCDF            |                   | M+2/M+4            |     | 1.29 | 1.18 | 1.21 | 1.19 | 1.21 |     | 1.05-1.43           |
| 1,2,3,6,7,8-HXCDF            |                   | M+2/M+4            |     | 1.23 | 1.25 | 1.18 | 1.22 | 1.22 |     | 1.05-1.43           |
| 1,2,3,7,8,9-HXCDF            |                   | M+2/M+4            |     | 1.24 | 1.25 | 1.20 | 1.22 | 1.23 |     | 1.05-1.43           |
| 2,3,4,6,7,8-HXCDF            |                   | M+2/M+4            |     | 1.17 | 1.19 | 1.19 | 1.21 | 1.19 |     | 1.05-1.43           |
| 1,2,3,4,6,7,8-HPCDF          |                   | M+2/M+4            |     | 1.00 | 1.01 | 1.00 | 1.02 | 1.00 |     | 0.88-1.20           |
| 1,2,3,4,7,8,9-HPCDF          |                   | M+2/M+4            |     | 1.11 | 1.02 | 1.03 | 1.04 | 1.04 |     | 0.88-1.20           |
| OCDF                         |                   | M+2/M+4            |     | 0.86 | 0.89 | 0.86 | 0.86 | 0.86 |     | 0.76-1.02           |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_Robert Tones\_\_\_\_\_

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 3C.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_27-Sep-2016\_DX6M\_Form 3C\_GS67950.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> See Table 8, Method 1613, for m/z specifications.

<sup>(3)</sup> Ion Abundance Ratio Control Limits from Table 9, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 3D PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA **CS0 Data Filename:** N/A V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811 **Initial Calibration Date:** 27-Sep-2016 CS1 Data Filename: DX6M\_125 S: 5 Instrument ID: HR GC/MS CS2 Data Filename: DX6M\_125 S: 6 GC Column ID: DB5 **CS3 Data Filename:** DX6M\_125 S: 4 CS4 Data Filename: DX6M\_125 S: 7 CS5 Data Filename: DX6M\_125 S: 8

CS6 Data Filename: N/A

|                         |                          |                                        | ION ABUNDANCE RATIO |      |      |      |      |      |     |                           |
|-------------------------|--------------------------|----------------------------------------|---------------------|------|------|------|------|------|-----|---------------------------|
|                         |                          |                                        | CS0                 | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 |                           |
| LABELED COMPOUND        | LAB<br>FLAG <sup>1</sup> | M/Z's<br>FORMING<br>RATIO <sup>2</sup> |                     |      |      |      |      |      |     | QC<br>LIMITS <sup>3</sup> |
| 13C-2,3,7,8-TCDD        |                          | M/M+2                                  |                     | 0.77 | 0.78 | 0.76 | 0.78 | 0.78 |     | 0.65-0.89                 |
| 13C-1,2,3,7,8-PECDD 4   |                          | M/M+2                                  |                     | 0.65 | 0.65 | 0.64 | 0.65 | 0.65 |     | 0.52-0.70                 |
| 13C-1,2,3,4,7,8-HXCDD   |                          | M+2/M+4                                |                     | 1.26 | 1.26 | 1.29 | 1.28 | 1.26 |     | 1.05-1.43                 |
| 13C-1,2,3,6,7,8-HXCDD   |                          | M+2/M+4                                |                     | 1.25 | 1.25 | 1.25 | 1.27 | 1.26 |     | 1.05-1.43                 |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | M+2/M+4                                |                     | 1.07 | 1.06 | 1.05 | 1.05 | 1.04 |     | 0.88-1.20                 |
| 13C-OCDD                |                          | M+2/M+4                                |                     | 0.89 | 0.88 | 0.92 | 0.90 | 0.87 |     | 0.76-1.02                 |
| 13C-2,3,7,8-TCDF        |                          | M/M+2                                  |                     | 0.77 | 0.79 | 0.79 | 0.79 | 0.78 |     | 0.65-0.89                 |
| 13C-1,2,3,7,8-PECDF     |                          | M+2/M+4                                |                     | 1.53 | 1.55 | 1.59 | 1.56 | 1.59 |     | 1.32-1.78                 |
| 13C-2,3,4,7,8-PECDF     |                          | M+2/M+4                                |                     | 1.58 | 1.53 | 1.57 | 1.55 | 1.58 |     | 1.32-1.78                 |
| 13C-1,2,3,4,7,8-HXCDF   |                          | M/M+2                                  |                     | 0.52 | 0.52 | 0.51 | 0.51 | 0.51 |     | 0.43-0.59                 |
| 13C-1,2,3,6,7,8-HXCDF   |                          | M/M+2                                  |                     | 0.51 | 0.51 | 0.51 | 0.53 | 0.52 |     | 0.43-0.59                 |
| 13C-1,2,3,7,8,9-HXCDF   |                          | M/M+2                                  |                     | 0.52 | 0.51 | 0.51 | 0.52 | 0.51 |     | 0.43-0.59                 |
| 13C-2,3,4,6,7,8-HXCDF   |                          | M/M+2                                  |                     | 0.52 | 0.52 | 0.52 | 0.52 | 0.51 |     | 0.43-0.59                 |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | M/M+2                                  |                     | 0.45 | 0.45 | 0.46 | 0.44 | 0.44 |     | 0.37-0.51                 |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | M/M+2                                  |                     | 0.44 | 0.45 | 0.44 | 0.44 | 0.45 |     | 0.37-0.51                 |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

(2) See Table 8, Method 1613, for m/z specifications.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_Robert Tones\_\_\_\_\_

For Axys Internal Use Only [ XSL Template: Form3D.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_27-Sep-2016\_DX6M\_\_Form3D\_GS67950.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(3)</sup> Ion Abundance Ratio Control Limits from Table 9, Method 1613.

<sup>(4)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

| DB-225 IS Data Filename: |               | Analysis Date:         |             | Time:                 |
|--------------------------|---------------|------------------------|-------------|-----------------------|
| DB-5 IS Data Filename:   | DX6M_125 S: 1 | Analysis Date:         | 27-Sep-2016 | <b>Time:</b> 09:17:52 |
| RT Window Data Filename: | DX6M_125 S: 1 | Analysis Date:         | 27-Sep-2016 | Time: 09:17:52        |
| Instrument ID:           | HR GC/MS      | Initial Calibration Da | 27-Sep-2016 |                       |

# **DB5 RT WINDOW DEFINING STANDARDS RESULT**

| ISOMERS                 | ABSOLUTE<br>RT | ISOMERS                 | ABSOLUTE<br>RT |
|-------------------------|----------------|-------------------------|----------------|
| 1,3,6,8-TCDD (F)        | 22:59          | 1,3,6,8-TCDF (F)        | 21:28          |
| 1,2,8,9-TCDD (L)        | 28:19          | 1,2,8,9-TCDF (L)        | 28:10          |
| 1,2,4,7,9-PECDD (F)     | 32:02          | 1,3,4,6,8-PECDF (F)     | 28:53          |
| 1,2,3,8,9-PECDD (L)     | 37:01          | 1,2,3,8,9-PECDF (L)     | 37:05          |
| 1,2,4,6,7,9-HXCDD (F)   | 40:01          | 1,2,3,4,6,8-HXCDF (F)   | 38:58          |
| 1,2,3,4,6,7-HXCDD (L)   | 42:40          | 1,2,3,4,8,9-HXCDF (L)   | 43:00          |
| 1,2,3,4,6,7,9-HPCDD (F) | 45:46          | 1,2,3,4,6,7,8-HPCDF (F) | 45:19          |
| 1,2,3,4,6,7,8-HPCDD (L) | 46:42          | 1,2,3,4,7,8,9-HPCDF (L) | 47:07          |

<sup>(</sup>F) = First eluting isomer (DB-5); (L) = Last eluting isomer (DB-5)

# ISOMER SPECIFICITY (IS) TEST STANDARDS RESULT

| Isomers                      | % Valley Height<br>Between Compared<br>Peaks          | Isomers                      | % Valley Height<br>Between Compared<br>Peaks |
|------------------------------|-------------------------------------------------------|------------------------------|----------------------------------------------|
| 1,2,3,4-TCDD<br>1,2,7,8-TCDD | 0                                                     | 1,2,3,8-TCDD<br>2,3,7,8-TCDD | 10                                           |
| 1,2,7,8-TCDD<br>1,4,7,8-TCDD | 0                                                     | 2,3,4,7-TCDF<br>2,3,7,8-TCDF | N/A                                          |
| 1,4,7,8-TCDD<br>1,2,3,7-TCDD | 0                                                     | 2,3,7,8-TCDF<br>1,2,3,9-TCDF | N/A                                          |
| 1,2,3,7-TCDD<br>1,2,3,8-TCDD | DB-5 column;<br>co-elute as per<br>Figure 6 in Method |                              |                                              |

| These data are validated | and reported as accurate and in accord v | with AXYS And | alytical Services Ltd. | ISO17025 compliant quality | assurance processes |
|--------------------------|------------------------------------------|---------------|------------------------|----------------------------|---------------------|
|                          | Signed:                                  | Robert        | Tones                  |                            |                     |

For Axys Internal Use Only [ XSL Template: DXForm5.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename:  $1613\_DIOXINS\_DX6M\_125S1\_Form5\_SJ2101493.html$ ; Workgroup: WG57620; Design ID: 3006 ]

# Form 3A PCDD/PCDF INITIAL CALIBRATION RELATIVE RESPONSES

## **AXYS ANALYTICAL SERVICES**

Initial Calibration Date: 04-Jan-2017 CS1 Data Filename: DB7T\_003A S: 4

Instrument ID: HR GC/MS CS2 Data Filename: DB7T\_003A S: 5

GC Column ID: DB225 CS3 Data Filename: DB7T\_003A S: 3

CS4 Data Filename: DB7T\_003A S: 6

CS5 Data Filename: DB7T\_003A S: 7

CS6 Data Filename: N/A

|              |                   | RELATIVE RESPONSE (RR) |      |      |      |      |      |     |            |                           |
|--------------|-------------------|------------------------|------|------|------|------|------|-----|------------|---------------------------|
| COMPOUND     | LAB               | CS0                    | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 | MEAN<br>RR | CV<br>(%RSD) <sup>2</sup> |
| 2,3,7,8-TCDF | FLAG <sup>1</sup> |                        | 0.92 | 0.85 | 0.93 | 0.93 | 0.92 |     | 0.91       | 3.71                      |
| 2,0,1,0-1001 |                   |                        | 0.32 | 0.00 | 0.33 | 0.33 | 0.32 |     | 0.91       | 5.7 1                     |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_ David Nelson\_\_\_\_\_\_

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 3A.xsl; Created: 12-Jan-2017\ 15: 30: 06; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_04-Jan-2017\_DB7T\_Form 3A\_GS67977.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> For contract CV specifications, see Section 10.5.4, Method 1613.

# Form 3C PCDD/PCDF INITIAL CALIBRATION ION ABUNDANCE RATIOS

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA CS0 Data Filename: N/A V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 04-Jan-2017 CS1 Data Filename: DB7T\_003A S: 4

Instrument ID: HR GC/MS CS2 Data Filename: DB7T\_003A S: 5

GC Column ID: DB225 CS3 Data Filename: DB7T\_003A S: 3

**CS4 Data Filename:** DB7T\_003A S: 6

CS5 Data Filename: DB7T\_003A S: 7

CS6 Data Filename: N/A

|              |                          | _                                      | ION ABUNDANCE RATIO |      |      |      |      |      |     |                           |
|--------------|--------------------------|----------------------------------------|---------------------|------|------|------|------|------|-----|---------------------------|
| COMPOUND     | LAB<br>FLAG <sup>1</sup> | M/Z's<br>FORMING<br>RATIO <sup>2</sup> | CS0                 | CS1  | CS2  | CS3  | CS4  | CS5  | CS6 | QC<br>LIMITS <sup>3</sup> |
| 2,3,7,8-TCDF |                          | M/M+2                                  |                     | 0.70 | 0.80 | 0.76 | 0.77 | 0.77 |     | 0.65-0.89                 |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_David Nelson\_\_\_\_\_

For Axys Internal Use Only [ XSL Template: Form3C.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename:  $1613\_DIOXINS\_04$ -Jan-2017\_DB7T\_\_Form3C\_GS67977.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> See Table 8, Method 1613, for m/z specifications.

<sup>(3)</sup> Ion Abundance Ratio Control Limits from Table 9, Method 1613.

# PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Instrument ID: HR GC/MS Initial Calibration Date: 04-Jan-2017

RT Window Data Filename: Analysis Date: Time:

DB-5 IS Data Filename: Analysis Date: Time:

**DB-225 IS Data Filename:** DB7T\_003 S: 1 **Analysis Date:** 04-Jan-2017 **Time:** 11:01:45

# **DB225 RT WINDOW DEFINING STANDARDS RESULT**

| ISOMERS                 | ABSOLUTE<br>RT | ISOMERS                 | ABSOLUTE<br>RT |
|-------------------------|----------------|-------------------------|----------------|
| 1,3,6,8-TCDD (F)        | N/A            | 1,3,6,8-TCDF (F)        | N/A            |
| 1,2,8,9-TCDD (L)        | N/A            | 1,2,8,9-TCDF (L)        | N/A            |
| 1,2,4,7,9-PECDD (F)     | N/A            | 1,3,4,6,8-PECDF (F)     | N/A            |
| 1,2,3,8,9-PECDD (L)     | N/A            | 1,2,3,8,9-PECDF (L)     | N/A            |
| 1,2,4,6,7,9-HXCDD (F)   | N/A            | 1,2,3,4,6,8-HXCDF (F)   | N/A            |
| 1,2,3,4,6,7-HXCDD (L)   | N/A            | 1,2,3,4,8,9-HXCDF (L)   | N/A            |
| 1,2,3,4,6,7,9-HPCDD (F) | N/A            | 1,2,3,4,6,7,8-HPCDF (F) | N/A            |
| 1,2,3,4,6,7,8-HPCDD (L) | N/A            | 1,2,3,4,7,8,9-HPCDF (L) | N/A            |

(F) = First eluting isomer (DB-5); (L) = Last eluting isomer (DB-5)

# ISOMER SPECIFICITY (IS) TEST STANDARDS RESULT

| Isomers                      | % Valley Height<br>Between Compared<br>Peaks | Isomers                      | % Valley Height<br>Between Compared<br>Peaks |
|------------------------------|----------------------------------------------|------------------------------|----------------------------------------------|
| 1,2,3,4-TCDD<br>1,2,7,8-TCDD | N/A                                          | 1,2,3,8-TCDD<br>2,3,7,8-TCDD | N/A                                          |
| 1,2,7,8-TCDD<br>1,4,7,8-TCDD | N/A                                          | 2,3,4,7-TCDF<br>2,3,7,8-TCDF | 2                                            |
| 1,4,7,8-TCDD<br>1,2,3,7-TCDD | N/A                                          | 2,3,7,8-TCDF<br>1,2,3,9-TCDF | 3                                            |
| 1,2,3,7-TCDD<br>1,2,3,8-TCDD | N/A                                          |                              |                                              |

| These data are validated and reported as accurate an | d in accord with AXYS Ana | alytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|------------------------------------------------------|---------------------------|------------------------|----------------------------|----------------------|
| Signed:                                              | Robert                    | Tones                  |                            |                      |

For Axys Internal Use Only [ XSL Template: DXForm5.xsl; Created: 12-Jan-2017 15:30:06; Application: XMLTransformer-1.15.33; Report Filename:  $1613\_DIOXINS\_DB7T\_003S1\_Form5\_SJ2145827.html$ ; Workgroup: WG57620; Design ID: 3006 ]

# Form 4A PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Initial Calibration Date:** 27-Sep-2016 **VER Data Filename:** DX7M\_002 S: 13

Instrument ID: HR GC/MS **Analysis Date:** 09-Jan-2017

**GC Column ID:** DB5 **Analysis Time:** 20:56:43

|                              | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|------------------------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| COMPOUND                     |                          |                                       |                        |                           |                           | (3,                                    |
| 2,3,7,8-TCDD                 |                          | M/M+2                                 | 0.77                   | 0.65-0.89                 | 10.2                      | 7.8 - 12.9                             |
| 1,2,3,7,8-PECDD <sup>5</sup> |                          | M/M+2                                 | 0.62                   | 0.52-0.70                 | 50.4                      | 39 - 65                                |
| 1,2,3,4,7,8-HXCDD            |                          | M+2/M+4                               | 1.24                   | 1.05-1.43                 | 50.2                      | 39 - 64                                |
| 1,2,3,6,7,8-HXCDD            |                          | M+2/M+4                               | 1.22                   | 1.05-1.43                 | 51.3                      | 39 - 64                                |
| 1,2,3,7,8,9-HXCDD            |                          | M+2/M+4                               | 1.23                   | 1.05-1.43                 | 51.8                      | 41 - 61                                |
| 1,2,3,4,6,7,8-HPCDD          |                          | M+2/M+4                               | 1.01                   | 0.88-1.20                 | 49.8                      | 43 - 58                                |
| OCDD                         |                          | M+2/M+4                               | 0.88                   | 0.76-1.02                 | 98.3                      | 79 - 126                               |
| 2,3,7,8-TCDF                 |                          | M/M+2                                 | 0.76                   | 0.65-0.89                 | 10.3                      | 8.4 - 12                               |
| 1,2,3,7,8-PECDF              |                          | M+2/M+4                               | 1.55                   | 1.32-1.78                 | 52.5                      | 41 - 60                                |
| 2,3,4,7,8-PECDF              |                          | M+2/M+4                               | 1.55                   | 1.32-1.78                 | 51.5                      | 41 - 61                                |
| 1,2,3,4,7,8-HXCDF            |                          | M+2/M+4                               | 1.24                   | 1.05-1.43                 | 52.3                      | 45 - 56                                |
| 1,2,3,6,7,8-HXCDF            |                          | M+2/M+4                               | 1.22                   | 1.05-1.43                 | 51.3                      | 44 - 57                                |
| 1,2,3,7,8,9-HXCDF            |                          | M+2/M+4                               | 1.23                   | 1.05-1.43                 | 50.7                      | 45 - 56                                |
| 2,3,4,6,7,8-HXCDF            |                          | M+2/M+4                               | 1.22                   | 1.05-1.43                 | 52.2                      | 44 - 57                                |
| 1,2,3,4,6,7,8-HPCDF          |                          | M+2/M+4                               | 1.04                   | 0.88-1.20                 | 52.2                      | 45 - 55                                |
| 1,2,3,4,7,8,9-HPCDF          |                          | M+2/M+4                               | 1.03                   | 0.88-1.20                 | 52.1                      | 43 - 58                                |
| OCDF                         |                          | M+2/M+4                               | 0.89                   | 0.76-1.02                 | 99.2                      | 63 - 159                               |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes. Signed: \_\_\_\_\_Shelley Honkanen\_\_

For Axys Internal Use Only [ XSL Template: Form4A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S13\_Form4A\_SJ2147936.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> See Table 8, Method 1613, for m/z specifications.
(3) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

<sup>(4)</sup> Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.

<sup>(5)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 4B PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 27-Sep-2016 VER Data Filename: DX7M\_002 S: 13

Instrument ID: HR GC/MS Analysis Date: 09-Jan-2017

GC Column ID: DB5 Analysis Time: 20:56:43

|                                | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|--------------------------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| LABELED COMPOUND               |                          |                                       |                        |                           | , ,                       | (9)                                    |
| 13C-2,3,7,8-TCDD               |                          | M/M+2                                 | 0.78                   | 0.65-0.89                 | 100                       | 82 - 121                               |
| 13C-1,2,3,7,8-PECDD 5          |                          | M/M+2                                 | 0.64                   | 0.52-0.70                 | 108                       | 62 - 160                               |
| 13C-1,2,3,4,7,8-HXCDD          |                          | M+2/M+4                               | 1.25                   | 1.05-1.43                 | 98.2                      | 85 - 117                               |
| 13C-1,2,3,6,7,8-HXCDD          |                          | M+2/M+4                               | 1.26                   | 1.05-1.43                 | 98.8                      | 85 - 118                               |
| 13C-1,2,3,4,6,7,8-HPCDD        |                          | M+2/M+4                               | 1.07                   | 0.88-1.20                 | 122                       | 72 - 138                               |
| 13C-OCDD                       |                          | M+2/M+4                               | 0.91                   | 0.76-1.02                 | 284                       | 96 - 415                               |
| 13C-2,3,7,8-TCDF               |                          | M/M+2                                 | 0.78                   | 0.65-0.89                 | 96.1                      | 71 - 140                               |
| 13C-1,2,3,7,8-PECDF            |                          | M+2/M+4                               | 1.59                   | 1.32-1.78                 | 104                       | 76 - 130                               |
| 13C-2,3,4,7,8-PECDF            |                          | M+2/M+4                               | 1.54                   | 1.32-1.78                 | 103                       | 77 - 130                               |
| 13C-1,2,3,4,7,8-HXCDF          |                          | M/M+2                                 | 0.51                   | 0.43-0.59                 | 95.4                      | 76 - 131                               |
| 13C-1,2,3,6,7,8-HXCDF          |                          | M/M+2                                 | 0.52                   | 0.43-0.59                 | 95.2                      | 70 - 143                               |
| 13C-1,2,3,7,8,9-HXCDF          |                          | M/M+2                                 | 0.52                   | 0.43-0.59                 | 101                       | 74 - 135                               |
| 13C-2,3,4,6,7,8-HXCDF          |                          | M/M+2                                 | 0.52                   | 0.43-0.59                 | 96.5                      | 73 - 137                               |
| 13C-1,2,3,4,6,7,8-HPCDF        |                          | M/M+2                                 | 0.45                   | 0.37-0.51                 | 113                       | 78 - 129                               |
| 13C-1,2,3,4,7,8,9-HPCDF        |                          | M/M+2                                 | 0.46                   | 0.37-0.51                 | 125                       | 77 - 129                               |
| CLEANUP STANDARD               |                          |                                       |                        |                           |                           |                                        |
| 37CL-2,3,7,8-TCDD <sup>6</sup> |                          |                                       |                        |                           | 9.87                      | 7.9 - 12.7                             |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

- (2) See Table 8, Method 1613, for m/z specifications.
- (3) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (4) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.
- (5) Alternate confirmation and quantitation ions used for native and labeled PECDD.
- (6) No ion abundance ratio for 37Cl4-2,3,7,8-TCDD; concentration reported.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_Shelley Honkanen\_\_\_\_\_

For Axys Internal Use Only [ XSL Template: Form4B.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S13\_Form4B\_SJ2147936.html; Workgroup: WG57620; Design ID: 3006 ]

# Form 6A PCDD/PCDF RELATIVE RETENTION TIMES

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

VER Data Filename: DX7M\_002 S: 13 **Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS **Analysis Date:** 09-Jan-2017

**GC Column ID:** DB5 Analysis Time: 20:56:43

|                              | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|------------------------------|--------------------------|--------------------------------|-------|----------------------------------|
| COMPOUND                     |                          |                                |       |                                  |
| 2,3,7,8-TCDD                 |                          | 13C-2,3,7,8-TCDD               | 1.001 | 0.999-1.002                      |
| 1,2,3,7,8-PECDD <sup>3</sup> |                          | 13C-1,2,3,7,8-PECDD            | 1.001 | 0.999-1.002                      |
| 1,2,3,4,7,8-HXCDD            |                          | 13C-1,2,3,4,7,8-HXCDD          | 1.000 | 0.999-1.001                      |
| 1,2,3,6,7,8-HXCDD            |                          | 13C-1,2,3,6,7,8-HXCDD          | 1.000 | 0.998-1.004                      |
| 1,2,3,7,8,9-HXCDD            |                          | 13C-1,2,3,6,7,8-HXCDD          | 1.011 | 1.000-1.019                      |
| 1,2,3,4,6,7,8-HPCDD          |                          | 13C-1,2,3,4,6,7,8-HPCDD        | 1.000 | 0.999-1.001                      |
| OCDD                         |                          | 13C-OCDD                       | 1.000 | 0.999-1.001                      |
| 2,3,7,8-TCDF                 |                          | 13C-2,3,7,8-TCDF               | 1.001 | 0.999-1.003                      |
| 1,2,3,7,8-PECDF              |                          | 13C-1,2,3,7,8-PECDF            | 1.001 | 0.999-1.002                      |
| 2,3,4,7,8-PECDF              |                          | 13C-2,3,4,7,8-PECDF            | 1.001 | 0.999-1.002                      |
| 1,2,3,4,7,8-HXCDF            |                          | 13C-1,2,3,4,7,8-HXCDF          | 1.000 | 0.999-1.001                      |
| 1,2,3,6,7,8-HXCDF            |                          | 13C-1,2,3,6,7,8-HXCDF          | 1.000 | 0.997-1.005                      |
| 1,2,3,7,8,9-HXCDF            |                          | 13C-1,2,3,7,8,9-HXCDF          | 1.000 | 0.999-1.001                      |
| 2,3,4,6,7,8-HXCDF            |                          | 13C-2,3,4,6,7,8-HXCDF          | 1.001 | 0.999-1.001                      |
| 1,2,3,4,6,7,8-HPCDF          |                          | 13C-1,2,3,4,6,7,8-HPCDF        | 1.000 | 0.999-1.001                      |
| 1,2,3,4,7,8,9-HPCDF          |                          | 13C-1,2,3,4,7,8,9-HPCDF        | 1.000 | 0.999-1.001                      |
| OCDF                         |                          | 13C-OCDD                       | 1.002 | 0.999-1.008                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and in a | accord with AXYS Analytical Services Ltd | . ISO17025 compliant quality assurance processes. |
|------------------------------------------------------------|------------------------------------------|---------------------------------------------------|
| Signed:                                                    | Shellev Honkanen                         |                                                   |

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form6A.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S13\_Form6A\_SJ2147936.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.
(3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 6B PCDD/PCDF RELATIVE RETENTION TIMES

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 27-Sep-2016 VER Data Filename: DX7M\_002 S: 13

Instrument ID: HR GC/MS Analysis Date: 09-Jan-2017

GC Column ID: DB5 Analysis Time: 20:56:43

|                         | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|-------------------------|--------------------------|--------------------------------|-------|----------------------------------|
| LABELED COMPOUND        |                          |                                |       |                                  |
| 13C-2,3,7,8-TCDD        |                          | 13C-1,2,3,4-TCDD               | 1.013 | 0.976-1.043                      |
| 13C-1,2,3,7,8-PECDD     |                          | 13C-1,2,3,4-TCDD               | 1.382 | 1.000-1.567                      |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.987 | 0.977-1.000                      |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.990 | 0.981-1.003                      |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.096 | 1.086-1.110                      |
| 13C-OCDD                |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.181 | 1.032-1.311                      |
| 13C-2,3,7,8-TCDF        |                          | 13C-1,2,3,4-TCDD               | 0.966 | 0.923-1.103                      |
| 13C-1,2,3,7,8-PECDF     |                          | 13C-1,2,3,4-TCDD               | 1.282 | 1.000-1.425                      |
| 13C-2,3,4,7,8-PECDF     |                          | 13C-1,2,3,4-TCDD               | 1.350 | 1.011-1.526                      |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.953 | 0.944-0.970                      |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.957 | 0.949-0.975                      |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.004 | 0.977-1.047                      |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.980 | 0.959-1.021                      |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.063 | 1.043-1.085                      |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.105 | 1.057-1.151                      |
| CLEANUP STANDARD        |                          |                                |       |                                  |
| 37CL-2,3,7,8-TCDD       |                          | 13C-1,2,3,4-TCDD               | 1.001 | 0.989-1.052                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: Shelley Honkanen

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 6B.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S13\_Form 6B\_SJ2147936.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

# Form 4A PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Initial Calibration Date:** 27-Sep-2016 VER Data Filename: DX7M\_002 S: 25

Instrument ID: HR GC/MS 10-Jan-2017 **Analysis Date:** 

**GC Column ID:** DB5 **Analysis Time:** 08:11:42

|                              | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|------------------------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| COMPOUND                     |                          | -                                     |                        |                           |                           | (3,                                    |
| 2,3,7,8-TCDD                 |                          | M/M+2                                 | 0.79                   | 0.65-0.89                 | 10.5                      | 7.8 - 12.9                             |
| 1,2,3,7,8-PECDD <sup>5</sup> |                          | M/M+2                                 | 0.63                   | 0.52-0.70                 | 50.7                      | 39 - 65                                |
| 1,2,3,4,7,8-HXCDD            |                          | M+2/M+4                               | 1.24                   | 1.05-1.43                 | 49.8                      | 39 - 64                                |
| 1,2,3,6,7,8-HXCDD            |                          | M+2/M+4                               | 1.24                   | 1.05-1.43                 | 51.7                      | 39 - 64                                |
| 1,2,3,7,8,9-HXCDD            |                          | M+2/M+4                               | 1.22                   | 1.05-1.43                 | 53.5                      | 41 - 61                                |
| 1,2,3,4,6,7,8-HPCDD          |                          | M+2/M+4                               | 1.04                   | 0.88-1.20                 | 48.6                      | 43 - 58                                |
| OCDD                         |                          | M+2/M+4                               | 0.90                   | 0.76-1.02                 | 97.6                      | 79 - 126                               |
| 2,3,7,8-TCDF                 |                          | M/M+2                                 | 0.79                   | 0.65-0.89                 | 10.1                      | 8.4 - 12                               |
| 1,2,3,7,8-PECDF              |                          | M+2/M+4                               | 1.57                   | 1.32-1.78                 | 53.0                      | 41 - 60                                |
| 2,3,4,7,8-PECDF              |                          | M+2/M+4                               | 1.57                   | 1.32-1.78                 | 51.3                      | 41 - 61                                |
| 1,2,3,4,7,8-HXCDF            |                          | M+2/M+4                               | 1.26                   | 1.05-1.43                 | 53.0                      | 45 - 56                                |
| 1,2,3,6,7,8-HXCDF            |                          | M+2/M+4                               | 1.22                   | 1.05-1.43                 | 51.3                      | 44 - 57                                |
| 1,2,3,7,8,9-HXCDF            |                          | M+2/M+4                               | 1.23                   | 1.05-1.43                 | 49.2                      | 45 - 56                                |
| 2,3,4,6,7,8-HXCDF            |                          | M+2/M+4                               | 1.24                   | 1.05-1.43                 | 51.4                      | 44 - 57                                |
| 1,2,3,4,6,7,8-HPCDF          |                          | M+2/M+4                               | 1.04                   | 0.88-1.20                 | 52.5                      | 45 - 55                                |
| 1,2,3,4,7,8,9-HPCDF          |                          | M+2/M+4                               | 1.05                   | 0.88-1.20                 | 51.4                      | 43 - 58                                |
| OCDF                         |                          | M+2/M+4                               | 0.89                   | 0.76-1.02                 | 97.9                      | 63 - 159                               |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

(5) Alternate confirmation and quantitation ions used for native and labeled PECDD.

| These data are validated and reported as accurate and in ac | ccord with AXYS A | nalytical Services Ltd. | ISO17025 compliant quality | assurance processes. |
|-------------------------------------------------------------|-------------------|-------------------------|----------------------------|----------------------|
| Signed:                                                     | Shellev           | Honkanen                |                            |                      |

For Axys Internal Use Only [ XSL Template: Form4A.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S25\_Form4A\_SJ2147950.html; Workgroup: WG57620; Design ID: 3006 ]

<sup>(2)</sup> See Table 8, Method 1613, for m/z specifications.
(3) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

<sup>(4)</sup> Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.

# Form 4B PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 27-Sep-2016 VER Data Filename: DX7M\_002 S: 25

Instrument ID: HR GC/MS Analysis Date: 10-Jan-2017

GC Column ID: DB5 Analysis Time: 08:11:42

|                                | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|--------------------------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| LABELED COMPOUND               |                          |                                       |                        |                           | , ,                       | (9,=)                                  |
| 13C-2,3,7,8-TCDD               |                          | M/M+2                                 | 0.77                   | 0.65-0.89                 | 98.1                      | 82 - 121                               |
| 13C-1,2,3,7,8-PECDD 5          |                          | M/M+2                                 | 0.63                   | 0.52-0.70                 | 108                       | 62 - 160                               |
| 13C-1,2,3,4,7,8-HXCDD          |                          | M+2/M+4                               | 1.28                   | 1.05-1.43                 | 99.8                      | 85 - 117                               |
| 13C-1,2,3,6,7,8-HXCDD          |                          | M+2/M+4                               | 1.27                   | 1.05-1.43                 | 95.9                      | 85 - 118                               |
| 13C-1,2,3,4,6,7,8-HPCDD        |                          | M+2/M+4                               | 1.09                   | 0.88-1.20                 | 119                       | 72 - 138                               |
| 13C-OCDD                       |                          | M+2/M+4                               | 0.89                   | 0.76-1.02                 | 270                       | 96 - 415                               |
| 13C-2,3,7,8-TCDF               |                          | M/M+2                                 | 0.78                   | 0.65-0.89                 | 97.3                      | 71 - 140                               |
| 13C-1,2,3,7,8-PECDF            |                          | M+2/M+4                               | 1.58                   | 1.32-1.78                 | 104                       | 76 - 130                               |
| 13C-2,3,4,7,8-PECDF            |                          | M+2/M+4                               | 1.57                   | 1.32-1.78                 | 105                       | 77 - 130                               |
| 13C-1,2,3,4,7,8-HXCDF          |                          | M/M+2                                 | 0.52                   | 0.43-0.59                 | 94.6                      | 76 - 131                               |
| 13C-1,2,3,6,7,8-HXCDF          |                          | M/M+2                                 | 0.53                   | 0.43-0.59                 | 96.2                      | 70 - 143                               |
| 13C-1,2,3,7,8,9-HXCDF          |                          | M/M+2                                 | 0.51                   | 0.43-0.59                 | 104                       | 74 - 135                               |
| 13C-2,3,4,6,7,8-HXCDF          |                          | M/M+2                                 | 0.51                   | 0.43-0.59                 | 98.8                      | 73 - 137                               |
| 13C-1,2,3,4,6,7,8-HPCDF        |                          | M/M+2                                 | 0.45                   | 0.37-0.51                 | 110                       | 78 - 129                               |
| 13C-1,2,3,4,7,8,9-HPCDF        |                          | M/M+2                                 | 0.45                   | 0.37-0.51                 | 119                       | 77 - 129                               |
| CLEANUP STANDARD               |                          |                                       |                        |                           |                           |                                        |
| 37CL-2,3,7,8-TCDD <sup>6</sup> |                          |                                       |                        |                           | 9.55                      | 7.9 - 12.7                             |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_\_Shelley Honkanen\_\_\_\_\_

 $For Axys Internal Use Only [XSL Template: Form 4B.xsl; Created: 12-Jan-2017 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S25\_Form 4B\_SJ2147950.html; Workgroup: WG57620; Design ID: 3006 ]$ 

<sup>(2)</sup> See Table 8, Method 1613, for m/z specifications.

<sup>(3)</sup> Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

<sup>(4)</sup> Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.

<sup>(5)</sup> Alternate confirmation and quantitation ions used for native and labeled PECDD.

<sup>(6)</sup> No ion abundance ratio for 37Cl4-2,3,7,8-TCDD; concentration reported.

# Form 6A PCDD/PCDF RELATIVE RETENTION TIMES

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

VER Data Filename: DX7M\_002 S: 25 **Initial Calibration Date:** 27-Sep-2016

Instrument ID: HR GC/MS **Analysis Date:** 10-Jan-2017

GC Column ID: DB5 Analysis Time: 08:11:42

|                     | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|---------------------|--------------------------|--------------------------------|-------|----------------------------------|
| COMPOUND            |                          |                                |       |                                  |
| 2,3,7,8-TCDD        |                          | 13C-2,3,7,8-TCDD               | 1.001 | 0.999-1.002                      |
| 1,2,3,7,8-PECDD 3   |                          | 13C-1,2,3,7,8-PECDD            | 1.001 | 0.999-1.002                      |
| 1,2,3,4,7,8-HXCDD   |                          | 13C-1,2,3,4,7,8-HXCDD          | 1.001 | 0.999-1.001                      |
| 1,2,3,6,7,8-HXCDD   |                          | 13C-1,2,3,6,7,8-HXCDD          | 1.000 | 0.998-1.004                      |
| 1,2,3,7,8,9-HXCDD   |                          | 13C-1,2,3,6,7,8-HXCDD          | 1.010 | 1.000-1.019                      |
| 1,2,3,4,6,7,8-HPCDD |                          | 13C-1,2,3,4,6,7,8-HPCDD        | 1.000 | 0.999-1.001                      |
| OCDD                |                          | 13C-OCDD                       | 1.000 | 0.999-1.001                      |
| 2,3,7,8-TCDF        |                          | 13C-2,3,7,8-TCDF               | 1.001 | 0.999-1.003                      |
| 1,2,3,7,8-PECDF     |                          | 13C-1,2,3,7,8-PECDF            | 1.001 | 0.999-1.002                      |
| 2,3,4,7,8-PECDF     |                          | 13C-2,3,4,7,8-PECDF            | 1.001 | 0.999-1.002                      |
| 1,2,3,4,7,8-HXCDF   |                          | 13C-1,2,3,4,7,8-HXCDF          | 1.000 | 0.999-1.001                      |
| 1,2,3,6,7,8-HXCDF   |                          | 13C-1,2,3,6,7,8-HXCDF          | 1.000 | 0.997-1.005                      |
| 1,2,3,7,8,9-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDF          | 1.000 | 0.999-1.001                      |
| 2,3,4,6,7,8-HXCDF   |                          | 13C-2,3,4,6,7,8-HXCDF          | 1.000 | 0.999-1.001                      |
| 1,2,3,4,6,7,8-HPCDF |                          | 13C-1,2,3,4,6,7,8-HPCDF        | 1.001 | 0.999-1.001                      |
| 1,2,3,4,7,8,9-HPCDF |                          | 13C-1,2,3,4,7,8,9-HPCDF        | 1.000 | 0.999-1.001                      |
| OCDF                |                          | 13C-OCDD                       | 1.002 | 0.999-1.008                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

| These data are validated and reported as accurate and in | accord with AXYS Analytical Services Ltd | d. ISO17025 compliant quality assurance processes. |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------------|
| Signed:                                                  | Shellev Honkanen                         |                                                    |

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form6A.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S25\_Form6A\_SJ2147950.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.
(3) Alternate confirmation and quantitation ions used for native and labeled PECDD.

# Form 6B PCDD/PCDF RELATIVE RETENTION TIMES

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 27-Sep-2016 VER Data Filename: DX7M\_002 S: 25

Instrument ID: HR GC/MS Analysis Date: 10-Jan-2017

**GC Column ID:** DB5 **Analysis Time:** 08:11:42

|                         | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|-------------------------|--------------------------|--------------------------------|-------|----------------------------------|
| LABELED COMPOUND        |                          |                                |       |                                  |
| 13C-2,3,7,8-TCDD        |                          | 13C-1,2,3,4-TCDD               | 1.012 | 0.976-1.043                      |
| 13C-1,2,3,7,8-PECDD     |                          | 13C-1,2,3,4-TCDD               | 1.380 | 1.000-1.567                      |
| 13C-1,2,3,4,7,8-HXCDD   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.987 | 0.977-1.000                      |
| 13C-1,2,3,6,7,8-HXCDD   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.990 | 0.981-1.003                      |
| 13C-1,2,3,4,6,7,8-HPCDD |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.096 | 1.086-1.110                      |
| 13C-OCDD                |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.180 | 1.032-1.311                      |
| 13C-2,3,7,8-TCDF        |                          | 13C-1,2,3,4-TCDD               | 0.966 | 0.923-1.103                      |
| 13C-1,2,3,7,8-PECDF     |                          | 13C-1,2,3,4-TCDD               | 1.281 | 1.000-1.425                      |
| 13C-2,3,4,7,8-PECDF     |                          | 13C-1,2,3,4-TCDD               | 1.348 | 1.011-1.526                      |
| 13C-1,2,3,4,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.953 | 0.944-0.970                      |
| 13C-1,2,3,6,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.958 | 0.949-0.975                      |
| 13C-1,2,3,7,8,9-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.005 | 0.977-1.047                      |
| 13C-2,3,4,6,7,8-HXCDF   |                          | 13C-1,2,3,7,8,9-HXCDD          | 0.980 | 0.959-1.021                      |
| 13C-1,2,3,4,6,7,8-HPCDF |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.063 | 1.043-1.085                      |
| 13C-1,2,3,4,7,8,9-HPCDF |                          | 13C-1,2,3,7,8,9-HXCDD          | 1.105 | 1.057-1.151                      |
| CLEANUP STANDARD        |                          |                                |       |                                  |
| 37CL-2,3,7,8-TCDD       |                          | 13C-1,2,3,4-TCDD               | 1.001 | 0.989-1.052                      |

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: Shelley Honkanen

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 6B.xsl; Created: 12-Jan-2017\ 15:22:02; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DX7M\_002S25\_Form 6B\_SJ2147950.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(2)</sup> Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

# PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Instrument ID: HR GC/MS **Initial Calibration Date:** 27-Sep-2016 **RT Window Data Filename:** DX7M\_002 S: 13 09-Jan-2017 Time: 20:56:43 **Analysis Date: DB-5 IS Data Filename:** DX7M\_002 S: 13 **Analysis Date:** 09-Jan-2017 Time: 20:56:43 **DB-225 IS Data Filename: Analysis Date:** Time:

## **DB5 RT WINDOW DEFINING STANDARDS RESULT**

| ISOMERS                 | ABSOLUTE<br>RT | ISOMERS                 | ABSOLUTE<br>RT |
|-------------------------|----------------|-------------------------|----------------|
| 1,3,6,8-TCDD (F)        | 22:57          | 1,3,6,8-TCDF (F)        | 21:25          |
| 1,2,8,9-TCDD (L)        | 28:13          | 1,2,8,9-TCDF (L)        | 28:04          |
| 1,2,4,7,9-PECDD (F)     | 31:54          | 1,3,4,6,8-PECDF (F)     | 28:46          |
| 1,2,3,8,9-PECDD (L)     | 36:56          | 1,2,3,8,9-PECDF (L)     | 37:00          |
| 1,2,4,6,7,9-HXCDD (F)   | 39:57          | 1,2,3,4,6,8-HXCDF (F)   | 38:54          |
| 1,2,3,4,6,7-HXCDD (L)   | 42:38          | 1,2,3,4,8,9-HXCDF (L)   | 42:58          |
| 1,2,3,4,6,7,9-HPCDD (F) | 45:46          | 1,2,3,4,6,7,8-HPCDF (F) | 45:18          |
| 1,2,3,4,6,7,8-HPCDD (L) | 46:42          | 1,2,3,4,7,8,9-HPCDF (L) | 47:06          |

(F) = First eluting isomer (DB-5); (L) = Last eluting isomer (DB-5)

# ISOMER SPECIFICITY (IS) TEST STANDARDS RESULT

| Isomers                      | % Valley Height<br>Between Compared<br>Peaks          | Isomers                      | % Valley Height<br>Between Compared<br>Peaks |
|------------------------------|-------------------------------------------------------|------------------------------|----------------------------------------------|
| 1,2,3,4-TCDD<br>1,2,7,8-TCDD | 0                                                     | 1,2,3,8-TCDD<br>2,3,7,8-TCDD | 14                                           |
| 1,2,7,8-TCDD<br>1,4,7,8-TCDD | 0                                                     | 2,3,4,7-TCDF<br>2,3,7,8-TCDF | N/A                                          |
| 1,4,7,8-TCDD<br>1,2,3,7-TCDD | 0                                                     | 2,3,7,8-TCDF<br>1,2,3,9-TCDF | N/A                                          |
| 1,2,3,7-TCDD<br>1,2,3,8-TCDD | DB-5 column;<br>co-elute as per<br>Figure 6 in Method |                              |                                              |

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_Shelley Honkanen\_\_\_\_\_

For Axys Internal Use Only [ XSL Template: DXForm5.xsl; Created: 12-Jan-2017 15:22:02; Application: XMLTransformer-1.15.33; Report Filename:  $1613\_DIOXINS\_DX7M\_002S13\_Form5\_SJ2148278.html$ ; Workgroup: WG57620; Design ID: 3006 ]

# Form 4A PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Initial Calibration Date:** 04-Jan-2017 VER Data Filename: DB7T\_010B S: 2

Instrument ID: HR GC/MS **Analysis Date:** 10-Jan-2017

**GC Column ID:** DB225 **Analysis Time:** 10:47:37

| COMPOUND     | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|--------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| 2,3,7,8-TCDF |                          | M/M+2                                 | 0.77                   | 0.65-0.89                 | 9.97                      | 8.4 - 12                               |

- (1) Where applicable, custom lab flags have been used on this report.
- (2) See Table 8, Method 1613, for m/z specifications.
  (3) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (4) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes. \_Shelley Honkanen\_ Signed:

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 4A.xsl; Created: 12-Jan-2017\ 15:30:06; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DB7T\_010BS2\_Form 4A\_SJ2148493.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

# Form 6A PCDD/PCDF RELATIVE RETENTION TIMES

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Initial Calibration Date: 04-Jan-2017 VER Data Filename: DB7T\_010B S: 2

Instrument ID: HR GC/MS Analysis Date: 10-Jan-2017

**GC Column ID:** DB225 **Analysis Time:** 10:47:37

|              | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|--------------|--------------------------|--------------------------------|-------|----------------------------------|
| COMPOUND     |                          |                                |       |                                  |
| 2,3,7,8-TCDF |                          | 13C-2,3,7,8-TCDF               | 1.002 | 0.999-1.003                      |

(1) Where applicable, custom lab flags have been used on this report.

(2) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_Shelley Honkanen\_\_\_\_\_

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form6A.xsl; Created: 12-Jan-2017\ 15:30:06; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DB7T\_010BS2\_Form6A\_SJ2148493.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

# Form 4A PCDD/PCDF CALIBRATION VERIFICATION

## **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

**Initial Calibration Date:** 04-Jan-2017 VER Data Filename: DB7T\_010C S: 7

Instrument ID: HR GC/MS **Analysis Date:** 10-Jan-2017

**GC Column ID:** DB225 **Analysis Time:** 20:50:00

| COMPOUND     | LAB<br>FLAG <sup>1</sup> | MZ's<br>FORMING<br>RATIO <sup>2</sup> | ION<br>ABUND.<br>RATIO | QC<br>LIMITS <sup>3</sup> | CONC.<br>FOUND<br>(ng/mL) | CONC.<br>RANGE<br>(ng/mL) <sup>4</sup> |
|--------------|--------------------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------------------|
| 2,3,7,8-TCDF |                          | M/M+2                                 | 0.75                   | 0.65-0.89                 | 10.1                      | 8.4 - 12                               |

- (1) Where applicable, custom lab flags have been used on this report.
- (2) See Table 8, Method 1613, for m/z specifications.
  (3) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (4) Contract-required concentration range as determined from the percent of the test concentration in Table 6, Method 1613, under VER.

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes. \_Shelley Honkanen\_ Signed:

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form 4A.xsl; Created: 12-Jan-2017\ 15:30:06; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DB7T\_010CS7\_Form 4A\_SJ2148506.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

# Form 6A PCDD/PCDF RELATIVE RETENTION TIMES

**AXYS ANALYTICAL SERVICES** 

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

VER Data Filename: DB7T\_010C S: 7 **Initial Calibration Date:** 04-Jan-2017

Instrument ID: HR GC/MS **Analysis Date:** 10-Jan-2017

GC Column ID: DB225 Analysis Time: 20:50:00

|                                 | LAB<br>FLAG <sup>1</sup> | RETENTION<br>TIME<br>REFERENCE | RRT   | RRT<br>QC<br>LIMITS <sup>2</sup> |
|---------------------------------|--------------------------|--------------------------------|-------|----------------------------------|
| COMPOUND                        |                          |                                |       |                                  |
| 2,3,7,8-TCDF                    |                          | 13C-2,3,7,8-TCDF               | 1.001 | 0.999-1.003                      |
| (1) Where applicable, custom la | h flags have been used   | d on this report               |       |                                  |

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes. Signed: \_\_\_\_\_Shelley Honkanen\_

 $For Axys \ Internal \ Use \ Only \ [XSL\ Template: Form6A.xsl; Created: 12-Jan-2017\ 15:30:06; Application: XML Transformer-1.15.33; Report Filename: 1613\_DIOXINS\_DB7T\_010CS7\_Form6A\_SJ2148506.html; Workgroup: WG57620; Design ID: 3006\ ]$ 

<sup>(1)</sup> Where applicable, custom lab flags have been used on this report.(2) Contract-required limits for Relative Retention Times (RRT) as specified in Table 2, Method 1613.

# PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

# **AXYS ANALYTICAL SERVICES**

2045 MILLS RD., SIDNEY, B.C., CANADA V8L 5X2 TEL (250) 655-5800 FAX (250) 655-5811

Instrument ID: HR GC/MS Initial Calibration Date: 04-Jan-2017

RT Window Data Filename: Analysis Date: Time:

DB-5 IS Data Filename: Analysis Date: Time:

**DB-225 IS Data Filename:** DB7T\_010B S: 1 **Analysis Date:** 10-Jan-2017 **Time:** 10:11:11

## **DB225 RT WINDOW DEFINING STANDARDS RESULT**

| ISOMERS                 | ABSOLUTE<br>RT | ISOMERS                 | ABSOLUTE<br>RT |
|-------------------------|----------------|-------------------------|----------------|
| 1,3,6,8-TCDD (F)        | N/A            | 1,3,6,8-TCDF (F)        | N/A            |
| 1,2,8,9-TCDD (L)        | N/A            | 1,2,8,9-TCDF (L)        | N/A            |
| 1,2,4,7,9-PECDD (F)     | N/A            | 1,3,4,6,8-PECDF (F)     | N/A            |
| 1,2,3,8,9-PECDD (L)     | N/A            | 1,2,3,8,9-PECDF (L)     | N/A            |
| 1,2,4,6,7,9-HXCDD (F)   | N/A            | 1,2,3,4,6,8-HXCDF (F)   | N/A            |
| 1,2,3,4,6,7-HXCDD (L)   | N/A            | 1,2,3,4,8,9-HXCDF (L)   | N/A            |
| 1,2,3,4,6,7,9-HPCDD (F) | N/A            | 1,2,3,4,6,7,8-HPCDF (F) | N/A            |
| 1,2,3,4,6,7,8-HPCDD (L) | N/A            | 1,2,3,4,7,8,9-HPCDF (L) | N/A            |

<sup>(</sup>F) = First eluting isomer (DB-5); (L) = Last eluting isomer (DB-5)

# ISOMER SPECIFICITY (IS) TEST STANDARDS RESULT

| Isomers                      | % Valley Height<br>Between Compared<br>Peaks | Isomers                      | % Valley Height<br>Between Compared<br>Peaks |
|------------------------------|----------------------------------------------|------------------------------|----------------------------------------------|
| 1,2,3,4-TCDD<br>1,2,7,8-TCDD | N/A                                          | 1,2,3,8-TCDD<br>2,3,7,8-TCDD | N/A                                          |
| 1,2,7,8-TCDD<br>1,4,7,8-TCDD | N/A                                          | 2,3,4,7-TCDF<br>2,3,7,8-TCDF | 3.4                                          |
| 1,4,7,8-TCDD<br>1,2,3,7-TCDD | N/A                                          | 2,3,7,8-TCDF<br>1,2,3,9-TCDF | 4.1                                          |
| 1,2,3,7-TCDD<br>1,2,3,8-TCDD | N/A                                          |                              |                                              |

These data are validated and reported as accurate and in accord with AXYS Analytical Services Ltd. ISO17025 compliant quality assurance processes.

Signed: \_\_\_\_\_Shelley Honkanen\_\_\_\_\_

 $For Axys Internal Use Only [XSL\ Template: DXForm5.xsl; Created: 12-Jan-2017\ 15:30:06; Application: XMLTransformer-1.15.33; Report Filename: 1613\_DIOXINS\_DB7T\_010BS1\_Form5\_SJ2148507.html; Workgroup: WG57620; Design ID: 3006 ]$ 

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | Pulp | Serum | spilds                                |                               |                                 |                              |               |                   | Tissue |                              |                |                      | Urine    | Water    | Nater, Non-Potable |             |                                 |              |              |                            |                          |
|----------------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|---------------------------------------|-------------------------------|---------------------------------|------------------------------|---------------|-------------------|--------|------------------------------|----------------|----------------------|----------|----------|--------------------|-------------|---------------------------------|--------------|--------------|----------------------------|--------------------------|
| Compound Class | Compound                                                                     | Accredited Method ID | AXYS Method ID |      | CALA  |                                       | California DPH<br>Florida DOH | Minnesota DOH<br>New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE | Maine DOH<br>ANAB |        | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS<br>ANAB |          |          | California DPH W   | Florida DOH | Minnesota DOH<br>New Jersey DEP | New York DOH | Virginia DGS | Washington DE<br>Maine DOH | ANAB<br>Pennsylvania DEP |
| BFR            | BTBPE                                                                        | AXYS MLA-033         | MLA-033        | Ť    | Ť     | Υ                                     |                               |                                 |                              |               |                   | Υ      |                              |                |                      | Ť        | Υ        |                    |             |                                 |              |              |                            |                          |
|                | DBDPE                                                                        | AXYS MLA-033         | MLA-033        |      |       | Υ                                     |                               |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    |             |                                 |              |              |                            |                          |
|                | НВВ                                                                          | AXYS MLA-033         | MLA-033        |      |       | Υ                                     |                               |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    |             |                                 |              |              |                            |                          |
|                | PBEB                                                                         | AXYS MLA-033         | MLA-033        |      |       | Υ                                     |                               |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    |             |                                 |              |              |                            |                          |
| BPA and MPE    | 4,4'-dihydroxy-2,2-diphenylpropane (Bisphenol A) (BPA)                       | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)                              | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)                                  | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
| 1              | Mono-(3-carboxypropyl) phthalate (MCPP)                                      | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
| 1              | Mono-2-ethylhexyl phthalate (MEHP)                                           | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-benzyl phthalate (MBzP)                                                 | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-butyl phthalate (MBP) (n + iso)                                         | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-cyclohexyl phthalate (MCHP)                                             | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-ethyl phthalate (MEP)                                                   | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-iso-nonyl phthalate (MiNP)                                              | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
|                | Mono-methyl phthalate (MMP)                                                  | AXYS MLA-059         | MLA-059        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | Υ        |          |                    |             |                                 |              |              |                            |                          |
| FTS            | 4:2 fluorotelomer sulfonate (4:2 FTS)                                        | AXYS MLA-081         | MLA-081        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            | YD                       |
|                |                                                                              | AXYS MLA-089         | MLA-089        |      |       |                                       |                               |                                 |                              |               | YD                |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                | 6:2 fluorotelomer sulfonate (6:2 FTS)                                        | AXYS MLA-081         | MLA-081        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            | YD                       |
|                |                                                                              | AXYS MLA-089         | MLA-089        |      |       |                                       |                               |                                 |                              |               | YD                | 1      |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                | 8:2 fluorotelomer sulfonate (8:2 FTS)                                        | AXYS MLA-081         | MLA-081        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            | YD                       |
|                |                                                                              | AXYS MLA-089         | MLA-089        |      |       |                                       |                               |                                 |                              |               | YD                |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
| HBCDD          | alpha-hexabromocyclododecane (a-HBCDD)                                       | AXYS MLA-070         | MLA-070        |      | Υ     |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                | beta-hexabromocyclododecane (b-HBCDD)                                        | AXYS MLA-070         | MLA-070        |      | Υ     |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                | gamma-hexabromocyclododecane (g-HBCDD)                                       | AXYS MLA-070         | MLA-070        |      | Υ     |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
| OC Pesticides  | 2,4'-DDD                                                                     | AXYS MLA-007         | MLA-007        |      | Υ     |                                       | Υ                             |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                                     | Υ                             |                                 |                              | Υ             | Υ                 | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              | ,            | Y                          | Υ                        |
|                |                                                                              | EPA 625              | MLA-007        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                                       | Υ                             |                                 |                              | Υ             |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                                       | Υ                             |                                 |                              |               | Υ                 | _      |                              |                |                      |          |          |                    | Υ           |                                 |              |              |                            | Υ                        |
|                | 2,4'-DDE                                                                     | AXYS MLA-007         | MLA-007        |      | Υ     |                                       | Υ                             |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                                     | Υ                             |                                 |                              | Υ             | Y                 | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              | ,            | Y                          | Υ                        |
|                |                                                                              | EPA 625              | MLA-007        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                                       | Υ                             |                                 |                              | Υ             |                   |        |                              |                |                      |          |          |                    |             |                                 |              |              |                            |                          |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                                       | Υ                             |                                 |                              |               | Υ                 | _      |                              |                |                      |          |          |                    | Υ           |                                 |              |              |                            | Υ                        |
|                | 2,4'-DDT                                                                     | AXYS MLA-007         | MLA-007        |      | Υ     |                                       | Υ                             |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                                     | Υ                             |                                 |                              | Υ             | Υ                 | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              |              | Y                          | Υ                        |
|                |                                                                              | EPA 625              | MLA-007        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      |          |          |                    | Υ           |                                 |              |              |                            |                          |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                                       | Υ                             |                                 |                              | Υ             |                   |        |                              |                |                      | -        |          |                    |             |                                 |              |              |                            |                          |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                                       | Y                             |                                 |                              |               | Y                 | -      |                              |                |                      | -        |          |                    | Υ           |                                 |              |              |                            | Y                        |
|                | 4,4'-DDD                                                                     | AXYS MLA-007         | MLA-007        |      | Υ     |                                       | Υ                             |                                 |                              |               |                   | Υ      |                              |                |                      |          | Υ        |                    | Υ           |                                 |              |              |                            | Υ                        |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                                     | Υ                             |                                 |                              | Υ             | Y                 | Υ      |                              |                |                      | -        | Υ        |                    | Υ           |                                 |              |              | Y                          | Υ                        |
|                |                                                                              | EPA 625              | MLA-007        |      |       |                                       |                               |                                 |                              |               |                   |        |                              |                |                      | -        |          | Υ                  | Υ           |                                 | Υ            | Υ            | Υ                          | <u>Y</u>                 |
|                |                                                                              | EPA 8270             | MLA-007        |      |       | <u> </u>                              | YY                            |                                 | Y Y                          | Y             | YY                | 1      |                              |                |                      | -        |          |                    |             |                                 |              |              |                            |                          |
|                |                                                                              | EPA 1699             | MLA-028        |      | ļ.,   | <u> </u>                              | Y                             |                                 |                              |               | Y                 | _      |                              |                |                      | -        | <b>.</b> |                    | Y           |                                 |              |              |                            | Y                        |
|                | 4,4'-DDE                                                                     | AXYS MLA-007         | MLA-007        |      | Υ     |                                       | Y                             |                                 |                              |               |                   | Y      |                              |                |                      | <u> </u> | Υ        |                    | Y           |                                 |              |              |                            | Y                        |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Y                                     | Y                             |                                 |                              | Υ             | Y                 | Υ      |                              |                |                      | <u> </u> | Υ        | \ .                | Y           |                                 |              |              | Υ                          | Y                        |
|                |                                                                              | EPA 625              | MLA-007        |      |       |                                       |                               |                                 | .,                           | .,            |                   | _      |                              |                |                      | <u> </u> |          | Y                  | Υ           |                                 | Υ            | Υ            | Y                          | Υ                        |
|                |                                                                              | EPA 8270             | MLA-007        | -    |       | 1                                     | YY                            |                                 | Y Y                          | Υ             | Y Y               | _      |                              |                |                      | +        |          | <u> </u>           |             |                                 |              |              |                            |                          |
|                | A # PDT                                                                      | EPA 1699             | MLA-028        |      |       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Y                             |                                 |                              |               | Y                 |        |                              |                |                      | ₩        | ,,       | <u> </u>           | Y           |                                 |              |              |                            | Y                        |
| 1              | 4,4'-DDT                                                                     | AXYS MLA-007         | MLA-007        | l    | Υ     | ΙÝ                                    | Υ                             |                                 |                              |               | Y                 | Υ      |                              |                |                      | 1        | Υ        | l                  | Υ           |                                 |              |              |                            | Y                        |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                   |                           | Pulp | Serum    | Solids                                |                               |               |                                |              |                            |        | Tissue              |               |                                |      | Urine | Water  | Water, Non-Potable            |                                 |              |                                               |                                       |
|----------------|------------------------------------------------------------------------------|-----------------------------------|---------------------------|------|----------|---------------------------------------|-------------------------------|---------------|--------------------------------|--------------|----------------------------|--------|---------------------|---------------|--------------------------------|------|-------|--------|-------------------------------|---------------------------------|--------------|-----------------------------------------------|---------------------------------------|
|                |                                                                              |                                   | AVVQ M. 41 - 115          | CALA | CALA     | CALA                                  | California DPH<br>Florida DOH | Minnesota DOH | vew Jersey DEr<br>Vew York DOH | /irginia DGS | Nashington DE<br>Maine DOH | ANAB   | CALA<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>Virginia DGS | ANAB | CALA  | CALA   | California DPH<br>Florida DOH | Ainnesota DOH<br>Vew Jersey DEP | New York DOH | firginia DGS<br>V <mark>ashington DE *</mark> | Maine DOH<br>ANAB<br>Pennsylvania DEP |
| Compound Class | Compound                                                                     | Accredited Method ID AXYS MLA-028 | AXYS Method ID<br>MLA-028 | ú    | Ϋ́       |                                       | Ö Ē<br>Y                      |               | ŽŽ                             |              | <u>≷ ∑</u><br>Y            | ₹<br>Y | Ο II<br>Y           | Σ             | žΞ                             | ₹    | Ö     | ن<br>۲ | <u>Ö Ē :</u><br>Y             | Σž                              | ž            | <u>&gt;</u><br>><br>Y                         |                                       |
|                |                                                                              | EPA 625                           | MLA-007                   |      | <u>'</u> | ť                                     |                               |               |                                |              | '                          | - '    | '                   |               |                                |      |       | '      | YY                            |                                 | Υ            |                                               | YY                                    |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          | $\vdash$                              | ΥΥ                            |               | Υ                              | Υ            | ΥΥ                         | Υ      |                     |               |                                |      |       |        |                               |                                 |              | <del></del>                                   |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Y                             |               |                                |              |                            | Υ      |                     |               |                                |      |       |        | Υ                             |                                 |              |                                               | Υ                                     |
|                | Aldrin                                                                       | AXYS MLA-007                      | MLA-007                   |      | Υ        | Υ                                     | Υ                             |               |                                |              |                            | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              |                                               | Υ                                     |
|                |                                                                              | AXYS MLA-028                      | MLA-028                   |      | Υ        | Υ                                     | Υ                             |               |                                |              | Υ                          | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              | Υ                                             | Υ                                     |
|                |                                                                              | EPA 625                           | MLA-007                   |      |          | _                                     |                               |               |                                |              |                            |        |                     |               |                                |      |       |        | Y Y                           |                                 | Υ            | Υ                                             | ΥΥ                                    |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          |                                       | Y Y                           |               | Υ                              | Υ            | Y Y                        | _      |                     |               |                                |      |       |        |                               |                                 |              |                                               |                                       |
|                | ALL LIGHT                                                                    | EPA 1699                          | MLA-028                   |      |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Y                             |               |                                |              |                            | Y      |                     |               |                                |      |       | ١/     | Y                             |                                 |              |                                               | Y                                     |
|                | Alpha-HCH                                                                    | AXYS MLA-007<br>AXYS MLA-028      | MLA-007<br>MLA-028        |      | Y        | _                                     | Y<br>Y                        |               |                                |              | Y                          | Y      | Y                   |               |                                |      |       | Y      | Y<br>Y                        |                                 |              | Y                                             | Y<br>Y                                |
|                |                                                                              | EPA 625                           | MLA-028                   |      | Y        | r                                     | <u>r</u>                      |               |                                |              | Y                          | Ť      | Y                   |               |                                |      |       | Y      | YY                            |                                 | Υ            |                                               | YY                                    |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          |                                       | ΥΥ                            |               | Y                              | Υ            | Y Y                        | Υ      |                     |               |                                |      |       |        |                               |                                 |              | <u> </u>                                      |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          | 1                                     | Y                             |               |                                | -            |                            | Y      |                     |               |                                |      |       |        | Y                             |                                 |              |                                               | Υ                                     |
|                | Beta-HCH                                                                     | AXYS MLA-007                      | MLA-007                   |      | Υ        | Υ                                     | Υ                             |               |                                |              |                            | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              |                                               | Υ                                     |
|                |                                                                              | AXYS MLA-028                      | MLA-028                   |      | Υ        | Υ                                     | Υ                             |               |                                |              | Υ                          | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              | Υ                                             | Υ                                     |
|                |                                                                              | EPA 625                           | MLA-007                   |      |          |                                       |                               |               |                                |              |                            |        |                     |               |                                |      |       |        | ΥΥ                            |                                 | Υ            | Υ                                             | ΥΥ                                    |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          |                                       | Y Y                           |               | Υ                              | Υ            | Y Y                        | _      |                     |               |                                |      |       |        |                               |                                 |              |                                               |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Y                             |               |                                |              |                            | Υ      |                     |               |                                |      |       |        | Υ                             |                                 |              |                                               | Y                                     |
|                | Chlordane, technical                                                         | AXYS MLA-007                      | MLA-007                   |      |          |                                       | Y                             |               |                                |              |                            | Υ      |                     |               |                                |      |       |        | Y                             |                                 |              |                                               | Y Y                                   |
|                |                                                                              | EPA 625<br>EPA 8270               | MLA-007<br>MLA-007        |      |          | -                                     | ΥΥ                            |               |                                | Υ            |                            | Υ      |                     |               |                                |      |       |        | Y                             |                                 | Υ            |                                               | Y<br>Y Y                              |
|                |                                                                              | EPA 8270<br>EPA 1699              | MLA-007<br>MLA-028        |      |          | <u> </u>                              | Y Y                           |               | Ť                              | Y            | Y                          | Υ      |                     |               |                                |      |       |        | <u> </u>                      |                                 | Y            | <u> </u>                                      | Y                                     |
|                | cis-Chlordane (alpha-Chlordane)                                              | AXYS MLA-007                      | MLA-007                   |      | Υ        | Υ                                     | Y                             |               |                                |              |                            | Y      | Υ                   |               |                                |      |       | Υ      | Y                             |                                 |              |                                               | Y                                     |
|                | olo omoradno (diprid omoradno)                                               | AXYS MLA-028                      | MLA-028                   |      | Y        |                                       | Y                             |               |                                |              | Υ                          | Y      | Y                   |               |                                |      |       | Y      | Y                             |                                 |              | Y                                             |                                       |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          |                                       | Υ                             |               | Υ                              |              | ΥΥ                         | Υ      |                     |               |                                |      |       |        | Υ                             |                                 | Υ            |                                               | ΥΥ                                    |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Υ                             |               |                                |              |                            | Υ      |                     |               |                                |      |       |        | Υ                             |                                 |              |                                               | Υ                                     |
|                | cis-Nonachlor                                                                | AXYS MLA-007                      | MLA-007                   |      | Υ        | _                                     | Υ                             |               |                                |              |                            |        | Υ                   |               |                                |      | _     | Υ      | Υ                             |                                 |              |                                               |                                       |
|                |                                                                              | AXYS MLA-028                      | MLA-028                   |      | Υ        | Υ                                     |                               |               |                                |              | Υ                          | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              | Υ                                             | Y                                     |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |          |                                       | Y                             |               |                                |              | Υ                          |        |                     |               |                                |      |       |        | Y                             |                                 |              |                                               |                                       |
|                | Delta-HCH                                                                    | EPA 1699                          | MLA-028<br>MLA-007        |      | Υ        | Y                                     | Y                             |               |                                |              |                            | Y      | Υ                   |               |                                |      |       | Υ      | Y<br>Y                        |                                 |              |                                               | Y                                     |
|                | Delia-non                                                                    | AXYS MLA-007<br>AXYS MLA-028      | MLA-007                   |      | Y        |                                       | Y                             |               |                                | -            | Υ                          | Y      | Y                   |               |                                |      | _     | Y      | Y                             |                                 |              | Y                                             |                                       |
|                |                                                                              | EPA 608                           | MLA-007                   |      | Ė        | ť                                     |                               |               |                                |              |                            |        | <u> </u>            |               |                                |      |       | -      | <u>'</u><br>Ү                 |                                 | Υ            |                                               | YY                                    |
|                |                                                                              | EPA 8081                          | MLA-007                   |      |          |                                       | Y                             |               | Υ                              | Υ            | ΥΥ                         | Υ      |                     |               |                                |      |       |        |                               |                                 |              |                                               |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Y                             |               |                                |              |                            | Υ      |                     |               |                                |      |       |        | Υ                             |                                 |              |                                               | Υ                                     |
|                | Dieldrin                                                                     | AXYS MLA-007                      | MLA-007                   |      | Υ        | Υ                                     | Υ                             |               |                                |              |                            | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              |                                               | Υ                                     |
|                |                                                                              | AXYS MLA-028                      | MLA-028                   |      | Υ        | Υ                                     | Υ                             |               |                                |              | Υ                          | Υ      | Υ                   |               |                                |      |       | Υ      | Υ                             |                                 |              | Υ                                             |                                       |
|                |                                                                              | EPA 608                           | MLA-007                   |      |          | _                                     |                               |               |                                |              |                            |        |                     |               |                                |      |       |        | Y Y                           |                                 | Υ            | Υ                                             | ΥΥ                                    |
|                |                                                                              | EPA 8081                          | MLA-007                   |      |          |                                       | Y Y                           |               | Υ                              | Υ            | Y Y                        | _      |                     |               |                                |      |       |        |                               |                                 |              |                                               |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Y                             |               |                                |              |                            | Y      | .,                  |               |                                |      |       | .,     | Y                             |                                 |              |                                               | Y                                     |
|                | Endosulphan I                                                                | AXYS MLA-007<br>AXYS MLA-028      | MLA-007<br>MLA-028        |      | Y        |                                       |                               |               |                                |              | Y                          | Y      | Y                   |               |                                |      |       | Y      | Y<br>Y                        |                                 |              | Y                                             | Y<br>Y                                |
|                |                                                                              | EPA 608                           | MLA-028<br>MLA-007        |      | r        | r                                     | Y                             |               |                                |              | r                          | Ť      | ī                   |               |                                |      |       | ī      | YY                            |                                 | Υ            |                                               | YY                                    |
|                |                                                                              | EPA 8081                          | MLA-007<br>MLA-007        | 1    |          | +                                     | ΥΥ                            |               | Y                              | Υ            | Y Y                        | Υ      |                     |               |                                |      | -     | -      | <u> </u>                      |                                 | ſ            | <del></del>                                   |                                       |
|                |                                                                              | EPA 1699                          | MLA-028                   |      |          |                                       | Y                             |               |                                |              |                            | Y      |                     |               |                                |      |       |        | Y                             |                                 |              |                                               | Υ                                     |
|                | Endosulphan II                                                               | AXYS MLA-007                      | MLA-007                   |      | Υ        | Υ                                     | Y                             |               |                                |              |                            | Y      | Υ                   |               |                                |      |       | Υ      | Y                             |                                 |              |                                               | Y                                     |
|                |                                                                              | AXYS MLA-028                      | MLA-028                   |      | Υ        |                                       | Y                             |               |                                |              | Υ                          | Υ      | Υ                   |               |                                |      |       | Υ      | Y                             |                                 |              | Υ                                             |                                       |
|                |                                                                              | EPA 608                           | MLA-007                   |      |          |                                       |                               |               |                                |              |                            |        |                     |               |                                |      |       |        | ΥΥ                            |                                 | Υ            | Υ                                             | ΥΥ                                    |
|                |                                                                              | EPA 8081                          | MLA-007                   |      |          |                                       | ΥY                            |               | Υ                              | Υ            | Y                          | Υ      |                     |               |                                |      |       |        |                               |                                 | -            |                                               | 5000                                  |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                  |                           | Pulp | Serum | Solids                 |             |                                 |              |              |               |                   | Tissue |             |                |              | Urine   | Water    | Water, Non-Potable |                           |                |              |                                 |                   |                  |
|----------------|------------------------------------------------------------------------------|----------------------------------|---------------------------|------|-------|------------------------|-------------|---------------------------------|--------------|--------------|---------------|-------------------|--------|-------------|----------------|--------------|---------|----------|--------------------|---------------------------|----------------|--------------|---------------------------------|-------------------|------------------|
| 0              |                                                                              |                                  |                           | CALA | CALA  | CALA<br>California DPH | Florida DOH | Minnesota DOH<br>New Jersev DEP | Jew York DOH | /irginia DGS | Vashington DE | Maine DOH<br>ANAB | CALA   | Florida DOH | New Jersey DEP | Virginia DGS | ANAB    | CALA     | California DPH     | Florida DOH Minnesota DOH | Jew Jersey DEP | New York DOH | /irginia DGS<br>Washington DF * | Maine DOH<br>ANAB | Pennsylvania DEP |
| Compound Class | Compound                                                                     | Accredited Method ID<br>EPA 1699 | AXYS Method ID<br>MLA-028 | Ö    | Ö     | O O                    | Y           | Σž                              | Ž            | > :          | ≥ :           | <u>≱ ₹</u><br>Y   | ú      | Ē Z         | ž              | 5            | ₹ C     | <u> </u> | <u> </u>           | <u> </u>                  | ž              | ž            | 5 <u>3</u>                      | <u> </u>          | Pe               |
|                | Endosulphan sulphate                                                         | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Y           |                                 |              |              |               | Y                 | Υ      |             |                |              |         | Y        | /                  | Y                         |                |              |                                 | Y                 |                  |
|                | ·                                                                            | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Υ           |                                 |              |              | Υ             | Υ                 | Υ      |             |                |              |         | Υ        | 7                  | Υ                         |                |              | Υ                               | Y Y               |                  |
|                |                                                                              | EPA 608                          | MLA-007                   |      |       |                        |             |                                 |              |              |               |                   |        |             |                |              |         |          | Y                  | / Y                       |                | Υ            | Υ                               | ΥΥ                |                  |
|                |                                                                              | EPA 8081                         | MLA-007                   |      |       | Υ                      | Υ           |                                 | Υ            | Υ            | Υ             | ΥY                |        |             |                |              |         | $\perp$  |                    |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Υ                 | _      |             |                |              |         | ┷        | Щ.                 | Υ                         |                |              |                                 | Y                 |                  |
|                | Endrin                                                                       | AXYS MLA-007                     | MLA-007                   |      |       | Y                      | Y           |                                 |              |              | .,            | Y                 | _      |             |                |              |         | Y        | _                  | Y                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Υ           |                                 |              |              | Υ             | Y                 | Υ      |             |                |              |         | Υ        | _                  | Y                         |                |              |                                 | <u>Y Y</u>        |                  |
|                |                                                                              | EPA 608<br>EPA 8081              | MLA-007<br>MLA-007        |      |       | V                      | Y           |                                 | V            | Υ            | V .           | ΥΥ                |        |             |                |              | -       | +        | $+^{\frac{Y}{Y}}$  | / Y                       |                | Υ            | Y                               | Y Y               |                  |
|                |                                                                              | EPA 1699                         | MLA-007<br>MLA-028        | +    | -     | T                      | Y           |                                 |              | ı            | ı             | <u>т</u> ү        |        |             |                |              | +       | +        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                | Endrin aldehyde                                                              | AXYS MLA-007                     | MLA-020                   | +    |       | Υ                      | Y           |                                 |              |              |               | Y                 |        |             |                |              |         | Y        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Y           |                                 |              |              | Υ             | Y                 | Υ      |             |                |              |         | Y        | _                  | Y                         |                |              | Y                               | Y Y               |                  |
|                |                                                                              | EPA 608                          | MLA-007                   |      |       |                        |             |                                 |              |              |               |                   |        |             |                |              |         |          | Υ                  | / Y                       |                | Υ            | Υ                               | ΥΥ                |                  |
|                |                                                                              | EPA 8081                         | MLA-007                   |      |       | Υ                      | Υ           |                                 | Υ            | Υ            | Υ             | ΥY                |        |             |                |              |         |          |                    |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Υ                 |        |             |                |              |         |          |                    | Υ                         |                |              |                                 | Υ                 |                  |
|                | Endrin ketone                                                                | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Υ           |                                 |              |              |               | Υ                 | _      |             |                |              |         | Υ        | _                  | Υ                         |                |              |                                 | Υ                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Υ           |                                 |              |              | Υ             | Υ                 | _      |             |                |              |         | Υ        |                    | Υ                         |                |              | Υ                               |                   |                  |
|                |                                                                              | EPA 8081                         | MLA-007                   |      |       |                        | Υ           |                                 | Υ            |              | Υ             | Υ                 | _      |             |                |              |         | $\bot$   | _                  |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Y                 | _      |             |                |              |         | +-       | _                  | Y                         |                |              |                                 | Y                 |                  |
|                | Gamma-HCH (Lindane)                                                          | AXYS MLA-007                     | MLA-007                   |      | Y     | Y                      | Y           |                                 |              |              | .,            | Y                 | _      |             |                |              |         | Y        | _                  | Y                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028<br>EPA 625          | MLA-028<br>MLA-007        |      | Y     | Y                      | Υ           |                                 |              |              | Υ             | Y                 | Υ      |             |                |              | -       | Y        | Y                  | Y<br>/ Y                  |                | Υ            |                                 | Y Y Y             |                  |
|                |                                                                              | EPA 8270                         | MLA-007                   |      |       |                        | · Y         |                                 |              | V            | v             | ΥΥ                |        |             |                |              | -       | +        | 士                  |                           |                | - 1          | 1                               |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-007                   |      |       |                        | Y           |                                 |              | '            | '             | Y                 |        |             |                |              | -       | +        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                | Heptachlor                                                                   | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Y           |                                 |              |              |               | Y                 | _      |             |                |              |         | Υ        | 7                  | Y                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | _     | Υ                      | Υ           |                                 |              |              | Υ             | Υ                 | _      |             |                |              |         | Υ        | _                  | Υ                         |                |              | Y                               |                   |                  |
|                |                                                                              | EPA 625                          | MLA-007                   |      |       |                        |             |                                 |              |              |               |                   |        |             |                |              |         |          | Y                  | / Y                       |                | Υ            | Υ                               | ΥΥ                |                  |
|                |                                                                              | EPA 8270                         | MLA-007                   |      |       | Υ                      | Υ           |                                 | Υ            | Υ            | Υ             | ΥΥ                |        |             |                |              |         |          |                    |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Υ                 |        |             |                |              |         |          |                    | Υ                         |                |              |                                 | Υ                 |                  |
|                | Heptachlor epoxide                                                           | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Υ           |                                 |              |              |               | Υ                 | _      |             |                |              |         | Υ        | _                  | Υ                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Υ           |                                 |              |              | Υ             | Y                 | Υ      |             |                |              |         | Υ        |                    | Υ                         |                |              |                                 | Y Y               |                  |
|                |                                                                              | EPA 608                          | MLA-007                   |      |       |                        | , ,,        |                                 |              |              |               | · · · · ·         |        |             |                |              |         | +        | $+^{\vee}$         | / Y                       |                | Υ            | Υ                               | Y Y               |                  |
|                |                                                                              | EPA 8081<br>EPA 1699             | MLA-007<br>MLA-028        |      |       | Y                      | Y           |                                 | Y            | Y            | Y             | Y Y               |        |             |                |              |         | +        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                | Hexachlorobenzene                                                            | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Y           |                                 |              |              |               | Y<br>Y            | _      |             |                |              |         | Y        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                | Trexactioroperizerie                                                         | AXYS MLA-028                     | MLA-007                   |      | Y     | Y                      | Y           |                                 |              |              | Υ             | <u>'</u><br>Ү     | _      |             |                |              |         | Y        | _                  | Y                         |                |              | Y                               |                   |                  |
|                |                                                                              | EPA 1625                         | MLA-007                   | +    | Ė     |                        |             |                                 |              |              | •             |                   | Ė      |             |                |              |         | 十        | Y                  |                           |                | Υ            |                                 | <br>Y             |                  |
|                |                                                                              | EPA 8270                         | MLA-007                   |      |       | Y                      | Y           |                                 | Υ            | Υ            | Υ             | ΥΥ                |        |             |                |              |         | $\top$   | T                  |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Υ                 |        |             |                |              |         |          |                    | Υ                         |                |              |                                 | Y                 |                  |
|                | Methoxychlor                                                                 | AXYS MLA-007                     | MLA-007                   |      | Υ     | Υ                      | Υ           |                                 |              |              |               | Υ                 | Υ      |             |                |              |         | Υ        | $\overline{}$      | Υ                         |                |              |                                 | Υ                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Υ           |                                 |              |              | Υ             | Υ                 | Υ      |             |                |              |         | Υ        |                    | Υ                         |                |              | Υ                               | ΥΥ                |                  |
|                |                                                                              | EPA 608                          | MLA-007                   |      |       |                        |             |                                 |              |              |               |                   |        |             |                |              |         | ┸        | ┸                  | Υ                         |                | Υ            | Υ                               | Υ                 |                  |
|                |                                                                              | EPA 8081                         | MLA-007                   |      |       | Y                      | Y           |                                 | Υ            | Υ            | Υ             | Y Y               |        |             |                |              | _       | 4        | ╄                  |                           |                |              |                                 |                   |                  |
|                |                                                                              | EPA 1699                         | MLA-028                   |      |       |                        | Υ           |                                 |              |              |               | Y                 | _      |             |                |              | $\perp$ | +        | +                  | Y                         |                |              |                                 | Y                 |                  |
|                | Mirex                                                                        | AXYS MLA-007                     | MLA-007                   | _    |       |                        | Y           |                                 |              |              | .,            | Y                 | _      |             |                |              | -       | Y        | _                  | Y                         |                |              |                                 | Y                 |                  |
|                |                                                                              | AXYS MLA-028                     | MLA-028                   |      | Υ     | Υ                      | Y           |                                 | .,           |              | Y             | Y                 | _      |             |                |              | +       | Υ        | +                  | Y                         |                |              |                                 | Y Y               |                  |
|                |                                                                              | EPA 4600                         | MLA-007                   |      |       |                        | Y           |                                 | Υ            |              | Υ             | Y<br>Y            |        |             |                |              | +       | +        | +                  | Y                         |                | Υ            | ľ                               | YY                |                  |
|                | II                                                                           | EPA 1699                         | MLA-028                   | 1    |       |                        | Υ           |                                 |              |              |               | Y                 | 1      |             |                |              |         | - 1      |                    | Υ                         |                |              |                                 | Υ                 | 990              |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | 0    | um    | sp                     |             |                                 |              |              |                            |      | ens                 |               |                                |      | e e   | er   | Nater, Non-Potable                             |                                |              |                                  |
|----------------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|------------------------|-------------|---------------------------------|--------------|--------------|----------------------------|------|---------------------|---------------|--------------------------------|------|-------|------|------------------------------------------------|--------------------------------|--------------|----------------------------------|
|                |                                                                              |                      |                | Pulp | Serum | Solids                 | <u> </u>    | <br>                            | I            | <u></u>      | ų                          |      | Tissue              |               |                                |      | Urine |      | - ·                                            |                                | *            |                                  |
|                |                                                                              |                      |                | ٧    | ٨     | CALA<br>California DPH | Florida DOH | Minnesota DOH<br>New Jersey DEP | New York DOH | Virginia DGS | wasnington DE<br>Maine DOH | щ    | CALA<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>Virginia DGS | В    | ⋖     | ⋖    | California DPH<br>Florida DOH<br>Minnesota DOH | New Jersey DEP<br>New York DOH | Virginia DGS | Washington DE Maine DOH ANAB     |
| Compound Class | Compound                                                                     | Accredited Method ID | AXYS Method ID | CALA | CALA  | CALA                   | -iori       | Minn<br>Vev                     | New          | /irgi        | was<br>Main                | ANAB | CALA<br>Florida     | Min           | Virgii<br>Virgii               | ANAB | CALA  | CALA | Califu<br>Florid<br>Minn                       | Zew<br>Zew                     | /irgi        | Wasnir<br>Maine<br>ANAB          |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Y                      | Y           |                                 |              | <u> </u>     |                            |      | Y                   |               |                                | _    | Ŭ     | Υ    | Υ Υ                                            |                                |              | Y Y                              |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                        | Υ           |                                 |              | ,            | Y                          |      |                     |               |                                |      |       |      | Υ                                              |                                |              |                                  |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                        | Υ           |                                 |              |              |                            | Υ    |                     |               |                                |      |       |      | Υ                                              |                                |              | Υ                                |
|                | Toxaphene                                                                    | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              | `            | Y                          |      |                     |               |                                |      |       |      |                                                |                                |              |                                  |
|                | trans-Chlordane (gamma-Chlordane)                                            | AXYS MLA-007         | MLA-007        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            |      | Υ                   |               |                                |      |       | Υ    | Υ                                              |                                |              | Υ                                |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                      | Υ           |                                 |              |              | Y                          |      | Υ                   |               |                                |      |       | Υ    | Y                                              |                                |              | Y Y                              |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                        | Υ           |                                 | Υ            | ,            | Y Y                        | _    |                     |               |                                |      |       |      | Υ                                              | Υ                              |              | ΥΥ                               |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                        | Υ           |                                 |              |              |                            | Υ    |                     |               |                                |      |       |      | Υ                                              |                                |              | Y                                |
|                | trans-Nonachlor                                                              | AXYS MLA-007         | MLA-007        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            |      | Υ                   |               |                                |      |       |      | Y                                              |                                |              |                                  |
|                |                                                                              | AXYS MLA-028         | MLA-028        |      | Υ     | Υ                      | Υ           |                                 |              |              | Y                          | Υ    | Υ                   |               |                                |      |       | Υ    | Υ                                              |                                | ,            | Y Y                              |
|                |                                                                              | EPA 8270             | MLA-007        |      |       |                        | Υ           |                                 |              | ,            | Y                          |      |                     |               |                                |      |       |      | Y                                              |                                |              |                                  |
|                |                                                                              | EPA 1699             | MLA-028        |      |       |                        | Υ           |                                 |              |              |                            | Υ    |                     |               |                                |      |       |      | Y                                              |                                |              | Y                                |
| PAH            | 1,2,6-Trimethylphenanthrene                                                  | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 1,2-Dimethylnaphthalene                                                      | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 1,4,6,7-Tetramethylnaphthalene                                               | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 1,7-Dimethylfluorene                                                         | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 1,7-Dimethylphenanthrene                                                     | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 1,8-Dimethylphenanthrene                                                     | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 1-Methylchrysene                                                             | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 1-Methylnaphthalene                                                          | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 1-Methylphenanthrene                                                         | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2,3,5-Trimethylnaphthalene                                                   | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2,3,6-Trimethylnaphthalene                                                   | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 2,4-Dimethyldibenzothiophene                                                 | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      | _     | Υ    |                                                |                                |              |                                  |
|                | 2,6-Dimethylnaphthalene                                                      | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2,6-Dimethylphenanthrene                                                     | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2/3-Methyldibenzothiophenes                                                  | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2-Methylanthracene                                                           | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2-Methylfluorene                                                             | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 2-methylnaphthalene                                                          | AXYS MLA-021         | MLA-021        |      |       | Υ                      | Υ           |                                 |              |              |                            | Υ    |                     |               |                                |      |       | Υ    |                                                |                                |              | Υ                                |
|                |                                                                              | EPA 1625             | MLA-021        |      |       |                        |             |                                 |              |              |                            |      |                     |               |                                |      |       |      |                                                |                                |              | Υ                                |
|                |                                                                              | EPA 8270             | MLA-021        |      |       |                        | Υ           |                                 | Υ            |              |                            | Υ    |                     |               |                                |      |       |      | Υ                                              |                                |              |                                  |
|                | 2-Methylphenanthrene                                                         | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 3,6-Dimethylphenanthrene                                                     | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 3-Methylfluoranthene/ Benzo(a)fluorene                                       | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 3-Methylphenanthrene                                                         | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 5,9-Dimethylchrysene                                                         | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 5/6-Methylchrysenes                                                          | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 7-Methylbenzo(a)pyrene                                                       | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            | T    |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | 9/4-Methylphenanthrenes                                                      | AXYS MLA-021         | MLA-021        |      |       | Υ                      |             |                                 |              |              |                            |      |                     |               |                                |      |       | Υ    |                                                |                                |              |                                  |
|                | Acenaphthene                                                                 | AXYS MLA-021         | MLA-021        |      |       | Υ                      | Υ           |                                 |              |              |                            | Υ    | Υ                   |               |                                |      |       | Υ    | Υ                                              |                                |              | Υ                                |
|                |                                                                              | EPA 1625             | MLA-021        |      |       |                        |             |                                 |              |              |                            | T    |                     |               |                                |      |       |      | ΥΥ                                             | Υ                              | Υ            | Υ                                |
|                |                                                                              | EPA 8270             | MLA-021        |      |       | Υ                      | Y           |                                 | Υ            | Υ            | Υ                          | Υ    |                     |               |                                |      |       |      |                                                |                                |              |                                  |
|                | Acenaphthylene                                                               | AXYS MLA-021         | MLA-021        |      |       | Υ                      | Υ           |                                 |              |              |                            | Υ    | Υ                   |               |                                |      |       | Υ    | Υ                                              |                                |              | Υ                                |
|                |                                                                              | EPA 1625             | MLA-021        |      |       |                        |             |                                 |              |              |                            |      |                     |               |                                |      |       | T    | ΥΥ                                             | Υ                              | Υ            | Υ                                |
|                |                                                                              | EPA 8270             | MLA-021        |      |       | Y                      | Υ           |                                 | Υ            | Υ            | Υ                          | Υ    |                     |               |                                |      |       |      |                                                |                                |              |                                  |
|                | Anthracene                                                                   | AXYS MLA-021         | MLA-021        |      |       | Υ                      | Υ           |                                 |              |              |                            | Υ    | Υ                   |               |                                |      |       | Υ    | Υ                                              |                                |              | Y                                |
|                |                                                                              | EPA 1625             | MLA-021        |      |       |                        |             |                                 |              |              |                            |      |                     |               |                                |      |       |      | ΥΥ                                             | Υ                              | Υ            | Υ                                |
|                |                                                                              | EPA 8270             | MLA-021        |      |       | Y                      | Y           |                                 | Υ            | Υ            | Y                          | Υ    |                     |               |                                |      |       |      | -                                              |                                |              | \$ 6 4 4<br>\$ 6 4 4<br>\$ 6 4 4 |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                          | 1                  | Pulp     | Serum    | Solids   |                |                              |                |                              |               |                   | Tissue       |                              |                |              | Urine | Water | Water, Non-Potable |             |                |              |                              |                   |
|----------------|------------------------------------------------------------------------------|--------------------------|--------------------|----------|----------|----------|----------------|------------------------------|----------------|------------------------------|---------------|-------------------|--------------|------------------------------|----------------|--------------|-------|-------|--------------------|-------------|----------------|--------------|------------------------------|-------------------|
|                |                                                                              |                          |                    | CALA     | CALA     | CALA     | California DPH | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Nashington DE | Maine DOH<br>ANAB | CALA         | Florida DOH<br>Minnesota DOH | New Jersev DEP | Virginia DGS | ANAB  | CALA  | California DPH     | Florida DOH | New Jersey DEP | New York DOH | rginia DGS<br>ashington DE * | Maine DOH<br>ANAB |
| Compound Class | Compound                                                                     | Accredited Method ID     | AXYS Method ID     | ò        | ò        |          |                |                              | ž              | ž <u> </u>                   | ≶             |                   |              | Ĕ Z                          | ž              | 5            | ₹ 0   | _     |                    |             | ž              | <u>ž</u> 5   | , <u>&gt;</u>                |                   |
|                | Benz[a]anthracene                                                            | AXYS MLA-021<br>EPA 1625 | MLA-021<br>MLA-021 |          |          | Υ        | 1              | Y                            |                |                              |               | Y                 | Υ            |                              |                |              |       | Υ     | _                  | Y           |                | ΥY           |                              | Y                 |
|                |                                                                              | EPA 1625<br>EPA 8270     | MLA-021            | 1        |          | 1        | ΥY             |                              |                | ΥΥ                           |               | Y Y               |              |                              |                |              | -     | -     | +                  | <u> </u>    |                | <u> </u>     |                              | Y                 |
|                | Benzo[a]pyrene                                                               | AXYS MLA-021             | MLA-021            |          |          | Υ        | Υ ,            |                              |                | Y Y                          |               | Y                 | _            |                              |                |              | -     | Y     | +-                 | Υ           |                |              |                              | Y                 |
|                | Венгоцајругене                                                               | EPA 1625                 | MLA-021            | 1        |          | †        |                |                              |                |                              |               |                   | + '          |                              |                |              | -     | + '   | Υ                  |             |                | ΥY           |                              | Y                 |
|                |                                                                              | EPA 8270                 | MLA-021            | 1        |          | 1        | ΥV             | v                            |                | Y Y                          |               | ΥΥ                | 1            |                              |                |              | -     |       | 一                  | <u> </u>    |                |              |                              | <u> </u>          |
|                | Benzo[b]fluoranthene                                                         | AXYS MLA-021             | MLA-021            | 1        |          | Υ        |                | <u>'</u><br>Y                |                |                              |               | 1 1<br>Y          | _            |                              |                |              | -     | Y     | +-                 | Υ           |                |              |                              | Y                 |
|                | Donzojojnadrantnene                                                          | EPA 1625                 | MLA-021            | +        | $\vdash$ | ť        |                |                              |                |                              |               |                   | +            |                              |                |              | -     | +     | Υ                  | _           |                | ΥY           |                              | YY                |
|                |                                                                              | EPA 8270                 | MLA-021            | +        | $\vdash$ | +        | ΥY             | Y                            |                | Y Y                          |               | ΥΥ                | 1            |                              |                |              | -     | +     | 一                  | <del></del> |                | <u> </u>     |                              | <u> </u>          |
|                | Benzo[e]pyrene                                                               | AXYS MLA-021             | MLA-021            | +        | $\vdash$ | Υ        |                |                              |                |                              |               | - 1               | Y            |                              |                |              | -     | Y     | +                  |             |                |              |                              |                   |
|                | Benzo[ghi]perylene                                                           | AXYS MLA-021             | MLA-021            | 1        |          | Y        |                | Y                            |                |                              |               | Y                 | <u> </u>     |                              |                |              | -     | Y     | _                  | Υ           |                |              |                              | Y                 |
|                | Benzolgnijperyiene                                                           | EPA 1625                 | MLA-021            | 1        |          | , T      |                | T                            |                |                              |               |                   | T            |                              |                |              | -     | T     |                    | Y           |                | ΥY           |                              | Y                 |
|                |                                                                              | EPA 1625<br>EPA 8270     | MLA-021            |          | <u> </u> |          | ΥY             | v                            |                | Y Y                          |               | ΥΥ                | +            |                              |                |              | +     |       | +-                 | <u>'</u> —  |                |              |                              |                   |
|                | Benzo[j/k]fluoranthenes                                                      | AXYS MLA-021             | MLA-021            | -        |          | -        | 1              | T                            |                | 1 1                          |               | 1 1               |              |                              |                |              |       | Υ     | +-                 |             |                |              |                              |                   |
|                |                                                                              | AXYS MLA-021             | MLA-021            | -        |          | -        |                | Y                            |                |                              |               | Y                 | Υ            |                              |                |              |       | Y     | _                  | Υ           |                |              |                              | Y                 |
|                | Benzo[k]fluoranthene                                                         | EPA 1625                 | MLA-021            | -        | -        | -        |                | Ť                            |                |                              |               | Y                 | Y            |                              |                |              | -     | Y     | _                  |             |                | ΥY           |                              | YY                |
|                |                                                                              |                          |                    | 1        |          | 1        |                | Y                            |                | .,                           |               |                   |              |                              |                |              | _     | -     | +                  | <u> </u>    |                | <u> </u>     |                              | <u> </u>          |
|                | By Love I                                                                    | EPA 8270                 | MLA-021            | 1        |          | \ \      |                | Y                            |                | Y                            |               | Y Y               |              |                              |                |              | _     |       | +                  |             |                |              |                              |                   |
|                | Biphenyl                                                                     | AXYS MLA-021             | MLA-021            | 1        |          | Y        |                |                              |                |                              |               |                   |              |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C1-Acenaphthenes                                                             | AXYS MLA-021             | MLA-021            | -        |          | <u> </u> |                |                              |                |                              |               |                   | -            |                              |                |              |       | _     |                    |             |                |              |                              |                   |
|                | C1-Benz(a)anthracenes/chrysenes                                              | AXYS MLA-021             | MLA-021            | -        |          | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C1-Benzofluoranthenes/ Benzopyrenes                                          | AXYS MLA-021             | MLA-021            | -        | -        | Y        |                |                              |                |                              |               |                   | -            |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C1-Biphenyls                                                                 | AXYS MLA-021             | MLA-021            | -        |          | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C1-Dibenzothiophene                                                          | AXYS MLA-021             | MLA-021            | -        |          | Υ        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C1-Fluoranthenes/Pyrenes                                                     | AXYS MLA-021             | MLA-021            | -        |          | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C1-Fluorenes                                                                 | AXYS MLA-021             | MLA-021            | -        |          | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C1-Naphthalenes                                                              | AXYS MLA-021             | MLA-021            |          | <u> </u> | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     |                    |             |                |              |                              |                   |
|                | C1-Phenanthrenes/Anthracenes                                                 | AXYS MLA-021             | MLA-021            |          | <u> </u> | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     |                    |             |                |              |                              |                   |
|                | C2-Benz(a)anthracenes/Chrysenes                                              | AXYS MLA-021             | MLA-021            |          | <u> </u> | Y        |                |                              |                |                              |               |                   | -            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C2-Benzofluoranthenes/ Benzopyrenes                                          | AXYS MLA-021             | MLA-021            | -        | _        | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Υ     |                    |             |                |              |                              |                   |
|                | C2-Biphenyls                                                                 | AXYS MLA-021             | MLA-021            | -        | _        | Y        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C2-Dibenzothiophene                                                          | AXYS MLA-021             | MLA-021            | -        | _        | Y        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C2-Fluoranthenes/Pyrenes                                                     | AXYS MLA-021             | MLA-021            | 1        | <u> </u> | Y        |                |                              |                |                              |               |                   | <del> </del> |                              |                |              | _     | Y     |                    |             |                |              |                              |                   |
|                | C2-Fluorenes                                                                 | AXYS MLA-021             | MLA-021            | 1        | <u> </u> | Y        |                |                              |                |                              |               |                   | <del> </del> |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C2-Naphthalenes                                                              | AXYS MLA-021             | MLA-021            | 1        | <u> </u> | Y        |                |                              |                |                              |               |                   | <del> </del> |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C2-Phenanthrenes/Anthracenes                                                 | AXYS MLA-021             | MLA-021            | -        | _        | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Υ     |                    |             |                |              |                              |                   |
|                | C3-Benz(a)anthracenes/Chrysenes                                              | AXYS MLA-021             | MLA-021            | -        | _        | Y        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Y     | _                  |             |                |              |                              |                   |
|                | C3-Dibenzothiophene                                                          | AXYS MLA-021             | MLA-021            | -        |          | Υ        |                |                              |                |                              |               |                   |              |                              |                |              |       | Υ     | _                  |             |                |              |                              |                   |
|                | C3-Fluoranthenes/Pyrenes                                                     | AXYS MLA-021             | MLA-021            | -        |          | Υ        |                |                              |                |                              |               |                   |              |                              |                |              |       | Υ     | _                  |             |                |              |                              |                   |
|                | C3-Fluorenes                                                                 | AXYS MLA-021             | MLA-021            | -        |          | Υ        |                |                              |                |                              |               |                   |              |                              |                |              |       | Υ     | _                  |             |                |              |                              |                   |
|                | C3-Naphthalenes                                                              | AXYS MLA-021             | MLA-021            |          |          | Υ        |                |                              |                |                              |               |                   |              |                              |                |              |       | Υ     |                    |             |                |              |                              |                   |
|                | C3-Phenanthrenes/Anthracenes                                                 | AXYS MLA-021             | MLA-021            | <u> </u> | <u> </u> | Y        |                |                              |                |                              |               |                   | 1            |                              |                |              |       | Y     | _                  |             |                |              |                              |                   |
|                | C4-Benz(a)anthracenes/Chrysenes                                              | AXYS MLA-021             | MLA-021            | 1        | <u> </u> | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              | _     | Υ     |                    |             |                |              |                              |                   |
|                | C4-Dibenzothiophene                                                          | AXYS MLA-021             | MLA-021            | <u> </u> | <u> </u> | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              |       | Υ     |                    |             |                |              |                              |                   |
|                | C4-Fluoranthenes/Pyrenes                                                     | AXYS MLA-021             | MLA-021            | <u> </u> | <u> </u> | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              |       | Υ     | _                  |             |                |              |                              |                   |
|                | C4-Naphthalenes                                                              | AXYS MLA-021             | MLA-021            | <u> </u> | <u> </u> | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              |       | Υ     | _                  |             |                |              |                              |                   |
|                | C4-Phenanthrenes/Anthracenes                                                 | AXYS MLA-021             | MLA-021            | 1        | <u> </u> | Υ        |                |                              |                |                              |               |                   | 1            |                              |                |              | _ _   | Υ     |                    |             |                |              |                              |                   |
|                | Chrysene                                                                     | AXYS MLA-021             | MLA-021            | _        | <u> </u> | Υ        | `              | Y                            |                |                              |               | Υ                 | Υ            |                              |                |              |       | Υ     | _                  | Υ           |                |              |                              | Υ                 |
|                |                                                                              | EPA 1625                 | MLA-021            | _        | <u> </u> | _        |                |                              |                |                              |               |                   |              |                              |                |              |       |       | Υ                  | Υ           |                | Υ \          |                              | Υ                 |
|                |                                                                              | EPA 8270                 | MLA-021            |          | <u> </u> |          | Υ \            | Y                            |                | ΥY                           |               | ΥY                |              |                              |                |              |       |       | Щ                  |             |                |              |                              |                   |
|                | Dibenz[ah]anthracene                                                         | AXYS MLA-021             | MLA-021            | 1        |          | Υ        |                |                              |                |                              |               |                   | Υ            |                              |                |              |       | Υ     |                    |             |                |              |                              | - 607             |

| Compound Class   Compound   Accredited Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS Method ID   AXYS | Virginia DGS ANAB | Virginia DGS ANAB | CALA | ,   | ,            | California DPH A Florida DOH |   | New Jersey DEP | New York DOH | Virginia DGS | Washington DE * | Maine DOH<br>ANAB |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------|-----|--------------|------------------------------|---|----------------|--------------|--------------|-----------------|-------------------|
| Dibenzo(ah)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   |      | ,   |              |                              | Y |                |              |              |                 |                   |
| EPA 8270   MLA-021   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |      | _   |              | V V                          |   |                |              |              |                 | Y                 |
| Dibenzothiophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |      | _   | +            |                              | Y |                | Υ            | Υ            |                 | Υ                 |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |      | _   |              |                              |   |                |              |              |                 |                   |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      |     | Υ            |                              |   |                |              |              |                 |                   |
| EPA 8270   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | +   | Y            | Y                            |   |                |              |              |                 | Y                 |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |      |     | +            | Y Y                          | Y |                | Y            | Y            | —               | Y                 |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | ٠,  | Υ            | Y                            | v |                |              |              |                 | Y                 |
| EPA 8270   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | +   |              | YY                           |   |                | Υ            | ′ Y          |                 | Ү                 |
| Indeno[1,2,3-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |      |     | +            |                              |   |                |              | <u> </u>     |                 |                   |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | ١,  | Υ            | Y                            | Y |                |              |              |                 | Υ                 |
| EPA 8270   MLA-021   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |      | T   | <u> </u>     | Y Y                          | Y |                | Υ            | Y            |                 | <u>.</u><br>Ү     |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      |     |              |                              |   |                |              |              |                 |                   |
| EPA 8270   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | ١   | Υ            | Y                            | Y |                |              |              |                 | Υ                 |
| Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |      |     | ,            | Y Y                          | Y |                | Υ            | Υ            |                 | Υ                 |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |      |     |              |                              |   |                |              |              |                 |                   |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |      | _   | Υ            |                              |   |                |              |              |                 |                   |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |      | ١   | Υ            | Y                            |   |                |              |              |                 | Υ                 |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |      |     | ՝            | Y Y                          | Y |                | Υ            | Y            |                 | Y                 |
| EPA 1625   MLA-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   | _    | _   | _            |                              |   |                |              |              |                 |                   |
| EPA 8270   MLA-021   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | -    | _ ` | Υ            | Y                            |   |                |              |              |                 | Y                 |
| Retene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   | -    | +   | +            | Y Y                          | Y |                | Y            | Y            |                 | Y                 |
| PBDPE         BDE 10 2,6-dibromodiphenylether         EPA 1614 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-033 MLA-03                                        |                   |                   | -    | +.  | <del>_</del> |                              |   |                |              |              |                 |                   |
| AXYS MLA-033   MLA-033   Y   Y   Y   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   | -    | Τ,  | Υ            |                              |   |                |              |              | Υ               |                   |
| BDE 100 2,2',4,4',6-pentabromodiphenylether         EPA 1614 MLA-033 MLA-033 Y Y         Y           BDE 105 2,3,3',4,4'-pentabromodiphenylether         EPA 1614 MLA-033 Y Y         Y           BDE 11 3,3'-dibromodiphenylether         EPA 1614 MLA-033 Y Y         Y           BDE 11 3,3'-dibromodiphenylether         EPA 1614 MLA-033 Y Y         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                   | +    | ٠,  | Υ            |                              |   |                |              |              | <u> </u>        |                   |
| AXYS MLA-033   MLA-033   Y   Y   Y   Y   Y   BDE 105 2,3,3',4,4'-pentabromodiphenylether   EPA 1614   MLA-033   Y   Y   Y   Y   Y   Y   ST   ST   ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   | -    | +   | 十            |                              |   |                |              |              | Υ               |                   |
| BDE 105 2,3,3',4,4'-pentabromodiphenylether         EPA 1614         MLA-033         Y           AXYS MLA-033         MLA-033         Y         Y           BDE 11 3,3'-dibromodiphenylether         EPA 1614         MLA-033         Y         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   | +    | ١,  | Υ            |                              |   |                |              |              | <u>'</u>        |                   |
| AXYS MLA-033         MLA-033         Y         Y           BDE 11 3,3'-dibromodiphenylether         EPA 1614         MLA-033         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |      | T   |              |                              |   |                |              |              | Υ               |                   |
| BDE 11 3,3'-dibromodiphenylether EPA 1614 MLA-033 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   |      | `   | Υ            |                              |   |                |              |              |                 |                   |
| AVVC MI A O22 MI A O22 V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                   |      |     |              |                              |   |                |              |              | Υ               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   |      | )   | Υ            |                              |   |                |              |              |                 |                   |
| BDE 116 2,3,4,5,6-pentabromodiphenylether         EPA 1614         MLA-033         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   |      |     |              |                              |   |                |              |              | Υ               |                   |
| AXYS MLA-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |      | )   | Υ            |                              |   |                |              |              |                 |                   |
| BDE 119 2,3',4,4',6-pentabromodiphenylether EPA 1614 MLA-033 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                   |      |     | _            |                              |   |                |              |              | Υ               |                   |
| AXYS MLA-033   Y   Y   Y   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   | _    | )   | Υ            |                              |   |                |              |              |                 |                   |
| BDE 12 3,4-dibromodiphenylether EPA 1614 MLA-033 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   | _    | 4   | _            |                              |   |                |              |              | Υ               |                   |
| AXYS MLA-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   | -    | `   | Υ            |                              |   |                |              |              |                 |                   |
| BDE 126 3,3',4,4',5-pentabromodiphenylether  EPA 1614  MLA-033  Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   | -    | +   | +            |                              |   |                |              | —            | Υ               |                   |
| AXYS MLA-033 MLA-033 Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                   | +    | + ' | Υ            |                              |   |                |              |              |                 |                   |
| BDE 13 3,4'-dibromodiphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | -    | +   | Υ            |                              |   |                |              |              | Υ               |                   |
| BDE 140 2,2',3,4,4',6'-hexabromodiphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | +    | +   | 十            |                              |   |                |              | —            | Υ               |                   |
| AXYS MLA-033 MLA-033 Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                   | +    | +   | Υ            |                              |   |                |              |              | <u> </u>        |                   |
| BDE 15 4,4'-dibromodiphenylether EPA 1614 MLA-033 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   | +    | t   | 十            |                              |   |                |              |              | Υ               |                   |
| AXYS MLA-033 MLA-033 Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | +    | +   | Υ            |                              |   |                |              |              | <del>·</del>    |                   |
| BDE 153 2,2',4,4',5,5'-hexabromodiphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | +    | Ť   | +            |                              |   |                |              |              | Υ               |                   |
| AXYS MLA-033 MLA-033 Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | 1    | ١,  | Υ            |                              |   |                |              |              | <u> </u>        |                   |
| BDE 154 2,2',4,4',5',6-hexabromodiphenylether EPA 1614 MLA-033 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 1    | Ť   | 十            |                              |   |                |              |              | <del></del>     |                   |
| AXYS MLA-033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |      |     | Υ            |                              |   |                |              |              | Υ               |                   |

|               | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                               |                           | Pulp | Serum | Solids |                                                                                  |                               |                   | Tissue   |                              |                                | -      | Water | Water, Non-Potable |             |                                 |              |              |                |                   |
|---------------|------------------------------------------------------------------------------|-------------------------------|---------------------------|------|-------|--------|----------------------------------------------------------------------------------|-------------------------------|-------------------|----------|------------------------------|--------------------------------|--------|-------|--------------------|-------------|---------------------------------|--------------|--------------|----------------|-------------------|
|               |                                                                              |                               |                           | CALA | CALA  | CALA   | California DPH<br>Florida DOH<br>Minnesota DOH<br>New Jersey DEP<br>New York DOH | Virginia DGS<br>Washington DE | Maine DOH<br>ANAB | CALA     | Florida DOH<br>Minnesota DOH | New Jersey DEP<br>Virginia DGS | ANAB   | CALA  | California DPH     | Florida DOH | Minnesota DOH<br>New Jersey DEP | New York DOH | /irginia DGS | ashington DE * | Maine DOH<br>ANAB |
| ompound Class | Compound  BDE 155 2,2',4,4',6,6'-hexabromodiphenylether                      | Accredited Method ID EPA 1614 | AXYS Method ID<br>MLA-033 | Ü    | Ö     | Ú      | ΰĒΣŽŽ                                                                            | <u>&gt; ≥</u><br>Y            | ∑ ₹               | Ö        | ĪΣ                           | ž 5                            | ₹ (    | 3 0   | Ö                  | <u> </u>    | ΣŽ                              | ž            | >            | <u>≥</u><br>Y  | <u> </u>          |
|               | DDL 133 2,2 ,4,4 ,0,0 -nexabioinodiphenylettel                               | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  | <u>'</u>                      |                   | Υ        |                              |                                |        | Y     | -                  |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 166 2,3,4,4',5,6-hexabromodiphenylether                                  | EPA 1614                      | MLA-033                   |      | ·     | Ė      |                                                                                  | Υ                             |                   | Ė        |                              |                                |        | Ť     |                    |             |                                 |              |              | Υ              |                   |
|               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                      | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              |                |                   |
|               | BDE 17 2,2',4-tribromodiphenylether                                          | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 181 2,2',3,4,4',5,6-heptabromodiphenylether                              | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     | _                  |             |                                 |              |              |                |                   |
|               | BDE 190 2,3,3',4,4',5,6-heptabromodiphenylether                              | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        | 4.    |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                | _      | Y     |                    |             |                                 |              |              |                |                   |
|               | BDE 206 2,2',3,3',4,4',5,5',6-nonabromodiphenylether                         | EPA 1614                      | MLA-033                   |      | .,    |        |                                                                                  | Y                             |                   |          |                              |                                | _      |       | +                  |             |                                 |              |              | Υ              |                   |
|               | PDF 007 0 01 0 01 4 41 5 0 01                                                | AXYS MLA-033<br>EPA 1614      | MLA-033<br>MLA-033        |      | Υ     | Υ      |                                                                                  | Y                             |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              | Υ              |                   |
|               | BDE 207 2,2',3,3',4,4',5,6,6'-nonabromodiphenylether                         | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  | Y                             |                   | Υ        |                              |                                | -      | Y     |                    |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 208 2,2',3,3',4,5,5',6,6'-nonabromodiphenylether                         | EPA 1614                      | MLA-033                   |      | ı     | 1      |                                                                                  | Y                             |                   | 1        |                              |                                | -      | -     |                    |             |                                 |              |              | Υ              |                   |
|               | DDL 200 2,2,3,3,4,3,5,0,0 - Horiabioinodiphenyletilei                        | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  | <u>'</u>                      |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 209 Decabromodiphenylether                                               | EPA 1614                      | MLA-033                   |      | ·     | Ė      |                                                                                  | Y                             |                   | Ė        |                              |                                |        | +     |                    |             |                                 |              |              | Υ              |                   |
|               | 252 250 250abioinoaiphonyloxiioi                                             | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 25 2,3',4-tribromodiphenylether                                          | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              |                |                   |
|               | BDE 28 2,4,4'-tribromodiphenylether                                          | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              | •                 |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              |                |                   |
|               | BDE 30 2,4,6-tribromodiphenylether                                           | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 35 3,3',4-tribromodiphenylether                                          | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 37 3,4,4'-tribromodiphenylether                                          | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        | 4     |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 47 2,2',4,4'-tetrabromodiphenylether                                     | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Y                             |                   |          |                              |                                | _      | +.    |                    |             |                                 |              |              | Υ              |                   |
|               | DDE 40.0.014.514-51-51-51-51-51-51-51-51-51-51-51-51-51-                     | AXYS MLA-033<br>EPA 1614      | MLA-033<br>MLA-033        |      | Υ     | Υ      |                                                                                  | Y                             |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              | Υ              |                   |
|               | BDE 49 2,2',4,5'-tetrabromodiphenylether                                     | AXYS MLA-033                  | MLA-033<br>MLA-033        |      | Υ     | Υ      |                                                                                  | Y                             |                   | Υ        |                              |                                | -      | Y     |                    |             |                                 |              |              | <u>Y</u>       |                   |
|               | BDE 66 2,3',4,4'-tetrabromodiphenylether                                     | EPA 1614                      | MLA-033                   |      | ī     | 1      |                                                                                  | Y                             |                   | 1        |                              |                                |        | 1     |                    |             |                                 |              |              | Υ              |                   |
|               | DDE 00 2,3 ,4,4 -tettabloffloalpfleffyletifel                                | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  | <u>'</u>                      |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 7 2,4-dibromodiphenylether                                               | EPA 1614                      | MLA-033                   |      | •     | Ė      |                                                                                  | Υ                             |                   | Ė        |                              |                                |        | +     |                    |             |                                 |              |              | Υ              |                   |
|               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                  | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              | <u> </u>       |                   |
|               | BDE 75 2,4,4',6-tetrabromodiphenylether                                      | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     |                    |             |                                 |              |              |                |                   |
|               | BDE 77 3,3',4,4'-tetrabromodiphenylether                                     | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   |          |                              |                                |        |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 8 2,4'-dibromodiphenylether                                              | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             | -                 |          |                              |                                | $\Box$ |       |                    |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 85 2,2',3,4,4'-pentabromodiphenylether                                   | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Υ                             |                   | <u> </u> |                              |                                |        |       | _                  |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     |                    |             |                                 |              |              |                |                   |
|               | BDE 99 2,2',4,4',5-pentabromodiphenylether                                   | EPA 1614                      | MLA-033                   | _    | _     |        |                                                                                  | Υ                             |                   | <u> </u> |                              |                                | -      | -     | +                  |             |                                 |              |              | Υ              |                   |
|               |                                                                              | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Y     | 1                  |             |                                 |              |              |                |                   |
|               | BDE-183 2,2',3,4,4',5',6-heptabromodiphenylether                             | EPA 1614                      | MLA-033                   |      |       |        |                                                                                  | Y                             |                   | <u> </u> |                              |                                | _      | +     | +                  |             |                                 |              |              | Υ              |                   |
|               | DDE 00 010 44 Town Files I d                                                 | AXYS MLA-033                  | MLA-033                   |      | Υ     | Υ      |                                                                                  |                               |                   | Υ        |                              |                                |        | Υ     | +                  |             |                                 |              |              | <del></del>    |                   |
|               | BDE-33 2',3,4-tribromodiphenylether                                          | EPA 1614<br>AXYS MLA-033      | MLA-033<br>MLA-033        |      | Υ     |        |                                                                                  | Υ                             |                   | <u> </u> |                              |                                | _      | Y     |                    |             |                                 |              |              | Υ              | £ 6.0             |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp | Serum | Solids |                               |               |                |              |               |           |      | Tissue |               |                |              | - Indian         | Urine   | Water Non-Potable |             |               |                |              |              |                |           |          |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|-------|--------|-------------------------------|---------------|----------------|--------------|---------------|-----------|------|--------|---------------|----------------|--------------|------------------|---------|-------------------|-------------|---------------|----------------|--------------|--------------|----------------|-----------|----------|
|                |                                                                              |                              |                    | CALA |       |        | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | New York DOH | Washington DE | Maine DOH | ANAB | CALA   | Minnesota DOH | New Jersey DEP | Virginia DGS | ANAB             | CALA    | California DPH    | Florida DOH | Ainnesota DOH | New Jersey DEP | New York DOH | Virginia DGS | ashington DE * | Maine DOH | ANAB     |
| Compound Class | Compound                                                                     | Accredited Method ID         | AXYS Method ID     | CA   | CA    |        |                               | Ē             | å ž            | <u>=</u> 2   | : 8           | Σ         |      | _      | ΞΞ            | Ž              | ₹            | Y S              |         |                   |             |               | Ž              | Ž            | <u> </u>     | 8              | ğ         |          |
| PCB Aroclors   | PCB Aroclor 1016                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Y                             |               |                |              |               |           |      | Υ      |               |                |              | _                | Y       | Y                 | Υ           |               |                |              |              |                |           | Υ        |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |        | Y                             |               |                | Y            |               | Υ         | Υ    |        |               |                |              |                  | +       | +                 | Y           |               |                | Y            |              |                |           | / Y      |
|                |                                                                              | EPA 625                      | MLA-007<br>MLA-007 |      |       |        | V V                           |               |                | Y Y          | ,             |           | V    |        |               |                |              | _                | +       | $+^{Y}$           | / Y         |               |                | Y            | Y            |                | Υ         | / Y      |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007            |      |       |        | Y Y                           |               |                | Y Y          |               |           | Y    |        |               |                |              | +                | +       | +                 | Y           |               |                |              |              | —              | —         | Υ        |
|                | PCB Aroclor 1016/1242                                                        | EPA 8270                     | MLA-007            |      |       |        | - 1                           |               |                |              | Y             |           | -    |        |               |                |              | +                | +       | +                 |             |               |                |              |              | —              | —         |          |
|                | PCB Aroclor 1221                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Y                             |               |                |              |               |           | Υ    | Y      |               |                |              |                  | Y       | +                 | Y           |               |                |              | —            | _              | _         | Υ        |
|                | 7 057 1100101 1221                                                           | EPA 1668                     | MLA-010            |      |       |        | Y                             |               | ,              | Y            |               | Υ         | _    |        |               |                |              |                  | 十       | +                 | Y           |               |                | Υ            |              |                | Y         | / Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        |                               |               |                |              |               | -         |      |        |               |                |              |                  | +       | ٦,                | / Y         |               |                |              | Y            |                |           | / Y      |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        | ΥΥ                            |               | ,              | Y Y          | ′ Y           |           | Υ    |        |               |                |              |                  | $\top$  |                   |             |               |                |              |              |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      |       |        | Y                             |               |                |              |               |           | Υ    |        |               |                |              |                  |         |                   | Υ           |               |                |              |              |                |           | Υ        |
|                | PCB Aroclor 1232                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Υ                             |               |                |              |               |           | Υ    | Υ      |               |                |              |                  | Y       | 1                 | Υ           |               |                |              |              |                |           | Υ        |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |        | Υ                             |               | ,              | Υ            |               | Υ         | Υ    |        |               |                |              |                  |         |                   | Υ           |               |                | Υ            |              |                | Υ         | ′ Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        |                               |               |                |              |               |           |      |        |               |                |              |                  |         | γ                 | / Y         |               |                | Υ            | Υ            |                | Υ         | ′ Y      |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        | ΥY                            |               | ,              | ΥY           | ′ Y           |           | Υ    |        |               |                |              |                  |         |                   |             |               |                |              |              |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      |       |        | Υ                             |               |                |              |               |           | Υ    |        |               |                |              |                  | $\perp$ | ┸                 | Υ           |               |                |              |              |                |           | Υ        |
|                | PCB Aroclor 1242                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Υ                             |               |                |              |               |           |      | Υ      |               |                |              |                  | Υ       | 1                 | Υ           |               |                |              |              |                |           | Υ        |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |        | Y                             |               | ,              | Υ            |               | Υ         | Υ    |        |               |                |              |                  | 丄       | _                 | Υ           |               |                | Υ            |              |                |           | / Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        |                               |               |                |              |               |           |      |        |               |                |              |                  | 丄       | Y                 | / Y         |               |                | Υ            | Y            |                | Y         | ′ Y      |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        | Y Y                           |               | ,              | Y Y          | ′             |           | Υ    |        |               |                |              | _                | +       | +                 |             |               |                |              |              |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      |       |        | Y                             |               |                |              |               |           | Υ    |        |               |                |              | _                | +       | +                 | Y           |               |                |              |              |                |           | Y        |
|                | PCB Aroclor 1248                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Y                             |               |                |              |               |           |      | Υ      |               |                |              | _                | Y       | 4                 | Y           |               |                |              |              |                |           | Y        |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |        | Y                             |               |                | Y            |               | Υ         | Υ    |        |               |                |              | -                | +       | +                 | Y           |               |                | Y            |              | —              |           | / Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        | Y Y                           |               |                | Y Y          | , ,,          |           | Υ    |        |               |                |              | _                | +       | +                 | / Y         |               |                | Y            | Y            |                | <u> </u>  | / Y      |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |      |       |        | Y Y                           |               |                | Y Y          | Y             |           | Y    |        |               |                |              | +                | +       | +                 | Υ           |               |                |              |              |                |           | Y        |
|                | PCB Aroclor 1254                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Y                             |               |                |              |               |           | Y    | v      |               |                |              | _                | +       | Y                 | Y           |               |                |              |              |                |           | Y        |
|                | PCB ATOCIOI 1254                                                             | EPA 1668                     | MLA-007            |      |       | 1      | Y                             |               | -              | Y            |               |           | Y    | 1      |               |                |              | +                | +'      | +                 | Y           |               |                | Y            |              |                |           | / Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        |                               |               |                |              |               |           |      |        |               |                |              | $\dashv$         | 十       | +                 | / Y         |               |                |              | ′ Y          | _              |           | / Y      |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        | Y Y                           |               | ,              | Y Y          | ′ Y           |           | Υ    |        |               |                |              | <del>-  </del> - | +       | +                 |             |               |                |              | _            |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      |       |        | Y                             |               |                |              |               |           | Υ    |        |               |                |              |                  | $\top$  |                   | Υ           |               |                |              |              |                |           | Υ        |
|                | PCB Aroclor 1260                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      | Υ                             |               |                |              |               |           | Υ    | Υ      |               |                |              |                  | Y       | 1                 | Υ           |               |                |              |              |                |           | Υ        |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |        | Υ                             |               | ,              | Υ            |               | Υ         | Υ    |        |               |                |              |                  |         |                   | Υ           |               |                | Υ            |              |                | Υ         | ′ Y      |
|                |                                                                              | EPA 625                      | MLA-007            |      |       |        |                               |               |                |              |               |           |      |        |               |                |              |                  |         | Υ                 | / Y         |               |                | Υ            | Υ            |                | Υ         | ′ Y      |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        | Y Y                           |               | ,              | Y Y          | ′ Y           |           | Υ    |        |               |                |              |                  | $\perp$ | ┸                 |             |               |                |              |              |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      |       |        | Υ                             |               |                |              |               |           | Υ    |        |               |                |              |                  | 丄       | 丄                 | Υ           |               |                |              |              |                |           | Υ        |
|                | PCB Aroclor 1268                                                             | AXYS MLA-007                 | MLA-007            |      |       | Υ      |                               |               |                |              |               |           |      | Υ      |               |                |              | _                | Y       |                   |             |               |                |              |              |                |           |          |
| PCB congeners  | PCB 1 2-Chlorobiphenyl                                                       | EPA 1668                     | MLA-010            |      |       |        | Y                             | •             | Υ '            | Y Y          |               |           | YD   |        |               |                | ,            | /D               | $\bot$  | 4                 | Υ           |               | Υ              | Υ            | Y            | Y              |           | YD       |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |        |                               |               |                |              | Υ             |           |      |        |               |                |              | _                | —       | +                 |             |               |                |              |              |                |           |          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ      | Y                             |               |                |              |               |           | YD   | Υ      |               |                |              | /D               | Y       | Y                 | Υ           |               |                |              |              |                |           | YD       |
|                | PCB 10 2,6-Dichlorobiphenyl                                                  | EPA 1668                     | MLA-010            |      | .,    |        | Y                             |               | Υ `            | Y Y          | ′ Y           |           | YD   | .,     |               |                |              | /D               | +       | +                 | Y           |               | Y              | Y            | Y            | <u>Y</u>       |           | YD       |
|                | DOD 400 0 014 410 Dente all a 1771 and                                       | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ      | Y                             |               | ٧, ٠           |              | , .,          | .,        | YD   | Υ      |               |                |              | /D               | $+^{Y}$ | Y                 | Y           |               | .,             |              |              |                |           | YD       |
|                | PCB 100 2,2',4,4',6-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      | Н     |        | Y                             |               | Υ '            | ı Y          |               |           | עז   |        |               |                |              | /D               | +       | +                 | Υ           | —             | Y              | Y            | Y            | <u> </u>       | —         | YD       |
|                |                                                                              | EPA 8270                     | MLA-007            |      | Υ     | V      | ٠.                            |               |                |              | Υ             |           | VD   | V      |               |                |              | /D               | Y       | +                 |             |               |                |              | —            | —              | —         | - \/D    |
|                | DCR 404 2 2 4 F El PontochlaLi-LI                                            | AXYS MLA-010                 | MLA-010            |      | ľ     | Y      | Y                             |               | V ,            | v .          | , ,           |           | YD   | Y      |               |                |              | /D               | +       | +                 | Y           |               | ٧/             | .,           |              |                | —         | YD       |
|                | PCB 101 2,2',4,5,5'-Pentachlorobiphenyl                                      | EPA 1668<br>AXYS MLA-010     | MLA-010            |      | Υ     | Υ      | Y<br>Y                        |               | Υ '            | r Y          | Y             | Y         | YD   | V      |               |                |              | /D               | Y       | +                 | Y           |               | Y              | Y            | Y            | <u> </u>       |           | YD<br>YD |
|                | PCB 101/90/89                                                                | AXYS MLA-010<br>AXYS MLA-007 | MLA-010<br>MLA-007 |      | ſ     | Y      | Y                             |               |                |              |               |           | יטו  | T<br>V |               |                |              | טו               |         | Y<br>Y            | <u> </u>    |               |                |              | —            | —              | —         | עז       |
| i              | 1 00 101/30/03                                                               | EPA 8270                     | MLA-007<br>MLA-007 |      | Н     | ľ      |                               |               |                |              | Y             |           |      | 1      |               |                |              | +                | +       | +                 |             |               |                |              | —            | —              | —         |          |
|                |                                                                              |                              |                    |      |       |        |                               |               |                |              |               |           |      |        |               |                |              |                  |         |                   |             |               |                |              |              |                |           |          |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp | Serum | Solids                 |             |                |              |                |                   | Tissue |               |                |                      | Urine    | Water      | Water, Non-Potable |                              |                |              |                                              |                               |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|-------|------------------------|-------------|----------------|--------------|----------------|-------------------|--------|---------------|----------------|----------------------|----------|------------|--------------------|------------------------------|----------------|--------------|----------------------------------------------|-------------------------------|
|                |                                                                              |                              |                    | ¥    | Α     | SALA<br>Salifornia DPH | Florida DOH | Vew Jersey DEP | New York DOH | Vashington DE  | Maine DOH<br>ANAB | CALA   | Minnesota DOH | lew Jersey DEP | /irginia DGS<br>ANAB | Ą        | 4          | California DPH     | -lorida DOH<br>Jinnesota DOH | lew Jersey DEP | Jew York DOH | irginia DGS<br>V <mark>ashington DE *</mark> | DOH                           |
| Compound Class | Compound                                                                     | Accredited Method ID         |                    |      |       | 0                      | ш 2         | Z e            | New          | Was            | _ <               |        | Min I         | New            |                      |          |            | )                  |                              | New            | Se<br>Z      | VII'y                                        |                               |
|                | PCB 103 2,2',4,5',6-Pentachlorobiphenyl                                      | AXYS MLA-010<br>EPA 1668     | MLA-010<br>MLA-010 |      | Υ     | Υ                      | Y<br>Y      |                | \/ \         | , <sub>V</sub> | YD<br>Y YD        |        |               |                | YD<br>YD             | _        | Υ          | ,                  |                              |                |              | ΥΥ                                           | YD<br>YD Y                    |
|                | PCB 103 2,2,4,5,6-Peritachiorobiphenyi                                       | EPA 8270                     | MLA-010<br>MLA-007 |      |       |                        | 1           |                | 1            | Y              | טו ו              |        |               |                | טז                   |          |            |                    |                              | T              | ī            |                                              | ו עוז                         |
|                |                                                                              | AXYS MLA-010                 | MLA-007            |      | Υ     | Υ                      | Y           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          |                    | Y                            |                |              |                                              | YD                            |
|                | PCB 104 2,2',4,6,6'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      |       |                        | Y           | Υ              | Ϋ́           | / Y            | Y YD              |        |               |                | YD                   |          |            |                    | <u>.</u><br>Y                | Υ              | Υ            | ΥΥ                                           |                               |
|                | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                      | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          | ,                  | Y                            |                |              |                                              | YD                            |
|                | PCB 105 2,3,3',4,4'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | Υ '          | / Y            | Y YD              |        |               |                | YD                   |          |            | ,                  | <b>′</b>                     | Υ              | Υ            | ΥΥ                                           | YD Y                          |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          | ,                  | 1                            |                |              |                                              | YD                            |
|                | PCB 105/127                                                                  | AXYS MLA-007                 | MLA-007            |      |       | Υ                      |             |                |              |                |                   | Υ      |               |                |                      |          | Υ          |                    |                              |                |              |                                              |                               |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                | PCB 106 2,3,3',4,5-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | γ '          | / Y            | Y YD              |        |               |                | YD                   | _        |            | ,                  |                              | Υ              | Υ            | Y Y                                          |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                |        |               |                | YD                   | _        | Υ          | ,                  |                              |                |              |                                              | YD                            |
|                | PCB 107 2,3,3',4',5-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | Υ ١          | / Y            | Y YD              |        |               |                | YD                   |          |            | ,                  |                              | Υ              | Υ            | Y Y                                          |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                |        |               |                | YD                   |          | Υ          | ,                  | <u>/</u>                     |                |              |                                              | YD                            |
|                | PCB 107/109                                                                  | AXYS MLA-007                 | MLA-007            |      |       | Υ                      |             |                |              |                |                   | Υ      |               |                |                      |          | Υ          |                    |                              |                |              |                                              |                               |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                | ., .         | Y              |                   |        |               |                |                      |          |            |                    |                              |                | .,           |                                              |                               |
|                | PCB 108 2,3,3',4,5'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            | -    |       |                        | Y           | Y              | Υ '          | / Y            | Y YD              |        |               |                | YD                   |          |            |                    | Y                            | Υ              | Υ            | Y Y                                          |                               |
|                | POP 400 0 0 0 14 0 P 44 14 4 15 1 4 4 1                                      | AXYS MLA-010                 | MLA-010            | -    | Υ     | Υ                      | Y           |                | \ \ \ \ \    | , ,,           | YD                |        |               |                | YD                   | _        | Υ          | ,                  |                              |                | .,           | <del>, , ,</del>                             | YD                            |
|                | PCB 109 2,3,3',4,6-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |      | Υ     | Υ                      | Y           | Y              | Υ '          | Y              | Y YD              |        |               |                | YD<br>YD             |          | \ \        | ,                  | Y                            | Y              | Y            | Y Y                                          | YD Y                          |
|                | PCB 11 3,3'-Dichlorobiphenyl                                                 | AXYS MLA-010<br>EPA 1668     | MLA-010<br>MLA-010 |      | Y     | Y                      | Y           | V              | V 1          | / V            | YD<br>Y YD        |        |               |                | YD<br>YD             |          | Υ          | ,                  |                              | V              | V            | ΥΥ                                           |                               |
|                | PCB 11 3,3-Dicfilotobiphenyi                                                 | EPA 8270                     | MLA-010            |      |       |                        |             |                | 1            | Y              | טו ו              |        |               |                | טז                   |          |            |                    |                              |                | <u> </u>     |                                              | ו עו                          |
|                |                                                                              | AXYS MLA-010                 | MLA-007            | -    | Υ     | Υ                      | Υ           |                |              |                | YD                | · ·    |               |                | YD                   |          | Υ          | ,                  |                              |                |              |                                              | YD                            |
|                | PCB 110 2,3,3',4',6-Pentachlorobiphenyl                                      | AXYS MLA-007                 | MLA-007            |      | -     | Y                      | - '         |                |              |                | 10                | · ·    |               |                | טו                   |          | Y          |                    |                              |                |              |                                              |                               |
|                | 1 05 110 2,0,0,4,0 1 011acmorosiphonyi                                       | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | Ϋ́           | / Y            | Y YD              |        |               |                | YD                   |          |            |                    | Y                            | Υ              | Υ            | ΥΥ                                           | YD Y                          |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Y              |                   |        |               |                |                      |          |            |                    |                              |                |              | <del></del>                                  |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          |                    | Y                            |                |              |                                              | YD                            |
|                | PCB 111 2,3,3',5,5'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | Ϋ́           | / Y            | Y YD              |        |               |                | YD                   |          |            |                    | Y                            | Υ              | Υ            | ΥY                                           |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          | ,                  | ·                            |                |              |                                              | YD                            |
|                | PCB 111/117                                                                  | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                | PCB 112 2,3,3',5,6-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | γ ,          | / Y            | Y YD              |        |               |                | YD                   |          |            |                    | Y                            | Υ              | Υ            | ΥΥ                                           | YD Y                          |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          | ,                  | 1                            |                |              |                                              | YD                            |
|                | PCB 113 2,3,3',5',6-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | γ '          | / Y            | Y YD              |        |               |                | YD                   |          |            | ,                  | 1                            | Υ              | Υ            | Y Y                                          | YD Y                          |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                      | Υ           |                |              |                | YD                |        |               |                | YD                   | _        | Υ          | ,                  | •                            |                |              |                                              | YD                            |
|                | PCB 114 2,3,4,4',5-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |      |       |                        | Υ           | Υ              | Υ '          |                | Y YD              |        |               |                | YD                   |          |            | ,                  | <u>/</u>                     | Υ              | Υ            | Y Y                                          | YD Y                          |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                        |             |                |              | Υ              |                   |        |               |                |                      |          |            |                    |                              |                |              |                                              |                               |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Y                      | Y           |                |              |                | YD                |        |               |                | YD                   | _        | Υ          |                    | Y                            |                |              |                                              | YD                            |
|                | PCB 115 2,3,4,4',6-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |      |       |                        | Y           | Y              | Υ '          | / Y            | Y YD              |        |               |                | YD                   |          |            | `                  |                              | Υ              | Υ            | Y Y                                          |                               |
|                | POP 440 0 0 4 5 0 P. (1)   1   1   1   1   1                                 | AXYS MLA-010                 | MLA-010            | -    | Υ     | Y                      | Y           |                | \ \ \ \      | , ,,           |                   | Υ      |               |                | YD                   |          | Υ          |                    | Y                            |                | .,           | <del>, , ,</del>                             | YD                            |
|                | PCB 116 2,3,4,5,6-Pentachlorobiphenyl                                        | EPA 1668                     | MLA-010            |      | Υ     | V                      | Y           | Y              | Υ `          | r Y            | Y YD              |        |               |                | YD                   |          | V          |                    | Y                            | Y              | Y            | Y Y                                          |                               |
|                | PCB 117 2,3,4',5,6-Pentachlorobiphenyl                                       | AXYS MLA-010                 | MLA-010            | -    | Y     | Υ                      | Y           |                | v ,          | / \/           | Y VD              |        |               |                | YD                   |          | Υ          |                    | Υ                            | ٧/             | V            | <del></del>                                  | YD                            |
|                | FOD 117 2,3,4,5,6-Peritachioropiphenyi                                       | EPA 1668                     | MLA-010            | -    | Υ     | V                      | Y           | Y              | Υ '          | Υ              | Y YD              |        |               |                | YD                   |          | \ <u>'</u> |                    | Y<br>                        | ľ              | r            | Y Y                                          |                               |
|                | DCP 119 2 2! 4 4! 5 Pontochlorobinhood                                       | AXYS MLA-010<br>AXYS MLA-901 | MLA-010            |      | Y     | Y                      | Υ           |                |              |                | YD                | Υ      |               |                | YD                   |          | Υ          | <u>`</u>           | Y                            |                |              |                                              | YD                            |
|                | PCB 118 2,3',4,4',5-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-901<br>MLA-010 | -    | Y     |                        | Y           |                | v            | / V            | Y YD              |        |               |                | YD                   | -        | $\vdash$   | ,                  |                              |                | v            | ΥΥ                                           | YD Y                          |
|                |                                                                              | AXYS MLA-010                 | MLA-010<br>MLA-010 | -    | Υ     | Υ                      | Y           |                | 1            | T              | Y YD              |        |               |                | YD<br>YD             | -        | Υ          | ,                  |                              |                |              | <u>- r</u>                                   | YD Y                          |
|                | PCB 118/106                                                                  | AXYS MLA-010 AXYS MLA-007    | MLA-010<br>MLA-007 | -    |       | Y                      | - 1         |                |              |                | טז                | Y      |               |                | טז                   | $\vdash$ | Y          |                    | <del></del>                  |                |              | —                                            |                               |
| 1              | 05 110/100                                                                   | AA13 WLA-007                 | WIEA-001           | ļ    |       | ' '                    |             |                |              |                |                   | ı '    |               |                |                      | ı        | ' '        |                    |                              |                |              |                                              | \$ 6000<br>\$ 6000<br>\$ 6000 |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                          |                    | Pulp     | Serum | Solids                                |                                 |              |                              |                   | Tissue              |                                 |              | Urine | Water | Water, Non-Potable                             |                |              |                                             |                                       |
|----------------|------------------------------------------------------------------------------|--------------------------|--------------------|----------|-------|---------------------------------------|---------------------------------|--------------|------------------------------|-------------------|---------------------|---------------------------------|--------------|-------|-------|------------------------------------------------|----------------|--------------|---------------------------------------------|---------------------------------------|
| Compound Class | Compound                                                                     | Accredited Method ID     | AXYS Method ID     | CALA     | CALA  | CALA<br>California DPH<br>Florida DOH | Minnesota DOH<br>New Jersey DEP | Jew York DOH | Arginia DGS<br>Washington DE | Maine DOH<br>ANAB | CALA<br>Florida DOH | Minnesota DOH<br>New Jersev DEP | Virginia DGS | CALA  | CALA  | Salifornia DPH<br>Florida DOH<br>Vinnesota DOH | lew Jersey DEP | New York DOH | inginia DGS<br><mark>/ashington DE *</mark> | Maine DOH<br>ANAB<br>Pennsylvania DEP |
| Compound Class | Compound                                                                     | EPA 8270                 | MLA-007            | 0        | O     | ООШ                                   | ≥ Z                             | z :          | > <u>&gt;</u><br>Y           | ≥ ∢               | ОЕ                  | ≥ Z                             | > <          | 0     | O     | О ц ≥                                          | z              | z >          | . 5                                         | ≥ ∢ ₾                                 |
|                | PCB 119 2,3',4,4',6-Pentachlorobiphenyl                                      | EPA 1668                 | MLA-010            | <b>-</b> |       | Y                                     | Y                               | Υ            | <u>.</u><br>Ү Ү              | Y YD              |                     |                                 | YI           | )     |       | Υ                                              | Υ              | ΥY           | / Y                                         | YD Y                                  |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             | -                                     |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 12 3,4-Dichlorobiphenyl                                                  | EPA 1668                 | MLA-010            |          |       | Υ                                     | Υ                               | Υ            | ΥY                           | Y YD              |                     |                                 | YI           | _     |       | Υ                                              | Υ              | Υ ١          | / Y                                         | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 12/13                                                                    | EPA 8270                 | MLA-007            | _        |       |                                       |                                 |              | Y                            |                   |                     |                                 |              | _     |       |                                                |                |              |                                             |                                       |
|                | PCB 120 2,3',4,5,5'-Pentachlorobiphenyl                                      | EPA 1668                 | MLA-010            | _        | Υ     | Y<br>Y Y                              | Y                               | Υ            | Y Y                          | Y YD<br>YD        |                     |                                 | YI<br>YI     | _     | Υ     | Y<br>Y                                         | Y              | Υ \          | Y                                           | YD Y<br>YD                            |
|                | PCB 121 2,3',4,5',6-Pentachlorobiphenyl                                      | AXYS MLA-010<br>EPA 1668 | MLA-010<br>MLA-010 |          | Y     | Y Y                                   |                                 | · v          | v v                          | Y YD              | Y                   |                                 | YI           | _     | Y     | Y                                              | v              | ΥY           |                                             | YD Y                                  |
|                | TOD 121 2,5,4,5,0-1 entachloropiphenyl                                       | AXYS MLA-010             | MLA-010            | $\dashv$ | Υ     | Y Y                                   |                                 | -            | <u> </u>                     | YD                | Υ                   |                                 | YI           | _     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 122 2,3,3',4',5'-Pentachlorobiphenyl                                     | EPA 1668                 | MLA-010            | 1        | Ť     | . Y                                   | Y                               | Υ            | ΥΥ                           | Y YD              |                     |                                 | YI           | _     | Ť     | Y                                              | Υ              | ΥY           | / Y                                         | YD Y                                  |
|                | . ,                                                                          | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 123 2,3',4,4',5'-Pentachlorobiphenyl                                     | EPA 1668                 | MLA-010            |          |       | Y                                     | Υ                               | Υ            | ΥΥ                           | Y YD              |                     |                                 | YI           | )     |       | Y                                              | Υ              | ΥY           | / Y                                         | YD Y                                  |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                |                                                                              | AXYS MLA-010             | MLA-010            | _        | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | _     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 124 2,3',4',5,5'-Pentachlorobiphenyl                                     | EPA 1668                 | MLA-010            | _        |       | Y                                     | Y                               | Υ            |                              | Y YD              |                     |                                 | YI           |       |       | Υ                                              | Υ              | Υ ١          | ΥY                                          | YD Y                                  |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       | ., .,                                 |                                 |              | Y                            |                   | .,                  |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                | PCB 125 2,3',4',5',6-Pentachlorobiphenyl                                     | AXYS MLA-010<br>EPA 1668 | MLA-010<br>MLA-010 |          | Υ     | Y Y                                   |                                 | · v          | v v                          | YD<br>Y YD        | Υ                   |                                 | YI<br>YI     | _     | Υ     | Y                                              | V              | ΥΥ           |                                             | YD<br>YD Y                            |
|                | POB 123 2,3,4,5,0-remachiorophienyi                                          | EPA 8270                 | MLA-007            |          |       | - '                                   |                                 |              | Y                            | 1 10              |                     |                                 |              |       |       | -                                              | '              | -            |                                             | 10 1                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 126 3,3',4,4',5-Pentachlorobiphenyl                                      | AXYS MLA-007             | MLA-007            |          |       | Υ                                     |                                 |              |                              |                   | Y                   |                                 |              |       | Y     |                                                |                |              |                                             |                                       |
|                |                                                                              | EPA 1668                 | MLA-010            |          |       | Y                                     | Υ                               | Υ            | ΥΥ                           | Y YD              |                     |                                 | YI           | )     |       | Y                                              | Υ              | ΥY           | 7 Y                                         | YD Y                                  |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | _     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 127 3,3',4,5,5'-Pentachlorobiphenyl                                      | EPA 1668                 | MLA-010            | _        |       | Y                                     | Y                               | Υ            | Y Y                          | Y YD              |                     |                                 | YI           |       |       | Υ                                              | Υ              | Υ ١          | <u>/ Y</u>                                  | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                |                     |                                 | YI           | )     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 128 2,2',3,3',4,4'-Hexachlorobiphenyl                                    | AXYS MLA-007<br>EPA 1668 | MLA-007<br>MLA-010 |          |       | Y                                     |                                 |              |                              | Y YD              | Υ                   |                                 | YI           | _     | Υ     | Y                                              |                | ΥΥ           |                                             | VD V                                  |
|                |                                                                              | EPA 1668<br>EPA 8270     | MLA-010<br>MLA-007 |          |       | Ť                                     | Y                               | Ť            | <u>т т</u><br>Ү              | ין א              |                     |                                 | YI           | _     |       | Y                                              | Y              | ř '          | <u> </u>                                    | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 129 2,2',3,3',4,5-Hexachlorobiphenyl                                     | AXYS MLA-007             | MLA-007            | 1        | Ť     | Y                                     |                                 |              |                              |                   | Y                   |                                 |              |       | Y     |                                                |                |              |                                             |                                       |
|                |                                                                              | EPA 1668                 | MLA-010            |          |       | Y                                     | Υ                               | Υ            | ΥΥ                           | Y YD              |                     |                                 | YI           | )     |       | Υ                                              | Υ              | ΥY           | / Y                                         | YD Y                                  |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | _     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 13 3,4'-Dichlorobiphenyl                                                 | EPA 1668                 | MLA-010            |          |       | Y                                     | Y                               | Υ            | Y Y                          | Y YD              |                     |                                 | YI           | _     |       | Y                                              | Υ              | Υ \          | ΥY                                          | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            | _        | Υ     |                                       |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 130 2,2',3,3',4,5'-Hexachlorobiphenyl                                    | AXYS MLA-007             | MLA-007            |          |       | Y                                     |                                 | Y            |                              | \/D               | Υ                   |                                 | 1//          | _     | Υ     |                                                |                | \ <u> \</u>  |                                             |                                       |
|                |                                                                              | EPA 1668<br>EPA 8270     | MLA-010<br>MLA-007 | -        | -     | Y                                     | Y                               | Y            | <u>ү ү</u><br>Ү              | YD                |                     |                                 | YI           | ,     |       | Y                                              | Y              | Y            | ΥY                                          | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            | $\dashv$ | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Y                                              |                |              |                                             | YD                                    |
|                | PCB 131 2,2',3,3',4,6-Hexachlorobiphenyl                                     | EPA 1668                 | MLA-010            | $\dashv$ | -     | Y                                     |                                 | Υ            | ΥΥ                           | Y YD              |                     |                                 | YI           | _     | H     | Y                                              | Υ              | ΥY           | ΥΥ                                          | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            | $\neg$   | Υ     | Y Y                                   |                                 | -            |                              | YD                | Υ                   |                                 | YI           | _     | Υ     | Y                                              | <u> </u>       | -            |                                             | YD                                    |
|                | PCB 131/142                                                                  | AXYS MLA-007             | MLA-007            | T        |       | Υ                                     |                                 |              |                              |                   | Υ                   |                                 |              |       | Υ     |                                                |                |              |                                             |                                       |
|                |                                                                              | EPA 8270                 | MLA-007            |          |       |                                       |                                 |              | Υ                            |                   |                     |                                 |              |       |       |                                                |                |              |                                             |                                       |
|                | PCB 132 2,2',3,3',4,6'-Hexachlorobiphenyl                                    | EPA 1668                 | MLA-010            | $\Box$   |       | Υ                                     | Y                               | Υ            | ΥY                           | Y YD              |                     |                                 | YI           | _     | Ш     | Υ                                              | Υ              | γ ν          | / Y                                         | YD Y                                  |
|                |                                                                              | AXYS MLA-010             | MLA-010            |          | Υ     | Y Y                                   |                                 |              |                              | YD                | Υ                   |                                 | YI           | )     | Υ     | Υ                                              |                |              |                                             | YD                                    |
|                | PCB 132/168                                                                  | EPA 8270                 | MLA-007            |          | l     |                                       |                                 |              | Υ                            |                   |                     |                                 |              | l     |       |                                                |                |              |                                             | 5 A A A                               |

|       | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | Pulp | Serum | Solids   |                         |             |                |              |               |                   | Tissue           |             |                |              | Urine | Water | Water, Non-Potable |             |                |              |                              |                   |
|-------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|----------|-------------------------|-------------|----------------|--------------|---------------|-------------------|------------------|-------------|----------------|--------------|-------|-------|--------------------|-------------|----------------|--------------|------------------------------|-------------------|
|       |                                                                              |                      |                |      |       |          | ifornia DPH<br>rida DOH | inesota DOH | New Jersey DEP | vew rork DOR | Nashington DE | Maine DOH<br>ANAB | CALA             | Florida DOH | New Jersey DEP | Virginia DGS | ANAB  |       | ř                  | Florida DOH | New Jersey DEP | New York DOH | Virginia DGS Washington DE * | Maine DOH<br>ANAB |
| Class | Compound                                                                     | Accredited Method ID | AXYS Method ID | CA   | CA    | S        | Ca<br>F                 | Ξ̈́         |                |              | _             |                   |                  | F F         | Š              |              |       | CA    | Ca                 | 윤           |                |              | <u> </u>                     | ₽ ¥               |
|       | PCB 133 2,2',3,3',5,5'-Hexachlorobiphenyl                                    | EPA 1668             |                |      |       |          | Y                       |             | Υ '            | Y Y          |               | Y YE              | )                |             |                | Υ            | D     |       |                    | Υ           | Υ              | Υ            | Y Y                          | YD                |
|       |                                                                              | EPA 8270             |                |      |       |          |                         |             |                |              | Υ             |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              |                      |                |      | Υ     | Υ        |                         |             | ., .           |              |               |                   | Y                |             |                |              | D     | Υ     |                    | Υ           |                |              | ., .,                        | YD                |
|       | PCB 134 2,2',3,3',5,6-Hexachlorobiphenyl                                     | EPA 1668             |                |      |       |          |                         |             | Υ              | ΥΥ           | Υ             |                   | _                |             |                |              | D     |       |                    | Y<br>Y      | Y              | Y            | Y Y                          |                   |
|       | POD 404/440                                                                  |                      |                |      | Y     |          | Y                       |             |                |              |               | ΥI                | ) Y              |             |                | Y            | D     | Y     |                    | Y           |                |              |                              | YD                |
|       | PCB 134/143                                                                  |                      |                |      |       | Y        |                         |             |                |              | Υ             |                   | Y                |             |                |              | -     | Y     |                    |             |                |              |                              |                   |
|       | DOD 125 2 21 2 21 5 61 Haveablershiphanyl                                    | EPA 1668             |                |      | -     |          |                         |             | V ,            | v v          |               | Y YE              | _                |             |                | \            | D     | -     |                    | Υ           | V              | V            | Y Y                          | YD                |
|       | PCB 135 2,2',3,3',5,6'-Hexachlorobiphenyl                                    |                      |                |      | V     | V        |                         |             | ı              | 1 1          | T             | Y                 | _                |             |                |              | D     | Υ     |                    | Y           | - 1            | - 1          | 1 1                          | YD                |
|       | PCB 136 2,2',3,3',6,6'-Hexachlorobiphenyl                                    |                      |                |      | ľ     |          | Y                       |             |                |              |               | YL                | ) Y<br>Y         |             |                | Y            | U     | Y     |                    |             |                |              |                              | טז                |
|       | 1 OD 130 Z,Z,3,3,0,0 -i lexaciliotopipilettyi                                | EPA 1668             |                |      |       | -        | V                       |             | ٧,             | v v          | ~             | Y YE              |                  |             |                | ν.           | D     | +     |                    | Υ           |                |              | YY                           | YD                |
|       |                                                                              | EPA 1008             |                |      | _     |          |                         |             |                |              | Y             | 1 11              | +                |             |                | '            |       | +     |                    | <u> </u>    |                | -            | - '                          | וט                |
|       |                                                                              | AXYS MLA-010         |                |      | V     |          |                         |             |                |              |               | ΥĽ                | ) Y              |             |                |              | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 137 2,2',3,4,4',5-Hexachlorobiphenyl                                     | AXYS MLA-007         |                |      | -     |          |                         |             |                |              |               | - 16              | , <u>,</u>       |             |                |              |       | Y     |                    | <u> </u>    |                |              |                              | 10                |
|       | 1 OD 107 2,2,0,4,4,0-Hexacillolopphenyi                                      | EPA 1668             |                |      |       | <u>'</u> | Y                       |             | ν,             | y y          | Υ             | Y YE              | , '              |             |                | ٧            | D     | +     |                    | Υ           | Y              | Y            | ΥΥ                           | YD                |
|       |                                                                              | EPA 8270             |                |      |       |          |                         |             |                | · · ·        | ·<br>Y        |                   |                  |             |                |              |       |       |                    | <u> </u>    |                |              | <u> </u>                     | 10                |
|       |                                                                              | AXYS MLA-010         |                |      | γ     | Y        | Y                       |             |                |              |               | ΥΓ                | ) Y              |             |                | ٧            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 138 2,2',3,4,4',5'-Hexachlorobiphenyl                                    | AXYS MLA-901         |                |      |       | <u>'</u> |                         |             |                |              |               | - 11              | <del>' ' '</del> |             |                |              |       | +     |                    | <u> </u>    |                |              |                              | 10                |
|       | 1 OD 130 2,2 ,3,4,4 ,3 -Hexacillorobiphenyi                                  | EPA 1668             |                |      | -     |          | Y                       |             | ν,             | y y          | Υ             | Y YE              | )                |             |                | ٧            | D     |       |                    | Υ           | Y              | Y            | ΥΥ                           | YD                |
|       |                                                                              |                      |                |      | V     |          |                         |             | -              |              |               | YE                | _                |             |                |              | D     | Υ     |                    | Y           |                | -            |                              | YD                |
|       | PCB 138/163/164                                                              | AXYS MLA-007         |                |      | -     |          |                         |             |                |              |               | - 11              | Y                |             |                |              |       | Y     |                    | <u> </u>    |                |              |                              | 10                |
|       | 1 05 100/100/104                                                             | EPA 8270             |                |      | _     |          |                         |             |                |              | Υ             |                   | Ť                |             |                |              |       | Ť     |                    |             |                |              |                              |                   |
|       | PCB 139 2,2',3,4,4',6-Hexachlorobiphenyl                                     | EPA 1668             |                |      | _     |          | Y                       |             | Υ,             | Y Y          |               | Y YE              | )                |             |                | Y            | D     |       |                    | Υ           | Υ              | Υ            | ΥΥ                           | YD                |
|       | 1 05 100 2,2,0,1,1,0 110/doi:10105/p1011/j                                   | AXYS MLA-010         |                |      | Υ     | V        |                         |             |                |              |               | YE                | _                |             |                |              | D     | Υ     |                    | Y           |                |              | •                            | YD                |
|       | PCB 14 3,5-Dichlorobiphenyl                                                  | EPA 1668             |                |      | Ť     |          |                         |             | Υ '            | ΥΥ           | Υ             | Y YE              | _                |             |                |              | D     | + -   |                    | Y           | Υ              | Υ            | ΥΥ                           |                   |
|       |                                                                              | EPA 8270             |                |      |       |          |                         |             |                |              | Y             |                   |                  |             |                | <u> </u>     | _     |       |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-010         |                |      | Υ     | Υ        | Y                       |             |                |              |               | ΥΓ                | ) Y              |             |                | Y            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 140 2,2',3,4,4',6'-Hexachlorobiphenyl                                    | EPA 1668             |                |      | Ť     |          | Y                       |             | Υ '            | ΥΥ           | Υ             |                   | _                |             |                |              | D     | + -   |                    | Y           | Υ              | Υ            | ΥΥ                           |                   |
|       | ,- ,-, , , ,                                                                 | EPA 8270             |                |      |       |          |                         |             |                |              | Y             |                   |                  |             |                | <u> </u>     | _     |       |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-010         |                |      | Υ     | Υ        | Y                       |             |                |              |               | YE                | Y                |             |                | Y            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 141 2,2',3,4,5,5'-Hexachlorobiphenyl                                     | EPA 1668             |                |      | Ť     |          | Y                       |             | Υ '            | ΥΥ           | Υ             | Y Y               | _                |             |                |              | D     |       |                    | Y           | Υ              | Υ            | ΥΥ                           |                   |
|       |                                                                              | EPA 8270             | MLA-007        |      |       |          |                         |             |                |              | Υ             |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Y                       |             |                |              |               | Υ[                | Y                |             |                | Y            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 142 2,2',3,4,5,6-Hexachlorobiphenyl                                      | EPA 1668             | MLA-010        |      |       |          | Υ                       |             | Υ '            | ΥY           | Υ             | Y Y               | )                |             |                | Υ            | D     |       |                    | Υ           | Υ              | Υ            | ΥΥ                           | YD                |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Υ                       |             |                |              |               | ΥI                | Y                |             |                | Υ            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 143 2,2',3,4,5,6'-Hexachlorobiphenyl                                     | EPA 1668             | MLA-010        |      |       |          | Υ                       |             | Υ '            | ΥY           | Υ             | Y YE              | )                |             |                | Υ            | D     |       |                    | Υ           | Υ              | Υ            | ΥΥ                           | YD                |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Υ                       |             |                |              |               | ΥE                | Y                |             |                | Υ            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 144 2,2',3,4,5',6-Hexachlorobiphenyl                                     | EPA 1668             | MLA-010        |      |       |          | Υ                       |             | Υ '            | ΥY           | Υ             | Y YE              | )                |             |                | Υ            | D     |       |                    | Υ           | Υ              | Υ            | ΥΥ                           | YD                |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Υ                       |             |                |              |               | Υ[                | Y                |             |                | Υ            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 144/135                                                                  | AXYS MLA-007         | 1668           |      |       |          |                         | Υ           |                |              |               |                   | Υ                |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              | EPA 8270             | MLA-007        |      |       |          |                         |             |                |              | Υ             |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       | PCB 145 2,2',3,4,6,6'-Hexachlorobiphenyl                                     | EPA 1668             | MLA-010        |      |       |          | Υ                       |             | Υ '            | ΥY           | Υ             | Y YE              | )                |             |                | Υ            | D     |       |                    | Υ           | Υ              | Υ            | ΥY                           | YD                |
|       |                                                                              | EPA 8270             | MLA-007        |      |       |          |                         |             |                |              | Υ             |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Y                       |             |                |              |               | YE                | Y                |             |                | Y            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 146 2,2',3,4',5,5'-Hexachlorobiphenyl                                    | AXYS MLA-007         | MLA-007        |      |       | Υ        |                         |             |                |              |               |                   | Υ                |             |                |              |       | Υ     |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-901         | MLA-901        |      | Υ     |          |                         |             |                |              |               |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              | EPA 1668             | MLA-010        |      |       |          | Y                       |             | Υ '            | ΥY           | Υ             | Y Y               | )                |             |                | Y            | D     |       |                    | Υ           | Υ              | Υ            | ΥΥ                           | YD                |
|       |                                                                              | EPA 8270             | MLA-007        |      |       |          |                         |             |                |              | Υ             |                   |                  |             |                |              |       |       |                    |             |                |              |                              |                   |
|       |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ        | Y                       |             |                |              |               | YE                | Y                |             |                | Y            | D     | Υ     |                    | Υ           |                |              |                              | YD                |
|       | PCB 147 2,2',3,4',5,6-Hexachlorobiphenyl                                     |                      |                |      |       |          |                         |             |                |              |               |                   |                  |             |                |              | D     |       |                    | Υ           |                |              | ΥΥ                           |                   |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    |      | ur    | sp                   |             |                |              |                              |                   | en     |                              |                |              | 0     | Je Je  | Nater, Non-Potable |             |                                   |              |              |                   |                  |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|-------|----------------------|-------------|----------------|--------------|------------------------------|-------------------|--------|------------------------------|----------------|--------------|-------|--------|--------------------|-------------|-----------------------------------|--------------|--------------|-------------------|------------------|
|                |                                                                              |                              |                    | Pulp | Serum | Solids Solids Solids | Florida DOH | New Jersey DEP | Jew York DOH | Virginia DGS Washington DE   | HOO               | Tissue | Florida DOH<br>Minnesota DOH | New Jersey DEP | DGS          | Urine | Water  | California DPH Wat |             | Virillesota DOR<br>New Jersey DEP | Vew York DOH | ginia DGS    | НО                | Pennsylvania DEP |
| Compound Class | Compound                                                                     | Accredited Method ID         | AXYS Method ID     | CALA | CALA  | CALA                 | Florida DOH | New Jer        | New Yo       | virginia DGS<br>Washington [ | Maine DOH<br>ANAB | CALA   | Florida DOH<br>Minnesota D   | New Jer        | Virginia DGS | CALA  | CALA   | Californi          | Florida DOH | New Jer                           | New Yo       | Virginia DGS | Maine DOH<br>ANAB | Pennsyl          |
| ·              |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | Υ                            |                   |        |                              |                |              |       |        |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                |        |                              |                |              | ď     | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 148 2,2',3,4',5,6'-Hexachlorobiphenyl                                    | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            |                              | Y YI              | )      |                              |                | Y            | D     |        |                    | Υ           | Υ                                 | Υ            | Y Y          | YD                | Υ                |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |      | Υ     | Υ                    | Y           |                |              | Υ                            | YI                | ) Y    |                              |                |              | D D   | Y      |                    | Y           |                                   |              |              | YD                |                  |
|                | PCB 149 2,2',3,4',5',6-Hexachlorobiphenyl                                    | EPA 1668                     | MLA-010            |      | Y     | Y                    | Y           |                |              | v v                          | Y YI              | _      |                              |                |              | D D   | Y      |                    | Y           |                                   |              | ΥΥ           |                   |                  |
|                | POB 149 2,2,3,4,3,0-1 lexactilorophienyi                                     | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Y           | - '            |              |                              | Y                 | _      |                              |                |              | D D   | Υ      |                    | Y           |                                   | - '          | ' '          | YD                |                  |
|                | PCB 149/139                                                                  | AXYS MLA-007                 | MLA-007            |      | Ė     | Y                    |             |                |              |                              |                   | Y      |                              |                |              | _     | Y      | _                  |             |                                   |              |              |                   |                  |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | Υ                            |                   | 1      |                              |                |              |       |        |                    |             |                                   |              |              |                   |                  |
|                | PCB 15 4,4'-Dichlorobiphenyl                                                 | AXYS MLA-007                 | MLA-007            |      |       | Υ                    |             |                |              |                              |                   | Υ      |                              |                |              |       | Υ      |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            | ΥY                           | Y YI              | )      |                              |                | Υ            | D     |        |                    | Υ           | Υ                                 | Υ            | ΥY           | YD                | Υ                |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | Υ                            |                   |        |                              |                |              |       |        |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Y           |                |              |                              | ΥI                | _      |                              |                |              | D .   | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 150 2,2',3,4',6,6'-Hexachlorobiphenyl                                    | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            | <u>Ү Ү</u><br>Ү              | Y YI              | )      |                              |                | Y            | D     |        |                    | Υ           | Y                                 | Υ            | Y Y          | YD                | Υ                |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |      | Υ     | Υ                    | Y           |                |              | Y                            | YI                | ) Y    |                              |                |              | D D   | Y      | -                  | Y           |                                   |              |              | YD                |                  |
|                | PCB 151 2,2',3,5,5',6-Hexachlorobiphenyl                                     | AXYS MLA-007                 | MLA-007            |      | -     | Y                    | - '         |                |              |                              | - 11              | Y      |                              |                |              |       | Y      |                    | <u> </u>    |                                   |              |              |                   |                  |
|                | OB 131 2,2,3,3,5,0-Hexaciliorobiphenyi                                       | EPA 1668                     | MLA-010            |      |       | <u> </u>             | Υ           | Υ              | Υ            | Y Y                          | Y YI              |        |                              |                | Y            | D D   | +      |                    | Υ           | Y                                 | Υ            | ΥΥ           | YD                | Υ                |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | <br>Y                        |                   |        |                              |                |              | _     |        |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | ) Y    |                              |                | Y            | D D   | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 152 2,2',3,5,6,6'-Hexachlorobiphenyl                                     | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            | ΥY                           | Y YI              | )      |                              |                | Υ            | D     |        |                    | Υ           | Υ                                 | Υ            | ΥY           | YD.               | Υ                |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | Υ                            |                   |        |                              |                |              |       |        |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | _      |                              |                | Y            | ď     | Υ      | _                  | Υ           |                                   |              |              | YD                |                  |
|                | PCB 153 2,2',4,4',5,5'-Hexachlorobiphenyl                                    | AXYS MLA-007                 | MLA-007            |      |       | Υ                    |             |                |              |                              |                   | Υ      |                              |                |              |       | Υ      |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-901                 | MLA-901            |      | Υ     | 1                    |             |                |              |                              |                   |        |                              |                |              | _     | _      | _                  |             |                                   |              |              |                   |                  |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       |                      | Y           | Y              | Υ            | <u>ү ү</u><br>Ү              | Y YI              | )      |                              |                | Y            | D     | -      |                    | Y           | Y                                 | Y            | Y Y          | YD                | Y                |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |      | Υ     | Y                    | Y           |                |              | Y                            | YI                | ) Y    |                              |                |              | D D   | Y      | -                  | Y           |                                   |              |              | YD                |                  |
|                | PCB 154 2,2',4,4',5,6'-Hexachlorobiphenyl                                    | EPA 1668                     | MLA-010            |      | '     | '                    | Y           | Υ              | Υ            | Y Y                          | Y YI              |        |                              |                |              | D D   | +'     |                    | Y           | Y                                 | Υ            | Y Y          |                   |                  |
|                | 1 05 10 12,2,1,1,0,0 1 0 x a silio 1 0 1 pi                                  | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | <br>Y                        |                   |        |                              |                |              | _     | $\top$ |                    | <del></del> |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | ) Y    |                              |                | Y            | D     | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 155 2,2',4,4',6,6'-Hexachlorobiphenyl                                    | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            | ΥΥ                           | Y YI              | )      |                              |                | Υ            | 'D    |        |                    | Υ           | Υ                                 | Υ            | ΥY           | YD                | Υ                |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      |             |                |              | Υ                            |                   |        |                              |                |              |       |        |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | _      |                              |                | Υ            | D     | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 156 2,3,3',4,4',5-Hexachlorobiphenyl                                     | AXYS MLA-007                 | MLA-007            |      |       | Υ                    |             |                |              |                              |                   | Υ      |                              |                |              | _     | Υ      |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | AXYS MLA-901                 | MLA-901            |      | Υ     |                      |             |                |              |                              |                   | _      |                              |                |              | _     | -      |                    |             |                                   |              | ., .         |                   |                  |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       | 1                    | Υ           | Y              | Υ            |                              | Y YI              | )      |                              |                | Y            | D     | -      |                    | Y           | Y                                 | Y            | Y Y          | YD                | Y                |
|                |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |      | V     | Υ                    | Y           |                |              | Y                            | VI                | ) Y    |                              |                |              | D D   | Y      |                    | Y           |                                   |              |              | YD                |                  |
|                | PCB 157 2,3,3',4,4',5'-Hexachlorobiphenyl                                    | AXYS MLA-010<br>AXYS MLA-007 | MLA-010            |      | ī     | Y                    |             |                |              |                              | YI                | Y      |                              |                | <u>Y</u>     |       | Y      | _                  |             |                                   |              |              |                   |                  |
|                | . 12 .17 2jojo ji ji jo riokadinordalpitoriyi                                | EPA 1668                     | MLA-010            |      |       | †                    | Υ           | Υ              | Υ            | ΥΥ                           | Y YI              | _      |                              |                | Y            | D D   | Ť      | ╁                  | Y           | Υ                                 | Υ            | Y Y          | YD                | Υ                |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       |                      | -           | •              | -            | <br>Y                        |                   | 1      |                              |                |              | Ť     |        | 1                  |             |                                   | •            |              |                   | •                |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | ) Y    |                              |                | Υ            | D     | Υ      |                    | Υ           |                                   |              |              | YD                |                  |
|                | PCB 158 2,3,3',4,4',6-Hexachlorobiphenyl                                     | EPA 1668                     | MLA-010            |      |       |                      | Υ           | Υ              | Υ            | Y Y                          | Y YI              | )      |                              |                | Y            | D     | l      | L                  | Υ           | Υ                                 | Υ            | ΥY           | YD                | Υ                |
|                |                                                                              | AXYS MLA-010                 | MLA-010            |      | Υ     | Υ                    | Υ           |                |              |                              | ΥI                | ΟY     |                              |                | Υ            | D     | Υ      | _                  | Υ           |                                   |              |              | YD                |                  |
|                | PCB 158/160                                                                  | AXYS MLA-007                 | MLA-007            |      |       | Υ                    |             |                |              |                              |                   | Υ      |                              |                |              |       | Υ      |                    |             |                                   |              |              |                   |                  |
|                |                                                                              | EPA 8270                     | MLA-007            |      |       | ļ                    |             |                |              | Υ                            |                   | 1      |                              |                |              | _     |        | _                  |             |                                   |              |              |                   |                  |
|                | PCB 159 2,3,3',4,5,5'-Hexachlorobiphenyl                                     | AXYS MLA-007                 | MLA-007            |      |       | Υ                    |             | .,             |              |                              |                   | Y      |                              |                |              | _     | Υ      | -                  |             |                                   |              |              |                   | ,,               |
|                |                                                                              | EPA 1668                     | MLA-010            |      |       | 1                    | Υ           | Υ              | Υ            |                              | Y YI              | ار     |                              |                | Y            | D     | -      | ╄                  | Υ           | Y                                 | Υ            | Y Y          |                   |                  |
|                | I                                                                            | EPA 8270                     | MLA-007            |      | l l   | l                    |             |                |              | Υ                            |                   | I      |                              |                |              | ı     | I      | ı                  |             |                                   |              |              |                   | 69               |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                    |                           | Pulp | Serum | Solids                 |             |                                  |              |                               |           | i<br>F | lissue              |               |                                |          | Urine | Water | Water, Non-Potable            |               |                |              |                 |                   |
|----------------|------------------------------------------------------------------------------|------------------------------------|---------------------------|------|-------|------------------------|-------------|----------------------------------|--------------|-------------------------------|-----------|--------|---------------------|---------------|--------------------------------|----------|-------|-------|-------------------------------|---------------|----------------|--------------|-----------------|-------------------|
|                |                                                                              |                                    |                           | CALA | CALA  | CALA<br>California DPH | Florida DOH | viinnesota DOH<br>New Jersey DEP | Vew York DOH | Virginia DGS<br>Vashinaton DE | Maine DOH | ANAB   | CALA<br>Florida DOH | Minnesota DOH | vew Jersey DEP<br>Virginia DGS | ANAB     | CALA  | CALA  | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | Virginia DGS | 'ashington DE * | Maine DOH<br>ANAB |
| Compound Class | Compound                                                                     | Accredited Method ID  AXYS MLA-010 | AXYS Method ID<br>MLA-010 |      | Y     | 0 0<br>Y               | <u>г</u> :  | ΣŻ                               | Ž            | > 3                           |           |        | <u>ت</u> ك<br>Y     | Σ :           | ž >                            | ₹<br>YD  | _     | Y     | Ŭ Œ<br>Y                      | Σ             | ŻŹ             | ż >          | \$              | <u> </u>          |
|                | PCB 16 2,2',3-Trichlorobiphenyl                                              | EPA 1668                           | MLA-010                   |      | •     | <u> </u>               | Y           | Υ                                | Υ            | Y Y                           | / Y       |        |                     |               |                                | YD       |       |       | Y                             |               | ΥY             | / Y          | Υ               | YD Y              |
|                | ,,- ,                                                                        | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Y           |                                  |              |                               |           | _      | Υ                   |               |                                | YD       |       | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 16/32                                                                    | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  |              |                               |           | ,      | Υ                   |               |                                |          |       | Υ     |                               |               |                |              |                 |                   |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             | 1         |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                | PCB 160 2,3,3',4,5,6-Hexachlorobiphenyl                                      | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  |              |                               |           |        | Υ                   |               |                                |          |       | Υ     |                               |               |                |              |                 |                   |
|                |                                                                              | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | Y Y                           | / Y       | _      |                     |               |                                | YD       |       |       | Υ                             |               | Υ \            | / Y          | Y               | YD \              |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           |        | Υ                   |               |                                | YD       | _     | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 161 2,3,3',4,5',6-Hexachlorobiphenyl                                     | AXYS MLA-007                       | MLA-007                   | _    |       | Υ                      |             |                                  |              | .,                            | ,         |        | Υ                   |               |                                |          | _     | Υ     |                               |               | .,             |              |                 |                   |
|                |                                                                              | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Y                                | Υ            |                               | / Y       | YD     |                     |               |                                | YD       |       | _     | Υ                             |               | Υ \            | / Y          | <u>Y</u>        | YD Y              |
|                |                                                                              | EPA 8270                           | MLA-007                   | _    | .,    |                        |             |                                  |              | Υ                             |           | \/D \  | .,                  |               |                                | \/D      | _     |       |                               |               |                |              |                 |                   |
|                | PCB 162 2,3,3',4',5,5'-Hexachlorobiphenyl                                    | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Y           |                                  |              | V V                           |           |        | Υ                   |               |                                | YD<br>YD |       | Υ     | Y<br>Y                        |               | · ·            | / Y          |                 | YD<br>YD Y        |
|                | PCB 162 2,3,3 ,4 ,5,5 -Hexacniorobipnenyi                                    | EPA 1668<br>EPA 8270               | MLA-010<br>MLA-007        | +    |       |                        | Y           | Y                                | Ť            | <u>Y Y</u>                    | / Y       | עז     |                     |               |                                | עז       |       | -     | T                             |               | Y 1            | rr           | <u> </u>        | י עז              |
|                |                                                                              | AXYS MLA-010                       | MLA-007                   |      | Υ     | Υ                      | Υ           |                                  |              | ĭ                             |           | YD '   | Y                   |               |                                | YD       | _     | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 163 2,3,3',4',5,6-Hexachlorobiphenyl                                     | EPA 1668                           | MLA-010                   |      | _     | '                      | Y           |                                  | V            | v v                           | / Y       |        | <u> </u>            |               |                                | YD       | _     | -     | Y                             |               | v \            | / Y          |                 | YD Y              |
|                | 1 OD 100 2,0,0,4,0,0-i lexacillolobiphenyi                                   | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Y           | - '                              |              | <u> </u>                      |           |        | Υ                   |               |                                | YD       | _     | Υ     | Y                             |               | •              |              | <u> </u>        | YD                |
|                | PCB 164 2,3,3',4',5',6-Hexachlorobiphenyl                                    | EPA 1668                           | MLA-010                   |      | _     |                        | Y           | Υ                                | Υ            | Y Y                           | / Y       |        | <u>'</u>            |               |                                | YD       |       |       | Y                             |               | Υ \            | / Y          |                 | YD Y              |
|                | 1 02 10 12,0,0,1,0,0 Hoxadillolosiphonyi                                     | AXYS MLA-010                       | MLA-010                   | t    | Υ     | Υ                      | Y           |                                  |              |                               |           |        | Υ                   |               |                                | YD       |       | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 165 2,3,3',5,5',6-Hexachlorobiphenyl                                     | EPA 1668                           | MLA-010                   |      | ·     |                        | Υ           | Υ                                | Υ            | ΥY                            | / Y       |        |                     |               |                                | YD       | 1     |       | Y                             |               | ΥY             | / Y          | Υ               | YD \              |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             |           |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           | YD '   | Υ                   |               |                                | YD       |       | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 166 2,3,4,4',5,6-Hexachlorobiphenyl                                      | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | ΥY                            | / Y       | YD     |                     |               |                                | YD       |       |       | Υ                             |               | ΥY             | / Y          | Υ               | YD Y              |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             | 1         |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           | YD '   | Υ                   |               |                                | YD       |       | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 167 2,3',4,4',5,5'-Hexachlorobiphenyl                                    | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | ΥY                            | / Y       | YD     |                     |               |                                | YD       |       |       | Υ                             |               | ΥY             | / Y          | Υ               | YD \              |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             |           |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           |        | Υ                   |               |                                | YD       |       | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 168 2,3',4,4',5',6-Hexachlorobiphenyl                                    | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | ΥY                            | / Y       |        |                     |               |                                | YD       |       |       | Υ                             |               | Υ \            | / Y          | Υ               | YD \              |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           |        | Υ                   |               |                                | YD       | _     | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 169 3,3',4,4',5,5'-Hexachlorobiphenyl                                    | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  | .,           | ., .                          |           |        | Υ                   |               |                                |          |       | Υ     |                               |               | ., .           |              |                 |                   |
|                |                                                                              | EPA 1668                           | MLA-010                   | _    |       |                        | Υ           | Y                                | Υ            |                               | / Y       | YD     |                     |               |                                | YD       | _     |       | Y                             |               | ΥY             | / Y          | Y               | YD Y              |
|                |                                                                              | EPA 8270<br>AXYS MLA-010           | MLA-007<br>MLA-010        | +    | Υ     | Υ                      | Υ           |                                  |              | Υ                             |           | YD '   | Y                   |               |                                | YD       |       | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 17 2,2',4-Trichlorobiphenyl                                              | AXYS MLA-007                       | MLA-007                   |      | ı     | Y                      | 1           |                                  |              |                               |           | _      | <u>'</u><br>Y       |               |                                | טז       | _     | Y     |                               |               |                |              |                 | 10                |
|                | PCB 17 2,2,4-Trichiorophienyi                                                | EPA 1668                           | MLA-010                   |      |       | ī                      | Υ           |                                  | V            | v v                           | / Y       |        | 1                   |               |                                | YD       | _     | 1     | Y                             |               | v \            | / Y          |                 | YD Y              |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | · ·                           |           | 10     |                     |               |                                |          | _     |       |                               |               | •              |              | <u> </u>        | 10                |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           | YD '   | Y                   |               |                                | YD       |       | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 170 2,2',3,3',4,4',5-Heptachlorobiphenyl                                 | AXYS MLA-901                       | MLA-901                   |      | Y     | <u> </u>               | •           |                                  |              |                               |           |        |                     |               |                                |          |       | -     |                               |               |                |              |                 |                   |
|                | ,-,-,-, , ,, ,                                                               | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | ΥY                            | / Y       | YD     |                     |               |                                | YD       |       |       | Υ                             |               | ΥY             | / Y          | Y               | YD Y              |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   | T    | Υ     | Υ                      | Y           |                                  |              |                               |           |        | Y                   |               |                                | YD       | T     | Υ     | Y                             |               |                |              |                 | YD                |
|                | PCB 170/190                                                                  | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  |              |                               |           |        | Υ                   |               |                                | 1        | _     | Υ     |                               |               |                |              |                 |                   |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             | /         |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                | PCB 171 2,2',3,3',4,4',6-Heptachlorobiphenyl                                 | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  |              |                               |           |        | Υ                   |               |                                |          |       | Υ     |                               |               |                |              |                 |                   |
|                |                                                                              | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | Y Y                           | / Y       | YD     |                     |               |                                | YD       |       |       | Υ                             |               | ΥY             | / Y          | Υ               | YD \              |
|                |                                                                              | EPA 8270                           | MLA-007                   |      |       |                        |             |                                  |              | Υ                             |           |        |                     |               |                                |          |       |       |                               |               |                |              |                 |                   |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     | Υ                      | Υ           |                                  |              |                               |           | YD '   | Υ                   |               |                                | YD       |       | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 172 2,2',3,3',4,5,5'-Heptachlorobiphenyl                                 | EPA 1668                           | MLA-010                   |      |       |                        | Υ           | Υ                                | Υ            | Y Y                           |           | YD     |                     |               |                                | YD       |       |       | Υ                             |               | Υ              | / Y          | Υ               | YD \              |
|                |                                                                              | AXYS MLA-010                       | MLA-010                   |      | Υ     |                        | Υ           |                                  |              |                               |           |        | Υ                   |               |                                | YD       |       | Υ     | Υ                             |               |                |              |                 | YD                |
|                | PCB 172/192                                                                  | AXYS MLA-007                       | MLA-007                   |      |       | Υ                      |             |                                  |              |                               |           | ,      | Y                   |               |                                |          |       | Υ     |                               |               |                |              |                 |                   |

|               | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp           | Serum          | Solids              |               |                |                              |                  |           | Tissue  |             |               |              |          | Urine | Water  | Water, Non-Potable                             |                |              |              |                 |                |
|---------------|------------------------------------------------------------------------------|------------------------------|--------------------|----------------|----------------|---------------------|---------------|----------------|------------------------------|------------------|-----------|---------|-------------|---------------|--------------|----------|-------|--------|------------------------------------------------|----------------|--------------|--------------|-----------------|----------------|
| ompound Class | Comment                                                                      | Accredited Method ID         | AXYS Method ID     | CALA           | CALA           | CALA California DPH | Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE    | Maine DOH | ANAB    | Florida DOH | Minnesota DOH | Virginia DGS | ANAB     | CALA  | CALA   | California DPH<br>Florida DOH<br>Minnesota DOH | lew Jersey DEP | New York DOH | /irginia DGS | Washington DE * | Maine DOH ANAB |
| Impound Class | Compound                                                                     | EPA 8270                     | MLA-007            | 0              | 0              | 0 0 1               | . 2           | z :            | z >                          | <u>&gt;</u><br>Y | 2         | 4 0     | ш           | 2 2           | : >          | ∢ (      | 0 0   | 2 0    | <u>)                                    </u>   | z              | Z            | >_           | <u> </u>        | <u> </u>       |
|               | PCB 173 2,2',3,3',4,5,6-Heptachlorobiphenyl                                  | EPA 1668                     | MLA-010            |                | _              | ,                   | /             | Υ              | Y Y                          | · Y              | ,         | /D      |             |               |              | YD       |       | -      | Y                                              | Υ              | Υ            | Υ            | Υ               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            |                |                |                     |               |                |                              | Y                |           |         |             |               |              |          |       | $\top$ |                                                |                |              |              |                 |                |
|               |                                                                              | AXYS MLA-010                 | MLA-010            | 1              | Υ              | Y                   | /             |                |                              |                  | ,         | /D Y    |             |               |              | YD       |       | Υ      | Υ                                              |                |              |              |                 | YD             |
|               | PCB 174 2,2',3,3',4,5,6'-Heptachlorobiphenyl                                 | EPA 1668                     | MLA-010            |                |                | ,                   |               | Υ              | ΥΥ                           | Υ                | Υ `       | _       |             |               |              | YD       |       | $\top$ | Υ                                              | Υ              | Υ            | Υ            | Υ               | YD Y           |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |                | Υ              | γ ,                 | /             |                |                              |                  |           | /D Y    |             |               |              | YD       |       | Υ      | Υ                                              |                |              |              |                 | YD             |
|               | PCB 174/181                                                                  | AXYS MLA-007                 | MLA-007            |                | T              | Υ                   |               |                |                              |                  |           | Y       |             |               |              |          |       | Υ      |                                                |                |              |              |                 |                |
|               |                                                                              | EPA 8270                     | MLA-007            | 1              | T              |                     |               |                |                              | Υ                |           |         |             |               |              |          |       | $\top$ |                                                |                |              |              |                 |                |
|               | PCB 175 2,2',3,3',4,5',6-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-007            | 1              | T              | Υ                   |               |                |                              |                  |           | Y       |             |               |              |          |       | Υ      |                                                |                |              |              |                 |                |
|               |                                                                              | EPA 1668                     | MLA-010            | 1              | T              | ,                   | /             | Υ              | Y Y                          | Υ                | Υ `       | /D      |             |               |              | YD       |       | $\top$ | Υ                                              | Υ              | Υ            | Υ            | Υ               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            |                |                |                     |               |                |                              | Υ                |           |         |             |               |              |          |       |        |                                                |                |              |              |                 |                |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |                | Υ              | Ϋ́                  | 1             |                |                              |                  | ,         | /D Y    |             |               |              | YD       |       | Υ      | Υ                                              |                |              |              |                 | YD             |
|               | PCB 176 2,2',3,3',4,6,6'-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-007            |                | T              | Υ                   |               |                |                              |                  |           | Y       |             |               |              |          |       | Υ      |                                                |                |              |              |                 |                |
|               |                                                                              | EPA 1668                     | MLA-010            |                |                | ,                   | /             | Υ              | ΥΥ                           | Υ                | Υ '       | /D      |             |               |              | YD       |       | $\top$ | Υ                                              | Υ              | Υ            | Υ            | Υ               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            |                |                |                     |               |                |                              | Υ                |           | T       |             |               |              |          |       | $\top$ |                                                |                |              |              |                 |                |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |                | Υ              | γ ,                 | /             |                |                              |                  | ,         | /D Y    |             |               |              | YD       |       | Υ      | Υ                                              |                |              |              |                 | YD             |
|               | PCB 177 2,2',3,3',4,5',6'-Heptachlorobiphenyl                                | AXYS MLA-007                 | MLA-007            | <del>- t</del> | Ť              | Y                   |               |                |                              |                  |           | Y       |             |               |              |          | _     | Y      |                                                |                |              |              |                 |                |
|               | ,- ,-,- ,-,                                                                  | EPA 1668                     | MLA-010            |                | 7              | ,                   | /             | Υ              | Y Y                          | Y                | Υ '       | /D      |             |               |              | YD       |       | Ť      | Υ                                              | Υ              | Υ            | Υ            | Υ               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            |                | 7              |                     |               |                |                              | Y                |           |         |             |               |              |          |       | $\pm$  |                                                |                |              |              |                 |                |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |                | Υ              | Y                   | /             |                |                              |                  | ,         | /D Y    |             |               |              | YD       | -     | Υ      | Υ                                              |                |              |              |                 | YD             |
|               | PCB 178 2,2',3,3',5,5',6-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-007            |                | ÷              | Y                   |               |                |                              |                  |           | Y       |             |               |              |          | _     | Y      |                                                |                |              |              |                 |                |
|               | 1 05 110 2,2,0,0,0,0,0 to tropicomorosiphony.                                | EPA 1668                     | MLA-010            |                | h              |                     | ,             | Υ              | V V                          | · v              | Υ '       | /D      |             |               |              | YD       |       |        | Y                                              |                | Y            | Υ            | Y               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            | t              | <del>-</del> † |                     |               |                | · · ·                        | Y                |           |         |             |               |              |          |       | +      |                                                |                | <u> </u>     | <u> </u>     | <u> </u>        |                |
|               |                                                                              | AXYS MLA-010                 | MLA-010            | t              | Υ              | Υ ,                 | ,             |                |                              |                  | ,         | /D Y    |             |               |              | YD       |       | Υ      | Y                                              |                |              |              |                 | YD             |
|               | PCB 179 2,2',3,3',5,6,6'-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-017            | <del>-  </del> | ∸╁             | Y                   |               |                |                              |                  |           | Y       |             |               |              | 10       | _     | Y      |                                                |                |              |              |                 |                |
|               | TOD 179 2,2,0,0,0,0-rreptachioropiphenyi                                     | EPA 1668                     | MLA-010            | <del>-  </del> |                | <u>'</u>            | /             | Υ              | V V                          | · v              | Υ '       |         |             |               |              | YD       |       | 十      | Y                                              | · ·            | Y            | Υ            |                 | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            | _              | _              |                     |               | -              |                              | Y                |           |         |             |               |              | 10       | -     | +      |                                                |                |              | <u> </u>     | <u> </u>        |                |
|               |                                                                              | AXYS MLA-010                 | MLA-007<br>MLA-010 | _              | Υ              | Υ ,                 | ,             |                |                              |                  |           | /D Y    |             |               |              | YD       | -     | Υ      | Y                                              |                |              |              |                 | YD             |
|               | PCB 18 2,2',5-Trichlorobiphenyl                                              | AXYS MLA-007                 | MLA-010            |                | -+             | Y                   |               |                |                              |                  |           | V       |             |               |              | ID       | _     | Y      |                                                |                |              |              |                 |                |
|               | FOB 16 2,2,3-Thichiorobiphenyi                                               | EPA 1668                     | MLA-007<br>MLA-010 |                | _              | ,                   | ,             | V              | v v                          |                  | Υ ,       | /D      |             |               |              | YD       | _     | ÷      | Y                                              | V              | V            | Υ            |                 | YD Y           |
|               |                                                                              | EPA 1666<br>EPA 8270         | MLA-010<br>MLA-007 |                | _              |                     | (             | T              | 1 1                          | Y                | 1         | U       |             |               |              | עז       | _     | +      |                                                | ı              | 1            |              |                 | ו עו           |
|               |                                                                              | AXYS MLA-010                 | MLA-007<br>MLA-010 |                | Υ              | Υ ,                 | ,             |                |                              |                  |           | /D Y    |             |               |              | YD       |       | Υ      | Y                                              |                |              |              |                 | YD             |
|               | PCB 180 2,2',3,4,4',5,5'-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-007            | <del></del>    | -              | Y                   |               |                |                              |                  |           | Y       |             |               |              | 10       | _     | Y      |                                                |                |              |              |                 |                |
|               | 1 05 100 2,2,0,4,4,0,0 -1 toptactitionouphionyt                              | AXYS MLA-901                 | MLA-901            | $\dashv$       | Υ              | 1                   |               |                |                              |                  |           | +       |             |               |              | $\dashv$ | +     | +      |                                                |                |              |              |                 |                |
|               |                                                                              | EPA 1668                     | MLA-901<br>MLA-010 |                | ┿              | ,                   | ,             | V              | V V                          | · v              | Υ ,       | /D      |             |               |              | YD       |       | +      | Y                                              |                | V            | Υ            |                 | YD Y           |
|               |                                                                              | EPA 1000<br>EPA 8270         | MLA-010<br>MLA-007 | <del></del>    |                |                     |               |                | 1 1                          | Y                |           | עו      |             |               |              | יטז      |       | +      |                                                |                |              | <u> </u>     |                 | ו עז           |
|               |                                                                              | AXYS MLA-010                 | MLA-007<br>MLA-010 | <del></del>    | Υ              | Y                   | ,             |                |                              |                  |           | /D Y    |             |               |              | YD       |       | Υ      | Y                                              |                |              |              |                 | YD             |
|               | PCB 181 2,2',3,4,4',5,6-Heptachlorobiphenyl                                  | EPA 1668                     | MLA-010            |                | -              | 1                   |               | V              | v v                          | · v              | Υ ,       | _       |             |               |              | YD       | _     | ÷      | Y                                              | V              | V            | Υ            |                 | YD Y           |
|               | PCB 161 2,2,3,4,4,5,6-neptachioropiphenyi                                    | AXYS MLA-010                 | MLA-010<br>MLA-010 |                | Υ              |                     | <u>'</u>      | T              | 1 1                          | T                |           | /D Y    |             |               |              | YD       |       | Υ      | Y                                              | ı              | 1            |              |                 | YD 1           |
|               | DCD 192 2 2 2 4 4 5 6 Hentschlershiphend                                     |                              |                    |                | 1              |                     |               | V              | v v                          | · v              |           | _       |             |               |              | YD       | _     | +      | Y                                              | V              | V            |              |                 |                |
|               | PCB 182 2,2',3,4,4',5,6'-Heptachlorobiphenyl                                 | EPA 1668                     | MLA-010            |                | .,             | ```                 |               | Y              | Y Y                          | Y                | Υ `       | _       |             |               |              | _        | -     | +      |                                                | Y              | Y            | Υ            | <u>r</u>        | YD Y           |
|               | DCR 493 2 2 3 4 4! E! 6 Hoptock!                                             | AXYS MLA-010                 | MLA-010            | +              | Υ              | Y '                 | ſ             |                |                              |                  |           | /D Y    |             |               |              | YD       | _     | Y      | Y                                              |                |              |              |                 | YD             |
|               | PCB 183 2,2',3,4,4',5',6-Heptachlorobiphenyl                                 | AXYS MLA-007                 | MLA-007            |                | +              |                     | ,             | V              | V 1                          |                  | V ,       | /D Y    |             |               |              | VD       | +     | +      | Y                                              |                | .,           |              |                 |                |
|               |                                                                              | EPA 1668                     | MLA-010            | +              | $\dashv$       |                     | 1             | Y              | r Y                          |                  | Υ `       | עו      |             |               |              | YD       | -     | +      | <u> </u>                                       | Y              | Y            | Υ            | <u>r</u>        | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            | +              | V              | ٧, ,                | ,             |                |                              | Υ                |           | /D \    |             |               |              | V/D      | +     | +      |                                                |                |              |              |                 |                |
|               | POP 404 0 010 4 410 0111 - 1 - 1 - 1 - 1 - 1                                 | AXYS MLA-010                 | MLA-010            | -              | Υ              | Υ ,                 |               |                |                              | ,                |           | /D Y    |             |               |              | YD       | +     | Υ      | Y                                              |                | .,           |              |                 | YD             |
|               | PCB 184 2,2',3,4,4',6,6'-Heptachlorobiphenyl                                 | EPA 1668                     | MLA-010            |                | +              | •                   | r             | Y              | Y Y                          |                  | Υ `       | יטי     |             |               |              | YD       |       | +      | Y                                              | Y              | Υ            | Υ            | Y               | YD Y           |
|               |                                                                              | EPA 8270                     | MLA-007            |                |                |                     | ,             |                |                              | Υ                |           | <u></u> |             |               |              | \/E      | -     | +      |                                                |                |              |              |                 |                |
|               | PCB 185 2,2',3,4,5,5',6-Heptachlorobiphenyl                                  | AXYS MLA-010<br>AXYS MLA-007 | MLA-010<br>MLA-007 |                | Υ              | Υ Υ                 | r             |                |                              |                  |           | /D Y    |             |               |              | YD       | _     | Y      | Y                                              |                |              |              |                 | YD             |
|               |                                                                              |                              |                    |                |                | Υ                   |               |                |                              |                  |           |         |             |               |              |          |       |        |                                                |                |              |              |                 |                |

| PRASTE   MA-039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | Pulp | Serum | Solids            |            |                                 |              |             |           | i<br>F | D<br>0<br>0<br>0 |               |             | Lripe      | Water | Water, Non-Potable |            |                                 |              |                                             |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|-------------------|------------|---------------------------------|--------------|-------------|-----------|--------|------------------|---------------|-------------|------------|-------|--------------------|------------|---------------------------------|--------------|---------------------------------------------|---------------------------------------|
| PRASTE   MA-039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Compound Class | Company                                                                      | Approdited Mothed ID | AVVC Method ID | ALA  | ALA   | ALA:alifornia DPH | lorida DOH | linnesota DOH<br>lew Jersey DEP | lew York DOH | irginia DGS | laine DOH | NAB    | orida DOH        | linnesota DOH | irginia DGS | NAB        | ALA   | alifornia DPH      | lorida DOH | linnesota DOH<br>lew Jersey DEP | lew York DOH | irginia DGS<br><mark>/ashington DE *</mark> | Maine DOH<br>ANAB<br>Pennsylvania DEP |
| PA-1502   NLA-070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compound Class | Compound                                                                     |                      |                | O    | O     | 0 0               | <u> </u>   | ΣZ                              | Z            |             |           | ∢ (    | ) <u>II</u>      | ≥ z           | : >         | < C        | 0     | 0                  | <u>ш</u>   | ≥ z                             | Z            | > 5                                         | <u> </u>                              |
| EPA 8770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | YD         | Υ     | ,                  | Υ          |                                 |              |                                             | YD                                    |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect |                | PCB 186 2,2',3,4,5,6,6'-Heptachlorobiphenyl                                  | EPA 1668             | MLA-010        |      |       |                   | Υ          | Υ                               | Υ            | Υ Υ         | / Y       | YD     |                  |               | ,           | YD         |       |                    | Υ          | Υ                               | Υ            | ΥΥ                                          | YD Y                                  |
| PCB 167 2.2 3.4 5.5 Pringlactionologisterol PAPS MLA-001 V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              | EPA 8270             | MLA-007        |      |       |                   |            |                                 |              | )           | 1         |        |                  |               |             |            |       |                    |            |                                 |              |                                             |                                       |
| EPA 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | YD         | Υ     | ′                  | Υ          |                                 |              |                                             | YD                                    |
| CCB 187 27 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | PCB 187 2,2',3,4',5,5',6-Heptachlorobiphenyl                                 |                      |                |      | Υ     |                   |            |                                 |              |             |           |        |                  |               |             |            |       |                    |            |                                 |              |                                             |                                       |
| PCB 187/182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                              |                      | +              |      |       |                   |            | Υ                               | Υ            | Υ \         |           | _      |                  |               |             |            |       |                    |            | Y                               | Υ            | Y Y                                         |                                       |
| Final Agr   MLA-607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                              |                      |                |      | Υ     |                   | Υ          |                                 |              |             |           | _      |                  |               |             | YD         | _     | _                  | Y          |                                 |              |                                             | YD                                    |
| EPA 1696   M.A010   Y Y Y Y Y Y D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | PCB 187/182                                                                  |                      | +              | _    |       | Υ                 |            |                                 |              |             |           |        | Y                |               |             |            | Υ     | _                  |            |                                 |              |                                             |                                       |
| EPA 8277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                              |                      | +              | 1    |       |                   |            |                                 |              |             |           |        |                  |               |             | _          |       |                    |            |                                 |              |                                             |                                       |
| AVS MLA-010   MLA-010   V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | PCB 188 2,2',3,4',5,6,6'-Heptachlorobiphenyl                                 |                      | +              | 1    |       |                   | Y          | Y                               | Y            |             |           | YD     |                  |               |             | YD         |       |                    | Y          | Y                               | <u>Y</u>     | <u>Y Y</u>                                  | YD Y                                  |
| PCB 192 2.3.7.4.4.5.5*-Inspisar/biorolephenyl   AAYS MLA-607   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                              |                      |                |      | ٧.    |                   |            |                                 |              |             |           | VD 1   | .,               |               |             | ·/D        |       | ,                  |            |                                 |              |                                             |                                       |
| EPA 1886   MLA-010   Y Y Y Y Y Y D   Y D   Y Y Y Y Y Y D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | DOD 400 0 0 0 1 4 4 5 5 1 Heater-blanchischer d                              |                      | +              | +    | Y     |                   | Y          |                                 |              |             |           | עז     | Υ                |               |             | עז         | _     | _                  | <u> </u>   |                                 |              |                                             |                                       |
| EPA 8270   MLA-010   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | PCB 189 2,3,3 ,4,4 ,5,5 - Heptachiorobiphenyi                                |                      | +              |      |       | Y                 | V          | V                               | · V          | V \         | / V       | VD     | Y                |               |             | <b>/</b> D | Y     | +                  |            |                                 |              |                                             | VD V                                  |
| NYTS MLA-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              |                      |                |      |       |                   |            |                                 |              |             |           | ID     |                  |               |             | 10         | -     | +                  |            |                                 | <u> </u>     | <del></del>                                 |                                       |
| PCB 19 2 / 2 6-Trichtorobiphemy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                              |                      |                |      | ~     | ~                 | V          |                                 |              |             |           | VD '   | v                |               | -           | ٧D         |       | ,                  |            |                                 |              |                                             | VD                                    |
| EPA 1688   MLA-010   V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | PCB 19 2 2' 6-Trichlorohiphenyl                                              |                      | +              | t    | ÷     |                   |            |                                 |              |             |           | _      |                  |               |             | 10         | _     | _                  |            |                                 |              |                                             |                                       |
| EPA 2270   MILA-007   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | TOD TO 2,2,0 Thomorouphony                                                   |                      |                |      |       | <u>'</u>          | Υ          | Y                               | Υ            | Υ ١         | / Y       |        |                  |               | ,           | YD         | Ť     | +                  |            | Y                               |              | <u>ү</u> ү                                  | YD Y                                  |
| ANYS MLA-010   MLA-010   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              |                      |                |      |       |                   |            |                                 |              |             |           |        |                  |               |             |            |       | +                  | <u> </u>   |                                 | <u> </u>     | <del></del>                                 |                                       |
| PCB 190 2.3.3.4.4.5.6-Heptachlorobiphenyl   EPA 1688   MLA-010   Y Y Y Y Y Y D VD   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                              |                      |                |      | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | YD         | Y     | ,                  | Y          |                                 |              |                                             | YD                                    |
| AXYS MLA-010   MLA-010   Y Y Y   Y   Y   Y   Y   Y   Y   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | PCB 190 2.3.3'.4.4'.5.6-Heptachlorobiphenyl                                  |                      | +              |      |       |                   |            | Υ                               | Υ            | ΥY          |           | _      |                  |               |             | _          |       |                    |            | Y                               | Y            | ΥΥ                                          |                                       |
| PCB 191 2,3;3;4,4;5;6-Heptachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                              |                      | +              |      | Υ     | Υ                 |            |                                 |              | -           |           | _      | Y                |               |             |            | Υ     | ,                  |            |                                 |              |                                             |                                       |
| EPA 1688   MLA-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | PCB 191 2,3,3',4,4',5',6-Heptachlorobiphenyl                                 | AXYS MLA-007         | +              |      |       | Υ                 |            |                                 |              |             |           | ,      | Y                |               |             |            | Υ     | ,                  |            |                                 |              |                                             |                                       |
| AXYS MLA-010   MLA-010   Y Y Y Y Y Y D Y D Y Y D Y Y Y Y Y D Y D Y Y D Y Y D Y D Y Y D Y D Y Y D Y D Y Y D Y D Y D Y Y D Y D Y D D Y Y Y D Y D D Y Y D D Y D D D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                              | EPA 1668             | MLA-010        |      |       |                   | Υ          | Υ                               | Υ            | ΥY          | / Y       | YD     |                  |               | ,           | ΥD         |       |                    | Υ          | Υ                               | Υ            | YY                                          | YD Y                                  |
| PCB 192 2,3,3',4,5,5',6-Heptachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                              | EPA 8270             | MLA-007        |      |       |                   |            |                                 |              | )           | ′         |        |                  |               |             |            |       |                    |            |                                 |              |                                             |                                       |
| AXYS MLA-010   MLA-010   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | ΥD         | Υ     | ,                  | Y          |                                 |              |                                             | YD                                    |
| AXYS MLA-007   MLA-007   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | PCB 192 2,3,3',4,5,5',6-Heptachlorobiphenyl                                  | EPA 1668             | MLA-010        |      |       |                   | Υ          | Υ                               | Υ            | ΥΥ          | / Y       | YD     |                  |               |             |            |       |                    | Υ          | Υ                               | Υ            | ΥΥ                                          | YD Y                                  |
| EPA 1668 MLA-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | YD         | Υ     | , L                | Υ          |                                 |              |                                             | YD                                    |
| EPA 8270   MLA-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | PCB 193 2,3,3',4',5,5',6-Heptachlorobiphenyl                                 |                      |                |      |       | Υ                 |            |                                 |              |             |           | ,      | Y                |               |             |            | Υ     | ,                  |            |                                 |              |                                             |                                       |
| AXYS MLA-010   MLA-010   V Y Y Y   Y V Y   Y V Y   Y V Y Y Y V Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                              |                      |                |      |       |                   | Υ          | Υ                               | Υ            |             |           | YD     |                  |               | ,           | YD         |       |                    | Y          | Y                               | Y            | Y Y                                         | YD Y                                  |
| PCB 194 2,2',3,3',4,4',5,5'-Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                              |                      |                |      |       |                   |            |                                 |              | `           |           |        |                  |               |             |            |       |                    |            |                                 |              |                                             |                                       |
| AXYS MLA-901   MLA-901   Y   Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              |                      | +              |      | Υ     |                   | Υ          |                                 |              |             |           | _      |                  |               | ,           | YD         | _     | _                  | Y          |                                 |              |                                             | YD                                    |
| EPA 1668   MLA-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | PCB 194 2,2',3,3',4,4',5,5'-Octachlorobiphenyl                               |                      | +              | _    |       | Υ                 |            |                                 |              |             |           |        | Y                |               |             |            | Υ     | _                  |            |                                 |              |                                             |                                       |
| EPA 8270   MLA-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                              |                      | +              | 1    | Υ     |                   |            |                                 |              |             |           | _      |                  |               |             | _          | -     | _                  |            |                                 |              |                                             |                                       |
| AXYS MLA-010   MLA-010   Y Y Y Y   Y Y Y   Y Y Y   Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                              |                      |                |      |       |                   | Y          | Y                               | Υ            |             |           | YD     |                  |               |             | YD         | -     |                    | <u>Y</u>   | Y                               | <u>Y</u>     | <u>Y Y</u>                                  | YD Y                                  |
| PCB 195 2,2',3,3',4,4',5,6-Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                              |                      |                | 1    |       | .,                |            |                                 |              |             |           |        |                  |               |             |            |       | _                  |            |                                 |              |                                             |                                       |
| EPA 1668   MLA-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | POD 405 0 010 014 415 0 0 4 414 415 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4            |                      |                |      | Υ     |                   | Y          |                                 |              |             |           | _      |                  |               |             | YD         |       |                    | Y          |                                 |              |                                             | YD                                    |
| EPA 8270   MLA-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | PCB 195 2,2 ,3,3 ,4,4 ,5,6-Octachlorobiphenyl                                |                      |                |      |       | Y                 | V          | V                               | · V          | V \         | / V       |        | Y                |               |             | <b>/</b> D | Y     | +                  |            |                                 |              |                                             | VD V                                  |
| AXYS MLA-010 MLA-010 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                              |                      |                | +    |       |                   | Y          | r                               | Y            |             |           | עז     |                  |               |             | עז         | -     | +                  | <u> </u>   | Y                               | <u> </u>     | <u> </u>                                    | י טו                                  |
| PCB 196 2,2',3,3',4,4',5,6'-Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                              |                      | +              |      | V     | V                 | V          |                                 |              | 1           |           | VD '   | ·                |               |             | <b>/</b> D |       | ,                  |            |                                 |              |                                             | VD                                    |
| AXYS MLA-010 MLA-010 Y Y Y Y Y YD Y YD Y YD Y YD Y YD Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | PCB 196 2 2' 3 3' 4 4' 5 6'-Octachlorobinhenyl                               |                      | +              |      | 1     | -                 |            | ~                               | · v          | y \         |           | _      |                  |               |             | _          | +1    | +                  |            | ~                               |              |                                             |                                       |
| PCB 196/203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1 05 100 2,2,0,0,7,7,0,0 Octavillotophienyi                                  |                      |                |      | · ·   | Y                 |            |                                 |              |             |           | _      | Υ                |               |             | _          |       | ,                  |            | 1                               |              | <u></u>                                     |                                       |
| EPA 8270   MLA-007   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | PCB 196/203                                                                  |                      | +              |      | -     |                   |            |                                 |              |             |           | _      |                  |               |             |            |       |                    |            |                                 |              |                                             |                                       |
| PCB 197 2,2',3,3',4,4',6,6'-Octachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | . 55 .30/200                                                                 |                      | +              |      |       | <u> </u>          |            |                                 |              | ,           | ,         |        |                  |               |             | -          | +     | +                  |            |                                 |              |                                             |                                       |
| EPA 1668         MLA-010         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | PCB 197 2 2' 3 3' 4 4' 6 6'-Octachlorobinhenyl                               |                      |                |      |       | Υ                 |            |                                 |              |             |           | +,     | Y                |               |             | $\dashv$   | V     | ,                  |            |                                 |              |                                             |                                       |
| EPA 8270 MLA-007 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | . 55 .57 2,2,0,0,7,7,0,0 Cottachiorophicityi                                 |                      | +              |      |       | <u> </u>          | Υ          | ٧                               | Υ            | Υ ١         | ,         |        | ·                |               | ,           | YD         | +     | +                  |            | · ·                             |              | Y Y                                         | YD Y                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                              |                      |                | _    |       |                   |            |                                 |              |             |           | -      |                  |               |             | -          | +     | 1                  | <u> </u>   |                                 | <u> </u>     | <del></del>                                 |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                              | AXYS MLA-010         | MLA-010        | _    | Υ     | Υ                 | Υ          |                                 |              |             |           | YD '   | Y                |               | ,           | YD         | ~     | ,                  | Υ          |                                 |              |                                             | YD.                                   |

|              | file ref.: ACC-101 Rev. 30                       |                      |                    | Pulp     | Serum    | Solids   |                               |               |                |              |                 |           |      | Tissue     |                              |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Urine    | Water          | Water, Non-Potable            |               |                |                              |                 |                   |
|--------------|--------------------------------------------------|----------------------|--------------------|----------|----------|----------|-------------------------------|---------------|----------------|--------------|-----------------|-----------|------|------------|------------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------------------------|---------------|----------------|------------------------------|-----------------|-------------------|
| mpound Class | Compound                                         | Accredited Method ID | AXYS Method ID     | CALA     | CALA     | CALA     | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | New York DOH | Washington DE   | Maine DOH | ANAB | CALA       | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS | ANAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CALA     | CALA           | California DPH<br>Florida DOH | Minnesota DOH | lew Jersey DEP | New York DOH<br>Virginia DGS | Vashington DE * | Maine DOH<br>ANAB |
| npound Class | PCB 198 2,2',3,3',4,5,5',6-Octachlorobiphenyl    | AXYS MLA-007         | MLA-007            | О        | 0        | Y        | ОШ                            | 2             | z .            | z >          | _ >             |           | ⋖    | Y          | <u>⊩ ≥</u>                   | : Z            | >            | 4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Y              | <u>3 L</u>                    | 2             | <u>z</u> .     | <u> </u>                     | <u> </u>        | ≥ ∢               |
|              | 1 05 100 2,2,0,0,1,0,0 to coldoniolosipholiyi    | EPA 1668             | MLA-010            |          |          | <u> </u> | Υ                             |               | Υ              | ΥY           | ′ Y             | Y         | YD   | •          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ |                | Y                             |               | Υ              | ΥΥ                           | / Y             | YD                |
|              |                                                  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Y               |           |      |            |                              |                |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$   | $\dashv$       |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 199 2,2',3,3',4,5,5',6'-Octachlorobiphenyl   | AXYS MLA-007         | MLA-007            |          |          | Υ        |                               |               |                |              |                 |           |      | Υ          |                              |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T        | Υ              |                               |               |                |                              |                 |                   |
|              | , ,                                              | EPA 1668             | MLA-010            |          |          |          | Υ                             |               | Υ              | ΥY           | ′ Y             |           | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |                | Υ                             |               | Υ              | ΥY                           | ′ Y             | YD                |
|              |                                                  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Υ               |           |      |            |                              |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | $\Box$         |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        | Υ              | Υ                             |               |                |                              |                 | YD                |
|              | PCB 2 3-Chlorobiphenyl                           | EPA 1668             | MLA-010            |          |          |          | Υ                             |               | Υ              | ΥY           | ′ Y             | Υ         |      |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 丁        | T              | Υ                             |               | Υ              | ΥΥ                           | / Y             |                   |
|              |                                                  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Υ               |           |      |            |                              |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$   |                |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg$   | Υ              | Υ                             |               |                |                              |                 | YD                |
|              | PCB 20 2,3,3'-Trichlorobiphenyl                  | EPA 1668             | MLA-010            |          |          |          | Υ                             |               | Υ              | ΥY           | ′ Y             | Υ         | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |                | Υ                             |               | Υ              | ΥY                           | ′ Y             | YD                |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        | Υ              | Υ                             |               |                |                              |                 | YD                |
|              | PCB 200 2,2',3,3',4,5,6,6'-Octachlorobiphenyl    | EPA 1668             | MLA-010            |          |          |          | Υ                             |               | Υ              | ΥY           | ′ Y             | Υ         | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg$   | 十              | Y                             |               | Υ              | ΥΥ                           | ′ Y             | YD                |
|              | , , , , , , , , , , , , , , , , , , , ,          | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Y               |           |      |            |                              |                |              | $\exists$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\neg$   | 十              |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg$   | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 201 2,2',3,3',4,5',6,6'-Octachlorobiphenyl   | AXYS MLA-007         | MLA-007            |          |          | Υ        |                               |               |                |              |                 |           |      | Υ          |                              |                |              | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\neg$   | Υ              |                               |               |                |                              |                 |                   |
|              |                                                  | EPA 1668             | MLA-010            |          |          |          | Y                             |               | Υ              | Y Y          | ′ Y             |           | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neg$   | Ť              | Y                             |               | Υ              | ΥΥ                           | / Y             | YD                |
|              |                                                  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Y               |           |      |            |                              |                |              | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\neg$   | $\neg$         |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Y                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 202 2,2',3,3',5,5',6,6'-Octachlorobiphenyl   | EPA 1668             | MLA-010            |          |          |          | Y                             |               | Υ              | Y Y          | ′ Y             | Y         | _    |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ |                | Y                             |               | Υ              | ΥΥ                           | / Y             | YD                |
|              | 1 05 252 2,2 10,0 10,0 10,0 Octaoniorosipholis   | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | Y               |           |      |            |                              |                |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dashv$ | +              | <u>-</u>                      |               | •              |                              | <u> </u>        |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Y                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 203 2,2',3,4,4',5,5',6-Octachlorobiphenyl    | EPA 1668             | MLA-010            |          | Ė        | <u> </u> | Y                             |               | Υ              | v v          | , v             |           |      | <u> </u>   |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | ÷              | Y                             |               | v ·            | <del></del>                  | / Y             |                   |
|              | 1 OB 203 2,2 ,3,4,4 ,3,3 ,0-Octacillorobiphenyi  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Y                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               | <u> </u>       | <u></u>                      | <u> </u>        | YD                |
|              | PCB 204 2,2',3,4,4',5,6,6'-Octachlorobiphenyl    | EPA 1668             | MLA-010            |          | <u>'</u> | <u> </u> | Y                             |               | Υ              | V V          | , A             | · Y       |      |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | $\dot{	o}$     | Y                             |               | Υ .            | ΥΥ                           |                 | YD                |
|              | 1 OB 204 2,2,3,4,4,0,0,0 -Octae/iio/ob/prierry/  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | - <u>'</u><br>Y |           | 10   |            |                              |                |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\dashv$ | $\dashv$       | <u> </u>                      |               | •              | <u></u>                      | <u> </u>        |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 205 2,3,3',4,4',5,5',6-Octachlorobiphenyl    | AXYS MLA-007         | MLA-007            |          | <u>'</u> | Y        |                               |               |                |              |                 |           | 10   | · ·        |                              |                |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | Y              | <u> </u>                      |               |                |                              |                 |                   |
|              | 1 OB 200 2,5,5,4,4,5,5,0-Octabiliotobiphenyi     | EPA 1668             | MLA-010            |          |          | -        | Y                             |               | V .            | ΥY           | , v             |           | VD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | $\dot{	o}$     | Y                             |               | v -            | ΥΥ                           | <del></del>     | YD                |
|              |                                                  | EPA 8270             | MLA-010            |          |          |          |                               |               | ı              | 1 1          | Y               |           | טז   |            |                              |                |              | יוו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\dashv$ | $\dashv$       |                               |               | ī              |                              |                 | 10                |
|              |                                                  | AXYS MLA-010         | MLA-010            |          | Υ        | Υ        | Υ                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 206 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl | AXYS MLA-007         | MLA-007            |          | '        | Y        |                               |               |                |              |                 |           | וטו  | Y          |                              |                |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        | Y              | <u> </u>                      |               |                |                              |                 |                   |
|              | PGB 200 2,2 ,3,3 ,4,4 ,3,3 ,0-Nonachiorophienyi  | EPA 1668             | MLA-010            |          |          | -        | Y                             |               | Υ              | v \          | , v             |           | VD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | ᅷ              | Y                             |               | v -            | <del></del>                  | / Y             | YD                |
|              |                                                  | EPA 8270             | MLA-007            |          |          |          |                               |               |                |              | <u>'</u><br>Y   |           | וטו  |            |                              |                |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | $\dashv$       | <u></u>                       |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-007            |          | Υ        | Υ        | Y                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 207 2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl | AXYS MLA-010         | MLA-010            |          | ī        | Y        |                               |               |                |              |                 |           | טז   | Y          |                              |                |              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | Y              | <del></del>                   |               |                |                              |                 | דו                |
|              | PGB 207 2,2,3,3,4,4,3,0,0 -Nonachiorophienyi     |                      |                    |          |          | <u> </u> | Y                             |               | Υ              | V \          | , v             | ,         | YD   | '          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | <u>-</u> +     | Y                             |               | v -            | V \                          | / Y             | YD                |
|              |                                                  | EPA 1668<br>EPA 8270 | MLA-010<br>MLA-007 |          |          |          | Y                             |               | ř              | Y Y          | Y<br>Y          |           | עז   |            |                              |                |              | שו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | +              | <u> </u>                      |               | Y              | <u>r r</u>                   | <u> </u>        |                   |
|              |                                                  | AXYS MLA-010         |                    |          | Υ        | Υ        | V                             |               |                |              | - 1             |           | YD   | Υ          |                              |                |              | VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ | _              | Y                             |               |                |                              |                 | VD                |
|              | BOD COO COLO CILA E ELO CIAN COLO LICALIDADO     |                      | MLA-010            | $\vdash$ | Y        | _        | Y                             |               |                |              |                 |           | עז   | Y          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | Y              | <u> </u>                      |               |                |                              |                 | YD                |
|              | PCB 208 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl | AXYS MLA-007         | MLA-007            | $\vdash$ |          | Υ        | \/                            |               | V .            | v ,          | , ,,            |           | VD   | Y          |                              |                |              | VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | Υ              |                               |               | V .            | <del>, ,</del>               | , v             |                   |
|              |                                                  | EPA 1668             | MLA-010            | $\vdash$ |          | 1        | Y                             |               | Υ              | r Y          |                 |           | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | $\dashv$       | Υ                             | —             | Y              | Y Y                          | <u> </u>        | YD                |
|              |                                                  | EPA 8270             | MLA-007            | $\vdash$ | ١,       | V        |                               |               |                |              | Υ               |           | V2   | \ <u>'</u> |                              |                |              | VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | <del>,  </del> |                               |               |                |                              |                 |                   |
|              | DOD 600 D I I                                    | AXYS MLA-010         | MLA-010            | $\vdash$ | Υ        | _        | Y                             |               |                |              |                 |           | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        | Y              | Υ                             |               |                |                              |                 | YD                |
|              | PCB 209 Decachlorobiphenyl                       | AXYS MLA-007         | MLA-007            | $\vdash$ |          | Υ        |                               |               |                | ., .         | ,               |           | 1/5  | Υ          |                              |                |              | \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \right | +        | Υ              | <del></del>                   |               |                | <del></del>                  |                 |                   |
|              |                                                  | EPA 1668             | MLA-010            | Ш        |          |          | Y                             |               | Υ              | ΥY           |                 |           | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | $\dashv$       | Υ                             |               | Υ              | r Y                          | / Y             | YD                |
|              |                                                  | EPA 8270             | MLA-007            | Ш        | <u>.</u> | l        |                               |               |                |              | Y               |           |      |            |                              |                |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +        |                |                               |               |                |                              |                 |                   |
|              |                                                  | AXYS MLA-010         | MLA-010            | $\vdash$ | Υ        | Υ        | Y                             |               |                |              |                 |           | YD   | Υ          |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +        | Υ              | Y                             |               |                |                              |                 | YD                |
|              | PCB 21 2,3,4-Trichlorobiphenyl                   | EPA 1668             | MLA-010            | 1        |          | 1        | Y                             |               | Υ              | ΥY           | Y               | Y         | YD   |            |                              |                |              | YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                | Υ                             |               | Y              | Y Y                          | / Y             | YD<br>YD          |

|               | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | Pulp | Serum | Solids                 |             |                                 |              |              |                            |      | Tissue              |               |                |                      | Urine | Water | Water, Non-Potable            |               |                |              |                 |                                       |
|---------------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|------------------------|-------------|---------------------------------|--------------|--------------|----------------------------|------|---------------------|---------------|----------------|----------------------|-------|-------|-------------------------------|---------------|----------------|--------------|-----------------|---------------------------------------|
| ompound Class | Compound                                                                     | Accredited Method ID | AXYS Method ID | CALA | CALA  | CALA<br>California DPH | Florida DOH | Minnesota DOH<br>New Jersey DEP | Vew York DOH | Virginia DGS | wasnington DE<br>Maine DOH | ANAB | CALA<br>Florida DOH | Minnesota DOH | New Jersey DEP | viiginia DGS<br>ANAB | CALA  | CALA  | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | /irginia DGS | Washington DE * | Maine DOH<br>ANAB<br>Pennsylvania DFP |
| ompound Class | PCB 22 2,3,4'-Trichlorobiphenyl                                              | AXYS MLA-007         | MLA-007        | 0    | 0     | Y                      | ш.          | 2 2                             |              | > :          | > 2                        | ∢    | Y<br>Y              | 2             | 2 ;            | > <                  | 0     | Υ     | 0 1                           | 2 .           | <u> </u>       | >            | > 2             | 2 4 11                                |
|               | 1 05 22 2,0,1 11101101051p11011y1                                            | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Y                             |               | Y Y            | Y            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ .                        |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              | -                          | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 23 2,3,5-Trichlorobiphenyl                                               | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | Υ                          | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 23/34                                                                    | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               | PCB 24 2,3,6-Trichlorobiphenyl                                               | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 24/27                                                                    | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               | PCB 25 2,3',4-Trichlorobiphenyl                                              | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 26 2,3',5-Trichlorobiphenyl                                              | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 27 2,3',6-Trichlorobiphenyl                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 28 2,4,4'-Trichlorobiphenyl                                              | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 29 2,4,5-Trichlorobiphenyl                                               | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | Υ                          | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 3 4-Chlorobiphenyl                                                       | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 30 2,4,6-Trichlorobiphenyl                                               | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 31 2,4',5-Trichlorobiphenyl                                              | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 32 2,4',6-Trichlorobiphenyl                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 33 2,3',4'-Trichlorobiphenyl                                             | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        |      | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 33/20/21                                                                 | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               |                                                                              | EPA 8270             | MLA-007        |      |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               | PCB 34 2,3',5'-Trichlorobiphenyl                                             | AXYS MLA-007         | MLA-007        |      |       | Υ                      |             |                                 |              |              |                            |      | Υ                   |               |                |                      |       | Υ     |                               |               |                |              |                 |                                       |
|               | ·                                                                            | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         | YD   |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | AXYS MLA-010         | MLA-010        | 1    | Υ     | Υ                      | Υ           |                                 |              |              |                            |      | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 35 3,3',4-Trichlorobiphenyl                                              | EPA 1668             | MLA-010        |      |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         |      |                     |               |                | YD                   |       |       | Υ                             |               | ΥY             | Υ            | Υ               | YD Y                                  |
|               |                                                                              | EPA 8270             | MLA-007        | 1    |       |                        |             |                                 |              |              | Υ                          |      |                     |               |                |                      |       |       |                               |               |                |              |                 |                                       |
|               |                                                                              | AXYS MLA-010         | MLA-010        | 1    | Υ     | Υ                      | Υ           |                                 |              |              |                            | YD   | Υ                   |               |                | YD                   |       | Υ     | Υ                             |               |                |              |                 | YD                                    |
|               | PCB 36 3,3',5-Trichlorobiphenyl                                              | EPA 1668             | MLA-010        | 1    |       |                        | Υ           | Υ                               | Υ            | Υ            | ΥΥ                         |      |                     |               |                | YD                   | -     |       | Υ                             |               | ΥΥ             | Υ            | Υ               | YD Y                                  |
|               | ' '                                                                          | EPA 8270             | MLA-007        | -+   |       |                        |             |                                 |              |              | Y                          | _    |                     |               |                |                      |       | -+    |                               |               |                |              |                 | E 0.07 =                              |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                   |                           | Pulp | Serum | Solids                 |                              |                |              |               |                   | Tissue |                              |                |                      | Urine | Water | Water, Non-Potable            |               |                |              |                |                |
|----------------|------------------------------------------------------------------------------|-----------------------------------|---------------------------|------|-------|------------------------|------------------------------|----------------|--------------|---------------|-------------------|--------|------------------------------|----------------|----------------------|-------|-------|-------------------------------|---------------|----------------|--------------|----------------|----------------|
|                |                                                                              |                                   |                           | CALA | CALA  | CALA<br>California DPH | Florida DOH<br>Minnesota DOH | New Jersey DEP | virginia DGS | Washington DE | Maine DOH<br>ANAB | CALA   | Florida DOH<br>Minnesota DOH | Vew Jersey DEP | Virginia DGS<br>ANAB | CALA  | CALA  | California DPH<br>Florida DOH | Ainnesota DOH | lew Jersey DEP | New York DOH | ashington DE * | Maine DOH ANAB |
| Compound Class | Compound                                                                     | Accredited Method ID AXYS MLA-010 | AXYS Method ID<br>MLA-010 |      | O Y   |                        | ፲ <u>≥</u><br>Y              | Ž              | 2 >          | >             | ∑ ₹<br>YD         |        | ΙΣ                           | Ž              | <del>⋝</del> ₹       |       | O Y   | O Œ<br>Y                      | Σ             | Ž              | Ž 🕽          | > <u> </u>     | YD             |
|                | PCB 37 3,4,4'-Trichlorobiphenyl                                              | EPA 1668                          | MLA-010                   |      | Ė     | •                      | Y                            | Υ '            | ΥΥ           | Υ             | Y YD              |        |                              |                | YD                   |       |       | Y                             |               | Υ              | Ϋ́           | / Y            | YD '           |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ                            |                |              |               | YD                | Υ      |                              |                | YD                   |       | Υ     | Υ                             |               |                |              |                | YD             |
|                | PCB 38 3,4,5-Trichlorobiphenyl                                               | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥY           | Υ             | Y YD              |        |                              |                | YD                   |       |       | Υ                             |               | Υ              | Ϋ́           | γ Υ            | YD '           |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ                            |                |              |               | YD                |        |                              |                | YD                   |       | Υ     | Υ                             |               |                |              |                | YD             |
|                | PCB 39 3,4',5-Trichlorobiphenyl                                              | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥY           |               | Y YD              |        |                              |                | YD                   |       | Щ     | Υ                             |               | Υ              | Υ `          | Υ              | YD '           |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     |                        | Υ                            |                |              |               | YD                |        |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 4 2,2'-Dichlorobiphenyl                                                  | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥY           | Υ             | Y YD              |        |                              |                | YD                   |       |       | Y                             |               | Υ              | Υ `          | / Y            |                |
|                | 202 444                                                                      | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ                            |                |              | .,            | YD                | Υ      |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 4/10                                                                     | EPA 8270                          | MLA-007                   | -    | _     |                        |                              |                |              | Υ             |                   | Υ      |                              |                |                      |       |       |                               |               |                |              |                |                |
|                | PCB 40 2,2',3,3'-Tetrachlorobiphenyl                                         | AXYS MLA-007<br>EPA 1668          | MLA-007<br>MLA-010        |      |       | Υ                      | Y                            | V '            |              |               | Y YD              |        |                              |                | YD                   |       | Υ     | Y                             |               |                | V )          | / Y            | YD '           |
|                |                                                                              | EPA 1668<br>EPA 8270              | MLA-010<br>MLA-007        |      |       |                        | Ť                            | Ť              | T T          | Y             | לו ז              |        |                              |                | עז                   |       |       | Y                             |               | Y              | Ť            | r r            | עז             |
|                |                                                                              | AXYS MLA-010                      | MLA-007                   |      | Υ     | Υ                      | Y                            |                |              |               | YD                | Y      |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 41 2,2',3,4-Tetrachlorobiphenyl                                          | EPA 1668                          | MLA-010                   |      | -     | •                      | <u>'</u><br>Y                | ν,             | v v          | Y             | Y YD              |        |                              |                | YD                   |       | -     | <u></u>                       |               | Y              | ν,           | / Y            | YD '           |
|                | 1 05 41 2,2,0,4 Tellacinorosiphonyi                                          | AXYS MLA-010                      | MLA-010                   | +    | Υ     |                        | Y                            |                |              |               | YD                |        |                              |                | YD                   |       | Υ     | Y                             |               |                |              | •              | YD             |
|                | PCB 41/71/64/68                                                              | AXYS MLA-007                      | MLA-007                   |      |       | Y                      | •                            |                |              |               |                   | Y      |                              |                |                      |       | Y     | •                             |               |                |              |                |                |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                | -              |
|                | PCB 42 2,2',3,4'-Tetrachlorobiphenyl                                         | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥΥ           | Y             | Y YD              |        |                              |                | YD                   |       |       | Y                             | ·             | Υ              | Ϋ́           | / Y            | YD '           |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ                            |                |              |               | YD                | Υ      |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 42/59                                                                    | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                              |                |              |               |                   | Υ      |                              |                |                      |       | Υ     |                               |               |                |              |                |                |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                | PCB 43 2,2',3,5-Tetrachlorobiphenyl                                          | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ,             | ΥY           | Υ             | Y YD              |        |                              |                | YD                   |       |       | Υ                             |               | Υ              | Ϋ́           | ΥY             | YD '           |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ                            |                |              |               | YD                | Υ      |                              |                | YD                   |       | Υ     | Υ                             |               |                |              |                | YD             |
|                | PCB 44 2,2',3,5'-Tetrachlorobiphenyl                                         | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                              |                |              |               |                   | Υ      |                              |                |                      |       | Υ     |                               |               |                |              |                |                |
|                |                                                                              | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥY           |               | Y YD              |        |                              |                | YD                   |       |       | Υ                             |               | Υ              | Υ '          | Υ              | YD '           |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     |                        | Υ                            |                |              |               | YD                |        |                              |                | YD                   |       | Υ     | Y                             | •             |                |              |                | YD             |
|                | PCB 45 2,2',3,6-Tetrachlorobiphenyl                                          | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                              |                |              |               |                   | Υ      |                              |                |                      |       | Υ     |                               |               |                |              |                |                |
|                |                                                                              | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | Υ '            | ΥY           |               | Y YD              |        |                              |                | YD                   |       |       | Y                             |               | Υ              | Υ '          | / Y            | YD '           |
|                |                                                                              | EPA 8270                          | MLA-007                   | -    |       | .,                     | .,                           |                |              | Υ             |                   |        |                              |                | 1.75                 |       |       |                               |               |                |              |                |                |
|                | DOD 40 0 0 0 0 T to the old by the                                           | AXYS MLA-010                      | MLA-010                   | -    | Υ     | Y                      | Y                            |                |              |               | YD                | Y      |                              |                | YD                   |       | Y     | Y                             |               |                |              |                | YD             |
|                | PCB 46 2,2',3,6'-Tetrachlorobiphenyl                                         | AXYS MLA-007<br>EPA 1668          | MLA-007<br>MLA-010        |      |       | •                      | Y                            | V ,            | v v          | V             | Y YD              |        |                              |                | YD                   |       | Y     | Y                             |               | V              | V 1          | / Y            |                |
|                |                                                                              | EPA 1008<br>EPA 8270              | MLA-010<br>MLA-007        |      |       |                        | Ť                            | Ť              | Y Y          | Y             | לו ז              |        |                              |                | עז                   |       |       | T                             |               | Y              | ř            | r r            | YD '           |
|                |                                                                              | AXYS MLA-010                      | MLA-007                   |      | Υ     | Υ                      | Y                            |                |              |               | YD                | Υ      |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 47 2,2',4,4'-Tetrachlorobiphenyl                                         | EPA 1668                          | MLA-010                   |      | -     |                        | Y                            | ν,             | v v          | Y             | Y YD              |        |                              |                | YD                   |       | -     | Y                             |               | Y              | ν,           | / Y            | YD '           |
|                | 1 Ob 47 2,2,4,4-Tettachlolobiphenyi                                          | AXYS MLA-010                      | MLA-010                   | +    | Υ     |                        | Y                            | -              |              |               | YD                |        |                              |                | YD                   |       | Υ     |                               |               | -              | •            |                | YD             |
|                | PCB 47/48/75                                                                 | AXYS MLA-007                      | MLA-010                   |      | ÷     | Y                      | ·                            |                |              |               | טו                | Y      |                              |                | טו                   |       | Y     | <u>'</u>                      |               |                |              |                |                |
|                | . ==                                                                         | EPA 8270                          | MLA-007                   | -    |       | •                      |                              |                |              | Υ             |                   | Ė      |                              |                |                      |       | H     |                               |               |                |              |                |                |
|                | PCB 48 2,2',4,5-Tetrachlorobiphenyl                                          | EPA 1668                          | MLA-010                   | -    |       |                        | Υ                            | Υ '            | ΥΥ           |               | Y YD              |        |                              |                | YD                   |       |       | Y                             |               | Υ              | Ϋ́           | / Y            | YD '           |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   | -t   | Υ     |                        | Y                            | -              | •            | -             | YD                |        |                              |                | YD                   |       | Υ     | Y                             |               | •              | -            | -              | YD             |
|                | PCB 49 2,2',4,5'-Tetrachlorobiphenyl                                         | EPA 1668                          | MLA-010                   | T    | T     |                        | Y                            | Υ '            | ΥΥ           | Υ             | Y YD              |        |                              |                | YD                   |       | Ħ     | Y                             |               | Υ              | Υ `          | / Y            |                |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   | T    | Υ     |                        | Y                            |                |              |               | YD                |        |                              |                | YD                   |       | Υ     | Y                             |               |                |              |                | YD             |
|                | PCB 49/43                                                                    | AXYS MLA-007                      | MLA-007                   | T    |       | Y                      |                              |                |              |               |                   | Y      |                              |                |                      |       | Υ     |                               |               |                |              |                |                |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                              |                |              | Υ             |                   |        |                              |                |                      |       |       |                               |               |                |              |                |                |
|                | PCB 5 2,3-Dichlorobiphenyl                                                   | EPA 1668                          | MLA-010                   |      |       |                        | Υ                            | V '            | . v          |               | Y YD              |        |                              |                | YD                   |       |       | Υ                             |               | V              | v '          | / Y            | YD             |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                           | Pulp | Serum  | Solids   |                               |               |                |                              |               |           | Tissue      |             |                                 |              | lripe    | Water    | Water, Non-Potable |             |               |                |                                              |                |                     |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------|--------|----------|-------------------------------|---------------|----------------|------------------------------|---------------|-----------|-------------|-------------|---------------------------------|--------------|----------|----------|--------------------|-------------|---------------|----------------|----------------------------------------------|----------------|---------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                           | CALA | CALA   | CALA     | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Nashington DE | Maine DOH | CALA        | Florida DOH | Minnesota DOH<br>New Jersev DEP | Virginia DGS | ANAB     | CALA     | California DPH     | Florida DOH | Minnesota DOH | New Jersey DEP | vew Tolk DOR                                 | ashington DE * | Maine DOH<br>ANAB   |
| Compound Class | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accredited Method ID AXYS MLA-010 | AXYS Method ID<br>MLA-010 | Ü    | Ο<br>Y | Ο̈́      | Ö Ē<br>Y                      | Σ             | ŽŽ             | ž 5                          | 3             |           | D Y         | Ē :         | ΣŽ                              | _            | D C      | Y        |                    | Ϋ́          | Σ :           | ŽŽ             | <u>:                                    </u> | 3              | ∑ ₹<br>YD           |
|                | PCB 50 2,2',4,6-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AXYS MLA-007                      | MLA-007                   |      | -      | Y        |                               |               |                |                              |               | <u>'</u>  | Y           |             |                                 |              | <i>-</i> | Y        | _                  | <u> </u>    |               |                |                                              |                |                     |
|                | 1 05 00 2,2,1,0 10 (additional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 1668                          | MLA-010                   |      |        | Ė        | Y                             |               | Ϋ́             | ΥΥ                           | Υ             | ΥΥ        | D .         |             |                                 | ١            | 'n.      | Ť        |                    | Υ           |               | ΥΥ             | ΥΥ                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Υ             |           |             |             |                                 |              |          |          |                    |             |               |                |                                              |                | -                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Υ                             |               |                |                              |               | Υ         | D Y         |             |                                 | ١            | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 51 2,2',4,6'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 1668                          | MLA-010                   |      |        |          | Υ                             |               | Υ '            | ΥY                           | Υ             | ΥY        | D           |             |                                 | ١            | 'n       |          |                    | Υ           |               | ΥY             | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Υ             |           |             |             |                                 |              |          |          | <u> </u>           |             |               |                |                                              |                |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               |           | D Y         |             |                                 |              | Ď        | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 52 2,2',5,5'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 1668                          | MLA-010                   |      |        |          | Y                             |               | Υ `            | Y Y                          | Υ             |           | _           |             |                                 |              | 'D       |          | -                  | Υ           |               | ΥY             | ΥY                                           | Y              | YD                  |
|                | 202 20 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AXYS MLA-010                      | MLA-010                   |      | Υ      | Y        | Y                             |               |                |                              |               | Y         | D Y         |             |                                 |              | Ď        | Y        | _                  | Υ           |               |                |                                              |                | YD                  |
|                | PCB 52/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AXYS MLA-007                      | MLA-007                   |      |        | Υ        |                               |               |                |                              | Y             |           | Y           |             |                                 |              | -        | Υ        | 1                  |             |               |                |                                              |                |                     |
|                | PCB 53 2,2',5,6'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 8270<br>EPA 1668              | MLA-007<br>MLA-010        |      |        |          | Y                             |               | v ,            | v v                          |               | ΥΥ        | D           |             |                                 | ,            | 'n       | -        |                    | Υ           |               | v \            | ΥΥ                                           |                | YD                  |
|                | PGB 33 2,2 ,5,6 - Tetracritorobiphenyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              |               |           |             |             |                                 |              |          |          |                    | <u> </u>    |               | -              |                                              | <u> </u>       | 10                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               | Y         | D Y         |             |                                 | \            | 'n       | Υ        |                    | Υ           |               |                | —                                            |                | YD                  |
|                | PCB 54 2,2',6,6'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 1668                          | MLA-010                   |      | Ė      | Ė        | Y                             |               | Υ ,            | ΥΥ                           | Υ             |           | _           |             |                                 |              | 'n.      | Ť        |                    | Y           |               | ΥΥ             | ΥΥ                                           | Υ              | YD                  |
|                | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Υ             |           |             |             |                                 |              |          |          |                    |             |               |                |                                              |                |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               | Υ         | D Y         |             |                                 | ١            | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 55 2,3,3',4-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668                          | MLA-010                   |      |        |          | Υ                             |               | Υ '            | ΥY                           | Υ             | ΥY        | D           |             |                                 | )            | 'n       |          |                    | Υ           |               | ΥY             | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Υ             |           |             |             |                                 |              |          |          |                    |             |               |                |                                              |                |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Υ                             |               |                |                              |               |           | D Y         |             |                                 |              | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 56 2,3,3',4'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 1668                          | MLA-010                   |      |        |          | Y                             |               | Υ `            | Y Y                          | Υ             | ΥY        | _           |             |                                 |              | 'n       |          | <u> </u>           | Υ           |               | Υ ١            | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      |          | Y                             |               |                |                              |               | Y         | D Y         |             |                                 | ١            | Ď        | Υ        | _                  | Υ           |               |                |                                              |                | YD                  |
|                | PCB 56/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AXYS MLA-007                      | MLA-007                   |      |        | Υ        |                               |               |                |                              |               |           | Υ           |             |                                 |              |          | Υ        | -                  |             |               |                |                                              |                |                     |
|                | DOD STOCKES TO A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A LIVE A | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                | · · ·                        | Y             | ΥΥ        | _           |             |                                 |              | 'n.      | -        | -                  |             |               | ., .           |                                              |                | - \( \frac{1}{2} \) |
|                | PCB 57 2,3,3',5-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668<br>EPA 8270              | MLA-010<br>MLA-007        |      |        |          | Y                             |               | Y              | Y Y                          | Y             | Y Y       | U           |             |                                 | 1            | U        | -        | 1                  | Υ           |               | Y 1            | ΥY                                           | <u> </u>       | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-007<br>MLA-010        |      | Υ      | Υ        | Y                             |               |                |                              | Y             |           | D Y         |             |                                 | ,            | 'n       | Y        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 58 2,3,3',5'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 1668                          | MLA-010                   |      | -      | <u> </u> | Y                             |               | Υ ,            | y y                          | Υ             |           | _           |             |                                 |              | 'n       | + '      |                    | Y           |               | v \            | ΥΥ                                           |                | YD                  |
|                | 1 65 66 2,6,6 ,6 16 (day) (day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Y             |           |             |             |                                 |              |          | -        |                    | <u> </u>    |               | •              | <u> </u>                                     | <u> </u>       |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               | Υ         | DΥ          |             |                                 | ١            | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 59 2,3,3',6-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668                          | MLA-010                   |      |        |          | Υ                             |               | Υ '            | ΥΥ                           | Υ             | ΥΥ        | D           |             |                                 | ١            | 'n       |          |                    | Υ           |               | ΥY             | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Υ                             |               |                |                              |               | Υ         | D Y         |             |                                 | ١            | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 6 2,3'-Dichlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA 1668                          | MLA-010                   |      |        |          | Υ                             |               | Υ '            | ΥY                           | Υ             | ΥY        | D           |             |                                 | ١            | 'n       |          |                    | Υ           |               | ΥY             | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Υ             |           |             |             |                                 |              |          |          |                    |             |               |                |                                              |                |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               |           | D Y         |             |                                 |              | Ď        | Υ        | _                  | Υ           |               |                |                                              |                | YD                  |
|                | PCB 60 2,3,4,4'-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668                          | MLA-010                   |      |        |          | Y                             |               | Υ '            | Y Y                          | Υ             | ΥY        | _           |             |                                 |              | Ď        | _        | <u> </u>           | Υ           |               | Υ ١            | ΥY                                           | <u>Y</u>       | YD                  |
|                | 202040477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               | ., .           | ., .,                        | .,            |           | D Y         |             |                                 |              | D .      | Υ        | 1                  | Y           |               | ., .           |                                              |                | YD                  |
|                | PCB 61 2,3,4,5-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 1668<br>AXYS MLA-010          | MLA-010                   |      | Υ      | Υ        | Y                             |               | Υ `            | Y Y                          | Y             |           | D Y         |             |                                 |              | D C      | Y        | 1                  | Y           |               | Υ ١            | Y Y                                          | <u>Y</u>       | YD                  |
|                | PCB 62 2,3,4,6-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 1668                          | MLA-010<br>MLA-010        |      | Y      | Y        | Y<br>Y                        |               | Υ,             | v v                          |               |           | _           |             |                                 |              | D<br>D   | Y        | -                  | Y           |               | v \            | ΥΥ                                           |                | YD<br>YD            |
|                | 1 OD 02 2,3,4,0-1 etracritoroxiphenyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | <u>т</u><br>Ү                 |               |                | . Y                          | T             |           | D Y         |             |                                 |              | D<br>D   | Y        | +                  | Y           |               | 1 1            |                                              |                | YD                  |
|                | PCB 62/65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 8270                          | MLA-007                   |      | -      | Ė        |                               |               |                |                              | Υ             | <u>'</u>  | <del></del> |             |                                 |              | +        | t        | 1                  | <u> </u>    |               |                |                                              |                | - 10                |
|                | PCB 63 2,3,4',5-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668                          | MLA-010                   |      |        |          | Y                             |               | Υ ,            | ΥΥ                           |               | ΥΥ        | D           |             |                                 | ١            | 'n       | $\vdash$ | 1                  | Υ           |               | ΥΥ             | ΥΥ                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8270                          | MLA-007                   |      |        |          |                               |               |                |                              | Y             |           | 1           |             |                                 |              | $\top$   | 1        | 1                  |             |               |                |                                              |                |                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Y                             |               |                |                              |               | Υ         | DΥ          |             |                                 | ١            | 'n       | Υ        | 1                  | Υ           |               |                |                                              |                | YD                  |
|                | PCB 64 2,3,4',6-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1668                          | MLA-010                   |      |        |          | Y                             |               | Υ `            | Y Y                          | Υ             | ΥΥ        | _           |             |                                 |              | 'n       | 1        | L                  | Υ           |               | ΥY             | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Υ                             |               |                |                              |               | Y         | DΥ          |             |                                 | \            | 'n       | Υ        |                    | Υ           |               |                |                                              |                | YD                  |
|                | PCB 65 2,3,5,6-Tetrachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 1668                          | MLA-010                   |      |        |          | Υ                             |               | Υ ,            | ΥY                           | Υ             | ΥY        | D           |             |                                 | ١            | Ď        |          |                    | Υ           |               | Υ \            | ΥY                                           | Υ              | YD                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AXYS MLA-010                      | MLA-010                   |      | Υ      | Υ        | Υ                             |               |                |                              |               | Y         | DΥ          |             |                                 | 1            | Ď        | Υ        | _                  | Υ           |               |                |                                              |                | YD.                 |

|       | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                  |                           | Pulp | Serum    | Solids   |                               |               |                                |              |               |      | Tissue   |                              |                |                      | Urine | Water    | Water, Non-Potable |                              |                |              |                                                 |           |      |
|-------|------------------------------------------------------------------------------|----------------------------------|---------------------------|------|----------|----------|-------------------------------|---------------|--------------------------------|--------------|---------------|------|----------|------------------------------|----------------|----------------------|-------|----------|--------------------|------------------------------|----------------|--------------|-------------------------------------------------|-----------|------|
|       |                                                                              |                                  |                           | CALA | CALA     | CALA     | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>New York DOH | Virginia DGS | Washington DE | ANAB | CALA     | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS<br>ANAB | CALA  | CALA     | California DPH     | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH | Virginia DGS<br>Washington DE *                 | Maine DOH | ANAB |
| Class | Compound PCB 66 2,3',4,4'-Tetrachlorobiphenyl                                | Accredited Method ID<br>EPA 1668 | AXYS Method ID<br>MLA-010 | Ö    | Ö        | Ö        | Ο Œ<br>Y                      |               | ŻŻ<br>YY                       | _            | <u> </u>      |      | Ö        | ŒΣ                           | Ž              | <u>&gt; ₹</u>        |       | Ö        |                    | ፲ <u>≥</u><br>Υ              | Ž<br>Y         |              | <u>&gt;                                    </u> |           | ₹ I  |
|       | PCB 66 2,3 ,4,4 - Letracriloropiphenyi                                       | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Y                             |               | 1 1                            | - 1          | 1             | YD   | Υ        |                              |                | YE                   |       | Υ        |                    | Y                            | 1              |              | 1 1                                             |           | YD   |
|       | PCB 66/80                                                                    | AXYS MLA-007                     | MLA-007                   |      | Ė        | Y        |                               |               |                                |              |               | 1.0  | Y        |                              |                |                      | +     | Y        | <u> </u>           | ·                            |                |              |                                                 |           | 10   |
|       | . 52 53/55                                                                   | EPA 8270                         | MLA-007                   |      |          | Ė        |                               |               |                                |              | Υ             |      | •        |                              |                |                      |       | Ė        |                    |                              |                |              |                                                 |           |      |
|       | PCB 67 2,3',4,5-Tetrachlorobiphenyl                                          | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | ΥΥ                             | Υ            | ΥΥ            | Y YD |          |                              |                | YE                   | )     |          |                    | Υ                            | Υ              | Υ            | ΥΥ                                              |           | YD ' |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      |       |          |                    |                              |                |              |                                                 |           |      |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 68 2,3',4,5'-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | ΥY                             | Υ            | ΥY            | Y YD |          |                              |                | YE                   | )     |          |                    | Υ                            | Υ              | Υ            | ΥΥ                                              |           | YD ' |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 69 2,3',4,6-Tetrachlorobiphenyl                                          | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | Y Y                            | Υ            | Υ ١           | Y YD |          |                              |                | YE                   | )     |          | <u>ш</u>           | Υ                            | Υ              | Υ            | Y Y                                             |           | YD ' |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      |       |          | Ш.                 |                              |                |              |                                                 |           |      |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   |       | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 7 2,4-Dichlorobiphenyl                                                   | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | Y Y                            | Υ            | Υ \           |      |          |                              |                | YE                   |       |          |                    | Υ                            | Υ              | Υ            | Y Y                                             |           | YD ' |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        | <u>ш</u>           | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 7/9                                                                      | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      |       |          | Ь—                 |                              |                |              |                                                 |           |      |
|       | PCB 70 2,3',4',5-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | Y Y                            | Υ            | Υ \           |      |          |                              |                | YE                   |       |          |                    | Υ                            | Υ              | Υ            | Y Y                                             |           | YD ' |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        |          | Υ                             |               |                                |              |               | YD   |          |                              |                | YE                   | )     | Υ        | <b>—</b> —         | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 70/76                                                                    | AXYS MLA-007                     | MLA-007                   |      |          | Υ        |                               |               |                                |              |               |      | Υ        |                              |                |                      |       | Υ        | Ь—                 |                              |                |              |                                                 |           |      |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      |       |          | Ь—                 |                              |                |              |                                                 |           |      |
|       | PCB 71 2,3',4',6-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | Y Y                            | Υ            | Υ \           |      |          |                              |                | YE                   |       |          |                    | Υ                            | Υ              | Υ            | Y Y                                             |           | YD ' |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | _     | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 72 2,3',5,5'-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      |          |          | Υ                             |               | Y Y                            | Υ            |               | Y YD |          |                              |                | YE                   | )     |          | <u> </u>           | Υ                            | Υ              | Υ            | Y Y                                             |           | YD   |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      |       |          | Ь—                 |                              |                |              |                                                 |           |      |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Y                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   |       | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 73 2,3',5',6-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      |          | ļ.,      | Y                             |               | Y Y                            | Υ            | Υ ١           |      |          |                              |                | YE                   | _     | <b>.</b> |                    | Y                            | Υ              | Υ            | Y Y                                             |           | YD   |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | _        | Υ        | Y                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        | <u> </u>           | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 74 2,4,4',5-Tetrachlorobiphenyl                                          | AXYS MLA-901                     | MLA-901                   |      | Υ        |          |                               |               |                                |              |               |      |          |                              |                |                      | -     |          | <del></del>        |                              |                |              |                                                 |           |      |
|       |                                                                              | EPA 1668                         | MLA-010                   |      |          | .,       | Y                             |               | Y Y                            | Υ            | Υ ١           | Y YD |          |                              |                | YE                   |       |          |                    | Y                            | Y              | Υ            | Y Y                                             |           | YD   |
|       | 202 - 1/2/                                                                   | AXYS MLA-010                     | MLA-010                   |      | Υ        |          | Υ                             |               |                                |              |               | YD   | Y        |                              |                | YE                   | )     | Y        | <u> </u>           | Y                            |                |              |                                                 |           | YD   |
|       | PCB 74/61                                                                    | AXYS MLA-007                     | MLA-007                   |      |          | Υ        |                               |               |                                |              | Υ             |      | Υ        |                              |                |                      | +     | Υ        | —                  |                              |                |              |                                                 |           |      |
|       | DOD 75 0.4.410 Tetra-chian-high and                                          | EPA 8270<br>EPA 1668             | MLA-007<br>MLA-010        |      |          |          | Y                             |               | V V                            |              |               | Y YD |          |                              |                | YE                   |       |          | <del></del>        | Y                            |                |              | ΥΥ                                              |           | YD   |
|       | PCB 75 2,4,4',6-Tetrachlorobiphenyl                                          | AXYS MLA-010                     | MLA-010                   |      | V        | Υ        | Y                             |               | 1 1                            |              | 1             | YD   | V        |                              |                | YE                   | _     | Υ        |                    | Y<br>Y                       | ı              | -            | 1 1                                             |           | YD   |
|       | PCB 76 2,3',4',5'-Tetrachlorobiphenyl                                        | EPA 1668                         | MLA-010                   |      | 1        | 1        | Y                             |               | v v                            | V            | v \           | Y YD | <u> </u> |                              |                | YE                   |       | T        |                    | Y Y                          |                | V            | ΥΥ                                              |           | YD   |
|       | 1 Ob 70 2,5,4,5-retractionoblyticity                                         | AXYS MLA-010                     | MLA-010                   |      | V        | Υ        | Y                             |               | <u> </u>                       |              |               | YD   | ~        |                              |                | YE                   | _     | Υ        |                    | Y                            |                |              | <u> </u>                                        |           | YD   |
|       | PCB 77 3,3',4,4'-Tetrachlorobiphenyl                                         | AXYS MLA-007                     | MLA-007                   |      | _        | Y        |                               |               |                                |              |               | 10   | Y        |                              |                | 11                   | +     | Y        | $\overline{}$      |                              |                |              |                                                 |           | 10   |
|       | 1 Ob 11 3,3,4,4 - Tetracinorobiphenyi                                        | EPA 1668                         | MLA-010                   |      |          | <u> </u> | Y                             |               | V V                            | Y            | V \           | Y YD | <u>'</u> |                              |                | YE                   | ,     | <u> </u> | $\overline{}$      | Υ                            | Y              | ٧            | Y Y                                             |           | YD   |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               | •                              |              | Y             |      |          |                              |                |                      | +     |          | $\overline{}$      |                              |                |              |                                                 |           | -    |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Y                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        | $\overline{}$      | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 78 3,3',4,5-Tetrachlorobiphenyl                                          | EPA 1668                         | MLA-010                   |      | ·        | †        | Y                             |               | Y Y                            | Υ            | Υ \           | Y YD |          |                              |                | YE                   | -     | Ė        |                    | Y                            | Υ              | Υ            | ΥΥ                                              |           | YD ' |
|       | , -, -,                                                                      | EPA 8270                         | MLA-007                   |      |          |          | -                             |               |                                |              | Υ             |      |          |                              |                |                      |       |          |                    |                              |                | -            |                                                 |           |      |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Y                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | )     | Υ        |                    | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 79 3,3',4,5'-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      | Ė        |          | Y                             |               | ΥΥ                             | Υ            | ΥΥ            | Y YD |          |                              |                | YE                   | _     | Ė        |                    | Y                            | Υ              | Υ            | ΥΥ                                              |           | YD ' |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      |          |                              |                |                      | T     |          | <u> </u>           |                              |                |              |                                                 |           |      |
|       |                                                                              | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | Υ                             |               |                                |              |               | YD   | Υ        |                              |                | YE                   | ,     | Υ        | <u> </u>           | Υ                            |                |              |                                                 |           | YD   |
|       | PCB 8 2,4'-Dichlorobiphenyl                                                  | EPA 1668                         | MLA-010                   |      | Ė        | Ė        | Y                             |               | ΥΥ                             | Υ            | ΥΥ            | Y YD | •        |                              |                | YE                   |       | Ė        |                    | Y                            | Υ              | Υ            | ΥΥ                                              |           | YD   |
|       | , ,                                                                          | AXYS MLA-010                     | MLA-010                   |      | Υ        | Υ        | <u>·</u><br>Y                 |               |                                |              |               | YD   | Υ        |                              |                | YE                   | -     | Υ        |                    | Y                            |                |              | • •                                             |           | YD   |
|       | PCB 8/5                                                                      | AXYS MLA-007                     | MLA-007                   |      | Ė        | Y        |                               |               |                                |              |               |      | Y        |                              |                |                      | t     | Y        |                    |                              |                |              |                                                 |           |      |
|       |                                                                              | EPA 8270                         | MLA-007                   |      |          |          |                               |               |                                |              | Υ             |      | -        |                              |                |                      | T     | Ħ        |                    |                              |                |              |                                                 |           |      |
|       | PCB 80 3,3',5,5'-Tetrachlorobiphenyl                                         | EPA 1668                         | MLA-010                   |      | <b>-</b> | +        | Y                             |               |                                |              |               | Y YD |          |                              |                | YE                   | +-    | -        |                    | Y                            |                |              | ΥΥ                                              |           | YD   |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                   |                           | Pulp | Serum | Solids                 |                 |                |              |                               |           | Tissue            |             |                                        |             | 1   | Urine<br>M/atar | Water                                        | Water, muirr viaure                   |                                       |                                       |             |                                       |                       |
|----------------|------------------------------------------------------------------------------|-----------------------------------|---------------------------|------|-------|------------------------|-----------------|----------------|--------------|-------------------------------|-----------|-------------------|-------------|----------------------------------------|-------------|-----|-----------------|----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------|---------------------------------------|-----------------------|
|                |                                                                              |                                   | AVVQ A4 / 1 / 15          | CALA | CALA  | CALA<br>California DPH | Florida DOH     | New Jersey DEP | Jew York DOH | Virginia DGS<br>Vashington DE | Maine DOH | ANAB              | Florida DOH | linnesota DOH                          | irginia DGS | NAB | ALA<br>Al A     | ALA<br>-"formio DBH                          | alifornia עדרו<br>orida DOH           | ew Jersev DEP                         | ew York DOH                           | irginia DGS |                                       | ANAB Pennsylvania DEP |
| Compound Class | Compound                                                                     | Accredited Method ID AXYS MLA-010 | AXYS Method ID<br>MLA-010 |      |       | Υ                      | <u>ш 2</u><br>Ү | Z              | Z :          | > >                           |           | <u>∢ Ο</u><br>Ό Υ |             | YD Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | Z           | >   | <u></u> ≥       | YD ≤                                         |                                       |                                       |                                       |             |                                       |                       |
|                | PCB 81 3,4,4',5-Tetrachlorobiphenyl                                          | EPA 1668                          | MLA-010                   |      | _     |                        | Y               | Υ              | Υ            | Y Y                           | ' Y Y     |                   |             |                                        |             |     | +               | +                                            | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | Y                                     | Y                                     | YD Y        |                                       |                       |
|                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                      | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Y                             |           |                   |             |                                        |             |     | +               | T                                            |                                       | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |                                       |             |                                       |                       |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               | Υ         | 'nΥ               |             |                                        |             | YD  | Y               | Y                                            | Y                                     |                                       | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |             | YD                                    |                       |
|                | PCB 82 2,2',3,3',4-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            | ΥY                            | YY        | 'n                |             |                                        |             | YD  |                 | I                                            | Υ                                     | Υ                                     | Υ                                     | Υ           | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | YD Y                  |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Υ                             |           |                   |             |                                        |             |     |                 | 4                                            |                                       |                                       |                                       |             |                                       |                       |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               |           | ΈY                |             |                                        |             |     | Y               | /                                            |                                       |                                       |                                       |             |                                       | YD                    |
|                | PCB 83 2,2',3,3',5-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Y               | Y              | Υ            | Y Y                           | YY        | _                 |             |                                        |             | _   | +               | <u>.</u>                                     |                                       | Y                                     | <u>Y</u>                              | <u>Y</u>    | <u>Y</u>                              | YD Y                  |
|                | PCB 83/108                                                                   | AXYS MLA-010<br>AXYS MLA-007      | MLA-010<br>MLA-007        |      | Υ     | Y                      | Υ               |                |              |                               | Y         | D Υ<br>Υ          |             |                                        |             | YU  | _               | _                                            | Y                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 83/108                                                                   | EPA 8270                          | MLA-007<br>MLA-007        |      |       | Y                      |                 |                |              | Y                             | ,         | Y                 |             |                                        |             |     | +               | +                                            |                                       |                                       |                                       |             |                                       |                       |
|                | PCB 84 2,2',3,3',6-Pentachlorobiphenyl                                       | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                 |                |              |                               |           | Y                 |             |                                        |             |     | <del>-</del>    | <u>,                                    </u> |                                       |                                       |                                       |             |                                       |                       |
|                | 1 05 0 1 2,2 ,0,0 ,0 1 0 mas more supmonly i                                 | EPA 1668                          | MLA-010                   |      |       | ·                      | Υ               | Υ              | Υ            | Y Y                           | Y         | 'n                |             |                                        |             | YD  | 十               | ╈                                            | Y                                     | Y                                     | Y                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Y                             |           |                   |             |                                        |             |     | _               | T                                            |                                       |                                       |                                       |             |                                       |                       |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               | Υ         | 'nΥ               |             |                                        |             | YD  | Y               | Y                                            | Υ                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 85 2,2',3,4,4'-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            | ΥY                            | YY        | 'n                |             |                                        |             | _   |                 |                                              | Υ                                     | Υ                                     | Υ                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               | Υ         | 'nΥ               |             |                                        |             | YD  | _               | _                                            | Υ                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 85/120                                                                   | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                 |                |              |                               |           | Υ                 |             |                                        |             |     | Y               | 1                                            |                                       |                                       |                                       |             |                                       |                       |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Υ                             |           | _                 |             |                                        |             |     | +               | +                                            |                                       |                                       |                                       |             |                                       |                       |
|                | PCB 86 2,2',3,4,5-Pentachlorobiphenyl                                        | EPA 1668                          | MLA-010                   |      |       |                        | Y               | Y              | Υ            | Y Y                           | YY        |                   |             |                                        |             |     | +               | _                                            |                                       | Y                                     | Y                                     | <u>Y</u>    | <u>Y</u>                              | YD Y                  |
|                | DCD 97.2.21.2.4.51 Dentechlorabinhanud                                       | AXYS MLA-010<br>EPA 1668          | MLA-010<br>MLA-010        |      | Υ     | Υ                      | Y               | V              | V            | v v                           | ' Y Y     | D Y               |             |                                        |             | _   | + Y             | 4                                            |                                       |                                       |                                       |             |                                       | YD Y                  |
|                | PCB 87 2,2',3,4,5'-Pentachlorobiphenyl                                       | AXYS MLA-010                      | MLA-010                   |      | Υ     | Y                      | Y               |                |              | 1 1                           |           | 'nΥ               |             |                                        |             |     | +               | +                                            |                                       |                                       |                                       | <del></del> |                                       | YD 1                  |
|                | PCB 87/115/116                                                               | AXYS MLA-007                      | MLA-007                   |      | -     | Y                      |                 |                |              |                               |           | Y                 |             |                                        |             | 10  | _               | _                                            |                                       |                                       | —                                     | —           |                                       |                       |
|                | . 65 6.771.671.16                                                            | EPA 8270                          | MLA-007                   |      |       | ·                      |                 |                |              | Y                             |           | - † ·             |             |                                        |             |     | 十               | ╈                                            | -                                     |                                       |                                       |             |                                       |                       |
|                | PCB 88 2,2',3,4,6-Pentachlorobiphenyl                                        | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            | Y Y                           | YY        | 'n.               |             |                                        |             | YD  |                 | T                                            | Y                                     | Υ                                     | Y                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               | Υ         | 'nΥ               |             |                                        |             | YD  | Y               | Y                                            | Υ                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 88/121                                                                   | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Υ                             |           |                   |             |                                        |             |     |                 | Ш                                            |                                       |                                       |                                       |             |                                       |                       |
|                | PCB 89 2,2',3,4,6'-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            | Y Y                           |           | _                 |             |                                        |             | _   | _               | 4                                            |                                       | Y                                     | Υ                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               |           | ΈY                |             |                                        |             |     | Y               | /                                            |                                       |                                       |                                       |             |                                       | YD                    |
|                | PCB 9 2,5-Dichlorobiphenyl                                                   | EPA 1668                          | MLA-010                   |      | Υ     | Υ                      | Y               | Υ              | Υ            | Y Y                           |           | Ό<br>Ϋ́D Υ        |             |                                        |             |     | +               | _                                            |                                       | Y                                     | Y                                     | <u>Y</u>    | <u>Y</u>                              | YD Y                  |
|                | PCB 90 2,2',3,4',5-Pentachlorobiphenyl                                       | AXYS MLA-010<br>EPA 1668          | MLA-010<br>MLA-010        |      | ī     | T                      | Y               | V              | v .          | v v                           | ' Y Y     |                   |             |                                        |             | _   | +'              | +                                            |                                       |                                       |                                       |             | _                                     | YD<br>YD Y            |
|                | FOB 90 2,2 ,3,4 ,5-remachiorophenyi                                          | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Y               | - '            | '            | <u> </u>                      |           | 'nΥ               |             |                                        |             | _   | <del>-</del>    | <u>,                                    </u> |                                       |                                       |                                       | <u> </u>    | <u>'</u>                              | YD                    |
|                | PCB 91 2,2',3,4',6-Pentachlorobiphenyl                                       | AXYS MLA-007                      | MLA-007                   |      |       | Y                      |                 |                |              |                               |           | Y                 |             |                                        |             |     | _               | _                                            |                                       |                                       |                                       |             |                                       |                       |
|                | , , , , , , , , , , , , , , , , , , , ,                                      | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            | Y Y                           | YY        | 'n.               |             |                                        |             | YD  |                 | T                                            | Y                                     | Υ                                     | Y                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Υ                             |           |                   |             |                                        |             |     |                 |                                              |                                       |                                       |                                       |             |                                       |                       |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               | Υ         | 'nΥ               |             |                                        |             | _   | Y               | Y                                            | Υ                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 92 2,2',3,5,5'-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Υ               | Υ              | Υ            |                               | YY        | 'n.               |             |                                        |             | YD  |                 | 4                                            | Y                                     | Υ                                     | Υ                                     | Υ           | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | YD Y                  |
|                |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 |                |              | Y                             |           | _                 |             |                                        |             |     | 4               | 4                                            |                                       |                                       |                                       |             |                                       |                       |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Y               |                |              |                               |           | D Y               |             |                                        |             | _   | Y               | 4                                            |                                       |                                       |                                       |             |                                       | YD                    |
|                | PCB 93 2,2',3,5,6-Pentachlorobiphenyl                                        | EPA 1668<br>AXYS MLA-010          | MLA-010<br>MLA-010        |      | Υ     | Y                      | Y               | Y              | Y            | Y Y                           | Y Y       | Ό<br>Ό Υ          |             |                                        |             | _   | +               | +                                            |                                       | Y                                     | <u>Y</u>                              | Y           | <u>Y</u>                              | YD Y                  |
|                | PCB 94 2,2',3,5,6'-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010<br>MLA-010        |      | ľ     | 1                      | Y               | V              |              | v v                           | Y Y       | _                 |             |                                        |             | _   | +               | +                                            |                                       |                                       |                                       |             | _                                     | YD Y                  |
|                | 1 00 37 2,2,3,3,0 - Fertiaciliotopiphenyi                                    | EPA 1000<br>EPA 8270              | MLA-017                   | -    |       | <b> </b>               |                 |                |              | <u>т</u><br>Ү                 |           |                   |             |                                        |             | יטי | +               | +                                            |                                       | ı                                     |                                       | <u> </u>    | <del>-</del>                          | ו טו                  |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Υ               |                |              |                               |           | 'nΥ               |             |                                        |             | YD  | ١,              | Y                                            | Y                                     |                                       |                                       |             |                                       | YD                    |
|                | PCB 95 2,2',3,5',6-Pentachlorobiphenyl                                       | EPA 1668                          | MLA-010                   |      |       |                        | Y               | Υ              | Υ            | Y Y                           | · Y Y     |                   |             |                                        |             | _   | Ť               | $\top$                                       |                                       | Y                                     | Υ                                     | Υ           | Υ                                     | YD Y                  |
|                |                                                                              | AXYS MLA-010                      | MLA-010                   |      | Υ     | Υ                      | Y               |                |              |                               |           | Ď Y               |             |                                        |             |     | )               | 7                                            |                                       |                                       |                                       |             |                                       | YD                    |
|                | PCB 95/93                                                                    | AXYS MLA-007                      | MLA-007                   |      |       | Υ                      |                 |                |              |                               |           | Υ                 |             |                                        |             |     | ١               | Y                                            |                                       |                                       |                                       |             |                                       |                       |
| 1              |                                                                              | EPA 8270                          | MLA-007                   |      |       |                        |                 | -              |              | Υ                             |           |                   |             |                                        |             |     |                 | Т                                            |                                       |                                       |                                       |             |                                       | 5 A A A               |

|               | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp     | Serum | Solids   |                               |               |                |                              |               |           | Tissile  | 9        |               |                |                      | Urine | Water    | Water, Non-Potable |                              |                |              |              |            |          |
|---------------|------------------------------------------------------------------------------|------------------------------|--------------------|----------|-------|----------|-------------------------------|---------------|----------------|------------------------------|---------------|-----------|----------|----------|---------------|----------------|----------------------|-------|----------|--------------------|------------------------------|----------------|--------------|--------------|------------|----------|
|               |                                                                              |                              |                    | CALA     | CALA  | CALA     | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE | Maine DOH | ANAB     | НООН     | Minnesota DOH | New Jersey DEP | Vilginia DGS<br>ANAB | CALA  | CALA     | California DPH     | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH | Virginia DGS | HOO        | ANAB     |
| ompound Class | Compound                                                                     | Accredited Method ID         | AXYS Method ID     | CA       | CA    | CA       |                               |               |                |                              |               |           |          | 등 윤      | <u>₹</u>      | ē š            |                      | CA    | CA       |                    |                              |                |              |              |            |          |
|               | PCB 96 2,2',3,6,6'-Pentachlorobiphenyl                                       | EPA 1668                     | MLA-010            |          |       |          | Y                             | •             | Υ              | Y Y                          |               | Υ \       | /D       |          |               |                | YD                   |       |          |                    | Υ                            | Υ              | Υ            | Υ \          | <u>/ Y</u> | YD       |
|               |                                                                              | EPA 8270<br>AXYS MLA-010     | MLA-007<br>MLA-010 |          | Υ     | Υ        | Y                             | ,             |                |                              | Υ             |           | /D Y     | ,        |               |                | YD                   |       | Υ        |                    | Y                            |                |              |              |            | YD       |
|               | PCB 97 2,2',3,4',5'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |          |       | '        | Y                             |               | Υ              | Y Y                          | Y             | Υ \       | _        |          |               |                | YD                   | _     | -        |                    | Y                            | Y              | Υ            | ΥY           |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          | Υ     | Υ        | Y                             |               |                |                              |               |           | /D Y     | ′        |               |                | YD                   | _     | Υ        |                    | Y                            |                |              |              |            | YD       |
|               | PCB 97/86                                                                    | AXYS MLA-007                 | MLA-007            |          |       | Υ        |                               |               |                |                              |               |           | Υ        | ′        |               |                |                      |       | Υ        |                    |                              |                |              |              |            |          |
|               |                                                                              | EPA 8270                     | MLA-007            |          |       |          |                               |               |                |                              | Υ             |           |          |          |               |                |                      |       |          |                    |                              |                |              |              |            |          |
|               | PCB 98 2,2',3,4',6'-Pentachlorobiphenyl                                      | EPA 1668                     | MLA-010            |          |       | <u> </u> | Y                             |               | Υ              | Y Y                          | Υ             |           |          |          |               |                | YD                   | _     |          |                    | Υ                            | Υ              | Υ            | Υ \          |            | YD       |
|               | 202 20422                                                                    | AXYS MLA-010                 | MLA-010            |          | Υ     | Υ        | Y                             |               |                |                              |               |           | /D Y     | <u> </u> |               |                | YD                   |       | Υ        |                    | Υ                            |                |              |              | Y          | YD       |
|               | PCB 98/102 PCB 99 2,2',4,4',5-Pentachlorobiphenyl                            | EPA 8270<br>AXYS MLA-007     | MLA-007<br>MLA-007 |          |       | Υ        |                               |               |                |                              | Υ             |           | Y        | ,        |               |                |                      |       | Υ        |                    |                              |                |              |              |            |          |
|               | PCB 99 2,2 ,4,4 ,5-Pentachioropipnenyi                                       | AXYS MLA-007<br>AXYS MLA-901 | MLA-901            |          | Υ     | Y        |                               |               |                |                              |               |           | ľ        |          |               |                |                      |       | Y        |                    |                              |                |              |              |            |          |
|               |                                                                              | EPA 1668                     | MLA-010            |          | Ė     |          | Y                             | ,             | Υ              | Y Y                          | Υ             | ΥY        | /D       |          |               |                | YD                   |       |          |                    | Y                            | Υ              | Υ            | Υ \          | γ \        | YD       |
|               |                                                                              | EPA 8270                     | MLA-007            |          |       |          |                               |               |                |                              | Y             |           |          |          |               |                |                      |       |          |                    |                              | -              |              |              |            | _        |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          | Υ     | Υ        | Υ                             | ,             |                |                              |               | ١         | /D Y     | 1        |               |                | YD                   |       | Υ        |                    | Υ                            |                |              |              | Y          | YD       |
|               | PCB congeners, total                                                         | EPA 1668                     | MLA-010            |          |       |          |                               |               |                | Υ                            |               |           |          |          |               |                |                      |       |          |                    |                              |                | Υ            |              |            |          |
|               | Sum - Dichlorobiphenyls (BZ-12-+ BZ-13)                                      | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Heptachlorobiphenyls (BZ-171 + BZ-173)                                 | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Heptachlorobiphenyls (BZ-180 + BZ-193)                                 | AXYS MLA-010<br>EPA 1668     | MLA-010<br>MLA-010 |          |       |          |                               |               |                |                              |               |           | /D<br>/D |          |               |                | YD<br>YD             |       |          |                    |                              |                |              |              |            | YD<br>YD |
|               | Sum - Neptachioropiphenyla (BZ-100 + BZ-193)                                 | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Heptachlorobiphenyls (BZ-183 + BZ-185)                                 | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               | ١         | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              | 1          | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-128 + BZ-166)                                  | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               | ١         | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              | · ·        | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-129 + BZ-138 + BZ-160 + BZ-163)                | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | 0 11 11 11 1 (D7 404 - D7 440)                                               | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-134 + BZ-143)                                  | EPA 1668<br>AXYS MLA-010     | MLA-010<br>MLA-010 |          |       |          |                               |               |                |                              |               |           | /D<br>/D |          |               |                | YD<br>YD             | _     |          |                    |                              |                |              | —            |            | YD<br>YD |
|               | Sum - Hexachlorobiphenyls (BZ-135 + BZ-151 + BZ-154)                         | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Call Holdship Call 182 188 182 181 182 181                                   | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-139 + BZ-140)                                  | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               | ١         | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              | Y          | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               | ١         | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              | Y          | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-147 + BZ-149)                                  | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-153 + BZ-168)                                  | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Hexachlorobiphenyls (BZ-156 + BZ-157)                                  | AXYS MLA-010<br>EPA 1668     | MLA-010<br>MLA-010 |          |       |          |                               |               |                |                              |               |           | /D<br>/D |          |               |                | YD<br>YD             |       |          |                    |                              |                |              |              |            | YD<br>YD |
|               | Sum - Hexacilloropphenyis (BZ-130 + BZ-131)                                  | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Pentachlorobiphenyls (BZ-107 + BZ-124)                                 | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     | $\vdash$ |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Pentachlorobiphenyls (BZ-108 + BZ-124)                                 | EPA 1668                     | MLA-010            |          |       |          |                               |               |                |                              |               | ١         | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     | Ш        |                    |                              |                |              |              |            | YD       |
|               | Sum - Pentachlorobiphenyls (BZ-110 + BZ-115)                                 | EPA 1668                     | MLA-010            |          |       | <u> </u> |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     | $\sqcup$ |                    |                              |                |              |              |            | YD       |
|               |                                                                              | AXYS MLA-010                 | MLA-010            |          |       | <u> </u> |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       |          |                    |                              |                |              |              |            | YD       |
|               | Sum - Pentachlorobiphenyls (BZ-83 + BZ-99)                                   | EPA 1668                     | MLA-010            |          |       | <u> </u> |                               |               |                |                              |               |           | /D       |          |               |                | YD                   | _     | $\vdash$ |                    |                              |                |              |              |            | YD       |
|               | Cum Denteshlershinkenula (PZ 95 + PZ 4440 + PZ 447)                          | AXYS MLA-010                 | MLA-010            |          |       |          |                               |               |                |                              |               |           | /D       |          |               |                | YD                   |       | $\vdash$ |                    |                              |                |              |              |            | YD       |
|               | Sum - Pentachlorobiphenyls (BZ-85 + BZ-116 + BZ-117)                         | EPA 1668<br>AXYS MLA-010     | MLA-010<br>MLA-010 | $\vdash$ | -     | <u> </u> |                               |               |                |                              |               |           | /D<br>/D |          |               |                | YD<br>YD             |       | $\vdash$ |                    |                              |                |              |              |            | YD<br>YD |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30  |                                          |                                          | Pulp | erum | Solids           |                               |                                 |              |                               |                   | Tissue   |                              |                |              | Orine  | Water | Nater, Non-Potable |                              |                |              |                              |               |                          |
|----------------|-------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------|------|------------------|-------------------------------|---------------------------------|--------------|-------------------------------|-------------------|----------|------------------------------|----------------|--------------|--------|-------|--------------------|------------------------------|----------------|--------------|------------------------------|---------------|--------------------------|
| Compound Class | Compound                                                                      | Accredited Method ID                     | AXYS Method ID                           | CALA | CALA | -<br>-<br>-<br>- | California DPH<br>Florida DOH | Minnesota DOH<br>New Jersey DEP | New York DOH | Virginia DGS<br>Washington DE | Maine DOH<br>ANAB |          | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS | CALA   |       | via DPH            | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH | Virginia DGS Washington DE * | Maine DOH     | ANAB<br>Pennsylvania DEP |
|                | Sum - Pentachlorobiphenyls (BZ-86 + BZ-87 + BZ 97 + BZ-109 + BZ-119 + BZ-125) | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Υ            | D<br>D |       |                    |                              |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Pentachlorobiphenyls (BZ-86 + BZ-87 + BZ-97 + BZ-108 + BZ-119 +BZ-125)  | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Υ            | D<br>D |       |                    |                              |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Pentachlorobiphenyls (BZ-88 + BZ-91)                                    | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Υ            | D<br>D |       |                    | _                            |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Pentachlorobiphenyls (BZ-90 + BZ-101 + BZ-113)                          | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | 1        |                              |                | Υ            | D<br>D |       |                    | _                            |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Pentachlorobiphenyls (BZ-93 + BZ-95 + BZ-98 + BZ-100 + BZ-102)          | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Υ            | D<br>D |       |                    | _                            |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-40 + BZ-41 + BZ-71)                            | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Υ            | D<br>D |       |                    |                              |                |              |                              | `             | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-44 + BZ-47 + BZ-65)                            | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-45 + BZ-51)                                    | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                |              | D<br>D | -     |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-49 + BZ-69)                                    | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | _        |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-50 + BZ-53)                                    | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-59 + BZ-62 + BZ-75)                            | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | _        |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Tetrachlorobiphenyls (BZ-61 + BZ-70 + BZ-74 + BZ-76)                    | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | _        |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Sum - Trichlorobiphenyls (BZ-18 + BZ-30)                                      | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          |          |                              |                | Y            | D<br>D |       |                    | <u> </u>                     |                |              |                              |               | YD<br>YD                 |
|                | Sum - Trichlorobiphenyls (BZ-20 + BZ-28)                                      | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | 1        |                              |                | Υ            | D<br>D |       |                    | <u> </u>                     |                |              |                              |               | YD<br>YD                 |
|                | Sum - Trichlorobiphenyls (BZ-21 + BZ-33)                                      | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | 1        |                              |                | Υ            | D<br>D |       |                    | <u> </u>                     |                |              |                              |               | YD<br>YD                 |
|                | Sum - Trichlorobiphenyls (BZ-26 + BZ-29)                                      | EPA 1668<br>AXYS MLA-010                 | MLA-010<br>MLA-010                       |      |      |                  |                               |                                 |              |                               | YD<br>YD          | _        |                              |                |              | D<br>D |       |                    |                              |                |              |                              |               | YD<br>YD                 |
|                | Total Dichlorobiphenyls                                                       | AXYS MLA-007<br>EPA 1668<br>EPA 8270     | MLA-007<br>MLA-010<br>MLA-007            |      |      | Y                |                               |                                 |              | Y                             | YD                | Y        |                              |                | Y            | D      | Y     |                    |                              |                |              |                              |               | YD                       |
|                | Total Heptachlorobiphenyls                                                    | AXYS MLA-010<br>AXYS MLA-007             | MLA-010<br>MLA-007                       |      | Υ    | Y Y              |                               |                                 |              |                               |                   | Y        |                              |                |              | D      | Y     |                    |                              |                |              |                              |               | YD                       |
|                |                                                                               | EPA 1668<br>EPA 8270<br>AXYS MLA-010     | MLA-010<br>MLA-007<br>MLA-010            |      | _    | / Y              |                               |                                 |              | Υ                             | YD                | )<br>) Y |                              |                | Y            | D      | Y     |                    | <u>—</u>                     |                |              |                              |               | YD<br>YD                 |
|                | Total Hexachlorobiphenyls                                                     | AXYS MLA-007 EPA 1668 EPA 8270           | MLA-010<br>MLA-007<br>MLA-010<br>MLA-007 |      |      | Y                |                               |                                 |              | Y                             | YD                | Υ        |                              |                |              | D      | Y     | _                  |                              |                |              |                              |               | YD                       |
|                | Total Monochlorobiphenyls                                                     | AXYS MLA-010<br>EPA 1668                 | MLA-010<br>MLA-010<br>MLA-010            |      |      | / Y              |                               |                                 |              |                               | YD                | Y        |                              |                | Υ            | D<br>D | Y     |                    |                              |                |              |                              | `             | YD<br>YD<br>YD           |
|                | Total Nonachlorobiphenyls                                                     | AXYS MLA-010<br>AXYS MLA-007<br>EPA 1668 | MLA-010<br>MLA-007<br>MLA-010            |      | Y    | Y                |                               |                                 |              |                               | YD                | Υ        |                              |                |              | D<br>D | Y     |                    |                              |                |              |                              |               | YD                       |
|                |                                                                               | EPA 8270<br>AXYS MLA-010                 | MLA-007<br>MLA-010                       |      | Υ    | / Y              |                               |                                 |              | Υ                             | YD                | Y        |                              |                | Y            | D      | Υ     |                    |                              |                |              |                              | <del></del> , | YD.                      |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                          |                    | Pulp | Serum | Solids                                           |                              |                |                              |               |                   | Tissue   |             |                |               | Urine  | Water | Water, Non-Potable |                              |                |              |                 |                   |
|----------------|------------------------------------------------------------------------------|--------------------------|--------------------|------|-------|--------------------------------------------------|------------------------------|----------------|------------------------------|---------------|-------------------|----------|-------------|----------------|---------------|--------|-------|--------------------|------------------------------|----------------|--------------|-----------------|-------------------|
|                |                                                                              |                          |                    | Y-   | ٩     | CALA<br>California DPH                           | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE | Maine DOH<br>ANAB | 4        | Florida DOH | New Jersey DEP | Virginia DGS  | 2 4    | Y-    | California DPH     | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH | Washington DE * | Maine DOH<br>ANAB |
| Compound Class | Compound                                                                     | Accredited Method ID     | AXYS Method ID     | CALA | CALA  | CALA                                             | Plo R                        | Nev            | Nev<br>Virg                  | Was           | Maine<br>ANAB     | CALA     | Flor        | Š              | Virginia      | CALA   | CALA  | Cali               | Flor<br>Min                  | Š              | Nev          | Was             | Maine<br>ANAB     |
|                | Total Octachlorobiphenyls                                                    | AXYS MLA-007             | MLA-007            |      |       | Υ                                                |                              |                |                              |               |                   | Υ        |             |                |               |        | Υ     | <u> </u>           |                              |                |              |                 |                   |
|                |                                                                              | EPA 1668                 | MLA-010            |      |       |                                                  |                              |                |                              |               | YE                | )        |             |                | Y             | )      |       | ₩                  |                              |                |              |                 | YD                |
|                |                                                                              | EPA 8270                 | MLA-007<br>MLA-010 |      | Υ     | .,                                               |                              |                |                              | Υ             | \/F               | ) Y      |             |                |               | +      | Y     | ₩                  |                              |                |              |                 |                   |
|                | Total PCBs                                                                   | AXYS MLA-010<br>EPA 1668 | MLA-010<br>MLA-010 |      | Y     | Υ                                                |                              |                |                              |               | YE<br>YE          |          |             |                | Y             |        | Y     | ₩                  |                              |                |              |                 | YD<br>YD          |
|                | Total FODS                                                                   | AXYS MLA-010             | MLA-010            |      | -     |                                                  |                              |                |                              |               | YE                |          |             |                | <u>'</u><br>Y | _      | +-    | ₩                  |                              |                |              |                 | YD                |
|                | Total Pentachlorobiphenyls                                                   | AXYS MLA-007             | MLA-007            |      |       | Υ                                                |                              |                |                              |               |                   | Y        |             |                |               | +      | Υ     | <b>†</b>           |                              |                |              |                 |                   |
|                |                                                                              | EPA 1668                 | MLA-010            |      |       |                                                  |                              |                |                              |               | YE                | )        |             |                | Y             | )      |       |                    |                              |                |              |                 | YD                |
|                |                                                                              | EPA 8270                 | MLA-007            |      |       |                                                  |                              |                |                              | Υ             |                   |          |             |                |               |        |       |                    |                              |                |              |                 |                   |
|                |                                                                              | AXYS MLA-010             | MLA-010            |      | Υ     | Υ                                                |                              |                |                              |               | YE                | Y        |             |                | Υ             | )      | Υ     |                    |                              |                |              |                 | YD                |
|                | Total Polychlorinated biphenyls                                              | AXYS MLA-007             | MLA-007            |      |       | Υ                                                |                              |                |                              |               |                   | Υ        |             |                |               |        | Υ     |                    |                              |                |              |                 |                   |
|                | Total Tetrachlorobiphenyls                                                   | AXYS MLA-007             | MLA-007            |      |       | Υ                                                |                              |                |                              |               |                   | Υ        |             |                |               |        | Υ     | <u> </u>           |                              |                |              |                 |                   |
|                |                                                                              | EPA 1668                 | MLA-010            |      |       |                                                  |                              |                |                              |               | YE                | )        |             |                | Y             | )      | -     | <b>↓</b>           |                              |                |              |                 | YD                |
|                |                                                                              | EPA 8270                 | MLA-007            |      |       |                                                  |                              |                |                              | Υ             |                   |          |             |                |               | +      | ļ.,   | ₩.                 |                              |                |              |                 |                   |
|                | Tatal Taiaklasakiakasasia                                                    | AXYS MLA-010             | MLA-010<br>MLA-007 |      | Υ     | Y                                                |                              |                |                              |               | YE                | Y        |             |                | Y             | )      | Y     |                    |                              |                |              |                 | YD                |
|                | Total Trichlorobiphenyls                                                     | AXYS MLA-007<br>EPA 1668 | MLA-007<br>MLA-010 |      |       | Y                                                |                              |                |                              |               | YE                |          |             |                | Y             | +      | ř     | ₩                  |                              |                |              |                 | YD                |
|                |                                                                              | EPA 1000<br>EPA 8270     | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | T L               | <u> </u> |             |                |               | +      | -     | $\vdash$           |                              |                |              |                 | 10                |
|                |                                                                              | AXYS MLA-010             | MLA-010            |      | Υ     | Υ                                                |                              |                |                              |               | YE                | ) Y      |             |                | Y             | )      | Υ     | $\vdash$           |                              |                |              |                 | YD                |
| PCDDF          | 1,2,3,4,6,7,8-HpCDD                                                          | EPA 1613                 | MLA-017            |      | Ė     |                                                  |                              |                |                              | Υ             | YE                | _        |             |                | Y             |        | Ť     |                    | Υ                            | Υ              | Υ,           | / Y             |                   |
|                | (1_1=1) (1=1-1) (1=1-1)                                                      | EPA 8290                 | MLA-017            |      |       | Υ                                                | Υ                            | Υ              | ΥΥ                           |               | Y YE              | _        | Υ           | Υ              | ΥΥ            | _      |       |                    | Y                            |                | Υ '          |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ                                                | Υ                            |                |                              |               | YE                | ) Y      | Υ           |                | Υ             | )      | Υ     |                    | Υ                            |                |              |                 | YD                |
|                | 1,2,3,4,6,7,8-HpCDF                                                          | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                | )        |             |                | Υ             | )      |       | Υ                  | Υ                            | Υ              | Υ,           | / Y             | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | Υ                                                | Υ                            | Υ              | ΥY                           |               | Y YE              | )        | Υ           | Υ              | ΥY            | )      |       |                    | Υ                            |                | Υ '          | (               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ                                                | Υ                            |                |                              |               | YE                | _        | Υ           |                | Υ             |        | Υ     |                    | Υ                            |                |              |                 | YD                |
|                | 1,2,3,4,7,8,9-HpCDF                                                          | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                | _        |             |                | Y             | _      |       | _                  | Υ                            | Υ              | Υ '          |                 | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | Y                                                |                              | Υ              | Y Y                          |               | Y YE              | _        | Υ           | Υ              | ΥY            | _      | -     |                    | Υ                            |                | Υ '          | (               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ                                                | Υ                            |                |                              |               | YE                | _        | Υ           |                | Y             |        | Υ     | +                  | Υ                            |                |              |                 | YD                |
|                | 1,2,3,4,7,8-HxCDD                                                            | EPA 1613                 | MLA-017            |      |       | .,                                               |                              | .,             | ., .,                        | Υ             | YE                |          | .,          |                | Y             |        | -     | +                  | Υ                            | Y              | Υ '          |                 |                   |
|                |                                                                              | EPA 8290<br>AXYS MLA-017 | MLA-017<br>MLA-017 | Υ    | V     | Y                                                | Y                            | Y              | Y Y                          |               | Y YE              | _        | Y           | Y              | Y Y           | _      | Y     |                    | Y                            |                | Υ '          | <u> </u>        | YD<br>YD          |
|                | 1,2,3,4,7,8-HxCDF                                                            | EPA 1613                 | MLA-017<br>MLA-017 | 1    | 1     | ī                                                | 1                            |                |                              | Υ             | YE                | _        | 1           |                | <u>T</u><br>Y |        | T     |                    | Y                            |                | Υ,           | / V             |                   |
|                | 1,2,0,4,1,0 110001                                                           | EPA 8290                 | MLA-017            |      | l     | Y                                                | Υ                            | Υ              | ΥΥ                           |               | Y YE              | _        | Υ           | Y              | Y Y           |        |       |                    | Y                            |                | Υ,           |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Y                                                | Y                            |                |                              |               | YE                | _        | Y           |                |               | 5      | Υ     | _                  | Y                            |                |              |                 | YD                |
|                | 1,2,3,6,7,8-HxCDD                                                            | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                | _        |             |                | Y             | _      |       | Υ                  | Υ                            | Υ              | Υ '          | / Y             | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | Υ                                                | Υ                            | Υ              | ΥΥ                           |               | Y YE              | )        | Υ           | Υ              | ΥY            | )      |       |                    | Υ                            |                | Υ '          |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ                                                | Υ                            |                |                              |               | YE                | Y        | Υ           |                | Υ             | )      | Υ     |                    | Υ                            |                |              |                 | YD                |
|                | 1,2,3,6,7,8-HxCDF                                                            | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                | )        |             |                | Υ             | _      |       | Υ                  | Υ                            | Υ              | Υ '          | / Y             | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | Υ                                                |                              | Υ              | Y Y                          |               | Y YE              | _        | Υ           | Υ              | ΥY            | _      |       | ــــــ             | Υ                            |                | Υ '          | 1               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ                                                | Υ                            |                |                              |               |                   | Y        | Υ           |                | Y             |        | Υ     |                    | Υ                            |                |              |                 | YD                |
|                | 1,2,3,7,8,9-HxCDD                                                            | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                | _        |             |                | Y             | _      | -     | Υ                  |                              | Υ              |              |                 | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      | .,    | Y                                                |                              | Υ              | Y Y                          |               | Y YE              | _        | Y           | Y              | YY            |        |       |                    | Y                            |                | Υ '          |                 | YD                |
|                | 1,2,3,7,8,9-HxCDF                                                            | AXYS MLA-017<br>EPA 1613 | MLA-017<br>MLA-017 | ĭ    | Y     | Υ                                                | Υ                            |                |                              | Υ             | YE<br>YE          | _        | Υ           |                |               | )<br>) | Υ     | Υ                  | Y                            | V              | v ,          | / V             | YD<br>Y YD        |
|                | 1,2,0,1,0,3-NXCUF                                                            | EPA 1613<br>EPA 8290     | MLA-017<br>MLA-017 | -    |       | Υ                                                | Υ                            |                | ΥΥ                           |               | Y YE              | _        | Υ           | V              | Y Y           | _      | +     | _                  | Y                            | r              | Y Y          |                 | Y YD<br>YD        |
|                |                                                                              | AXYS MLA-017             | MLA-017<br>MLA-017 | Υ    | Υ     |                                                  | Y                            | - 1            | . 1                          |               | YE                | _        |             | - 1            |               | )      | Υ     | +                  | Y                            |                |              |                 | YD                |
|                | 1,2,3,7,8-PeCDD                                                              | EPA 1613                 | MLA-017            | -    | -+    | <del>                                     </del> | •                            |                |                              | Υ             | YE                | _        | -           |                |               | 5      | +     | Υ                  |                              | Υ              | Υ,           | / Y             | Y YD              |
|                | .,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                      | EPA 8290                 | MLA-017            |      |       | Y                                                | Υ                            | Υ              | Y Y                          |               | Y YE              | _        | Υ           | Υ              | YY            | _      | 1     | _                  | Y                            |                | Ϋ́           |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     |                                                  | Υ                            |                |                              |               | YE                | _        | Υ           |                |               | 5      | Υ     | _                  | Y                            |                |              |                 | YD                |
|                | 1,2,3,7,8-PeCDF                                                              | EPA 1613                 | MLA-017            |      |       |                                                  |                              |                |                              | Υ             | YE                |          |             |                |               | )      |       | Υ                  | Y                            | Υ              | Υ '          | / Y             |                   |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                          |                    | Pulp | Serum | Solids |                               |               |                                |              |               |                   | Tissue |               |                |              | Urine    | Water | Water, Non-Potable            |                |              |                 |                   |
|----------------|------------------------------------------------------------------------------|--------------------------|--------------------|------|-------|--------|-------------------------------|---------------|--------------------------------|--------------|---------------|-------------------|--------|---------------|----------------|--------------|----------|-------|-------------------------------|----------------|--------------|-----------------|-------------------|
| Compound Class | Compound                                                                     | Accredited Method ID     | AXYS Method ID     | CALA | CALA  | CALA   | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>New York DOH | Virginia DGS | Washington DE | Maine DOH<br>ANAB | CALA   | Minnesota DOH | New Jersey DEP | Virginia DGS | CALA     | CALA  | California DPH<br>Florida DOH | New Jersey DEP | New York DOH | Vashington DE * | Maine DOH<br>ANAB |
| ompound olaco  | Compound                                                                     | EPA 8290                 | MLA-017            | J    | J     | _      | ΥY                            |               | <u>Y</u> Y                     |              | _             | Y YD              |        | Y             | _              | Y YI         |          |       | Y                             |                | Y            | _               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Υ                             |               |                                |              |               | YD                | Υ      | Y             |                | Υ[           | _        | Υ     | Υ                             |                |              |                 | YD                |
|                | 2,3,4,6,7,8-HxCDF                                                            | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              | Υ             | YD                |        |               |                | ΥI           |          |       | ΥΥ                            | Υ              | Υ ١          |                 |                   |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       |        | Y Y                           |               | Y Y                            | Υ            |               | Y YD              |        | Y             | Υ              |              | _        |       | Y                             |                | Υ \          | (               | YD                |
|                | 22.17.2                                                                      | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Υ                             |               |                                |              |               | YD                | Υ      | Y             |                | ΥĽ           | _        | Υ     | Y                             |                |              |                 | YD                |
|                | 2,3,4,7,8-PeCDF                                                              | EPA 1613                 | MLA-017            |      |       |        |                               |               | \ \ \                          |              | Υ             | YD                |        |               |                | YE           |          | 1     | YY                            | Υ              | Y \          |                 |                   |
|                |                                                                              | EPA 8290                 | MLA-017            | Υ    | Υ     | Y      | Y Y<br>Y                      |               | Y Y                            | Y            |               | Y YD              |        | Υ             | Y              | Y YE         | _        | V     | Y<br>Y                        |                | Υ \          | r               | YD                |
|                | 2,3,7,8-TCDD                                                                 | AXYS MLA-017<br>EPA 1613 | MLA-017<br>MLA-017 | T    | ī     | ı      | Ť                             |               |                                |              | Υ             | YD<br>YD          | -      |               |                | YI<br>YI     |          | Υ     | YY                            | ~              | Y            | / V             | YD<br>Y YD        |
|                | 2,0,1,0*1000                                                                 | EPA 1613<br>EPA 8290     | MLA-017            | -    | -     | ٠,     | Y Y                           |               | Y Y                            | Υ            |               | Y YD              | -      | Y             | Υ              | Y YE         | _        |       | Y                             | ī              | Y            |                 | YD YD             |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Y                             |               | <u> </u>                       |              |               | YD                |        |               | •              | YE           | _        | Υ     | Y                             |                |              |                 | YD                |
|                | 2,3,7,8-TCDF                                                                 | EPA 1613                 | MLA-017            |      |       | Ė      |                               |               |                                |              | Υ             | YD                | r i    |               |                | YE           |          | Ė     | YY                            | Υ              | ΥY           | / Y             |                   |
|                |                                                                              | EPA 8290                 | MLA-017            | _    | _     | ,      | ΥΥ                            |               | ΥΥ                             | Υ            |               | Y YD              |        | Y             | Υ              | Y Y          |          |       | Y                             |                | Υ ١          |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Υ                             |               |                                |              |               | YD                | Υ      | Y             |                | ΥI           | _        | Υ     | Υ                             |                |              |                 | YD                |
|                | OCDD                                                                         | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              | Υ             | YD                |        |               |                | Υ[           | )        |       | ΥΥ                            | Υ              | Υ ١          | / Y             | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | ,      | ΥΥ                            |               | ΥΥ                             | Υ            |               | Y YD              |        | Y             | Υ              | Y Y          |          |       | Υ                             |                | ΥY           | 1               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Υ                             |               |                                |              |               | YD                | Υ      | Y             |                | ΥI           | )        | Υ     | Υ                             |                |              |                 | YD                |
|                | OCDF                                                                         | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              | Υ             | YD                |        |               |                | ΥI           | _        |       | ΥΥ                            | Υ              | Υ Υ          | / Y             | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       | ,      | ΥY                            |               | Y Y                            | Υ            |               | Y YD              |        | Y             | Υ              | Y Y          | _        |       | Υ                             |                | Υ ١          | 1               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            | Υ    | Υ     | Υ      | Υ                             |               |                                |              |               | YD                | Υ      | Y             |                | ΥI           |          | Υ     | Υ                             |                |              |                 | YD                |
|                | Total HpCDD                                                                  | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           | _        |       | YY                            |                |              |                 | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       |        | Υ                             |               | Υ                              | Υ            |               | Y YD              |        | Y             | Υ              | Y YI         | _        |       | Υ                             |                |              |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            |      |       |        | Υ                             |               |                                |              |               | YD                |        | Y             |                | ΥI           |          |       | Y                             |                |              |                 | YD                |
|                | Total HpCDF                                                                  | EPA 1613                 | MLA-017            |      |       |        |                               |               | ``                             |              |               | YD                |        |               |                | YE           | _        | 1     | YY                            |                |              | ,               | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017<br>MLA-017 |      |       |        | Y                             |               | Υ                              | Υ            |               | Y YD              |        | Y<br>Y        | Y              | Y YE         |          |       | Y<br>Y                        |                |              | <u> </u>        | YD                |
|                | Total HxCDD                                                                  | AXYS MLA-017<br>EPA 1613 | MLA-017            |      |       |        | Y                             |               |                                |              |               | YD<br>YD          |        | Y             |                | YE           |          |       | YY                            |                |              |                 | YD<br>Y YD        |
|                | Total HXCDD                                                                  | EPA 1613<br>EPA 8290     | MLA-017            |      |       |        | Υ                             |               | Υ                              | Υ            |               | Y YD              |        | Y             | V              | Y YE         |          |       | Y                             |                | ,            | ,               | YD YD             |
|                |                                                                              | AXYS MLA-017             | MLA-017            |      |       |        | Y                             |               | -                              |              |               | YD                |        | <u>'</u><br>Y |                | YE           | _        |       | Y                             |                |              |                 | YD                |
|                | Total HxCDF                                                                  | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | YE           |          |       | Y Y                           |                |              |                 | Y YD              |
|                | 100.17.00                                                                    | EPA 8290                 | MLA-017            |      |       |        | Υ                             |               | Υ                              | Υ            |               | Y YD              |        | Y             | Υ              | Y Y          | _        |       | Y                             |                | ,            | /               | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            |      |       |        | Υ                             |               |                                |              |               | YD                |        | Y             |                | ΥI           |          |       | Υ                             |                |              |                 | YD                |
|                | Total PCDD                                                                   | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | Υ[           | )        |       |                               |                |              |                 | YD                |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           | )        |       |                               |                |              |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           | )        |       |                               |                |              |                 | YD                |
|                | Total PCDD+PCDF                                                              | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           |          |       |                               |                |              |                 | YD                |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           |          |       |                               |                |              |                 | YD                |
|                |                                                                              | AXYS MLA-017             | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           |          |       |                               |                |              |                 | YD                |
|                | Total PCDF                                                                   | EPA 1613                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           | _        |       |                               |                |              |                 | YD                |
|                |                                                                              | EPA 8290                 | MLA-017            |      |       |        |                               |               |                                |              |               | YD                |        |               |                | ΥI           | _        |       |                               |                |              |                 | YD                |
|                | T. 12 000                                                                    | AXYS MLA-017             | MLA-017            | _    | _     |        |                               |               |                                |              |               | YD                |        |               |                | YE           | _        |       |                               |                |              |                 | YD                |
|                | Total PeCDD                                                                  | EPA 1613                 | MLA-017            |      | -     |        | .,                            |               | V                              | .,           |               | YD<br>V VD        |        | .,            | ١/             | YE           | _        | H     | YY                            |                |              | ,               | Y YD              |
|                |                                                                              | EPA 8290                 | MLA-017            |      | -     |        | Y<br>Y                        |               | Υ                              | Υ            |               | Y YD              |        | Y             | Y              | Y YE         |          |       | Y                             |                |              | r               | YD                |
|                | Total PaCDE                                                                  | AXYS MLA-017<br>EPA 1613 | MLA-017<br>MLA-017 |      | -     |        | Y                             |               |                                |              |               | YD<br>YD          |        | ī             |                | YI<br>YI     | _        | H     | Y                             |                |              |                 | YD<br>V VD        |
|                | Total PeCDF                                                                  |                          |                    |      | -     |        | v                             |               | v                              | v            |               | Y YD              | -      | <i>y</i>      | V              |              | _        |       |                               |                | ,            | ,               | Y YD              |
|                |                                                                              | EPA 8290<br>AXYS MLA-017 | MLA-017<br>MLA-017 |      | -     |        | Y<br>Y                        |               | Υ                              | Υ            |               | Y YD              |        | Y<br>Y        | ľ              | Y YE         | _        |       | Y                             |                |              | T               | YD<br>YD          |
|                | Total TCDD                                                                   | EPA 1613                 | MLA-017<br>MLA-017 |      |       |        | ĭ                             |               |                                |              |               | YD<br>YD          |        |               |                | YL<br>YE     | _        |       | YY                            |                |              |                 | Y YD              |
|                | 101011000                                                                    | EPA 8290                 | MLA-017            |      |       |        | Y                             |               | Y                              | Υ            |               | Y YD              | -      | Y             | Y              | Y YI         | _        |       | Y                             |                | ,            | ,               | YD                |
|                |                                                                              | AXYS MLA-017             | IVILA-UT/          |      |       |        | Y                             |               | 1                              | ī            |               | עז י              |        |               | ſ              | ı îL         | <u> </u> | 1     | ī                             |                |              |                 | YD.               |

| 1              | file ref.: ACC-101 Rev. 30       |                                  |                           |          | L.       | 6                                                |                              |                |                              |               |                   | ٥            |                              |                |              |       | _     | Water, Non-Potable            |                                 |              |                                              |      |
|----------------|----------------------------------|----------------------------------|---------------------------|----------|----------|--------------------------------------------------|------------------------------|----------------|------------------------------|---------------|-------------------|--------------|------------------------------|----------------|--------------|-------|-------|-------------------------------|---------------------------------|--------------|----------------------------------------------|------|
|                |                                  |                                  |                           | Pulp     | Serum    | Solids                                           |                              |                |                              |               |                   | Tissue       |                              |                |              | Urine | Water | Wateı                         |                                 |              |                                              |      |
| 0              |                                  |                                  |                           | CALA     | CALA     | CALA<br>California DPH                           | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Nashington DE | Maine DOH<br>ANAB | CALA         | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS | CALA  | CALA  | California DPH<br>Florida DOH | Ainnesota DOH<br>Jew Jersey DEP | New York DOH | Virginia Dos<br>Washington DE *<br>Maine DOH | ANAB |
| Compound Class | Compound Total TCDF              | Accredited Method ID EPA 1613    | AXYS Method ID<br>MLA-017 | Ö        | Ö        | 0 0                                              | E Z                          | Ž              | Ž >                          | >             |                   |              | ΙΣ                           | Ž              | > <          |       | Ö     | О Е .                         | ΣŻ                              | Ž >          |                                              |      |
|                | Total TCDF                       | EPA 1613<br>EPA 8290             | MLA-017                   |          |          |                                                  | Υ                            | Υ              | Y                            |               | YD<br>Y YD        |              | Υ                            | V              | YY           |       |       | YY                            |                                 | ,            | <u>Y</u><br>Y                                | YD   |
|                |                                  | AXYS MLA-017                     | MLA-017                   |          |          |                                                  | Y                            |                |                              |               | YD                |              | Y                            |                |              | 0     | 1     | Y                             |                                 |              |                                              | YD   |
| PFC            | Perfluorobutanesulfonate (PFBS)  | AXYS MLA-041                     | MLA-041                   |          |          | Υ                                                | YY                           | · v            |                              |               | YD                |              | -                            |                |              |       |       | <u> </u>                      |                                 |              |                                              | 10   |
| 110            | i cindorobatanesanonate (i i bo) | AXYS MLA-042                     | MLA-042                   |          | Υ        | <u>'</u>                                         |                              |                |                              |               |                   |              |                              |                |              | +     |       |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   | Υ            | ΥΥ                           | Υ              | Y            | )     |       |                               |                                 |              |                                              |      |
| I              |                                  | AXYS MLA-060                     | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   | † ·          |                              | <u> </u>       |              |       | Υ     | Υ                             | ΥΥ                              |              |                                              | YD   |
| Ì              |                                  | EPA 537 modified                 | MLA-041                   |          |          |                                                  |                              |                |                              |               | YD                | ,            |                              |                |              |       | Ť     |                               |                                 |              |                                              |      |
| 1              |                                  |                                  | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | Υ            | 0     |       |                               |                                 |              |                                              |      |
| Ì              |                                  |                                  | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                |              |       |       |                               |                                 |              |                                              | YD   |
| Ì              | Perfluorobutanoate (PFBA)        | AXYS MLA-041                     | MLA-041                   | H        |          | Υ                                                | ΥΥ                           | Y              |                              |               | YD                |              |                              |                |              | +     |       |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-042                     | MLA-042                   |          | Υ        | †                                                |                              |                |                              |               | 10                |              |                              |                |              | +     | 1     |                               |                                 |              |                                              |      |
| 1              |                                  | AXYS MLA-043                     | MLA-043                   |          | Ė        |                                                  |                              |                |                              |               |                   | Υ            | ΥΥ                           | Υ              | Y            | 2     |       |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-060                     | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   | †            |                              |                |              | -     | Υ     | Y                             | ΥΥ                              |              |                                              | YD   |
| 1              |                                  | EPA 537 modified                 | MLA-041                   |          |          |                                                  |                              |                |                              |               | YD                | ,            |                              |                |              |       | Ť     |                               | <u> </u>                        |              |                                              | -10  |
|                |                                  | El 77 007 Modified               | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | Υ            |       |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                |              | 1     |       |                               |                                 |              |                                              | YD   |
|                | Perfluorodecanoate (PFDA)        | AXYS MLA-041                     | MLA-041                   |          |          | Υ                                                | ΥΥ                           | · v            |                              |               | YD                |              |                              |                |              |       | 1     |                               |                                 |              |                                              |      |
|                | i emdorodecanoale (i i bA)       | AXYS MLA-042                     | MLA-042                   |          | Υ        | <del>                                     </del> |                              |                |                              |               | 10                | 1            |                              |                |              | -     |       |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043                   |          | -        |                                                  |                              |                |                              |               |                   | v            | ΥΥ                           | V              | Y            |       | 1     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-060                     | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   | -            |                              |                |              |       | Υ     | V                             | ΥΥ                              |              |                                              | YD   |
|                |                                  | EPA 537 modified                 | MLA-041                   |          |          |                                                  |                              |                |                              |               | YD                |              |                              |                |              |       | +     | <u> </u>                      |                                 |              |                                              |      |
|                |                                  | EPA 537 Modified                 | MLA-043                   |          |          |                                                  |                              |                |                              |               | 10                |              |                              |                | Υ            |       |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | ,            | 1     |       |                               |                                 |              |                                              | VD   |
|                | Perfluorododecanoate (PFDoA)     | AXYS MLA-041                     | MLA-060                   |          |          | Υ                                                | ΥΥ                           | · V            |                              |               | YD                |              |                              |                |              | +     | +     |                               |                                 |              |                                              | YD   |
|                | Periluorododecanoate (PFDoA)     | AXYS MLA-041<br>AXYS MLA-042     | MLA-041                   |          | Υ        | Y                                                | Y Y                          | Y              |                              |               | YL                | <u> </u>     |                              |                |              | +     | +     |                               |                                 |              |                                              |      |
|                |                                  |                                  |                           |          | Y        |                                                  |                              |                |                              |               |                   |              | V V                          | ٧/             | Y            | _     | 1     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043<br>MLA-060        |          |          | -                                                |                              |                |                              |               |                   | Y            | Y Y                          | Ť              | Y            |       | Υ     |                               | ΥΥ                              |              |                                              |      |
|                |                                  | AXYS MLA-060<br>EPA 537 modified | MLA-060                   |          |          | -                                                |                              |                |                              |               | YD                |              |                              |                |              | -     | Y     | Ť                             | Y Y                             |              |                                              | YD   |
|                |                                  | EPA 537 modified                 |                           |          |          |                                                  |                              |                |                              |               | YD                | 1            |                              |                |              |       |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | Y            | اد    |       |                               |                                 |              |                                              | \/D  |
|                | D. (Least and a (DELLA)          | AV0/O NII A 044                  | MLA-060                   |          |          |                                                  |                              |                |                              |               | \/D               |              |                              |                |              | -     | 1     |                               |                                 |              |                                              | YD   |
|                | Perfluoroheptanoate (PFHpA)      | AXYS MLA-041                     | MLA-041                   |          |          | Υ                                                | Y Y                          | Y              |                              |               | YD                | <u>'</u>     |                              |                |              | -     | +     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-042                     | MLA-042                   |          | Υ        |                                                  |                              |                |                              |               |                   | ٠.,          | ., .,                        |                |              | +     | +     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   | Y            | Y Y                          | Y              | Y            | ر     | +     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-060                     | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                |              |       | Υ     | Y                             | Y Y                             |              |                                              | YD   |
| 1              |                                  | EPA 537 modified                 | MLA-041                   |          |          |                                                  |                              |                |                              |               | YD                | '            |                              |                |              |       |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | Υ            | اد    |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-060                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                |              |       |       |                               |                                 |              |                                              | YD   |
|                | Perfluorohexanesulfonate (PFHxS) | AXYS MLA-041                     | MLA-041                   | $\vdash$ | <u>.</u> | Υ                                                | Y Y                          | Υ              |                              |               | YD                | 1            |                              |                |              | +     | +-    | 1                             |                                 |              |                                              |      |
|                |                                  | AXYS MLA-042                     | MLA-042                   |          | Υ        | <b> </b>                                         |                              |                |                              |               |                   | <del> </del> |                              |                |              | _     | 1     | -                             |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043                   | Н        | $\vdash$ | 1                                                |                              |                |                              |               |                   | Y            | Y Y                          | Υ              | Y            | D     | ļ.,   |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-060                     | MLA-060                   | $\vdash$ |          | 1                                                |                              |                |                              |               |                   | 1            |                              |                |              | +     | Υ     | Y                             | Y Y                             |              |                                              | YD   |
|                |                                  | EPA 537 modified                 | MLA-041                   |          |          |                                                  |                              |                |                              |               | YD                | 1            |                              |                |              | _ [   |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-043                   |          |          |                                                  |                              |                |                              |               |                   |              |                              |                | Υ            | וכ    |       |                               |                                 |              |                                              |      |
|                |                                  |                                  | MLA-060                   | $\vdash$ |          | <b>.</b>                                         |                              |                |                              |               |                   |              |                              |                |              | +     | -     |                               |                                 |              |                                              | YD   |
|                | Perfluorohexanoate (PFHxA)       | AXYS MLA-041                     | MLA-041                   |          |          | Υ                                                | Y Y                          | Y              |                              |               | YD                |              |                              |                |              | 1     | 1     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-042                     | MLA-042                   |          | Υ        | ļ                                                |                              |                |                              |               |                   |              |                              |                |              | 1     | 1     |                               |                                 |              |                                              |      |
|                |                                  | AXYS MLA-043                     | MLA-043                   |          |          | ļ                                                |                              |                |                              |               |                   | Υ            | Y Y                          | Υ              | Υ            | D     | 1     |                               |                                 |              |                                              |      |
|                | 1                                | AXYS MLA-060                     | MLA-060                   |          |          | 1                                                |                              |                |                              |               |                   | 1            |                              |                |              |       | Y     | I Y                           | Y Y                             |              |                                              | YD   |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                                  |                    | Pulp     | Serum | Solids   |                               |               |                                |              |               |                   | Tissue   |                              |                |              | Urine | Water | Water, Non-Potable |             |                |              |                 |                   |
|----------------|------------------------------------------------------------------------------|----------------------------------|--------------------|----------|-------|----------|-------------------------------|---------------|--------------------------------|--------------|---------------|-------------------|----------|------------------------------|----------------|--------------|-------|-------|--------------------|-------------|----------------|--------------|-----------------|-------------------|
| Compound Class | Compound                                                                     | Accredited Method ID             | AXYS Method ID     | CALA     | CALA  | CALA     | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>New York DOH | Virginia DGS | Washington DE | Maine DOH<br>ANAB | CALA     | Florida DOH<br>Minnesota DOH | New Jersey DEP | Virginia DGS | ANAB  | CALA  | California DPH     | Florida DOH | New Jersey DEP | New York DOH | Washington DE * | Maine DOH<br>ANAB |
|                |                                                                              |                                  | MLA-043<br>MLA-060 |          |       |          |                               |               |                                |              |               |                   |          |                              |                | Υ            | D     |       |                    |             |                |              |                 |                   |
|                | Perfluorononanoate (PFNA)                                                    | AXYS MLA-041                     | MLA-041            |          |       | Υ        | Υ                             | Υ             | Y                              |              |               | YD                |          |                              |                |              | -     | -     |                    |             |                |              |                 | YD                |
|                | Tomacionational (TTTV)                                                       | AXYS MLA-042                     | MLA-042            |          | Υ     |          |                               |               |                                |              |               | 10                |          |                              |                |              |       |       |                    |             |                |              |                 | -                 |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          |       |          |                               |               |                                |              |               |                   | Υ        | ΥΥ                           | Υ              | Y            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-060                     | MLA-060            |          |       |          |                               |               |                                |              |               |                   |          |                              |                |              |       | Υ     |                    | ΥΥ          | Υ              |              |                 | YD                |
|                |                                                                              | EPA 537 modified                 | MLA-041            |          |       |          |                               |               |                                |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-043            |          |       |          |                               |               |                                |              |               |                   |          |                              |                | Y            | D     |       |                    |             |                |              |                 |                   |
|                | Defines at the serial (DEOCA)                                                | AVVO MI A 044                    | MLA-060<br>MLA-041 |          |       | Υ        |                               | Υ             | V                              |              |               | YD                |          |                              |                |              |       |       | 1                  |             |                |              |                 | YD                |
|                | Perfluorooctane sulfonamide (PFOSA)                                          | AXYS MLA-041<br>AXYS MLA-042     | MLA-041<br>MLA-042 |          | Υ     | ř        | Ť                             | Ť             | Ť                              |              |               | עז                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          | -     |          |                               |               |                                |              |               |                   | Υ        | ΥΥ                           | Υ              | Y            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-060                     | MLA-060            |          |       |          |                               |               |                                |              |               |                   | <u> </u> |                              |                |              |       | Υ     |                    | ΥY          | Y              |              |                 | YD                |
|                |                                                                              | EPA 537 modified                 | MLA-041            |          |       |          |                               |               |                                |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-043            |          |       |          |                               |               |                                |              |               |                   |          |                              |                | Υ            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-060            |          |       |          |                               |               |                                |              |               |                   |          |                              |                |              |       |       |                    |             |                |              |                 | YD                |
|                | Perfluorooctanesulfonate (PFOS)                                              | AXYS MLA-041                     | MLA-041            |          |       | Υ        | Υ                             | Υ             | Υ                              |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-042                     | MLA-042            |          | Υ     |          |                               |               |                                |              |               |                   |          |                              |                |              | _     |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          |       |          |                               |               |                                |              |               |                   | Y        | Y Y                          | Y              | Y            | D     |       | 1                  | \ \ \       | , ,,           |              |                 |                   |
|                |                                                                              | AXYS MLA-060<br>EPA 537 modified | MLA-060<br>MLA-041 |          |       |          |                               |               |                                |              |               | YD                |          |                              |                |              | -     | Υ     |                    | Υ \         | Y              |              |                 | YD                |
|                |                                                                              | El A 337 Hodined                 | MLA-043            |          |       |          |                               |               |                                |              |               | 10                |          |                              |                | Y            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-060            |          |       |          |                               |               |                                |              |               |                   |          |                              |                |              |       |       |                    |             |                |              |                 | YD                |
|                | Perfluorooctanoate (PFOA)                                                    | AXYS MLA-041                     | MLA-041            |          |       | Υ        | Υ                             | Υ             | Υ                              |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-042                     | MLA-042            |          | Υ     |          |                               |               |                                |              |               |                   |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          |       |          |                               |               |                                |              |               |                   | Υ        | Y Y                          | Υ              | Y            | D     | ļ.,   |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-060                     | MLA-060            |          |       |          |                               |               |                                |              |               | \/D               |          |                              |                |              |       | Υ     | 1                  | Υ \         | Y              |              |                 | YD                |
|                |                                                                              | EPA 537 modified                 | MLA-041<br>MLA-043 |          |       |          |                               |               |                                |              |               | YD                |          |                              |                | V            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-060            |          |       |          |                               |               |                                |              |               |                   |          |                              |                | '            |       |       |                    |             |                |              |                 | YD                |
|                | Perfluoropentanoate (PFPeA)                                                  | AXYS MLA-041                     | MLA-041            |          |       | Υ        | Y                             | Υ             | Y                              |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-042                     | MLA-042            |          | Υ     |          |                               |               |                                |              |               |                   |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          |       |          |                               |               |                                |              |               |                   | Υ        | ΥΥ                           | Υ              | Y            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-060                     | MLA-060            |          |       |          |                               |               |                                |              |               |                   |          |                              |                |              |       | Υ     |                    | Υ \         | Υ              |              |                 | YD                |
|                |                                                                              | EPA 537 modified                 | MLA-041            |          |       |          |                               |               |                                |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-043            |          |       |          |                               |               |                                |              |               |                   |          |                              |                | Y            | D     |       |                    |             |                |              |                 |                   |
|                | Defines described (DELIA)                                                    | AVVO MI A 044                    | MLA-060            |          |       | Υ        |                               | V .           | V                              |              |               | YD                |          |                              |                |              |       |       | 1                  |             |                |              |                 | YD                |
|                | Perfluoroundecanoate (PFUnA)                                                 | AXYS MLA-041<br>AXYS MLA-042     | MLA-041<br>MLA-042 |          | Υ     | ř        | Ť                             | Υ             | Ť                              |              |               | עז                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-043                     | MLA-043            |          |       |          |                               |               |                                |              |               |                   | Υ        | ΥΥ                           | Υ              | Y            | D     | +     | 1                  |             |                |              |                 |                   |
|                |                                                                              | AXYS MLA-060                     | MLA-060            |          |       |          |                               |               |                                |              |               |                   | Ė        |                              | •              |              | +     | Υ     |                    | ΥY          | Y              |              |                 | YD                |
|                |                                                                              | EPA 537 modified                 | MLA-041            |          |       |          |                               |               |                                |              |               | YD                |          |                              |                |              |       |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-043            |          |       |          |                               |               |                                |              |               |                   |          |                              |                | Y            | D     |       |                    |             |                |              |                 |                   |
|                |                                                                              |                                  | MLA-060            |          |       | ļ        |                               |               |                                |              |               |                   |          |                              |                |              |       |       |                    |             |                |              |                 | YD                |
| PPCP           | 1,7-Dimethylxanthine                                                         | EPA 1694                         | MLA-075            | Ш        |       | <b> </b> |                               |               |                                |              |               | Υ                 | <u> </u> |                              |                |              | _     | -     | 1                  |             |                |              |                 | Υ                 |
|                | 401-1                                                                        | AXYS MLA-075                     | MLA-075            |          |       | Y        |                               |               |                                |              |               |                   | <u> </u> |                              |                |              | -     | Y     |                    |             |                |              |                 |                   |
|                | 10-hydroxy-amitriptyline                                                     | AXYS MLA-075                     | MLA-075            |          |       | Y        |                               |               |                                |              |               |                   |          |                              |                |              | -     | Y     |                    |             |                |              |                 |                   |
|                | 2-hydroxy-ibuprofen 4-Epianhydrochlortetracycline (EACTC)                    | AXYS MLA-075<br>EPA 1694         | MLA-075<br>MLA-075 |          |       | ľ        |                               |               |                                |              |               | Y                 | 1        |                              |                |              | +     | Y     | -                  |             |                |              |                 | Y                 |
|                | T-Lpiailiyuludilloitelladyolille (EACTO)                                     | AXYS MLA-075                     | MLA-075            | $\vdash$ |       | Υ        |                               |               |                                |              |               | 1                 | <b>!</b> |                              |                |              | +     | Y     | 1-                 |             |                |              |                 | Y                 |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp | Serum | Solids |                                                                                                           | Tissue                                                          | Water    | _                                                                                                                                |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|-------|--------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------|
| Compound Class | Compound                                                                     | Accredited Method ID         | AXYS Method ID     | CALA | CALA  | CALA   | California DPH Florida DOH Minnesota DOH New Jersey DEP New York DOH Virginia DGS Washington DE Maine DOH | CALA Florida DOH Minnesota DOH New Jersey DEP Virginia DGS ANAB | CALA     | California DPH Florida DOH Minnesota DOH New Jersey DEP New York DOH Virginia DGS Washington DE* Maine DOH ANAB Pennsylvania DEP |
| Compound Glass | 4-Epianhydrotetracycline (EATC)                                              | EPA 1694                     | MLA-075            | Ü    | 0     |        | Y                                                                                                         | 0 1 2 2 7 4 6                                                   |          | Y                                                                                                                                |
|                | 4.5 : 11 (5070)                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | 4-Epichlortetracycline (ECTC)                                                | EPA 1694<br>AXYS MLA-075     | MLA-075<br>MLA-075 |      |       | Y      | Y                                                                                                         |                                                                 | Y        | Y                                                                                                                                |
|                | 4-Epioxytetracycline (EOTC)                                                  | EPA 1694                     | MLA-075            |      |       | +-     | Υ                                                                                                         |                                                                 | <u> </u> | Y                                                                                                                                |
|                | 4 Epioxytotiadyomile (EOTO)                                                  | AXYS MLA-075                 | MLA-075            | _    |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | 4-Epitetracycline (ETC)                                                      | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Acetaminophen                                                                | EPA 1694                     | MLA-075            |      |       |        | Υ                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Albuterol                                                                    | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 | _        | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Alprazolam                                                                   | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Amitriptyline                                                                | AXYS MLA-075                 | MLA-075<br>MLA-075 |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Amlodipine Amphetamine                                                       | AXYS MLA-075<br>AXYS MLA-075 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Anhydrochlortetracycline (ACTC)                                              | EPA 1694                     | MLA-075            |      |       | ÷      | Υ                                                                                                         |                                                                 | +        | Y                                                                                                                                |
|                | Allitydiociliottetracycline (ACTO)                                           | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Anhydrotetracycline (ATC)                                                    | EPA 1694                     | MLA-075            |      |       | +      | Y                                                                                                         |                                                                 | +        | Y                                                                                                                                |
|                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                      | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Atenolol                                                                     | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Atorvastatin                                                                 | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Azithromycin                                                                 | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Benzoylecgonine                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Benztropine                                                                  | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Betamethasone                                                                | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Bisphenol A                                                                  | EPA 1694<br>AXYS MLA-075     | MLA-075<br>MLA-075 |      |       | Y      | Y                                                                                                         |                                                                 | Y        | Y                                                                                                                                |
|                | Caffeine                                                                     | EPA 1694                     | MLA-075            |      |       | +-     | Υ                                                                                                         |                                                                 | - 1      | Y                                                                                                                                |
|                | Callelle                                                                     | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Carbadox                                                                     | EPA 1694                     | MLA-075            |      |       | +      | Υ                                                                                                         |                                                                 | +        | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Carbamazepine                                                                | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Cefotaxime                                                                   | EPA 1694                     | MLA-075            |      |       |        | Υ                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Chlortetracycline (CTC)                                                      | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 |          | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Υ        |                                                                                                                                  |
|                | Cimetidine                                                                   | EPA 1694                     | MLA-075            |      |       | _      | Υ                                                                                                         |                                                                 | _        | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Ciprofloxacin                                                                | EPA 1694<br>AXYS MLA-075     | MLA-075<br>MLA-075 |      |       | Y      | Y                                                                                                         |                                                                 | Y        | Y                                                                                                                                |
|                | Clarithromycin                                                               | EPA 1694                     | MLA-075            |      | _     | +      | Υ                                                                                                         |                                                                 | Ť        | Y                                                                                                                                |
|                | Cianunomyon                                                                  | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Clinafloxacin                                                                | EPA 1694                     | MLA-075            | _    |       | 十一     | Y                                                                                                         |                                                                 | +        | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            | _    |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Clonidine                                                                    | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        |                                                                                                                                  |
|                | Cloxacillin                                                                  | EPA 1694                     | MLA-075            |      |       |        | Y                                                                                                         |                                                                 | Ť        | Y                                                                                                                                |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Y      |                                                                                                           |                                                                 | Y        | 5 h 4 7                                                                                                                          |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 | _                            |                    | Pulp | Serum | Solids   |                                                         |              |              |               |       | Tissue   |             |                |              |           | Orine    | Water Non-Potable | Water, Non-Potable            |               |                |              |              |                 |           |                          |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|-------|----------|---------------------------------------------------------|--------------|--------------|---------------|-------|----------|-------------|----------------|--------------|-----------|----------|-------------------|-------------------------------|---------------|----------------|--------------|--------------|-----------------|-----------|--------------------------|
|                |                                                                              |                              |                    | ď    | d     | 4        | California DPH Florida DOH Minnesota DOH New Jersey DEP | New York DOH | Virginia DGS | Washington DE | E DO  | ď        | Florida DOH | New Jersev DEP | Virginia DGS | a .       | a .      | Jalifornia DPH    | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP | New York DOH | /irginia DGS | Vashington DE * | Maine DOH | ANAB<br>Pennsylvania DEP |
| Compound Class | Compound                                                                     | Accredited Method ID         | AXYS Method ID     | CALA | CALA  | CALA     | Califi<br>Flori<br>Minn<br>New                          | New          | Virgi        | Was           | Maine | CALA     | Flori       | New            | Virgi        | ANAB      |          | CALA              | Cam                           | i i           | New            | New          | Virgi        | Was             | Main      | ANAB<br>Penns)           |
|                | Cocaine                                                                      | AXYS MLA-075                 | MLA-075            |      |       | Υ        |                                                         |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Codeine                                                                      | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              |               | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | •                                                       |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Cotinine                                                                     | EPA 1694                     | MLA-075<br>MLA-075 |      |       | Υ        | ,                                                       |              |              |               | Y     |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 | Υ         |                          |
|                | DEET (N,N-diethyl-m-toluamide)                                               | AXYS MLA-075<br>AXYS MLA-075 | MLA-075            |      |       | Y        |                                                         |              |              |               |       |          |             |                |              | -         | _        | Y<br>Y            |                               |               |                |              |              |                 |           |                          |
|                | Dehydronifedipine                                                            | EPA 1694                     | MLA-075            |      |       | † '      |                                                         |              |              | ,             | Y     |          |             |                |              |           | +        |                   |                               |               |                |              |              |                 | Υ         |                          |
|                | 25.1yaronii odipino                                                          | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               | •     |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Demeclocycline                                                               | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ,             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | •                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Desmethyldiltiazem                                                           | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Diazepam                                                                     | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Digoxigenin                                                                  | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | `             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Digoxin                                                                      | EPA 1694                     | MLA-075            |      |       | <u> </u> |                                                         |              |              |               | Y     |          |             |                |              |           | _        |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | <u> </u>                                                |              |              |               |       |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Diltiazem                                                                    | EPA 1694                     | MLA-075<br>MLA-075 |      |       | Υ        | ,                                                       |              |              |               | Y     |          |             |                |              | -         | -        | ,                 |                               | —             |                |              |              |                 | Υ         |                          |
|                | Diphophydromina                                                              | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |       | Y        |                                                         |              |              |               | Y     |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 | Y         |                          |
|                | Diphenhydramine                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               | 1     |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Doxycycline                                                                  | EPA 1694                     | MLA-075            |      |       | † '      |                                                         |              |              | ,             | Y     |          |             |                |              |           | +        |                   |                               |               |                |              |              |                 | Υ         |                          |
|                | Sonyoyomic                                                                   | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 | <u> </u>  |                          |
|                | Enalapril                                                                    | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ,             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | •                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Enrofloxacin                                                                 | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ١             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        |                                                         |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Erythromycin                                                                 | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ·                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Erythromycin anydrate                                                        | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              |               | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Y         |                          |
|                | Flumequine                                                                   | EPA 1694                     | MLA-075            |      |       | Υ        | ,                                                       |              |              | ,             | Y     |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 | Υ         |                          |
|                | Fluocinonide                                                                 | AXYS MLA-075<br>AXYS MLA-075 | MLA-075<br>MLA-075 |      |       | Y        |                                                         |              |              |               |       |          |             |                |              |           | _        | Y<br>Y            |                               |               |                |              |              |                 |           |                          |
|                | Fluoxetine                                                                   | EPA 1694                     | MLA-075            |      |       | † '      |                                                         |              |              | ,             | Y     |          |             |                |              |           | +        |                   |                               |               |                |              |              |                 | Υ         |                          |
|                | , idonoune                                                                   | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               | •     |          |             |                |              |           | -        | Y                 |                               |               |                |              |              |                 | ÷         |                          |
|                | Fluticasone propionate                                                       | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Furosemide                                                                   | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Gemfibrozil                                                                  | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ,             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | •                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Glipizide                                                                    | AXYS MLA-075                 | MLA-075            |      |       | Υ        |                                                         |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Glyburide                                                                    | AXYS MLA-075                 | MLA-075            |      |       | Υ        |                                                         |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Hydrochlorothiazide                                                          | AXYS MLA-075                 | MLA-075            |      |       | Υ        |                                                         |              |              |               |       |          |             |                |              |           | _        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Hydrocodone                                                                  | AXYS MLA-075                 | MLA-075            |      |       | Y        |                                                         |              |              |               |       |          |             |                |              | -         | _        | Y                 |                               | —             |                |              |              |                 |           |                          |
| 1              | Hydrocortisone                                                               | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |       | Υ        |                                                         |              |              |               | Y     | <u> </u> |             |                |              | $\dashv$  | +        | Y                 |                               |               |                |              |              |                 | Υ         |                          |
|                | Ibuprofen                                                                    | AXYS MLA-075                 | MLA-075            | Н    |       | Υ        | ,                                                       |              |              |               |       | <u> </u> |             |                |              |           | +        | Y                 |                               |               |                |              |              |                 |           |                          |
| 1              | Isochlortetracycline (ICTC)                                                  | EPA 1694                     | MLA-075            |      |       | Ė        |                                                         |              |              | ,             | Y     |          |             |                |              | $\dashv$  | $\dashv$ | _                 |                               |               |                |              |              |                 | Υ         |                          |
|                | (                                                                            | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              | $\exists$ | 1        | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Lincomycin                                                                   | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ,             | Y     |          |             |                |              | _         | 1        |                   |                               |               |                |              |              |                 | Υ         |                          |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              |              |               |       |          |             |                |              |           |          | Y                 |                               |               |                |              |              |                 |           |                          |
|                | Lomefloxacin                                                                 | EPA 1694                     | MLA-075            |      |       |          |                                                         |              |              | ,             | Y     |          |             |                |              |           |          |                   |                               |               |                |              |              |                 | Υ         |                          |
|                | I                                                                            | AXYS MLA-075                 | MLA-075            |      |       | Υ        | ,                                                       |              | _            | _             | _     |          | _           |                | _            | 1         |          | Y                 |                               |               | _              |              | _            | _               |           | 2000                     |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                              |                    | Pulp | Serum                                            | Solids                                           |                                                         |                                               |                   | Tissue |                              |                                |      | Urine | Water      | Nater, Non-Potable                                        |              |                                |
|----------------|------------------------------------------------------------------------------|------------------------------|--------------------|------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-------------------|--------|------------------------------|--------------------------------|------|-------|------------|-----------------------------------------------------------|--------------|--------------------------------|
|                |                                                                              |                              |                    | CALA | CALA                                             |                                                  | California DPH Florida DOH Minnesota DOH New Jersey DEP | New York DOH<br>Virginia DGS<br>Washington DE | Maine DOH<br>ANAB |        | Florida DOH<br>Minnesota DOH | New Jersey DEP<br>Virginia DGS | ANAB |       |            | California DPH M Florida DOH Minnesota DOH New Jersey DEP | Vew York DOH | Washington DE * Maine DOH ANAB |
| Compound Class | Compound                                                                     | Accredited Method ID         |                    | CA   | S                                                | _                                                | N Mir Ca                                                | 9 <u>5</u> 8                                  | A A               | Ö      | <u>E</u> ≅                   | S S                            | ¥    |       | _          | S E E S                                                   | Z >          | N A G                          |
|                | Meprobamate  Metformin                                                       | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |                                                  | Υ                                                |                                                         |                                               | Υ                 |        |                              |                                |      |       | Υ          |                                                           |              | Y                              |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               | •                 |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Methylprednisolone                                                           | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      | _     | Υ          |                                                           |              |                                |
|                | Metoprolol                                                                   | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Miconazole                                                                   | EPA 1694<br>AXYS MLA-075     | MLA-075<br>MLA-075 |      | -                                                | Y                                                |                                                         |                                               | Υ                 |        |                              |                                |      | -     | Υ          |                                                           |              | Υ                              |
|                | Minocycline                                                                  | EPA 1694                     | MLA-075            |      | <del>                                     </del> | <del>                                     </del> |                                                         |                                               | Υ                 |        |                              |                                |      |       | +          |                                                           |              | Υ                              |
|                | ·                                                                            | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Naproxen                                                                     | EPA 1694<br>AXYS MLA-075     | MLA-075<br>MLA-075 |      | -                                                | Y                                                |                                                         |                                               | Υ                 | -      |                              |                                |      | -     | Υ          |                                                           |              | Y                              |
|                | Norfloxacin                                                                  | EPA 1694                     | MLA-075            |      |                                                  | -                                                |                                                         |                                               | Υ                 |        |                              |                                |      |       | +          |                                                           |              | Υ                              |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Norfluoxetine<br>Norgestimate                                                | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      | <u> </u>                                         | Υ                                                |                                                         |                                               | Y                 |        |                              |                                |      |       | Υ          |                                                           |              | Y                              |
|                | Norgestimate                                                                 | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               | T                 |        |                              |                                |      | +     | Υ          |                                                           |              | ī                              |
|                | Norverapamil                                                                 | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Ofloxacin                                                                    | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       | \ <u>'</u> |                                                           |              | Υ                              |
|                | Ormetoprim                                                                   | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |                                                  | Υ                                                |                                                         |                                               | Y                 |        |                              |                                |      | -     | Υ          |                                                           |              | Υ                              |
|                | C.III.GOPIIIII                                                               | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               | •                 |        |                              |                                |      |       | Υ          |                                                           |              | · ·                            |
|                | Oxacillin                                                                    | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                | Oxolinic acid                                                                | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |                                                  | Υ                                                |                                                         |                                               | Υ                 |        |                              |                                |      | -     | Υ          |                                                           |              | Υ                              |
|                | CASIMIC GOLD                                                                 | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               | •                 |        |                              |                                |      |       | Υ          |                                                           |              | · ·                            |
|                | Oxycodone                                                                    | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                | Oxytetracycline (OTC)                                                        | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |                                                  | Υ                                                |                                                         |                                               | Y                 |        |                              |                                |      | -     | Υ          |                                                           |              | Υ                              |
|                | Chylenadyemic (CTC)                                                          | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              | <u>'</u>                       |
|                | Paroxetine                                                                   | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                | Penicillin G                                                                 | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      | <u> </u>                                         | Υ                                                |                                                         |                                               | Υ                 | -      |                              |                                |      |       | Υ          |                                                           |              | Υ                              |
|                | 1 Griciani G                                                                 | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Penicillin V                                                                 | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                | Prednisolone                                                                 | AXYS MLA-075<br>AXYS MLA-075 | MLA-075<br>MLA-075 |      | 1                                                | Y                                                |                                                         |                                               |                   | -      |                              |                                |      |       | Y          |                                                           |              |                                |
|                | Prednisore                                                                   | AXYS MLA-075                 | MLA-075            |      | $\vdash$                                         | Y                                                |                                                         |                                               |                   |        |                              |                                |      |       | Y          |                                                           |              |                                |
|                | Promethazine                                                                 | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Propoxyphene Propranolol                                                     | AXYS MLA-075 AXYS MLA-075    | MLA-075<br>MLA-075 |      | <u> </u>                                         | Y                                                |                                                         |                                               |                   |        |                              |                                |      |       | Y          |                                                           |              |                                |
|                | Ranitidine                                                                   | EPA 1694                     | MLA-075            |      |                                                  | <u>'</u>                                         |                                                         |                                               | Υ                 |        |                              |                                |      |       | T          |                                                           |              | Υ                              |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              |                                |
|                | Roxithromycin                                                                | EPA 1694                     | MLA-075            |      | <u> </u>                                         | V                                                |                                                         |                                               | Υ                 | -      |                              |                                |      |       | V          |                                                           |              | Υ                              |
|                | Sarafloxacin                                                                 | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      |                                                  | Y                                                |                                                         |                                               | Y                 |        |                              |                                |      |       | Υ          |                                                           |              | Υ                              |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        |                              |                                |      |       | Υ          |                                                           |              | <u> </u>                       |
|                | Sertraline                                                                   | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                | <u> </u>                                                |                                               |                   |        |                              | -                              |      |       | Υ          |                                                           |              |                                |
|                | Simvastatin Sulfachloropyridazine                                            | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      | <del>                                     </del> | Υ                                                |                                                         |                                               | Y                 |        |                              |                                |      | -     | Υ          |                                                           |              | Y                              |
|                | Salasino opyriduzino                                                         | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               | <u> </u>          | 1      |                              |                                |      | +     | Υ          |                                                           |              |                                |
|                | Sulfadiazine                                                                 | EPA 1694                     | MLA-075            |      |                                                  |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                | Sulfadimethoxine                                                             | AXYS MLA-075<br>EPA 1694     | MLA-075<br>MLA-075 |      | <u> </u>                                         | Υ                                                |                                                         |                                               | Y                 | _      |                              |                                |      |       | Υ          |                                                           |              | Υ                              |
|                | Sunaumemoxine                                                                | AXYS MLA-075                 | MLA-075            |      | 1                                                | Υ                                                |                                                         |                                               | ī                 | 1      |                              |                                |      | +     | Υ          |                                                           |              | r                              |
|                | Sulfamerazine                                                                | EPA 1694                     | MLA-075            |      | L                                                |                                                  |                                                         |                                               | Υ                 |        |                              |                                |      |       |            |                                                           |              | Υ                              |
|                |                                                                              | AXYS MLA-075                 | MLA-075            |      |                                                  | Υ                                                |                                                         |                                               |                   |        | _                            | _                              | Ī    |       | Υ          |                                                           |              | \$ 1000<br>\$ 1000<br>\$ 1000  |

|                      | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30                                                                  |                                  |                           |      |       |          |                                                         |              |              |                 |      |        |             |                |              |   |       | old debt of | Nater, Non-Potable |            |                |              |              |                |              |                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|------|-------|----------|---------------------------------------------------------|--------------|--------------|-----------------|------|--------|-------------|----------------|--------------|---|-------|-------------|--------------------|------------|----------------|--------------|--------------|----------------|--------------|-------------------|
| I                    |                                                                                                                                               |                                  |                           | Pulp | Serum | Solids   |                                                         |              |              |                 |      | Tissue |             |                |              |   | Urine | Water       | Wateı,             |            |                |              |              |                |              |                   |
|                      |                                                                                                                                               |                                  |                           | CALA | CALA  |          | California DPH Florida DOH Minnesota DOH New Jersey DEP | New York DOH | Virginia DGS | Maine DOH       | ANAB |        | Florida DOH | Vew Jersey DFP | Virginia DGS |   |       | CALA        | California DPH     | Iorida DOH | New Jersey DEP | New York DOH | Virginia DGS | achington DF * | asnington DE | Maine DOH<br>ANAB |
| Compound Class       | Compound Sulfamethazine                                                                                                                       | Accredited Method ID<br>EPA 1694 | AXYS Method ID<br>MLA-075 | ò    | ò     | ò        | ΰĒĒŽ:                                                   | ž            | > >          | : <u>≌</u><br>Y | Ā    | ò      | Ĭ           | Ž              | · 5          | ¥ | ò     | òò          | <u>تَا دٌ</u>      | ĹΞ         | ž              | ŽŽ           | į            |                | \$ \$        | <u>≌ ₹</u><br>Y   |
| 1                    |                                                                                                                                               | AXYS MLA-075                     | MLA-075                   |      |       | Υ        |                                                         |              |              | .,              |      |        |             |                |              |   |       | Υ           | _                  | _          |                |              |              |                | _            |                   |
|                      | Sulfamethizole                                                                                                                                | EPA 1694<br>AXYS MLA-075         | MLA-075<br>MLA-075        |      |       | Υ        |                                                         |              |              | Υ               |      |        |             |                |              |   |       | Υ           | —                  | —          |                |              |              |                | —            | Υ                 |
|                      | Sulfamethoxazole                                                                                                                              | EPA 1694                         | MLA-075                   |      |       |          |                                                         |              |              | Υ               |      |        |             |                |              |   |       |             |                    |            |                |              |              | _              |              | Υ                 |
|                      | Sulfanilamide                                                                                                                                 | AXYS MLA-075<br>EPA 1694         | MLA-075<br>MLA-075        |      |       | Υ        |                                                         |              |              | Υ               |      |        |             |                |              |   |       | Υ           | —                  | —          |                |              |              | —              |              | Υ                 |
|                      |                                                                                                                                               | AXYS MLA-075                     | MLA-075                   |      |       | Υ        |                                                         |              |              |                 |      |        |             |                |              |   |       | Υ           | _                  | =          |                |              |              | =              |              |                   |
|                      | Sulfathiazole                                                                                                                                 | EPA 1694<br>AXYS MLA-075         | MLA-075<br>MLA-075        |      |       | Y        |                                                         |              |              | Υ               |      |        |             |                |              |   |       | Υ           | —                  | —          |                |              |              | —              | `            | Υ                 |
|                      | Tetracycline (TC)                                                                                                                             | EPA 1694                         | MLA-075                   |      |       |          |                                                         |              |              | Υ               |      |        |             |                |              |   |       |             |                    |            |                |              |              |                |              | Υ                 |
|                      | Thomphylling                                                                                                                                  | AXYS MLA-075<br>AXYS MLA-075     | MLA-075<br>MLA-075        |      |       | Y        |                                                         |              |              |                 |      |        |             |                |              |   |       | Y           |                    |            |                |              |              |                |              |                   |
|                      | Theophylline Thiabendazole                                                                                                                    | EPA 1694                         | MLA-075                   |      |       | Ľ        |                                                         |              |              | Υ               |      |        |             |                |              |   |       |             |                    |            |                |              |              |                |              | Υ                 |
|                      | Tuebolare                                                                                                                                     | AXYS MLA-075                     | MLA-075                   |      |       | Y        |                                                         |              |              |                 |      |        |             |                |              |   |       | Υ           |                    |            |                |              |              |                |              |                   |
|                      | Trenbolone Trenbolone acetate                                                                                                                 | AXYS MLA-075<br>AXYS MLA-075     | MLA-075<br>MLA-075        |      |       | Y        |                                                         |              |              |                 |      |        |             |                |              |   |       | Y           | —                  |            |                |              |              | —              | —            |                   |
|                      | Triamterene                                                                                                                                   | AXYS MLA-075                     | MLA-075                   |      |       | Y        |                                                         |              |              |                 |      |        |             |                |              |   |       | Y           |                    |            |                |              |              | _              | _            |                   |
|                      | Triclocarban                                                                                                                                  | EPA 1694                         | MLA-075                   |      |       |          |                                                         |              |              | Υ               |      |        |             |                |              |   |       |             |                    |            |                |              |              | _              | _            | Υ                 |
|                      | Triclosan                                                                                                                                     | AXYS MLA-075<br>EPA 1694         | MLA-075<br>MLA-075        |      |       | Υ        |                                                         |              |              | Y               |      |        |             |                |              |   | _     | Υ           |                    |            |                |              |              |                |              | Υ                 |
|                      | · · · · · · · · · · · · · · · · · · ·                                                                                                         | AXYS MLA-075                     | MLA-075                   |      |       | Υ        |                                                         |              |              |                 |      |        |             |                |              |   |       | Υ           |                    |            |                |              |              |                |              | <u> </u>          |
|                      | Trimethoprim                                                                                                                                  | EPA 1694<br>AXYS MLA-075         | MLA-075<br>MLA-075        |      |       | Y        |                                                         |              |              | Υ               |      |        |             |                |              |   |       | Υ           |                    |            |                |              |              |                | `            | Υ                 |
|                      | Tylosin                                                                                                                                       | EPA 1694                         | MLA-075                   |      |       |          |                                                         |              |              | Υ               |      |        |             |                |              |   | t     | -           |                    |            |                |              |              |                |              | Υ                 |
|                      |                                                                                                                                               | AXYS MLA-075                     | MLA-075                   |      |       | Υ        |                                                         |              |              |                 |      |        |             |                |              |   | _     | Υ           |                    |            |                |              |              |                |              |                   |
|                      | Valsartan<br>Verapamil                                                                                                                        | AXYS MLA-075<br>AXYS MLA-075     | MLA-075<br>MLA-075        |      |       | Y        |                                                         |              |              |                 |      |        |             |                |              |   |       | Y           |                    |            |                |              |              |                |              |                   |
|                      | Virginiamycin                                                                                                                                 | EPA 1694                         | MLA-075                   |      |       | Ė        |                                                         |              |              | Υ               |      |        |             |                |              |   | 1     | Ė           |                    |            |                |              |              |                |              | Υ                 |
|                      |                                                                                                                                               | AXYS MLA-075                     | MLA-075                   |      |       | Υ        |                                                         |              |              |                 |      |        |             |                |              |   |       | Υ           | _                  |            |                |              |              |                |              |                   |
|                      | Warfarin                                                                                                                                      | EPA 1694<br>AXYS MLA-075         | MLA-075<br>MLA-075        |      |       | Υ        |                                                         |              |              | Υ               |      |        |             |                |              |   | _     | Υ           |                    |            |                |              |              |                | —            | Υ                 |
| Targeted Metabolites | 11, 14, 17-eicosatrienoic acid (eicosatrienoic acid)                                                                                          | AXYS MLM-001                     | MLM-001                   |      |       |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | t     |             |                    |            |                |              |              |                |              |                   |
|                      | 11, 14-eicosadienoic acid                                                                                                                     | AXYS MLM-001                     | MLM-001                   |      |       |          |                                                         |              |              |                 |      | Υ      |             |                |              |   |       |             |                    |            |                |              |              | _              | _            |                   |
|                      | 3-hydroxytyrosine Acetylcarnitine                                                                                                             | AXYS MLM-001<br>AXYS MLM-001     | MLM-001<br>MLM-001        |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     | _           |                    |            |                |              |              |                |              |                   |
|                      | Acetylornithine                                                                                                                               | AXYS MLM-001                     | MLM-001                   |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     |             |                    |            |                |              |              | —              | —            |                   |
|                      | Alanine                                                                                                                                       | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | alpha-Aminoadipic acid                                                                                                                        | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | Arginine                                                                                                                                      | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | Asparagine Aspartate                                                                                                                          | AXYS MLM-001<br>AXYS MLM-001     | MLM-001<br>MLM-001        |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     | _           |                    |            |                |              |              |                |              |                   |
|                      | Asymmetric dimethylarginine                                                                                                                   | AXYS MLM-001                     | MLM-001                   |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     |             |                    |            |                |              |              | —              | —            |                   |
|                      | Butenylcarnitine                                                                                                                              | AXYS MLM-001                     | MLM-001                   |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     |             |                    |            |                |              |              |                |              |                   |
|                      | Butyrylcarnitine                                                                                                                              | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | C22:5 ISOMER 1 (tentatively all-cis-4, 8, 12, 15, 19-docosapentaenoic acid)                                                                   | AXYS MLM-001                     | MLM-001                   |      |       |          |                                                         |              |              |                 | [    | Υ      |             |                |              | [ | [     |             |                    |            |                |              |              |                |              |                   |
|                      | C22:5 ISOMER 2 (all-cis-7,10,13,16,19-docosapentaenoic acid (DPA) C22:5 ISOMER 3 (tentatively all-cis-4, 7, 10, 13, 16-docosapentaenoic acid) | AXYS MLM-001                     | MLM-001                   |      |       | <u> </u> |                                                         |              |              |                 |      | Y      |             |                |              |   | _}    |             |                    |            |                |              |              |                |              |                   |
|                      | C22:5 ISOMER 3 (tentatively all-cis-4, 7, 10, 13, 16-docosapentaenoic acid)  Carnitine                                                        | AXYS MLM-001<br>AXYS MLM-001     | MLM-001<br>MLM-001        | -    | Υ     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | Carnosine                                                                                                                                     | AXYS MLM-001                     | MLM-001                   |      | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     | -           |                    |            |                |              |              |                |              |                   |
|                      | chenodeoxycholic acid                                                                                                                         | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | cholic acid                                                                                                                                   | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              | _              | _            |                   |
|                      | Citrulline                                                                                                                                    | AXYS MLM-001                     | MLM-001                   |      | Υ     |          |                                                         |              |              |                 |      | Υ      |             |                |              |   | Υ     |             |                    |            |                |              |              |                |              |                   |
|                      | Creatinine                                                                                                                                    | AXYS MLM-001<br>AXYS MLM-001     | MLM-001<br>MLM-001        | -    | Y     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | Y     | _           |                    |            |                |              |              |                |              |                   |
|                      |                                                                                                                                               |                                  | 1 N/1 N/1-(1(1)1          | 1    | Υ     | 1        |                                                         |              |              |                 |      |        |             |                |              |   |       |             |                    |            |                |              |              |                |              |                   |
|                      | Decadienylcarnitine decanoic acid (capric acid)                                                                                               | AXYS MLM-001                     | MLM-001                   |      | ·     |          |                                                         |              |              |                 |      | Y      |             |                |              |   | -+    | -+          |                    |            |                |              |              |                | —            |                   |

|       | Accreditation Scope                              |                      |                |      |       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     |               |              |       |       | Nater, Non-Potable            |               |                                |              |                                      |      |
|-------|--------------------------------------------------|----------------------|----------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|---------------|--------------|-------|-------|-------------------------------|---------------|--------------------------------|--------------|--------------------------------------|------|
|       | AXYS Analytical Services Ltd.                    |                      |                |      |       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     |               |              |       |       | ots                           |               |                                |              |                                      |      |
|       | file ref.: ACC-101 Rev. 30                       |                      |                |      |       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     |               |              |       |       | <u>+</u>                      |               |                                |              |                                      |      |
|       | 1110 101 7100 101 1107. 00                       |                      |                |      | _     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     |               |              |       |       | ž                             |               |                                |              |                                      |      |
|       |                                                  |                      |                | ۵    | Serum | Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Tissue              |               |              | Urine | Water | iter                          |               |                                |              |                                      |      |
|       |                                                  |                      |                | Pulp | Se    | တိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | i<br>E              |               |              | Ç     | ×     | Š                             |               |                                |              |                                      |      |
|       |                                                  |                      |                |      |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                     | Δ             | _            |       |       |                               |               | Δ.                             |              |                                      |      |
|       |                                                  |                      |                |      |       | CALA California DPH Florida DOH Minnesota DOH New Jersey DEP New York DOH Virginia DGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7             |                     | Minnesota DOH | j<br>) .     |       |       | Ţ                             | ᆼ             | New Jersey DEP<br>New York DOH |              | 出                                    |      |
|       |                                                  |                      |                |      |       | CALA California DPH Florida DOH Minnesota DOH New Jersey DE New York DOH Virginia DGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maine DOH     | 픙                   | ۳ کو<br>ک     | Virginia DGS |       |       | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DE<br>New York DOH  | /irginia DGS | shington DE                          | Ę    |
|       |                                                  |                      |                |      |       | nia nia ers sott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maine DOH     | CALA<br>Florida DOH | sots          |              |       |       | California DF<br>Florida DOH  | otic :        | ers                            | a<br>D       | <mark>Washington</mark><br>Maine DOH | ک    |
|       |                                                  |                      |                | ≤    | ≤     | If or index with the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | a ine         | ₹ iĝ                | ine.          | Virginik     | !   ≤ | ≤     | if or                         | je            | <ul><li>→</li><li>×</li></ul>  | iji          | ine in                               | B ⊩  |
| Class | Compound                                         | Accredited Method ID | AXYS Method ID | CALA | CALA  | CALA California DF Florida DOH Minnesota D New Jersey New York DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maine<br>ANAB | CALA<br>Florida     | E A           | ž Ž          | CALA  | CALA  | Cal                           | . <u>E</u>    | Š Š                            | . į          | Wa<br>Mai                            | ANAB |
|       | Decenoylcarnitine                                | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Y                   |               |              | Y     |       | T                             |               |                                |              |                                      |      |
|       | deoxycholic acid                                 | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       | Ī                             |               |                                |              |                                      |      |
|       | docosahexaenoic acid (DHA)                       | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | docosatetraenoic acid (adrenic acid)             | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | Dodecanedioylcarnitine                           | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Dodecanoylcarnitine                              | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Dodecenoylcarnitine                              | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Dopamine                                         | AXYS MLM-001         | MLM-001        |      | Υ     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | eicosapentaenoic acid (EPA)                      | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | Eicosatetraenoic acid (arachidonic acid)         | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | eicosatrienoic acid (dihomo-γ-linolenic acid)    | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       | <u> </u>                      |               |                                |              |                                      |      |
|       | Glutaconylcarnitine                              | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       | <u> </u>                      |               |                                |              |                                      |      |
|       | Glutamate                                        | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Glutamine                                        | AXYS MLM-001         | MLM-001        |      | Υ     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Glutarylcarnitine (Hydroxyhexanoylcarnitine)     | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Glycine                                          | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | glycochenodeoxycholic acid                       | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | glycocholic acid                                 | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | glycodeoxycholic acid                            | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     | _     |                               |               |                                |              |                                      |      |
|       | Hexadecadienylcarnitine                          | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | hexadecanoic acid (palmitic acid)                | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | Hexadecanoylcarnitine                            | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | hexadecenoic acid (palmitoleic acid)             | AXYS MLM-001         | MLM-001        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              |       |       |                               |               |                                |              |                                      |      |
|       | Hexadecenoylcarnitine                            | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Hexanoylcarnitine (Fumarylcarnitine)             | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Hexenoylcarnitine                                | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Hexose (sum isomers)                             | AXYS MLM-001         | MLM-001        |      | Υ     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Υ                   |               |              | Υ     | _     |                               |               |                                |              |                                      |      |
|       | Histamine                                        | AXYS MLM-001         | MLM-001        |      | Υ     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Histidine                                        | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     | _     | —                             |               |                                |              |                                      |      |
|       | Hydroxyhexadecadienylcarnitine                   | AXYS MLM-001         | MLM-001        |      | Υ     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |
|       | Hydroxyhexadecanoylcarnitine                     | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     |       | —                             |               |                                |              |                                      |      |
|       | Hydroxyhexadecenoylcarnitine                     | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     |       | —                             |               |                                |              |                                      |      |
|       | Hydroxylbutyrylcarnitine                         | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     | _     | —                             |               |                                |              |                                      |      |
|       | Hydroxyoctadecenoylcarnitine                     | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     |       | —                             |               |                                |              |                                      |      |
|       | Hydroxyproline                                   | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     |       | —                             |               |                                |              |                                      |      |
|       | Hydroxypropionylcarnitine                        | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Υ                   |               |              | Υ     | _     |                               |               |                                |              |                                      |      |
|       | Hydroxysphingomyeline C14:1                      | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Υ                   |               |              | Y     |       |                               |               |                                |              |                                      |      |
|       | Hydroxysphingomyeline C16:1                      | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Υ                   |               |              | Y     | _     |                               |               |                                |              |                                      |      |
|       | Hydroxysphingomyeline C22:1                      | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     |       |                               |               |                                |              |                                      |      |
|       | Hydroxysphingomyeline C22:2                      | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     |       |                               |               |                                |              |                                      |      |
|       | Hydroxysphingomyeline C24:1                      | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     |       | —                             |               |                                |              |                                      |      |
|       | Hydroxytetradecadienylcarnitine                  | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Υ                   |               |              | Y     | _     |                               |               |                                |              |                                      |      |
|       | Hydroxytetradecenoylcarnitine                    | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Υ                   |               |              | Y     | _     |                               |               |                                |              |                                      |      |
|       | Hydroxyvalerylcarnitine (Methylmalonylcarnitine) | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Y                   |               |              | Y     | _     |                               |               |                                |              |                                      |      |
|       | Isoleucine                                       | AXYS MLM-001         | MLM-001        |      | Y     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     |       |                               |               |                                |              |                                      |      |
|       | Kynurenine                                       | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     | _     |                               |               |                                |              |                                      |      |
|       | Leucine                                          | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Υ                   |               |              | Y     |       |                               |               |                                |              |                                      |      |
|       | lithocholic acid                                 | AXYS MLM-001         | MLM-001        |      | Y     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Y                   |               |              | Y     |       | +                             |               |                                |              |                                      |      |
|       | Lysine                                           | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Y                   |               |              | Y     |       | +                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C14:0               | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Y                   |               |              | Y     |       | +                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C16:0               | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     |       | ₩                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C16:1               | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     | _     | +                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C17:0               | AXYS MLM-001         | MLM-001        |      | Υ     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Y                   |               |              | Y     |       | ₩                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C18:0               | AXYS MLM-001         | MLM-001        |      | Υ     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Y                   |               |              | Y     | _     | ₩                             |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C18:1               | AXYS MLM-001         | MLM-001        |      | Υ     | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Υ                   |               |              | Y     | 1     | <u> </u>                      |               |                                |              |                                      |      |
|       | lysoPhosphatidylcholine acyl C18:2               | AXYS MLM-001         | MLM-001        |      | Υ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Υ                   |               |              | Υ     |       |                               |               |                                |              |                                      |      |

|               | Accreditation Scope                                                        |                                   |                           |      |        |                                       |                                 |              |                               |           |      |                     |               |              |      |        | ap le                  |             |               |                                |              |              |                   |
|---------------|----------------------------------------------------------------------------|-----------------------------------|---------------------------|------|--------|---------------------------------------|---------------------------------|--------------|-------------------------------|-----------|------|---------------------|---------------|--------------|------|--------|------------------------|-------------|---------------|--------------------------------|--------------|--------------|-------------------|
|               | AXYS Analytical Services Ltd.                                              |                                   |                           |      |        |                                       |                                 |              |                               |           |      |                     |               |              |      |        | -Potable               |             |               |                                |              |              |                   |
|               | file ref.: ACC-101 Rev. 30                                                 |                                   |                           |      |        |                                       |                                 |              |                               |           |      |                     |               |              |      |        | Non-F                  |             |               |                                |              |              |                   |
|               |                                                                            |                                   |                           |      | _      |                                       |                                 |              |                               |           |      | o)                  |               |              |      |        | Ž                      |             |               |                                |              |              |                   |
|               |                                                                            |                                   |                           | Pulp | Serum  | Solids                                |                                 |              |                               |           |      | lissue              |               |              |      | Orine  | water<br>Water,        |             |               |                                |              |              |                   |
|               | T                                                                          |                                   |                           | ٩    | ő      | ഗ്                                    |                                 |              |                               |           | j    | <u> </u>            |               |              |      | 5 3    | <u>\$</u>              |             |               |                                | -            |              |                   |
|               |                                                                            |                                   |                           |      |        |                                       | <b>-</b> ⊕                      |              |                               |           |      |                     | <b>-</b> ₽    | :            |      |        |                        |             | <b>-</b> !    | <u>.</u> _                     |              | *            |                   |
|               |                                                                            |                                   |                           |      |        |                                       | Ď H                             | 3 E          | رم<br>الا                     | ,         |      | _                   | Ď Ľ           | , (0         |      |        | 표                      | _           | Ď i           | 5 E                            | m            |              |                   |
|               |                                                                            |                                   |                           |      |        | . 무호                                  | ta [                            | X C          | ğ                             | F         |      | ģ                   | ta            | ğ            |      |        | a<br>D                 | ģ           | та            | k ő                            | ő            | g ?          | 공                 |
|               |                                                                            |                                   |                           | _    | _      | orni;                                 | eso                             | Yo.          | la l                          | , O       | m .  | - a □               | eso           | ia I         | m    | , I.   | Ž Ž                    | ā           | ose .         | Yor                            | j <u>ä</u>   | ashington DE | o m               |
|               |                                                                            |                                   |                           | CALA | CALA   | CALA<br>California DPH<br>Florida DOH | Minnesota DOH<br>New Jersev DEP | New York DOH | Virginia DGS<br>Washinoton DE | Maine DOH | ANAB | CALA<br>Florida DOH | Minnesota DOH | Virginia DGS | ANAB | CALA   | CALA<br>California DPH | Florida DOH | Minnesota DOH | new Jersey DEP<br>New York DOH | Virginia DGS | ast          | Maine DOH<br>ANAB |
| ompound Class | Compound lysoPhosphatidylcholine acyl C20:4                                | Accredited Method ID AXYS MLM-001 | AXYS Method ID<br>MLM-001 | O    | O<br>Y | OOE                                   | > z                             | Z            | > >                           | : ≥       | ∢ (  | <u> </u>            | ≥ z           | : >          |      | S C    | <u>ں ر</u>             | Ш           | ≥ :           | ZZ                             | >            | <u> </u>     | <u>≥ ∢</u>        |
|               | lysoPhosphatidylcholine acyl C20.4                                         | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>r</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | lysoPhosphatidylcholine acyl C26:1                                         | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>'</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | lysoPhosphatidylcholine acyl C28:0                                         | AXYS MLM-001                      | MLM-001                   | t    | Y      |                                       |                                 |              |                               |           |      | <u>.</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | lysoPhosphatidylcholine acyl C28:1                                         | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Methionine                                                                 | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Methioninesulfoxide                                                        | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Methylglutarylcarnitine                                                    | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              | _    | Υ      |                        |             |               |                                |              |              |                   |
|               | Nitrotyrosine                                                              | AXYS MLM-001                      | MLM-001                   | [    | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | ——                     |             |               |                                |              |              |                   |
|               | Nonaylcarnitine                                                            | AXYS MLM-001                      | MLM-001                   | _    | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Υ      | $\perp$                |             |               |                                |              |              |                   |
|               | octadecadienoic acid (linoleic acid)                                       | AXYS MLM-001                      | MLM-001                   | _    |        |                                       |                                 |              |                               |           |      | Υ                   |               |              |      |        | +                      |             |               |                                |              |              |                   |
|               | Octadecadienylcarnitine octadecanoic acid (stearic acid)                   | AXYS MLM-001                      | MLM-001<br>MLM-001        | }    | Υ      |                                       |                                 |              |                               |           |      | Υ<br>Υ              |               |              |      | Υ      | +                      |             |               |                                |              |              |                   |
|               | Octadecanoic acid (stearic acid) Octadecanoylcarnitine                     | AXYS MLM-001<br>AXYS MLM-001      | MLM-001<br>MLM-001        |      | Υ      |                                       |                                 |              |                               |           |      | <u>Υ</u><br>Υ       |               |              |      | Υ      | +                      |             |               |                                |              |              |                   |
|               | octadecarrienoic acid (y-linolenic acid)                                   | AXYS MLM-001                      | MLM-001                   |      | 1      |                                       |                                 |              |                               |           |      | Y Y                 |               |              |      | 1      | +                      |             |               |                                |              |              |                   |
|               | Octadecamenoic acid (y-infolenic acid) Octadecenoylcarnitine               | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | <u>т</u><br>Ү       |               |              | -    | Υ      | +                      |             |               |                                |              |              |                   |
|               | Octanoylcarnitine                                                          | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>'</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Ornithine                                                                  | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>.</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phenylalanine                                                              | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phenylethylamine                                                           | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | $\top$                 |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C30:0                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C30:1                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C30:2                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C32:1                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              | _    | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C32:2                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | 丄                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C34:0                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | _                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C34:1                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C34:2                                       | AXYS MLM-001                      | MLM-001<br>MLM-001        | +    | Y      |                                       |                                 |              |                               |           |      | Υ<br>Υ              |               |              |      | Y<br>Y | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C34:3 Phosphatidylcholine acyl-alkyl C36:0  | AXYS MLM-001<br>AXYS MLM-001      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>Y</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C36:1                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C36:2                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              | _    | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C36:3                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C36:4                                       | AXYS MLM-001                      | MLM-001                   | 1    | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y      | _                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C36:5                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | $\top$                 |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:0                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:1                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:2                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | Щ.                     |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:3                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | Щ.                     |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:5                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              | _    | Υ      | _                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C38:6                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Υ      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C40:1                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Y<br>Y | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C40:2 Phosphatidylcholine acyl-alkyl C40:3  | AXYS MLM-001<br>AXYS MLM-001      | MLM-001<br>MLM-001        |      | Y      |                                       |                                 |              |                               |           |      | <u>Y</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C40:4                                       | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           |      | <u>'</u>            |               |              |      | · ·    | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C40.4  Phosphatidylcholine acyl-alkyl C40:5 | AXYS MLM-001                      | MLM-001                   |      | Y      |                                       |                                 |              |                               |           | +    | <u>т</u><br>Ү       |               |              | -+   | Y      | +                      | —           |               |                                |              | —            |                   |
|               | Phosphatidylcholine acyl-alkyl C40:6                                       | AXYS MLM-001                      | MLM-001                   | _    | Y      |                                       |                                 |              |                               |           |      | <u>.</u><br>Y       |               |              | _    | Y      | 十                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:0                                       | AXYS MLM-001                      | MLM-001                   | _    | Y      |                                       |                                 |              |                               |           |      | <u>.</u><br>Y       |               |              |      | Y      | +                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:1                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Υ      | $\top$                 |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:2                                       | AXYS MLM-001                      | MLM-001                   | †    | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:3                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:4                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      | I                      |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C42:5                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C44:3                                       | AXYS MLM-001                      | MLM-001                   | [    | Υ      |                                       |                                 |              |                               |           |      | Y                   |               |              |      | Υ      | ——                     |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C44:4                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |
|               | Phosphatidylcholine acyl-alkyl C44:5                                       | AXYS MLM-001                      | MLM-001                   |      | Υ      |                                       |                                 |              |                               |           |      | Υ                   |               |              |      | Υ      |                        |             |               |                                |              |              |                   |

|          | Accreditation Scope                                               |                              |                    |      |       |                                                              |                              |                                    |        |                              |                                |       |          | Nater, Non-Potable                                 |                              |                |                              |         |                   |
|----------|-------------------------------------------------------------------|------------------------------|--------------------|------|-------|--------------------------------------------------------------|------------------------------|------------------------------------|--------|------------------------------|--------------------------------|-------|----------|----------------------------------------------------|------------------------------|----------------|------------------------------|---------|-------------------|
|          | AXYS Analytical Services Ltd.                                     |                              |                    |      |       |                                                              |                              |                                    |        |                              |                                |       |          | -Po                                                |                              |                |                              |         |                   |
|          | file ref.: ACC-101 Rev. 30                                        |                              |                    |      |       |                                                              |                              |                                    |        |                              |                                |       |          | Po                                                 |                              |                |                              |         |                   |
|          |                                                                   |                              |                    |      | Ε     | 8                                                            |                              |                                    | e      |                              |                                | a     | , l      | , E                                                |                              |                |                              |         |                   |
|          |                                                                   |                              |                    | Pulp | Serum | Solids                                                       |                              |                                    | Tissue |                              |                                | Urine | Water    | Vate                                               |                              |                |                              |         |                   |
|          |                                                                   |                              |                    | ш    | 0)    | ()                                                           |                              |                                    | -      |                              |                                | +-    | >        | ->                                                 |                              |                |                              |         |                   |
|          |                                                                   |                              |                    |      |       | _ <u> </u>                                                   | _                            | ш                                  |        | Ī                            | 핍                              |       |          | _                                                  | Ī                            | П              | I                            | *ш      |                   |
|          |                                                                   |                              |                    |      |       |                                                              | S S                          | <u>α</u>                           | -      |                              | o S                            |       |          | 占                                                  | ΞS                           | <u>&gt;</u>    | 85                           | n D     | _                 |
|          |                                                                   |                              |                    |      |       | iia [<br>DO<br>ota<br>rrse                                   | ž Z                          | 윮                                  | 2      | ota C                        | S S                            |       |          | ia                                                 | DO ota                       | rse            | 출 및                          | gton DE | Ò                 |
|          |                                                                   |                              |                    | ∢    | ⋖     | CALA California DPH Florida DOH Minnesota DOH New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE<br>Maine DOH<br>ANAB | CALA   | Florida DOR<br>Minnesota DOH | New Jersey DEP<br>Virginia DGS | უ ⊲   | ;   ∢    | California DPH                                     | Florida DOH<br>Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Ë       | Maine DOH<br>ANAB |
| nd Class | Compound                                                          | Accredited Method ID         | AXYS Method ID     | CALA | CALA  | CALA Califor Califor Horida Minne                            | /irg                         | Washir<br>Maine<br>ANAB            | CALA   | 5 €                          | /irg                           | CALA  | CALA     | Salii                                              | ij ij                        | New New        | /irg                         | Vas     | Maine<br>ANAB     |
| na Olass | Phosphatidylcholine diacyl C24:0                                  | AXYS MLM-001                 | MLM-001            | 0    | Υ     | 00 6 2 2 2                                                   |                              | >                                  | Y      |                              |                                | Y     |          | ╨                                                  | ш 2                          |                |                              | >       |                   |
|          | Phosphatidylcholine diacyl C26:0                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | _        | <del>                                     </del>   |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C28:1                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | ,        | 1                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C30:0                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | ,        |                                                    |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C30:2                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | ′        |                                                    |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C32:0                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          |                                                    |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C32:1                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | Щ                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C32:2                                  | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | <b>↓</b>                                           |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C32:3                                  | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C34:1                                  | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C34:2                                  | AXYS MLM-001                 | MLM-001            | Н    | Υ     |                                                              |                              |                                    | Y      |                              |                                | Y     | _        | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C34:3                                  | AXYS MLM-001                 | MLM-001            | Ш    | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C34:4                                  | AXYS MLM-001                 | MLM-001            | Ш    | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:0                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:1                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:2                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:3                                  | AXYS MLM-001                 | MLM-001<br>MLM-001 |      | Y     |                                                              |                              |                                    |        |                              |                                | Y     |          | $+\!-$                                             |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:4                                  | AXYS MLM-001<br>AXYS MLM-001 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | $+\!-$                                             |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:5                                  |                              | MLM-001            |      | Y     |                                                              |                              |                                    |        |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C36:6                                  | AXYS MLM-001<br>AXYS MLM-001 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     | _        | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C38:0 Phosphatidylcholine diacyl C38:1 | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C38:3                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     | _        | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C38:4                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C38:5                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C38:6                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:1                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:2                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:3                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     |          | +-                                                 |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:4                                  | AXYS MLM-001                 | MLM-001            |      | Y     |                                                              |                              |                                    | Y      |                              |                                | Y     | _        | +                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:5                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | +                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C40:6                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | <del>†                                      </del> |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:0                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | <del>†                                      </del> |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:1                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | 1                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:2                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | <del>†                                      </del> |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:4                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | ,        | 1                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:5                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | '        | 1                                                  |                              |                |                              |         |                   |
|          | Phosphatidylcholine diacyl C42:6                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | '        | 1                                                  |                              |                |                              |         |                   |
|          | Pimelylcarnitine                                                  | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | '        | 1                                                  |                              |                |                              |         |                   |
|          | Proline                                                           | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | '        | 1                                                  |                              |                |                              |         |                   |
|          | Propenoylcarnitine                                                | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | <i>'</i> |                                                    |                              |                |                              |         |                   |
|          | Propionylcarnitine                                                | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | '        | 1                                                  |                              |                |                              |         |                   |
|          | Putrescine                                                        | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     | <i>'</i> |                                                    |                              |                |                              |         |                   |
|          | Sarcosine                                                         | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | ′        |                                                    |                              |                |                              |         |                   |
|          | Serine                                                            | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     | ,        |                                                    |                              |                |                              |         |                   |
|          | Serotonin                                                         | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          |                                                    |                              |                |                              |         |                   |
|          | Spermidine                                                        | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | Щ                                                  |                              |                |                              |         |                   |
|          | Spermine                                                          | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          |                                                    |                              |                |                              | _       |                   |
|          | Sphingomyeline C16:0                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | ₩.                                                 |                              |                |                              |         |                   |
|          | Sphingomyeline C16:1                                              | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | <b>↓</b>                                           |                              |                |                              |         |                   |
|          | Sphingomyeline C18:0                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | ₩.                                                 |                              |                |                              |         |                   |
|          | Sphingomyeline C18:1                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | <b>↓</b>                                           |                              |                |                              |         |                   |
|          | Sphingomyeline C20:2                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Υ     |          | <b>↓</b>                                           |                              |                |                              |         |                   |
|          | Sphingomyeline C22:3                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | ₩                                                  |                              |                |                              |         |                   |
|          | Sphingomyeline C24:0                                              | AXYS MLM-001                 | MLM-001            | Ш    | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | <b>↓</b>                                           |                              |                |                              |         |                   |
|          | Sphingomyeline C24:1                                              | AXYS MLM-001                 | MLM-001            |      | Υ     |                                                              |                              |                                    | Υ      |                              |                                | Y     |          | Щ.                                                 |                              |                |                              |         |                   |
|          | Sphingomyeline C26:0                                              | AXYS MLM-001                 | MLM-001            | 1    | Υ     | ı                                                            |                              |                                    | Υ      |                              |                                | Y     | ' I      | i                                                  |                              |                |                              |         |                   |

|                | Accreditation Scope AXYS Analytical Services Ltd. file ref.: ACC-101 Rev. 30 |                      |                | Pulp | Serum | Solids |                               |               |                                |              |                            |      | Tissue              |               |                                |      | Urine | :    | Water, Non-Potable |               |                |                              |                 |           |                          |
|----------------|------------------------------------------------------------------------------|----------------------|----------------|------|-------|--------|-------------------------------|---------------|--------------------------------|--------------|----------------------------|------|---------------------|---------------|--------------------------------|------|-------|------|--------------------|---------------|----------------|------------------------------|-----------------|-----------|--------------------------|
| Compound Class | Compound                                                                     | Accredited Method ID | AXYS Method ID | CALA | CALA  | CALA   | California DPH<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>New York DOH | Virginia DGS | Washington DE<br>Maine DOH | ANAB | CALA<br>Florida DOH | Minnesota DOH | New Jersey DEP<br>Virginia DGS | ANAB | CALA  | CALA | California DPH     | Minnesota DOH | New Jersey DEP | New York DOH<br>Virginia DGS | Washington DE * | Maine DOH | ANAB<br>Pennsylvania DEP |
|                | Sphingomyeline C26:1                                                         | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              | -                          |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Symmetric dimethylarginine                                                   | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Taurine                                                                      | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | taurochenodeoxycholic acid                                                   | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | taurocholic acid                                                             | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | taurodeoxycholic acid                                                        | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | taurolithocholic acid                                                        | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | tauroursodexoycholic acid                                                    | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Tetradecadienylcarnitine                                                     | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | tetradecanoic acid (myristic acid)                                           | AXYS MLM-001         | MLM-001        |      |       |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      |       |      |                    |               |                |                              |                 |           |                          |
|                | Tetradecanoylcarnitine                                                       | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Tetradecenoylcarnitine                                                       | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Threonine                                                                    | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Tiglylcarnitine                                                              | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Total dimethylarginine                                                       | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Tryptophan                                                                   | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Tyrosine                                                                     | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   | -             |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | ursodexoycholic acid                                                         | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Valerylcarnitine                                                             | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
|                | Valine                                                                       | AXYS MLM-001         | MLM-001        |      | Υ     |        |                               |               |                                |              |                            |      | Υ                   |               |                                |      | Υ     |      |                    |               |                |                              |                 |           |                          |
| TBBPA          | Tetrabromobisphenol A                                                        | AXYS MLA-079         | MLA-079        |      | Υ     |        |                               |               |                                |              |                            |      |                     |               |                                |      |       |      |                    |               |                |                              |                 |           |                          |

Note\*
Analysis of pesticides and PCBs in non-potable water samples by AXYS method MLA-007, with the exception of NPDES or State permitted discharges and Stormwater applications, may fall within the scope of Washington State Department of Ecology solids matrix accreditation, subject to approval of the Ecology Project Manager.

#### Legend

Accreditation scope

YD Accreditation scope, including US DOD scope BFR Brominated flame retardants (non-PBDPE) BPA and mPE Bisphenol A and mono-Phthalate Esters

FTS Fluorotelomer sulfonates HBCDD Hexabromocyclododecane OC Pesticides Organochlorine Pesticides PAH Polycyclic Aromatic Hydrocarbons PBDPE Polybrominated diphenylethers PCB Polychlorinated Biphenyls

PCDDF Polychlorinated dibenzodioxins/furans

PFC Perfluorinated Compounds

PPCP Pharmaceutical and Personal Care Products

**TBBPA** Tetrabromobisphenol A

California DPH California Department of Public Health, Lab ID 2911 (target analytes shown are those approved 2014)

Florida Department of Health, Lab ID E871007, (NELAC Standard) Florida DOH

Pennsylvania DEP Pennsylvania Departmnent of Environmental Protection

Minnesota DOH Minnesota Department of Health, Lab ID 232-999-430, (NELAC Standard)

New Jersey DEP New Jersey Department of Environmental Protection, Lab ID CANA005, (NELAC Standard)

New York Department of Health, Lab ID 11674, (NELAC Standard) New York DOH

Washington DE Washington Department of Ecology, Lab ID C404

Virginia DGS Virginia Department of General Services, Division of Consolidated Laboratory Services, Lab ID 460224, (NELAC Standard)

Maine DOH Maine Center for Disease Control and Prevention, Department of Health and Human Services, Lab ID CN00003

CALA Canadian Association for Laboratory Accreditation Inc.,

Lab ID A2637, (ISO/IEC 17025:2005 Standard)







Certificate ADF-1861

ANSI-ASQ National Accreditation Board, certificate ADE-1861, ANAB (ISO/IEC 17025:2005 and US DOD Standards)



#### Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

#### **Report Prepared for:**

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

#### **Report Information:**

Pace Project #: 10367136

Sample Receipt Date: 10/21/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: 108002 State Cert #: 027-053-137

#### **Invoicing & Reporting Options:**

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

you haut

This report has been reviewed by:

November 29, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com



### **Report of Laboratory Analysis**

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 29, 2016



Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

#### DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations. This report was revised to exclude results from a second analysis of sample BW16TR-008-0.0-0.15.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 53-99%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained and "P" where diphenylethers were present at the elution times of PCDFs. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Levels above the calibration range were flagged "E" and should be regarded as estimated concentrations.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 85-114%. These values were within the target range for this method. Matrix spikes were prepared using sample material from a separate project. Results are available upon request.

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.



Tel: 612-607-1700 Fax: 612- 607-6444

## Minnesota Laboratory Certifications

| Authority      | Certificate # | Authority       | Certificate # |
|----------------|---------------|-----------------|---------------|
| A2LA           | 2926.01       | Mississippi     | MN00064       |
| Alabama        | 40770         | Montana         | 92            |
| Alaska         | MN00064       | Nebraska        | NE-OS-18-06   |
| Arizona        | AZ0014        | Nevada          | MN_00064_200  |
| Arkansas       | 88-0680       | New Jersey (NE  | MN002         |
| California     | 01155CA       | New York (NEL   | 11647         |
| Colorado       | MN00064       | North Carolina  | 27700         |
| Connecticut    | PH-0256       | North Dakota    | R-036         |
| EPA Region 8   | 8TMS-Q        | Ohio            | 4150          |
| Florida (NELAP | E87605        | Oklahoma        | D9922         |
| Georgia (DNR)  | 959           | Oregon (ELAP)   | MN200001-005  |
| Guam           | 959           | Oregon (OREL    | MN300001-001  |
| Hawaii         | SLD           | Pennsylvania    | 68-00563      |
| Idaho          | MN00064       | Puerto Rico     | MN00064       |
| Illinois       | 200012        | Saipan          | MP0003        |
| Indiana        | C-MN-01       | South Carolina  | 74003001      |
| Indiana        | C-MN-01       | Tennessee       | TN02818       |
| Iowa           | 368           | Texas           | T104704192-08 |
| Kansas         | E-10167       | Utah (NELAP)    | MN00064       |
| Kentucky       | 90062         | Virginia        | 00251         |
| Louisiana      | 03086         | Washington      | C755          |
| Maine          | 2007029       | West Virginia # | 9952C         |
| Maryland       | 322           | West Virginia D | 382           |
| Michigan       | 9909          | Wisconsin       | 999407970     |
| Minnesota      | 027-053-137   | Wyoming         | 8TMS-Q        |

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367136

# Appendix A

Sample Management

#### CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

|                       | ion A                                           | •                        |                         | Section B                     |                    | _41                            |              |                       |                               | ction                                                     |                                       |                      |              |                                |                                                                           | -         |                                   | Section                                  |             |                        |               |                                                  |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
|-----------------------|-------------------------------------------------|--------------------------|-------------------------|-------------------------------|--------------------|--------------------------------|--------------|-----------------------|-------------------------------|-----------------------------------------------------------|---------------------------------------|----------------------|--------------|--------------------------------|---------------------------------------------------------------------------|-----------|-----------------------------------|------------------------------------------|-------------|------------------------|---------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|-----------------------------------------------|-----------------|--------------------------------------------|-------------|-----------------------|-----------|----------------------|
|                       | ired Client Information<br>pany: Bay West, LL   |                          |                         | Required Projec<br>Report To: |                    |                                | on - Great I | ake Environmental     |                               |                                                           |                                       |                      |              |                                | QuiS Information: acility_Name: St. Louis River Sediment Areas of Concern |           |                                   |                                          |             |                        | 1             | $\dot{\top}$                                     |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
| <u></u>               | ess: 5 Empire Driv                              |                          |                         | Copy To: Paul                 | Cent               | ter                            |              | Silve Elliphotellical |                               | Company Name: Bay West, LLC Facility_Code: St Louis River |                                       |                      |              |                                |                                                                           |           |                                   |                                          | Page        |                        |               | 1 <sup>of</sup>                                  |              | •                                                | 1              |                                               |                 |                                            |             |                       |           |                      |
| L                     |                                                 | <del></del>              |                         |                               |                    |                                |              |                       |                               |                                                           |                                       | Creation (Artist Cod |              |                                |                                                                           |           |                                   |                                          | 000         |                        |               |                                                  |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
|                       | St. Paul, MN 55103 Nancy McDonald - Bay West    |                          |                         |                               |                    |                                |              |                       |                               |                                                           | Facility_ED: 547023 Subfacility_code: |                      |              |                                |                                                                           |           |                                   | COC                                      | -           |                        | SL            | R-Taxe                                           | io-02        |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
| Email                 | To: mgarton@glec.com Purchase Order No.: 108002 |                          |                         | ····                          |                    |                                |              |                       |                               |                                                           |                                       |                      |              |                                |                                                                           |           | 339700                            |                                          |             | CHE WA                 | r             |                                                  |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
| Phon                  |                                                 | 31-941-2230              |                         | roject Name;                  |                    | Sedime                         | ent AOCs     |                       | 130                           | Lioler                                                    | CT MINI                               | ilayer.              | _,           | Qye                            | yem                                                                       | i Odu     | ujole                             | <u> </u>                                 |             |                        |               |                                                  |              | <del></del>                                      |                |                                               |                 | HO LO                                      | 101         | 1                     | MN        |                      |
| Requ                  | ested Due Date/TAT:                             | Standard                 | Р                       | roject Number:                | J160               | 1139 .                         |              |                       |                               |                                                           |                                       |                      |              |                                |                                                                           | 10        |                                   | NESSES SEE                               | agranjenja. | 25 Table 2015 (4)      |               |                                                  | <b>公司</b>    | ***                                              | Service 15     |                                               |                 |                                            |             | 1811111111            |           | Willia.              |
|                       |                                                 |                          | - V                     | alid Matrix                   | т —                | 1                              | ·            |                       |                               | Τ.                                                        |                                       |                      |              |                                |                                                                           |           | i<br>I                            |                                          |             |                        | Kedne         | stea:                                            | Analy        | SIS (SE)                                         | 100000         | 57-50-65                                      |                 |                                            |             |                       |           |                      |
| H                     | Sec                                             | tion E                   | MATRI                   | Codes                         |                    |                                |              | Collection            |                               |                                                           |                                       | Pres                 | erva         | atives                         |                                                                           | 387,70    | €                                 |                                          |             |                        |               |                                                  |              | ŀ                                                |                |                                               | l               |                                            |             |                       |           |                      |
|                       | Required Ci                                     | ent Information          | Drinkin                 |                               | 1                  |                                |              |                       | 1                             | $\vdash$                                                  | П                                     | П                    | T            | 1                              |                                                                           |           | Dioxins and furans (SW-846 8290A) | ļ                                        |             | Burn)                  |               |                                                  |              |                                                  | -              |                                               |                 |                                            |             |                       |           |                      |
|                       |                                                 |                          | Water                   | Water WW                      |                    |                                |              |                       |                               |                                                           |                                       |                      | ł            |                                |                                                                           | 3000      | 94                                |                                          |             | pen                    |               |                                                  |              |                                                  |                |                                               |                 |                                            |             | •                     |           |                      |
|                       |                                                 |                          | Produs<br>Spil/Sc       | et P                          | 1                  |                                | 147          |                       | _                             |                                                           |                                       | .                    | [            |                                |                                                                           | 30,000,00 | λS)                               |                                          |             | ×                      |               |                                                  |              |                                                  |                |                                               | -               |                                            |             |                       |           |                      |
|                       | Sample                                          | Sample ID                | Oil                     | OL                            |                    | <u>₹</u>                       | DATE         | Time                  | 景                             |                                                           |                                       |                      | -            |                                |                                                                           | 388       | ans                               | <u>a</u>                                 |             | 906                    |               |                                                  |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |
|                       | Location ID                                     | (sys_sample_code)        | Wîpe<br>Air             | WP<br>AR                      | 8                  | # Q                            | Ā            |                       | ĭ,                            | Ş                                                         |                                       |                      |              |                                |                                                                           | 3449      | i i                               | 47.                                      |             | 846                    |               |                                                  |              |                                                  |                | }                                             |                 |                                            |             |                       |           |                      |
|                       | (sys_lac_code)                                  |                          | Tissue<br>Other         | TS<br>OT                      | ×                  | 1 4 8                          |              |                       | CONTAINE                      | Ser                                                       | <u>-</u>                              | _                    |              | ္က်င္ပြ                        | ou l                                                                      | _ SHOPS   | is an                             | <u> </u>                                 | Moisture    | S)                     |               |                                                  | 1            |                                                  |                |                                               | i               |                                            |             |                       |           |                      |
| ITEM#                 |                                                 |                          |                         |                               | MATRIX CODE        | SAMPLE TYPE<br>(G=GRAB C=COMP) |              |                       | # OF                          | Unpreserved                                               | H <sub>2</sub> SO <sub>4</sub>        | HNO3                 |              | Na <sub>2</sub> S <sub>2</sub> | Methanol                                                                  | Other     | loxir                             | Vercury (7471B)                          | % Mo        | TOC (SW-846 9060A Quad |               |                                                  | 1            | 1                                                |                |                                               |                 |                                            |             | Comm                  | nents     |                      |
| ٤                     |                                                 |                          | <u> </u>                |                               | _ ≥                | ගෙන                            |              |                       | #                             | E                                                         |                                       |                      | +            |                                |                                                                           | - 6       |                                   |                                          | -           |                        |               |                                                  | -            |                                                  | -              |                                               | <del> </del>    | $\boxminus$                                |             |                       |           | _                    |
|                       | BW16MLW-005                                     | BW14MLVV-005-0           | -<br>0-0.15             |                               | 30                 | G                              |              | 1204                  | L                             |                                                           |                                       |                      | 1            |                                |                                                                           | System    |                                   |                                          | <u> </u>    | <u> </u>               |               |                                                  |              | <del> </del>                                     | <u> </u>       | ╁─                                            | -               | $\vdash$                                   |             |                       |           |                      |
| <b>1</b>              |                                                 | BW16SR-004-0.0           | <br>n <sub>-</sub> n 15 |                               | so                 | G                              | 10/20/16     | 3 10:00               | 14                            |                                                           |                                       |                      |              | $\perp$                        |                                                                           | - Section | х                                 | _ ×_                                     | х           | ×                      |               |                                                  | <u> </u>     | <u> </u>                                         | <u> </u>       | 1                                             | <del> </del>    | <b>↓</b>                                   |             | 00                    |           |                      |
| 49.4                  | 8W16SR-004                                      |                          |                         |                               | so                 | ļ                              | 10/20/16     | 10:00                 | и                             |                                                           |                                       |                      |              |                                |                                                                           | 11000     | х                                 | ×                                        | x           | х                      |               |                                                  |              |                                                  |                | <u> </u>                                      | <u> </u>        |                                            |             | <u></u>               |           |                      |
| 2                     | BW16SR-016                                      | BW16SR-016-0.1           | .,,                     |                               |                    | ,                              |              |                       | 14                            |                                                           | П                                     |                      | $\top$       | 1                              |                                                                           | E-WAS SE  | ×                                 | ×                                        | х           | Tx                     |               |                                                  |              | 1                                                |                |                                               |                 |                                            | <u> </u>    | <i>6</i> 0            |           |                      |
| 3                     | BW15TR-008                                      | BW16TR-008-0.0           | 0-0.15                  |                               | so                 | G                              | 10/20/16     |                       | 1,1                           | <del>                                     </del>          | -                                     | H                    | +            | +                              |                                                                           | *0.95     | x                                 | ×                                        | ×           | ×                      |               |                                                  |              |                                                  |                |                                               |                 |                                            |             | 00                    | 4         |                      |
| 4                     | BW16TR-013                                      | BW16TR-013-0.0           | 0-0.15                  |                               | so                 | G                              | 10/20/18     | 3 10:00               | 17                            | -                                                         | Н                                     | H                    | ╁            | +                              | H                                                                         |           | ^                                 |                                          | x           | x                      |               |                                                  | $I^-$        | T -                                              |                | 1                                             |                 |                                            |             | 00                    | 5         |                      |
| 5                     | BW16TR-017                                      | BW16TR-017-0.0           | 0-0.15                  |                               | so                 | G                              | 10/20/18     | 5 10:00               | 14                            | ╁                                                         | H                                     | ╌┼                   | -            | +                              | H                                                                         | 2771106   |                                   | X                                        | 1           |                        |               |                                                  |              | <del>                                     </del> |                | T                                             |                 | $\Box$                                     |             | 00                    | 0         |                      |
| 6                     | BW16TR-018                                      | BW16TR-018-0.0           | 0-0.15                  | <u> </u>                      | 80                 | G                              | 10/20/10     | 3 10:00               | 1                             | -                                                         | Ļ                                     | 1 1                  | -            | <del> -</del> -                | $\square$                                                                 |           |                                   |                                          | ×           | ×                      |               | ~                                                | 100          | ne                                               | H              | 1                                             | 306             |                                            |             | 00                    |           |                      |
|                       | BW16BLR-001                                     | BW16BLR-001-0            | 3.0-0.1                 | 5                             | so                 | G                              | 10/20/10     | 10:00                 | Y                             | 5                                                         | 11                                    | W                    | 4            |                                |                                                                           | Reforci   | ×                                 | ×                                        | X           | X.                     |               | <i>₹</i>                                         | THE.         |                                                  | ٣              | 100                                           | 100             | 1                                          |             |                       | <u> </u>  |                      |
|                       | OV 100ET GOT                                    |                          |                         |                               | 1                  |                                |              |                       |                               |                                                           |                                       | VI.                  | ישי          |                                |                                                                           |           |                                   |                                          | 1           |                        |               |                                                  |              | 6.13                                             | <del>↓</del> — |                                               | ┼—              |                                            | <u> </u>    |                       |           |                      |
| 200                   | <u> </u>                                        |                          |                         |                               | 1                  | 1                              |              | Ref:                  | рас                           | e.t                                                       | ox                                    | lab                  | •            | D€                             | ite:                                                                      | 20        | 0ct16<br>0 LB9                    | )<br>3                                   |             | SPEC                   | PING:<br>IAL: |                                                  |              | 0.00                                             | <u> </u>       | <u>                                      </u> | ↓               | 1                                          | <u> </u>    |                       |           |                      |
| 1                     |                                                 | <del> </del>             |                         |                               | ┢╌                 | +                              |              | Dep:                  |                               |                                                           |                                       |                      |              |                                |                                                                           |           |                                   |                                          | 0 00        | HAND                   | LING:         | (                                                |              | 0.00<br>6.13                                     |                |                                               |                 | $oxed{oxed}$                               | <u></u>     |                       |           |                      |
| 70                    |                                                 |                          |                         |                               | ╀                  |                                |              |                       |                               |                                                           |                                       |                      |              | Dζ                             |                                                                           | äuro      | HIOUT                             |                                          | Ų.00        | 101                    |               |                                                  |              |                                                  | ;              | }                                             |                 |                                            |             |                       |           |                      |
|                       |                                                 | <u></u>                  |                         |                               | 1                  |                                | <u> </u>     |                       | ,                             | ı                                                         | ŀ                                     | 8<br>1               | VCS:         | PHIO<br>TRCT                   | (11 <b>)</b><br>(: 98(                                                    | 02 53     | NIGHT<br>18 5172                  |                                          |             |                        | r             | 1                                                |              |                                                  | T              | $T^-$                                         |                 |                                            |             |                       |           |                      |
| 12                    |                                                 |                          |                         |                               | $oldsymbol{\perp}$ |                                |              | <u></u>               | V 39.                         |                                                           | - No. 48                              | \$25 X               | 1            | an or many                     | ng Nasabaya<br>ng Nasabaya                                                | NGC F     | ei<br>etédés                      | Y FÄFFİ                                  | LIATION     | hiración i es          | <u> </u>      | X80 F                                            | DAT          | <u>1</u> 5 "                                     | +              | TIME                                          | ,               | $oldsymbol{oldsymbol{oldsymbol{\square}}}$ | SAM         | PLE CON               | DITIONS   |                      |
|                       | ADDITIO                                         | NAL COMMENTS             |                         | · ia                          | ELINO              | UIȘHED,I                       | BY? AFFILIAT |                       |                               | ŢŢIJŊſ                                                    | <u></u>                               | -                    | <u> </u>     | •7                             | -,                                                                        | ر         | 7                                 | ~                                        | <u> </u>    | <u> </u>               |               | 'n                                               | 121          | 1110                                             | 1              | र्रः प                                        | ,5              | 0                                          | .7          |                       | VI        | 1                    |
|                       |                                                 |                          |                         |                               | M                  | ailee Ga                       | rton/GLEC    | 10/20/1               | 8                             | 14:0                                                      | 30                                    | H                    |              | ٠                              | _                                                                         |           |                                   | \ <u>\</u>                               | <u>~</u>    |                        |               | 100                                              | 3/           | <u> </u>                                         | $\top$         |                                               |                 | 10                                         | .60         | 7                     | 7         | 了                    |
| Refe                  | rence Pace Subcontra                            | ctor Order Form signed I | by Pace                 | on                            |                    |                                |              |                       | -                             |                                                           | _                                     | <u> </u>             |              |                                |                                                                           |           |                                   |                                          |             |                        |               | <del>                                     </del> | <del></del>  |                                                  | +-             |                                               | +               | +                                          | <del></del> | <u>~</u>              | <b>b</b>  |                      |
| 31 101                | 9)16/16                                         |                          |                         |                               |                    |                                |              |                       | _ _                           |                                                           |                                       | <u> </u>             |              |                                |                                                                           |           |                                   |                                          |             |                        |               |                                                  |              |                                                  | +              |                                               | +               | 1                                          |             | اعً                   | Codler    | 8                    |
|                       |                                                 |                          |                         |                               |                    |                                |              | anger Silving         | ***************************** | / / / / /                                                 |                                       | error e.c.           | arase i      | /=944 ·                        | Sangara de Com                                                            |           |                                   |                                          |             |                        | 1             | 43.0                                             | <u> </u><br> | <b>-</b>                                         | 를 ( <u>)</u>   | on fc                                         | Sealed<br>(Y/N) | Intac                                      |             |                       |           |                      |
| L                     |                                                 |                          |                         |                               |                    |                                | 144.4        | AMPLER NAME AND       |                               | TUR                                                       | <b>₹</b>                              |                      |              | <u> </u>                       | <u>8√38</u><br>L                                                          | M, JR     |                                   |                                          |             |                        |               | 11.00                                            | . 1,5%.      |                                                  |                |                                               | 1               | 7 '                                        |             | Received on Ice (Y/N) | Custody 6 | Samples Intact (Y/N) |
|                       |                                                 |                          |                         |                               |                    |                                | 1            | RINT Name of SAMPLER  |                               |                                                           | <del> 71</del>                        |                      | <u></u>      | $\frac{1}{\sqrt{ f }}$         | <u> </u>                                                                  |           | 10                                | Mailee Garton Signed (MMDD/YY): 10/20/16 |             |                        |               |                                                  |              | +                                                | 1              |                                               | 1 %             | Cus                                        | Sa          |                       |           |                      |
| SIGNATURE OF SAMPLER: |                                                 |                          |                         |                               |                    |                                |              | المطلا                | יעו                           | r                                                         | DAIL                                  | oigned               | / LEVISION D | ., j.                          |                                                                           |           | 10/2                              | V/ 10                                    |             |                        | <del></del>   |                                                  |              |                                                  |                |                                               |                 |                                            |             |                       |           |                      |

# Pace Analytical\*

#### Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Bay West LL  Courier:   Great Ex UPS   UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .C            |             | Project             | " W0#:10367136                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
| Bay West LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 🗀           |             |                     |                                                                                                                     |
| Courier: ☑Fed Ex ☐UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |             | •                   |                                                                                                                     |
| <i>–</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □usps         | □c          | ient                |                                                                                                                     |
| Commercial Pace SpeeDee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other:_       |             | <del>-</del>        | 10367136                                                                                                            |
| Tracking Number: 4807 518 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | كأركنا        | <del></del> |                     |                                                                                                                     |
| Custody Seal on Cooler/Box Present? Tes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S112          | Seals Inta  | act? 💆              | Yes ☐No Optional: Proj. Due Date: Proj. Name:                                                                       |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | None          | e 🔲 (       | Other:              | Temp Blank? ✓ Yes ☐ No                                                                                              |
| Thermometer 151401163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | e of Ice:   | ₩e                  | t Blue None Samples on ice, cooling process has begun                                                               |
| Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | . 1         | <b>X</b> 'A '       | A Biological Tissue Frozen? ☐Yes ☐No ☑N/A                                                                           |
| Temp should be above freezing to 6°C Correction Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or: +1        | 12          | <u>S √V·</u><br>Dat | e and Initials of Person Examining Contents: 3 C 10/21/19                                                           |
| USDA Regulated Soil ( 🔲 N/A, water sample)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |                     |                                                                                                                     |
| Did samples originate in a quarantine zone within the United S<br>MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itates: AL, A | ∖R, AZ, CA  | , FL, GA,<br>□Yes   | ID, LA. Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No |
| If Yes to either question, fill out a Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ulated Soil   | Checklis    |                     | Q-338) and include with SCUR/COC paperwork.                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                     | COMMENTS:                                                                                                           |
| Chain of Custody Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes           | □No         | □N/A                | 1.                                                                                                                  |
| Chain of Custody Filled Out?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | √Yes          | □No         | □N/A                | 2.                                                                                                                  |
| Chain of Custody Relinquished?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes           | □No         | □N/A                | 3.                                                                                                                  |
| Sampler Name and/or Signature on COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>⊿</b> Yes  | □No         | □N/A                | 4.                                                                                                                  |
| Samples Arrived within Hold Time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Z</b> Yes  | □No         | □n/a                | 5.                                                                                                                  |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∐Yes          | ✓No         | □n/a                | 6.                                                                                                                  |
| Rush Turn Around Time Requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>☐Yes      | ZM₀         | N/A                 | 7.                                                                                                                  |
| Sufficient Volume?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Z</b> √Yes | □No         | □N/A                | 8.                                                                                                                  |
| Correct Containers Used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes           |             |                     | 9.                                                                                                                  |
| -Pace Containers Used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |             | □n/A                |                                                                                                                     |
| Containers Intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Z</b> √es  | □No         | □n/a                | 10.                                                                                                                 |
| Filtered Volume Received for Dissolved Tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □Yes          | □No         | ØÑ/A                | 11. Note if sediment is visible in the dissolved container                                                          |
| Sample Labels Match COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes           | □No         | □n/A                | 12.                                                                                                                 |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | دی ایم        |             | ш.,,,,              |                                                                                                                     |
| All containers needing acid/base preservation have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |             |                     | 13. ☐HNO <sub>3</sub> ☐H₂5O₄ ☐NaOH ☐HCl                                                                             |
| checked?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | □Yes          | ∐No         | <b>Z</b> N/A        |                                                                                                                     |
| All containers needing preservation are found to be in compliance with EPA recommendation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | _                   | Sample #                                                                                                            |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∐Ýes          | □No         | , <b>Z</b> N/A      |                                                                                                                     |
| Exceptions: VOA, Coliform, TOC, Oil and Grease,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □Yes          | ПÑо         | ZN/A                | Initial when Lot # of added completed: preservative:                                                                |
| DRO/8015 (water) DOC Headspace in VOA Vials ( >6mm)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes           | No          | DATA                | 14.                                                                                                                 |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes           |             | TAN/A               | 15.                                                                                                                 |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ☐Yes          |             | ZN/A                |                                                                                                                     |
| Pace: Trip Blank Lot # (if purchased):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |             | 7                   |                                                                                                                     |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ···           |             |                     | Field Data Required? Yes No                                                                                         |
| Person Contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |                     |                                                                                                                     |
| Comments/Resolution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |                     | ·                                                                                                                   |
| , to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t |               |             |                     |                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>   |             |                     |                                                                                                                     |
| Project Manager Review: Carolyme To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m.L           |             |                     | Date:10/24/16                                                                                                       |
| riuject Manager Review. Landyne M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | omnliance s   | amoles, a   | copy of t           | his form will be sent to the North Carolina DEHNR Certification Office ( i.e. ou                                    |

Fax: 612- 607-6444

# **Reporting Flags**

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- Estimated value

ace Analytical

- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

#### REPORT OF LABORATORY ANALYSIS

# **Appendix B**

Sample Analysis Summary



Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16SR-004-0.0-0.15

Lab Sample ID 10367136001 Filename F161101B\_11 Injected By **SMT** 

18.6 g **Total Amount Extracted** 

Matrix Solid % Moisture 58.7 Dilution NA

Dry Weight Extracted 7.68 g Collected 10/20/2016 10:00 ICAL ID F161011 Received 10/21/2016 09:45 CCal Filename(s) F161101B\_03 & F161101B\_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/01/2016 21:43

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg         | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg          | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|------------------------------|-------------------|------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 15.0<br>43.0                 |                   | 0.29<br>0.29                 | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 80<br>89<br>80       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 3.5<br>22.0                  |                   | 0.21<br>0.21                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 73<br>79<br>93       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 3.6<br>58.0                  | 1.2<br>           | 0.13 J<br>0.21 J<br>0.17     | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 77<br>86<br>81<br>80 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 4.2<br>51.0                  |                   | 0.22 J<br>0.22               | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00                 | 66<br>60<br>61       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 19.0<br>7.9                  | 15.0<br>          | 4.70 P<br>0.82<br>0.29       | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 72<br>67             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 3.8<br>560.0                 |                   | 0.37 J<br>1.60               | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 7.4<br>55.0<br>16.0<br>350.0 | <br>              | 0.37<br>0.72<br>0.44<br>0.51 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 87                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 870.0<br>15.0<br>1900.0      |                   | 0.74<br>0.84<br>0.79         | Total 2,3,7,8-TCDD<br>Equivalence: 45 ng/Kg<br>(Using 2005 WHO Factors)                          |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 990.0<br>2000.0              |                   | 2.40<br>2.40                 |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                               | 860.0<br>11000.0             |                   | 0.56<br>0.39 E               |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

I = Interference present

#### REPORT OF LABORATORY ANALYSIS



Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16SR-016-0.15-0.60

Lab Sample ID 10367136002
Filename F161101B\_12
Injected By SMT

Total Amount Extracted 17.5 g Matrix Solid % Moisture 44.5 Dilution NA

9.71 g Dry Weight Extracted Collected 10/20/2016 10:00 ICÁL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B\_03 & F161101B\_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/01/2016 22:31

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg           | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg          | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|--------------------------------|-------------------|------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 12.0<br>68.0                   |                   | 0.70<br>0.70                 | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 79<br>86<br>74       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 6.1<br>53.0                    |                   | 0.34<br>0.34                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 63<br>70<br>83       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 17.0<br>240.0                  | 7.2<br>           | 0.24 P<br>0.40<br>0.32       | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 78<br>85<br>82<br>81 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 23.0<br>190.0                  |                   | 0.13<br>0.13                 | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 61<br>62<br>59       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 72.0<br>110.0<br>19.0          | <br>              | 0.58<br>0.80<br>0.53         | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 74<br>61             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 11.0<br>2500.0                 |                   | 0.66<br>0.64                 | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 17.0<br>100.0<br>67.0<br>900.0 | <br>              | 0.82<br>0.84<br>0.71<br>0.79 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 82                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 4300.0<br>34.0<br>8300.0       |                   | 0.37 E<br>2.90<br>1.70 E     | Total 2,3,7,8-TCDD<br>Equivalence: 130 ng/Kg<br>(Using 2005 WHO Factors)                         |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 850.0<br>1700.0                |                   | 1.40<br>1.40                 |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                               | 2000.0<br>6700.0               |                   | 0.48<br>0.28                 |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

#### REPORT OF LABORATORY ANALYSIS



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-008-0.0-0.15

Lab Sample ID 10367136003 Filename F161101B\_13

Injected By SMT

Total Amount Extracted 18.2 g Matrix Solid % Moisture 42.4 Dilution NA

10.5 g Dry Weight Extracted Collected 10/20/2016 10:00 ICAL ID F161011 Received 10/21/2016 09:45 CCal Filename(s) F161101B 03 & F161101B 19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** 11/01/2016 23:19 Analyzed

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg           | <b>EMPC</b><br>ng/Kg | <b>EDL</b><br>ng/Kg          | Internal<br>Standards                                                                                | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|--------------------------------|----------------------|------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 0.74<br>2.50                   |                      | 0.49 J<br>0.49               | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.00<br>2.00<br>2.00                 | 74<br>82<br>78       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>2.20                     |                      | 0.54<br>0.54                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.00<br>2.00<br>2.00                 | 71<br>74<br>84       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | ND<br>0.97<br>9.40             | <br>                 | 0.44<br>0.35 J<br>0.40       | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C                              | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 76<br>83<br>77<br>79 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 0.35<br>26.00                  |                      | 0.31 J<br>0.31               | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.00<br>2.00<br>2.00<br>2.00         | 59<br>58<br>59       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 3.30<br>3.30<br>2.20           |                      | 0.51 J<br>0.26 J<br>0.28 J   | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                                  | 2.00<br>4.00                         | 66<br>55             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 150.00                         | 0.82                 | 0.25 JJ<br>0.32              | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                            | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | ND<br>75.00<br>26.00<br>520.00 | <br><br>             | 0.50<br>0.60<br>0.37<br>0.49 | 2,3,7,8-TCDD-37Cl4                                                                                   | 0.20                                 | 78                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 260.00<br>2.00<br>470.00       | <br>                 | 0.33<br>0.31 J<br>0.32       | Total 2,3,7,8-TCDD<br>Equivalence: 16 ng/Kg<br>(Using 2005 WHO Factors)                              |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 91.00<br>190.00                |                      | 0.39<br>0.39                 |                                                                                                      |                                      |                      |
| OCDF<br>OCDD                                                               | 87.00<br>320.00                |                      | 0.20<br>0.21                 |                                                                                                      |                                      |                      |

ND = Not Detected

NA = Not Applicable

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-013-0.0-0.15

 Lab Sample ID
 10367136004

 Filename
 F161101B\_14

 Injected By
 SMT

Total Amount Extracted 18.9 g Matrix Solid % Moisture 53.5 Dilution NA

8.79 g Dry Weight Extracted Collected 10/20/2016 10:00 ICÁL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B\_03 & F161101B\_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 00:07

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg          | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                 | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|-------------------------------|-------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 1.40<br>5.60                  |                   | 0.42<br>0.42                        | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 75<br>83<br>79       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>6.40                    |                   | 0.31<br>0.31                        | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 74<br>74<br>83       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 0.78<br>1.20<br>16.00         | <br>              | 0.32 J<br>0.39 J<br>0.35            | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 79<br>85<br>78<br>75 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 9.70                          | 0.80              | 0.53 IJ<br>0.53                     | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00                 | 62<br>58<br>59       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 4.00<br>8.90<br>2.80          | <br><br>0.86      | 0.98 J<br>0.36<br>0.36 J<br>0.65 IJ | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                          | 2.00<br>4.00                         | 66<br>57             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 190.00                        | U.00<br>          | 0.59                                | 1,2,3,7,8,9-HxCDD-13C                                                                            | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 0.73<br>6.10<br>2.30<br>55.00 | <br><br>          | 0.29 J<br>0.26<br>0.34 J<br>0.30    | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 77                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 320.00<br>2.30<br>600.00      |                   | 0.53<br>0.50 J<br>0.51              | Total 2,3,7,8-TCDD<br>Equivalence: 8.4 ng/Kg<br>(Using 2005 WHO Factors)                         |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 85.00<br>190.00               |                   | 0.83<br>0.83                        |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                               | 160.00<br>1100.00             |                   | 0.19<br>0.28                        |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-017-0.0-0.15

 Lab Sample ID
 10367136005

 Filename
 F161101B\_15

 Injected By
 SMT

Total Amount Extracted 18.8 g Matrix Solid % Moisture 58.9 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 7.73 gICAL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B\_03 & F161101B\_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 00:56

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg          | EMPC<br>ng/Kg | <b>EDL</b><br>ng/Kg                | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|-------------------------------|---------------|------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 2.10<br>9.70                  |               | 0.30<br>0.30                       | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 79<br>89<br>85       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 5.10                          | 0.35          | 0.20 IJ<br>0.20                    | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 81<br>83<br>89       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 0.57<br>0.84<br>14.00         |               | 0.30 J<br>0.22 J<br>0.26           | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 85<br>91<br>85<br>81 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 0.65<br>12.00                 |               | 0.37 J<br>0.37                     | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00                 | 65<br>60<br>62       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 2.80<br>4.40<br>1.80          |               | 0.41 J<br>0.35 J<br>0.50 J         | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 69<br>59             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 0.88<br>90.00                 |               | 0.39 J<br>0.41                     | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 0.67<br>5.20<br>2.30<br>47.00 | <br>          | 0.33 J<br>0.30 J<br>0.26 J<br>0.30 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 82                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 140.00<br>1.80<br>280.00      | <br>          | 0.48<br>0.33 J<br>0.40             | Total 2,3,7,8-TCDD<br>Equivalence: 6.1 ng/Kg<br>(Using 2005 WHO Factors)                         |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 95.00<br>220.00               |               | 0.66<br>0.66                       |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                               | 100.00<br>1300.00             |               | 0.50<br>0.30                       |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-018-0.0-0.15

 Lab Sample ID
 10367136006

 Filename
 F161101B\_16

 Injected By
 SMT

Injected By SMT

Total Amount Extracted 18.6 g Matrix Solid % Moisture 49.9 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 9.32 g ICAL ID F161011 Received 10/21/2016 09:45 CCal Filename(s) F161101B 03 & F161101B 19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** 11/02/2016 01:44 Analyzed

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg          | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg                | Internal<br>Standards                                                                                | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|-------------------------------|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | 1.20<br>5.00                  |                   | 0.26<br>0.26                       | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.00<br>2.00<br>2.00                 | 75<br>83<br>78       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | 5.60                          | 0.30              | 0.27 JJ<br>0.27                    | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.00<br>2.00<br>2.00<br>2.00         | 71<br>76<br>85       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | 0.49<br>0.91<br>12.00         | <br>              | 0.29 J<br>0.25 J<br>0.27           | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 74<br>83<br>78<br>72 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | 8.70                          | 0.62              | 0.26 IJ<br>0.26                    | 1,2,3,4,7,8-HXCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.00<br>2.00<br>2.00<br>2.00         | 61<br>55<br>55       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | 2.60<br>5.60<br>1.70          |                   | 0.42 J<br>0.60<br>0.50 J           | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                                  | 2.00<br>4.00                         | 64<br>53             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | 140.00                        | 0.62              | 0.35 IJ<br>0.47                    | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                            | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | 0.53<br>5.30<br>2.20<br>44.00 |                   | 0.26 J<br>0.27 J<br>0.30 J<br>0.28 | 2,3,7,8-TCDD-37Cl4                                                                                   | 0.20                                 | 76                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | 230.00<br>1.60<br>440.00      |                   | 0.32<br>0.40 J<br>0.36             | Total 2,3,7,8-TCDD<br>Equivalence: 6.5 ng/Kg<br>(Using 2005 WHO Factors)                             |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 74.00<br>160.00               |                   | 0.40<br>0.40                       |                                                                                                      |                                      |                      |
| OCDF<br>OCDD                                                               | 130.00<br>910.00              |                   | 0.51<br>0.38                       |                                                                                                      |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



## Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16BLR-001-0.0-0.15

Lab Sample ID 10367136007
Filename F161101B\_17
Injected By SMT

Total Amount Extracted 21.4 g Matrix Solid % Moisture 82.6 Dilution NA

Dry Weight Extracted 3.72 g Collected 10/20/2016 10:00 ICAL ID F161011 Received 10/21/2016 09:45

CCal Filename(s) F161101B\_03 & F161101B\_19 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 11/02/2016 02:32

| Native<br>Isomers                                                                | Conc<br>ng/Kg      | <b>EMPC</b> ng/Kg    | <b>EDL</b><br>ng/Kg                    | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------------|--------------------|----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                       | 1.70<br>14.00      |                      | 0.59 J<br>0.59                         | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 87<br>94<br>91       |
| 2,3,7,8-TCDD<br>Total TCDD                                                       | ND<br>0.82         |                      | 0.47<br>0.47 J                         | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00                 | 84<br>89<br>95       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                | 0.75<br><br>9.00   | 0.97                 | 0.49 J<br>0.34 IJ<br>0.41 J            | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 93<br>99<br>92<br>85 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                   | 0.47<br>1.80       |                      | 0.43 J<br>0.43 J                       | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 74<br>65<br>68       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 0.83<br><br>ND     | 0.69<br><br>0.68<br> | 0.41 IJ<br>0.42 J<br>0.41 IJ<br>0.70   | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                          | 2.00<br>4.00<br>2.00                 | 75<br>59<br>NA       |
| Total HxCDF                                                                      | 6.60               |                      | 0.48 J                                 | 1,2,3,7,8,9-HxCDD-13C                                                                            | 2.00                                 | ŇA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD       | 1.10<br>12.00      | 0.46<br>1.00<br>     | 0.45 JJ<br>0.50 JJ<br>0.42 J<br>0.46 J | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 87                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                        | 3.50<br>ND<br>5.50 |                      | 0.50 J<br>0.64<br>0.57 J               | Total 2,3,7,8-TCDD<br>Equivalence: 1.6 ng/Kg<br>(Using 2005 WHO Factors)                         |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                               | 14.00<br>28.00     |                      | 0.37<br>0.37                           |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                                     | 5.40<br>89.00      |                      | 0.71 J<br>0.74                         |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



# Method 8290 Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52558 U161101B\_15 20.4 g U161025

U161101B\_03 & U161101B\_19

Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 11/02/2016 01:42

Injected By SMT

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg | <b>EMPC</b> ng/Kg | <b>EDL</b><br>ng/Kg              | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery  |
|----------------------------------------------------------------------------|----------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | ND<br>ND             |                   | 0.031<br>0.031                   | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 75<br>92<br>85       |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>0.042          |                   | 0.033<br>0.033 J                 | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00<br>2.00         | 80<br>99<br>76       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | ND<br>ND<br>ND       |                   | 0.039<br>0.023<br>0.031          | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 74<br>78<br>78<br>84 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | ND<br>ND             |                   | 0.029<br>0.029                   | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 70<br>75<br>79       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | ND<br>ND<br>ND       |                   | 0.027<br>0.023<br>0.021          | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 90<br>75             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | ND<br>ND             |                   | 0.026<br>0.024                   | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | ND<br>ND<br>ND<br>ND | <br>              | 0.036<br>0.035<br>0.037<br>0.036 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 84                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | ND<br>ND<br>ND       |                   | 0.036<br>0.038<br>0.037          | Total 2,3,7,8-TCDD<br>Equivalence: 0.00051 ng/Kg<br>(Using 2005 WHO Factors)                     |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | 0.076                | 0.046             | 0.028 J<br>0.028 J               |                                                                                                  |                                      |                      |
| OCDF<br>OCDD                                                               | ND<br>               | 0.170             | 0.055<br>0.061 JJ                |                                                                                                  |                                      |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present



# **Method 8290 Laboratory Control Spike Results**

Lab Sample ID Filename **Total Amount Extracted** 

ICAL ID CCal Filename(s) Method Blank ID

LCS-52559 U161101B\_18 20.1 g U161025

U161101B\_03 & U161101B\_19 BLANK-52558

Matrix Dilution Extracted Analyzed

Injected By

Solid NA

10/27/2016 16:25 11/02/2016 04:01

| SMT |  |
|-----|--|
|-----|--|

|                                                                                  |                          |                           |                         | ,                                                                                                    |                                 |                      |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--|--|--|--|
| Native<br>Isomers                                                                | <b>Qs</b><br>(ng)        | <b>Qm</b><br>(ng)         | %<br>Rec.               | Internal<br>Standards                                                                                | ng's<br>Added                   | Percent<br>Recovery  |  |  |  |  |
| 2,3,7,8-TCDF<br>Total TCDF                                                       | 0.20                     | 0.19                      | 96                      | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.0<br>2.0<br>2.0               | 67<br>83<br>77       |  |  |  |  |
| 2,3,7,8-TCDD<br>Total TCDD                                                       | 0.20                     | 0.17                      | 85                      | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.0<br>2.0<br>2.0<br>2.0        | 73<br>90<br>70       |  |  |  |  |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                | 1.0<br>1.0               | 0.97<br>1.0               | 97<br>104               | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C                              | 2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 67<br>75<br>76<br>80 |  |  |  |  |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                   | 1.0                      | 0.95                      | 95                      | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.0<br>2.0<br>2.0<br>2.0        | 63<br>75<br>81       |  |  |  |  |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 1.0<br>1.0<br>1.0<br>1.0 | 1.1<br>1.0<br>0.97<br>1.0 | 107<br>103<br>97<br>101 | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                              | 2.0<br>4.0<br>2.0               | 91<br>78<br>NA       |  |  |  |  |
| Total HxCDF<br>1,2,3,4,7,8-HxCDD                                                 | 1.0                      | 1.1                       | 109                     | 1,2,3,7,8,9-HxCDD-13C<br>2,3,7,8-TCDD-37Cl4                                                          | 2.0<br>0.20                     | NA<br>81             |  |  |  |  |
| 1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                            | 1.0<br>1.0               | 1.1<br>1.1                | 114<br>112              | 2,0,1,0 1000 01011                                                                                   | 0.20                            | Ç.                   |  |  |  |  |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                        | 1.0<br>1.0               | 1.1<br>1.00               | 107<br>100              |                                                                                                      |                                 |                      |  |  |  |  |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                               | 1.0                      | 0.97                      | 97                      |                                                                                                      |                                 |                      |  |  |  |  |
| OCDF<br>OCDD                                                                     | 2.0<br>2.0               | 1.9<br>2.1                | 95<br>106               |                                                                                                      |                                 |                      |  |  |  |  |

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable \* = See Discussion



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| Pro  | ject                                                                                         | Info                                                                                            | rmation                                                                                                    |             |             |         |                                                                                                                                                                       |
|------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proj | ect nar                                                                                      | ne:                                                                                             | SLR Sediments AOCs – Scanlon Reservoir                                                                     |             | Labor       | atory:  | Pace - 10367136                                                                                                                                                       |
| Wor  | k order                                                                                      | r numl                                                                                          | ber: <u>3000017136</u>                                                                                     |             | Repo        | rt date | (mm/dd/yyyy): 11/04/2016                                                                                                                                              |
| 1.   | For h                                                                                        | ielp wi                                                                                         | ation ith this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr    |             |             |         |                                                                                                                                                                       |
|      | Ques                                                                                         | stions                                                                                          | i                                                                                                          | Yes         | No          | N/A     | Comments                                                                                                                                                              |
|      | a.                                                                                           | Is th                                                                                           | ere a chain of custody (COC) with the report?                                                              |             |             |         | COC includes samples for Scanlon Reservoir,<br>Thomson Reservoir and Boulder Lake. This<br>data review checklist only applies to the Bolder<br>Lake reference sample. |
|      | b.                                                                                           | Is th                                                                                           | ere a sample condition form with the report?                                                               |             |             |         |                                                                                                                                                                       |
|      | C.                                                                                           | Wer                                                                                             | e there samples requiring preservation?                                                                    | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      |                                                                                              | i.                                                                                              | If so, were they properly preserved?                                                                       | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      |                                                                                              | ii.                                                                                             | Were they received on ice?                                                                                 | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      | d.                                                                                           | Wer                                                                                             | e samples received in the correct containers?                                                              | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      |                                                                                              | i.                                                                                              | Was there enough sample volume/weight to complete all requested analyses?                                  | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      |                                                                                              | ii.                                                                                             | Was there enough extra sample collected to complete method required batch QC?                              | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      | е.                                                                                           | e. Were samples received with adequate holding time for sample prep for all requested analyses? |                                                                                                            | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      | f. Are there notes about sample condition or holding time issues on the COC? Explain impact. |                                                                                                 |                                                                                                            | $\boxtimes$ |             |         |                                                                                                                                                                       |
|      | g.                                                                                           | repo                                                                                            | ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact. |             | $\boxtimes$ |         |                                                                                                                                                                       |
| 2.   | Cali                                                                                         | brat                                                                                            |                                                                                                            | <u> </u>    |             |         |                                                                                                                                                                       |
|      | Ques                                                                                         | stion                                                                                           |                                                                                                            | Yes         | No          | N/A     | Comments                                                                                                                                                              |
|      | a.                                                                                           | Do t                                                                                            | he report narrative or data qualifiers indicate                                                            |             |             |         |                                                                                                                                                                       |

|    |      |               | ration problems for any analyses? If yes,                                                                                                                                  |             |             |             |                                                                                                                             |  |  |  |  |  |
|----|------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    |      | ехрі          | ain the data impact.                                                                                                                                                       |             |             |             |                                                                                                                             |  |  |  |  |  |
| 3. | Blar | nks           |                                                                                                                                                                            |             |             |             |                                                                                                                             |  |  |  |  |  |
|    | Ques | tion          |                                                                                                                                                                            | Yes         | No          | N/A         | Comments                                                                                                                    |  |  |  |  |  |
|    | a.   |               | nny of the analyses contain samples for field p blanks?                                                                                                                    |             | $\boxtimes$ |             |                                                                                                                             |  |  |  |  |  |
|    |      | i.            | If yes, are there target analytes present above the reporting limit?                                                                                                       |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | ii.           | If yes, are the same compounds also present in the samples? Explain possible impact.                                                                                       |             |             | $\boxtimes$ |                                                                                                                             |  |  |  |  |  |
|    | b.   |               | nethod blanks for any analyses contain target<br>ytes above the reporting limit?                                                                                           |             | $\boxtimes$ |             | Low-level concentrations of Total TCDD, 1,2,3,4,6,7,8-HpCDD, Total HpCDD, and OCDD were detected in the method blank 52558. |  |  |  |  |  |
|    |      | i.            | If yes, are the same compounds present in the samples?                                                                                                                     |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | ii.           | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results.                         |             | $\boxtimes$ |             | All sample results were > 10x the blank concentrations.                                                                     |  |  |  |  |  |
| 4. | Surr | Surrogates    |                                                                                                                                                                            |             |             |             |                                                                                                                             |  |  |  |  |  |
|    | Ques | tion          |                                                                                                                                                                            | Yes         | No          | N/A         | Comments                                                                                                                    |  |  |  |  |  |
|    | a.   |               | there organic analyses that contain surrogate pounds?                                                                                                                      |             |             |             | Dioxins/furans have internal standards instead of surrogates.                                                               |  |  |  |  |  |
|    | b.   | Are           | the lab recovery limits specified on the report?                                                                                                                           | $\boxtimes$ |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | i.            | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                                                       |             |             |             |                                                                                                                             |  |  |  |  |  |
|    | C.   |               | there surrogates outside lab limits? (These<br>ıld have a data qualifier)                                                                                                  |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | i.            | If yes, are the surrogates above the lab limits?                                                                                                                           |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | ii.           | Below the lab limits?                                                                                                                                                      |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | iii.          | Explain what this could mean for the affected samples.                                                                                                                     |             |             |             |                                                                                                                             |  |  |  |  |  |
| 5. | Lab  | orat          | ory Control Sample/Laboratory Co                                                                                                                                           | ontro       | I San       | nple        | Duplicate (LCS/LCSD)                                                                                                        |  |  |  |  |  |
|    | Ques | tion          |                                                                                                                                                                            | Yes         | No          | N/A         | Comments                                                                                                                    |  |  |  |  |  |
|    | а.   | repo<br>there | there LCS/LCSD samples present for the rted analyses? (An LCS alone is acceptable if e is a Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.) | $\boxtimes$ |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | i.            | If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?                                                                       |             |             |             |                                                                                                                             |  |  |  |  |  |
|    | b.   |               | there LCS/LCSD compounds outside lab<br>s? (These should have a data qualifier.)                                                                                           |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | i.            | If yes, are the analytes above the lab limits?                                                                                                                             |             |             |             |                                                                                                                             |  |  |  |  |  |
|    |      | ii.           | Below the lab limits?                                                                                                                                                      |             |             | $\boxtimes$ |                                                                                                                             |  |  |  |  |  |

|     |        | ane       | cted samples.                                                                                               | <u> </u> |    |             | I        |
|-----|--------|-----------|-------------------------------------------------------------------------------------------------------------|----------|----|-------------|----------|
|     |        | Spike     | e/Matrix Spike Duplicate/Sa                                                                                 |          |    |             | • •      |
| Que | estion |           |                                                                                                             | Yes      | No | N/A         | Comments |
| a.  |        |           | alytical methods used require an MS<br>SD? If no, skip to 6.b.                                              |          |    |             |          |
|     | i.     |           | e the required matrix spikes been<br>pared and reported?                                                    |          |    |             |          |
|     | ii.    |           | , is there and explanation in the report<br>o why?                                                          |          |    | $\boxtimes$ |          |
|     | iii.   |           | the lab process an alternate spiked ple (such as LCSD) instead?                                             |          |    |             |          |
|     | iv.    | Are       | the lab limits specified on the report?                                                                     |          |    |             |          |
|     | V.     | com       | he limits seem reasonable when<br>pared to the suggested guidelines in th<br>CA QC Policy?                  | ne 🔲     |    | $\boxtimes$ |          |
|     | vi.    | Are       | there compounds outside the lab limits                                                                      | ? 🗆      |    | $\boxtimes$ |          |
|     |        | 1.        | If yes, are the analytes above the la limits?                                                               | b 🗆      |    |             |          |
|     |        | 2.        | Below the lab limits?                                                                                       |          |    | $\boxtimes$ |          |
|     |        | 3.        | Is the source sample also flagged for compounds outside lab limits?                                         | or 🗆     |    |             |          |
| b.  |        |           | le duplicate reported for the analytical ? If no, skip to 6.c.                                              |          |    |             |          |
|     | i.     |           | e RPD for the duplicate pair within the imits?                                                              |          |    |             |          |
|     | ii.    |           | , has the associated source sample<br>n flagged?                                                            |          |    |             |          |
| C.  | . Wh   | at is th  | e impact of failed QC on this project?                                                                      |          |    |             |          |
| Иe  | thoc   | l Det     | ection Limits/Report Limits                                                                                 |          |    |             |          |
| Que | estion |           |                                                                                                             | Yes      | No | N/A         | Comments |
| a.  | cle    | arly list | ing and/or method detection limits<br>ed on the report for all analyses? (may<br>illed quantitation limits) | / ⊠      |    |             |          |

#### Ad

- Concentrations below the calibration range were flagged "J" as estimated by the laboratory.
- (2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

651-296-6300 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • p-eao2-11b • 10/20/11 Page 3 of 3



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| Proj | ect nar                                                                                      | ne: _ | SLR Sediments AOCs – Mud Lake West                                                                                                                              |             | Labor       | atory:      | Pace - 10366129                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vor  | k order                                                                                      | numl  | ber: <u>3000017136</u>                                                                                                                                          |             | Repoi       | t date      | (mm/dd/yyyy): 10/28/2016                                                                                                                                                      |
|      |                                                                                              |       |                                                                                                                                                                 |             |             |             |                                                                                                                                                                               |
| 1.   | Pres                                                                                         | serv  | ation                                                                                                                                                           |             |             |             |                                                                                                                                                                               |
|      |                                                                                              |       | ith this section on holding times, containers and <a href="http://www.health.state.mn.us/divs/phl/environr">http://www.health.state.mn.us/divs/phl/environr</a> |             |             |             |                                                                                                                                                                               |
|      | Ques                                                                                         | tions | )                                                                                                                                                               | Yes         | No          | N/A         | Comments                                                                                                                                                                      |
|      | a.                                                                                           | Is th | ere a chain of custody (COC) with the report?                                                                                                                   | $\boxtimes$ |             |             |                                                                                                                                                                               |
|      | b.                                                                                           | Is th | ere a sample condition form with the report?                                                                                                                    | $\boxtimes$ |             |             |                                                                                                                                                                               |
|      | C.                                                                                           | Wer   | e there samples requiring preservation?                                                                                                                         |             | $\boxtimes$ |             |                                                                                                                                                                               |
|      |                                                                                              | i.    | If so, were they properly preserved?                                                                                                                            |             |             | $\boxtimes$ |                                                                                                                                                                               |
|      |                                                                                              | ii.   | Were they received on ice?                                                                                                                                      | $\boxtimes$ |             |             |                                                                                                                                                                               |
|      | d.                                                                                           | Wer   | re samples received in the correct containers?                                                                                                                  |             |             |             |                                                                                                                                                                               |
|      |                                                                                              | i.    | Was there enough sample volume/weight to complete all requested analyses?                                                                                       | $\boxtimes$ |             |             |                                                                                                                                                                               |
|      |                                                                                              | ii.   | Was there enough extra sample collected to complete method required batch QC?                                                                                   |             |             |             |                                                                                                                                                                               |
|      | e.                                                                                           |       | re samples received with adequate holding<br>for sample prep for all requested analyses?                                                                        |             |             |             |                                                                                                                                                                               |
|      | f. Are there notes about sample condition or holding time issues on the COC? Explain impact. |       |                                                                                                                                                                 |             |             |             |                                                                                                                                                                               |
|      | g.                                                                                           | repo  | nere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.                                                     |             |             |             |                                                                                                                                                                               |
| 2.   | Cali                                                                                         | brat  | ion                                                                                                                                                             |             |             |             |                                                                                                                                                                               |
|      | Ques                                                                                         | stion |                                                                                                                                                                 | Yes         | No          | N/A         | Comments                                                                                                                                                                      |
|      | a.                                                                                           | calib | the report narrative or data qualifiers indicate pration problems for any analyses? If yes, lain the data impact.                                               |             |             |             | The responses obtained for selected labeled congeners in the calibration standard analyses F161027B_18 was outside the target range. As specified in the Pace procedures, the |

|      |              |                                                                                                                                                                              |             |             |      | average of the daily response factors for this compound was used in the calculations for the samples from this analytical run. The affected values were flagged "Y" on the results tables. No data were qualified. |
|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blaı | nks          |                                                                                                                                                                              |             |             |      |                                                                                                                                                                                                                    |
| Ques | stion        |                                                                                                                                                                              | Yes         | No          | N/A  | Comments                                                                                                                                                                                                           |
| а.   |              | any of the analyses contain samples for field ip blanks?                                                                                                                     |             | $\boxtimes$ |      |                                                                                                                                                                                                                    |
|      | i.           | If yes, are there target analytes present above the reporting limit?                                                                                                         |             |             |      |                                                                                                                                                                                                                    |
|      | ii.          | If yes, are the same compounds also present in the samples? Explain possible impact.                                                                                         |             |             |      |                                                                                                                                                                                                                    |
| b.   |              | method blanks for any analyses contain target ytes above the reporting limit?                                                                                                |             |             |      | Low-level concentrations of Total TCDF, Total HxCDD, Total HpCDD, and OCDD were detected in the method blank.                                                                                                      |
|      | i.           | If yes, are the same compounds present in the samples?                                                                                                                       |             |             |      |                                                                                                                                                                                                                    |
|      | ii.          | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results.                           |             | $\boxtimes$ |      | All sample results were > 10x method blank concentrations.                                                                                                                                                         |
| Sur  | roga         | tes                                                                                                                                                                          |             |             |      |                                                                                                                                                                                                                    |
| Ques | stion        |                                                                                                                                                                              | Yes         | No          | N/A  | Comments                                                                                                                                                                                                           |
| a.   |              | there organic analyses that contain surrogate pounds?                                                                                                                        |             |             |      | Dioxins/furans have internal standards instead of surrogates.                                                                                                                                                      |
| b.   | Are          | the lab recovery limits specified on the report?                                                                                                                             | $\boxtimes$ |             |      |                                                                                                                                                                                                                    |
|      | i.           | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                                                         | $\boxtimes$ | П           |      |                                                                                                                                                                                                                    |
| C.   |              | there surrogates outside lab limits? (These                                                                                                                                  |             |             |      |                                                                                                                                                                                                                    |
|      | i.           | If yes, are the surrogates above the lab limits?                                                                                                                             |             |             |      |                                                                                                                                                                                                                    |
|      | ii.          | Below the lab limits?                                                                                                                                                        |             |             |      |                                                                                                                                                                                                                    |
|      | iii.         | Explain what this could mean for the affected samples.                                                                                                                       |             |             |      |                                                                                                                                                                                                                    |
| Lab  | orat         | ory Control Sample/Laboratory Co                                                                                                                                             | ntro        | I San       | nple | Duplicate (LCS/LCSD)                                                                                                                                                                                               |
| Ques | stion        |                                                                                                                                                                              | Yes         | No          | N/A  | Comments                                                                                                                                                                                                           |
| a.   | repo<br>ther | there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate /MSD] or sample/sample dup for precision.) | $\boxtimes$ |             |      |                                                                                                                                                                                                                    |
|      | i.           | If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?                                                                         |             |             |      |                                                                                                                                                                                                                    |
|      | Are          | there LCS/LCSD compounds outside lab                                                                                                                                         |             |             |      |                                                                                                                                                                                                                    |

|     | l.          | If yes          | , are the analytes above the lab limits?                                           | Ш           | Ш           |             |                                                      |
|-----|-------------|-----------------|------------------------------------------------------------------------------------|-------------|-------------|-------------|------------------------------------------------------|
|     | ii.         | Belov           | v the lab limits?                                                                  |             |             | $\boxtimes$ |                                                      |
|     | iii.        |                 | Il samples in the preparation batch also ed for the same analyte(s)?               |             |             |             |                                                      |
|     | iv.         |                 | in what this could mean for the ed samples.                                        |             |             |             |                                                      |
|     |             |                 |                                                                                    |             |             |             |                                                      |
| Mat | trix S      | pike            | /Matrix Spike Duplicate/Samp                                                       | ole D       | uplic       | ate (       | (MS/MSD/Dup)                                         |
| Que | stion       |                 |                                                                                    | Yes         | No          | N/A         | Comments                                             |
| a.  |             |                 | lytical methods used require an MS<br>D? If no, skip to 6.b.                       |             |             |             | MS/MSDs are not required for dioxins/furans          |
|     | i.          |                 | the required matrix spikes been<br>red and reported?                               |             |             |             |                                                      |
|     | ii.         | If no,<br>as to | is there and explanation in the report why?                                        |             |             |             |                                                      |
|     | iii.        | Did the         | ne lab process an alternate spiked<br>le (such as LCSD) instead?                   |             |             |             |                                                      |
|     | iv.         | Are th          | ne lab limits specified on the report?                                             |             |             | $\boxtimes$ |                                                      |
|     | V.          | comp            | e limits seem reasonable when ared to the suggested guidelines in the A QC Policy? |             |             |             |                                                      |
|     | vi.         | Are th          | nere compounds outside the lab limits?                                             | $\boxtimes$ |             |             |                                                      |
|     |             | 1.              | If yes, are the analytes above the lab limits?                                     |             |             |             |                                                      |
|     |             | 2.              |                                                                                    |             |             |             | Background-subtracted recoveries for OCDD            |
|     |             |                 | Polow the leb limits?                                                              |             |             |             | recoveries were biased low and outside QC            |
|     |             | •               | Below the lab limits?                                                              | ш           |             | Ш           | limits.                                              |
|     |             | 3.              | Is the source sample also flagged for compounds outside lab limits?                |             |             | $\boxtimes$ |                                                      |
| b.  |             |                 | e duplicate reported for the analytical<br>If no, skip to 6.c.                     |             | $\boxtimes$ |             |                                                      |
|     | i.          |                 | RPD for the duplicate pair within the                                              |             |             |             | The RPD for OCDD exceeded the acceptance criterion.  |
|     | ii.         |                 | has the associated source sample flagged?                                          |             |             |             |                                                      |
|     |             | DOCII           | naggod:                                                                            |             |             |             | The OCDD result in parent sample                     |
| C.  | Wha         | ıt is the       | impact of failed QC on this project?                                               |             |             |             | BW16MLW-001-0.0-0.15 was qualified "J" as estimated. |
| Met | thod        | Dete            | ction Limits/Report Limits                                                         |             |             |             |                                                      |
| Que | stion       |                 |                                                                                    | Yes         | No          | N/A         | Comments                                             |
| a.  | Are<br>clea | rly liste       | ng and/or method detection limits d on the report for all analyses? (may           |             |             |             |                                                      |
|     | also        | be cal          | ed quantitation limits)                                                            |             | Ш           | Ш           |                                                      |

#### Additional comments on report:

- (1) No field duplicates were included in this SDG.
- (2) The affected results were flagged "I" when incorrect isotope ratios were observed. These results were flagged "J" as estimated. Results < the calibration range were qualified "J" as estimated by the reviewer.
- (3) Level II reports were reviewed, so calibrations and raw data were not reviewed.



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| Pro  | ject    | Info                                                  | rmation                                                                                                                                                              |             |                                     |             |                 |  |  |  |  |  |
|------|---------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|-------------|-----------------|--|--|--|--|--|
| Proj | ect nar | ne: _                                                 | SLR Sediments AOCs – Mud Lake West                                                                                                                                   |             | Labor                               | atory:      | Pace - 10365180 |  |  |  |  |  |
| Wor  | k order | numb                                                  | per: 3000017136                                                                                                                                                      |             | Report date (mm/dd/yyyy):10/24/2016 |             |                 |  |  |  |  |  |
| 1.   | For h   | elp wi                                                | ation th this section on holding times, containers and <a href="http://www.health.state.mn.us/divs/phl/environr">http://www.health.state.mn.us/divs/phl/environr</a> |             |                                     |             |                 |  |  |  |  |  |
|      | Ques    | tions                                                 |                                                                                                                                                                      | Yes         | No                                  | N/A         | Comments        |  |  |  |  |  |
|      | a.      | a. Is there a chain of custody (COC) with the report? |                                                                                                                                                                      |             |                                     |             |                 |  |  |  |  |  |
|      | b.      | Is th                                                 | ere a sample condition form with the report?                                                                                                                         | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | C.      | Wer                                                   | e there samples requiring preservation?                                                                                                                              |             | $\boxtimes$                         |             |                 |  |  |  |  |  |
|      |         | i.                                                    | If so, were they properly preserved?                                                                                                                                 |             |                                     | $\boxtimes$ |                 |  |  |  |  |  |
|      |         | ii.                                                   | Were they received on ice?                                                                                                                                           | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | d.      | Wer                                                   | e samples received in the correct containers?                                                                                                                        | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      |         | i.                                                    | Was there enough sample volume/weight to complete all requested analyses?                                                                                            |             |                                     |             |                 |  |  |  |  |  |
|      |         | ii.                                                   | Was there enough extra sample collected to complete method required batch QC?                                                                                        |             |                                     |             |                 |  |  |  |  |  |
|      | е.      |                                                       | e samples received with adequate holding for sample prep for all requested analyses?                                                                                 | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | f.      |                                                       | there notes about sample condition or holding issues on the COC? Explain impact.                                                                                     |             | $\boxtimes$                         |             |                 |  |  |  |  |  |
|      | g.      | repo                                                  | ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.                                                           |             |                                     |             |                 |  |  |  |  |  |
| 2.   | Cali    | brat                                                  |                                                                                                                                                                      |             |                                     |             |                 |  |  |  |  |  |
|      | Ques    | tion                                                  |                                                                                                                                                                      | Yes         | No                                  | N/A         | Comments        |  |  |  |  |  |
|      | a.      | calib                                                 | he report narrative or data qualifiers indicate oration problems for any analyses? If yes, ain the data impact.                                                      |             |                                     |             |                 |  |  |  |  |  |

| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------|
| a.  | Do any of the analyses contain samples for field or trip blanks? |                                                                                                                                                                                |             |             |             |                      |
|     | i.                                                               | If yes, are there target analytes present above the reporting limit?                                                                                                           |             |             |             |                      |
|     | ii.                                                              | If yes, are the same compounds also present in the samples? Explain possible impact.                                                                                           |             |             |             |                      |
| b.  |                                                                  | method blanks for any analyses contain target lytes above the reporting limit?                                                                                                 |             | $\boxtimes$ |             |                      |
|     | i.                                                               | If yes, are the same compounds present in the samples?                                                                                                                         |             |             |             |                      |
|     | ii.                                                              | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results.                             |             |             | $\boxtimes$ |                      |
| Sur | roga                                                             | ites                                                                                                                                                                           |             |             |             |                      |
| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
| a.  |                                                                  | there organic analyses that contain surrogate npounds?                                                                                                                         |             |             |             |                      |
| b.  | Are                                                              | the lab recovery limits specified on the report?                                                                                                                               |             |             | $\boxtimes$ |                      |
|     | i.                                                               | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                                                           |             |             | $\boxtimes$ |                      |
| C.  |                                                                  | there surrogates outside lab limits? (These uld have a data qualifier)                                                                                                         |             |             |             |                      |
|     | i.                                                               | If yes, are the surrogates above the lab limits?                                                                                                                               |             |             |             |                      |
|     | ii.                                                              | Below the lab limits?                                                                                                                                                          |             |             | $\boxtimes$ |                      |
|     | iii.                                                             | iii. Explain what this could mean for the affected samples.                                                                                                                    |             |             |             |                      |
| Lak | oorat                                                            | tory Control Sample/Laboratory Co                                                                                                                                              | ntro        | I San       | nple        | Duplicate (LCS/LCSD) |
| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
| а.  | repo                                                             | there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if re is an Matrix Spike/Matrix Spike Duplicate S/MSD] or sample/sample dup for precision.) | $\boxtimes$ |             |             |                      |
|     | i.                                                               | If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?                                                                           |             |             |             |                      |
| b.  | Are                                                              | there LCS/LCSD compounds outside lab                                                                                                                                           |             |             |             |                      |

i.

ii.

iii.

If yes, are the analytes above the lab limits?

Are all samples in the preparation batch also flagged for the same analyte(s)?

Below the lab limits?

651-296-6300 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us p-eao2-11b • 10/20/11 Page 2 of 3

 $\boxtimes$ 

 $\boxtimes$ 

 $\boxtimes$ 

|      | 1                                                                           |           | ted samples.                                                                                      |             | . —          |             |                                                                                           |  |  |
|------|-----------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|-------------|--------------|-------------|-------------------------------------------------------------------------------------------|--|--|
| Mat  | rix S                                                                       | pike      | /Matrix Spike Duplicate/Samp                                                                      | ate (       | (MS/MSD/Dup) |             |                                                                                           |  |  |
| Ques | tion                                                                        |           |                                                                                                   | Yes         | No           | N/A         | Comments                                                                                  |  |  |
| a.   |                                                                             |           | lytical methods used require an MS<br>D? If no, skip to 6.b.                                      |             |              |             |                                                                                           |  |  |
|      | i.                                                                          |           | the required matrix spikes been ared and reported?                                                |             |              | $\boxtimes$ |                                                                                           |  |  |
|      | ii.                                                                         |           | If no, is there and explanation in the report as to why?                                          |             |              |             |                                                                                           |  |  |
|      | iii. Did the lab process an alternate spiked sample (such as LCSD) instead? |           |                                                                                                   |             |              |             | Batch MS/MSDs were performed.                                                             |  |  |
|      | iv.                                                                         | Are th    | ne lab limits specified on the report?                                                            |             |              |             |                                                                                           |  |  |
|      | V.                                                                          | comp      | o the limits seem reasonable when impared to the suggested guidelines in the PCA QC Policy?       |             |              |             |                                                                                           |  |  |
|      | vi.                                                                         | Are th    | re there compounds outside the lab limits?                                                        |             |              |             |                                                                                           |  |  |
|      |                                                                             | 1.        | If yes, are the analytes above the lab limits?                                                    |             | $\boxtimes$  |             |                                                                                           |  |  |
|      |                                                                             | 2.        | Below the lab limits?                                                                             |             |              |             | The MSD %R for TOC was biased low and outside QC limits in the batch QC for SDG 10365383. |  |  |
|      |                                                                             | 3.        | Is the source sample also flagged for compounds outside lab limits?                               |             |              | $\boxtimes$ | The source sample was not included in this SDG.                                           |  |  |
| b.   |                                                                             |           | e duplicate reported for the analytical<br>? If no, skip to 6.c.                                  |             | $\boxtimes$  |             | RPDs discussed apply to MS/MSDs.                                                          |  |  |
|      | i.                                                                          | Is the    | RPD for the duplicate pair within the mits?                                                       |             |              |             | The RPD for TOC was high in the MS/MSD performed on the sample from SDG 10365383.         |  |  |
|      | ii.                                                                         |           | has the associated source sample flagged?                                                         |             |              |             | The source sample was not included in this SDG.                                           |  |  |
| C.   | Wha                                                                         | t is the  | e impact of failed QC on this project?                                                            | $\boxtimes$ |              |             | No qualifiers were applied based on batch (                                               |  |  |
| Met  |                                                                             |           | ection Limits/Report Limits                                                                       |             |              |             |                                                                                           |  |  |
| Ques |                                                                             |           | [                                                                                                 | Yes         | No           | N/A         | Comments                                                                                  |  |  |
| a.   | Are clea                                                                    | rly liste | ng and/or method detection limits d on the report for all analyses? (may led quantitation limits) |             |              |             |                                                                                           |  |  |
|      | comr                                                                        | ments     | on report: duplicates were collected with the TOC so                                              |             |              |             |                                                                                           |  |  |



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| roje | ect nar | ne:                                                                                                                                                                                                                                                                                                                                               | SLR Sediments AOCs – Mud Lake West                                                                                |             | Labor                                | atory:      | Pace - 10365194                                                                                                                                                   |  |  |  |  |  |  |  |
|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Vorl | k order | numl                                                                                                                                                                                                                                                                                                                                              | ber: <u>3000017136</u>                                                                                            |             | Report date (mm/dd/yyyy): 10/18/2016 |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | For h   | Preservation  or help with this section on holding times, containers and preservatives, refer to the Minnesota Department of Health's rebsite at: <a href="http://www.health.state.mn.us/divs/phl/environmental/handbook/internet/envhandbook.html">http://www.health.state.mn.us/divs/phl/environmental/handbook/internet/envhandbook.html</a> . |                                                                                                                   |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
| ,    | Ques    | stions                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                 | Yes         | No                                   | N/A         | Comments                                                                                                                                                          |  |  |  |  |  |  |  |
| •    | a.      | Is th                                                                                                                                                                                                                                                                                                                                             | nere a chain of custody (COC) with the report?                                                                    | $\boxtimes$ |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | b.      | Is th                                                                                                                                                                                                                                                                                                                                             | nere a sample condition form with the report?                                                                     | $\boxtimes$ |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | C.      | Wer                                                                                                                                                                                                                                                                                                                                               | re there samples requiring preservation?                                                                          |             | $\boxtimes$                          |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      |         | i.                                                                                                                                                                                                                                                                                                                                                | If so, were they properly preserved?                                                                              |             |                                      | $\boxtimes$ |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      |         | ii.                                                                                                                                                                                                                                                                                                                                               | Were they received on ice?                                                                                        | $\boxtimes$ |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | d.      | Wer                                                                                                                                                                                                                                                                                                                                               | re samples received in the correct containers?                                                                    |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      |         | i.                                                                                                                                                                                                                                                                                                                                                | Was there enough sample volume/weight to complete all requested analyses?                                         |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      |         | ii.                                                                                                                                                                                                                                                                                                                                               | Was there enough extra sample collected to complete method required batch QC?                                     |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | e.      |                                                                                                                                                                                                                                                                                                                                                   | re samples received with adequate holding for sample prep for all requested analyses?                             | $\boxtimes$ |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | f.      |                                                                                                                                                                                                                                                                                                                                                   | there notes about sample condition or holding sissues on the COC? Explain impact.                                 |             | $\boxtimes$                          |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | g.      | repo                                                                                                                                                                                                                                                                                                                                              | nere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.       |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
| 2.   | Cali    | Calibration                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |             |                                      |             |                                                                                                                                                                   |  |  |  |  |  |  |  |
|      | Ques    | stion                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | Yes         | No                                   | N/A         | Comments                                                                                                                                                          |  |  |  |  |  |  |  |
|      | a.      | calib                                                                                                                                                                                                                                                                                                                                             | the report narrative or data qualifiers indicate pration problems for any analyses? If yes, lain the data impact. |             |                                      |             | The response obtained for the native OCDF in the calibration standard analyses U161012A_17 was outside the target range. As specified in the Pace procedures, the |  |  |  |  |  |  |  |

|     |       |                                                                                                                                                    |             |             |             | average of the daily response factors for this compound was used in the calculations for th samples from this analytical run. The affected values were flagged "Y" on the results tables. No data were qualified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bla | nks   |                                                                                                                                                    |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Que | stion |                                                                                                                                                    | Yes         | No          | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a.  |       | any of the analyses contain samples for field ip blanks?                                                                                           |             | $\boxtimes$ |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | i.    | If yes, are there target analytes present above the reporting limit?                                                                               |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | ii.   | If yes, are the same compounds also present in the samples? Explain possible impact.                                                               |             |             | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b.  |       | method blanks for any analyses contain target ytes above the reporting limit?                                                                      |             |             |             | Low-level concentrations of Total TCDF, Total HxCDD, 1,2,3,4,6,7,8-HpCDD, and Total HpCDD were detected in the method blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | i.    | If yes, are the same compounds present in the samples?                                                                                             |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | ii.   | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results. |             |             |             | All sample results were > 10x the blank concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | roga  | tes                                                                                                                                                | Yes         | No          | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a.  | Are   | there organic analyses that contain surrogate                                                                                                      |             |             |             | Dioxins/furans have internal standards instea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |       | pounds?                                                                                                                                            |             |             |             | of surrogates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| b.  | Are   | the lab recovery limits specified on the report?                                                                                                   |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | i.    | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                               |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C.  |       | there surrogates outside lab limits? (These<br>uld have a data qualifier)                                                                          |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | i.    | If yes, are the surrogates above the lab limits?                                                                                                   |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | ii.   | Below the lab limits?                                                                                                                              | $\boxtimes$ |             |             | The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the samp extracts ranged from 32-97%. Except for two low values, which were flagged "R" on the results tables, the labeled standard recoverion obtained for this project were within the 40-135% target range specified in Method 8290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | iii.  | Explain what this could mean for the                                                                                                               |             |             |             | Since the quantification of the native 2,3,7,8 substituted congeners was based on isotope dilution, the data were automatically correcte for variation in recovery and accurate values were obtained. No data were qualified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |       | affected samples.                                                                                                                                  |             |             |             | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
|     |       |                                                                                                                                                    |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lab | orat  | ory Control Sample/Laboratory Co                                                                                                                   | ntro        | I Sar       | nple        | Duplicate (LCS/LCSD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|    | a.   | repo<br>there | rted ar<br>e is an | CS/LCSD samples present for the nalyses? (An LCS alone is acceptable Matrix Spike/Matrix Spike Duplicate or sample/sample dup for precision.) | if 🖂        |             |             |                                              |
|----|------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------------------------------|
|    |      | i.            | comp               | do the lab limits seem reasonable<br>pared to the suggested guidelines in the<br>A QC Policy?                                                 | e 🛛         |             |             |                                              |
|    | b.   |               |                    | .CS/LCSD compounds outside lab<br>ese should have a data qualifier.)                                                                          |             |             |             |                                              |
|    |      | i.            | If yes             | , are the analytes above the lab limits?                                                                                                      | ? 🗆         |             | $\boxtimes$ |                                              |
|    |      | ii.           | Belov              | v the lab limits?                                                                                                                             |             |             | $\boxtimes$ |                                              |
|    |      | iii.          |                    | II samples in the preparation batch als ed for the same analyte(s)?                                                                           | °           |             | $\boxtimes$ |                                              |
|    |      | iv.           |                    | in what this could mean for the ted samples.                                                                                                  |             |             | $\boxtimes$ |                                              |
| ó. | Matı | rix S         | pike               | /Matrix Spike Duplicate/San                                                                                                                   | nple D      | uplic       | ate (       | (MS/MSD/Dup)                                 |
|    | Ques | tion          |                    |                                                                                                                                               | Yes         | No          | N/A         | Comments                                     |
|    | а.   |               |                    | lytical methods used require an MS<br>D? If no, skip to 6.b.                                                                                  |             | $\boxtimes$ |             | MS/MSDs are not required for dioxins/furans. |
|    |      | i.            |                    | the required matrix spikes been ared and reported?                                                                                            |             |             |             |                                              |
|    |      | ii.           |                    | is there and explanation in the report why?                                                                                                   |             |             |             |                                              |
|    |      | iii.          |                    | ne lab process an alternate spiked<br>le (such as LCSD) instead?                                                                              |             |             |             |                                              |
|    |      | iv.           | Are t              | ne lab limits specified on the report?                                                                                                        |             |             | $\boxtimes$ |                                              |
|    |      | V.            | comp               | e limits seem reasonable when<br>pared to the suggested guidelines in the<br>A QC Policy?                                                     | e 🗆         |             | $\boxtimes$ |                                              |
|    |      | vi.           | Are t              | nere compounds outside the lab limits?                                                                                                        | ? 🗆         |             | $\boxtimes$ |                                              |
|    |      |               | 1.                 | If yes, are the analytes above the lab limits?                                                                                                |             |             |             |                                              |
|    |      |               | 2.                 | Below the lab limits?                                                                                                                         |             |             | $\boxtimes$ |                                              |
|    |      |               | 3.                 | Is the source sample also flagged for compounds outside lab limits?                                                                           | r 🔲         |             | $\boxtimes$ |                                              |
|    | b.   |               |                    | e duplicate reported for the analytical P If no, skip to 6.c.                                                                                 |             |             | $\boxtimes$ |                                              |
|    |      | i.            | Is the             | RPD for the duplicate pair within the mits?                                                                                                   |             |             |             |                                              |
|    |      | ii.           |                    | has the associated source sample flagged?                                                                                                     |             |             | $\boxtimes$ |                                              |
|    | C.   | Wha           | it is the          | e impact of failed QC on this project?                                                                                                        |             |             | $\boxtimes$ |                                              |
|    | Met  | hod           | Dete               | ction Limits/Report Limits                                                                                                                    |             |             |             |                                              |
|    | Ques | tion          |                    | <u> </u>                                                                                                                                      | Yes         | No          | N/A         | Comments                                     |
|    | а.   | Are<br>clea   | rly liste          | ng and/or method detection limits<br>d on the report for all analyses? (may                                                                   |             | _           | _           |                                              |
|    |      | also          | be cal             | led quantitation limits)                                                                                                                      | $\boxtimes$ |             |             |                                              |

#### Additional comments on report:

- (1) No field duplicates were included in this SDG.
- (2) Values were flagged "I" when incorrect isotope ratios were observed or concentrations were below the calibration range. . These results were flagged "J" as estimated.
- (3) Level II reports were reviewed, so calibrations and raw data were not reviewed.



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| Pro  | ject    | Info                                             | rmation                                                                                                                                                              |             |                                     |             |                 |  |  |  |  |  |
|------|---------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|-------------|-----------------|--|--|--|--|--|
| Proj | ect nan | ne:                                              | SLR Sediments AOCs – Mud Lake West                                                                                                                                   |             | Labor                               | atory:      | Pace - 10365195 |  |  |  |  |  |
| Wor  | k order | numl                                             | per: 3000017136                                                                                                                                                      |             | Report date (mm/dd/yyyy):10/19/2016 |             |                 |  |  |  |  |  |
| 1.   | For h   | elp wi                                           | ation th this section on holding times, containers and <a href="http://www.health.state.mn.us/divs/phl/environn">http://www.health.state.mn.us/divs/phl/environn</a> |             |                                     |             |                 |  |  |  |  |  |
|      | Ques    | tions                                            |                                                                                                                                                                      | Yes         | No                                  | N/A         | Comments        |  |  |  |  |  |
|      | a.      | Is th                                            | ere a chain of custody (COC) with the report?                                                                                                                        | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | b.      | Is th                                            | ere a sample condition form with the report?                                                                                                                         | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | C.      | Wer                                              | e there samples requiring preservation?                                                                                                                              |             | $\boxtimes$                         |             |                 |  |  |  |  |  |
|      |         | i.                                               | If so, were they properly preserved?                                                                                                                                 |             |                                     | $\boxtimes$ |                 |  |  |  |  |  |
|      |         | ii.                                              | Were they received on ice?                                                                                                                                           | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | d.      | Were samples received in the correct containers? |                                                                                                                                                                      |             |                                     |             |                 |  |  |  |  |  |
|      |         | i.                                               | Was there enough sample volume/weight to complete all requested analyses?                                                                                            |             |                                     |             |                 |  |  |  |  |  |
|      |         | ii.                                              | Was there enough extra sample collected to complete method required batch QC?                                                                                        |             |                                     |             |                 |  |  |  |  |  |
|      | е.      |                                                  | e samples received with adequate holding for sample prep for all requested analyses?                                                                                 | $\boxtimes$ |                                     |             |                 |  |  |  |  |  |
|      | f.      |                                                  | there notes about sample condition or holding issues on the COC? Explain impact.                                                                                     |             | $\boxtimes$                         |             |                 |  |  |  |  |  |
|      | g.      | repo                                             | ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.                                                           |             | $\boxtimes$                         |             |                 |  |  |  |  |  |
| 2.   | Cali    | brat                                             | ion                                                                                                                                                                  |             |                                     |             |                 |  |  |  |  |  |
|      | Ques    | tion                                             |                                                                                                                                                                      | Yes         | No                                  | N/A         | Comments        |  |  |  |  |  |
|      | a.      | calib                                            | he report narrative or data qualifiers indicate oration problems for any analyses? If yes, ain the data impact                                                       |             |                                     | П           |                 |  |  |  |  |  |

| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------|
| a.  | Do any of the analyses contain samples for field or trip blanks? |                                                                                                                                                                                |             |             |             |                      |
|     | i.                                                               | If yes, are there target analytes present above the reporting limit?                                                                                                           |             |             |             |                      |
|     | ii.                                                              | If yes, are the same compounds also present in the samples? Explain possible impact.                                                                                           |             |             |             |                      |
| b.  |                                                                  | method blanks for any analyses contain target lytes above the reporting limit?                                                                                                 |             | $\boxtimes$ |             |                      |
|     | i.                                                               | If yes, are the same compounds present in the samples?                                                                                                                         |             |             |             |                      |
|     | ii.                                                              | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results.                             |             |             | $\boxtimes$ |                      |
| Sur | roga                                                             | ites                                                                                                                                                                           |             |             |             |                      |
| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
| a.  |                                                                  | there organic analyses that contain surrogate npounds?                                                                                                                         |             |             |             |                      |
| b.  | Are                                                              | the lab recovery limits specified on the report?                                                                                                                               |             |             | $\boxtimes$ |                      |
|     | i.                                                               | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                                                           |             |             | $\boxtimes$ |                      |
| C.  |                                                                  | there surrogates outside lab limits? (These uld have a data qualifier)                                                                                                         |             |             |             |                      |
|     | i.                                                               | If yes, are the surrogates above the lab limits?                                                                                                                               |             |             |             |                      |
|     | ii.                                                              | Below the lab limits?                                                                                                                                                          |             |             | $\boxtimes$ |                      |
|     | iii.                                                             | iii. Explain what this could mean for the affected samples.                                                                                                                    |             |             |             |                      |
| Lak | oorat                                                            | tory Control Sample/Laboratory Co                                                                                                                                              | ntro        | I San       | nple        | Duplicate (LCS/LCSD) |
| Que | stion                                                            |                                                                                                                                                                                | Yes         | No          | N/A         | Comments             |
| а.  | repo                                                             | there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if re is an Matrix Spike/Matrix Spike Duplicate S/MSD] or sample/sample dup for precision.) | $\boxtimes$ |             |             |                      |
|     | i.                                                               | If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?                                                                           |             |             |             |                      |
| b.  | Are                                                              | there LCS/LCSD compounds outside lab                                                                                                                                           |             |             |             |                      |

i.

ii.

iii.

If yes, are the analytes above the lab limits?

Are all samples in the preparation batch also flagged for the same analyte(s)?

Below the lab limits?

651-296-6300 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us p-eao2-11b • 10/20/11 Page 2 of 3

 $\boxtimes$ 

 $\boxtimes$ 

 $\boxtimes$ 

| Mat  | rix S                                                                       | pike             | /Matrix Spike Duplicate/Samp                                                                             | ole Di      | uplic       | ate (       | (MS/MSD/Dup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ques | Question                                                                    |                  |                                                                                                          |             |             | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a.   | Do t<br>and/                                                                | he ana<br>or MSI | llytical methods used require an MS<br>D? If no, skip to 6.b.                                            |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | i.                                                                          |                  | the required matrix spikes been ared and reported?                                                       |             |             | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | ii.                                                                         |                  | is there and explanation in the report why?                                                              |             |             | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | iii. Did the lab process an alternate spiked sample (such as LCSD) instead? |                  |                                                                                                          |             |             |             | Batch MS/MSDs were performed on a sam from SDG 10364962.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | iv.                                                                         | Are th           | ne lab limits specified on the report?                                                                   |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | V.                                                                          | comp             | ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?                     | $\boxtimes$ |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | vi.                                                                         | Are th           | Are there compounds outside the lab limits?                                                              |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                             | 1.               | If yes, are the analytes above the lab limits?                                                           |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                             | 2.               | Below the lab limits?                                                                                    | $\boxtimes$ |             | П           | The MS/MSD recoveries for Zinc were not evaluated against QC limits in the batch QC due to required dilutions for SDG 10364962 No qualifiers were applied based on batch to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of |
|      |                                                                             | 3.               | Is the source sample also flagged for compounds outside lab limits?                                      |             |             |             | The source sample was not included in this SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b.   |                                                                             |                  | e duplicate reported for the analytical If no, skip to 6.c.                                              |             | $\boxtimes$ |             | RPDs discussed apply to MS/MSDs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | i.                                                                          | Is the           | e RPD for the duplicate pair within the mits?                                                            |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | ii.                                                                         |                  | has the associated source sample flagged?                                                                |             |             | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C.   | Wha                                                                         | t is the         | e impact of failed QC on this project?                                                                   |             |             |             | No qualifiers were applied based on batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Met  | hod                                                                         | Dete             | ection Limits/Report Limits                                                                              |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ques | tion                                                                        |                  | ·                                                                                                        | Yes         | No          | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a.   | clea                                                                        | rly liste        | ng and/or method detection limits<br>ed on the report for all analyses? (may<br>led quantitation limits) |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| Pro  | ject    | Info   | rmation                                                                                                                                                              |             |                                      |             |                 |  |  |  |  |  |  |
|------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|-------------|-----------------|--|--|--|--|--|--|
| Proj | ect nar | ne:    | SLR Sediments AOCs – Mud Lake West                                                                                                                                   |             | Labor                                | atory:      | Pace - 10366128 |  |  |  |  |  |  |
| Wor  | k order | numl   | per: 3000017136                                                                                                                                                      |             | Report date (mm/dd/yyyy): 10/27/2016 |             |                 |  |  |  |  |  |  |
| 1.   | For h   | elp wi | ation th this section on holding times, containers and <a href="http://www.health.state.mn.us/divs/phl/environn">http://www.health.state.mn.us/divs/phl/environn</a> |             |                                      |             |                 |  |  |  |  |  |  |
|      | Ques    | tions  |                                                                                                                                                                      | Yes         | No                                   | N/A         | Comments        |  |  |  |  |  |  |
|      | a.      | Is th  | ere a chain of custody (COC) with the report?                                                                                                                        | $\boxtimes$ |                                      |             |                 |  |  |  |  |  |  |
|      | b.      | Is th  | ere a sample condition form with the report?                                                                                                                         | $\boxtimes$ |                                      |             |                 |  |  |  |  |  |  |
|      | C.      | Wer    | e there samples requiring preservation?                                                                                                                              |             | $\boxtimes$                          | $\boxtimes$ |                 |  |  |  |  |  |  |
|      |         | i.     | If so, were they properly preserved?                                                                                                                                 |             |                                      |             |                 |  |  |  |  |  |  |
|      |         | ii.    | Were they received on ice?                                                                                                                                           | $\boxtimes$ |                                      |             |                 |  |  |  |  |  |  |
|      | d.      | Wer    | e samples received in the correct containers?                                                                                                                        | $\boxtimes$ |                                      |             |                 |  |  |  |  |  |  |
|      |         | i.     | Was there enough sample volume/weight to complete all requested analyses?                                                                                            |             |                                      |             |                 |  |  |  |  |  |  |
|      |         | ii.    | Was there enough extra sample collected to complete method required batch QC?                                                                                        |             |                                      |             |                 |  |  |  |  |  |  |
|      | е.      |        | e samples received with adequate holding for sample prep for all requested analyses?                                                                                 | $\boxtimes$ |                                      |             |                 |  |  |  |  |  |  |
|      | f.      |        | there notes about sample condition or holding issues on the COC? Explain impact.                                                                                     |             | $\boxtimes$                          |             |                 |  |  |  |  |  |  |
|      | g.      | repo   | ere narration or data qualifiers within the<br>ort about sample condition or holding time<br>es? Explain impact.                                                     |             |                                      |             |                 |  |  |  |  |  |  |
| 2.   | Cali    |        | · · ·                                                                                                                                                                |             |                                      |             |                 |  |  |  |  |  |  |
|      | Ques    | tion   |                                                                                                                                                                      | Yes         | No                                   | N/A         | Comments        |  |  |  |  |  |  |
|      | a.      | calib  | he report narrative or data qualifiers indicate oration problems for any analyses? If yes, ain the data impact.                                                      |             |                                      |             |                 |  |  |  |  |  |  |

| Bla | Blanks                                                           |                                                                                                                                                    |     |             |             |                                                                                         |  |  |  |  |
|-----|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| Que | stion                                                            |                                                                                                                                                    | Yes | No          | N/A         | Comments                                                                                |  |  |  |  |
| a.  | Do any of the analyses contain samples for field or trip blanks? |                                                                                                                                                    |     |             |             |                                                                                         |  |  |  |  |
|     | i.                                                               | If yes, are there target analytes present above the reporting limit?                                                                               |     |             |             |                                                                                         |  |  |  |  |
|     | ii.                                                              | If yes, are the same compounds also present in the samples? Explain possible impact.                                                               |     |             |             |                                                                                         |  |  |  |  |
| b.  |                                                                  | method blanks for any analyses contain target lytes above the reporting limit?                                                                     |     |             |             | A low-level concentration of Nickel (0.16 mg/kg) was detected in Method blank 24024     |  |  |  |  |
|     | i.                                                               | If yes, are the same compounds present in the samples?                                                                                             |     |             |             |                                                                                         |  |  |  |  |
|     | ii.                                                              | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results. |     | $\boxtimes$ |             | No action was warranted, because the sample results were > 10x the spike concentration. |  |  |  |  |
| Sur | roga                                                             | tes                                                                                                                                                |     |             |             |                                                                                         |  |  |  |  |
| Que | stion                                                            | stion                                                                                                                                              |     |             | N/A         | Comments                                                                                |  |  |  |  |
| a.  | Are com                                                          | there organic analyses that contain surrogate pounds?                                                                                              |     |             |             |                                                                                         |  |  |  |  |
| b.  | Are                                                              | Are the lab recovery limits specified on the report?                                                                                               |     |             | $\boxtimes$ |                                                                                         |  |  |  |  |
|     | i.                                                               | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                               |     |             |             |                                                                                         |  |  |  |  |
| C.  |                                                                  | Are there surrogates outside lab limits? (These should have a data qualifier)                                                                      |     |             |             |                                                                                         |  |  |  |  |
|     | i.                                                               | If yes, are the surrogates above the lab limits?                                                                                                   |     |             | $\boxtimes$ |                                                                                         |  |  |  |  |
|     | ii.                                                              | Below the lab limits?                                                                                                                              |     |             |             |                                                                                         |  |  |  |  |
|     | iii.                                                             | Explain what this could mean for the                                                                                                               |     |             |             |                                                                                         |  |  |  |  |

# 5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

affected samples.

| Ques | stion                                                                                  |                                                                                                                                                                              | Yes         | No          | N/A         | Comments |
|------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------|
| a.   | repo<br>there                                                                          | there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate /MSD] or sample/sample dup for precision.) | $\boxtimes$ |             |             |          |
|      | i.                                                                                     | If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?                                                                         |             |             |             |          |
| b.   | Are there LCS/LCSD compounds outside lab limits? (These should have a data qualifier.) |                                                                                                                                                                              |             | $\boxtimes$ |             |          |
|      | i. If yes, are the analytes above the lab limits?                                      |                                                                                                                                                                              |             |             | $\boxtimes$ |          |
|      | ii. Below the lab limits?                                                              |                                                                                                                                                                              |             |             | $\boxtimes$ |          |
|      | iii. Are all samples in the preparation batch also flagged for the same analyte(s)?    |                                                                                                                                                                              |             |             | $\boxtimes$ |          |
|      | iv.                                                                                    | Explain what this could mean for the                                                                                                                                         |             |             | $\boxtimes$ |          |

| Question                                                                                                                             |                                                                              |                 |                                                                                     |             | No          | N/A         | Comments                  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|-------------|-------------|-------------|---------------------------|
| a.                                                                                                                                   | Do the analytical methods used require an MS and/or MSD? If no, skip to 6.b. |                 |                                                                                     |             |             |             |                           |
|                                                                                                                                      | Have the required matrix spikes been prepared and reported?                  |                 |                                                                                     | $\boxtimes$ |             |             |                           |
|                                                                                                                                      | ii.                                                                          | If no,<br>as to | is there and explanation in the report why?                                         |             |             |             |                           |
|                                                                                                                                      | iii. Did the lab process an alternate spiked sample (such as LCSD) instead?  |                 |                                                                                     |             |             |             |                           |
|                                                                                                                                      | iv.                                                                          | Are th          | ne lab limits specified on the report?                                              | $\boxtimes$ |             |             |                           |
|                                                                                                                                      | V.                                                                           | comp            | e limits seem reasonable when pared to the suggested guidelines in the A QC Policy? |             |             |             |                           |
|                                                                                                                                      | vi.                                                                          | Are th          | nere compounds outside the lab limits?                                              |             | $\boxtimes$ |             |                           |
|                                                                                                                                      |                                                                              | 1.              | If yes, are the analytes above the lab limits?                                      |             |             |             |                           |
|                                                                                                                                      |                                                                              | 2.              | Below the lab limits?                                                               |             |             | $\boxtimes$ |                           |
|                                                                                                                                      |                                                                              | 3.              | Is the source sample also flagged for compounds outside lab limits?                 |             |             | $\boxtimes$ |                           |
| b.                                                                                                                                   |                                                                              |                 | e duplicate reported for the analytical<br>P If no, skip to 6.c.                    |             |             |             | RPDs are from the MS/MSD. |
|                                                                                                                                      | i.                                                                           | Is the          | RPD for the duplicate pair within the mits?                                         |             |             |             |                           |
|                                                                                                                                      | ii. If no, has the associated source sample been flagged?                    |                 |                                                                                     |             |             |             |                           |
| C.                                                                                                                                   | c. What is the impact of failed QC on this project?                          |                 |                                                                                     |             |             | $\boxtimes$ |                           |
| Method Detection Limits/Report Limits                                                                                                |                                                                              |                 |                                                                                     |             |             |             |                           |
| Question                                                                                                                             |                                                                              |                 |                                                                                     | Yes         | No          | N/A         | Comments                  |
| Are reporting and/or method detection limits clearly listed on the report for all analyses? (may also be called quantitation limits) |                                                                              |                 |                                                                                     | $\boxtimes$ |             |             |                           |

(3)



# Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): <a href="http://www.pca.state.mn.us/index.php/view-document.html?gid=16113">http://www.pca.state.mn.us/index.php/view-document.html?gid=16288</a>.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

| ro   | ject                                                                                                                                                                                                                                                                                                                                               | Info   | rmation                                                                                                    |             |                                      |             |                                                                                                                           |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| roje | ect nan                                                                                                                                                                                                                                                                                                                                            | ne:    | SLR Sediments AOCs – Mud Lake West                                                                         |             | _ Laboratory:                        |             | AXYS - DPWG57987 (Tissue Samples)                                                                                         |  |  |  |  |  |
| Vorl | c order                                                                                                                                                                                                                                                                                                                                            | numb   | per: <u>3000017136</u>                                                                                     |             | Report date (mm/dd/yyyy): 01/20/2017 |             |                                                                                                                           |  |  |  |  |  |
|      | Preservation  For help with this section on holding times, containers and preservatives, refer to the Minnesota Department of Health's website at: <a href="http://www.health.state.mn.us/divs/phl/environmental/handbook/internet/envhandbook.html">http://www.health.state.mn.us/divs/phl/environmental/handbook/internet/envhandbook.html</a> . |        |                                                                                                            |             |                                      |             |                                                                                                                           |  |  |  |  |  |
| -    | Ques                                                                                                                                                                                                                                                                                                                                               | stions |                                                                                                            | Yes         | No                                   | N/A         | Comments                                                                                                                  |  |  |  |  |  |
|      | а.                                                                                                                                                                                                                                                                                                                                                 |        | ere a chain of custody (COC) with the report?                                                              | $\boxtimes$ | П                                    |             |                                                                                                                           |  |  |  |  |  |
| •    | b.                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                            |             |                                      |             |                                                                                                                           |  |  |  |  |  |
| -    | C.                                                                                                                                                                                                                                                                                                                                                 | Wer    | e there samples requiring preservation?                                                                    |             | $\boxtimes$                          |             |                                                                                                                           |  |  |  |  |  |
| -    |                                                                                                                                                                                                                                                                                                                                                    | i.     | If so, were they properly preserved?                                                                       |             |                                      | $\boxtimes$ |                                                                                                                           |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                    | ii.    | Were they received on ice?                                                                                 | $\boxtimes$ |                                      |             |                                                                                                                           |  |  |  |  |  |
| .=   | d.                                                                                                                                                                                                                                                                                                                                                 | Wer    | e samples received in the correct containers?                                                              | $\boxtimes$ |                                      |             |                                                                                                                           |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                    | i.     | Was there enough sample volume/weight to complete all requested analyses?                                  |             |                                      |             |                                                                                                                           |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                    | ii.    | Was there enough extra sample collected to complete method required batch QC?                              |             |                                      |             |                                                                                                                           |  |  |  |  |  |
|      | e.                                                                                                                                                                                                                                                                                                                                                 |        | e samples received with adequate holding<br>for sample prep for all requested analyses?                    |             |                                      |             |                                                                                                                           |  |  |  |  |  |
| -    | f.                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                            |             |                                      |             | "#" Symbol was removed from sample IDs for programming reasons.                                                           |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                    |        | there notes about sample condition or holding issues on the COC? Explain impact.                           |             | $\boxtimes$                          |             | Sample ID discrepancy: Sample ID on CoC was 'Control-CS136 West Bear' and sample label was 'Control West Bear Skin-CS136' |  |  |  |  |  |
|      | g.                                                                                                                                                                                                                                                                                                                                                 | repo   | ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact. |             |                                      |             | Sample above. was logged in per the CoC.                                                                                  |  |  |  |  |  |
| 2.   | Calibration  Question  Yes No N/A Comments                                                                                                                                                                                                                                                                                                         |        |                                                                                                            |             |                                      |             |                                                                                                                           |  |  |  |  |  |

| a.     | calib                                                                         | he report narrative or data qualifiers indicate pration problems for any analyses? If yes, ain the data impact.                                    |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Blanks |                                                                               |                                                                                                                                                    |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Ques   | stion                                                                         |                                                                                                                                                    | Yes | No          | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| a.     |                                                                               | any of the analyses contain samples for field planks?                                                                                              |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | i.                                                                            | If yes, are there target analytes present above the reporting limit?                                                                               |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | ii.                                                                           | If yes, are the same compounds also present in the samples? Explain possible impact.                                                               |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| b.     |                                                                               | nethod blanks for any analyses contain target<br>ytes above the reporting limit?                                                                   |     |             |             | Data are not blank corrected. 1,2,3,4,6,7,8-HpCDD (0.262J pg/g), OCDD (0.596J pg/g), 1,2,3,7,8,9-HXCDD (0.0793 pg/g), Total Hexa Dioxins (0.178 pg/g), and Total Hepta-Dioxins (0.937 pg/g) were detected in the lab blank (AXYS ID WG57620-101).                                                                                                                                       |  |  |  |  |  |  |
|        | i.                                                                            | If yes, are the same compounds present in the samples?                                                                                             |     |             |             | 1,2,3,4,6,7,8-HpCDD, OCDD, Total Hexa-<br>Dioxins, 1,2,3,7,8,9-HXCDD, Total Hepta-<br>Dioxins, and/or Total Hepta-Dioxins were<br>detected in the field samples.                                                                                                                                                                                                                        |  |  |  |  |  |  |
|        | ii.                                                                           | Is the amount of target analyte in the blank more than 1/10 <sup>th</sup> of that in the sample(s)? Explain the possible impact on sample results. |     | $\boxtimes$ |             | Results for 1,2,3,4,6,7,8-HPCDD in sample 'Control-CS136 West Bear'; 1,2,3,4,6,7,8-HpCDD, 1,2,3,7,8,9-HXCDD, Total Hexa-Dioxins, and Total Hepta-Dioxins in sample 'BW16MLW-001'; 1,2,3,4,6,7,8-HPCDD, 1,2,3,7,8,9-HXCDD in sample 'BW16MLW-002'; Total Hepta-Dioxins in sample 'BW16MLW-003'; 1,2,3,4,6,7,8-HpCDD, OCDD, and Total Hepta-Dioxins in sample 'Background day 0 10/25/16' |  |  |  |  |  |  |
| Sur    | roga                                                                          | tes                                                                                                                                                | Yes | No          | N/A         | Comments                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| а.     | Are                                                                           | there organic analyses that contain surrogate pounds?                                                                                              |     | П           |             | Dioxins/furans have internal standards instea of surrogates.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| b.     |                                                                               | the lab recovery limits specified on the report?                                                                                                   |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | i.                                                                            | Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?                                               |     | П           |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| C.     | Are there surrogates outside lab limits? (These should have a data qualifier) |                                                                                                                                                    |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | i.                                                                            | If yes, are the surrogates above the lab limits?                                                                                                   |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | ii.                                                                           | Below the lab limits?                                                                                                                              |     |             | $\boxtimes$ |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        | iii.                                                                          | Explain what this could mean for the affected samples.                                                                                             |     |             |             |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|        |                                                                               | anotica campion                                                                                                                                    |     |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

|    | a.       | Are there LCS/LCSD samples present for the reported analyses? (An LCS alone is acceptable if there is an Matrix Spike/Matrix Spike Duplicate [MS/MSD] or sample/sample dup for precision.)               |           |                                                                                              |             |             |             |                                                                          |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------------------------------------------------------------------|
|    |          | i.                                                                                                                                                                                                       | comp      | do the lab limits seem reasonable<br>ared to the suggested guidelines in the<br>A QC Policy? | $\boxtimes$ |             |             |                                                                          |
|    | b.       |                                                                                                                                                                                                          |           | CS/LCSD compounds outside lab ese should have a data qualifier.)                             |             |             |             |                                                                          |
|    |          | i.                                                                                                                                                                                                       | If yes    | , are the analytes above the lab limits?                                                     |             |             | $\boxtimes$ |                                                                          |
|    |          | ii.                                                                                                                                                                                                      | Belov     | v the lab limits?                                                                            |             |             | $\boxtimes$ |                                                                          |
|    | -        | iii.                                                                                                                                                                                                     |           | ll samples in the preparation batch also<br>ed for the same analyte(s)?                      |             |             | $\boxtimes$ |                                                                          |
|    |          | iv.                                                                                                                                                                                                      |           | in what this could mean for the ed samples.                                                  |             |             | $\boxtimes$ |                                                                          |
| 6. | Matı     | rix S                                                                                                                                                                                                    | pike      | /Matrix Spike Duplicate/Sam                                                                  | ple D       | uplic       | ate (       | [MS/MSD/Dup)                                                             |
|    | Ques     | tion                                                                                                                                                                                                     |           |                                                                                              | Yes         | No          | N/A         | Comments                                                                 |
|    | a.       |                                                                                                                                                                                                          |           | lytical methods used require an MS<br>)? If no, skip to 6.b.                                 |             |             |             | MS/MSDs are not required for dioxins/furans analysis for tissue samples. |
|    |          | i.                                                                                                                                                                                                       |           | the required matrix spikes been<br>ared and reported?                                        |             |             | $\boxtimes$ |                                                                          |
|    |          | ii. If no, is there and explana as to why?                                                                                                                                                               |           | is there and explanation in the report why?                                                  |             |             | $\boxtimes$ |                                                                          |
|    |          | iii.                                                                                                                                                                                                     |           | ne lab process an alternate spiked<br>le (such as LCSD) instead?                             |             |             | $\boxtimes$ |                                                                          |
|    |          | iv. Are the lab limits specified                                                                                                                                                                         |           | ne lab limits specified on the report?                                                       |             |             | $\boxtimes$ |                                                                          |
|    |          | V.                                                                                                                                                                                                       | comp      | e limits seem reasonable when<br>ared to the suggested guidelines in the<br>A QC Policy?     |             |             |             |                                                                          |
|    |          | vi.                                                                                                                                                                                                      | Are th    | nere compounds outside the lab limits?                                                       |             |             |             |                                                                          |
|    |          |                                                                                                                                                                                                          | 1.        | If yes, are the analytes above the lab limits?                                               | $\boxtimes$ |             |             |                                                                          |
|    |          |                                                                                                                                                                                                          | 2.        | Below the lab limits?                                                                        |             | $\boxtimes$ |             |                                                                          |
|    |          |                                                                                                                                                                                                          | 3.        | Is the source sample also flagged for compounds outside lab limits?                          |             |             |             |                                                                          |
|    | b.       | Is a sample duplicate reported for the analytical method(s)? If no, skip to 6.c.  i. Is the RPD for the duplicate pair within the lab limits?  ii. If no, has the associated source sample been flagged? |           |                                                                                              |             |             |             |                                                                          |
|    |          |                                                                                                                                                                                                          |           |                                                                                              |             |             |             |                                                                          |
|    |          |                                                                                                                                                                                                          |           |                                                                                              |             |             | $\boxtimes$ |                                                                          |
|    | <u> </u> | Wha                                                                                                                                                                                                      | it is the | impact of failed QC on this project?                                                         |             |             |             |                                                                          |
| 7. |          |                                                                                                                                                                                                          | Dete      | ction Limits/Report Limits                                                                   | Yes         | No          |             |                                                                          |
|    | Ques     | Question                                                                                                                                                                                                 |           |                                                                                              |             |             | N/A         | Comments                                                                 |
|    | а.       | a. Are reporting and/or method detection limits clearly listed on the report for all analyses? (may also be called quantitation limits)                                                                  |           |                                                                                              |             |             |             |                                                                          |

## Additional comments on report:

- (1) No field duplicates were included in this SDG.
- (2) All tissue results were reported on a wet weight basis.
- (3) Level II reports were reviewed, so raw data were not reviewed.

# **Appendix B**

**Technical Analysis** 

Four remedial alternatives involving construction activities and one alternative involving a no action approach were developed and evaluated as part of the Mud Lake West (MLW) Focused Feasibility Study (FFS) and include the following:

Alternative 2 - Enhanced Monitored Natural Recovery with Broadcasted Amendment

Alternative 3 - Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover

Alternative 4 - Dredging with Wetland Restoration

Alternative 5 – Dredge Open Water Areas/Enhanced Monitored Natural Recovery with Thin-Layer Amended Cover in Wetland Areas

Class 4 rough order of magnitude cost analyses (+50/-30) were developed for each of these alternatives and are summarized within **Section 3** of the FFS document. This Technical Analysis serves to provide the calculations and outline the assumptions used to compile each of the alternative cost analyses.

Cost estimates were compiled using a variety of sources. These sources include construction cost data from RSMeans estimating software for open shop pricing in Duluth, Minnesota; current Bay West LLC (Bay West) and state contract rates for labor, equipment, and sample analysis; personal communication with vendors; historic cost data from projects similar in size and scope; other FFS documents, presentations, or technical papers that provided estimated or real construction cost data; and available online vendor pricing of materials.

The selection of construction equipment, production rates, remedial volumes, remedial action areas, and other "design-type" elements used as a starting point to develop alternative costs are based on a current understanding of Site conditions at this early feasibility study-level stage.

This document is divided into the following sections:

Section 1: Remedial Areas and Volumes

Section 2: Construction Equipment and Production Rates

Section 3: Sediment Dewatering/Staging Areas

Section 4: Construction Implementation Assumptions

Section 5: Environmental Controls and Construction Monitoring Section 6: Material Transport between Site and Staging Area

Section 7: Sediment Dewatering and Dredge Contact Water Treatment

Section 8: Transportation and Disposal

Section 9: Cover/Cap Materials

Section 10: References

The following tables were used to calculate values incorporated into each alternative cost analysis and are included within this Technical Analysis:

Appendix B Table 1: Volume, Rate, and Time Frame Calculations

**Appendix B** Table 2: Unit Rate Calculations

Appendix B Table 3: Lump Sum Costs

**Appendix B** Table 4: Monitoring and Evaluation Costs

**Appendix B** Table 5: Present Value Calculations

Many of the assumptions used to compile the cost analyses for the alternatives are included within the tables. Those aspects of alternative development not readily apparent within the tables and the MLW FFS text are described in the following sections.

#### **Section 1: Remedial Areas and Volumes**

Areas targeted for remedial action (remedial areas) include those with nickel or zinc concentrations exceeding the Midpoint Sediment Quality Target (SQT), also referred to as the preliminary cleanup level (CUL). Remedial areas are presented in **Figures 5** through **10** of the MLW FFS document. Remedial areas were developed based on sample results obtained during the 2015 RI, krigging of the 2015 data, bathymetric data, and professional judgement. Remedial areas total 40.1 acres in size. It is anticipated that these areas would be further defined during the design phase.

The total volume of contaminated sediment at the Site was calculated by multiplying the total remedial area by the average maximum depth in which contamination was observed. Two important factors should be noted regarding the total volume of contaminated sediment calculation:

- Overburden sediments (i.e., sediments with nickel or zinc concentrations less than the preliminary CUL but located above [vertically] sediments exceeding the preliminary CUL) were included within the calculation. Overburden sediments were included because overburden sediments would require removal in order to reach contaminated sediments below.
- 2. The remedial area was assumed to have a maximum depth of contamination of 1.0 meter (3.3 feet) across its entire area because approximately half the locations sampled contained nickel or zinc in concentrations exceeding the CUL up to 1.0 meter bss. Only two locations were sampled at intervals deeper than 1.0 meter bss; these locations did not contain nickel or zinc concentrations greater than the CUL in intervals deeper than 1.0 meter. It is unknown if nickel or zinc concentrations exceed the CUL in other areas at depths greater than 1.0 meter, and further sampling should be conducted during the design phase to ensure Site COCs have been fully delineated.

Additionally, a 0.30-meter (1-foot) over-dredge was assumed over all consolidation/dredge areas.

A differentiation between "wetland" and "open water" areas of the Site was made to facilitate costing of specialized equipment required to place materials within wetland areas, and to facilitate costing of Alternative 5, which proposes different remedial actions based on area type. Determinations of wetland and open water areas were made based on aerial imagery alone and not on official classifications of wetland systems.

#### **Section 2: Construction Equipment and Production Rates**

Unit rate costs were developed for all amendment placement, sand cover construction, and dredging elements by summing labor and equipment costs and dividing by an assumed production rate; therefore, the production rate has a substantial impact on the unit rate cost of these activities and the overall project cost. The production rates used to develop cost estimates for the proposed alternatives are assumed to be conservative. A conservative number was selected due to the inherent difficulties in conducting construction activities at the Site. The following factors were assumed to limit production rates at the Site:

#### 1. Site Accessibility

The Site is surrounded by wetlands to north, west, and south. In addition, steep gradients are present to the north and west immediately beyond the wetland areas. Land-based access to the Site would require construction of roadways several hundred meters in length through wetland areas or dredging of wetland areas to create draft for dredge and material transport barges to reach the upland shoreline.

The Site is cut off from Mud Lake East (MLE) and the Saint Louis River (SLR) by a railroad embankment to the east. Barge access to the Site is limited by the railroad embankment; therefore, barges importing materials to the Site from elsewhere along the SLR must moor along the railroad embankment and materials must be offloaded over the railroad tracks and into smaller transport barges located on the other side.

#### 2. Size Limitations

There are no upland areas on-site and, therefore, staging and dewatering areas must be located off-site. There is minimal space between the wetland areas and active railroad tracks to the west and south of the Site. Beyond the railroad tracks to the west is developed land not suitable to construct a staging or dewatering area. Beyond the railroad tracks and State Highway 39 the south is more wetland areas and the SLR. The nearest upland location suitable for construction of a staging or dewatering area is north of the Site and on U.S. Steel property.

#### 3. Wetland Areas

A vast majority of the Site and a portion of the remedial area consist of established wetlands. Implementation of alternatives that limit disruption to established wetland areas, such as amendment placement and thin-layer sand cover construction, would likely require use of specialized equipment as described below. This specialized equipment is assumed to have a much lower production rate than more conventional methods of material placement. In addition, the railroad embankment limits accessibility to the Site for material supply barges arriving from Hallett Dock #7. This increases the travel distance for specialized equipment travelling to and from the wetland areas and a material loading area established at the railroad embankment.

#### **Amendment/Sand Cover Construction Equipment**

Alternatives involving distribution of sand and/or amendment materials assume that different methods of placement would be utilized in wetland areas as compared to open water areas. Open water areas were assumed to utilize a conventional barge-mounted excavator with environmental clamshell bucket for placing materials as there are no draft limitations in the open water areas.

Wetland areas would not be capable of floating a material placement barge and thus would require a different method of placement. The use of crane mats or equivalent technology was not considered because wetland areas were observed to have water depths exceeding 3 feet during the 2015 RI field sampling event, and bog-type wetland areas were also observed at the Site's southern end. The proposed method used for cost analysis is an amphibious vehicle such as a Marsh Buggy or equivalent outfitted with a 12-cubic yard bucket and stone slinger attachment. Such a vehicle is capable of navigating open waters and traversing upland areas. Production rates for this equipment was estimated based on round trip travel times, capacity of each vehicle, and the use of two vehicles at a time. Each vehicle was assumed to have an application time of 1.2 hours per load, a travel time to and from the vehicle loading location (i.e., material transport barge mooring location along the railroad embankment) of 10 minutes, and a load time of 5 minutes. A placement time frame of 11 hours per day equates to a total daily production for two vehicles of 168 cubic vards.



Photo Showing MBI Marsh Buggy with dump box; Photo from <a href="http://marshbuggies.com">http://marshbuggies.com</a>



Photo showing stone slinger equipment; Photo from http://bcginvestments.net/Stone Slinger.html

Cover materials would be placed in open water areas using a conventional barge-mounted excavator. Materials would be delivered to the excavator by two material transport hopper barges, each with a 25-cubic yard capacity. The production rate for open water material placement was estimated using a bucket size of 2 cubic yards, a 70 percent (%) fill rate, and 2 minutes per cycle. The bucket size and fill percentage was reduced (as compared to the dredging production rate estimate) to allow for ease of placement within the small 25 cubic yard hopper barges. A placement time frame of 10 hours per day equates to a total daily production for a single excavator of 420 cubic yards.

#### **Dredging Equipment**

Alternatives involving dredging of sediments assume that sediments would be slurried with water and pumped as low solids content slurry (e.g., less than 5% solids) to a nearby dewatering area. This assumption was made to avoid passing of contaminated sediments over the railroad embankment into a transport barge and subsequent barging of sediments to Hallett Dock #7 for dewatering. Equipment was assumed to consist of a barge-mounted mechanical excavator with environmental clamshell bucket and slurry tank (i.e., hopper) or hydraulic dredge; costs for this equipment were assumed to be similar enough for FFS-level cost analyses.

The dredging production rate was estimated partially based on U.S. Environmental Protection Agency (USEPA) sediment remediation guidance (USEPA, 2005), which provides production rates for various sizes of mechanical buckets based on an 80% fill and cycle time of 2 minutes. These rates range from 63 cubic yards per hour for smaller buckets to 252 cubic yards per hour for larger buckets. Another source used to determine the dredge production rate was the St. Louis River/Interlake/Duluth Tar (SLRIDT) Data Gap Report (Service, 2002), in which a review of previous projects and discussions with interested parties resulted in a recommended dredge production rate of 50 cubic yards per hour. Based on these two sources the dredge production rate for the Site was conservatively estimated at 72 cubic yards per hour. This rate assumes a 3-cubic yard bucket filled 80%, a 2-minute cycle time, and an active dredging time frame of 10 hours per day. Dredging downtime is estimated at 2 hours per day to account for morning meetings/safety briefings, startup times, shutdown times, and periods of down time throughout the day. These factors equate to a daily production rate of 720 cubic yards per day.

## Section 3: Sediment Dewatering/Staging Areas

## **Sediment Dewatering Area**

Dredged sediments would require dewatering prior to transport and disposal at an off-site landfill. The only location identified as a possible sediment dewatering area for the purposes of this FFS is the U.S. Steel property located north of the Site. As stated previously, land-based access to the Site and access between the Site and U.S. Steel property is limited due to wetland areas and steep gradients present at the Site's perimeter. These limitations require that sediments are slurried and pumped to the conceptual dewatering area located at the U.S. Steel site. Slurrying of sediments would result in a large volume of slurry requiring dewatering and a large volume of dredge contact water requiring treatment.

It should be noted that the U.S. Steel site is currently serving as a dewatering area for sediments dredged from Radio Tower Bay. Based on aerial imagery it appears that sediments are being slurried and pumped to U.S. Steel property and exit into a large in-ground dewatering pond. It was assumed that a new above-ground dewatering pad would be constructed for implementation of dredging alternatives for the purposes of this FFS. The dewatering pad would be lined and paved to contain dredge contact water and would be sufficiently sized to contain geotextile tubes stacked three layers high, a large sump, and space for a water treatment plant.

Another scenario for handling of dredged sediments involves mechanically dredging sediments and transferring sediments over the railroad embankment into a large transport barge. At the end of each day, the transport barge would return to an off-site dewatering area such as Hallett Dock #7, where sediments would be dewatered and subsequently transported to an off-site landfill for disposal. This scenario was not included in this FFS due to the perceived complexities of transferring contaminated sediments over the railroad embankment. Additionally, transfer of sediments over the railroad embankment would require additional handling of sediments and could increase project costs due to increased labor and equipment demands, and decrease productivity rates.

## **Material Staging Area**

The U.S. Steel site is not suitable for staging materials such as sand and amendments as there would be no efficient way of transferring materials from the property to barges located within the Site due to wetlands and steep gradients. It was therefore assumed that materials would be barged to the Site from an off-site location along the SLR. Hallett Dock #7 has been identified as a potential staging area through conversations between Bay West, the Minnesota Pollution Control Agency (MPCA), and Duluth Seaway Port Authority. Satellite imagery indicates the presence of a large paved area at the end of Hallett Dock #7, which is appropriately sized for stockpiling materials. The dock end is nearly 500 feet in length and was assumed to be useable for barge mooring and material onloading/offloading in its current condition. Staging area upgrades would likely include installation of site fencing to protect construction equipment and prevent unauthorized personnel from entering the staging area while the remedy is being implemented.

## Section 4: Construction Implementation Assumptions

## Open Water Placement of Sand and/or Amendment Materials

A general order of operations was assumed in order to facilitate costing of alternatives involving placement of sand and/or amendment materials in open water portions of the Site. This order of operations was used to assist in selecting construction equipment, labor, production rates, time frames, etc.

The general order of placement is described as follows:

- Clean washed sand meeting project specifications would be purchased from a local upland borrow source and imported to the staging area at Hallett Dock #7 via on-road dump trucks. Amendment materials would be purchased from a supplier, shipped to the staging area, and stockpiled.
- An empty transport barge would arrive at the staging area at Hallett Dock #7 after Site work was completed for the day. The barge would be loaded with amendment and/or sand during the overnight hours via end loader, hopper, and conveyor. The barge would remain moored at the staging area overnight once loaded. The following morning the barge would travel upriver to the Site in time for commencement of daily work activities.
- The transport barge would moor to dolphin pilings located along the railroad embankment separating
  the Site from MLE. A barge-mounted excavator or crane with clamshell bucket located at this "loading
  area" would remove capping material from the transport barge and load two smaller hopper barges
  located within the Site and on the other side of the railroad embankment.
- The hopper barges would be used to transfer amendment and/or sand materials between the loading area and a barge-mounted excavator (i.e., material placement excavator) located within the Site. The use of two hopper barges allows for filling of one hopper barge while the other is being emptied by the material placement excavator.
- Once the material transport barge was emptied, cover construction would cease for the day. The
  material transport barge would return to the staging area at Hallett Dock #7 where it would again be
  loaded during overnight hours.

## Wetland Placement of Sand and/or Amendment Materials

The same general order of operations was assumed for material placement in wetland areas as for material placement within open water areas of the Site as noted above, except two amphibious dump trucks outfitted with stone slinger or conveyor apparatuses would be used in place of the two conveyor barges and material placement excavator. Amphibious dump trucks would consist of Marsh Buggy type equipment such as those manufactured by MBI and conceptually outfitted with a standard 12-cubic yard box and stone slinger or conveyor attachments for application of amendment material and/or sand.

No costs were incorporated for mowing, burning, knocking down, or otherwise preparing the wetland areas for cap placement.

## **Dredge Alternative**

A general order of operations was assumed in order to facilitate costing of alternatives involving dredging. This order of operations was used to assist in selecting construction equipment, labor, production rates, time frames, etc. The general order of operations for the dredging alternative is described below.

- Contaminated sediments would be removed using a barge-mounted mechanical dredge with environmental clamshell bucket. A Real Time Kinematic (RTK) Global Positioning System (GPS) system would be used to track the position/cut of the bucket and the dredge's progress.
- Dredged sediment would be immediately placed into a hopper and slurried with water from the Site.
   A large pump located onboard the barge would pump the sediment/water slurry to the adjacent U.S. Steel site and dewatering area located on shore.
- Polymer would be added to the incoming slurry to aid in settling and geotextile bags would be used to dewater sediments over a period of several months.
- Dredge contact water and precipitation falling on the lined pad would be treated and discharge back into the Site in compliance with discharge permits.
- Dewatered sediment would be excavated from the geotextile bags the next construction season and direct loaded onto trucks. Sediment would be hauled to a landfill and disposed of as non-hazardous waste.

## Section 5: Environmental Controls and Construction Monitoring

Environmental controls and construction monitoring are important elements in mitigating environmental impacts occurring as a direct result from construction activities and also in ensuring remedial/construction goals are achieved. Environmental controls can include surface water control structures (e.g., silt curtains, sheet piling, and absorbent boom), lined sediment dewatering pads, tire washes, stormwater controls, and site fencing (for protection of human health). Construction monitoring can include turbidity monitoring during dredging activities, air monitoring during intrusive site activities, treated dredge contact water sampling, post-dredge verification sampling, cap thickness verification coring, bathymetric surveys, imported materials sampling, dewatered sediment sampling, and collection of pre- and post-construction upland soil samples within the staging area footprint. Alternatives involving amendment application or thin-layer cover construction as a remedy would likely require less controls and monitoring than alternatives incorporating dredging.

For the purposes of this FFS, it was assumed that alternatives consisting of amendment placement or cover construction would incorporate the following control and monitoring elements:

- Fencing at the Hallett Dock #7 staging area;
- Chemical and physical sampling of imported cover materials to ensure that they are suitable for use;
   and
- Cover thickness verification coring to ensure that project specifications are achieved.

Alternatives consisting of dredging sediments would require controls and monitoring as listed above for cover/cap placement and in addition:

- Hallett Dock #7 staging area fencing and U.S. Steel dewatering area fencing;
- Lined and bermed dewatering pad at the U.S. Steel dewatering area;
- Surface water controls;
- Real-time turbidity monitoring;
- Post-dredge verification sampling;
- Dewatered sediment sampling; and
- Treated dredge contact water sampling.

Surface water controls and turbidity monitoring will be particularly important for preventing suspension and off-site migration of contaminated sediments during dredging activities. Surface water control structures evaluated for this FFS include the use of two sets of non-structural barriers consisting of a "full height" turbidity/silt curtain anchored to the lake bed with a permeable fabric at the top 5 feet to accommodate the flow of water across the curtain while isolating suspended sediment. One of the turbidity barriers would be maintained within approximately 15 feet of the dredge. The second turbidity barrier would be placed near the railroad trestle separating the Site from MLE.

Turbidity monitoring would be conducted using real-time cellular monitoring buoys to ensure that potentially contaminated sediments are not being excessively suspended into the water column and transported downgradient during dredging. An allowable concentration of total suspended solids (TSS) above background would be determined during the design phase. A site-specific TSS: turbidity correlation would then be conducted so that a turbidity monitoring value could be established.

## Section 6: Material Transport Between Site and Staging Area

In order to limit the frequency and travel time between the Site and material staging area (i.e., Hallett Dock #7), the use of a large transport barge was assumed and would be sufficiently sized to hold an entire days' worth of cover materials. Use of a large transport barge would limit movement of the barge and materials between Hallett Dock #7 and the Site to two times per day.

## Section 7: Sediment Dewatering and Dredge Contact Water Treatment

Dredged sediments will require dewatering prior to transportation and disposal at an off-site landfill. It was assumed for the purposes of this FFS that large geotextile tubes and addition of polymer to the dredge slurry would be used as the method of dewatering sediments. Sediments would be allowed to dewater until the next construction, when they would be excavated, loaded into trucks, and hauled to an off-site landfill for disposal.

A unit rate cost for sediment dewatering and treatment of dredge contact water was estimated based on professional experience of Bay West staff at \$50 per cubic yard of sediment removed. This cost is considered an "all-in" value consisting of mobilization/demobilization, materials procurement (e.g., geotextile bags, treatment media), material disposal, labor, and treatment equipment costs. The extent and final cost of treatment will be dependent upon the effluent discharge location—Western Lake Superior Sanitary District (WLSSD) or SLR—and discharge permit requirements. It should be noted that sediment dewatering and water treatment costs are the single largest cost for the dredging alternatives and comprises approximately 25% of total project costs at the assumed unit rate cost of \$50 per cubic yard of sediment removed.

## **Section 8: Transportation and Disposal**

Transportation costs for sediment disposal were estimated on a per ton basis using truck rental and operator rate data obtained from RSMeans cost estimating software. It was assumed that each truck would carry 12 tons or 16 cubic yards (1.4 tons per cubic yard) and would complete two round trips per hour to the nearby Waste Management landfill. Correspondence with local landfill and sand and gravel companies indicate that transportation costs could be less than the \$6.90 per cubic yard or \$4.93 per ton estimated rate, but the estimated rate was retained within the cost estimates to provide a conservative scenario.

Disposal costs were obtained for the Vonco V Waste Management Campus (obtained during compilation of the Minnesota Slip Feasibility Study) located at 1100 West Gary Street in Duluth, Minnesota (approximately 2 miles northwest of the Site) and Shamrock Environmental Landfill located at 761 Highway 45 in Cloquet, Minnesota (approximately 13 miles west of the Site). Costs for these two disposal facilities were comparable for the purposes of this FFS, at \$12 per ton and \$16 per ton (not including environmental fees and taxes) respectively. The Vonco V landfill was used for the cost analysis due to its closer proximity to the Site.

## Section 9: Cover/Cap Materials

Potential sources of cover/cap materials include materials from an upland borrow location (e.g., sand and gravel pit), sediments previously dredged for navigational purposes, and common earth upland soil. Natural materials such as dredged sediments and common earth upland soils often contain fine-grained components that make placement more difficult (Interstate Technology and Regulatory Council [ITRC], 2014). It was assumed for the purposes of the cost analyses that upland borrow materials would be used as no apparent source of dredged materials is readily available near the Site. Upland borrow material consisting of clean, washed sand was assumed for alternatives incorporating construction of a sand cover. The exact grain size specifications would be developed during the design phase but would likely consist of medium to coarse grain sands that would withstand mild erosive forces.

## **Section 11: References**

USEPA, 2005. "Contaminated Sediment Remediation Guidance for Hazardous Waste Sites."

Interstate Technology and Regulatory Council (ITRC) Contaminated Sediments Team, 2014. "Contaminated Sediments Remediation – Remedy Selection for Contaminated Sediments," August.

Service Engineering Group (Service), 2002. *Data Gap Report, St. Louis River/Interlake/Duluth Tar Site.*November. Retrieved from

https://www.barr.com/slridt/documents/DataGapReport/html%20files/datagap/report/dgr.htm, March, 2016.

| Total Remedial Area           Total quetland areas for remediation (acres)         8.2           Total premedial area (acres)         31.9           Total remedial area (acres)         40.1           Contaminated Sediment/Dredge Volumes           Volume of Contamination (well and Areas           Weltand areas (acres)         8.2           Estimated depth of contamination (reet)         0.5         0.15 (meter)           Volume of Contaminated Sediment in Open Water Areas         0pen water area (acres)         31.9           Estimated depth of contamination (feet)         1.64         0.5 (meter)           Volume of Contamination (cubic yards)         84324         0.5 (meter)           Volume of contaminated Sediment (well yards)         6647         0.5 (meter)           Volume of Contaminated Sediment         6647         0.5 (meter)           Volume of contaminated Sediment         84324         0.5 (meter)           Volume of contaminated Sediment         90971         0.5 (meter)           Dredge Volume - Alternative 4: Dredging with Wetland Restoration         90971         0.30 (meter)           Dredge Volume (cubic yards)         64711         0.00 (meter)           Over-dredge volume (cubic yards)         647111         155682           Dredge Volume - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   | Remedial Areas                   |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|--------------|--|
| Total wetland areas for remediation (acres) Total open water areas for remediation (acres) Total remedial area (acres)    Volume of Contaminated Sediment in Wetland Areas   Wetland areas (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Remedial Area                                               |                                  |              |  |
| Total open water areas for remediation (acres) Total remedial area (acres)  Contaminated Sediment/Dredge Volumes  Volume of Contaminated Sediment in Wetland Areas  Wetland areas (acres) Estimated depth of contamination (feet) Volume of Contaminated Sediment in Open Water Areas  Volume of Contaminated Sediment in Open Water Areas  Volume of Contaminated Sediment in Open Water Areas  Open water area (acres) Estimated depth of contamination (feet) 1.64 0.5 (meter)  Volume of Contaminated Sediment in Open Water Areas  Open water area (acres) Estimated depth of contamination (feet) 84324  Total Volume of Contaminated Sediment  Wetland areas (cubic yards) 6647 Open water areas (cubic yards) 6647 Open water areas (cubic yards) 84324 Total volume of contaminated sediment (cubic yards) 90971  Dredge Volume - Alternative 4: Dredging with Wetland Restoration Dredge volume (cubic yards) 0ver-dredge volume (cubic yards) 100 0ver-dredge volume (cubic yards) 101 0ver-dredge volume (cubic yards) 102 0ver-dredge volume (cubic yards) 103 0ver-dredge volume (cubic yards) 104 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 0ver-dredge volume (cubic yards) 105 105 105 105 105 105 105 105 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | 8.2                              |              |  |
| Total remedial area (acres)  Contaminated Sediment/Dredge Volumes  Volume of Contaminated Sediment in Wetland Areas  Wetland areas (acres)  Estimated depth of contamination (feet)  Volume of Contaminated Sediment in Open Water Areas  Volume of Contaminated Sediment in Open Water Areas  Open water area (acres)  Stimated depth of contamination (feet)  Volume of Contamination (cubic yards)  Stimated depth of contamination (feet)  Volume of contamination (cubic yards)  Stimated depth of contamination (cubic yards)  Stimated depth of contamination (cubic yards)  Stimated depth of contamination (cubic yards)  Stimated depth of contamination (cubic yards)  Stimated depth of contaminated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Stimated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Stimated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Stimated Sediment (cubic yards)  Stimated Sediment  Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ` ,                                                               | 31.9                             |              |  |
| Volume of Contaminated Sediment in Wetland Areas     8.2       Estimated depth of contamination (feet)     0.5     0.15 (meter)       Volume of Contamination (cubic yards)     6647       Volume of Contaminated Sediment in Open Water Areas     31.9       Stimated depth of contamination (feet)     1.64     0.5 (meter)       Volume of Contamination (cubic yards)     84324       Total Volume of Contaminated Sediment       Wetland areas (cubic yards)     6647       Open water areas (cubic yards)     84324       Total volume of contaminated Sediment     90971       Total volume of contaminated sediment (cubic yards)     90971       Total volume of contaminated sediment (cubic yards)     90971       Total volume of contaminated sediment (cubic yards)     90971       Dredge Volume - Alternative 4: Dredging with Wetland Restoration     0.30 (meter)       Over-dredge depth (feet)     1.00     0.30 (meter)       Over-dredge volume (cubic yards)     64711       Total dredge volume (cubic yards)     155682       Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | 40.1                             |              |  |
| Wetland areas (acres) 8.2   Estimated depth of contamination (feet) 0.5 0.15 (meter)   Volume of contamination (cubic yards) 6647     Volume of Contaminated Sediment in Open Water Areas  Open water area (acres)  Stimated depth of contamination (feet)  Volume of contamination (cubic yards)  Total Volume of Contamination (cubic yards)  84324  Total Volume of Contaminated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Total volume of contaminated sediment (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open wate                                                                                                      |                                                                   | Contaminated Sediment/Dredge     | e Volumes    |  |
| Estimated depth of contamination (feet) Volume of contamination (cubic yards)  Volume of Contaminated Sediment in Open Water Areas  Open water area (acres)  Stimated depth of contamination (feet) Volume of contamination (feet) Volume of contamination (feet) Volume of contamination (cubic yards)  Total Volume of Contamination (cubic yards)  Stimated depth of contamination (feet) Volume of contamination (cubic yards)  Stimated depth of contamination (feet) Volume of contamination (cubic yards)  Stimated depth of contamination (feet) Volume of contaminated Sediment Wetland areas (cubic yards)  Stimated depth of contaminated Sediment Wetland areas (cubic yards)  Stimated depth of contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sediment Volume of Contaminated Sedi | Volume of Contaminated Sediment in Wetland Areas                  |                                  |              |  |
| Volume of Contaminated Sediment in Open Water Areas  Open water area (acres) Stimated depth of contamination (feet) Volume of Contamination (cubic yards)  1.64 Stimated depth of contamination (cubic yards)  84324  Total Volume of Contaminated Sediment Wetland areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards)  1.64 Wetland areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Open water areas (cubic yards) Over-dredge Volume - Alternative 4: Dredging with Wetland Restoration Over-dredge depth (feet) Over-dredge depth (feet) Over-dredge volume (cubic yards) Over-dredge volume (cubic yards)  1.00 Over-dredge volume (cubic yards)  1.55682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wetland areas (acres)                                             | 8.2                              |              |  |
| Volume of Contaminated Sediment in Open Water Areas Open water area (acres)  Estimated depth of contamination (feet) Volume of contamination (cubic yards)  Total Volume of Contaminated Sediment Wetland areas (cubic yards)  Open water areas (cubic yards)  Total volume of contaminated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Total volume of contaminated sediment (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Over-daveloge Volume - Alternative 4: Dredging with Wetland Restoration  Dredge Volume (cubic yards)  Over-dredge depth (feet)  Over-dredge depth (feet)  Over-dredge volume (cubic yards)  Total dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Estimated depth of contamination (feet)                           | 0.5                              | 0.15 (meter) |  |
| Open water area (acres)  Estimated depth of contamination (feet) Volume of contamination (cubic yards)  Total Volume of Contaminated Sediment Wetland areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Open water areas (cubic yards)  Over-dradge Volume - Alternative 4: Dredging with Wetland Restoration  Over-dredge depth (feet)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume of contamination (cubic yards)                             | 6647                             |              |  |
| Open water area (acres)       31.9         Estimated depth of contamination (feet)       1.64       0.5 (meter)         Volume of contamination (cubic yards)       84324         Total Volume of Contaminated Sediment         Wetland areas (cubic yards)         Open water areas (cubic yards)       84324         Total volume of contaminated sediment (cubic yards)       90971         Dredge Volume - Alternative 4: Dredging with Wetland Restoration         Dredge volume (cubic yards)       90971         Over-dredge depth (feet)       1.00       0.30 (meter)         Over-dredge volume (cubic yards)       64711         Total dredge volume (cubic yards)       155682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume of Contaminated Sediment in Open Water Areas               |                                  |              |  |
| Estimated depth of contamination (feet)  Volume of contamination (cubic yards)  Total Volume of Contaminated Sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Total volume of contaminated sediment  Wetland areas (cubic yards)  Open water areas (cubic yards)  Total volume of contaminated sediment (cubic yards)  Predge Volume - Alternative 4: Dredging with Wetland Restoration  Dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Total dredge volume (cubic yards)  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | 31.9                             |              |  |
| Total Volume of Contaminated Sediment  Wetland areas (cubic yards) Open water areas (cubic yards) 10tal volume of contaminated sediment (cubic yards)  Dredge Volume - Alternative 4: Dredging with Wetland Restoration Dredge volume (cubic yards) Over-dredge depth (feet) 1.00 0ver-dredge volume (cubic yards) 155682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   | 1.64                             | 0.5 (meter)  |  |
| Wetland areas (cubic yards) Open water areas (cubic yards) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume of contamination (cubic yards)                             | 84324                            |              |  |
| Open water areas (cubic yards)  Total volume of contaminated sediment (cubic yards)  Dredge Volume - Alternative 4: Dredging with Wetland Restoration Dredge volume (cubic yards)  Over-dredge depth (feet)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  1.00  Over-dredge volume (cubic yards)  155682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Volume of Contaminated Sediment                             |                                  |              |  |
| Total volume of contaminated sediment (cubic yards)  Dredge Volume - Alternative 4: Dredging with Wetland Restoration Dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  1.00  0.30 (meter)  Over-dredge volume (cubic yards)  155682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wetland areas (cubic yards)                                       | 6647                             |              |  |
| Dredge Volume - Alternative 4: Dredging with Wetland Restoration Dredge volume (cubic yards)  Over-dredge depth (feet)  Over-dredge volume (cubic yards)  Over-dredge volume (cubic yards)  1.00  0.30 (meter)  Over-dredge volume (cubic yards)  155682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open water areas (cubic yards)                                    | 84324                            |              |  |
| Dredge volume (cubic yards)  Over-dredge depth (feet)  Over-dredge volume (cubic yards)  1.00  0.30 (meter)  64711  Total dredge volume (cubic yards)  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total volume of contaminated sediment (cubic yards)               | 90971                            |              |  |
| Over-dredge depth (feet)  Over-dredge volume (cubic yards)  Total dredge volume (cubic yards)  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dredge Volume - Alternative 4: Dredging with Wetland Restoration  |                                  |              |  |
| Over-dredge volume (cubic yards)  Total dredge volume (cubic yards)  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dredge volume (cubic yards)                                       | 90971                            |              |  |
| Total dredge volume (cubic yards)  155682  Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Over-dredge depth (feet)                                          | 1.00                             | 0.30 (meter) |  |
| Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Over-dredge volume (cubic yards)                                  | 64711                            |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total dredge volume (cubic yards)                                 | 155682                           |              |  |
| Total anon water area (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dredge Volume - Alternative 5: Dredge Open Water Areas/Enhanced I | MNR with Thin-Layer Cover in Wet | land Areas   |  |
| rotal open water area (acres) 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total open water area (acres)                                     | 31.9                             |              |  |
| Dredge depth (feet) 1.64 0.5 (meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dredge depth (feet)                                               | 1.64                             | 0.5 (meter)  |  |
| Over-dredge depth (feet) 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Over-dredge depth (feet)                                          | 1.00                             |              |  |
| Dredge volume (cubic yards) 135741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dredge volume (cubic yards)                                       | 135741                           |              |  |

|                                                                                                                      | Amendment/Cover Volum  | nes                              |
|----------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|
| Alternative 2: EMNR with Broadcasted Amendment                                                                       | 0.0                    |                                  |
| Vetland areas (acres)<br>Imendment thickness required per acre (inches)                                              | 8.2<br>0.3842975       | (meter)                          |
| Amendment trickness required per acre (niches)                                                                       | 426                    | (meter)                          |
| anonamon roquirou (ouble funds)                                                                                      | 123                    |                                  |
| Vetland areas (acres)                                                                                                | 8.2                    |                                  |
| Amendment tons per acre                                                                                              | 31                     | (metric tons)                    |
| Amendment required (tons)                                                                                            | 255.44                 |                                  |
| Open water areas (acres)                                                                                             | 31.9                   |                                  |
| Amendment thickness (inches)                                                                                         | 0.3842975              | 0.010 (meter)                    |
| Amendment required (cubic yards)                                                                                     | 1647                   | olovo (iliotal)                  |
| • • •                                                                                                                |                        |                                  |
| Open water areas (acres)                                                                                             | 31.9                   |                                  |
| Amendment tons per acre                                                                                              | 31                     | (metric tons)                    |
| Amendment required (tons)                                                                                            | 987.97                 |                                  |
| otal volume of amendment required for Alternative 2 (cubic yards)                                                    | 2073                   |                                  |
| otal mass of amendment required for Alternative 2 (metric tons)                                                      | 1243.41                |                                  |
|                                                                                                                      |                        |                                  |
| edimite product bulk density (tons/CY)                                                                               | 0.57                   | Per manufacturer spec            |
| Amendment application rate (tons/acre)                                                                               | 31                     | Per manufacturer spec            |
| Amendment application rate (CY/acre) Amendment application rate (ft^3/acre)                                          | 54.4<br>1468.42        |                                  |
| imendment application rate (ft^3/acre) Imendment layer thickness (cm)                                                | 1.03                   |                                  |
| includicitiayor thickness (citi)                                                                                     | 1.03                   |                                  |
| otal remedial area (acres)                                                                                           | 40.1                   |                                  |
| otal volume of amendment required (cubic yards)                                                                      | 2181.4                 |                                  |
| otal mass of amendment required (metridc tons)                                                                       | 1243.4                 |                                  |
|                                                                                                                      |                        |                                  |
| Alternative 3: Thin-Layer Amended Cover (Amendment Requirement)                                                      |                        |                                  |
| Amendment ratio (percent carbon by weight in upper 0.15 meter)                                                       | 5                      |                                  |
| olume of sediment in upper 0.15 meter (cubic yards per acre)                                                         | 794                    |                                  |
| ssumed density of in-situ sediment (tons per cubic yard)                                                             | 1.4                    |                                  |
| ssumed weight of sediment in upper 0.15 meter (tons per acre)                                                        | 1112                   |                                  |
| mount of activated carbon to be added (tons per acre)                                                                | 56                     |                                  |
| Assumed density of activated carbon (tons per cubic yard)                                                            | 1.72                   |                                  |
| /olume of activated carbon to be added (cubic yards per acre)                                                        | 32<br>0.610            |                                  |
| Amendment layer thickness (cm)                                                                                       | 0.010                  |                                  |
| otal remedial area (acres)                                                                                           | 40.1                   |                                  |
| otal remedial area (acres)  otal amendment volume (cubic yards)                                                      | 1295.1                 |                                  |
| otal amendment amount (tons)                                                                                         | 2229.2                 |                                  |
|                                                                                                                      |                        |                                  |
| Wetland area (acres)                                                                                                 | 8.2                    |                                  |
| Total amendment volume for wetland areas (cubic yards)                                                               | 266.1                  |                                  |
| Total amendment amount for wetland areas (tons)                                                                      | 458.0                  |                                  |
| Open water areas (acres)                                                                                             | 31.9                   |                                  |
| Total amendment volume for open water areas (cubic yards)                                                            | 1029.1                 |                                  |
| Total amendment amount for open water areas (tons)                                                                   | 1771.3                 |                                  |
| Impount of activated carbon to be alread (suit)                                                                      | 0.0200120              |                                  |
| Imount of activated carbon to be placed (cubic yards per acre)  Thickness of amendment (centimeter)                  | 0.0200138<br>0.6100218 |                                  |
| Conservative factor                                                                                                  | 0.0100218              |                                  |
| issumed amount of activated carbon to be purchased (tons per acre)                                                   | 56                     | Used to determine shipping costs |
| mmendment required for wetland areas (tons)                                                                          | 461                    |                                  |
| mmendment required for open water areas (tons)                                                                       | 1785                   |                                  |
| mmendment Required for Site (tons)                                                                                   | 2246                   |                                  |
| mmendment Required for Site (cubic yards)                                                                            | 1295                   |                                  |
| mmendment required for wetland areas (cubic yards)                                                                   | 266                    |                                  |
| ammendment required for open water areas (cubic yards)                                                               | 1029                   |                                  |
| Ilternative 3: Thin-Layer Amended Cover (Sand Requirement)                                                           |                        |                                  |
| over thickness (inches)                                                                                              | 6.0                    | 0.15 (meter)                     |
| and and amendment required (cubic yards per acre)                                                                    | 806.66667              | •                                |
| ubtract out amendment (cubic yards per acre)                                                                         | 32                     |                                  |
| and required, less amendment (cubic yards per acre)                                                                  | 774                    |                                  |
| and required for Site (cubic yards)                                                                                  | 31060                  |                                  |
| and required for wetland areas (cubic yards)                                                                         | 6381                   |                                  |
| and required for open water areas (cubic yards)                                                                      | 24679                  |                                  |
|                                                                                                                      | 20055                  |                                  |
| otal volume of materials required for Site (cubic vards)                                                             | 32355                  |                                  |
| otal volume of materials required for Site (cubic yards) /olume of materials required in Wetland Areas (cubic yards) | 32355<br>6647          |                                  |

| Alternative 4: Total Dredge with Wetland Restoration                                 |                                                     |                                |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|
| Wetland areas (acres)                                                                | 8.2                                                 |                                |
| Dredge depth/sand replacement thickness (feet)                                       | 1.50                                                | 1.3 (meter)                    |
| Sand required (cubic yards)                                                          | 19941                                               | ()                             |
|                                                                                      |                                                     |                                |
| Open water areas (acres)                                                             | 31.87                                               |                                |
| Sand layer thickness (inches)                                                        | 6                                                   | 0.15 (meter)                   |
| Sand required (cubic yards)                                                          | 25708                                               |                                |
| Total amount of sand required for Alternative 4                                      | 45649                                               |                                |
|                                                                                      |                                                     |                                |
| Alternative 5: Dredge Open Water Areas, EMNR with Thin-Layer Ameno                   |                                                     |                                |
| Wetland areas (acres)                                                                | 8.2 From Alternative #3                             |                                |
| Cover thickness (inches)                                                             | 6 From Alternative #3                               |                                |
| Sand required (cubic yards)                                                          | 6381 From Alternative #3<br>266 From Alternative #3 |                                |
| Amendment required (cubic yards) Total materials required (cubic yards)              | 6647 From Alternative #3                            |                                |
| Total materials required (tons)                                                      | 11179 From Alternative #3                           |                                |
|                                                                                      |                                                     |                                |
| Open water areas (acres)                                                             | 31.87 From Alternative #4                           |                                |
| Sand layer thickness (inches)                                                        | 6 From Alternative #4                               |                                |
| Sand required (cubic yards)                                                          | 25708 From Alternative #4                           |                                |
|                                                                                      |                                                     |                                |
|                                                                                      | Production Rates                                    |                                |
| Stone Slinger Barge Production Rate (Broadcasted Amendment in Open                   |                                                     |                                |
| Cycle Time                                                                           |                                                     |                                |
| Hopper capacity (cubic yards)                                                        | 12                                                  |                                |
| Application time per cubic yard placed (minutes)                                     | 6                                                   |                                |
| Application time per load (minutes)                                                  | 72                                                  | 1.2 hours                      |
| Load time (minutes)                                                                  | 5                                                   | 0.083 hours                    |
| Add in time for travel (minutes)                                                     | 10                                                  | 0.17 hours                     |
| Total cycle time (hours)                                                             | 1.45                                                |                                |
| Production Rate                                                                      |                                                     |                                |
| Active placement time per day (hours)                                                | 11                                                  |                                |
| Number of cycles per day per barge                                                   | 7                                                   |                                |
| Number of barges                                                                     | 2                                                   |                                |
| Total volume of amendment applied per day (cubic yards)                              | 168                                                 |                                |
| Sand and/or Amendment Placement Rate (Placed by Excavator in Open                    | Water Areas - Alternatives #3 4 and 5)              |                                |
| Bucket size (cubic yards)                                                            | 2                                                   |                                |
| Percent fill                                                                         | 70                                                  |                                |
| Material per bucket (cubic yards)                                                    | 1.4                                                 |                                |
| Minutes per cycle                                                                    | 2                                                   |                                |
| Active placement duration per day (hours)                                            | 10                                                  |                                |
| Daily production (cubic yards)                                                       | 420 Rate will require two                           | material supply barges per day |
| Amphibious Dump Truck Production Rate (Amendment Placement in W                      | etland Areas - Alternatives #2, 3, and 5)           |                                |
| Cycle Time                                                                           |                                                     |                                |
| Average round trip travel distance (miles)                                           | 0.42                                                |                                |
| Average water speed (miles per hour)                                                 | 1.5                                                 |                                |
| Travel time (hours)                                                                  | 0.28                                                |                                |
| Truck capacity (cubic yards)                                                         | 12                                                  | 0.10 hours                     |
| Application time per cubic yard placed (minutes) Application time per load (minutes) | 6<br>72                                             | 0.10 hours 1.20 hours          |
| Load time (minutes)                                                                  | 5                                                   | 0.08 hours                     |
| Total cycle time (hours)                                                             | 1.56                                                | 0.00 110413                    |
|                                                                                      |                                                     |                                |
| Production Rate                                                                      | 44                                                  |                                |
| Active placement time per day (hours)  Number of cycles per day per truck            | 11<br>7                                             |                                |
| Number of cycles per day per truck  Number of trucks                                 | 2                                                   |                                |
| Total production per day (cubic yards)                                               | 168                                                 |                                |
|                                                                                      |                                                     |                                |
| Dredge Production Rate                                                               | 2.0                                                 |                                |
| Bucket size (cubic yards)<br>Percent fill                                            | 3.0                                                 |                                |
| Percent IIII Sediment per bucket (cubic yards)                                       | 80<br>2.4                                           |                                |
| Searment per bucket (cubic yards)<br>Minutes per cycle                               | 2.4                                                 |                                |
| Active dredging duration per day (hours)                                             | 10.0                                                |                                |
| Daily production (cubic yards)                                                       | 720                                                 |                                |
| ,(04000 )4.40)                                                                       | , 20                                                |                                |

|                                                                                                     | -4411- 5           | Di                                                                                  |
|-----------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
|                                                                                                     | ,                  | gRequirements                                                                       |
| Total dredge volume (cubic yards)                                                                   | 155682             |                                                                                     |
| Length of geotextile bag required (feet)                                                            |                    | Assume 4 cubic yards per 1 foot of bag length                                       |
| Area requirement for bags (square feet)                                                             |                    | Assume 13 feet diameter bags, 16 feet wide settled width                            |
| Area requirement for bags stacked three high (square feet)                                          | 207575             |                                                                                     |
| Add in 20 percent of area for sump, treatment plant, and working space                              | 41515              |                                                                                     |
| Total area required for dewatering pad (square feet)                                                | 249090             | 5.7 (acres)                                                                         |
|                                                                                                     | Constructio        | n Timeframe                                                                         |
| Alternative 2: Enhanced MNR with Broadcasted Amendment                                              |                    |                                                                                     |
| Construct staging area and mobilize/setup equipment (days)                                          | 5                  |                                                                                     |
| Place amendment in wetland areas (days)                                                             | 3                  |                                                                                     |
| Place amendment in open water areas (days)                                                          | 10                 |                                                                                     |
| Breakdown equipment/demobilize and site restoration (days)                                          | 5                  | _                                                                                   |
| Total time on-site (days)                                                                           | 23                 | 5 weeks                                                                             |
| Alternative 3: Enhanced MNR with Thin-Layer Amended Cover                                           |                    |                                                                                     |
| Construct staging area and mobilize/setup equipment (days)                                          | -                  |                                                                                     |
|                                                                                                     | 5<br>40            |                                                                                     |
| Place amendment in wetland areas (days)                                                             |                    |                                                                                     |
| Place amendment in open water areas (days)                                                          | 62                 |                                                                                     |
| Breakdown equipment/demobilize and site restoration (days)                                          | 5                  | -                                                                                   |
| Total time on-site (days)                                                                           | 112                | 22 weeks                                                                            |
| Alternative 4: Dredging with Wetland Restoration                                                    |                    |                                                                                     |
| Construction Season #1                                                                              |                    |                                                                                     |
| Construct staging area and mobilize/setup equipment (days)                                          | 15                 |                                                                                     |
| Dredge sediments (days)                                                                             | 108.5              | Assumes 24 hours per day, 5 days per week                                           |
|                                                                                                     | 123.5              | 25 weeks                                                                            |
| Construction Season #2                                                                              |                    |                                                                                     |
| Place sand cover (days)                                                                             | 109                |                                                                                     |
| Dewatered sediment excavation (days)                                                                | 104                | Sand cover and sediment excavation conducted concurrently                           |
| Plant wetlands; breakdown equipment/demob and site restoration (days)                               | 10                 |                                                                                     |
|                                                                                                     | 119                | -<br>24 weeks                                                                       |
| AU 11 5 D 1 O 14 1 4 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                               | <b>T</b> 1 · · · · |                                                                                     |
| Alternative 5: Dredge Open Water Areas/Enhanced MNR in Wetland Areas with<br>Construction Season #1 | min-Layer I        | Ameriaea Cover                                                                      |
|                                                                                                     | 45                 |                                                                                     |
| Construct staging area and mobilize/setup equipment (days)                                          | 15                 |                                                                                     |
| Dredge sediments in open water areas (days)                                                         | 95                 | Assumes 24 hours per day, 5 days per week; Conducted concurrently with wetland work |
| Place amended cover in wetland areas (days)                                                         | 40                 | Conducted concurrently with dredging                                                |
| Place sand cover in open water areas (days)                                                         | 61                 |                                                                                     |
| Breakdown equipment/demob and site restoration (days)                                               | 10                 | <u>-</u>                                                                            |
|                                                                                                     | 182                | 37 weeks                                                                            |
| Construction Season #2                                                                              |                    |                                                                                     |
| Dewatered sediment excavation (days)                                                                | 91                 | 19 weeks                                                                            |

# Appendix B: Table 2 Unit Rate Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                                                                                  | Surface Bros | adcast Amendmer                                  | nt Material in On           | en Water Area                                       | es (Alt #2)                                              |
|----------------------------------------------------------------------------------|--------------|--------------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------------------------|
| Description                                                                      | Unit         | Unit Cost                                        | Quantity                    | Extended                                            | (Alt. #2) Comments                                       |
| Equipment                                                                        |              |                                                  |                             |                                                     |                                                          |
| Skid steer                                                                       | Day          | 366.00                                           | 1                           | \$366.00                                            | Consolidate materials on material supply barge           |
| Barge-mounted Derrick crane                                                      | Day          | 466.00                                           | 1                           | \$466.00                                            | Load transport hopper barges                             |
| Derrick crane barge platform                                                     | Day          | 684.00                                           | 1                           | \$684.00                                            | Moored to dolphin pilings driven along railroad tracks   |
| Stone slinger and hopper                                                         | Day          | 508.00                                           | 2                           | \$1,016.00                                          | 12 cubic yard capacity hopper                            |
| Placement barge                                                                  | Day          | 129.00                                           | 2                           | \$258.00                                            | Carries hopper and stone slinger                         |
| Push boat                                                                        | Day          | 373.00                                           | 2                           | \$746.00                                            |                                                          |
| Pickup trucks                                                                    | Day          | 97.00                                            | 3                           | \$291.00                                            | Site supervisor, foreman, mechanic                       |
|                                                                                  |              |                                                  | SUBTOTAL                    | \$3,827.00                                          |                                                          |
| abor                                                                             |              | 4000.00                                          |                             | ** ***                                              |                                                          |
| On-site project management                                                       | Day          | 1200.00                                          | 1                           | \$1,200.00                                          |                                                          |
| Foreman<br>Mechanic                                                              | Day          | 854.00                                           | 1<br>1                      | \$854.00                                            |                                                          |
| Derrick crane/skid steer operator                                                | Day          | 980.00                                           |                             | \$980.00                                            |                                                          |
| ·                                                                                | Day<br>Day   | 1106.00<br>1036.00                               | 1<br>2                      | \$1,106.00<br>\$2,072.00                            |                                                          |
| Stone slinger operators Push boat operators                                      | Day          | 1036.00                                          | 2                           | \$2,072.00                                          |                                                          |
| Lodging and Per-Diem                                                             | Day          | 146.00                                           | 8                           | \$1,168.00                                          |                                                          |
| Loughing and i ci-Dicini                                                         | Day          | 140.00                                           | SUBTOTAL                    | \$9,452.00                                          | =                                                        |
|                                                                                  |              |                                                  | TOTAL                       | \$13,279.00                                         |                                                          |
|                                                                                  |              | DAILY PR                                         | ODUCTION (CY)               | 168.00                                              |                                                          |
|                                                                                  |              |                                                  | UNIT RATE (CY)              | \$79.04                                             |                                                          |
|                                                                                  |              |                                                  | 0                           | <b>477.0</b> 1                                      |                                                          |
|                                                                                  |              | Place Materi                                     | als in Open Wate            | r Areas                                             |                                                          |
| Description                                                                      | Unit         | Unit Cost                                        | Quantity                    | Extended                                            | Comments                                                 |
| quipment                                                                         |              |                                                  |                             |                                                     |                                                          |
| Skid steer                                                                       | Day          | \$366.00                                         | 1                           | \$366.00                                            | Consolidate materials on material supply barge           |
| Barge-mounted Derrick crane                                                      | Day          | \$466.00                                         | 1                           | \$466.00                                            | Load transport hopper barges                             |
| Derrick crane barge platform                                                     | Day          | \$684.00                                         | 1                           | \$684.00                                            | Moored to dolphin pilings driven along railroad tracks   |
| Transport hopper barges                                                          | Day          | \$129.00                                         | 2                           | \$258.00                                            | 25 cubic yard capacity hopper barges                     |
| Transport tug                                                                    | Day          | \$373.00                                         | 1                           | \$373.00                                            | Small tug to transport hopper barges                     |
| Barge-mounted excavator                                                          | Day          | \$1,265.00                                       | 1                           | \$1,265.00                                          | Place amendment                                          |
| Clamshell bucket                                                                 | Day          | \$70.00                                          | 1                           | \$70.00                                             |                                                          |
| RTK DGPS for dredge                                                              | Day          | \$190.00                                         | 1                           | \$190.00                                            |                                                          |
| Excavator barge                                                                  | Day          | \$355.00                                         | 1                           | \$355.00                                            | With spuds and winches                                   |
| Pickup trucks                                                                    | Day          | \$97.00                                          | 3                           | \$291.00                                            | _ Site supervisor, foreman, mechanic                     |
| ahar                                                                             |              |                                                  | SUBTOTAL                    | \$4,318.00                                          |                                                          |
| abor                                                                             | Day          | ¢1 200 00                                        | 1                           | ¢1 200 00                                           |                                                          |
| On-site project management                                                       | Day          | \$1,200.00                                       | 1                           | \$1,200.00                                          |                                                          |
| Foreman<br>Mechanic                                                              | Day          | \$854.00<br>\$980.00                             | 1<br>1                      | \$854.00<br>\$980.00                                |                                                          |
| Derrick crane                                                                    | Day<br>Day   | \$1,106.00                                       | 1                           | \$1,106.00                                          |                                                          |
| Skid steer operator/bargehand                                                    | Day          | \$1,036.00                                       | 1                           | \$1,106.00                                          |                                                          |
| Tug operator                                                                     | Day          | \$1,036.00                                       | 1                           | \$1,036.00                                          |                                                          |
| Excavator operator                                                               | Day          | \$1,106.00                                       | 1                           | \$1,030.00                                          |                                                          |
| Laborer                                                                          | Day          | \$812.00                                         | 1                           | \$812.00                                            |                                                          |
| Lodging and Per-Diem                                                             | Day          | \$146.00                                         | 7                           | \$1,022.00                                          |                                                          |
| Loughing und 1 of Diem                                                           | Day          | Ψ140.00                                          | SUBTOTAL                    | \$9,152.00                                          | =                                                        |
|                                                                                  |              |                                                  | TOTAL                       | \$13,470.00                                         |                                                          |
|                                                                                  |              | DAILY PR                                         | ODUCTION (CY)               | 420                                                 | Rate requires two material supply barges per day to Site |
|                                                                                  |              |                                                  | UNIT RATE (CY)              | \$32.07                                             |                                                          |
|                                                                                  |              |                                                  | = (-1)                      |                                                     |                                                          |
|                                                                                  |              | Place Mate                                       | rials in Wetland            | Areas                                               |                                                          |
| Description                                                                      | Unit         | Unit Cost                                        | Quantity                    | Extended                                            | Comments                                                 |
| quipment                                                                         |              |                                                  | -                           |                                                     |                                                          |
| Skid steer                                                                       | Day          | \$366.00                                         | 1                           | \$366.00                                            | Consolidate materials on material supply barge           |
| Barge-mounted Derrick crane                                                      | Day          | \$466.00                                         | 1                           | \$466.00                                            | Load amphibious dump trucks                              |
| Derrick crane barge platform                                                     | Day          | \$684.00                                         | 1                           | \$684.00                                            | Moored to dolphin pilings driven along railroad tracks   |
| Amphibious dump truck (swamp buggy)                                              | Day          | \$2,764.00                                       | 2                           | \$5,528.00                                          | With stone slinger or conveyor attachment                |
| Dump and conveyor attachment                                                     | Day          | \$508.00                                         | 2                           | \$1,016.00                                          | <u>-</u>                                                 |
|                                                                                  |              |                                                  | SUBTOTAL                    | \$8,060.00                                          |                                                          |
| abor                                                                             |              |                                                  |                             |                                                     |                                                          |
|                                                                                  | Day          | \$1,200.00                                       | 1                           | \$1,200.00                                          |                                                          |
| On-site project management                                                       | Day          | \$854.00                                         | 1                           | \$854.00                                            |                                                          |
| Foreman                                                                          | -            | \$980.00                                         | 1                           | \$980.00                                            |                                                          |
| Foreman<br>Mechanic                                                              | Day          |                                                  |                             | \$1,106.00                                          |                                                          |
| Foreman<br>Mechanic<br>Derrick crane operator                                    | Day          | \$1,106.00                                       | 1                           |                                                     |                                                          |
| Foreman<br>Mechanic<br>Derrick crane operator<br>Amphibious dump truck operators | Day<br>Day   | \$1,106.00<br>\$1,106.00                         | 2                           | \$2,212.00                                          |                                                          |
| Foreman<br>Mechanic<br>Derrick crane operator                                    | Day          | \$1,106.00                                       | 2<br>6                      | \$2,212.00<br>\$876.00                              | _                                                        |
| Foreman<br>Mechanic<br>Derrick crane operator<br>Amphibious dump truck operators | Day<br>Day   | \$1,106.00<br>\$1,106.00                         | 2<br>6<br>SUBTOTAL          | \$2,212.00<br>\$876.00<br>\$7,228.00                | -                                                        |
| Foreman<br>Mechanic<br>Derrick crane operator<br>Amphibious dump truck operators | Day<br>Day   | \$1,106.00<br>\$1,106.00<br>\$146.00             | 2<br>6<br>SUBTOTAL<br>TOTAL | \$2,212.00<br>\$876.00<br>\$7,228.00<br>\$15,288.00 | _                                                        |
| Foreman<br>Mechanic<br>Derrick crane operator<br>Amphibious dump truck operators | Day<br>Day   | \$1,106.00<br>\$1,106.00<br>\$146.00<br>DAILY PR | 2<br>6<br>SUBTOTAL          | \$2,212.00<br>\$876.00<br>\$7,228.00                | -                                                        |

## Appendix B: Table 2 Unit Rate Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                                                      |                | D                               | dao Sodimente                 |                            |                                                                     |
|------------------------------------------------------|----------------|---------------------------------|-------------------------------|----------------------------|---------------------------------------------------------------------|
| Description                                          | Unit           | Unit Cost                       | dge Sediments Quantity        | Extended                   | Comments                                                            |
| Equipment                                            | Oilit          | Onit oost                       | Quantity                      | Exteriaca                  | oniments                                                            |
| Long-reach excavator                                 | Day            | \$2,656.44                      | 1                             | \$2,656                    | Large 3 cubic yard excavator                                        |
| Clamshell bucket                                     | Day            | \$70.00                         | 1                             | \$70                       | 3 cubic yard clamshell bucket                                       |
| RTK DGPS for dredge                                  | Day            | \$190.00                        | 1                             | \$190                      | •                                                                   |
| Dredge barge                                         | Day            | \$355.00                        | 1                             | \$355                      | With spuds, winches, power                                          |
| On-board hopper                                      | Day            | \$254.00                        | 1                             | \$254                      |                                                                     |
| On-board booster pump                                | Day            | \$1,208.00                      | 1                             | \$1,208                    |                                                                     |
| Dredge barge tug                                     | Day            | \$373.00                        | 1                             | \$373                      | 150 hp large work boat                                              |
| Butt fusion machine                                  | Day            | \$76.00                         | 1                             | \$76                       |                                                                     |
| 12" HDPE Pipeline (Per 1000')                        | Day            | \$200.00                        | 2.5                           | \$500                      | 2,500 feet (far end to top of hill)                                 |
| Pickup Trucks                                        | Day            | \$97.00                         | 3                             | \$291                      | Site supervisor, foreman, mechanic                                  |
|                                                      |                |                                 | SUBTOTAL                      | \$5,973                    |                                                                     |
| Labor                                                |                |                                 |                               |                            | Assumes 12 hour day with overtime                                   |
| On-site project management                           | Day            | \$1,200.00                      | 1                             | \$1,200                    |                                                                     |
| Foreman                                              | Day            | \$854.00                        | 1                             | \$854                      |                                                                     |
| Mechanic                                             | Day            | \$980.00                        | 1                             | \$980                      |                                                                     |
| Dredge operator                                      | Day            | \$1,106.00                      | 1                             | \$1,106                    |                                                                     |
| Dredgehand/laborer                                   | Day            | \$812.00                        | 1                             | \$812                      |                                                                     |
| Tug operator/dredgehand                              | Day            | \$1,036.00                      | 1                             | \$1,036                    |                                                                     |
| Lodging and Per-Diem                                 | Day            | \$146.00                        | 6                             | \$876                      | =                                                                   |
|                                                      |                |                                 | SUBTOTAL                      | \$6,864<br>\$12,927        |                                                                     |
|                                                      |                | DAILVED                         | TOTAL                         | \$12,837<br>720            |                                                                     |
|                                                      |                |                                 | ODUCTION (CY)                 | 720<br>¢17.02              |                                                                     |
|                                                      |                |                                 | UNIT RATE (CY)                | \$17.83                    |                                                                     |
|                                                      |                | Dewatered                       | Sediment Excav                | ation                      |                                                                     |
| Excavate Bag Field (12-hour day) 2 CY Excavator (x2) | Davi           | \$1.265.00                      | 2                             | \$2,530.00                 | Load 7.9 trucks per hour per each average and even 7.7 trucks       |
| Water Truck                                          | Day            | \$1,265.00<br>\$861.00          | 1                             | \$2,530.00                 | Load 7.8 trucks per hour per each excavator; load every 7.7 minutes |
|                                                      | Day            |                                 |                               |                            |                                                                     |
| Operator (x2)                                        | Day            | \$1,106.00                      | 2                             | \$2,212.00                 |                                                                     |
| Laborer (x2)                                         | Day            | \$812.00                        | 2                             | \$1,624.00                 |                                                                     |
| Add in lodging and per-diem for 4 man crew           | Day            | \$146.00                        | 4                             | \$584.00                   |                                                                     |
| Full-time on-site project management and foreman     | Day            | \$2,540.00                      | 1                             | \$2,540.00                 | _                                                                   |
|                                                      |                | DAILV DD                        | TOTAL                         | \$10,351.00                | Limited by lead time                                                |
|                                                      |                |                                 | ODUCTION (CY) UNIT RATE (CY)  | 1500<br>\$6.90             | Limited by load time                                                |
|                                                      |                |                                 | ONIT RATE (CT)                | <b>Ф</b> 0.70              |                                                                     |
|                                                      |                | Sediment Hau                    | ling and Landfill             | Disposal                   |                                                                     |
| Transport sediments to landfill                      | Ton            | \$4.93                          | 1                             | \$4.93                     |                                                                     |
| Dispose of sediments at landfill                     |                |                                 |                               |                            | Vonco V Landfill in Duluth                                          |
| Disposal                                             | Ton            | \$12.00                         | 1                             | \$12.00                    |                                                                     |
| Environmental Fee                                    | Ton            | \$0.27                          | 1                             | \$0.27                     |                                                                     |
| Industrial Solid Waste Tax                           | Ton            | \$0.46                          | 1                             | \$0.46                     | <u>_</u>                                                            |
|                                                      |                | U                               | NIT RATE (TON)                | \$17.66                    |                                                                     |
|                                                      |                | Purchase ar                     | nd Import Amend               | lment                      |                                                                     |
| Purchase amendment material (Sedimite)               | Ton            | \$4,000.00                      | 1                             | \$4,000.00                 |                                                                     |
| Import amendment material to staging area            | Ton            | \$0.00                          | 1                             | \$0.00                     | Cost included for delievery to site                                 |
|                                                      |                |                                 | NIT RATE (TON)                | \$4,000.00                 |                                                                     |
|                                                      |                |                                 | UNIT RATE (CY)                | \$6,349.00                 | Assume 0.61 tons per CY                                             |
| Downton and an art of the state of Control           | T              | \$3.000.00                      |                               | #2.000.00                  |                                                                     |
| Purchase amendment material (Acitivated Carbon)      | Ton            |                                 | 1                             | \$3,000.00                 | Cook included for delicuore to eite                                 |
| Import amendment material to staging area            | Ton            | \$0.00                          | NIT RATE (TON)                | \$0.00<br>\$3,000.00       | Cost included for delievery to site                                 |
|                                                      |                |                                 | UNIT RATE (TON)               | \$1,765.00                 | Assume 1.7 tons per CY                                              |
|                                                      |                |                                 |                               |                            | ·                                                                   |
| Purchase sand from upland borrow source              | CY             | Purchas<br>\$6.90               | e and Import Sar<br>1         | nd<br>\$6.90               |                                                                     |
| Import sand to staging area                          | CY             | \$13.90                         | 1                             | \$13.90                    | 40 mile cycle; 15 minute wait                                       |
| <sub>F</sub> to stugning at ou                       |                |                                 | UNIT RATE (CY)                | \$20.80                    |                                                                     |
|                                                      |                |                                 |                               |                            | Ou.                                                                 |
| Description                                          | Load  <br>Unit | Material Transport<br>Unit Cost | t Barge and Barge<br>Quantity | e Materials to<br>Extended | Site Comments                                                       |
| Equipment                                            | Oill           | Jint oust                       | Cuantity                      | EXICINGEN                  | Comments                                                            |
| Material supply barge                                | Day            | 684.00                          | 1                             | \$684.00                   | 30'x90'; 400 ton; operate between Site and Hallett Dock #7          |
| Telehandler                                          | Day            | 567.00                          | 1                             | \$567.00                   | Unload supersacks, load into hopper                                 |
| Hopper/conveyor                                      | Day            | 508.00                          | 1                             | \$508.00                   | Load material supply barge                                          |
| Large tug                                            | Day            | 2388.24                         | 1                             | \$2,388.24                 |                                                                     |
| Labor                                                | ,              | ·                               | =                             | . ,                        |                                                                     |
| Operator                                             | Day            | 1036.00                         | 1                             | \$1,036.00                 | 12-hr shift w/ overtime                                             |
| Laborer                                              | Day            | 812.00                          | 1                             | \$812.00                   | 12-hr shift w/ overtime                                             |
| Tug Captain                                          | Day            | 632.00                          | 1                             | \$632.00                   | 8-hr shift                                                          |
| Bargehand                                            | Day            | 464.00                          | 1                             | \$464.00                   | 8-hr shift                                                          |
| •                                                    |                |                                 | TOTAL                         | \$7,091                    | _                                                                   |
|                                                      |                | BARGE CA                        | APACITY (TONS)                | 200                        | Assume 50% of capacity due to draft in Mud Lake East                |
|                                                      |                |                                 | CAPACITY (CY)                 | 143                        | 1.4 tons per CY                                                     |
|                                                      |                |                                 | UNIT RATE (CY)                | \$50.00                    | Rounded                                                             |
|                                                      |                |                                 | · /                           |                            |                                                                     |

# Appendix B: Table 2 Unit Rate Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Construction Quality Assurance and Oversight |       |                   |                 |             |                                                             |  |  |  |  |  |
|----------------------------------------------|-------|-------------------|-----------------|-------------|-------------------------------------------------------------|--|--|--|--|--|
| Description                                  | Unit  | Unit Cost         | Quantity        | Extended    | Comments                                                    |  |  |  |  |  |
| QA/QC and federal oversight personnel        | Week  | \$10,200.00       | 1               | \$10,200    | Two staff                                                   |  |  |  |  |  |
| Lodging and per-diem                         | Week  | \$1,460.00        | 1               | \$1,460     | Two staff                                                   |  |  |  |  |  |
| Truck and mileage                            | Week  | \$1,142.00        | 1               | \$1,142     | Includes mileage                                            |  |  |  |  |  |
| ·                                            |       | UN                | IIT RATE (WEEK) | \$12,802    |                                                             |  |  |  |  |  |
|                                              |       |                   |                 |             |                                                             |  |  |  |  |  |
|                                              | I     | Site Security     |                 |             |                                                             |  |  |  |  |  |
| Description                                  | Unit  | Unit Cost         | Quantity        | Extended    | Comments                                                    |  |  |  |  |  |
| Field Offices                                |       |                   | ,               |             |                                                             |  |  |  |  |  |
| Office trailers and storage boxes (3)        | Month | \$942.00          | 1               | \$3,888.00  | Includes utilities, equipment, and supplies for three units |  |  |  |  |  |
| Security Guard                               | Month | \$17,280.00       | 1               | \$17,280.00 | \$40 per hour; 108 hours per week                           |  |  |  |  |  |
| -                                            |       | UNIT RATE (MONTH) |                 | \$21,000    | Rounded                                                     |  |  |  |  |  |

### Lump Sum Costs - Alternative 1: No Action

No lump sum costs associated with Alternative 1.

|                                                      |            |                   |               |              | oadcasted Amendment                                                   |
|------------------------------------------------------|------------|-------------------|---------------|--------------|-----------------------------------------------------------------------|
| Description                                          | Unit       | Unit Cost         | Quantity      | Extended     | Comments                                                              |
| Mobilization/Demobilization                          |            |                   |               |              |                                                                       |
| Office trailers (3) and connex boxes to staging area | Mile       | 12.26             | 240           | \$2,942.40   | To staging area; within 20 miles of site                              |
| Skid steer                                           | Each       | \$1,578.00        | 1             | \$1,578.00   | To staging area                                                       |
| Telehandler                                          | Each       | \$1,914.00        | 1             | \$1,914.00   | To staging area                                                       |
| Hopper/conveyor                                      | Each       | \$1,914.00        | 1             | \$1,914.00   | To staging area                                                       |
| Pickup trucks (3)                                    | Mile       | \$0.56            | 1500          | \$840.00     | To staging area; 250 miles each way                                   |
| Push boats (2)                                       | Each       | \$1,914.00        | 1             | \$1,914.00   | To staging area; 1 load                                               |
| Derrick crane                                        | Each       | \$2,796.00        | 1             | \$2,796.00   | To staging area                                                       |
| Derrick crane barge platform                         | Hour       | \$1,634.00        | 4             | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |
| Stone slinger and hoppers (2)                        | Each       | \$1,914.00        | 1             | \$1,914.00   | To staging area; 1 load                                               |
| Placement barges (2)                                 | Each       | \$1,914.00        | 2             | \$3,828.00   | To staging area; 2 loads                                              |
| Amphibious dump trucks (2)                           | Each       | \$11,184.00       | 2             | \$22,368.00  | To staging area; assumed double cost for wide load and chase vehicles |
| Material supply barge                                | Hour       | \$1,634.00        | 4             | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |
| Large tug                                            | Hour       | \$1,634.00        | 4             | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |
| Additional mileage for non-local equipment           | Mile       | \$2.52            | 2500          | \$6,300.00   | Assume 5 loads non-local; 250 miles away                              |
| Additional mileage for amphibious dump trucks        | Mile       | \$5.04            | 2000          | \$10,080.00  | Assume double cost; sourced from 1,000 miles away                     |
| Install staging area fencing                         | LF         | \$5.39            | 1500          | \$8,085.00   | Install fencing around staging area perimeter                         |
| Assemble and launch equipment                        | Day        | \$10,000.00       | 1             | \$10,000.00  | Half day each mob/demob                                               |
| Mobilize equipment from Hallett Dock #7 to Site      | Day        | \$10,000.00       | 1             | \$10,000.00  | Half day each mob/demob                                               |
| Staging area setup/breakdown                         | Day        | \$10,000.00       | 4             | \$40,000.00  | Setup/breakdown staging area; 2 days each                             |
| Equipment setup and breakdown                        | Day        | \$10,000.00       | 6             | \$60,000.00  | Setup/breakdown equipment; 3 days each                                |
|                                                      |            |                   |               | \$206,000.00 | Rounded                                                               |
| nstall and Remove Dolphin Pilings                    |            |                   |               |              |                                                                       |
| Equipment and Labor                                  |            |                   |               |              |                                                                       |
| Work barge                                           | Day        | \$855.00          | 1             | \$855.00     | Monthly rate times 1.25                                               |
| Tug                                                  | Day        | \$2,985.30        | 1             | \$2,985.30   | Monthly rate times 1.25                                               |
| Crane                                                | Day        | \$2,150.10        | 1             | \$2,150.10   | Monthly rate times 1.25                                               |
| Hammer                                               | Day        | \$143.48          | 1             | \$143.48     | Monthly rate times 1.25                                               |
| Tug captain/crane operator                           | Day        | \$1,106.00        | 1             | \$1,106.00   | 12-hour workday with overtime                                         |
| Laborers                                             | Day        | \$812.00          | 2             | \$1,624.00   | 12-hour workday with overtime                                         |
|                                                      | <u> </u>   | TOT               | AL DAILY COST | \$8,863.88   |                                                                       |
| Installation Work Activities                         |            |                   |               |              |                                                                       |
| Prep/"de-prep" equipment                             | Day        | \$8,863.88        | 1             | \$8,863.88   |                                                                       |
| Travel to/from Duluth; launch/pull equipment         | Day        | \$8,863.88        | 3             | \$26,591.63  |                                                                       |
| Travel to/from Site; drive pilings                   | Day        | \$8,863.88        | 1             | \$8,863.88   |                                                                       |
| Removal Work Activities                              | Lump Sum   | \$44,319.38       | 1             | \$44,319.38  | Same costs as installation                                            |
| Materials                                            | Lump Sum   | \$6,000.00        | 1             | \$6.000.00   |                                                                       |
| Marchais                                             | Europ Juin | <b>\$0,000.00</b> |               | 40,000.00    |                                                                       |

|                                                      | Lump Sum Costs - Alternative 3: Enhanced MNR with Thin-Layer Amended Cover |             |          |             |                                                                       |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|-------------|----------|-------------|-----------------------------------------------------------------------|--|--|
| Description                                          | Unit                                                                       | Unit Cost   | Quantity | Extended    | Comments                                                              |  |  |
| Mobilization/Demobilization                          |                                                                            |             |          |             |                                                                       |  |  |
| Office trailers (3) and connex boxes to staging area | Mile                                                                       | \$12.26     | 240      | \$2,942.40  | To staging area; within 20 miles of site                              |  |  |
| Skid steer                                           | Each                                                                       | \$1,578.00  | 1        | \$1,578.00  | To staging area; within 20 miles of site                              |  |  |
| Telehandler                                          | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area; within 20 miles of site                              |  |  |
| Hopper/conveyor                                      | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area; within 20 miles of site                              |  |  |
| Pickup trucks (3)                                    | Mile                                                                       | \$0.56      | 1500     | \$840.00    | To staging area; 250 miles each way                                   |  |  |
| Derrick crane                                        | Each                                                                       | \$5,592.00  | 1        | \$5,592.00  | To staging area; within 20 miles of site                              |  |  |
| Derrick crane barge platform                         | Hour                                                                       | \$1,634.00  | 4        | \$6,536.00  | To staging area; sourced from Duluth Harbor                           |  |  |
| Transport hopper barges (2)                          | Each                                                                       | \$1,914.00  | 2        | \$3,828.00  | To staging area; 2 loads                                              |  |  |
| Transport tug                                        | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area                                                       |  |  |
| Excavator                                            | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area; within 20 miles of site                              |  |  |
| Excavator barge                                      | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area                                                       |  |  |
| Amphibious dump trucks (2)                           | Each                                                                       | \$11,184.00 | 2        | \$22,368.00 | To staging area; assumed double cost for wide load and chase vehicles |  |  |
| Stone slinger and hoppers (2)                        | Each                                                                       | \$1,914.00  | 1        | \$1,914.00  | To staging area; 1 load                                               |  |  |
| Material supply barge                                | Hour                                                                       | \$1,634.00  | 4        | \$6,536.00  | To staging area; sourced from Duluth Harbor                           |  |  |
| Large tug                                            | Hour                                                                       | \$1,634.00  | 4        | \$6,536.00  | To staging area; sourced from Duluth Harbor                           |  |  |
| Additional mileage for non-local equipment           | Mile                                                                       | \$2.52      | 2500     | \$6,300.00  | Assume 5 loads non-local; 250 miles away                              |  |  |
| Additional mileage for amphibious dump trucks        | Mile                                                                       | \$5.04      | 2000     | \$10,080.00 | Assume double cost; sourced from 1,000 miles away                     |  |  |
| Install staging area fencing                         | LF                                                                         | \$5.39      | 1500     | \$8,085.00  | Install fencing around staging area perimeter                         |  |  |
| Assemble and launch equipment                        | Day                                                                        | \$10,000.00 | 1        | \$10,000.00 | Half day each mob/demob                                               |  |  |
| Mobilize equipment from Hallett Dock #7 to Site      | Day                                                                        | \$10,000.00 | 1        | \$10,000.00 | Half day each mob/demob                                               |  |  |
| Staging area setup/breakdown                         | Day                                                                        | \$10,000.00 | 4        | \$40,000.00 | Setup/breakdown staging area; 2 days each                             |  |  |
| Equipment setup and breakdown                        | Day                                                                        | \$10,000.00 | 6        | \$60,000.00 | Setup/breakdown equipment; 3 days each                                |  |  |
|                                                      |                                                                            |             |          | \$213,000   | Rounded                                                               |  |  |
| Install Dolphin Pillings                             | Lump Sum                                                                   | \$95,000.00 | 1        | \$95,000    | Same cost as shown for Alternative 2                                  |  |  |

|                                                      |             |               |          |             | etland Restoration                                                   |
|------------------------------------------------------|-------------|---------------|----------|-------------|----------------------------------------------------------------------|
| Description                                          | Unit        | Unit Cost     | Quantity | Extended    | Comments                                                             |
| Mobilization/Demobilization                          |             |               |          |             |                                                                      |
| Office trailers (3) and connex boxes to staging area | Mile        | \$12.26       | 240      | \$2,942     | To staging area; within 20 miles of site                             |
| Skid steer                                           | Each        | \$1,578.00    | 1        | \$1,578     | To staging area; within 20 miles of site                             |
| Telehandler                                          | Each        | \$1,914.00    | 1        | \$1,914     | To staging area; within 20 miles of site                             |
| Hopper/conveyor                                      | Each        | \$1,914.00    | 1        | \$1,914     | To staging area; within 20 miles of site                             |
| Pickup trucks (3)                                    | Mile        | \$0.56        | 1500     | \$840       | To staging area; 250 miles each way                                  |
| Derrick crane                                        | Each        | \$5,592.00    | 1        | \$5,592     | To staging area; within 20 miles of site                             |
| Derrick crane barge platform                         | Hour        | \$1,634.00    | 4        | \$6,536     | To staging area; sourced from Duluth Harbor                          |
| Transport hopper barges (2)                          | Each        | \$1,914.00    | 2        | \$3,828     | To staging area; 2 loads                                             |
| Transport tug                                        | Each        | \$1,914.00    | 1        | \$1,914     | To staging area                                                      |
|                                                      | Each        |               |          |             |                                                                      |
| Excavator                                            |             | \$1,914.00    | 1        | \$1,914     | To staging area; within 20 miles of site                             |
| Excavator barge                                      | Each        | \$1,914.00    | 1        | \$1,914     | To staging area                                                      |
| Hopper, booster pump, bucket, fusion machine         | Each        | \$1,914.00    | 1        | \$1,914     | To staging area                                                      |
| Dredge barge tug                                     | Each        | \$1,914.00    | 1        | \$1,914     | To staging area                                                      |
| HDPE pipe                                            | Each        | \$1,914.00    | 1        | \$1,914     | To staging area                                                      |
| Material supply barge                                | Hour        | \$1,634.00    | 4        | \$6,536     | To staging area; sourced from Duluth Harbor                          |
| Large tug                                            | Hour        | \$1,634.00    | 4        | \$6,536     | To staging area; sourced from Duluth Harbor                          |
| Additional mileage for non-local equipment           | Mile        | 2.52          | 4000     | \$10,080    | Assume 8 loads non-local; 250 miles away                             |
| Additional mileage for amphibious dump trucks        | Mile        | 5.04          | 2000     | \$10,080    | Assume double cost; sourced from 1,000 miles away                    |
| Launch/remove equipment                              | Day         | \$10,000.00   | 1        | \$10,000    | Half day each mob/demob                                              |
| Mobilize equipment from Hallett Dock #7 to Site      | Day         | \$10,000.00   | 1        | \$10,000    | Half day each mob/demob                                              |
| Equipment setup and breakdown                        | Day         | \$10,000.00   | 10       | \$10,000    | Setup/breakdown equipment; 5 days each                               |
| Equipment setup and breakdown                        | Day         | \$ 10,000.00  | 10       |             |                                                                      |
|                                                      |             |               |          | \$190,000   | Rounded                                                              |
|                                                      |             |               |          |             |                                                                      |
| Site Work                                            |             |               |          |             |                                                                      |
| Clear and grub staging area                          | Acre        | \$10,489      | 6        | \$62,934    | 4-acre pad, 2-acre laydown area                                      |
| onstruct haul roads                                  | SY          | \$13.10       | 6667     | \$87,338    | 8-inch crushed concrete; assume 3,000 feet of road at 20 feet wide   |
| Construct laydown areas                              | SY          | \$11.20       | 9680     | \$108,416   | 4-inch crushed concrete; assume 2 acres                              |
| Construct site fencing                               | LF          | \$5.39        | 2500     | \$13,475    | Surrounding 6-7 acre area                                            |
| Construct dewatering pad                             | SF          | \$2.00        | 249090   | \$498,181   | Assumes hydraulic pumping and dewatering of sediments                |
| Site supervision during site work                    | Day         | \$2,540.00    | 10       | \$25,400    | Assume 10 days during haul road and pad construction                 |
| nto supervision during site work                     |             | \$2,0 TO:00   | TOTAL    | \$796,000   | Rounded                                                              |
|                                                      |             |               | TOTAL    | ψ170,000    | Nounaca                                                              |
| Install Dolphin Pilings                              | Lump Sum    | \$95,000.00   | 1        | \$95,000    | Same cost as shown for Alternative 2                                 |
| Turbidity Controls                                   | SF          | \$7.60        | 4012     | \$30,000    | 50' radius around dredge, 8' deep; 150' curtain at trestle, 10' deep |
| •                                                    |             |               | 8        |             | 50 Tadius around dredge, 6 deep, 150 curtain at trestie, 10 deep     |
| Netland Restoration                                  | Acre        | \$16,880.00   | 8        | \$139,000   |                                                                      |
|                                                      |             |               |          |             |                                                                      |
| Construction Monitoring and Sample Analysis          |             |               |          |             |                                                                      |
| Air Monitoring                                       | Week        | \$600.00      | 21       | \$12,600.00 | Three monitors and software; Dewatered sediment excavation           |
| urbidity Monitoring                                  | Week        | \$750.00      | 22       | \$16,500.00 | Three buoys and software; dredging duration                          |
| Pre- and Post-Construction Soil Sampling             |             |               |          |             |                                                                      |
| Dioxins/Furans (EPA 8290A)                           | Per Sample  | \$595.00      | 48       | \$28,560.00 | One composite sample per 1/4 acre, 4 grabs/composite                 |
| Select Metals* (EPA 6020A/7471B)                     | Per Sample  | \$32.00       | 48       | \$1,536.00  | One composite sample per 1/4 acre, 4 grabs/composite                 |
| reated Discharge Water Sampling                      |             |               |          |             | · Parka and district from                                            |
| TSS (SM 2540 D)                                      | Per Sample  | \$14.00       | 22       | \$308.00    | 1 sample per week                                                    |
| Dioxins/Furans (EPA 8290A)                           | Per Sample  | \$595.00      | 22       | \$13,090.00 | 1 sample per week                                                    |
|                                                      |             |               | 22       |             |                                                                      |
| Select Metals* (EPA 6020A/7471B)                     | Per Sample  | \$32.00       |          | \$704.00    | 1 sample per week                                                    |
| Low-level Mercury                                    | Per Sample  | \$85.00       | 22       | \$1,870.00  | 1 sample per week                                                    |
| Surface Water Sampling                               |             |               |          |             |                                                                      |
| TSS (SM 2540 D)                                      | Per Sample  | \$14.00       | 22       | \$308.00    | One sample per week                                                  |
| Turbidity (EPA 180.1)                                | Per Sample  | \$10.00       | 22       | \$220.00    | One sample per week                                                  |
| Dioxins/Furans (EPA 8290A)                           | Per Sample  | \$595.00      | 22       | \$13,090.00 | One sample per week                                                  |
| Select Metals* (EPA 6020A/7471B)                     | Per Sample  | \$32.00       | 22       | \$704.00    | One sample per week                                                  |
| Post-Dredge Verification Sampling                    |             |               | =        |             | • * P * * * * * *                                                    |
| Select Metals* (EPA 6020A/7471B)                     | Per Sample  | \$32.00       | 160      | \$5,120.00  | One sample per 1/4 acre                                              |
| Dewatered Sediment Sampling                          | i ei sampie | <b>₽J∠.UU</b> | 100      | φ3,120.00   | one sample per 174 aute                                              |
|                                                      | Dor Comr!-  | ¢110.00       | 21       | ¢2 410 00   | One comple per E 000 CV                                              |
| TCLP Metals* (EPA 6020A/7471B)                       | Per Sample  | \$110.00      | 31       | \$3,410.00  | One sample per 5,000 CY                                              |
| Flash Point                                          | Per Sample  | \$10.00       | 31       | \$310.00    | One sample per 5,000 CY                                              |
| pH (EPA 9045)                                        | Per Sample  | \$10.00       | 31       | \$310.00    | One sample per 5,000 CY                                              |
|                                                      |             |               |          | **          | O                                                                    |
| Paint Filter                                         | Per Sample  | \$0.00        | 31       | \$0.00      | One sample per 5,000 CY                                              |

| Lump Sum Costs - Alternative 5: Dredge Open Water Areas/Enhanced MNR with Thin-Layer Cover in Wetland Areas |          |             |          |              |                                                                       |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------|-------------|----------|--------------|-----------------------------------------------------------------------|--|--|--|
| Description                                                                                                 | Unit     | Unit Cost   | Quantity | Extended     | Comments                                                              |  |  |  |
| Mobilization/Demobilization                                                                                 |          |             |          |              |                                                                       |  |  |  |
| Office trailers (3) and connex boxes to staging area                                                        | Mile     | 12.26       | 240      | \$2,942.00   | To staging area; within 20 miles of site                              |  |  |  |
| Skid steer                                                                                                  | Each     | \$1,578.00  | 1        | \$1,578.00   | To staging area; within 20 miles of site                              |  |  |  |
| Telehandler                                                                                                 | Each     | \$1,914.00  | 1        | \$1,914.00   | To staging area; within 20 miles of site                              |  |  |  |
| Hopper/conveyor                                                                                             | Each     | \$1,914.00  | 1        | \$1,914.00   | To staging area; within 20 miles of site                              |  |  |  |
| Pickup trucks (3)                                                                                           | Mile     | \$0.56      | 1500     | \$840.00     | To staging area; 250 miles each way                                   |  |  |  |
| Derrick crane                                                                                               | Each     | \$1,914.00  | 1        | \$5,592.00   | To staging area; within 20 miles of site                              |  |  |  |
| Derrick crane barge platform                                                                                | Hour     | \$2,796.00  | 4        | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |  |  |  |
| Transport hopper barges (2)                                                                                 | Each     | \$1,634.00  | 2        | \$3,828.00   | To staging area; 2 loads                                              |  |  |  |
| Transport tug                                                                                               | Each     | \$1,914.00  | 1        | \$1,914.00   | To staging area                                                       |  |  |  |
| Excavator                                                                                                   | Each     | \$1,914.00  | 1        | \$1,914.00   | To staging area; within 20 miles of site                              |  |  |  |
| Excavator barge                                                                                             | Each     | \$11,184.00 | 1        | \$1,914.00   | To staging area                                                       |  |  |  |
| Hopper, booster pump, bucket, fusion machine                                                                | Each     | \$1,634.00  | 1        | \$1,914.00   | To staging area                                                       |  |  |  |
| Dredge barge tug                                                                                            | Each     | \$1,634.00  | 1        | \$1,914.00   | To staging area                                                       |  |  |  |
| HDPE pipe                                                                                                   | Each     | \$2.52      | 1        | \$1,914.00   | To staging area                                                       |  |  |  |
| Material supply barge                                                                                       | Hour     | \$5.04      | 4        | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |  |  |  |
| Large tug                                                                                                   | Hour     | \$5.39      | 4        | \$6,536.00   | To staging area; sourced from Duluth Harbor                           |  |  |  |
| Amphibious dump trucks (2)                                                                                  | Each     | \$11,184.00 | 2        | \$22,368.00  | To staging area; assumed double cost for wide load and chase vehicles |  |  |  |
| Stone slinger and hoppers (2)                                                                               | Each     | \$1,914.00  | 1        | \$1,914.00   | To staging area; 1 load                                               |  |  |  |
| Additional mileage for non-local equipment                                                                  | Mile     | \$2.52      | 4000     | \$10,080.00  | Assume 8 loads non-local; 250 miles away                              |  |  |  |
| Additional mileage for amphibious dump trucks                                                               | Mile     | \$5.04      | 2000     | \$10,080.00  | Assume double cost; sourced from 1,000 miles away                     |  |  |  |
| Launch/remove equipment                                                                                     | Day      | \$10,000.00 | 1        | \$10,000.00  | Half day each mob/demob                                               |  |  |  |
| Mobilize equipment from Hallett Dock #7 to Site                                                             | Day      | \$10,000.00 | 1        | \$10,000.00  | Half day each mob/demob                                               |  |  |  |
| Equipment setup and breakdown                                                                               | Day      | \$10,000.00 | 10       | \$100,000.00 | _Setup/breakdown equipment; 5 days each                               |  |  |  |
|                                                                                                             |          |             | TOTAL    | \$214,000.00 | Rounded                                                               |  |  |  |
| Site Work                                                                                                   | Lump Sum | \$796,000   | 1        | \$796,000    | Approximately same costs as Alternative 4                             |  |  |  |
| Install Dolphin Pilings                                                                                     | Lump Sum | \$95,000    | 1        | \$95,000     | Same costs as Alternative 4                                           |  |  |  |
| Turbidity Controls                                                                                          | Lump Sum | \$30,000    | 1        | \$30,000     | Same costs as Alternative 4                                           |  |  |  |
| Construction Monitoring and Sample Analysis                                                                 | Lump Sum | \$99,000.00 | 1        | \$99,000     | Approximately same costs as Alternative 4                             |  |  |  |

# Appendix B: Table 4 Monitoring Elements Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

## Monitoring and Evaluation Costs - Alternative 1: No Action

No monitoring and evaluation costs associated with Alternative 1.

| Monitoring and Evaluation Costs - Alternative 2: Enhanced MNR with Broadcasted Amendment |        |             |          |             |                                             |  |  |  |  |
|------------------------------------------------------------------------------------------|--------|-------------|----------|-------------|---------------------------------------------|--|--|--|--|
| Monitoring Elements                                                                      | Unit   | Cost        | Extended | Total       | Comment                                     |  |  |  |  |
| Monitoring and Evaluation Report                                                         | Each   | \$4,000.00  | 6        | \$24,000    | Every 5 years for 30 years                  |  |  |  |  |
| Field Sampling                                                                           | Event  | \$34,000.00 | 6        | \$204,000   | Every 5 years for 30 years                  |  |  |  |  |
| Sample Analysis                                                                          | Event  | \$55,520.00 | 6        | \$333,120   | Every 5 years for 30 years                  |  |  |  |  |
| Dioxins (EPA 8290)                                                                       | Sample | \$595.00    | 10       | \$5,950.00  | 10 locations                                |  |  |  |  |
| Grain Size (ASTM D422 w/ Hydrometer)                                                     | Sample | \$375.00    | 5        | \$1,875.00  | Needed for tox/bio; 5 locations             |  |  |  |  |
| TOC Quad Burn (EPA 9060A)                                                                | Sample | \$105.00    | 5        | \$525.00    | Needed for tox/bio; 5 locations             |  |  |  |  |
| 10-d toxicity C. tentans                                                                 | Sample | \$1,638.00  | 5        | \$8,190.00  | 5 locations                                 |  |  |  |  |
| 28-d toxicity H. azteca                                                                  | Sample | \$2,013.00  | 5        | \$10,065.00 | 5 locations                                 |  |  |  |  |
| 28-d bioaccumulation                                                                     | Sample | \$2,013.00  | 5        | \$10,065.00 | 5 locations                                 |  |  |  |  |
| Dioxins (Benthic Tissue)                                                                 | Sample | \$595.00    | 25       | \$14,875.00 | Individual replicate analysis               |  |  |  |  |
| Lipids content (Pace SOP)                                                                | Sample | \$100.00    | 10       | \$1,000.00  | One composite per sample; benthics and fish |  |  |  |  |
| Dioxins (Fish Tissue)                                                                    | Sample | \$595.00    | 5        | \$2,975.00  | Five composite samples from five species    |  |  |  |  |
|                                                                                          |        |             |          | \$55,520.00 | Rounded                                     |  |  |  |  |
|                                                                                          |        |             |          | \$561,000   | Rounded                                     |  |  |  |  |

|                                      | Monitoring an | d Evaluation Costs - Alte | ernative 3: Enhanced | MNR with Thin-La | ayer Amended Cover                          |
|--------------------------------------|---------------|---------------------------|----------------------|------------------|---------------------------------------------|
| Monitoring Elements                  | Unit          | Cost                      | Extended             | Total            | Comment                                     |
| Monitoring and Evaluation Report     | Each          | \$4,000.00                | 6                    | \$24,000         | Every 5 years for 30 years                  |
| Field Sampling                       | Event         | \$34,000.00               | 6                    | \$204,000        | Every 5 years for 30 years                  |
| Sample Analysis                      | Event         | \$61,470.00               | 6                    | \$368,820        | Every 5 years for 30 years                  |
| Dioxins (EPA 8290)                   | Sample        | \$595.00                  | 20                   | \$11,900.00      | 10 cover samples; 10 from below cover       |
| Grain Size (ASTM D422 w/ Hydrometer) | Sample        | \$375.00                  | 5                    | \$1,875.00       | Needed for tox/bio; 5 locations             |
| TOC Quad Burn (EPA 9060A)            | Sample        | \$105.00                  | 5                    | \$525.00         | Needed for tox/bio; 5 locations             |
| 10-d toxicity C. tentans             | Sample        | \$1,638.00                | 5                    | \$8,190.00       | 5 locations                                 |
| 28-d toxicity H. azteca              | Sample        | \$2,013.00                | 5                    | \$10,065.00      | 5 locations                                 |
| 28-d bioaccumulation                 | Sample        | \$2,013.00                | 5                    | \$10,065.00      | 5 locations                                 |
| Dioxins (Benthic Tissue)             | Sample        | \$595.00                  | 25                   | \$14,875.00      | Individual replicate analysis               |
| Lipids content (Pace SOP)            | Sample        | \$100.00                  | 10                   | \$1,000.00       | One composite per sample; benthics and fish |
| Dioxins (Fish Tissue)                | Sample        | \$595.00                  | 5                    | \$2 975 00       | Five composite samples from five species    |

Monitoring and Evaluation Costs - Alternative 4:Dredging with Wetland Restoration

\$61,470.00 \$597,000

Rounded

No monitoring and evaluation costs associated with Alternative 4.

# Appendix B: Table 4 Monitoring Elements Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Monitoring and                       | Evaluation Costs - Alt                | ernative 5: Dredge Oper | n Water Areas/Enhan | ced MNR in Wetl | and Areas with Thin-Layer Amended Cover                 |
|--------------------------------------|---------------------------------------|-------------------------|---------------------|-----------------|---------------------------------------------------------|
| Monitoring Elements                  | Unit                                  | Cost                    | Extended            | Total           | Comment                                                 |
| Monitoring and Evaluation Report     | Each                                  | \$4,000.00              | 6                   | \$24,000        | Every 5 years for 30 years                              |
| Field Sampling                       | Event                                 | \$34,000.00             | 6                   | \$204,000       | Every 5 years for 30 years                              |
| Sample Analysis                      | Event                                 | \$37,082.00             | 6                   | \$222,492       | Every 5 years for 30 years                              |
| Dioxins (EPA 8290)                   | Sample                                | \$595.00                | 10                  | \$5,950.00      | 5 cover samples; 5 from below cover; wetland areas only |
| Grain Size (ASTM D422 w/ Hydrometer) | Sample                                | \$375.00                | 3                   | \$1,125.00      | Needed for tox/bio; 3 locations in wetland areas        |
| TOC Quad Burn (EPA 9060A)            | Sample                                | \$105.00                | 3                   | \$315.00        | Needed for tox/bio; 3 locations in wetland areas        |
| 10-d toxicity C. tentans             | Sample                                | \$1,638.00              | 3                   | \$4,914.00      | 3 locations in wetland areas                            |
| 28-d toxicity H. azteca              | Sample                                | \$2,013.00              | 3                   | \$6,039.00      | 3 locations in wetland areas                            |
| 28-d bioaccumulation                 | Sample                                | \$2,013.00              | 3                   | \$6,039.00      | 3 locations in wetland areas                            |
| Dioxins (Benthic Tissue)             | Sample                                | \$595.00                | 15                  | \$8,925.00      | Individual replicate analysis                           |
| Lipids content (Pace SOP)            | Sample                                | \$100.00                | 8                   | \$800.00        | One composite per sample; benthics and fish             |
| Dioxins (Fish Tissue)                | Sample                                | \$595.00                | 5                   | \$2,975.00      | Five composite samples from five species                |
|                                      |                                       |                         | •                   | \$37,082.00     |                                                         |
| ·                                    | · · · · · · · · · · · · · · · · · · · | ·                       | ·                   | ¢450,400        | Decorded                                                |

\$450,492 Rounded

|                    |             |            | Field Sampling Event |             |                                            |
|--------------------|-------------|------------|----------------------|-------------|--------------------------------------------|
| Description        | Unit        | Cost       | Extended             | Total       | Comment                                    |
| Project Management | Hour        | \$115.00   | 30                   | \$3,450.00  | Project coordination                       |
| Scientist II       | Hour        | \$84.00    | 10                   | \$840.00    | Field event planning and coordination      |
| QA/QC              | Hour        | \$94.00    | 20                   | \$1,880.00  | Chemical, tox/bio, tissue results          |
| Field Sampling     |             |            |                      |             |                                            |
| Field Labor        | Person      | \$4,452.00 | 4                    | \$17,808.00 | 5 hours meetings; 40 sampling; 8 mob/demob |
| Truck              | Day         | \$75.00    | 10                   | \$750.00    | 2 trucks; boat and office trailer          |
| Mileage            | Mile        | \$0.57     | 750                  | \$423.75    |                                            |
| Pontoon            | Day         | \$200.00   | 5                    | \$1,000.00  |                                            |
| Vibracore rental   | Lump Sum    | \$2,500.00 | 1                    | \$2,500.00  | Includes freight                           |
| Disposables        | Lump Sum    | \$1,500.00 | 1                    | \$1,500.00  | Vibracore tubing                           |
| Office trailer     | Day         | \$75.00    | 5                    | \$375.00    |                                            |
| GPS                | Day         | \$75.00    | 5                    | \$375.00    |                                            |
| Generator          | Day         | \$45.00    | 5                    | \$225.00    |                                            |
| Drum               | Each        | \$105.00   | 2                    | \$210.00    |                                            |
| Sediment bundle    | Day         | \$65.00    | 5                    | \$325.00    |                                            |
| Fuel               | Lump Sum    | \$50.00    | 1                    | \$50.00     |                                            |
| IDW Disposal       | Lump Sum    | \$250.00   | 1                    | \$250.00    |                                            |
| Lodging            | Night       | \$100.00   | 16                   | \$1,600.00  |                                            |
| Per-Diem           | Day         | \$35.00    | 20                   | \$700.00    | <u>_</u>                                   |
|                    | <del></del> |            | TOTAL                | \$34,000.00 | Rounded                                    |

# Appendix B: Table 4 Monitoring Elements Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

|                             |       | Bathy   | ymetric Survey Break-Do | own        |                                           |
|-----------------------------|-------|---------|-------------------------|------------|-------------------------------------------|
| Parameter                   | Unit  | Cost    | Extended                | Total Cost |                                           |
| Daily labor cost            |       |         |                         |            |                                           |
| Scientist III               | Hour  | \$109   | 16                      | \$1,744    | Prep equipment; mob/demob; perform survey |
| Field Tech II               | Hour  | \$64    | 16                      | \$1,024    | Prep equipment; mob/demob; perform survey |
| Lodging                     | Night | \$100   | 2                       | \$200      | 1 night each                              |
| Per-diem                    | Day   | \$36    | 4                       | \$144      | 2 days each                               |
| Daily equipment cost        |       |         |                         |            |                                           |
| Boat                        | Day   | \$200   | 2                       | \$400      |                                           |
| Fuel                        | Day   | \$25    | 1                       | \$25       |                                           |
| Multi-beam survey equipment | Day   | \$1,500 | 2                       | \$3,000    |                                           |
| GPS                         | Day   | \$75    | 2                       | \$150      |                                           |
| Truck                       | Day   | \$75    | 2                       | \$150      |                                           |
| Mileage                     | Mile  | \$0.56  | 350                     | \$196      |                                           |
| Data reduction/mapping      | Hour  | \$109   | 20                      | \$2,180    |                                           |
| GIS                         | Hour  | \$64    | 10                      | \$640      |                                           |
|                             | •     | ·       | TOTAL                   | ¢10 000    | Pounded                                   |

TOTAL \$10,000 Rounded

## Appendix B: Table 5 Present Value Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

Discount rate used for present worth calculations: 7.00%

Present worth calculation is: [(2016 Cost)/(1.07^Event Year 1)]+[(2016 Cost)/(1.07^Event Year 2)]+...

Year 0 is 2016.

| Alternative 1: No Action                  | 2016 Costs | Years |  | Total Present<br>Worth | Note |  |  |  |  |  |
|-------------------------------------------|------------|-------|--|------------------------|------|--|--|--|--|--|
| No Costs Associated with this Alternative |            |       |  |                        |      |  |  |  |  |  |

| Alternative 2: Enhanced MNR with Broadcasted Amendment     | 2016 Costs  | Years |    |    |    |    |    | Total Present<br>Worth | Note        |  |  |  |
|------------------------------------------------------------|-------------|-------|----|----|----|----|----|------------------------|-------------|--|--|--|
| Construction Costs                                         |             |       |    |    |    |    |    |                        |             |  |  |  |
| Mobilization/Demobilization                                | \$206,000   | 1     |    |    |    |    |    |                        | \$192,523   |  |  |  |
| Rent Hallett Dock #7 for Staging Area                      | \$30,000    | 1     |    |    |    |    |    |                        | \$28,037    |  |  |  |
| Install and Remove Dolphin Pilings                         | \$95,000    | 1     |    |    |    |    |    |                        | \$88,785    |  |  |  |
| Purchase Amendment Materials and Stockpile at Staging Area | \$4,973,640 | 1     |    |    |    |    |    |                        | \$4,648,262 |  |  |  |
| Load and Barge Materials Between Staging Area and Site     | \$103,650   | 1     |    |    |    |    |    |                        | \$96,869    |  |  |  |
| Broadcast Amendment in Wetland Areas                       | \$38,766    | 1     |    |    |    |    |    |                        | \$36,230    |  |  |  |
| Broadcast Amendment in Open Water Areas                    | \$130,182   | 1     |    |    |    |    |    |                        | \$121,665   |  |  |  |
| Construction Monitoring/CQA and Oversight                  | \$64,010    | 1     |    |    |    |    |    |                        | \$59,822    |  |  |  |
| Monthly Operating Expenses and Site Security               | \$63,000    | 1     |    |    |    |    |    |                        | \$58,879    |  |  |  |
| Implement Institutional Controls                           | \$5,000     | 1     |    |    |    |    |    |                        | \$4,673     |  |  |  |
| Long-Term Monitoring                                       |             |       |    |    |    |    |    |                        |             |  |  |  |
| Monitoring and Evaluation Report                           | \$4,000     | 5     | 10 | 15 | 20 | 25 | 30 |                        | \$8,631     |  |  |  |
| Field Sampling                                             | \$34,000    | 5     | 10 | 15 | 20 | 25 | 30 |                        | \$73,366    |  |  |  |
| Sample Analysis                                            | \$55,520    | 5     | 10 | 15 | 20 | 25 | 30 |                        | \$119,802   |  |  |  |
| Professional and Technical Services                        |             |       |    |    |    |    |    |                        |             |  |  |  |
| Remedial Design (6%)                                       | \$470,000   | 0     |    |    |    |    |    |                        | \$470,000   |  |  |  |
| Project Management and Permitting (5%)                     | \$392,000   | 1     |    |    |    |    |    |                        | \$366,355   |  |  |  |
| Construction Management (6%)                               | \$470,000   | 1     |    |    |    |    |    |                        | \$439,252   |  |  |  |

## Appendix B: Table 5 Present Value Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Alternative 3: Enhanced MNR with Thin-Layer Amended Cover  | 2016 Costs  | Years |    |    |    |    |    | Total Present<br>Worth | Note |
|------------------------------------------------------------|-------------|-------|----|----|----|----|----|------------------------|------|
| Construction Costs                                         |             |       |    |    |    |    |    |                        |      |
| Mobilization/Demobilization                                | \$213,000   | 1     |    |    |    |    |    | \$199,065              |      |
| Rent Hallett Dock #7 for Staging Area                      | \$50,000    | 1     |    |    |    |    |    | \$46,729               |      |
| Install and Remove Dolphin Pilings                         | \$95,000    | 1     |    |    |    |    |    | \$88,785               |      |
| Purchase Amendment Materials and Stockpile at Staging Area | \$6,738,480 | 1     |    |    |    |    |    | \$6,297,645            |      |
| Purchase Sand and Stockpile at Staging Area                | \$646,054   | 1     |    |    |    |    |    | \$603,789              |      |
| Load and Barge Materials Between Staging Area and Site     | \$1,617,770 | 1     |    |    |    |    |    | \$1,511,935            |      |
| Construct Cover in Wetland Areas                           | \$604,871   | 1     |    |    |    |    |    | \$565,300              |      |
| Construct Cover in Open Water Areas                        | \$824,507   | 1     |    |    |    |    |    | \$770,568              |      |
| Construction Monitoring/CQA and Oversight                  | \$281,644   | 1     |    |    |    |    |    | \$263,219              |      |
| Monthly Operating Expenses and Site Security               | \$105,000   | 1     |    |    |    |    |    | \$98,131               |      |
| Implement Institutional Controls                           | \$5,000     | 1     |    |    |    |    |    | \$4,673                |      |
| Long-Term Monitoring                                       | •           |       |    |    | •  |    |    | -                      |      |
| Monitoring and Evaluation Report                           | \$4,000     | 5     | 10 | 15 | 20 | 25 | 30 | \$8,631                |      |
| Field Sampling                                             | \$34,000    | 5     | 10 | 15 | 20 | 25 | 30 | \$73,366               |      |
| Sample Analysis                                            | \$61,470    | 5     | 10 | 15 | 20 | 25 | 30 | \$132,641              |      |
| Professional and Technical Services                        |             |       |    |    |    |    |    |                        |      |
| Remedial Design (6%)                                       | \$883,000   | 0     |    |    |    |    |    | \$883,000              |      |
| Project Management and Permitting (5%)                     | \$736,000   | 1     |    |    |    |    |    | \$687,850              |      |
| Construction Management (6%)                               | \$883,000   | 1     |    |    |    |    |    | \$825,234              |      |

| Alternative 4: Dredging with Wetland Restoration            | 2016 Costs  | Years |  |  | Total Present<br>Worth | Note |  |             |  |  |  |  |
|-------------------------------------------------------------|-------------|-------|--|--|------------------------|------|--|-------------|--|--|--|--|
| Construction Costs                                          |             |       |  |  |                        |      |  |             |  |  |  |  |
| Mobilization/Demobilization                                 | \$190,000   | 1     |  |  |                        |      |  | \$177,570   |  |  |  |  |
| Site Work                                                   | \$796,000   | 1     |  |  |                        |      |  | \$743,925   |  |  |  |  |
| Rent Hallett Dock #7 for Staging Area                       | \$90,000    | 1     |  |  |                        |      |  | \$84,112    |  |  |  |  |
| Install and Remove Dolphin Pilings                          | \$95,000    | 1     |  |  |                        |      |  | \$88,785    |  |  |  |  |
| Mechanically Dredge Sediments and Pump to Staging Area      | \$2,775,671 | 1     |  |  |                        |      |  | \$2,594,085 |  |  |  |  |
| Turbidity Controls                                          | \$30,000    | 1     |  |  |                        |      |  | \$28,037    |  |  |  |  |
| Treat Dredge Contact Water (per CY sediment removed)        | \$6,227,260 | 1     |  |  |                        |      |  | \$5,819,869 |  |  |  |  |
| Purchase Sand and Stockpile at Staging Area                 | \$949,495   | 1     |  |  |                        |      |  | \$887,379   |  |  |  |  |
| Load and Barge Materials Between Staging Area and Site      | \$2,282,440 | 1     |  |  |                        |      |  | \$2,133,121 |  |  |  |  |
| Construct Cover in Wetland Areas                            | \$639,530   | 1     |  |  |                        |      |  | \$597,692   |  |  |  |  |
| Construct Cover in Open Water Areas                         | \$824,492   | 1     |  |  |                        |      |  | \$770,554   |  |  |  |  |
| Wetland Restoration                                         | \$139,000   | 1     |  |  |                        |      |  | \$129,907   |  |  |  |  |
| Excavate and Load Dewatered Sediments                       | \$1,074,306 | 1     |  |  |                        |      |  | \$1,004,024 |  |  |  |  |
| Transportation and Disposal of Dewatered Sediments          | \$3,848,030 | 1     |  |  |                        |      |  | \$3,596,289 |  |  |  |  |
| Construction Monitoring/CQA and Oversight (Labor/Equipment) | \$908,942   | 1     |  |  |                        |      |  | \$849,479   |  |  |  |  |
| Construction Monitoring and Sample Analysis                 | \$99,000    | 1     |  |  |                        |      |  | \$92,523    |  |  |  |  |
| Monthly Operating Expenses and Site Security                | \$357,000   | 1     |  |  |                        |      |  | \$333,645   |  |  |  |  |
| Professional and Technical Services                         |             |       |  |  |                        |      |  |             |  |  |  |  |
| Remedial Design (6%)                                        | \$1,600,000 | 0     |  |  |                        |      |  | \$1,600,000 |  |  |  |  |
| Project Management and Permitting (5%)                      | \$1,330,000 | 1     |  |  |                        |      |  | \$1,242,991 |  |  |  |  |
| Construction Management (6%)                                | \$1,600,000 | 1     |  |  |                        |      |  | \$1,495,327 |  |  |  |  |

## Appendix B: Table 5 Present Value Calculations Focused Feasibility Study Mud Lake West Minnesota Pollution Control Agency

| Alternative 5: Dredge Open Water Areas of Site/Enhanced MNR in Wetland Areas with Thin-Layer Cover | 2016 Costs  |     |    | Y  | ears |    |    | Total Present<br>Worth | Note        |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------|-----|----|----|------|----|----|------------------------|-------------|--|--|--|
| Construction Costs                                                                                 |             |     |    |    |      |    |    |                        |             |  |  |  |
| Mobilization/Demobilization                                                                        | \$214,000   | 1   |    |    |      |    |    |                        | \$200,000   |  |  |  |
| Site Work                                                                                          | \$796,000   | 1   |    |    |      |    |    |                        | \$743,925   |  |  |  |
| Rent Hallett Dock #7 for Staging Area                                                              | \$100,000   | 1   |    |    |      |    |    |                        | \$93,458    |  |  |  |
| Install and Remove Dolphin Pilings                                                                 | \$95,000    | 1   |    |    |      |    |    |                        | \$88,785    |  |  |  |
| Mechanically Dredge Sediments and Pump to Staging Area                                             | \$2,420,149 | 1   |    |    |      |    |    |                        | \$2,261,821 |  |  |  |
| Turbidity Controls                                                                                 | \$30,000    | 1   |    |    |      |    |    |                        | \$28,037    |  |  |  |
| Treat Dredge Contact Water (per CY sediment removed)                                               | \$6,787,050 | 1   |    |    |      |    |    |                        | \$6,343,037 |  |  |  |
| Purchase Sand and Stockpile at Staging Area                                                        | \$667,449   | 1   |    |    |      |    |    |                        | \$623,784   |  |  |  |
| Purchase Amendment Materials and Stockpile at Staging Area                                         | \$1,384,320 | 1   |    |    |      |    |    |                        | \$1,293,757 |  |  |  |
| Load and Barge Materials Between Staging Area and Site                                             | \$1,627,516 | 1   |    |    |      |    |    |                        | \$1,521,043 |  |  |  |
| Construct Cover in Wetland Areas                                                                   | \$604,871   | 1   |    |    |      |    |    |                        | \$565,300   |  |  |  |
| Construct Cover in Open Water Areas                                                                | \$824,507   | 1   |    |    |      |    |    |                        | \$770,568   |  |  |  |
| Excavate and Load Dewatered Sediments                                                              | \$936,703   | 1   |    |    |      |    |    |                        | \$875,424   |  |  |  |
| Transportation and Disposal of Dewatered Sediments                                                 | \$3,355,156 | 1   |    |    |      |    |    |                        | \$3,135,659 |  |  |  |
| Construction Monitoring/CQA and Oversight (Labor/Equipment)                                        | \$473,674   | 1   |    |    |      |    |    |                        | \$442,686   |  |  |  |
| Construction Monitoring and Sample Analysis                                                        | \$99,000    | 1   |    |    |      |    |    |                        | \$92,523    |  |  |  |
| Monthly Operating Expenses and Site Security                                                       | \$210,000   | 1   |    |    |      |    |    |                        | \$196,262   |  |  |  |
| Implement Institutional Controls                                                                   | \$5,000     | 1   |    |    |      |    |    |                        | \$4,673     |  |  |  |
| Long-Term Monitoring                                                                               |             |     |    |    |      |    |    |                        |             |  |  |  |
| Monitoring and Evaluation Report                                                                   | \$4,000     | 5   | 10 | 15 | 20   | 25 | 30 |                        | \$8,631     |  |  |  |
| Field Sampling                                                                                     | \$34,000    | 5   | 10 | 15 | 20   | 25 | 30 |                        | \$73,366    |  |  |  |
| Sample Analysis                                                                                    | \$37,082    | 5   | 10 | 15 | 20   | 25 | 30 |                        | \$80,016    |  |  |  |
| Professional and Technical Services                                                                |             |     |    |    |      |    |    |                        |             |  |  |  |
| Remedial Design (6%)                                                                               | \$ 1,581,00 | 0 0 |    |    |      |    |    |                        | \$1,581,000 |  |  |  |
| Project Management and Permitting (5%)                                                             | \$ 1,318,00 | 0 1 |    |    |      |    |    |                        | \$1,231,776 |  |  |  |
| Construction Management (6%)                                                                       | \$ 1,581,00 | 0 1 |    |    |      |    |    |                        | \$1,477,570 |  |  |  |