Fig. 15a: Average rates of fertilizer phosphorus application to fertilized crop land for watersheds of Minnesota.
Fig. 15b: Average rates of fertilizer phosphorus application to fertilized crop land for agroecoregions of Minnesota.
Fig. 16a: Average rates of manure phosphorus application to cropland for watersheds of Minnesota.
Fig. 16b: Average rates of manure phosphorus application to cropland for agroecoregions of Minnesota.
Fig. 17a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and poor crop residue cover management conditions for watersheds of Minnesota.
Fig. 17b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and poor crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 18a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and average crop residue cover management conditions for watersheds of Minnesota.
Fig. 18b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and average crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 19a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.
Fig. 19b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 20a: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.
Fig. 20b: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 21a: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams, and best crop residue cover management conditions for watersheds of Minnesota.
Fig. 21b: Phosphorus index values based on low hydrologic runoff volume, low rainfall runoff erosivity, a 300 ft buffer around perennial streams, and best crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 22a: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.
Fig. 22b: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 23a: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around all perennial and intermittent streams and ditches, and best crop residue cover management conditions for watersheds of Minnesota.
Fig. 23b: Phosphorus index values based on high hydrologic runoff volume, high rainfall runoff erosivity, a 300 ft buffer around all perennial and intermittent streams and ditches, and best crop residue cover management conditions for agroecoregions of Minnesota.
Fig. 24a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and reduced rates of fertilizer phosphorus applications for watersheds of Minnesota.
Fig. 24b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and reduced rates of fertilizer phosphorus applications for agroecoregions of Minnesota.
Fig. 25a: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and variable methods of manure phosphorus applications for watersheds of Minnesota.
Fig. 25b: Phosphorus index values based on average hydrologic runoff volume, average rainfall runoff erosivity, a 300 ft buffer around perennial streams and ditches, average crop residue cover management conditions, and variable methods of manure phosphorus applications for agroecoregions of Minnesota.