MIDS Credits: Iron-Enhanced Sand Filters

MIDS Work Group
March 15, 2013
• Iron-enhanced sand filter basin
• Iron-enhanced sand filter bench in wet ponds
• **Iron-enhanced check dam in swales**
Iron-Enhanced Sand Filter Basin

Iron-enhanced sand filter basin, Maplewood, MN. Photo courtesy of Brian Huser.
Iron-Enhanced Sand Filter Bench in Wet Pond

Iron-enhanced sand bench, Prior Lake, MN. Photo courtesy of Ross Bintner.
Iron-Enhanced Sand Filter Bench in Wet Pond
General Design Criteria

- Iron must be elemental iron to enable it to gradually rust and convert to a form that can react with stormwater constituents.
General Design Criteria

- Finely ground cast iron recycled from scrap iron is the source and form of iron typically used in full scale systems in MN.
General Design Criteria

• Pre-treatment is required
• Water quality sizing for filtration applicable to iron-enhanced sand filters
• Iron\(^1\) by weight 5-8% of iron-sand mixture
• Iron and sand need to be well mixed
• Filter draw down within 48 hours of storm completion to avoid filter fouling and to prepare the filter for next storm event

\(^1\) Several caveats in draft document
General Design Criteria

- Drains\(^1\) needed to allow aeration of filter bed between storm events
- The outlet of these drains should be exposed to the atmosphere and above the downstream high water level to allow the filter to fully drain
- Head (top of filter to outlet invert) of 2-6 feet recommended depending upon application

\(^1\) Several caveats in draft document
Benefits

- Removal of some colloidal and dissolved constituents including color, metals, and phosphates
- High pollutant removal rates
- Use as a retrofit for existing ponds, swales, and other stormwater BMPs
- Good for nutrient-impaired waters
- Could be used at sites with certain types of restrictions where infiltration is not appropriate or feasible
Limitations/Concerns

- New technology with limited performance history
- Lifespan of iron-enhanced filtration practice potentially reduced by clogging or iron loss
 - Disposal of the iron-sand bed material will be required when the iron is consumed
- Iron-sand filtration offers limited water quantity control
- Head required for treatment and draw down of filter between storms
- Tailwater effects may restrict siting of filters
3 Steps:

1. Calculate the amount of water that the BMP is capable of treating
2. Use P8 modeling results to convert the treatment volume into a percent annual runoff volume treated by the BMP
3. Calculate the percent reduction in dissolved phosphorus for all of the water routed to the BMP
Currently, assuming 60% reduction in dissolved phosphorus

Based on very limited data of 38% to >80% removal

– Remember, “Big Question” from several presentations in late-2011 and early-2012
Only non-infiltration, volume control BMPs and BMPs that manage dissolved phosphorus can achieve similar treatment results on sites with restrictions.

Is requiring these BMPs **prudent** and **feasible**?

Yes

- Performance goal for sites with restrictions: “provide equivalent TP removal”

No

- How much treatment is enough?
Flexible Treatment Options

• **1.1-inch Volume Reduction**

 • **Alternative #1**
 – Achieve at least 0.55” volume reduction goal, **and**
 – Remove 75% of the annual TP load, **and**…

 • **Alternative #2**
 – Achieve volume reduction to the maximum extent practicable (as determined by the Local Authority), **and**
 – Remove 75% of the annual TP load, **and**…

• **Off-site Considerations**
Big Question Revisited

• Is 75% reduction of annual TP load prudent and feasible?
• 55% TP is particulate; 45% is dissolved

Only non-infiltration, volume control BMPs and BMPs that manage dissolved phosphorus can achieve similar treatment results on sites with restrictions.

• Knowing there is limited data on iron-enhanced filter performance and operating life in real world situations, are we comfortable including it in the calculator?