Permeable Pavement
Guidance Document and Credits

MIDS Work Group
February 15, 2013
Work Order Tasks

• Review and Edit Guidance Document from Tech Team
• Add Sections
 – Suitability-retrofit, cold climates, etc.
 – Installer Certification
 – Credits
• Update Calculator
Process So Far

• Distributed 1st Draft of Guidance Document – Nov.
 – Received comments from Tech Team and MPCA
• Distributed 2nd Draft – January 25, 2013
• Tech Team/MPCA Conference Call – February 7, 2013
 – Received comments from Tech Team and MPCA
• Updated PPT and Calculator after Conference Call
• Tech Team/Barr Updating Guidance Document-3rd Draft
Work Remaining

• Summarize Guidance Document to Work Group (today)

• Receive Final Comments 2 weeks from today (Feb. 28)
 – MPCA
 – Tech Team
 – Work Group

• Prepare and Distribute Final Guidance Document
Document Overview

• Three Types of Permeable Pavement
 – Pervious Concrete
 – Porous Asphalt
 – Permeable Interlocking Concrete Pavers (PICP)
• Best Suited to Pedestrian Areas and Light Traffic
 – Can be designed for heavier loads
• Use to Reduce Impervious Surfaces
 – Paved areas act like green space
• Proper Construction is Critical for Performance
• Routine Maintenance is Required
 Contributing Area

- Limit runoff from surrounding areas
- 2:1 maximum ratio of Tributary Impervious (parking lots and roads) to Permeable Pavement unless:
 - Effective pretreatment for sediment control
 - Runoff is directly from a roof
 - Frequent maintenance is performed to prevent clogging (several times per year)
• Basic Function for All Three Types
 – Runoff flows through the pavement
 • Faster than rainfall intensity
 • Some filtering occurs
 • Prone to plugging
 – Runoff is stored in underlying reservoir
 • Crushed stone
 • Depth varies
 – Reservoir volume infiltrates or drains through underdrain (UD) or combination of both
• Basic Water Quality Benefits of Permeable Pavement
 – Infiltration = volume reduction = most benefit
 (Don’t add an UD for a “factor of safety” in HSG A and B)
 – Larger Reservoir = Greater WQ Benefit
 – Effective at Reducing
 • Volume
 • TSS
 • TP
 • Temperature
Document Overview

- Design Variables are Described
- Material Specifications Included
- Typical Cross Sections Provided
- Limitations Noted
- Sizing Equations Included
• **Input Variables**
 – Top Surface Area
 – *Bottom Surface Area*
 – Outflow Depth (depth below UD or overflow)
 – Media Porosity (rock reservoir, typically 40%)
Permeable Pavement

Top Surface Area

Porosity 40% typ

Storage Volume

Outflow Depth

Bottom Surface Area

Elevated Underdrain/Outlet

HSG A, B, C, D (Infiltration Rate)
Calculator

- **Input Variables**
 - Underlying Soil – Hydrologic Soil Group (A, B, C, D)
 - Infiltration rate
 - User defined rate is also an option
 - *Infiltration Adjustment for Compacted Subgrade (reduced)*
 - Required Drawdown Time
 - 48 hours typical
 - 24 hours for trout streams
Credits in the Calculator

• Filtration (underdrain on the bottom)
 – No Volume Reduction
 – TSS Reduction = 74%
 – TP Reduction = 45%

• Values based on median of published values
Credits in the Calculator

- Volume Reduction = Storage Volume Infiltrated within Drawdown Time
- TSS and TP Reductions are a Function of the Storage Volume (increased storage=increased reductions)
Credits in the Calculator

MIDS example: Sto. Vol=1.1” off Imperv

- **HSG A:** 97% Annual Volume Reduction, 3% out the UD
- **HSG C:** 91% Annual Volume Reduction, 9% out the UD

Infiltration
- Varies by HSG

48 hours

TSS Reduction = 74%
TP Reduction = 45%
Credits in the Calculator

• Additional
 – Limited Ratio of Tributary Impervious to Permeable Pavement is 2:1 unless:
 • Roof runoff
 • Effective pretreatment
 – Pervious Areas May Be Routed to Permeable Pavement
 • Be careful to avoid high sediment and organic loads from pervious areas