

Pig's Eye Dump Task Force

Agenda for Pig's Eye Dump Task Force Meeting #3

Friday, March 8, 2024

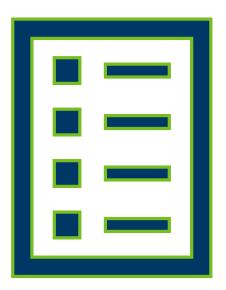
1:00-3:00 p.m.

Lower Level - MPCA 520 Lafayette Road, St. Paul, MN 55155

- 1. Welcome, introductions, agenda (1:00 p.m.)
- 2. Re-cap last meeting (1:10 p.m.)
- 3. Task Force comments on last meeting (1:15 p.m.)
- 4. Presentation on range of remediation options to address contamination (1:20 p.m.)
- 5. Public questions/comment on presentation (2:20 p.m.)
- 6. Discussion on feasibility of different remediation strategies (2:40 p.m.)
- 7. Final Task Force comments and exit slip (2:55 p.m.)
- 8. Adjourn (3:00 p.m.)

Pigs Eye Dump Task Force Meeting #3

Hunter Vraa | Pigs Eye Task Force Coordinator


March 8, 2024

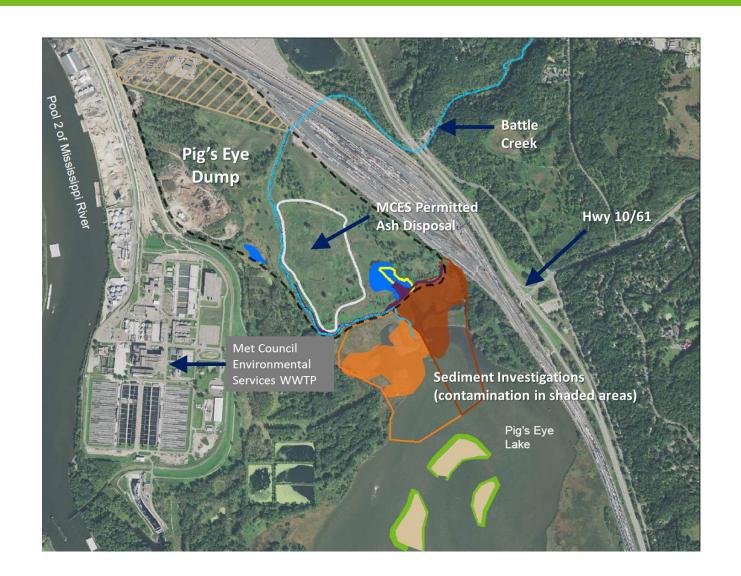
Pigs Eye Dump Task Force Welcome and Introductions

Agenda

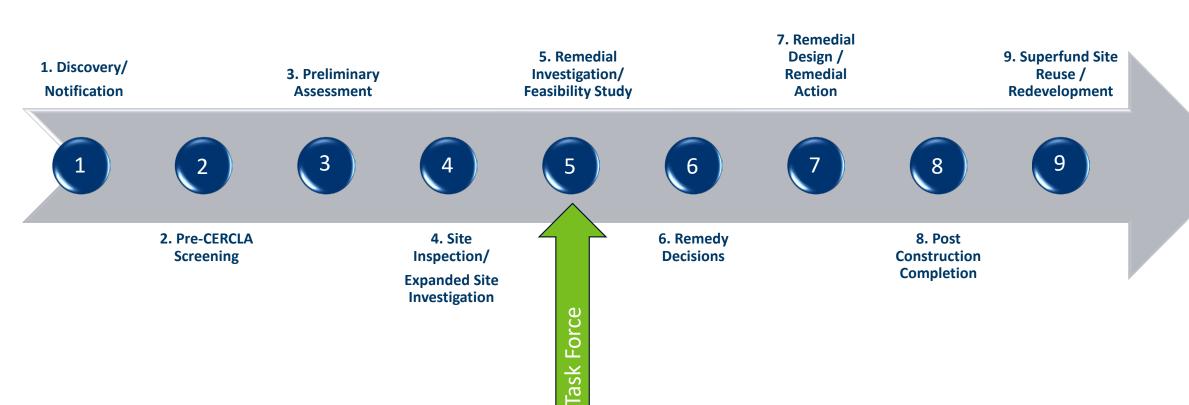
- I. Welcome, introductions, agenda (1:00 p.m.)
- II. Re-cap last meeting (1:10 p.m.)
- III. Task Force comments on last meeting (1:15 p.m.)
- IV. Presentation on range of remediation options to address contamination (1:20 p.m.)
- V. Public questions/comment on presentation (2:20 p.m.)
- VI. Discussion on feasibility of different remediation strategies (2:40 p.m.)
- VII. Final Task Force comments and exit slip (2:55 p.m.)
- VIII. Adjourn (3:00 p.m.)

Welcome and Introductions

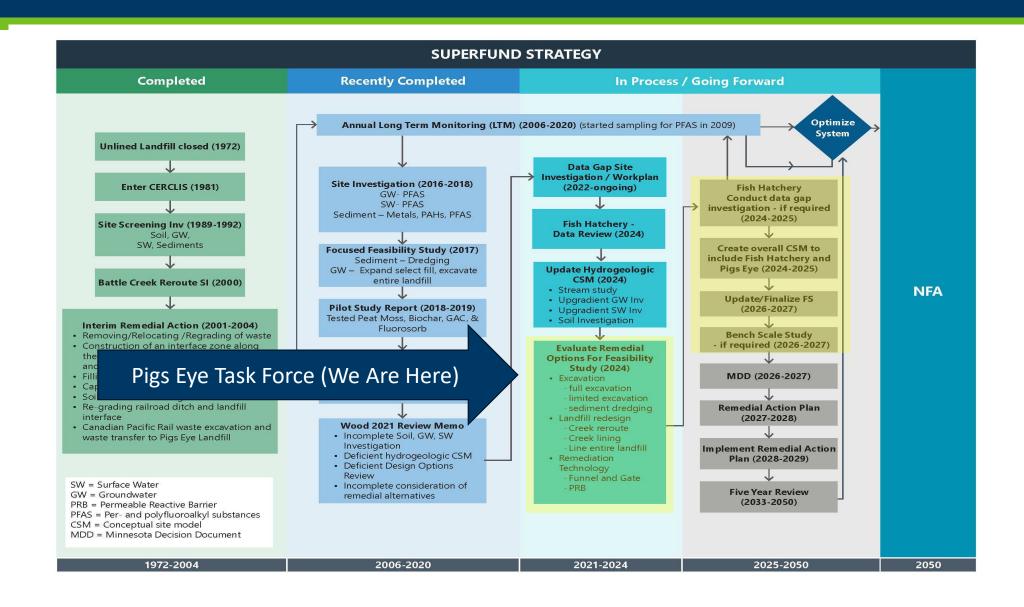
- Consultant introductions
- Taskforce members to share:
 - Name
 - Title
 - Organization



Recap from Last Meeting


Recap Agenda

- Superfund Process/Timeline
- Site Investigation
- Feasibility Study Process
- Draft Remedial Options



Superfund Process

Generalized Superfund Process

Pig's Eye Superfund Process -- Timeline

Pig's Eye – Potential Chemicals of Concern

Metals

- Metals (cadmium, copper, lead, and zinc) were detected above Sediment Quality Targets (SQTs)
- Human-health related Sediment Screening Values (SSVs) were exceeded for cadmium

PFAS

• PFAS concentrations in well, creek, and lake water detected above MPCA surface water criteria for Pool 2.

Landfill Gas

Methane can create explosive conditions and is a potent greenhouse gas.

• 1,4-dioxane

• 1,4-dioxane detected above the MDH Health Risk Limit (HRL) in groundwater.

Site Complexities

- Multiple contaminants
- Multiple impacted media soil, groundwater, surface water, sediments
- Upgradient sources Fish Hatchery, Battle Creek
- Undefined area of impact upgradient and crossgradient
- Complex hydrogeology Battle Creek, Pigs Eye Lake, previous excavations/remedial actions
- Changing standards/regulatory environment

Previous Remedial Actions Completed

Between 2000 to 2005:

- Removed drums of hazardous waste (~230 drums near Battle Creek)
- Pulled back waste and constructed an engineered barrier along a portion of Battle Creek to adsorb contaminants
- Installed a soil cap on waste footprint (two feet thick)
- Cleaned up localized area of contaminated surface soil and batteries
- Filled and graded ponds

• Comments or thoughts from the last meeting?

Remedial Strategies

Establishing a Path Forward (Remediation)

As we hear about remediation options, keep these questions in mind:

- 1. What is the future use of landfill?
- 2. What is future use of Pigs Eye Lake and overall regional use?
- 3. How does future use affect cleanup goals?
- 4. Complete remediation of the landfill, or only partial?
- 5. Remediate all or certain media (soil/groundwater/sediment/surface water/air)?
- 6. Remediate Pigs Eye Lake?

Components of a Feasibility Study

- 1. Site History/Background/Contaminants/Source Areas
- 2. Exposure Pathways Soil/Groundwater/Soil Vapor
- 3. Remedial Action Objectives
- 4. Remedial Options Identification
- 5. Response Action Comparison a) Protection of Public Health, Welfare and environment; b) Cost; c) Long term Effectiveness; d) Implementability; e) Short Term Risk; f) Community Acceptance; g) Sustainability
- 6. Recommended Response Action

Potential Remedial Strategies

- Option 1 No Action
- Option 2 Leave Waste in Place
- Option 3 Targeted Waste Removal
- Option 4 Total Excavation of Landfill, Waste Hauled Offsite
- Option 5 Total Excavation of Landfill, Build New Landfill Onsite

Option 1: No Action

Option 1 – No Action

- Baseline Option for Superfund Process
- Implement institutional controls to restrict future land use
- Conduct routine groundwater, surface water, and landfill gas monitoring (indefinite)
- No source reduction
- Media addressed None

Option 2: Leave Waste in Place

Option 2 – Leave Waste in Place

- Leave waste in place
- Conduct routine groundwater, surface water, and air monitoring (indefinite)
- Implement remedial technologies for groundwater, landfill gas, and/or sediments
- Media addressed Groundwater, surface water, landfill gas
- Measures taken will reduce migration of potential chemicals of concern
- No source reduction
- Does not address potential up-gradient sources

Option 3: Targeted Waste Removal

Option 3 – Targeted Waste Removal

- Limited excavation of waste materials or highly contaminated soils and/or sediments
 - May include excavating, lining, or rerouting Battle Creek
- Implement remedial technologies for groundwater, landfill gas, and/or sediments
- Media addressed Soil, surface water, groundwater, landfill gas
- Measures taken will reduce migration of potential chemicals of concern
- Partial source reduction
- Does not address all waste in place or potential upgradient sources

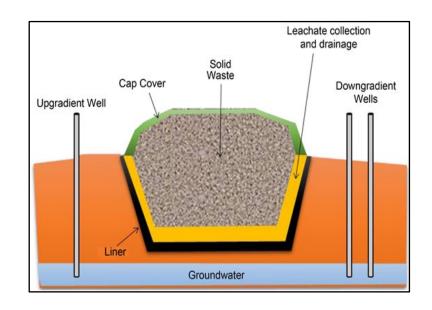
Option 4: Total Excavation of Landfill, Waste Hauled Offsite

Option 4 – Total Excavation of Landfill, Waste Hauled Offsite

- Complete removal of waste materials, hauled to an offsite landfill
 - Battle Creek rerouted temporarily or permanently
- Implement remedial technologies for groundwater, landfill gas, and/or sediments
- Measures taken will remove the contaminant source and significantly reduce potential migration of chemicals of concern
- Media addressed Soil, surface water, groundwater, and air (methane)
- Does not address potential up-gradient sources

Waste Volume Considerations

- ~4.4 million cubic yards of waste
- ~ 300,000 dump truck loads
- ~ 30 trucks per day for more than 38 years!!!



Option 5: Total Excavation of Landfill, Build New Landfill Onsite

Option 5 – Total Excavation of Landfill, Build New Landfill Onsite

- Complete Landfill Reconstruction
 - Reconstruct Landfill with Liner/Cap/Leachate Collection System/Gas Extraction
 - Waste Excavation/Staging/Replacement
 - Battle Creek rerouted temporarily or permanently
- Implement remedial technologies for groundwater, landfill gas, and/or sediments
- Media addressed Soil, surface water, groundwater, and air (methane)
- Measures taken will control the contaminant source and significantly reduce potential migration of chemicals of concern
- Does not address potential up-gradient sources
- Location and site flooding make this challenging to implement

Waste Volume Considerations ~ 4.4 million cubic yards of waste ~300,000 dump truck loads

Comparison of Remedial Strategies

Alternative Comparison

Response Action Comparison	Option 1 (No Action)	Option 2 (Waste In-Place + GW Remedy)	Option 3 (Targeted Waste Removal + GW Remedy)	Option 4 (Total Excavation of Landfill /Waste Hauled offsite + GW Remedy)	Option 5 (Total Excavation of Landfill + Landfill Rebuild + GW Remedy)
Protection of Public Health	Lowest				Highest
Cost (Construction Only)		\$	\$\$	\$\$\$\$\$	\$\$\$\$
Long Term Effectiveness			<u> </u>		
Implementability				•	
Short Term Risk (Construction)			-		
Sustainability (Env/Social/Economic)					
Construction Timeline					•
Community Acceptance	??	??	??	??	??

Pigs Eye Dump Task Force – Public Comment

Public Comment

Please limit your comments to two minutes.

Start by sharing:

- Your name
- Your interest in the project

Contact us:

Hunter Vraa, Task Force Coordinator:
Pig's.Eye.Dump.Task.Force.Mailbox.MPCA@state.mn.us
https://www.pca.state.mn.us/local-sites-and-projects/st-paul-pigs-eye-dump-task-force

- 1. How do our restoration goals align with remediation strategies?
- 2. Task Force planning: Does it make sense to focus more on restoration first or remediation first? What order do you want to tackle these in?

3. What are the funding considerations or opportunities around these remediation options?

Exit Slip Opportunity

Thank you!

