2024 Air Monitoring Network Plan for Minnesota Appendix B:

Minimum Monitoring Requirements and 2023 Monitor Classifications in Air Quality System (AQS)

Summary

The U.S. Environmental Protection Agency (EPA) establishes the minimum number of monitoring sites required to meet national ambient monitoring objectives. The minimum monitoring requirements are codified in Appendix D of 40 CFR Part 58. Minimum monitoring requirements are specific to each individual pollutant (e.g. ozone, $PM_{2.5}$) or objective-based monitoring network (e.g. NCore, PAMs). Minimum monitoring requirements typically rely on population and/or air pollution emissions data. Minnesota currently meets all minimum air monitoring requirements. This Appendix provides a detailed description of these requirements. It also provides tables that describe each monitor's scale, objective, method, and collocation, where required.

Federal Regulation

40 CFR § 58.10 Annual monitoring network plan and periodic network assessment. (a)(1) Beginning July 1, 2007, the state, or where applicable local, agency shall submit to the Regional Administrator an annual monitoring network plan which shall provide for the documentation of the establishment and maintenance of an air quality surveillance system that consists of a network of SLAMS monitoring stations that can include FRM, FEM, and ARM monitors that are part of SLAMS, NCore, CSN, PAMS, and SPM stations. The plan shall include a statement of whether the operation of each monitor meets the requirements of appendices A, B, C, D, and E of this part, where applicable. The Regional Administrator may require additional information in support of this statement. The annual monitoring network plan must be made available for public inspection and comment for at least 30 days prior to submission to the EPA and the submitted plan shall include and address, as appropriate, any received comments.

Authors

Kurt Anderson Kellie Gavin Sanna Mairet Michael Smith Maria Takahashi

Contributors/acknowledgements

Binh Nguyen Ashley Olsen Katie Rinker

Minnesota Pollution Control Agency

520 Lafayette Road North | Saint Paul, MN 55155-4194 |

651-296-6300 | 800-657-3864 | Or use your preferred relay service | Info.pca@state.mn.us

This report is available in alternative formats upon request, and online at www.pca.state.mn.us.

Document number: aq10-22c

Table of contents

List of tables	2
PM _{2.5}	5
PM ₁₀	
Total suspended particulate matter (TSP)	11
Lead	13
Ozone	16
Carbon monoxide	18
Nitrogen dioxide	
Sulfur dioxide	

List of tables

Table B1. National minimum monitoring requirements for PM _{2.5}	5
Table B2. Minnesota monitoring requirements for PM _{2.5} as compared to national standards	5
Table B3. Scales and objectives of MPCA and Tribal PM _{2.5} monitors	6
Table B4. Scales and objectives of Industrial PM _{2.5} monitors in AQS	6
Table B5. Methods, frequency, duration, and collocation of MPCA and Tribal PM _{2.5} monitors prior to equipment replacements in 2022 and 2023	7
Table B6 . Methods, frequency, duration, and collocation of MPCA and Tribal PM _{2.5} monitors after equipment replacements in 2022 and 2023	8
Table B7. Methods and collocation of Industrial PM _{2.5} monitors in AQS	8
Table B8. National minimum monitoring requirements for PM ₁₀	9
Table B9. Minnesota monitoring requirements for PM $_{ m 10}$ as compared to national standards	9
Table B10. Scales and objectives of MPCA PM ₁₀ monitors in AQS	10
Table B11. Scales and objectives of Industrial PM ₁₀ monitors in AQS	10
Table B12. Methods and collocation of MPCA PM ₁₀ monitors in AQS	10
Table B13. Methods and collocation of Industrial PM ₁₀ monitors in AQS	11
Table B14. Scales and objectives of MPCA TSP monitors	11
Table B15. Methods and collocation of MPCA TSP monitors	12
Table B16. 2017 to 2021 annual lead emissions for facilities of interest	13
Table B17. Minnesota lead monitoring sites with maximum 3-month rolling average lead concentrations greater than 50% of the NAAQS	14
Table B18. Scales and objectives of MPCA lead monitors in AQS	
Table B19. Methods and collocation of MPCA lead monitors	
Table B20. National minimum monitoring requirements for ozone	
Table B21. Minnesota monitoring requirements for ozone as compared to national standards	
Table B22. Scales and objectives of MPCA and Tribal ozone monitors	
Table B23. Methods of MPCA and Tribal ozone monitors	
Table B24. Minnesota carbon monoxide monitoring requirements	
Table B25. Scales and objectives of MPCA carbon monoxide monitors in AQS	
Table B26. Methods of MPCA carbon monoxide monitors in AQS	
Table B27. National minimum monitoring requirements for nitrogen dioxide	
Table B28. Minnesota monitoring requirements for nitrogen dioxide	
Table B29. Scales and objectives of MPCA nitrogen dioxide monitors in AQS	
Table B30. Methods of MPCA NO ₂ monitors in AQS	
Table B31. National minimum monitoring requirements for sulfur dioxide	20
Table B32. Minnesota monitoring requirements for sulfur dioxide as compared to national standards	
Table B33. Scales and objectives of MPCA sulfur dioxide monitors in AQS	
Table B34. Methods of MPCA sulfur dioxide monitors in AQS	21

Fine particulate (PM_{2.5}) monitoring requirements

The minimum monitoring requirements for PM_{2.5} are established in Appendix D of 40 CFR Part 58, section 4.7.1(a) (Table B1). In addition to these population-based requirements, PM_{2.5} monitoring is required at NCore and near-road air monitoring sites, as established in section 3(b) and section 4.7.1(b)(2) of Appendix D, respectively. NCore site also fulfills the continuous PM_{2.5} and PM_{2.5} chemical speciation network (CSN) site requirements, as established in section 4.7.2 and section 4.7.4 of the appendix, respectively. Each state is also required to operate at least one PM_{2.5} site to monitor for regional background and at least one PM_{2.5} site to monitor for regional transport, as established in section 4.7.3 of the appendix.

Table B1. National minimum monitoring requirements for PM_{2.5}

MSA Population	Most recent 3-year design value ≥85% of any PM _{2.5} NAAQS ³	Most recent 3-year design value <85% of any PM _{2.5} NAAQS ^{3,4}		
>1,000,000	3	2		
500,000 - 1,000,000	2	1		
50,000 - <500,000 ⁵	1	0		

¹ Minimum monitoring requirement applies to the Metropolitan statistical area (MSA).

Table B2. Minnesota monitoring requirements for PM_{2.5} as compared to national standards

Metropolitan Area	Counties included	2021 Population Estimate	Maximum 2022 Annual DV as % of NAAQS (12 μg/m³)	Maximum 2022 Daily DV as % of NAAQS (35 μg/m³)	Minimum Requirement	2022 Sites with FRM or FEM monitor
Minneapolis-St. Paul- Bloomington, MN-WI ¹	16 county area including the Twin Cities ¹	3,690,512	70%	71%	2	10
Duluth, MN-WI	Carlton (MN), St. Louis (MN), Douglas (WI)	290,780	40%	49%	0	3
Fargo, ND-MN	Clay (MN), Cass (ND)	252,136	69%	91%	1	1 (ND)
Rochester, MN	Dodge (MN), Olmsted (MN), Wabasha (MN)	227,151	50%	54%	0	1
St. Cloud, MN	Benton (MN), Stearns (MN)	200,406	59%	60%	0	1
La Crosse-Onalaska, WI-MN	Houston (MN), La Crosse (WI)	139,211	66%	60%	0	1 (WI)
Mankato-North Mankato, MN	Blue Earth (MN), Nicollet (MN)	103,612	Unmo	nitored	0	0
Grand Forks, ND-MN	Polk (MN), Grand Forks (ND)	103,462	Unmo	nitored	0	0
NCore	NCore (Blaine)			requirement	1	1
Near-road I	Not a population based requirement			1	1	
Near-road	Not a population based requirement			1	1	
Regional bac	Regional background (Ely)			Not a population based requirement		
Regional trans	port (Marshall)	Not a po	pulation based i	requirement	1	1

¹Counties include: Anoka (MN), Carver (MN), Chisago (MN), Dakota (MN), Hennepin (MN), Isanti (MN), Le Sueur (MN), Mille Lacs (MN), Ramsey (MN), Scott (MN), Sherburne (MN), Sibley (MN), Washington (MN), Wright (MN), Pierce (WI), St. Croix (WI)

² Population based on latest available census figures.

³The PM_{2.5} National Ambient Air Quality Standard (NAAQS) levels and forms are defined in 40 CFR Part 50.

⁴These minimum monitoring requirements apply in the absence of a design value. ⁵ Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population

Minnesota currently meets all PM_{2.5} monitoring requirements (Table B2), based on current monitoring objectives and methods (Tables B3-B7).

Table B3. Scales and objectives of MPCA and Tribal PM_{2.5} monitors

MPCA	AOS Manitan ID	Monitor	Barranatar Barrintian	Measurement	Monitor Objective
Site ID	AQS Monitor ID	Туре	Parameter Description	Scale	Туре
1002	27-003-1002-88101-1	SLAMS	PM _{2.5} – Local Conditions	Urban Scale	Population Exposure
	27-003-1002-88101-3	SLAMS	PM _{2.5} – Local Conditions	Urban Scale	Population Exposure
2013	27-005-2013-88101-3	SLAMS	PM _{2.5} – Local Conditions	Urban Scale	Population Exposure
2304	27-007-2304-88101-3	TRIBAL	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
7417	27-017-7417-88101-3	TRIBAL	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
3410	27-021-3410-88101-3	TRIBAL	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
7810	27-031-7810-88101-3	TRIBAL	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
3204	27-035-3204-88101-3	SLAMS	PM _{2.5} – Local Conditions	Urban Scale	Population Exposure
0470	27-037-0470-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0480	27-037-0480-88101-3	SLAMS	PM _{2.5} – Local Conditions	Middle Scale	Source Oriented
0962	27-053-0962-88101-3	SLAMS	PM _{2.5} – Local Conditions	Middle Scale	Source Oriented
0063	27-053-0963-88101-1	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0963	27-053-0963-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
2006	27-053-2006-88101-1	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
2006	27-053-2006-88101-2	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0005	27-075-0005-88101-3	SLAMS	PM _{2.5} – Local Conditions	Regional	General / Background
4210	27-083-4210-88101-3	SLAMS	PM _{2.5} – Local Conditions	Urban Scale	Population Exposure/ Regional Transport
5008	27-109-5008-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0868	27-123-0868-88101-1	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
	27-123-0871-88101-1	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0071	27-123-0871-88101-2	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0871	27-123-0871-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
	27-123-0871-88101-4	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
7001	27-137-7001-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
7550	27-137-7550-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
7554	27-137-7554-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
0505	27-139-0505-88101-1	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
3052	27-145-3052-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure
3201	27-171-3201-88101-3	SLAMS	PM _{2.5} – Local Conditions	Neighborhood	Population Exposure

Table B4. Scales and objectives of Industrial PM_{2.5} monitors in AQS

MPCA Site ID	AQS Monitor ID	Monitor Type	Parameter Description	Measurement Scale	Monitor Objective Type
0447	27-163-0447-88101-3	Industrial	PM _{2.5} – Local Conditions	Middle Scale	Source Oriented
	27-163-0448-88101-1	Industrial	PM _{2.5} – Local Conditions	Middle Scale	Source Oriented
0448	27-163-0448-88101-3	Industrial	PM _{2.5} – Local Conditions	Middle Scale	Source Oriented

Table B5. Methods, frequency, duration, and collocation of MPCA and Tribal PM_{2.5} monitors prior to equipment replacements in 2022 and 2023

MPCA Site ID	AQS Monitor ID	Monitor Type	Method Code	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
4002	27-003-1002-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1
1002	27-003-1002-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	Y	0
2013	27-005-2013-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
2304	27-007-2304-88101-3	TRIBAL	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
7417	27-017-7417-88101-3	TRIBAL	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
3410	27-021-3410-88101-3	TRIBAL	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
7810	27-031-7810-88101-3	TRIBAL	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
3204	27-035-3204-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0470	27-037-0470-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0480	27-037-0480-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0962	27-053-0962-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0063	27-053-0963-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1
0963	27-053-0963-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	Y	0
2006	27-053-2006-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	Y	0
2006	27-053-2006-88101-2	SLAMS	145	Gravimetric	24 hours	Every 12 th Day	N	1
0005	27-075-0005-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
4210	27-083-4210-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
5008	27-109-5008-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0868	27-123-0868-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	n/a	n/a
	27-123-0871-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1.5
0871	27-123-0871-88101-2	SLAMS	145	Gravimetric	24 hours	Every 12 th Day	N	1.5
08/1	27-123-0871-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	Υ	0
	27-123-0871-88101-4	SLAMS	170	Beta Attenuation	1 hour	Every Day	N	1.5
7001	27-137-7001-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
7550	27-137-7550-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
7554	27-137-7554-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0505	27-139-0505-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
3052	27-145-3052-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
3201	27-171-3201-88101-3	SLAMS	170	Beta Attenuation	1 hour	Every Day	n/a	n/a

Upcoming changes

Continuing in 2023, PM_{2.5} BAM monitors will be replaced with Teledyne T640 and T640X monitors. T640 monitors are an FEM for PM_{2.5}, while T640X monitors are an FEM for PM_{10-2.5} simultaneously.

These monitors will be replaced gradually across the network. Special consideration will be taken regarding the order of replacement and collocation requirements. Details about methods and collocation after the transition can be found in Table B6.

Table B6. Methods, frequency, duration, and collocation of MPCA and Tribal $PM_{2.5}$ monitors after equipment replacements in 2022 and 2023

MPCA Site ID	AQS Monitor ID	Monitor Type	Method Code*	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
1002	27-003-1002-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1
1002	27-003-1002-88101-3	SLAMS	238	Broadband spectroscopy	1 hour	Every Day	Υ	0
2013	27-005-2013-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
2304	27-007-2304-88101-3	TRIBAL	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
7417	27-017-7417-88101-3	TRIBAL	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
3410	27-021-3410-88101-3	TRIBAL	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
7810	27-031-7810-88101-3	TRIBAL	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
3204	27-035-3204-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0470	27-037-0470-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	Υ	0
0470	27-037-0470-88101-4	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	N	1.5
0480	27-037-0480-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0910	27-053-0910-88101-3	SLAMS	238	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0962	27-053-0962-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0000	27-053-0963-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1
0963	27-053-0963-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	Υ	0
2006	27-053-2006-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	Υ	0
2006	27-053-2006-88101-2	SLAMS	145	Gravimetric	24 hours	Every 12 th Day	N	1
0005	27-075-0005-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
4210	27-083-4210-88101-3	SLAMS	238	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
5008	27-109-5008-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0868	27-123-0868-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	n/a	n/a
	27-123-0871-88101-1	SLAMS	145	Gravimetric	24 hours	Every 3 rd Day	N	1.5
0871	27-123-0871-88101-2	SLAMS	145	Gravimetric	24 hours	Every 12 th Day	N	1.5
	27-123-0871-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
7001	27-137-7001-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
7550	27-137-7550-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
7554	27-137-7554-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
0505	27-139-0505-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
3052	27-145-3052-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
3201	27-171-3201-88101-3	SLAMS	236	Broadband spectroscopy	1 hour	Every Day	n/a	n/a

^{*} Method 236 uses Teledyne T640 at 5.0 LPM; method 238 uses Teledyne T640X at 16.67 LPM.

Table B7. Methods and collocation of Industrial PM_{2.5} monitors in AQS

MPCA Site ID	AQS Monitor ID	Monitor Type	Method Code	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
0447	27-163-0447-88101-3	Industrial	170	Beta Attenuation	1 hour	Every Day	n/a	n/a
0448	27-163-0448-88101-1	Industrial	142	Gravimetric	24 hours	Every 12 th Day	Υ	0
0448	27-163-0448-88101-3	Industrial	170	Beta Attenuation	1 hour	Every Day	N	2

PM₁₀ monitoring requirements

The minimum monitoring requirements for PM_{10} are established in Appendix D of 40 CFR Part 58, section 4.6 (Table B8). In addition to these population-based requirements, PM_{10} monitoring is required at NCore sites as established in section 3(b) of Appendix D.

Minnesota currently meets all PM₁₀ monitoring requirements (Table B9), based on current monitoring objectives and methods (Tables B10-B13).

Table B8. National minimum monitoring requirements for PM₁₀

	MSA ¹					
Population category	High concentration ²	Medium concentration ³	Low concentration ^{4,5}			
>1 million	6-10	4-8	2-4			
500,000 – 1 million	4-8	2-4	1-2			
250,000 – 500,000	3-4	1-2	0-1			
100,000 – 250,000	1-2	0-1	0			

¹Selection of urban areas and actual numbers of stations per area within the ranges shown in this table will be jointly determined by EPA and the State Agency.

Table B9. Minnesota monitoring requirements for PM₁₀ as compared to national standards

Metropolitan Area	2021 Population Estimate	Expected days greater than 80% of the NAAQS (120 µg/m³) based on 2022 data	Minimum Requirement	2023 Sites
Minneapolis-St. Paul-Bloomington, MN-WI	3,690,512	2	4-8	6
Duluth, MN-WI	290,780	0	0-1	2
Fargo, ND-MN	252,136	0	0	1 (ND)
Rochester, MN	227,151	Unmonitored	0	0
St. Cloud, MN	200,406	Unmonitored	0	0
La Crosse-Onalaska, WI-MN	139,211	Unmonitored	0	0
Grand Forks, ND-MN	103,462	Unmonitored	0	0
Mankato-North Mankato, MN	103,612	Unmonitored	0	0
NCore (Blaine)	Not a population based requirement		1	1

²High concentration areas are those for which ambient PM₁₀ data show ambient concentrations exceeding the PM₁₀ NAAQS by 20% or more.

³Medium concentration areas are those for which ambient PM₁₀ data show ambient concentrations exceeding 80% of the PM₁₀ NAAQS.

⁴Low concentration areas are those for which ambient PM₁0 data show ambient concentrations less than 80% of the PM₁0 NAAQS.

⁵These minimum monitoring requirements apply in the absence of a design value.

Table B10. Scales and objectives of MPCA PM_{10} monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002	SLAMS	27-003-1002-81102-3	PM ₁₀ Total 0-10 μm Stp	Urban Scale	Population Exposure
0909	SLAMS	27-053-0909-81102-3	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented
0910	SLAMS	27-053-0910-81102-3	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented
0966	SLAMS	27-053-0966-81102-1	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Population Exposure
0000	SLAMS	27-123-0866-81102-1	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Highest Concentration
0866	SLAMS	27-123-0866-81102-2	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Highest Concentration
0868	SLAMS	27-123-0868-81102-3	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Population Exposure
0000	SLAMS	27-137-0032-81102-1	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented
0032	SLAMS	27-137-0032-81102-2	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented
7001	SLAMS	27-137-7001-81102-1	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Population Exposure
1909	SPM	27-053-1909-88101-3	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Population Exposure

Table B11. Scales and objectives of Industrial PM₁₀ monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1009	Industrial	27-075-1009-81102-1	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Source Oriented
7632	Industrial	27-075-7632-81102-1	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Source Oriented
		27-075-7640-81102-1	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Source Oriented
7640	Industrial	27-075-7640-81102-2	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Source Oriented
		27-075-7640-81102-3	PM ₁₀ Total 0-10 μm Stp	Neighborhood	Source Oriented
0447	Industrial	27-163-0447-81102-3	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented
0448	Industrial	27-163-0448-81102-3	PM ₁₀ Total 0-10 μm Stp	Middle Scale	Source Oriented

Table B12. Methods and collocation of MPCA PM₁₀ monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Method Code	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
1002*	SLAMS	27-003-1002-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a
0909	SLAMS	27-053-0909-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a
0910*	SLAMS	27-053-0910-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a
0966	SLAMS	27-053-0966-81102-1	063	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
4210	SLAMS	27-083-4210-81102-3	239	Broadband spectroscopy	1 hour	Every Day	n/a	n/a
		27-123-0866-81102-1	063	Gravimetric	24 hours	Every 6 th Day	Υ	0
0866	SLAMS	27-123-0866-81102-2	063	Gravimetric	24 hours	Every 12 th Day	N	1.5
0868	SLAMS	27-123-0868-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a
		27-137-0032-81102-1	063	Gravimetric	24 hours	Every 6 th Day	Y	0
0032 SLA	SLAMS	27-137-0032-81102-2	063	Gravimetric	24 hours	Every 6 th Day	N	1.5
7001	SLAMS	27-137-7001-81102-1	063	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
1909	SPM	27-053-1909-88101-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a

 $[\]ensuremath{^{*}}$ These sites will change to method 239 (Teledyne T640X at 16.67 LPM) in 2023

Table B13. Methods and collocation of Industrial PM₁₀ monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Method Code	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
1009	Industrial	27-075-1009-81102-1	063	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
7632	Industrial	27-075-7632-81102-1	063	Gravimetric	24 hours	Every 6 th Day	Υ	1
		27-075-7640-81102-1	063	Gravimetric	24 hours	Every 6 th Day	Υ	0
7640	Industrial	27-075-7640-81102-2	063	Gravimetric	24 hours	Every 12 th Day	N	1
		27-075-7640-81102-3	122	Beta Attenuation	1 hour	Every Day	N	1
0447	Industrial	27-163-0447-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a
0448	Industrial	27-163-0448-81102-3	122	Beta Attenuation	1 hour	Every Day	n/a	n/a

Total suspended particulate matter (TSP)

TSP monitoring requirements

The TSP NAAQS was replaced in 1987 by the PM_{10} standard. There are currently no federal requirements to monitor TSP. Minnesota rule administered by the Minnesota Pollution Control Agency requires the monitoring of TSP and the enforcement of state TSP standards. The TSP standards are detailed in Minn.R.7009.0080.

Minnesota monitors at several locations (Tables B14 and B15).

Table B14. Scales and objectives of MPCA TSP monitors

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002	SLAMS	27-003-1002-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
6021	SLAMS	27-003-6021-11101-1	Suspended particulate (TSP)	Neighborhood	Source Oriented
	61.4446	27-037-0020-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
0020	SLAMS	27-037-0020-11101-2	Suspended particulate (TSP)	Middle Scale	Source Oriented
0423	SLAMS	27-037-0423-11101-2	Suspended particulate (TSP)	Middle Scale	Source Oriented
		27-037-0465-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
0465	SLAMS	27-037-0465-11101-2	Suspended particulate (TSP)	Middle Scale	Source Oriented
0470	SLAMS	27-037-0470-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
0909	SLAMS	27-053-0909-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
0910	SLAMS	27-053-0910-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
0962	SLAMS	27-053-0962-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
0963	SLAMS	27-053-0963-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
0966	SLAMS	27-053-0966-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
1007	SLAMS	27-053-1007-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
1909	SPM	27-053-1909-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
0871	SLAMS	27-123-0871-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
0875	SLAMS	27-123-0875-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
7001	SLAMS	27-137-7001-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
7549	SLAMS	27-137-7549-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented
7555	CLANAC	27-137-7555-11101-1	Suspended particulate (TSP)	Neighborhood	Population Exposure
7555	SLAMS	27-137-7555-11101-2	Suspended particulate (TSP)	Neighborhood	Population Exposure
0446	SLAMS	27-163-0446-11101-1	Suspended particulate (TSP)	Middle Scale	Source Oriented

Table B15. Methods and collocation of MPCA TSP monitors

MPCA Site ID	AQS Monitor ID	Method Code	Sample Analysis Description	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
1002	27-003-1002-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
6021	27-003-6021-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0020	27-037-0020-11101-1	091	Gravimetric	24 hours	Every 6 th Day	Υ	0
0020	27-037-0020-11101-2	091	Gravimetric	24 hours	Every 6 th Day	N	2.5
0423	27-037-0423-11101-2	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0.465	27-037-0465-11101-1	091	Gravimetric	24 hours	Every 6 th Day	Υ	0
0465	27-037-0465-11101-2	091	Gravimetric	24 hours	Every 12 th Day	N	2.5
0470	27-037-0470-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0909	27-053-0909-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0910	27-053-0910-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0962	27-053-0962-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0963	27-053-0963-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0966	27-053-0966-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
1007	27-053-1007-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
1909	27-053-1909-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0871	27-123-0871-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0875	27-123-0875-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
7001	27-137-7001-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
7549	27-137-7549-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
	27-137-7555-11101-1	091	Gravimetric	24 hours	Every 6 th Day	Υ	0
7555	27-137-7555-11101-2	091	Gravimetric	24 hours	Every 12 th Day	N	3
0438	27-163-0438-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a
0446	27-163-0446-11101-1	091	Gravimetric	24 hours	Every 6 th Day	n/a	n/a

Lead

Lead monitoring requirements

The minimum monitoring requirements for lead are established in Appendix D of 40 CFR Part 58, section 4.5. Lead monitoring requirements are based on annual emissions. This source-oriented network requires lead monitoring for non-airport sources which emit 0.50 tons or more lead per year (TPY) and from each airport which emits 1.0 or more TPY, based on either the most recent National Emission Inventory (NEI) or other scientifically justifiable methods and data. The EPA Regional Administrator may waive the lead monitoring requirement near lead sources if the State or, where appropriate, the local agency can demonstrate the lead source will not contribute to a maximum lead concentration in ambient air in excess of 50% of the NAAQS (based on historical monitoring data, modeling, or other means). The waiver must be re-evaluated once every five years as part of the network assessment. Table B16 shows all facilities with annual Pb emissions greater than 0.5 tons per year and facilities where maximum 3-month rolling average lead concentrations are greater than 50% of the lead NAAQS.

Table B16. 2017 to 2021 annual lead emissions for facilities of interest

Facility Name	City	County	2017 Lead Emissions (TPY)	2018 Lead Emissions (TPY)	2019 Lead Emissions (TPY)	2020 Lead Emissions (TPY)	2021 Lead Emissions (TPY)
Federal Cartridge Co.	Anoka, MN	Anoka	0.073	0.141	2.02*	2.07	2.12
Gopher Resource LLC	Eagan, MN	Dakota	0.157	0.325	0.170	0.135	0.135
US Steel Corp – Minntac	Mountain Iron, MN	St. Louis	0.564	0.552	0.501	0.486	0.559

^{*}Due to production and stack test emission factor

Federal Cartridge

Federal Cartridge was identified above the 0.5 tons Lead on their annually emission inventory for 2019, 2020, and 2021. The MPCACP placed a lead monitoring site at Federal Cartridge, Anoka MN, to meet the requirement of Appendix D of 40 CFR Part 58, section 4.5. This requirement identifies there must be one source-oriented SLAMS site located to measure the maximum Pb concentration in ambient air resulting from each non-airport Pb source which emits 0.50 or more tons per year.

Gopher Resource LLC

In addition to the emissions-based lead monitoring requirements, the EPA Regional Administrator can require additional monitoring beyond the minimum monitoring requirements where the "likelihood of lead air quality violations is significant", or where the emissions density, topography, or population locations are complex and varied. The Minnesota Pollution Control Agency (MPCA) interprets the "likelihood of lead air quality violations is significant" to include locations where ambient monitoring or modeling indicate that ambient lead concentrations may be greater than 50% of the lead NAAQS. Based on monitoring conducted from 2019-2021, one ambient lead monitoring site measured maximum 3-month rolling average lead concentrations greater than 50% of the lead NAAQS (Table B17). At a minimum, the MPCA intends to continue monitoring for lead at

this site for as long as the maximum 3-month rolling average lead concentration is greater than 50% of the lead NAAQS.

Table B17. Minnesota lead monitoring sites with maximum 3-month rolling average lead concentrations greater than 50% of the NAAQS

Site Name	AQS Monitor ID	Maximum 3-month Rolling Average (2020-2022)	Percent of NAAQS
Eagan – Gopher Resources	27-037-0465-14129-1	0.10 μg/m³	67%

US Steel Corp – Minntac

In 2009, the MPCA conducted modeling to assess ambient lead concentrations near U.S. Steel Corp – Minntac. The results of this modeling predicted that maximum ambient lead concentrations near the facility were less than 50% of the lead NAAQS. See the 2011 Source-oriented Lead Monitoring Plan for Minnesota for a summary of these results, at https://www.pca.state.mn.us/sites/default/files/aq10-04.pdf. The MPCA received a lead monitoring waiver for U.S. Steel Corp-Minntac in December 2011.

The 2011 monitoring waiver was re-evaluated and results were published in the January 2017 Lead Monitoring Waiver Renewal for U.S. Steel Corp – Minntac. Results of the 2017 modeling reassessment are similar to those conducted in 2009 and 2011. Modeled ambient lead concentrations are well below the monitoring threshold of 50% of the lead NAAQS. Using a background ambient lead concentration of 0.01 $\mu g/m^3$, the total facility impact is estimated at 0.010244 $\mu g/m^3$, which is approximately 14% of the threshold to require ambient fence-line monitoring. Based on these results, the EPA has approved MPCA's lead monitoring waiver for the Minntac facility.

MPCA is reevaluating updated modeling results to determine if a monitoring waver is still appropriate for US Steel Corp – Minntac. Actual emissions from the facility have been consistent for several years (Table B17).

Table B18. Scales and objectives of MPCA lead monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002	SLAMS	27-003-1002-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
6021	SLAMS	27-003-6021-14129-1	Lead (Tsp) LC	?	Source Oriented
0020	SLAMS	27-037-0020-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented
0020	SLAMS	27-037-0020-14129-2	Lead (Tsp) LC	Middle Scale	Source Oriented
0423	SLAMS	27-037-0423-14129-2	Lead (Tsp) LC	Middle Scale	Source Oriented
0.465	SLAMS	27-037-0465-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented
0465	SLAMS	27-037-0465-14129-2	Lead (Tsp) LC	Middle Scale	Source Oriented
0470	SLAMS	27-037-0470-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
0909	SLAMS	27-053-0909-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented
0910	SLAMS	27-053-0910-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented
0962	SLAMS	27-053-0962-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented
0963	SLAMS	27-053-0963-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
0966	SLAMS	27-053-0966-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
1007	SLAMS	27-053-1007-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
1909	SPM	27-053-1909-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
0871	SLAMS	27-123-0871-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
0875	SLAMS	27-123-0875-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
7001	SLAMS	27-137-7001-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
7549	SLAMS	27-137-7549-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
7555	SLAMS	27-137-7555-14129-1	Lead (Tsp) LC	Neighborhood	Population Exposure
7555	SLAMS	27-137-7555-14129-2	Lead (Tsp) LC	Neighborhood	Population Exposure
0446	SLAMS	27-163-0446-14129-1	Lead (Tsp) LC	Middle Scale	Source Oriented

Table B19. Methods and collocation of MPCA lead monitors

MPCA Site ID	AQS Monitor ID	Monitor Type	Method Code*	Sample Duration	Collection Frequency	Collocation Primary Monitor Indicator	Distance from Primary Monitor (m)
1002	27-003-1002-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
6021	27-003-6021-14129-1	SPM	192	24 hours	Every 6 th Day	n/a	n/a
0020	27-037-0020-14129-1	SLAMS	192	24 hours	Every 6 th Day	Υ	0
0020	27-037-0020-14129-2	SLAMS	192	24 hours	Every 6 th Day	N	2.5
0423	27-037-0423-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0.465	27-037-0465-14129-1	SLAMS	192	24 hours	Every 6 th Day	Υ	0
0465	27-037-0465-14129-2	SLAMS	192	24 hours	Every 12th Day	N	2.5
0470	27-037-0470-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0909	27-053-0909-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0910	27-053-0910-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0962	27-053-0962-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0963	27-053-0963-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0966	27-053-0966-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
1007	27-053-1007-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
1909	27-053-1909-14129-1	SPM	192	24 hours	Every 6 th Day	n/a	n/a
0871	27-123-0871-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
0875	27-123-0875-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
7001	27-137-7001-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
7549	27-137-7549-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a
7555	27-137-7555-14129-1	SLAMS	192	24 hours	Every 6 th Day	Υ	0
7555	27-137-7555-14129-2	SLAMS	192	24 hours	Every 12 th Day	N	3
0446	27-163-0446-14129-1	SLAMS	192	24 hours	Every 6 th Day	n/a	n/a

 $^{{}^*\}mathsf{Method}\ \mathbf{192}\ \mathsf{is}\ \mathsf{Inductively}\ \mathsf{Coupled}\ \mathsf{Plasma-Mass}\ \mathsf{Spectrometry}\ \mathsf{Acid}\ \mathsf{filter}\ \mathsf{extract}\ \mathsf{with}\ \mathsf{hot}\ \mathsf{nitric}\ \mathsf{acid}$

Ozone

Ozone (O₃) monitoring requirements

The minimum monitoring requirements for ozone are established in Section 4.1 of Appendix D of 40 CFR Part 58, section 4.1 (Table B20). In addition to these population-based requirements, ozone monitoring is required at NCore sites as established in section 3(b) of Appendix D.

Minnesota currently meets all ozone monitoring requirements (Table B21), based on current monitoring objectives and methods (Tables B22 and B23).

Table B20. National minimum monitoring requirements for ozone

MSA Population ^{1,2}	Most recent 3-year design value concentrations ≥85% of any O ₃ NAAQS ³	Most recent 3-year design value concentration <85% of any O ₃ NAAQS ^{3,4}
>10 million	4	2
4-10 million	3	1
350,000 - <4 million	2	1
50,000 - <350,000 ⁵	1	0

¹Minimum monitoring requirements apply to the Metropolitan statistical area (MSA).

Table B21. Minnesota monitoring requirements for ozone as compared to national standards

Metropolitan Area	2021 Population Estimate	Maximum 2022 8- Hour DV as % of NAAQS (70 ppb)	Minimum Requirement	2022 Sites
Minneapolis-St. Paul-Bloomington, MN-WI	3,690,512	90%	2	6
Duluth, MN-WI	290,780	79%	0	2
Fargo, ND-MN	252,136	83%	1	1 (ND)
Rochester, MN	227,151	89%	1	1
St. Cloud, MN*	200,406	Unmonitored	0	0
La Crosse-Onalaska, WI-MN	139,211	84%	1	1 (WI)
Grand Forks, ND-MN	103,462	Unmonitored	0	0
Mankato-North Mankato, MN	103,612	Unmonitored	0	0
NCore (Blaine)	Not a population base	ed requirement	1	1

^{*}AQS Site 27-145-3052 may represent the St. Cloud air mass, and is within St. Cloud city limits, but its actual location in Sherburne County means that it is outside the boundary of the St. Cloud MSA. Thus, Site 3052 does not meet the monitoring requirements for the St. Cloud MSA. Sherburne County is part of the Minneapolis-St. Paul-Bloomington, MN-WI MSA.

²Population based on latest available census figures.

³The ozone (O₃) National Ambient Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50.

⁴These minimum monitoring requirements apply in the absence of a design value.

⁵Metropolitan statistical areas (MSA) must contain an urbanized area of 50,000 or more population.

Table B22. Scales and objectives of MPCA and Tribal ozone monitors

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1001	SLAMS	27-003-1001-44201-1	Ozone	Neighborhood	Highest Concentration
1002	SLAMS	27-003-1002-44201-1	Ozone	Neighborhood	Highest Concentration
2013	SLAMS	27-005-2013-44201-1	Ozone	Urban Scale	Regional Transport
7417	TRIBAL	27-017-7417-44201-1	Ozone	Neighborhood	Population Exposure
3204	SLAMS	27-035-3204-44201-1	Ozone	Urban Scale	Population Exposure
5302	SLAMS	27-049-5302-44201-1	Ozone	Neighborhood	Population Exposure
0962	SLAMS	27-053-0962-44201-1	Ozone	Middle Scale	Source Oriented
0005	SLAMS	27-075-0005-44201-1	Ozone	Regional	General / Background
4210	SLAMS	27-083-4210-44201-1	Ozone	Urban Scale	Regional Transport
3051	TRIBAL	27-095-3051-44201-1	Ozone	Urban Scale	Population Exposure
5008	SLAMS	27-109-5008-44201-1	Ozone	Neighborhood	Population Exposure
7550	SLAMS	27-137-7550-44201-1	Ozone	Neighborhood	Population Exposure
0505	SLAMS	27-139-0505-44201-1	Ozone	Neighborhood	Population Exposure
3052	SLAMS	27-145-3052-44201-1	Ozone	Neighborhood	Population Exposure
6016	SLAMS	27-163-6016-44201-1	Ozone	Neighborhood	Highest Concentration
3201	SLAMS	27-171-3201-44201-1	Ozone	Neighborhood	Highest Concentration

Table B23. Methods of MPCA and Tribal ozone monitors

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Method Code	Sample Analysis Description
1001	SLAMS	27-003-1001-44201-1	Ozone	087	Ultraviolet Absorption
1002	SLAMS	27-003-1002-44201-1	Ozone	087	Ultraviolet Absorption
2013	SLAMS	27-005-2013-44201-1	Ozone	087	Ultraviolet Absorption
7417	TRIBAL	27-017-7417-44201-1	Ozone	087	Ultraviolet Absorption
3204	SLAMS	27-035-3204-44201-1	Ozone	087	Ultraviolet Absorption
5302	SLAMS	27-049-5302-44201-1	Ozone	087	Ultraviolet Absorption
0962	SLAMS	27-053-0962-44201-1	Ozone	087	Ultraviolet Absorption
0005	SLAMS	27-075-0005-44201-1	Ozone	087	Ultraviolet Absorption
4210	SLAMS	27-083-4210-44201-1	Ozone	087	Ultraviolet Absorption
3051	TRIBAL	27-095-3051-44201-1	Ozone	087	Ultraviolet Absorption
5008	SLAMS	27-109-5008-44201-1	Ozone	087	Ultraviolet Absorption
7550	SLAMS	27-137-7550-44201-1	Ozone	087	Ultraviolet Absorption
0505	SLAMS	27-139-0505-44201-1	Ozone	087	Ultraviolet Absorption
3052	SLAMS	27-145-3052-44201-1	Ozone	087	Ultraviolet Absorption
6016	SLAMS	27-163-6016-44201-1	Ozone	087	Ultraviolet Absorption
3201	SLAMS	27-171-3201-44201-1	Ozone	087	Ultraviolet Absorption

Carbon monoxide

Carbon monoxide (CO) monitoring requirements

The minimum monitoring requirements for CO are established in Appendix D of 40 CFR Part 58, section 4.2. These requirements include monitoring CO at NCore sites and at two near-road air monitoring sites in Core Base Statistical Areas (CBSAs) having a population of 1,000,000 or more persons, as established in section 3(b) and section 4.2.1(a) of Appendix D, respectively. (Table B24). In addition to these minimum requirements, the Regional Administrator may require additional monitors in situations where data or other information suggests that CO concentrations may be approaching or exceeding the NAAQS. Minnesota currently meets the minimum CO monitoring requirements, according to monitoring objectives and methods (Tables B25 and B26).

Table B24. Minnesota carbon monoxide monitoring requirements

Location Requirement	Required Sites	2022 Sites
Near-road CO for CBSAs > 1 million (Minneapolis – St. Paul- Bloomington, MN-WI)	1	2
NCore (Blaine)	1	1

Table B25. Scales and objectives of MPCA carbon monoxide monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002	SLAMS	27-003-1002-42101-1	Carbon Monoxide	Urban Scale	Population Exposure
0020	SLAMS	27-037-0020-42101-1	Carbon Monoxide	Middle Scale	Source Oriented
0423	SLAMS	27-037-0423-42101-1	Carbon Monoxide	Middle Scale	Source Oriented
0480	SLAMS	27-037-0480-42101-1	Carbon Monoxide	Middle Scale	Source Oriented
0954	SLAMS	27-053-0954-42101-1	Carbon Monoxide	Microscale	Highest Concentration
0962	SLAMS	27-053-0962-42101-1	Carbon Monoxide	Middle Scale	Source Oriented

Table B26. Methods of MPCA carbon monoxide monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Method Code	Sample Analysis Description
1002	SLAMS	27-003-1002-42101-1	593	Gas Filter Correlation Teledyne API 300 EU
0020	SLAMS	27-037-0020-42101-1	093	Gas Filter Correlation CO Analyzer
0423	SLAMS	27-037-0423-42101-1	093	Gas Filter Correlation CO Analyzer
0480	SLAMS	27-037-0480-42101-1	093	Gas Filter Correlation CO Analyzer
0954	SLAMS	27-053-0954-42101-1	093	Gas Filter Correlation CO Analyzer
0962	SLAMS	27-053-0962-42101-1	093	Gas Filter Correlation CO Analyzer

Nitrogen dioxide

Nitrogen dioxide (NO₂) monitoring requirements

The minimum monitoring requirements for NO_2 are established in Appendix D of 40 CFR Part 58, section 4.3. There are two primary monitoring objectives for NO_2 , including monitoring near roads and in neighborhoods (area-wide), as established in section 3(b) and section 4.2.1(a) of Appendix D, respectively (Table B27). In addition to these minimum requirements, the Regional Administrator may require additional monitoring in areas where NO_2 is expected to be near the level of the NAAQS. To date, the Regional Administrator has not required any additional NO_2 monitors in Minnesota.

Minnesota currently meets all NO₂ monitoring requirements (Table B28), based on current monitoring objectives (Table B29) and methods (Table B30).

Table B27. National minimum monitoring requirements for nitrogen dioxide

MSA Population	Near-Road Monitors	Area-wide Monitors
500,000	1-21	0
1,000,000	1	1
2,500,000	2	1

¹A second near-road site is required for any CBSA with a population of 500,000 or more persons that has one or more roadway segments with Annual Average Daily Traffic (AADT) greater than 250,000.

Table B28. Minnesota monitoring requirements for nitrogen dioxide

Metropolitan Area	2021 Population Estimate	Required Near-Road	2022 Near-Road	Required Area-Wide	2022 Area-Wide
Minneapolis-St. Paul-Bloomington, MN-WI	3,690,512	2	2	1	1
Duluth, MN-WI	290,780	0	0	0	0
Fargo, ND-MN	252,136	0	0	0	1 (ND)
Rochester, MN	227,151	0	0	0	0
St. Cloud, MN	200,406	0	0	0	0
La Crosse-Onalaska, WI-MN	139,211	0	0	0	0
Grand Forks, ND-MN	103,462	0	0	0	0
Mankato-North Mankato, MN	103,612	0	0	0	0

Table B29. Scales and objectives of MPCA nitrogen dioxide monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002*	SLAMS	27-003-1002-42602-1	Nitrogen Dioxide	Urban Scale	General / Background
0020	SLAMS	27-037-0020-42602-1	Nitrogen Dioxide	Middle Scale	Source Oriented
0423	SLAMS	27-037-0423-42602-1	Nitrogen Dioxide	Middle Scale	Source Oriented
0480	SLAMS	27-037-0480-42602-1	Nitrogen Dioxide	Middle Scale	Source Oriented
0962	SLAMS	27-053-0962-42602-1	Nitrogen Dioxide	Middle Scale	Source Oriented / Highest Concentration
7001	SPM	27-137-7001-42602-1	Nitrogen Dioxide	Regional Scale	General / Background

^{*}The NO₂ monitor at NCore (1002) satisfies the area-wide requirement for the Minneapolis-St. Paul-Bloomington, MN-WI CBSA.

Table B30. Methods of MPCA NO₂ monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Method Code	Sample Analysis Description
1002	SLAMS	27-003-1002-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence
0020	SLAMS	27-037-0020-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence
0423	SLAMS	27-037-0423-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence
0480	SLAMS	27-037-0480-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence
0962	SLAMS	27-053-0962-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence
7001	SPM	27-137-7001-42602-1	Nitrogen Dioxide	099	Gas Phase Chemiluminescence

Sulfur dioxide

Sulfur dioxide (SO₂) monitoring requirements

The minimum monitoring requirements for SO_2 are established in Appendix D of 40 CFR Part 58, section 4.4. The SO_2 monitoring requirement is based on the Population Weighted Emissions Index (PWEI) for all CBSAs (Table B31). The PWEI is calculated by multiplying the population of each CBSA, using the most recent census data or estimates, and the total amount of SO_2 in TPY emitted within the CBSA area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory for each county in each CBSA. The resulting value is divided by one million, providing a PWEI value, the units of which are million person-tons per year (Table B32). In addition to these population-based requirements, SO_2 monitoring is required at NCore sites as established in section 3(b) of Appendix D.

The MPCA currently monitors SO₂ at seven locations in the state (Tables B33 and B34).

Table B31. National minimum monitoring requirements for sulfur dioxide

PWEI for CBSA	Required Sites
≥1 million	3
100,000 to < 1 million	2
5,000 to < 100,000	1

Table B32. Minnesota monitoring requirements for sulfur dioxide as compared to national standards

Metropolitan Area	2021 Population Estimate	2020 NEI SO ₂ (tons/year)	PWEI	Minimum requirement	2022 Sites
Minneapolis-St. Paul- Bloomington, MN-WI	3,690,512	7,767	28,664	1	6
Duluth, MN-WI	290,780	3,364	978	0	0
Fargo, ND-MN	252,136	7,600	1,916	0	1 (ND)
Rochester, MN	227,151	179	41	0	0
St. Cloud, MN	200,406	128	26	0	0
La Crosse-Onalaska, WI-MN	139,211	125	17	0	0
Grand Forks, ND-MN	103,462	4,414	457	0	0
Mankato-North Mankato, MN	103,612	221	23	0	0
NCore (Blaine)	Not a popu	ulation-based red	quirement	1	1

Table B33. Scales and objectives of MPCA sulfur dioxide monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Parameter Description	Measurement Scale	Monitor Objective Type
1002	SLAMS	27-003-1002-42401-1	Sulfur Dioxide	Urban Scale	Population Exposure
1002	SLAMS	27-003-1002-42401-2	Sulfur Dioxide	Urban Scale	Population Exposure
0020	SLAMS	27-037-0020-42401-1	Sulfur Dioxide	Middle Scale	Source Oriented
0423	SLAMS	27-037-0423-42401-1	Sulfur Dioxide	Middle Scale	Source Oriented
0443	SLAMS	27-037-0443-42401-1	Sulfur Dioxide	Middle Scale	Source Oriented
0954	SLAMS	27-053-0954-42401-1	Sulfur Dioxide	Microscale	Population Exposure
7001	SPM	27-137-7001-42401-1	Sulfur Dioxide	Regional Scale	General / Background
0436	SLAMS	27-163-0436-42401-1	Sulfur Dioxide	Middle Scale	Source Oriented

Table B34. Methods of MPCA sulfur dioxide monitors in AQS

MPCA Site ID	Monitor Type	AQS Monitor ID	Method Code	Sample Analysis Description
1002	SLAMS	27-003-1002-42401-1	600	Ultraviolet Fluorescence API 100 EU
1002	SLAMS	27-003-1002-42401-2	600	Ultraviolet Fluorescence API 100 EU
0020	SLAMS	27-037-0020-42401-1	100	Ultraviolet Fluorescence
0423	SLAMS	27-037-0423-42401-1	100	Ultraviolet Fluorescence
0443	SLAMS	27-037-0443-42401-1	100	Ultraviolet Fluorescence
0954	SLAMS	27-053-0954-42401-1	100	Ultraviolet Fluorescence
7001	SPM	27-137-7001-42401-1	100	Ultraviolet Fluorescence
0436	SLAMS	27-163-0436-42401-1	100	Ultraviolet Fluorescence