

Best Available Mercury Reduction Technology Analysis and Proposed Alternative Mercury Emissions Reduction Plan

Prepared for ArcelorMittal Minorca Mine Inc.

December 2018

Appendix B (B-5)

Historical Mercury Reduction Research Reports

Appendix B

Historical Mercury Reduction Research Reports

Appendix B-5

Site-Specific Evaluations

Contents

B-5-1: ArcelorMittal Minorca Mine Inc. Activated Carbon Injection Testing to Control Mercury	
Results of Extended Testing (September 2018)	B-5-1
B-5-2: Hibbing Taconite Company. 2017 Mercury Reduction Test Report. Phase III – Gap Ana Injection on Furnace Line 2 (April 13, 2018)	,
B-5-3: Minorca Mine – Scrubber Solids Mass Balance (December 5, 2018)	B-5-720
B-5-4: Summary of Emissions Speciation Change on Potential Mercury Loading to Northeast	Minnesota

Appendix B-5-1

ArcelorMittal Minorca Mine Inc. Activated Carbon Injection Testing to Control Mercury Air Emissions: Results of Extended Testing

September 2018

Activated Carbon Injection Testing To Control Mercury Air Emissions

Results of Extended Testing

Prepared for ArcelorMittal Minorca Mine Inc.

September 2018

Activated Carbon Injection Testing To Control Mercury Air Emissions September 2018

Contents

1.0	Executiv	e Summary	1
2.0	Introduc	tion	2
2.1	Projec	et Purpose and Scope	2
2.	.1.1 Bad	kground	2
2.	.1.2 Go	als of Testing	4
2.2	Facilit	y Description	4
3.0	Equipme	ent Details, Data Acquisition, Sampling Methods, and Stack Test Methods	6
3.1	ACI D	etails	6
3.2	Re-ro	uting of Scrubber Solids	6
3.3	Mercu	ury Stack Testing	7
3.	.3.1 Dis	cussion of Available Test Methods	7
	3.3.1.1	Ontario-Hydro Method or ASTM Method D6784-02	7
	3.3.1.2	EPA Method 29	8
	3.3.1.3	EPA Method 30B	8
	3.3.1.4	Hg Analyzers or Hg Continuous Emissions Monitoring Systems (Hg-CEMS)	9
	3.3.1.5	Comparison of Available Test Methods	10
3.	.3.2 Tes	t Method Selection	11
	3.3.2.1	Baseline Testing Pre-ACI	11
	3.3.2.2	PAC Screening Testing	11
	3.3.2.3	Extended ACI Testing	11
	3.3.2.4	Post ACI While Re-Routing Scrubber Solids	12
	3.3.2.5	Hg Stack Test Selection Summary	12
3.4	Partic	ulate Stack Testing	12
3.5	Proce	ss Sampling	12
3.6	Proce	ss Parameter Monitoring	12
4.0	Test Pla	1	13
4.1	Projec	t Team	13
4.2	Sched	lule	13
4.3	Testin	g Phases	13

4.3.1	Bas	seline Stack Testing Prior to ACI Testing and Process Sampling While Recyclin	g Scrubber
	Sol	ids	13
4.3	.1.1	Stack Testing	13
4.3	.1.2	Process Sampling	13
4.3.2	PA	C Screening	14
4.3	.2.1	Stack Testing	14
4.3	.2.2	Process Sampling	15
4.3.3	Ext	ended ACI Testing with Performance Tests and Process Sampling	15
4.3	.3.1	Stack Testing	15
4.3	.3.2	Process Sampling	15
4.3.4		seline Stack Testing After ACI Testing and Process Sampling While Scrubber S Tailings Thickener	
4.3	.4.1	Stack Testing	16
4.3	.4.2	Process Sampling	16
5.0 Re	sults	and Discussion	17
5.1	Stack	Testing and Process Sampling Results	17
5.2	Deter	mination of ACI Feasibility	28
5.2.1	Ted	chnical Feasibility	28
5.2.2	Ecc	onomics Feasibility	28
5.2.3	Pel	let Quality Impacts	28
5.2.4	Ero	sion/Corrosion or Equipment Degradation	28
5.2.5	Ad	ditional Environmental Impacts	32
6.0 Cc	onclus	ions	33

List of Tables

Table 3-1	Considerations of Ontario-Hydro Method	8
Table 3-2	Considerations of EPA Method 29	8
Table 3-3	Considerations of EPA Method 30B	9
Table 3-4	Considerations of Hg-CEMS	10
Table 3-5	Mercury Measurement Comparison	11
Table 3-6	Selected Hg Stack Test Methods	12
Table 4-1	PAC Performance During Screening Tests	15
Table 5-1	Post ACI Inspection Results Summary (excerpt)	29
	List of Figures	
Figure 2-1	Schematic of Minorca's Indurating Furnace	5
Figure 3-1	ACI Lance Arrangements in the Windbox Exhaust Ducts	6
Figure 3-2	Ontario-Hydro Sampling Apparatus	7
Figure 3-3	EPA Method 30B Sorbent Trap	9
Figure 5-1	ACI Stack Testing and Greenball Hg Results	18
Figure 5-2	Stack and Greenball Hg Comparison (lb/LTon)	21
Figure 5-3	ACI Stack Testing Comparisons	23
Figure 5-4	Scrubber Sump Sampling Trends and Related Data	25
Figure 5-5	Hg Inputs and Outputs	27
	List of Attachments	
Attachment A	Minnesota Taconite Phase II Research – Evaluation of Carbon Injection to Increase	
	Mercury Capture – ArcelorMittal Minorca Mine Inc. – Final Report	
Attachment B	MPCA Phase II ACI Testing Review	
Attachment C	Minorca Extended ACI Test Plan	
Attachment D	Coleraine Minerals Research Laboratory Report – Mercury Removal from Induration C	Off
A 1	Gas by Wet Scrubbers	
Attachment E	Nol-Tec Report	
Attachment F	2015 Method 29 Stack Testing Summary	
Attachment G	Water Sampling Protocol Minorca Process Data Matrix	
Attachment H		
Attachment I	Process Sampling Locations during Stack Testing	
Attachment J Attachment K	Process Sampling Locations during Stack Testing Wookly Process Sampling Locations	
Attachment L	Weekly Process Sampling Locations ACI Testing Results	
Attachment M	•	
	Post ACI Testing Process Equipment Inspection Summary	

Acronyms and Abbreviations

Acronym	Description
ACI	Activated Carbon Injection
Barr	Barr Engineering Co.
BPAC	Brominated Powdered Activated Carbon
EPA	U.S. Environmental Protection Agency
Hg	Mercury
HgG	Vapor Phase Mercury
HgP	Mercury Adsorbed to Particulates
HgT	Total Mercury
Hg ⁰	Elemental Mercury
Hg ⁺⁺	Oxidized Mercury
HPAC	High Temperature Brominated Powdered Activated Carbon
Minorca	ArcelorMittal Minorca Mine Inc.
lb/mmacf	Pound Per Million Actual Cubic Feet
MPCA	Minnesota Pollution Control Agency
NTS	Northeast Technical Services
PAC	Powdered Activated Carbon
PM	Particulate Matter
TMDL	Total Maximum Daily Load

1.0 Executive Summary

ArcelorMittal's Minorca Mine Inc. (Minorca) conducted extended testing of activated carbon injection (ACI) to determine its feasibility to reduce mercury (Hg) air emissions from the indurating furnace. This effort is a continuation of the study of Hg reduction technologies for the taconite industry in order to comply with Minnesota Hg rules (Minn. R. 7007-0502) by 2025. Previous ACI testing at Minorca suggested that the technology has the potential to reduce Hg air emissions. However, the results from previous ACI testing identified areas that warranted additional testing in order to determine if ACI is technically and economically feasible for a full-scale installation. In addition to ACI, previous research indicated re-routing the scrubber solids to the tailings thickener provides an opportunity for additional Hg reduction. This correlation was also evaluated along with ACI testing.

Minorca followed a test plan developed by Barr Engineering Co. (Barr). Previous testing indicated that two commercially available powdered activated carbons (PACs), HPAC and BPAC, yielded the highest likelihood of reducing Hg emissions. Baseline and PAC screening tests were conducted to establish normal operating conditions to determine the best PAC for extended testing. Screening tests identified HPAC as the best candidate for extended testing because it showed the highest potential reduction in Hg emissions.

Extended ACI testing was conducted starting on January 20, 2017 and ended on April 7, 2017 at an injection rate of 1 pound per million actual cubic feet (lb/mmacf) of flue gas into the windbox exhaust duct work prior to the multiclones. Extensive process sampling and stack testing were conducted during the extended testing to study process impacts and determine the technology's ability to reduce Hg air emissions. Additional process sampling and stack testing were conducted when Minorca had re-routed the scrubber solids to discharge to the tailings thickener to determine its impact on Hg emissions.

ACI at an injection rate of 1 lb/mmacf did not result in a reduction of total Hg (HgT) emissions when accounting for the change in stack emissions and the amount of Hg entering the furnace with the greenball feed. Any change in the Hg emission rate was a result of the varying Hg content of the greenballs being fed to the furnace. Therefore, ACI at an injection rate of 1 lb/mmacf is not considered to be a potential control technology for a full-scale implementation. Re-routing scrubber solids to the tailings thickener reduced HgT emissions by 22% or 21% depending on the calculation methodology.

2.0 Introduction

2.1 Project Purpose and Scope

2.1.1 Background

The Minnesota Pollution Control Agency (MPCA) developed a state-wide Hg Total Maximum Daily Load (TMDL) to address Hg concentrations in Minnesota's lakes and streams, which was approved by the U.S. Environmental Protection Agency (EPA) in March 2007. The TMDL addresses impaired waters by evaluating the sources of Hg pollution, pollutant reduction necessary to meet water quality standards, and the allowable levels of future pollution. In Minnesota, mercury is primarily introduced to surface waters through atmospheric deposition. The TMDL recognized that a majority of the mercury deposited in the state originates from emission sources outside of the state; only 10% of total deposition within Minnesota is from sources within the state.

The TMDL specifies that in order to meet water quality standards, a 93% reduction from 1990 human-caused, air-deposited mercury levels is required. In accordance with the TMDL, the taconite processing sector has committed to a 75% reduction of mercury emissions by 2025.

The TMDL Implementation Plan notes that "mercury-reduction technology does not currently exist for use on taconite pellet furnaces. Therefore, achieving the 75% mercury reduction target will incorporate the concept of adaptive management by focusing on research to develop the technology in the near term and installation of mercury emission control equipment thereafter." The adaptive management criteria states that the control technology must be technically and economically feasible, it must not impair pellet quality, and it must not cause excessive corrosion to pellet furnaces and associated ducting and emission-control equipment.

Minorca previously conducted ACI testing in order to determine the technology's ability to reduce Hg air emissions and if it is technically and economically feasible. In 2013, in what was known as Phase II, five taconite companies tested ACI along with Minorca. Phase II testing indicated that ACI cannot reduce Hg emissions enough to meet the goal of the Hg TMDL. Vapor phase mercury (HgG) reductions from the five facilities ranged from 48% - 82% (81% for Minorca), but total mercury reductions, the combination of HgG and particulate bound mercury (HgP) ranged from 25% - 61% (54% for Minorca). Results varied from site to site due to intrinsic differences in furnace design, configuration, and operation. None of the facilities demonstrated non-compliance during particulate matter (PM) stack testing, but significantly higher PM flow weighted averages were noted during ACI. Phase II testing also failed to adequately determine all possible plant impacts. Refer to Attachment A for a complete copy of the Phase II test report. In addition, the MPCA identified concerns with the methods employed during the testing to measure mercury air emissions (Attachment B). Therefore, additional testing of ACI was warranted.

Since the Phase II testing, Minnesota has finalized state regulations (Minn. R. 7007.0502) that require Minorca to reduce Hg emissions by January 1, 2025 to no more than 28% of the Hg emitted in 2008 or 2010, whichever is greater. The state regulations also require Minorca to submit a Hg emissions reduction

plan by December 30, 2018 to show how Minorca will achieve the 72% reduction, or propose an alternate plan if Minorca concludes that a 72% reduction is not technically achievable.

Minorca has chosen to use an approach similar to EPA's five-step top down Best Available Retrofit Technology analysis to determine whether a given Hg control technology is technologically and economically feasible. Minorca will also evaluate technologies against the adaptive management criteria outlined in the TMDL. The new rules (Minn. R. 7007.0502) do not formally incorporate all four of the adaptive management criteria for consideration when evaluating mercury reduction technologies for feasibility. However, in the response to comments and discussions with the agency, the MPCA has indicated that any evaluation of potential mercury reduction technologies may consider all four adaptive management criteria to determine if a potential mercury reduction technology is suitable for application. In order to assess the feasibility of ACI for the Hg emissions reduction plan, Minorca determined that additional evaluation was required. This round of ACI testing was used to provide a better estimate of ACI's ability to reduce Hg emissions and address other questions or concerns identified during Phase II testing:

- The original test plan was too short of duration to determine process impacts.
- The MPCA did not approve the use of a modified EPA Method 30B stack test method to estimate HgT emissions during Phase II testing. Also, when utilizing ACI, HgP is present and cannot be measured by EPA Method 30A (Hg CEMS).
- Higher particulate emission rates from varying ACI rates posed the concern of compliance with existing PM emission limits for the indurating furnace.
- Re-routing scrubber solids to the tailings thickener provides an additional opportunity for Hg
 reduction. Minorca also studied the impact of this process change with and without ACI to
 observe its effect on Hg emissions.

Minorca followed a test plan developed by Barr (Refer to Attachment C). The test plan sought to determine several important aspects of the technology and address any MPCA comments from Phase II (Refer to Attachment B). The key question to be answered was what amount of Hg capture is possible with ACI at a lower injection rate in order to ensure compliance with particulate limits while also monitoring other aspects of the process to determine the technical and economic feasibility for implementation of a full-scale ACI system? The testing was performed while the process was operated under two different conditions: recycling vs. removing scrubber solids from the process. Current operations at Minorca recycle scrubber solids back to the concentrate thickener. This allows for the Hg captured by the wet scrubbers to be recycled back to the process and potentially emitted again out the stack. Removing scrubber solids from the process means that the scrubber solids are redirected to the tailings thickener. This would route Hg contained in the scrubber solids to the tailings basin. According to a report by the Coleraine Minerals Research Laboratory (Attachment D), Hg contained in the scrubber solids would not leach from the tailings basin. Therefore, the tailings basin acts as a "sink" for Hg disposal.

2.1.2 Goals of Testing

Testing sought to answer several questions regarding the feasibility of ACI for Hg control. These include:

- Determine percentage reduction in HgT (HgP and HgG combined) emissions using ACI at an injection rate of 1 lb/mmacf of flue gas.
- Determine final destination of Hg following capture by ACI.
- Evaluate scrubber performance with additional ACI loading via particulate stack testing.
- Determine the amount of Hg emitted through the stack without ACI and with ACI.
- Evaluate all forms of Hg stack emissions such as vapor and particulate as well as elemental Hg (Hg⁰)/oxidized Hg (Hg⁺⁺) (conducting stack tests during ACI testing).
- Quantify operating and maintenance cost at a specified injection rate.
- Determine if ACI is a technically feasible control technology to reduce Hq emissions.
- Determine if the selected ACI is an economically feasible control technology to reduce Hg
 emissions.
- Measure and analyze the impact of ACI on pellet quality.
- Measure and analyze maintenance and equipment issues associated with ACI.
- Document abnormal erosion/corrosion issues with plant equipment and ductwork during post shutdown visual inspections.
- Identify safety/hygiene issues with ACI.
- Identify any non-air quality environmental impacts.

Testing also served the purpose of determining the impact of removing scrubber solids from the process on Hg emissions.

2.2 Facility Description

Minorca mines taconite ore (magnetite) and produces iron pellets that are shipped to the company's blast furnace in Indiana.

Concentrate slurry flows to a storage tank where limestone is added to make flux pellets. The concentrate is dewatered by vacuum disk filters, mixed with bentonite and conveyed to balling disks. Greenballs produced on the balling disks are transferred to a roll conveyor for additional removal of over- and undersize material.

The greenballs are distributed evenly across pallet cars, prior to entry into the pellet furnace. The pallet cars have a layer of fired pellets, called the hearth layer, on the bottom and sides of the car. The hearth layer acts as a buffer between the pallet car and the heat generated through the exothermic conversion of magnetite to hematite.

There is one natural gas fired furnace at Minorca's taconite plant. The straight grate furnace has several distinct zones. The first two stages are updraft and downdraft drying zones. The next zones are the preheat zone and firing zone. The temperature increases as the pellets pass through each zone, reaching a peak in the firing zone. The pellets enter the after-firing zone, where the conversion of magnetite to hematite is completed. The last two zones are cooling zones that allow the pellets to be discharged at a temperature of around 120 degrees Fahrenheit.

Heated air discharged from the two cooling zones is recirculated to the drying, preheat and firing zones. Off-gases from the furnaces are vented primarily through two ducts, the hood exhaust that handles the drying and recirculated cooling gases, and the windbox exhaust, which handles the preheat, firing, and after-firing gases. The windbox exhaust flows through a multiclone dust collector, which protects the downstream fan, and then enters a common header shared with the hood exhaust stream. The exhaust gases are subsequently divided into four streams which lead to four venturi rod scrubbers and exhaust from individual stacks (Furnace Stacks A-D). Under normal operations, the captured scrubber solids from each of the four scrubbers are routed back to the concentrate thickener. Figure 2-1 provides a simple sketch of this process.

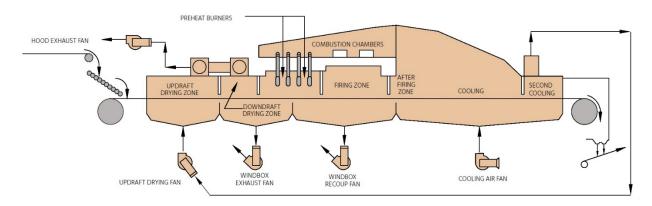


Figure 2-1 Schematic of Minorca's Indurating Furnace

The majority of Hg entering the process comes from the ore. Hg is rejected from the process in tailings streams or stack emissions from the indurating furnace. Stack emissions are dependent on the Hg content of the greenballs and the rate that the greenballs are fed to the furnace. Hg is emitted to the atmosphere through each of the exhaust stacks mentioned above as Hg is liberated from the greenballs during the induration process. The hood exhaust contains lesser amounts of Hg compared to the windbox exhaust. Some mixing between the hood and windbox occurs in the common scrubber header, but the majority of the windbox exhaust exits through Stacks C and D along with the majority of the Hg from the furnace. Hg emissions out the stack can be in several different forms: HgG (in the form of Hg⁰ or Hg⁺⁺) or HgP.

3.0 Equipment Details, Data Acquisition, Sampling Methods, and Stack Test Methods

3.1 ACI Details

Nol-Tec was awarded the contract to be the ACI equipment supplier and operator. The Nol-Tec report provided in Attachment E contains details of the testing equipment (Note: Appendix C of the Nol-Tec report is available upon request, but is not included due to file size constraints). Nol-Tec was responsible for operating the testing skid and ensuring that the injection rate was maintained at 1 lb/mmacf. This injection rate was selected because during Phase II pre-screen testing it achieved up to a 63% reduction in HgG emissions in Stack D. Also, Minorca wanted to minimize the risk of not complying with PM limits as well as reduce the amount of HgP being emitted out of the stacks. In addition, particulate emission increases were a concern as a full-scale installation may require additional air quality permitting.

To maintain consistency, PAC was injected in the same location as the previous Phase II ACI testing. Therefore, differences in Hg reduction compared to prior testing would not be due to a change in the distribution of PAC in the waste gas. PAC was injected into each of the three windbox exhaust ducts prior to the multiclones. See Figure 3-1 for a schematic of the injection pattern.

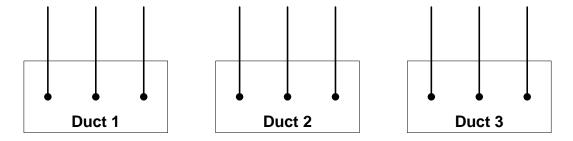


Figure 3-1 ACI Lance Arrangements in the Windbox Exhaust Ducts

It was decided to inject PAC only into the windbox exhaust because Phase II testing showed that the hood exhaust contains small amounts of Hg compared to the windbox. The majority of the windbox exhaust is emitted out of Stacks C and D. Also, the hood exhaust has a significantly reduced residence time in the duct leading to the scrubber because it lacks a multiclone collector.

3.2 Re-routing of Scrubber Solids

Current operations at Minorca recycle scrubber solids back to the concentrate thickener. This allows for the Hg captured by the wet scrubbers to be recycled back to the process and potentially emitted out the stack unless captured again by the wet scrubbers. Removing scrubber solids from the process means that the scrubber solids are redirected to the tailings thickener. This would route Hg contained in the scrubber solids to the tailings basin. Scrubber solids were removed from the process during a portion of ACI and during a baseline test following ACI.

3.3 Mercury Stack Testing

3.3.1 Discussion of Available Test Methods

The following test methods were considered for each phase of ACI testing:

3.3.1.1 Ontario-Hydro Method or ASTM Method D6784-02

The Ontario-Hydro Method was developed to provide the speciation of Hg constituents from gaseous emissions. The test is used to estimate HgT, HgP, Hg⁰, and Hg⁺⁺ emission rates. Sampling is a batch method, performed isokinetically. The gas sample is drawn into a heated sample probe, through a heated glass filter. After the filtration, the gas phase passes through impingers submerged in an ice bath with potassium chloride solution where Hg⁺⁺ mercury is captured. Hg⁰ is captured in the remaining solutions of acidified peroxide and acidified potassium permanganate. Refer to Figure 3-2 for a schematic.

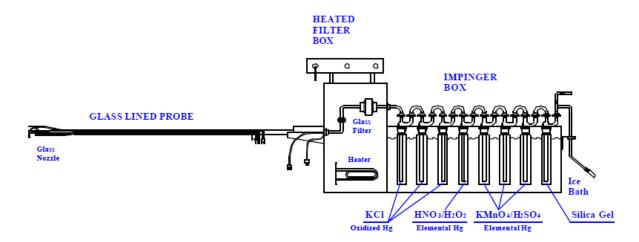


Figure 3-2 Ontario-Hydro Sampling Apparatus

The Ontario-Hydro Method is a very complex sampling method with many steps and the laboratory analysis can take 1-4 weeks to complete. This testing requires skilled testing staff for equipment and reagent preparations, test execution, sample recovery, DOT shipping qualified personnel and access to a qualified laboratory to analyze samples. Table 3-1 provides a summary of the benefits and drawbacks associated with the Ontario-Hydro Method.

Table 3-1 Considerations of Ontario-Hydro Method

Pros	Con
 Gives an accurate measure of HgT Gives an estimate for HgP and HgG Speciates Hg Isokinetic sampling to collect a representative sample of particulate emissions in order to accurately quantify HgP Is applicable to use in measuring emissions from taconite induration furnaces during ACI for Hg control 	 Relatively difficult procedure to perform involving multiple steps Requires special equipment and specially trained stack test personnel and a qualified laboratory Produces an average of the Hg emission over the selected sample duration Turnaround time is typically one to four weeks for lab analysis and data processing

3.3.1.2 EPA Method 29

EPA Method 29 was developed to measure metal emissions from gaseous emissions. The test is identical to the Ontario-Hydro Method with the exception that it cannot speciate HgG emissions into Hg⁰ and Hg⁺⁺ fractions. The only difference from Figure 3-2 is that EPA Method 29 does not have a glass impinger filled with potassium chloride. This testing requires skilled testing staff for equipment and reagent preparations, test execution, sample recovery, DOT shipping qualified personnel and access to a qualified laboratory to analyze samples. Table 3-2 provides a summary of the benefits and drawbacks associated with EPA Method 29.

Table 3-2 Considerations of EPA Method 29

Pros	Cons
 Gives an accurate measure of HgT Gives an estimate for HgP and HgG 	 Relatively difficult procedure to perform involving multiple steps
Isokinetic sampling to collect a representative sample of particulate emissions in order to	 Requires special equipment and specially trained stack test personnel and a qualified laboratory
accurately quantify HgP	Cannot speciate Hg
 Is applicable to use in measuring emissions from taconite induration furnaces during ACI for Hg control 	 Produces an average of the Hg emission over the selected sample duration Turnaround time is typically one to four weeks

3.3.1.3 EPA Method 30B

EPA Method 30B is a simple sampling method relative to EPA Method 29 or the Ontario-Hydro Method. EPA Method 30B should only be used in low-particulate gas streams with little or no HgP because the method is intended to measure HgG emissions. HgG can be assumed to be equal to HgT if HgP is negligible. The gas sample is pulled through carbon sorbent traps, which captures HgG. The sorbent traps contain two separate carbon beds with a wool plug prior to the beds to prevent any residual particulate from reaching the carbon. The first carbon bed is called the analytical bed that should contain most of the Hg captured during the test. The second carbon bed is called the breakthrough bed to capture any of the

Hg that might have broken through the analytical section. Refer to Figure 3-3 for a schematic. Both carbon beds and the wool plug are analyzed for Hg content and can be analyzed onsite shortly after testing to provide near real-time results. The wool plug is analyzed with the carbon beds for Hg content.

EPA Method 30B sampling is not performed isokinetically, which is why the test cannot be used to measure particulate Hg.

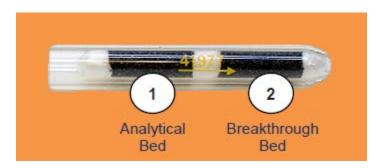


Figure 3-3 EPA Method 30B Sorbent Trap

EPA Method 30B is the least expensive testing option and is the best choice for any screening tests. Table 3-3 provides a summary of the benefits and drawbacks associated with EPA Method 30B.

Table 3-3 Considerations of EPA Method 30B

Pros	Cons
 Gives an accurate value for HgG at low detection limits in low particulate gas streams 	 Designed to give HgG only in low particulate gas streams because sampling is not isokinetic
 Relatively inexpensive and easy to perform 	 Cannot appropriately quantify HgP emissions.
Sample times can be set from 30 minutes to longer	Does not speciate
durations making it ideal for screening testsCan be adapted to a continuous long-term	 Produces an average of the Hg emission over the selected sample duration
measurement of Hg	 Turnaround time is typically one to two weeks, unless an analyzer system is also purchased and personnel trained in its use for onsite analysis

During the Phase II testing, ADA-ES, Inc. used a modified version of EPA Method 30B in order to provide an estimate of HgP in the stacks, which allowed them to estimate HgT. Following the Phase II testing, the MPCA reviewed the initial results of the Phase II testing, including the modified EPA Method 30B results. MPCA identified concerns with the modified EPA Method 30B because the sampling does not occur isokinetically. Therefore, it cannot provide a proper estimate of HgP. This method was not used during ACI due to the presence of more HgP.

3.3.1.4 Hg Analyzers or Hg Continuous Emissions Monitoring Systems (Hg-CEMS)

Hg-CEMS were developed to provide real-time measurements of speciated HgG. Hg-CEMS cannot be used to measure HgP because it uses spectroscopy. This method would only be appropriate for low-

particulate conditions or where minimal HgT is in the form of HgP. Atomic absorption and atomic fluorescence are susceptible to interference from typical source gas emission constituents (i.e. SO₂, NO_x, & water vapor). High dilution rates of source gas with nitrogen reduce the interferences but can impact reliability of low-level Hg concentrations (1 µg per cubic meter Hg). Significant particulate matter concentrations in the gas stream may require specific sample extraction probes to prevent potential Hg scrubbing from the filtration apparatus and additional maintenance during operations. To produce reliable results, Hg CEMS would require stable conditions, significant space (i.e. CEMS shelter), and may have line length limitations to the sampling tube from the probe to the analyzer.

Hg-CEMS require a significant capital investment and commitment to extensive maintenance and training. Therefore, this method is avoided due to its expense, complexity, and presence of particulates in the flue gas. Table 3-4 provides a summary of the benefits and drawbacks associated with Hg-CEMS.

Table 3-4 Considerations of Hg-CEMS

Pros	Cons
 Gives continuous, real time measurement of HgG Speciates Hg 	 Cannot measure particulate phase Hg High capital cost Requires a large commitment to training, operating and maintenance

3.3.1.5 Comparison of Available Test Methods

A summary of the available testing methods is provided in Table 3-5 below.

Table 3-5 Mercury Measurement Comparison

Method	Measurement Type	Measured Values	Speciating (Hg ²⁺ and Hg ⁰)	Relative Ease of Method	Relative Cost	Turnaround Time
Ontario- Hydro	Average over selected duration	HgT, (HgG+HgP)	Yes	Difficult	Medium	1-4 weeks
EPA Method 29	Average over selected duration	HgT, (HgG+HgP)	No	Difficult	Medium	1-4 weeks
EPA Method 30B	Average over selected duration	HgG	No	Easy	Low	Onsite analysis to 2 weeks
Hg-CEMS	Real time Continuous	HgG	Yes	Difficult	High	Continuous

3.3.2 Test Method Selection

3.3.2.1 Baseline Testing Pre-ACI

Minorca has demonstrated that the majority of Hg emissions are emitted in the form of HgG (approximately 91%) and not HgP based on an EPA Method 29 stack test from 2015 (Refer to Attachment F for a summary of these results). Furthermore, EPA Method 30B was tested on Stack D at the same time and yielded a very similar emission rate. This validates the assumption that most of the Hg emitted at Minorca is in the form of HgG under the operating scenario which was captured during the 2015 EPA Method 29 test.

Utilizing the data from the 2015 stack test, limited HgP was identified. Therefore, Method 30B was utilized to establish a baseline. Hg-CEMS were not used because they must be operated under very close tolerances and as such, are difficult to maintain reliability in the taconite furnace environment.

3.3.2.2 PAC Screening Testing

In order to determine the most effective PAC for extended testing, only the reduction in gas phase Hg was monitored. Therefore, EPA Method 30B was used for this phase of testing. This is an appropriate method for analysis of Hg concentration in the stack exhaust because the reduction in HgG would be an indicator of a shift in Hg being adsorbed to the PAC. In addition, EPA Method 30B can provide relatively quick results compared to other test methods. Hg-CEMS were not chosen because of the high capital cost and the short duration of testing.

3.3.2.3 Extended ACI Testing

Due to the expected increase in HgP from the PAC, EPA Method 30B and Hg-CEMS were not recommended for analysis of Hg concentration in the stack exhaust during ACI testing. The Ontario Hydro Method was used for the extended ACI stack test events because the method provides an estimate of HgT and can speciate Hg between Hg⁺⁺ and Hg⁰.

3.3.2.4 Post ACI While Re-Routing Scrubber Solids

Without ACI, the EPA Method 29 test from 2015 demonstrates that the majority of Hg emitted out the stack is in the form of HgG. Therefore, EPA Method 30B was used for this baseline sampling event while scrubber solids were re-routed to the tailings thickener.

3.3.2.5 Hg Stack Test Selection Summary

Table 3-6 summarizes the selected Hg stack test method for each phase of testing.

Table 3-6 Selected Hg Stack Test Methods

Testing Phase	Stacks Tested	Hg Stack Test Method Utilized
Baseline #1 – Pre-ACI	A, B, C, and D	EPA Method 30B
PAC Screening	C and D	EPA Method 30B
Long Term #1	A, B, C, and D	Ontario-Hydro
Long Term #2	A, B, C, and D	Ontario-Hydro
Baseline #2 – Post-ACI	A, B, C, and D	EPA Method 30B

3.4 Particulate Stack Testing

During Phase II ACI testing, increased flow weighted filterable particulate emission rates were measured. Therefore, EPA Method 5 stack testing was performed for each phase of ACI (PAC screening and extended testing (Long Term #1 and #2 tests)) to compare against Minorca's PM limits and inform potential air quality permitting implications from a full-scale ACI system installation.

3.5 Process Sampling

All solid and slurry process samples were analyzed by Legend Technical Services, Inc. Solids were analyzed using EPA Method 7473 while slurries were analyzed using EPA Method 200.8. Liquid samples were sent to North Shore Analytical and were analyzed using EPA Method 1631E. Sampling was carried out by Minorca staff and Northeast Technical Services (NTS) in accordance with the clean hands/dirty hands procedure. Refer to Attachment G for details. Sampling results were sent by the laboratories to Barr for data analysis.

Minorca measured mass flow rates of the process were needed to study the mass balance of Hg before and after ACI. If the information was unavailable, historical operating data was used to supplement the analysis.

3.6 Process Parameter Monitoring

Minorca agreed to monitor several process parameters during extended testing to determine any secondary impacts from ACI. The list of monitored process variables is included in Attachment H.

4.0 Test Plan

4.1 Project Team

Barr was contracted by Minorca to perform stack testing, assist with process sampling, and analyze all data obtained from testing.

Nol-Tec was chosen as the ACI vendor and equipment supplier. Nol-Tec used Facilities Performance Group as a sub-contractor to operate the testing skid.

Process sampling was conducted by Minorca staff and NTS. Barr coordinated sampling events and materials for sample collection, and analysis of samples with a third party laboratory.

4.2 Schedule

The extended ACI test started with mobilization of the ACI equipment on January 4, 2017. Screening tests commenced on January 17, 2017 and extended testing started on January 20, 2017 and ended on April 7, 2017 for a total of 77 days prior to the April shutdown of the furnace. Minorca conducted baseline stack testing the week of December 12, 2016 prior to any ACI and the week of April 10, 2017 after ACI. Scrubber solids were re-routed to the tailings thickener for the April baseline stack test.

A detailed schedule outlining process sampling and stack testing is provided in Attachment I.

4.3 Testing Phases

ACI testing was separated into four phases. Each phase is summarized below.

4.3.1 Baseline Stack Testing Prior to ACI Testing and Process Sampling While Recycling Scrubber Solids

In order to determine any reduction in Hg emissions following ACI, it was necessary to establish a baseline. This emission rate was normalized with an average greenball feed rate of 350 dry long tons per hour to account for variations in the amount of Hg entering the process as it relates to stack emissions.

4.3.1.1 Stack Testing

Hg emissions were measured on all four stacks. As previously discussed, the 2015 EPA Method 29 test showed that the majority of Hg emitted out the stack is in the form of HgG. Therefore, the baseline Hg emission rate prior to ACI was determined by using EPA Method 30B. Three separate one-hour test runs were conducted.

4.3.1.2 Process Sampling

Following the Phase II testing, Minorca identified several processing locations that should be sampled for Hg concentrations to determine where Hg is present in the process and in what quantities to inform where Hg is moving throughout the process. This helped to compare the Hg mass flow rates and its

ultimate fate before and after ACI. During baseline testing, the locations listed below were sampled during the stack testing event on December 13, 2017. Refer to Attachment J for details.

- 1. Rod Mill Discharge
- 2. Sands of Spiral Classifier to Tails Bin (cobber tails)
- 3. Spiral Classifier (overflow)
- 4. Tails Thickener (underflow) (fine tails)
- 5. Tails Thickener (overflow)
- 6. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump
- 7. Flotation Reject Product to Tailings Thickener
- 8. Concentrate Thickener Feed
- 9. Concentrate Thickener (underflow)
- 10. Concentrate Thickener (overflow)
- 11. Fluxstone Feed (from Fluxstone Slurry Storage Tank)
- 12. Binder Supply (feed to bin)
- 13. Repulper Tank (Concentrate Reclaim Feed to Acid Concentrate Slurry Tank/Fluxed Concentrate Slurry Tank)
- 14. Greenball (balling disc discharge)
- 15. Multiclones (windboxes recycle to concentrate thickener)
- 16. Scrubber Blowdown/Scrubber Sump
- 17. Final Pellet Sample
- 18. Make-up water sample from plant head tank/raw water feed to plant

In order to complete a mass balance, flow measurements were obtained from each sample location if possible, otherwise historical performance data was used.

4.3.2 PAC Screening

Phase II testing in 2013 indicated that two PAC types showed the greatest Hg reduction potential: high temperature brominated powdered activated carbon (HPAC) and brominated powdered activated carbon (BPAC). During Phase II, HPAC and BPAC achieved HgG reductions of 60% and 63%, respectively, with a 1 lb/mmacf injection rate as measured on Stack D. Therefore, Minorca performed screening tests to determine which PAC would be the best option for a long-term ACI test. Screening tests were conducted at an injection rate of 1 lb/mmacf on January 17, 2017 and January 18, 2017.

4.3.2.1 Stack Testing

Hg emissions were monitored using EPA Method 30B on Stacks C and D. Three test runs were conducted using each PAC type lasting a minimum of 30 minutes. In addition, Stacks C and D were tested using EPA Method 5 for filterable particulate matter emissions to compare with Minorca's PM limits. The PAC with

the highest reduction in HgG emissions was used for the long-term ACI test. Comparing the reduction in HgG is appropriate for a screening test because this would indicate that the HgG is adsorbing to the PAC and thus becoming HgP to be captured more effectively by the wet scrubber.

HPAC was selected for long-term testing because it provided a lower HgG emission rate during the screening test even though it is more expensive and yielded higher particulate emission rates compared to BPAC. Refer to Table 4-1 for details.

Table 4-1 PAC Performance During Screening Tests

Carbon	Screening Results HgG, lb/yr, Stack C	Screening Results HgG, lb/yr, Stack D
ВРАС	11.4	12.9
HPAC	9.7	10.6

4.3.2.2 Process Sampling

No process samples were taking during the PAC screening phase.

4.3.3 Extended ACI Testing with Performance Tests and Process Sampling

As a result of the screening ACI test, HPAC was chosen for extended testing. Injection started on January 20, 2017 and ended on April 7, 2017. Scrubber solids were recycled back to the concentrate thickener through February 13, 2017, consistent with normal operating conditions. Recycling scrubber solids can allow for Hg in the scrubber solids to be recycled back to the greenballs. After February 13, 2017, the scrubber blowdown stream (approximately 1,550 gpm) was routed to the tailings thickener (discharged to the tailings basin) for the remainder of ACI testing. This prevents Hg in the scrubber solids from recycling back to the process and ending up in the greenball feed.

4.3.3.1 Stack Testing

On February 7, 2017 through February 9, 2017, the Long Term #1 test during ACI was conducted using the Ontario Hydro Method to measure HgT emissions and EPA Method 5 to measure particulate emissions on all four stacks. Each stack was tested with three separate runs, each lasting two hours. The total Hg reduction was determined by comparing the HgT emissions to the baseline testing emission rate normalized with the average greenball feed rate of 350 dry long tons per hour.

On March 28, 2017 and March 29, 2017, the Long Term #2 test was conducted using the same methods as the Long Term #1 test. This was to determine the Hg emission rate with ACI while scrubber solids were routed to the tailings thickener for disposal into the tailings basin.

4.3.3.2 Process Sampling

During the stack test events, process sampling was conducted in the same manner as described in Section 4.3.1.2 above.

In addition to the process sampling that occurred during the Long Term #1 and #2 tests, specific locations in the process were sampled weekly throughout the ACI extended test. The weekly process sampling was used to monitor changes in Hg concentrations throughout the process. These locations are listed below. Refer to Attachment K for details.

- 1. Tails Thickener (underflow) (fine tails)
- 2. Tails Thickener (overflow)
- 3. Concentrate Thickener (underflow)
- 4. Concentrate Thickener (overflow)
- 5. Greenball (balling disc discharge)
- 6. Scrubber Blowdown/Scrubber Sump
- 7. Final Pellet Sample

Flow measurements were obtained from each sample location if possible, otherwise historical performance data were used.

4.3.4 Baseline Stack Testing After ACI Testing and Process Sampling While Scrubber Solids Routed to Tailings Thickener

After ACI ceased, baseline stack testing was conducted on April 11, 2017 and April 12, 2017 while scrubber solids were routed to the tailings thickener. This baseline stack testing event was conducted to determine if routing scrubber solids to the tailings thickener reduced Hg concentrations of the stack exhaust.

4.3.4.1 Stack Testing

Test methods used during this baseline stack testing event were the same as those described in Section 4.3.1.1 (i.e., Method 30B, measuring HgG only).

4.3.4.2 Process Sampling

During the stack test event, process sampling was conducted in the same manner as described in Section 4.3.1.2.

5.0 Results and Discussion

5.1 Stack Testing and Process Sampling Results

Only the process sampling data that provides insight on the performance or process impacts of ACI is discussed in this section. All other remaining process data collected is included in Attachment L. It is unclear if fluctuations in the Hg content of the process samples included in Attachment L is a result of ACI or is normal variability linked to the chemical make-up of the ore body being processed. A complete report of the stack test data from Barr is included in Attachment M.

Figure 5-1 below provides a summary of the stack testing results from each phase of testing along with the greenball feed rate and Hg content. The Hg inputs and outputs presented in the figure have been normalized to a greenball feed rate of 350 LT/hr. Hg emission rates from stack testing are the summation of all four stacks (A-D) emission rates. The following color designations were used:

- Orange lines/dots represent the HgT emission rate determined from stack testing.
- Red lines/dots represent the HgG emission rate determined from stack testing.
- Blue lines/dots represent the greenball feed rate. Note this is on the secondary y-axis on the right side of the graph.
- Purple lines/dots represent the mass flow rate of Hg fed into the process from the greenballs determined from process sampling.

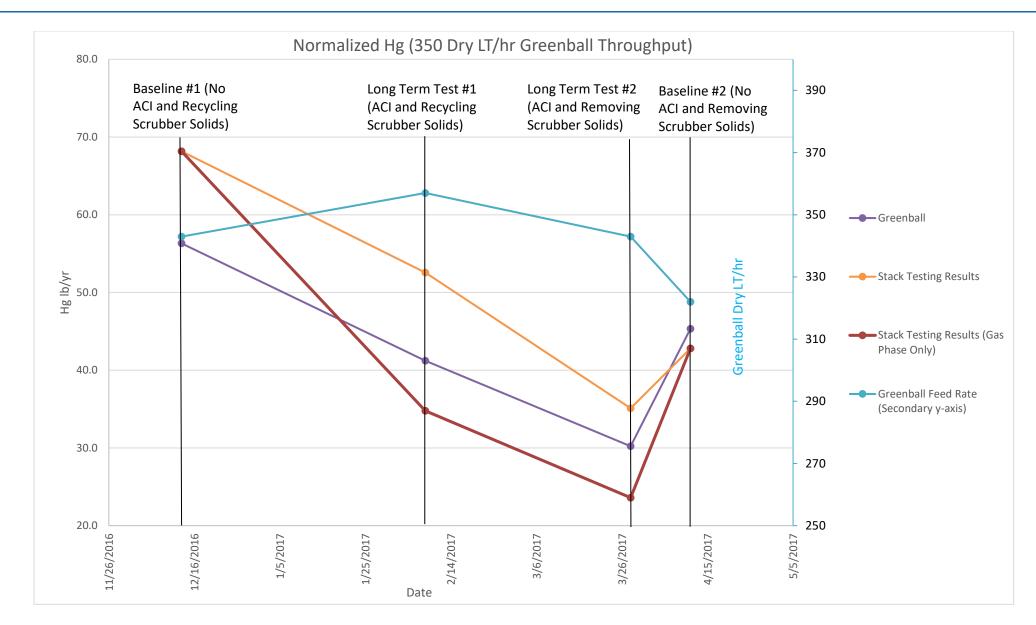


Figure 5-1 ACI Stack Testing and Greenball Hg Results

At first glance, it appears that the Hg emission rates were significantly reduced as a result of ACI (orange and red lines/dots) as shown from the Long Term #1 and #2 stack tests. However, the amount of Hg entering the furnace via the greenballs decreased in a similar fashion. To account for the Hg variation in the greenballs entering the furnace, the reduction in Hg emissions was calculated two ways. The first utilized a comparison of the ratio of the stack Hg to the greenball Hg. See Equation 1 for details.

Equation 1 Mercury Reduction Calculation Option #1

$$\textit{Hg Reduction (\%)} = \frac{\frac{\textit{Baseline Stack Hg}}{\textit{Baseline Greenball Hg}} - \frac{\textit{Test Condition Stack Hg}}{\textit{Test Condition Greenball Hg}}}{\frac{\textit{Baseline Stack Hg}}{\textit{Baseline Greenball Hg}}} * 100\%$$

The second alternative used to calculate the Hg reduction focused on the differences between stack and greenball Hg throughputs. See Equation 2 for details.

Equation 2 Mercury Reduction Calculation Option #2

```
Hg \ Reduction (\%) = \frac{(Baseline \ Stack \ Hg - Baseline \ Greenball \ Hg) - (Test \ Condition \ Stack \ Hg - Test \ Condition \ Greenball \ Hg)}{(Baseline \ Stack \ Hg - Baseline \ Greenball \ Hg)} * 100\%
```

The reductions in HgT observed at the stack cannot be attributed to ACI, but rather are directly related to Hg entering the furnace with the greenballs. Thus, ACI is ineffective at reducing HgT emissions under the testing conditions. HgG emissions appear to have decreased more than the Hg entering the process via greenballs when comparing the Baseline #1 and Long Term #1 tests. Therefore, the PAC did adsorb some of the Hg in the flue gas as HgG emissions decreased by 30% using Equation 1 and 27% using Equation 2, but overall Hg was still being emitted as HgP. This is validated by the fact that HgP accounted for 34% of the HgT emitted out of the stack during the Long Term #1 test in contrast to 9% under normal operating conditions with no ACI (refer to Attachment F).

When comparing the Baseline #1 test to the Long Term #2 test, stack HgT emissions decreased slightly more than the Hg entering the process with the greenballs. This suggests that the combination of ACI with the removal of scrubber solids from the process would provide little Hg control as HgT emissions decreased by 4% using Equation 1 and 10% using Equation 2. As discussed above, the reduction in HgT from ACI alone is negligible. Therefore, the reduction in HgT from Baseline #1 to the Long Term #2 test was only due to the removal of scrubber solids from the process. Under normal conditions, any Hg captured with scrubber solids would be recycled back to process. Removing this recycle explains the observed reduction in HgT.

This is confirmed by comparing the results of the Baseline #1 to the Baseline #2 test in that removing scrubber solids alone shows the potential to provide some reduction in HgT emissions as HgT emissions decreased by 22% using Equation 1 and 21% using Equation 2. HgT decreased more than the Hg entering the furnace with the greenballs compared to any other test. Again, this indicates that removing scrubber solids alone could provide some reduction in HgT emissions. This also reinforces the fact that any reduction in HgT observed between Baseline #1 and Long Term #2 test was not as a result of ACI.

The amount of HgT emitted out of the stack was higher than the Hg entering with the greenballs except during the Baseline #2 test. The amount of Hg coming out the stack during the Baseline #1, Long Term #1, and Long Term #2 stack sampling events were 21%, 28%, and 16% (respectively) higher than the Hg entering the furnace from the greenballs. This is in contrast to the Baseline #2 stack test event where the Hg coming out the stack was 94% of the Hg entering the furnace from the greenballs. Refer to Figure 5-4 for a snapshot of this trend. This variable amount of Hg entering the furnace compared to the Hg coming out the stack could be attributed to several factors:

- Equilibrium of Hg in the scrubber sump It is possible that any Hg captured by the scrubbers is recycled via the scrubber sump and is then re-emitted as concentrations of Hg in the scrubber water change. This is not well understood and re-emission of Hg from the sump water could be affected by pressure, temperature, humidity, etc. It makes sense that percentage of stack Hg to greenball Hg during the Long Term #2 and Baseline #2 tests was lower than the Baseline #1 and Long Term #1 tests because the scrubber sump was directed to the tailings thickener. This greatly reduced the possibility of Hg recycle back to the scrubber water. Also, the scrubber sump sample during the Baseline #2 test contained no detectable amount of Hg.
- Varying accuracy of test methods Care was taken to ensure that all process sampling and stack
 testing was performed in accordance with applicable standards and sampling techniques.
 However, it is possible that propagation of error or uncertainty in the measurement methods
 could create a noticeable difference. This is especially true given the low Hg concentration in the
 process samples or stack exhaust.

Stack and greenball Hg emission rates and throughputs were compared on a pound of Hg per dry long ton of greenball fed to the furnace during each test in Figure 5-2:

- Purple lines/dots represents the HgT stack testing results
- Yellow lines/dots represents the greenball Hg throughput

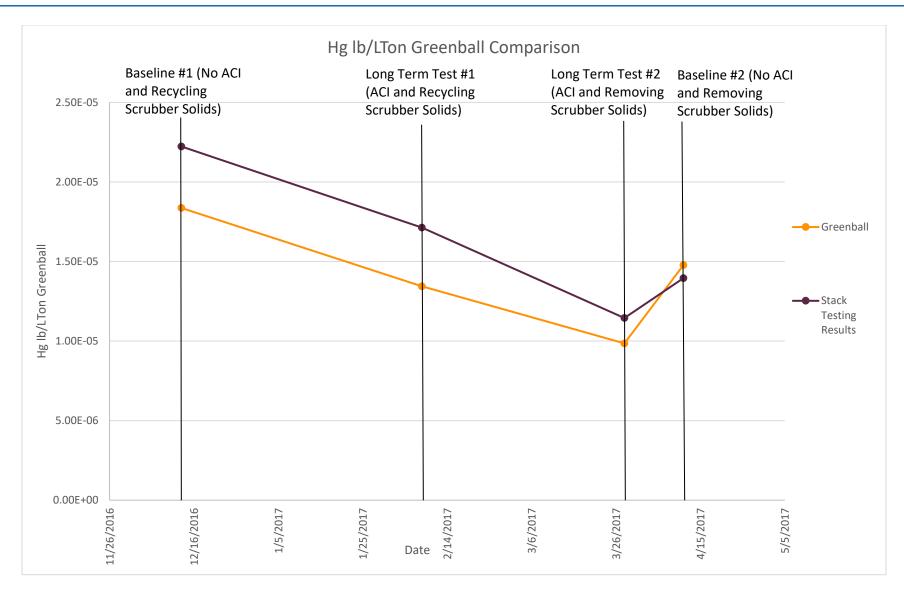


Figure 5-2 Stack and Greenball Hg Comparison (lb/LTon)

This comparison shows that greenball Hg decreases in parallel with the stack Hg between the Baseline #1 and the Long Term 1 tests. The reduction in stack exhaust is not a result of ACI, but rather the amount of Hg entering the process with the greenballs. Therefore, ACI did not reduce HgT emissions as calculated by Equation 1. Equation 2 yielded a HgT reduction less than 1%. As discussed previously, HgG decreased slightly more than HgT and the Hg entering the furnace with the greenballs. This demonstrates that the PAC was adsorbing some HgG, but was still being emitted in the form of HgP. This explains why HgT showed a negligible reduction. Therefore, ACI is not a potential control technology to reduce Hg emissions from Minorca's indurating furnace at the prescribed testing conditions (1 lb/mmacf injection rate).

It should be noted that the Ontario-Hydro Method (used during Long Term 1 and 2 tests) filters the PM from the stack exhaust prior to impinging the gas through acidic reagents to collect the gas phase Hg. Buildup of carbon on the sample filter may adsorb the gas phase Hg, giving a false indication of a reduction in HgG. This cannot be confirmed, but could explain why HgG emissions decreased slightly more than HgT from the Baseline #1 value to the Long Term 1 test. However, this does not change the conclusion that ACI did not achieve a noticeable reduction in HgT emissions.

Long Term #2 and Baseline #2 test data on a pound of Hg per long ton of greenballs basis shown in Figure 5-2 tells the same story as Figure 5-1. As previously described, any HgT reduction from ACI was negligible. Therefore, the reduction in HgT observed from Baseline #1 compared to the Long Term #2 and Baseline #2 tests were a result of the decreasing Hg content of the greenball feed and the removal of scrubber solids from the process by re-routing them to the tailings thickener.

Figure 5-3 provides a summary of all the Hg and particulate stack testing data. Note the following color codes:

- Black lines/dots represent the HqT stack testing results corrected only to the greenball feed rate.
- Green lines/dots represent the HgG stack testing results corrected only to the greenball feed rate.
- Yellow solid lines/dots represent the filterable particulate matter emission rate determined via stack testing. Refer to the secondary y-axis for this series.
- The yellow dashed line represents the average filterable particulate matter emission rate from 2015 stack testing. Refer to the secondary y-axis for this series.

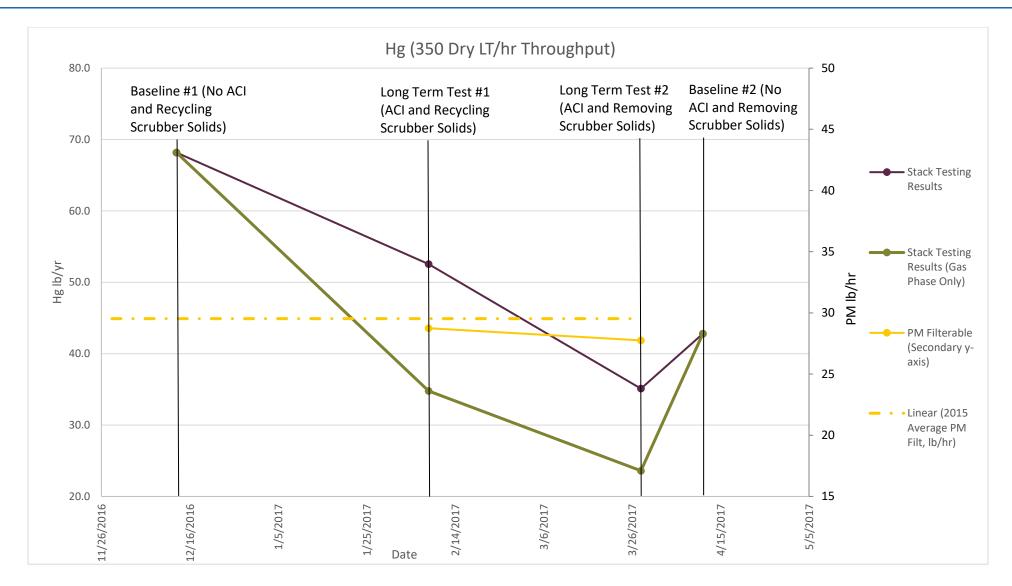


Figure 5-3 ACI Stack Testing Comparisons

Increased particulate emission rates as measured by the filterable particulates from EPA Method 5 in the stack exhaust were previously a concern from Phase II testing. Figure 5-3 indicates that the filterable particulate matter emission rate was not elevated during extended testing with ACI at an injection rate of 1 lb/mmacf compared to previous testing in 2015 with no ACI. Therefore, data from this extended test indicates that compliance with existing PM emission limits may be achieved at an injection rate of 1 lb/mmacf since the wet scrubbers were able to accommodate the increased particulate loading during the extended testing. It is unknown if long term full-scale installation of this technology would result in an actual increase in particulate emissions.

There were three instances that occurred on March 1st, 7th, and 11th, 2017 where the motor on the ACI auger was shut down for a period of time (5, 7, and 8 hours respectively). However, there is no evidence that suggests this short outage affected the Hg capture of ACI during the Long Term #2 test because the process still had 17 days to reach equilibrium.

Figure 5-4 provides additional trends from the scrubber sump sampling. Note the following color codes:

- Purple lines/dots represent the HgT stack testing data corrected to the greenball feed rate.
- Green lines/dots represent the scrubber sump process sampling that occurred during each stack test event.
- Blue lines/dots represent the scrubber sump weekly sampling that occurred during extended testing.
- Orange lines/markers represent the scrubber sump sampling during previous mass balance campaigns.
- The red line and yellow triangles represent the percentage of stack Hg to greenball Hg on the secondary y-axis.

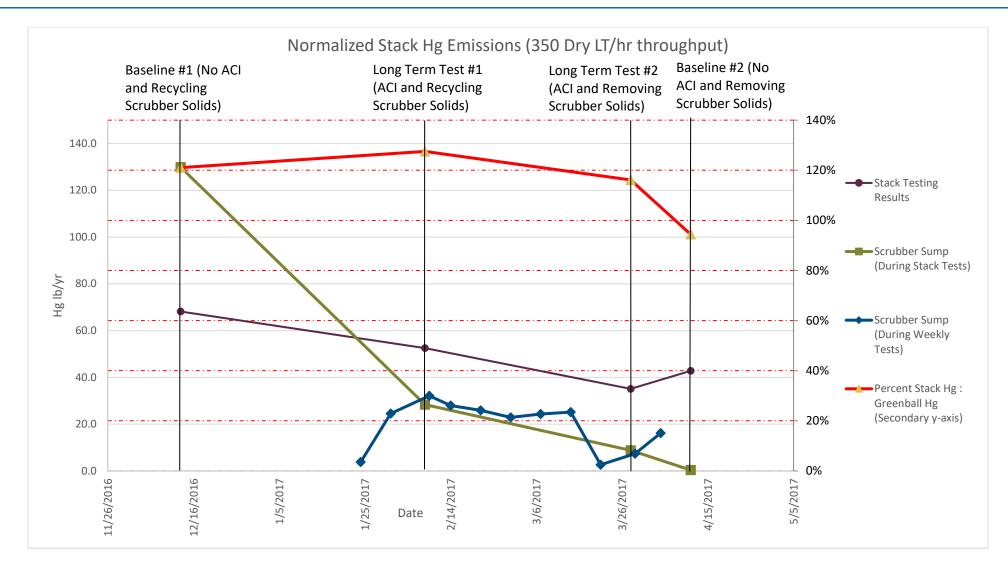


Figure 5-4 Scrubber Sump Sampling Trends and Related Data

The Baseline #1 scrubber sump Hg content appears to be abnormally high compared to all other scrubber sump samples analyzed. This is true even when comparing the results with historical mass balance sampling. Therefore, Baseline #1 scrubber sump data point is likely erroneous and cannot be used to effectively compare the impact of ACI. In addition, the amount of Hg in the scrubber sump should have increased due to ACI, but the opposite is seen.

As previously mentioned, the ratio of stack exhaust Hg to greenball Hg decreases during the Long Term #2 test; however, the scrubber sump Hg throughput also decreased. This is consistent with expectations as the scrubber sump was routed to tailings thickener for the Long Term #2 test. This is also true for the Baseline #2 test where the scrubber sump Hg decreased to 0.0 lb/yr. In addition, Figure 5-4 indicates the Baseline #2 HgT emission rate (corrected to a 350 dry LT/hr throughput) was lower than the Baseline #1 test. Again, this indicates that removing the scrubber solids alone may be an effective means to reduce HgT emissions from the furnace.

The pellet plant furnace was shut down on the afternoon of March 15th through the morning of March 20th due to a cooling air fan failure. The pellet plant scrubber sump was drained during this outage and replaced with fresh water. Following this shutdown, the scrubber sump also had level control issues due to a fire water valve leak, which added additional fresh makeup water to the scrubber sump. This is not normal operation for the sump, and the additional fresh water reduced the recycle water normally used for level control. Therefore, the decrease in scrubber sump Hg content is likely due to this process upset. The weekly sump sampling after the Long Term #1 test shows that Hg mass flow rate ranged from approximately 20-30 lb/yr up until the March 14, 2017 sampling event. The next sampling event on March 21, 2017 showed a large decrease in scrubber sump Hg, which could be related to the furnace upset. This discussion is included to emphasize that the scrubber sump sampling data after the upset may not be representative of normal operations.

Figure 5-5 shows the inputs and outputs of Hg to the process. This was in line with expectations that the rod mill and the tailings thickener underflow had the highest average totals of Hg per year. The rod mill represents the largest input, while the tails thickener underflow represents the largest output. The variability of these two samples points appear to correlate well with one another. Ultimately, the largest impact on Hg air emissions is dependent on the Hg entering the furnace with the greenballs. Note the following color codes:

- Blue lines/dots represent the rod mill discharge sampling.
- Green lines/dots represent the sands of the spiral classifier sampling.
- Yellow lines/dots represent the tails thickener under flow sampling.
- Orange lines/dots represent the greenball sampling.
- Red lines/dots represent the final pellet sampling.
- Purple lines/dots represent the HgT stack testing results normalized to the greenball feed rate.

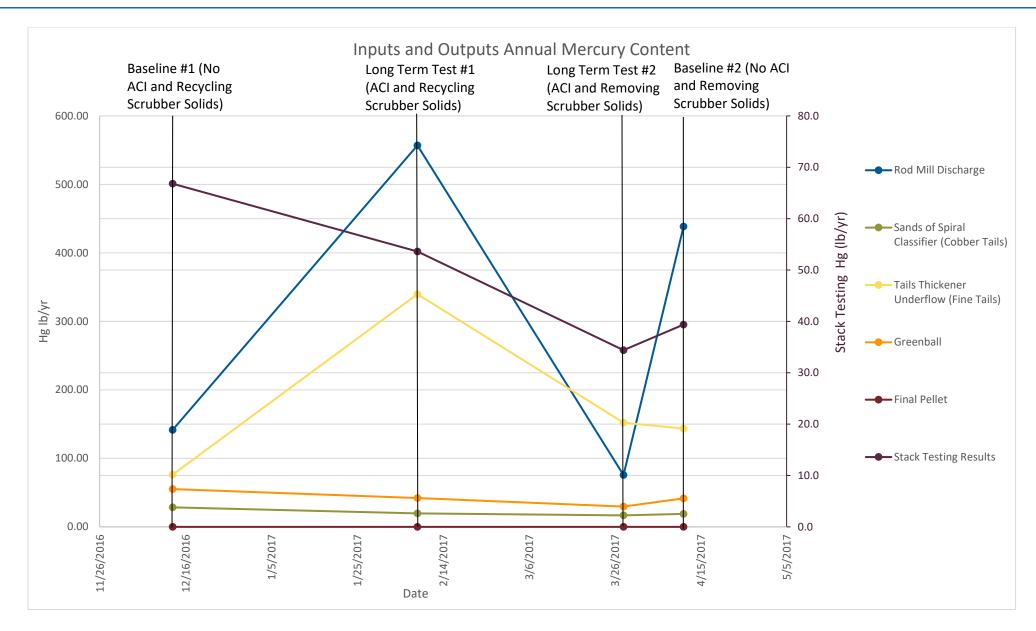


Figure 5-5 Hg Inputs and Outputs

5.2 Determination of ACI Feasibility

5.2.1 Technical Feasibility

As previously discussed, the results indicate that any reduction in Hg emissions from the indurating furnace with ACI was negligible. HgT emissions did not decrease between the Baseline #1 and Long Term #1 tests using Equation 1 while Equation 2 indicated a HgT reduction of less than 1%. The reduction in Hg coming out the stack was attributable only to the greenball Hg content decreasing rather than ACI. Therefore, ACI is not considered to be a potential control technology for Minorca at an injection rate of 1 lb/mmacf.

5.2.2 Economics Feasibility

ACI at an injection rate of 1 lb/mmacf is not considered to be a potential control technology to reduce Hg emissions at Minorca. Therefore, an economic analysis is not needed to determine if the technology is economically feasible.

There was no clear indication that operation/maintenance costs increased as a result of ACI.

5.2.3 Pellet Quality Impacts

Minorca did not notice any changes in pellet quality during or immediately following ACI.

5.2.4 Erosion/Corrosion or Equipment Degradation

After ACI testing, Minorca performed a visual inspection of the equipment in contact with the ACI to identify any abnormal erosion, corrosion, material buildup or equipment issues. The complete inspection report is included in Attachment N. Several locations were inspected and are listed in Table 5-1 below:

Table 5-1 Post ACI Inspection Results Summary (excerpt)

Equipment	Inspection Point ID	Inspection Point Description	Amount of Material Buildup ⁶	Inspection Notes
Stack "A"	A1-1	1 point - base of the stack	Light to moderate	4/25/17 - 6:05 pm - Area good condition / Area not cleaned prior to inspection
	A1-2	1 point - transition area from the scrubbers to stacks	Light to moderate	4/25/17 - 6:03 pm - Area good condition / Area not cleaned prior to inspection
	A1-3	CEMS Probe	Light build-up on bottom of probe to moderate build-up on top of probe	5/1/17 - 11:40 am - Probe in good condition / Probe not cleaned
	A1-4	CEMS Filter	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Complete "A"	A2	1 point at mid-body	Light	4/25/17 - 6:15 pm - Area good condition / Area not cleaned prior to inspection
Scrubber "A"	A3	2 points at lower-body ¹	Light to moderate	4/25/17 - 5:59 pm - Area good condition / Area not cleaned prior to inspection
	B1-1	1 point - base of the stack	Light to moderate	4/25/17 - 5:50 pm - Area good condition / Area not cleaned prior to inspection
	B1-2	1 point - transition area from the scrubbers to stacks	Moderate	4/25/17 - 5:46 pm - Area good condition / Area not cleaned prior to inspection
Stack "B"	B1-3	CEMS Probe	Light build-up on bottom of probe to moderate build-up on top of probe	5/1/17 - 11:21 am - Probe in good condition / Probe not cleaned
	B1-4	CEMS Filter	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Scrubber "B"	B2	1 point at mid-body	Light	4/25/17 - 6:13 pm - Area good condition / Area not cleaned prior to inspection
	В3	2 points at lower-body ¹	Moderate	4/25/17 - 5:40 pm - Area good condition / Area not cleaned prior to inspection

Equipment	Inspection Point ID	Inspection Point Description	Amount of Material Buildup ⁶	Inspection Notes
	C1-1	1 point - base of the stack	Moderate to Heavy	4/25/17 - 5:35 pm - Area good condition / Area not cleaned prior to inspection
	C1-2	1 point - transition area from the scrubbers to stacks	Light	4/25/17 - 5:30 pm - Area good condition / Area not cleaned prior to inspection
Stack "C"	C1-3	CEMS Probe	Moderate to Heavy	5/1/17 - 11:02 am - Probe in good condition / Probe not cleaned
	C1-4	CEMS Filter	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Carridala au "C"	C2	1 point at mid-body	Light	4/25/17 - 6:10 pm - Area good condition / Area not cleaned prior to inspection
Scrubber "C"	C3	2 points at lower-body ¹	Moderate	4/25/17 - 5:25 pm - Area good condition / Area not cleaned prior to inspection
	D1-1	1 point - base of the stack	Moderate to Heavy	4/25/17 - 5:20 pm - Area good condition / Area not cleaned prior to inspection
	D1-2	1 point - transition area from the scrubbers to stacks	Light	4/25/17 - 5:15 pm - Area good condition / Area not cleaned prior to inspection
Stack "D"	D1-3	CEMS Probe	Heavy	5/1/17 - 10:00 am - Probe in good condition / Probe not cleaned Note: Photo taken after probe was cleaned
	D1-4	CEMS Filter	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Combahan "D"	D2	1 point at mid-body	Moderate	4/25/17 - 4:30 pm - Area good condition / Area not cleaned prior to inspection
Scrubber "D"	D3	2 points at lower-body ¹	Moderate	4/25/17 - 5:03 pm - Area good condition / Area not cleaned prior to inspection
Scrubber recirculating tank	E1	1 point	Amount of material buildup not documented	4/26/17 - 9:25 am - No access to tank interior / Sample from drain pipe

Equipment	Inspection Point ID	Inspection Point Description	Amount of Material Buildup ⁶	Inspection Notes
	G1	1 point at wind box belly ²	None	4/26/17 - 9:30 am - Area in good condition/ Light to moderate wear / Area not cleaned prior to inspection
Windbox Exhaust Fan	G2	1 point at outlet side ³	None	4/26/17 - 9:40 am - Area in good condition/ Light to moderate wear / Area not cleaned prior to inspection
	G3	2 points at inlet side ³	None	4/26/17 - 9:38 am - Area in good condition/ Light to moderate wear / Area not cleaned prior to inspection
	H1	1 point at sump	Light	4/26/17 - 9:55 am - Area good condition / Area not cleaned prior to inspection
Multi Clone (3	H2	3 points at cones discharge at ground level ⁴	Amount of material buildup not documented	4/26/17 - 9:50 am - Area good condition / Area not cleaned prior to inspection / Water and product in sump
lower discharge cones)	H3	3 points on cones at second level ⁴	Light	4/26/17 - 9:58 am - Area good condition / Area not cleaned prior to inspection
	H4	1 point at top	Light	4/25/17 - 6:25 pm - Area good condition / Area not cleaned prior to inspection
Denver sump	I1	1 point in the sump	Amount of material buildup not documented	4/26/17 - 10:20 am - Area good condition / Area not cleaned prior to inspection / Water and product in sump
Ducting Prior to Scrubber (3 injection points per duct)	J1	3 points in ducting off process gas header ⁵	Light (mostly pellets)	4/26/17 - 10:09 am - Area good condition / Area not cleaned prior to inspection
	J2	1 point at access of process gas header	Moderate to Heavy (mostly pellets)	4/26/17 - 10:04 am - Area good condition / Area not cleaned prior to inspection

- 1 A single composite sample from two sample points, one at both the front and back access doors, was collected to represent the lower-body of each scrubber.
- 2 A sample was not collected from the belly of the windbox exhaust fan because there was no buildup of material.
- 3 Samples were collected from material found outside the access door to the windbox fan believed to represent material from the fan compartments.
- 4 Each of these were comprised of material collected from three separate sampling points at the inspection point.
- 5 This sample was comprised of material collected from each of the three ducts off the process gas header.
- 6 The amount of material buildup in the inspected area is described using the terms light, moderate and heavy. Light buildup is defined as areas with up to ½ inch of material; moderate buildup is ½ 2 inches of material; heavy is 2 4+ inches of material with the exception of the continuous emissions monitoring system (CEMS) probes. Light buildup on the CEMS probes is defined as a visible dusting of material; moderate buildup is up to ½ inch of material; heavy is ½– ¼ inch of material.

Photos were taken to document material build up and composite samples were taken from each location to determine its carbon and bromine content.

The inspection did observe light to heavy material buildup in several locations. Refer to Attachment N for details. However, material buildup usually consisted of both carbon and already present process material. It is unknown if buildup from a full-scale installation of ACI would cause significant maintenance or operating problems.

Inspections showed that all areas were in good condition and comparable to inspections completed during annual maintenance outages following normal operations. There was light or moderate wear on the windbox exhaust fan, but this is not specifically due to the ACI and plant personnel indicated that this was normal. There were no elevated bromine or carbon contents with regard to specific locations and no obvious visual corrosion concerns that arose as a result of the brominated PAC exposure. Testing of such a short duration is likely insufficient to observe any erosion, corrosion, or equipment degradation concerns.

5.2.5 Additional Environmental Impacts

As previously discussed in Section 5.1, ACI did not decrease HgT emissions. HgG decreased by 30% using Equation 1 and 27% using Equation 2 as a result of ACI. This indicates that some Hg was adsorbing onto the PAC. Therefore, more Hg was emitted in HgP form. This was validated as the HgP emissions accounted for 34% of the HgT emissions coming out of the stack during the Long Term #1 test. This is approximately a 25% increase in HgP speciation relative to normal operations (refer to Attachment F for details). This report does not evaluate this change in HgP emissions in relation to the goals of the TMDL, which sought to minimize local deposition. However, the increase in HgP emissions should be evaluated from a local deposition perspective should Minorca consider ACI injection testing at higher injection rates in the future.

6.0 Conclusions

This round of ACI testing revealed several important conclusions about this technology's ability to reduce Hg emissions at Minorca:

- ACI did not reduce HgT emissions at an injection rate of 1 lb/mmacf. Higher injection rates were
 not evaluated because Phase II testing indicated that this would jeopardize compliance with
 existing PM limits. Therefore, this technology under the testing conditions is not considered to be
 a potential control technology for Minorca.
- Filterable particulate matter emissions did not exceed 2015 stack test results with ACI. Therefore, this short term test suggests that compliance with current particulate limits may be achievable with ACI at an injection rate of 1 lb/mmacf. It is unknown if there would be an actual emissions increase with ACI.
- Scrubber sump Hg did not increase when ACI began. However, it did decrease once the scrubber sump was routed to the tailings thickener because the rerouting removed Hg recycle within the process.
- Removing scrubber solids alone may be an effective way to reduce Hg emissions.
- No abnormal erosion/corrosion or equipment degradation was observed after a post-testing inspection of the equipment exposed to PAC.
- Varying amounts of material buildup were observed in several locations, but it is unclear if this would create additional operation and maintenance issues for a full-scale installation of ACI.
- Minorca did not observe any adverse impacts to pellet quality during the extended testing.
- Economics were not evaluated because ACI did not reduce mercury emissions at an injection rate
 of 1 lb/mmacf. Minorca did not observe any increase in operation or maintenance costs
 associated with the existing equipment.
- No safety/hygiene issues were identified with ACI.
- More Hg was emitted in the form of HgP as a result of ACI. This may add to the problem of local Hg deposition, the very opposite of what the TMDL seeks to achieve.

Attachment A

Minnesota Taconite Phase II Research - Evaluation of Carbon Injection to Increase Mercury Capture - ArcelorMittal Minorca Mine Inc. - Final Report

MINNESOTA TACONITE PHASE II RESEARCH - EVALUATION OF CARBON INJECTION TO INCREASE MERCURY CAPTURE

ARCELORMITTAL MINORCA MINE INC.

Final Report

Prepared For: Iron Mining Association of Minnesota

324 West Superior Street, Suite 502 Duluth, MN 55802

Prepared By: Kyle Bowell, Andrew Bertelson, Gerald Amrhein, Maxine Biggs

ADA-ES, Inc.

9135 South Ridgeline Boulevard, Suite 200 Highlands Ranch, CO 80129

ADA Document Number: ADA-ES: 2013-0237

ADA Project Number: 8155-13

Date: May 16, 2014

DISCLAIMER

ADA-ES, INC. ASSUMES NO LIABILITY WITH RESPECT TO THE USE OF, OR FOR DAMAGES RESULTING FROM THE USE OF, ANY INFORMATION, METHOD OR PROCESS DISCLOSED OR CONTAINED IN THIS REPORT ISSUED UNDER THE APPLICABLE CONTRACT. ADA-ES, INC. EXPRESSLY DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, EITHER EXPRESS OF IMPLIED, WHICH MIGHT ARISE UNDER LAW OR EQUITY OR CUSTOM OF TRADE, INCLUDING AND WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR SPECIFIED OR INTENDED PURPOSE.

EXECUTIVE SUMMARY

ADA-ES, Inc. (ADA) was awarded a contract to test Activated Carbon Injection (ACI) at five taconite ore processing plants in northern Minnesota as part of the Minnesota Taconite Mercury Reduction Research Phase II Program. The purpose of Phase II is to determine the level of mercury reduction possible using ACI. This report presents the results of the Phase II ACI test at the ArcelorMittal Minorca plant (Minorca).

Three commercially available powdered activated carbons (PACs) were tested in a PAC Screening Test from 6/24/13 to 6/27/13 to determine the best PAC to use for the Phase II test. Albemarle's BPAC was selected because it performed better than the other PACs and achieved 91% HgG reduction in stack D and 67% HgG reduction in stack B at an ACI rate of 3 lb/mmacf.

Phase II Testing was conducted from 7/10/13 to 8/8/13 using BPAC at 3 lb/mmacf and injecting only into the Windbox Exhaust. The ACI rate was constant except during minor plant outages and for ACI equipment maintenance. ADA installed one Hg-CEMS in stack D for the entirety of testing and another was moved between stacks A, B, and C. Barr Engineering performed weekly particulate testing on the stack during Phase II testing.

The results of Phase II testing showed that the gas phase mercury (HgG) reduction, as measured by the mercury continuous emission monitor system (Hg-CEMS), and considering all four stacks, was 76% at 3 lb/mmacf. However, the total mercury (HgT) reduction calculated using the MM30B sorbent trap data was 54%. Therefore, the test indicates that the target of 75% Hg reduction is not obtainable at Minorca with the current system configuration.

Throughout this report it is important to distinguish between gas phase mercury (HgG), as measured by the mercury continuous emission monitor system (Hg-CEMS), and total mercury (HgT) which is the sum of the particulate bound or particulate phase mercury (HgP) and HgG. Hg-CEMS cannot measure HgP, but ADA also used a modified EPA Method 30B (MM30B) procedure during Phase II that can be used to estimate HgP. It is important note that ADA often uses the MM30B as a research tool to independently verify the operations of the Hg-CEMS and to measure mercury in gas streams where no Hg-CEMS data is available. Mercury reductions will be reported as HgG when measured with the Hg-CEMS, and as HgT when measured by the MM30B when available.

Barr will provide a separate report of the particulate tests conducted at Minorca.

ACRONYMS

PM	Particulate Matter	
Hg	Mercury	
HgT	Total Mercury	
Hg0	Elemental Mercury	
Hg2	Oxidized Mercury	
HgG	Gas Phase Mercury	
HgP	Particulate Bound Mercury	
Hg-CEMS	Mercury Continuous Emissions Monitor System	
SO ₂	Sulfur Dioxide	
NOx	Nitrogen Oxide(s)	
ACI -	Activated Carbon Injection	
PAC -	Powdered Activated Carbon	
HPAC	Albemarle's High Temp Brominated PAC	
BPAC	Albemarle's Brominated PAC	
FPP	Fast PAC Premium - ADA-CS's Ground Brominated PAC	
PPPP	Power PAC Premium Plus - ADA-CS's Double Brominated PAC	
ADA-CS	ADA-Carbon Solutions	
ADA	ADA-ES, Inc.	
Barr	Barr Engineering Co.	
AMUSA	ArcelorMittal	
USS	United States Steel Corp.	
Cliffs	Cliffs Natural Resources	
i		
Hibtac	Hibbing Taconite Facility	
Utac	United Taconite Facility	
Minntac	Minnesota Taconite Facility	
Keetac	Keewatin Taconite Facility	
Minorca	Minorca Taconite Facility	
	,	
PST	PAC Screening Test	
OL	Ohio Lumex Mercury Analyzer	
MM30B	Modified EPA Method 30B	
acfm	Actual cubic feet per minute of gas	
scfm	Standard cubic feet per minute of gas	
μg/wscm	Micrograms of Hg per wet standard cubic meter of gas	
	The state of the s	
lb/mmacf		
	· · · · · · · · · · · · · · · · · · ·	
ME	Mist Eliminator	
Utac Minntac Keetac Minorca PST OL MM30B acfm scfm µg/wscm ng/g lb/mmacf	United Taconite Facility Minnesota Taconite Facility Keewatin Taconite Facility Minorca Taconite Facility PAC Screening Test Ohio Lumex Mercury Analyzer Modified EPA Method 30B Actual cubic feet per minute of gas Standard cubic feet per minute of gas Micrograms of Hg per wet standard cubic meter of gas Nanograms of Hg per gram of sample Pounds of PAC per million actual cubic feet of gas	

Table of Contents

	UMMARY	
	DDUCTION	
	ject Purpose and Scope	
	ility Description	
1.3 Tes	t Plan	
1.3.1	ACI Injection Port Locations	7
1.3.2	Mercury Measurement Port Locations	7
1.3.3	Test Chronology	8
2.0 METH	ODS	9
2.1 ACI	System	9
2.2 Mer	cury Measurement Techniques	12
2.2.1	EPA Method 29	12
2.2.2	Ontario Hydro	13
2.2.3	Hg-CEMS.	
2.2.4	EPA Method 30B - And ADA's Modifications	
2.3 Soli	ds Sampling and Analysis	
	o Lumex	
-	CREENING TEST (PST)	
	cription	
	ults	
	E II TESTING	
	cription	
	ults	
4.2.1	Phase II Testing	
4.2.2	Stack MM30B Data	
4.2.3	Inlet MM30B Data	
4.2.4	Sample Carbon Analysis	
4.2.5	Solids Analyses for Hg.	
	QC	
4.3.1	Sample Calculations	
4.3.1	MM30B and Hg-CEMS Comparison	
	·	
	LUSIONS	
	NDIX B - Hg-CEMS Calibration Data	
	NDIX C - Ohio Lumex Data	
	NDIX D - MM30B Data	

List of Figures

Figure 1. I	Minorca Gas Stream and Sampling Locations	. 4
Figure 2.	Process Diagram with Sampling Locations	. 6
Figure 3.	PAC Injection Location	. 7
Figure 4.	PST and Phase II Testing ACI Lance Arrangements at Minorca	. 7
	DemoPAC Injection Equipment	
Figure 6.	ADA Portable Injection Silo (Mini Silo)	10
Figure 7.	PAC Blower	11
Figure 8.	Method 29 Sample Train	13
-	Ontario Hydro Method	
	Hg-CEMS Diagram	
Figure 11.	Method 30B Sample Train	18
Figure 12.	Environmental Supply Company HG-324K System	19
Figure 13.	MM30B Two Section Sorbent Trap	19
Figure 14.	HPAC Screening Test Results	22
-	BPAC Screening Test Results	
	2013N Screening Test Results	
Figure 17.	Comparison of the PAC Screening Test Results for HgG	25
	Minorca Gas Stream and Sampling Locations	
Figure 19.	Phase II Testing Baseline Stack Data	27
Figure 20.	Phase II Testing - Stack D and A Emissions	28
Figure 21.	Phase II Testing - Stack D and B Emissions	29
Figure 22.	Phase II Testing - Stack D and C Emissions	30
Figure 23.	Phase II Testing - Stack Emissions	31
Figure 24.	Stack A MM30B Data vs. Hg-CEMS	33
Figure 25.	Stack B MM30B Data vs. Hg-CEMS	34
Figure 26.	Stack C MM30B Data vs. Hg-CEMS	35
Figure 27.	Stack D MM30B Data vs. Hg-CEMS	36
Figure 28.	Inlet MM30B Data with Greenball Hg Data	37
Figure 29.	Process Diagram with Sampling Locations	38
Figure 30.	Phase II Testing Multiclone Carbon Analysis	39
Figure 31.	Phase II Testing Thickener Overflow Carbon Analysis	39
Figure 32.	Phase II Testing Fine Tails Carbon Analysis	40
Figure 33.	Phase II Testing Green Ball Carbon Analysis	40
Figure 34.	Phase II Testing Fired Pellets Carbon Analysis	41
Figure 35.	ADA Green Ball Hg Analyses	42
Figure 36.	Independent Phase II Testing Green Ball Hg Analysis	43
-	ADA Thickener Overflow Hg Analysis	
Figure 38.	Independent Phase II Testing Thickener Overflow Hg Analysis	45
Figure 39.	ADA Multiclone Hg Analyses	46
Figure 40.	Independent Phase II Testing Multiclone Hg Analysis	46

٧i

Figure 41. ADA Fine Tailings Hg Analyses	47
Figure 42. Independent Phase II Testing Fine Tailings Hg Analysis	47
Figure 43. ADA Fired Pellets Hg Analysis	48
List of Tables	
Table 1. Minorca Test Chronology	8
Table 2. Technical Specifications for the Mini Silo	10
Table 3. Technical Specifications for the PAC Blower	11
Table 4. Summary of the PAC Screening Test at Minorca	24
Table 5. Phase II Testing Mercury Reduction Summary via Hg-CEMS and MM30B	
Table 6. M30B Relative Deviation	49
Table 7. Hg-CEMS Relative Accuracy	49
Table 8. MM30B Data and RD, RA, AMD Calculations	77

1.0 INTRODUCTION

1.1 Project Purpose and Scope

ADA-ES, Inc. (ADA) was awarded a contract to test Activated Carbon Injection (ACI) at five taconite ore processing plants in northern Minnesota as part of the Minnesota Taconite Mercury Reduction Research Phase II Program which broadened the scope of testing to medium-term operations (roughly a one month timespan) at multiple facilities. The purpose of Phase II is to determine the level of mercury reduction.

The five sites selected for this program are:

- Cliffs Natural Resources (Cliffs)
 - Line 3 at Hibbing Taconite (Hibtac)
 - Line 2 at United Taconite LLC (Utac)
- United States Steel Corp (USS)
 - Agglomerator Line 7 at Minntac
 - Keetac
- ArcelorMittal (AMUSA)
 - Minorca Mine (Minorca)

At each site, the ACI test was divided into three phases: Set-up, the PAC Screening Tests (PST), and Phase II testing. During Set-up, ADA installed the ACI equipment and mercury monitoring systems needed to accomplish the goals of the project.

The purpose of the PST was to develop a performance curve for each commercially available, brominated, powdered activated carbon (PAC) tested and determine which PAC would perform the best at each site. The PST involved testing each PAC for one day at three to four injection rates. The data from the PST was then used to select a PAC and ACI rate for Phase II testing. During the PST, the host site subcontracted Barr Engineering Co. (Barr) to conduct particulate matter (PM) loading tests at each injection rate.

The Mercury Phase II project team (ADA, host site reps and Barr) selected three PACs to be used for the PST at Minorca. One of the standard PACs tested at the first two sites was replaced with a coarse ground PAC for this test to determine if particulate collection efficiency across the scrubber could be improved by using a coarser material.

- Albemarle
 - o HPAC A brominated PAC developed for higher temperature applications
 - BPAC A standard brominated PAC
- ADA-Carbon Solutions (ADA-CS) ADA-CS is not affiliated with ADA-ES.
 - o ACS DEV 2013N (2013N) A course ground enhanced brominated PAC.

At the completion of the PST, the project team reviewed the data and selected a PAC and ACI rate to be used during Phase II testing.

The purpose of Phase II testing was to investigate the longer term effects of recycle and process changes with ACI. Most of the five test sites recycle material collected downstream of the furnace back into the process. Therefore, it was anticipated that PAC, and the mercury (Hg) absorbed on the PAC, could also end up back in the Green Balls and affect product quality or provide a recycle loop for the mercury that could reduce Hg reduction efficiency. Phase II testing at Minorca was allotted a maximum of 30-days.

During Phase II testing, the host site collected periodic samples at various locations throughout the plant. These samples were dewatered by the host site and the solids were provided to ADA for Hg analysis. Results provided initial insight into whether mercury was infiltrating the process streams as a result of recycling. Barr was also contracted by the host site to periodically conduct PM testing on the stacks.

Throughout the PST and Phase II testing, ADA employed the ThermoFisher mercury continuous emission monitor system (Hg-CEMS) to measure mercury emission at the stack. ADA also used a modified EPA Method 30B (MM30B) to periodically measure the Hg concentration of the inlet gas (before ACI), and to validate the performance of the Hg-CEMS at the stack. Throughout this report it is important to distinguish between gas phase mercury (HgG) and total mercury (HgT) which is the sum of the particulate bound or particulate phase mercury (HgP) and HgG. Hg-CEMS cannot measure HgP, but the MM30B can be used to estimate HgP. For this project, ADA used the MM30B as a research tool to independently verify the operations of the Hg-CEMS and to measure mercury in gas streams where no Hg-CEMS data was available. The modification to the M30B procedure included taking only single pairs of measurements instead of multiple pairs, and the use of two section sorbent traps instead of three-section spiked traps (see Section 2.2.4). Mercury reductions will be reported as HgG when measured with the Hg-CEMS, and as HgT when measured by the MM30B when available.

B-5-49

2

To calculate Hg reduction using Hg-CEMS data, a baseline (no ACI) HgG stack emission was determined by averaging data over a period time (30 minutes to several hours) before ACI was initiated and when the process was deemed to be operating normally. The same process was then used to determine HgG emission with ACI. The two HgG averages were then used to calculate HgG reduction. Minorca splits the waste gas between four stacks, so this process was repeated on each stack to calculate an overall Hg reduction.

To calculate HgT reduction using the sorbent trap data, all available stack data taken before ACI began and when the process was deemed to be operating normally was averaged to give a baseline value for HgT. The same was done for any data taken with ACI. The two HgT averages were then used to calculate HgT reduction.

This report only pertains to the testing conducted at the ArcelorMittal Minorca plant.

3

1.2 Facility Description

The indurating furnace at the Arcelor Mittal Minorca Mine is a straight grate furnace that can burn either natural gas or fuel oil. Unfired pellets from the balling disks are screened for size before entering the furnace. The pellets travel through the updraft, downdraft and preheat sections before reaching their peak temperature (2450°F) in the firing zone. The pellets then pass through the first and second cooling zones before being discharged to the stockpile. Figure 1 depicts the gas streams and sampling locations for Minorca. Two separate exhaust gas streams exit the furnace: the Hood Exhaust and the Windbox Exhaust. The two exhaust streams are driven by separate fans, after which they combine at a common header and then split into four streams that pass through recirculating venturi scrubbers and exit through four stacks. Particulate control devices downstream of the furnace consist of a multiclone dust collector on the Windbox Exhaust and the four recirculating venturi scrubbers. At Minorca, solids from the scrubbers are recirculated back directly to the concentrate thickener. However, solids from the multiclone dust collectors were discharged from the process to a settling pond during testing. The gas flow rate for the Hood and Windbox Exhausts are about 535,000 acfm each, for a total of 1,070,000 acfm.

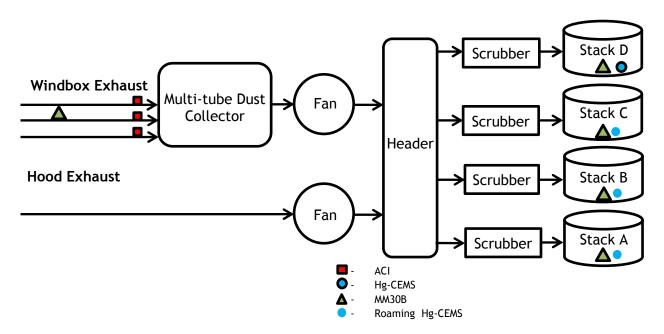


Figure 1. Minorca Gas Stream and Sampling Locations

1.3 Test Plan

The ACI test was divided into three phases: Set-up, the PAC Screening Tests (PST), and Phase II testing. The purpose of the PST was to develop a performance curve for each commercially available, brominated, powdered activated carbon (PAC) tested and determine which PAC would perform the best at each site. The PST involved testing each PAC for one day at three or four injection rates. Data from the PST was used to select a PAC and ACI rate for Phase II testing.

At Minorca, the original plan called for testing each of the proposed PACs at 3, 5, and 7 lb/mmacf (pounds of PAC per million actual cubic feet of gas) during the PST. However, results at Hibtac, with a similar exhaust gas configuration as Minorca, indicated that testing at 1, 3 and 5 lb/mmacf would be sufficient to achieve a goal of 75% HgG reduction during the PST. Each ACI rate was run for several hours during which Barr performed PM testing on Stack D only. Hg reduction was based on baseline Hg-CEMS concentration measured at the beginning of each day and the Hg concentration averaged over at least 30-minutes of steady operation of the Hg-CEMS during each run.

During previous testing at Hibtac, the Hood Exhaust was found to contain low mercury emissions, lacked the surface area associated with the multiclone, and had reduced residence time compared to the Windbox Exhaust. Therefore, for Phase II testing at Minorca, the project team decided to forgo PAC injection into the Hood Exhaust, and instead focus completely on mercury capture in the Windbox Exhaust to maximize the effectiveness of the PAC.

Based on the results of the PST, the project team decided to use BPAC at 3 lb/mmacf for the Phase II testing. The Phase II test continued for the full 30 days due to the extensive solids sample testing the plant was conducting. The following samples were collected and analyzed by ADA.

- Green Balls Every day
- Multi-tube Collector drop out Twice during Phase II testing
- Concentrate Thickener Overflow Twice during Phase II testing
- Pellets Twice during Phase II testing
- Fine Tailings Twice during Phase II testing

5

Minorca collected a larger number of samples and analyzed them for both carbon and mercury. The data was shared with ADA and included in this report. The process samples included:

- Green Balls Twice Daily on Week Days during Phase II testing
- Pellets- Twice Daily on Week Days during Phase II testing
- Multiclone drop out Twice Daily on Week Days during Phase II testing
- Thickener Overflow Twice Daily on Week Days during Phase II testing
- Fine Tailings Twice Daily on Week Days during Phase II testing

Figure 2 and Figure 3 indicate with a red "X" where the above samples were collected.

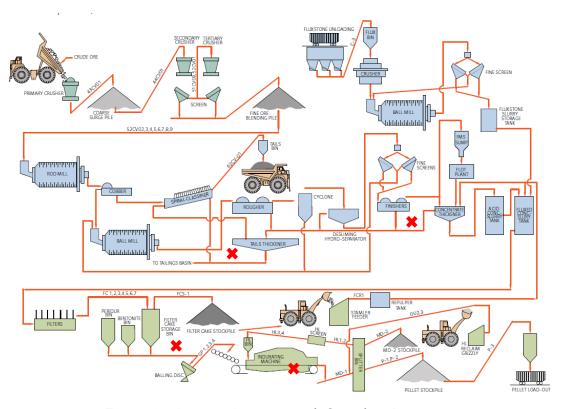


Figure 2. Process Diagram with Sampling Locations

Since Minorca has four stacks, two Hg-CEMS were used to record the mercury emission trends. Based on initial testing, stacks C and D had the highest Hg emissions and the team decided to dedicate one Hg-CEMS to stack D, and the other was periodically moved between the other three stacks A, B, and C. The Hg-CEMS only recorded data on stacks B and D during the PST, but one was moved between stacks A, B, and C during Phase II testing. Barr collected weekly PM data during Phase II testing.

B-5-53

1.3.1 ACI Injection Port Locations

As shown in Figure 1 and Figure 3 (blue "X"), ACI ports were installed upstream of the Multitube Collector on the Windbox Exhaust. Figure 4shows the lance arrangement used at Minorca during PST and Phase II testing. The red "X" indicates where the multiclone samples were taken.

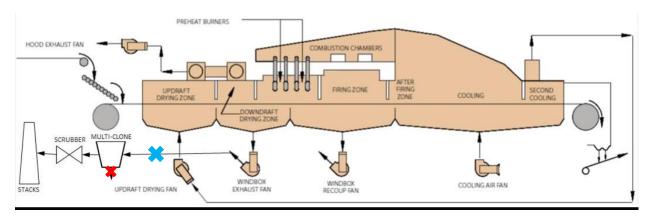


Figure 3. PAC Injection Location

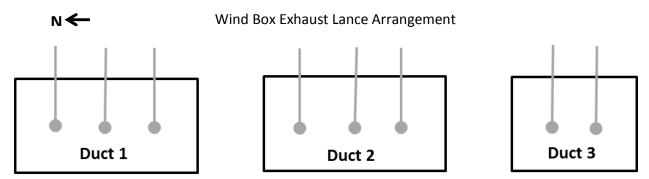


Figure 4. PST and Phase II Testing ACI Lance Arrangements at Minorca

1.3.2 Mercury Measurement Port Locations

Sample ports for the Hg-CEMS and MM30B were available on all four stacks. Ports for inlet MM30B sampling were installed prior to the ACI ports on the Windbox Exhaust duct.

B-5-54

7

1.3.3 Test Chronology

The major events that occurred during the test at Minorca are shown below in Table 1.

Table 1. Minorca Test Chronology

Day	Date	Description
Monday	06/17/13	ADA begins installation of equipment and Hg-CEMS
Monday	06/24/13	HPAC tested at 1, 3, 6 lb/mmacf. Barr performed PM test at stack at each rate
Wednesday	06/26/13	BPAC tested at 1, 3, 5 lb/mmacf. Barr performed PM test at stack at each rate
Thursday	06/27/13	2013N tested at 1, 5, 7 lb/mmacf. Barr performed PM test at stack at each rate
Wednesday	07/03/13	Project team decides to use BPAC at 3 lb/mmacf (192 lb/hr)
Wednesday	07/10/13	Started Phase II Testing with BPAC at 3 lb/mmacf (192 lb/hr)
Thursday	08/08/13	Phase II Testing completed
Tuesday	08/13/13	Demobilization completed

8

2.0 METHODS

2.1 ACI System

Since Phase II testing had not ended at Hibtac when the PST was scheduled to commence at Minorca, ADA's smaller DemoPAC injection system was used for the PST. After Hibtac concluded, the Mini-Silo was installed and used at Minorca for Phase II testing. DemoPAC, shown in Figure 5, is a small system that is easy to transport and setup, but has a lower sorbent capacity, only holding one supersack (1000 lb) at a time. The DemoPAC is approximately 16-ft high (two 8-ft sections), with a 6-ft x 6-ft footprint and has an empty weight of approximately 2,000 lbs.

Figure 5. DemoPAC Injection Equipment

The Mini-Silo, shown in Figure 6, is approximately 25-ft high, has an 8-ft x 8-ft footprint, an empty weight of 14,000 lb and a capacity of 17,000 lb of PAC. It can be loaded either with supersacks or from a bulk truck as was done at Minorca. Table 2 gives the specifications for the Mini Silo. The sorbent injection system also includes PAC conveying lines and injection lances. The silo was installed outdoors next to the Windbox and Hood Exhaust fans. Temporary sorbent transport hoses were installed between the silo and the injection lances.

Figure 6. ADA Portable Injection Silo (Mini Silo)

Table 2. Technical Specifications for the Mini Silo

Utility Specification	
Electrical	480VAC / 3PH / 100A
Air	Clean, Dry Air at 90-100 psi and 15 scfm
I&C	4-20 mA signal (production rate)
Dimensions	~ 8-ft x 8-ft x 25-ft (L x W x H)
Weight	~14,000 lb empty
Installation	Anchor skid, lift top portion and bolt to lower portion
Location	Set up at grade below injection point

ADA purchased all sorbents and arranged for shipment and delivery. Sorbent can be provided in 1000 lb supersacks as was done during the PST or 50,000 lb pneumatic tank trucks as was done during Phase II testing. A supersack is loaded into the silo via a hoist that raises it to the top of the silo where it is dumped through an opening into the silo. The Mini-Silo and the DemoPAC have a Programmable Logic Controller and computer program system that controls

10

the system operation and adjusts the variable speed screw feeder to meter sorbent injection rates.

Motive air is supplied by a positive displacement blower, shown in Figure 7. The technical specifications for the blower are summarized in Table 3. Flexible hose carries the sorbent from the feeder to a distribution manifold located near the injection grid. At Minorca, the primary conveying hose was split into two secondary lines that were further divided into four legs each to create the eight-lance arrangements discussed above in Figure 4.

Figure 7. PAC Blower

Table 3. Technical Specifications for the PAC Blower

Utility	Specification	
Electrical	480VAC / 3PH / 60A, 120VAC	
Dimensions	6-ft x 4-ft x 6-ft (L x W x H)	
Weight	2,750 lb	
Installation	Place on level surface	
Location	≤ 20 feet from Silo	

2.2 Mercury Measurement Techniques

This section discusses several of the most common methods used to measure mercury emissions from waste gas streams. A short explanation of each method will be presented along with the pros and cons. More specifically, the following methods will be considered:

- EPA Method 29 (M29)
- EPA Method 30B (M30B) And ADA's modifications
- Ontario Hydro (O-H) Method or ASTM Method D6784-02
- Mercury Analyzers or Mercury Continuous Emission Monitoring Systems (Hg-CEMS)

For this project ADA used Hg-CEMS and MM30B. The Hg-CEMS were used to continuously monitor speciated mercury emissions from the stack. MM30B was used for two purposes. First, it was used to track the Hg concentration in the waste gas at the furnace exit prior to the ACI grid to determine if inlet mercury concentration changed due to the effect of recycle or from process changes. Also, MM30Bs were used to check the performance of the Hg-CEMS at the stack. It is important to note that in the original test plan, the data collected from MM30Bs were not intended to be used to calculate the Hg reduction performance of the process. However, as the project progressed, additional MM30B tests were added to the project scope in the hope of being able to do so.

2.2.1 EPA Method 29

EPA Method 29 (M29) is an isokinetic, wet chemistry, batch sampling method developed to measure metal emissions in waste gas streams. Up to 17 different metallic species can be measured with M29, including mercury. Figure 8 shows the sample train used in this method. The gas sample is drawn isokinetically into a heated sample probe, through a heated glass fiber filter, and then through a series of glass impingers submerged in an ice bath. The sample nozzle, probe, and filter collect the particulate matter in the gas sample. The first set of impingers contains an acidified aqueous solution of hydrogen peroxide. A blank impinger is placed between the impinger sets to prevent carryover. The second impinger set contains an acidified aqueous solution of potassium permanganate that absorbs all of the metal species including mercury. The last impinger contains silica gel to remove the moisture from the gas sample. Finally, the gas passes through a dry gas meter that measures the total dry gas sample volume. The solutions are then recovered and analyzed by various spectroscopy methods for the elements of interest. A two hour minimum sampling time is recommended for Method 29. Increasing the sample time can improve the detection limits. All glassware components must be rinsed during sample recovery and the rinsate analyzed for additional mercury. Pre- and post-test leak-checks must be performed and the method requires multiple runs for quality assurance/quality control.

Method 29 can be used to estimate HgP by separately reporting the mercury collected with the particulate in or on the nozzle, probe, and filter. However, the particulate may absorb some of the HgG, misrepresenting the partitioning of mercury between particulate and gas phases. The absorption of HgG on the filter substrate is dependent upon the nature and constituents of the collected particulate matter. However, the sum of HgG and HgP accurately represents the total mercury emissions.



Figure 8. Method 29 Sample Train

2.2.2 Ontario Hydro

The Ontario-Hydro Method (O-H) is similar to Method 29 however; it was developed to separately measure both the oxidized (Hg2) and elemental (Hg0) mercury species in the gas sample. Any system that can measure both mercury species is said to be able to "speciate" the mercury. Figure 9 shows the sample train used in this method. The sample console is identical and the sample collection train is very similar to M29. For the O-H method, the first impinger set contains aqueous potassium chloride solution which selectively removes the Hg2 from the gas sample. Hg0 is then captured in the following impingers containing either acidified aqueous potassium permanganate or acidified hydrogen peroxide. The final impinger contains silica gel desiccant to remove moisture from the gas sample. All glass elements of the system must be rinsed during sample recovery, and the rinsate is recovered

and analyzed for additional mercury. A leak check is performed before and after the test. The nozzle, probe, filter, and impingers are recovered and sent to a lab to be analyzed by various spectroscopy methods. A high level of quality assurance/quality control is required to properly conduct the O-H method.

This batch method has a higher detection limit than other wet chemistry methods, but can measure the HgP and speciated gaseous mercury levels in a sample. A two hour minimum sampling time is recommended for the O-H method. Increasing the sample time can improve the detection limits. However, particulate matter on the filter may absorb some of the gas phase mercury and can also change the speciation of the sampled mercury, misrepresenting the partitioning of mercury between particulate and gas phases or the mercury speciation. The absorption of HgG on the filter substrate is dependent up on the nature and constituents of the collected particulate matter.

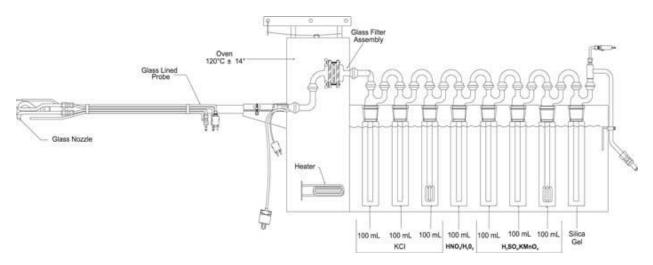


Figure 9. Ontario Hydro Method

2.2.3 Hg-CEMS

Mercury Continuous Emission Monitoring Systems (Hg-CEMS) were developed to provide continuous, real time measurements of speciated gas phase mercury. This is the only measurement method that provides continuous Hg measurement. However, because they rely on real time spectroscopy measurement for mercury detection, they cannot be used to measure HgP. The discussion below mostly pertains to the ThermoFisher (Thermo) system that ADA is most familiar with. Other suppliers, such as Tekran and Ohio Lumex, also provide Hg-CEMS that operate on slightly different principles, but, in general, the main components and operations are similar. For example, Tekran employs a wet chemical system to speciate mercury whereas Thermo developed a dry system.

A diagram of the Thermo system used for both Hg-CEMS is shown in Figure 10. It is comprised of an analyzer, calibrator, controller, and an extraction probe along with additional

peripheral components such as a zero air supply and heated umbilical. The Thermo probe contains an inertial particulate filter, a nitrogen dilution module (40:1 dilution typical), a splitter to divide the diluted sample into two streams; one for measuring gas phase elemental mercury (HgO) and one for measuring total gas phase mercury (HgG), and a converter to convert all of the Hg in the gas sample to HgO. The inertial filter is an important component of the probe. It was designed so that a gas sample can be extracted from a stream containing particulates without passing the sample through a filter cake as is done in the other measurement methods.

The design basis for detecting Hg in the Hg-CEMS is atomic spectroscopy whereby the gas sample is exposed to ultraviolet light at 253.7 nm so that an electron in the outer most orbital of Hg0 absorbs a photon, becomes excited, then decays back to the ground energy state, emitting (fluorescing) a photon of light at the same wavelength. To detect mercury, analyzers can either measure the amount of light absorbed (Cold Vapor Atomic Absorption Spectroscopy or CVAAS), or the amount of light that fluoresces (Cold Vapor Atomic Fluorescence Spectroscopy or CVAFS), as is done in the Thermo system. Since Hg2 does not have electrons in the outer orbital, it cannot be measured by this technique. Therefore, in order to speciate Hg, the system divides the sample into two streams one of which is further treated to convert all of the Hg to Hg0. These two streams are alternately analyzed so that one produces a value for Hg0 only and the other HgT (gas phase only). Hg2 is then calculated by the difference.

The calibrator produces a gas stream with a selectable HgO concentration. The cal gas is transported to the probe and enters the system before the inertial filter. During cals, the probe is isolated so that only cal gas is flowing through the probe. ADA checks the system calibration at least once a day. All calibration checks and adjustments are provided in Appendix B. MM30B data at the stack is included in Appendix D along with comparisons to the Hg-CEMS data.

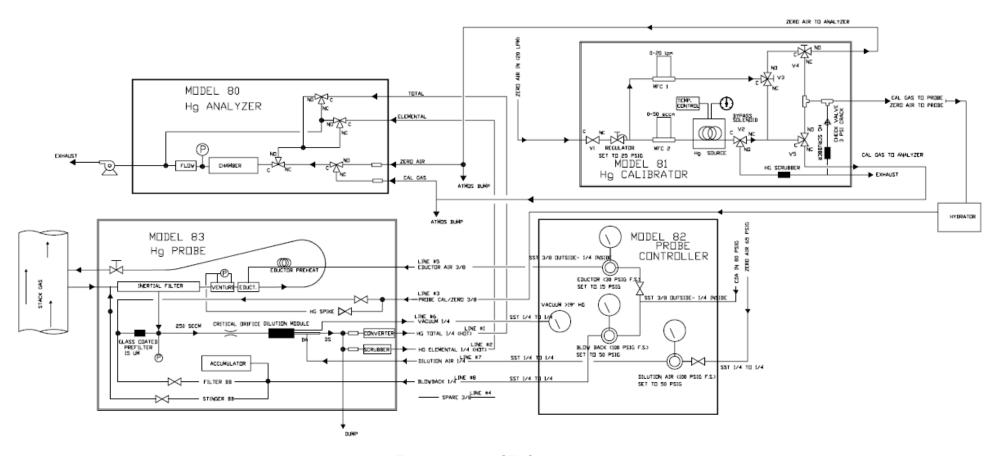


Figure 10. Hg-CEMS Diagram

2013-0237

2.2.4 EPA Method 30B - And ADA's Modifications

EPA Method 30B (M30B) was developed by the Electric Power Research Institute, with assistance from ADA, as a simpler method for measuring Hg than M29 and O-H. M30B specifies that it is to be used in low particulate gas streams and was designed to measure only HgT assuming HgP was negligible. However, for this project, ADA separately analyzed the first glass wool section of the sorbent trap that theoretically contains all of the HgP to provide an estimate for both HgP and HgG.

Figure 11 is a schematic of M30B sample system and Figure 12 is a diagram of the HG-324K System manufactured by the Environmental Supply Company and used by ADA for this project. The system consists of a temperature controlled, two channel probe, sample dryers, and a console that controls the sampling rate, measures the gas sample, and records operating data including temperatures, sampling volume, and barometric pressure. For the procedure, two sample traps (shown in Figure 13) are inserted into the end of the probe and the probe is inserted into the gas stream. A sample is drawn at a constant sample rate through the traps, dried, and measured. The traps are then recovered and the various sections are analyzed. ADA analyzed the traps on-site using the 915+ mercury analyzer by Ohio Lumex. Sample times can vary from as little as 30 minutes to as long as 30-days. ADA ran all traps for 60 minutes.

M30B sorbent traps consist of three sections of specially treated PAC separated by glass wool. The primary purpose of the glass wool is to retain and separate the carbon sections in the glass sample tube. However, the first glass wool section also acts to filter particulate matter from the gas sample. The first PAC section contains enough material to absorb the mercury in a typical gas sample for at least 30 days. The second PAC section is used for QA/QC purposes and is often called the "breakthrough" section. To meet QA/QC requirements, the Hg in this section must be less than 10% of the total Hg. The third PAC section contains a spiked quantity of Hg and is used for QA/QC. Upon analysis, the measured mercury in this section must agree with the spiked amount. The final glass wool section keeps the PAC from being sucked into the probe during sampling. For this project, ADA used a two section trap which did not contain the spiked section. This is the main reason the method is referred to as a modified M30B - MM30B in this report.

In a typical analysis of sorbent traps, the first glass wool and PAC sections are analyzed together to produce a single value for HgT. The second and third glass wool and second PAC sections are also analyzed together and used for QA/QC purposes to demonstrate that no breakthrough occurred during sampling. However, ADA often analyzes the first glass wool section and accompanying particulate matter separately to ascertain an estimate for HgP. However, there are two caveats to the procedure. First, the particulate matter that collects on the first glass wool section may absorb some of the HgG, misrepresenting the partitioning

of mercury between particulate and gas phases. The absorption of HgG on the glass wool substrate is dependent upon the nature and constituents of the collected particulate matter. Secondly, as it is not designed nor intended to measure HgP, M30B is not done isokinetically so does not collect a true representative sample of particulate matter in the gas stream. At best, the M30B provides an estimate of HgP and the partitioning of mercury between particulate and gas phases in the stack gas stream.

At Minorca, HgP was found to be a significant portion of HgT when ACI was operating. This is important for several reasons. First, since the Hg-CEMS cannot measure HgP the data from Hg-CEMS data could not be used to calculate the total Hg reduction during ACI operation. Also, in order to assess if the Hg-CEMS are operating properly by use of the MM30B, only the HgG component of the trap data could be compared to the Hg-CEMS values for QA/QC purposes. However, if the particulates collected in the sorbent trap scrub a significant portion of the Hg from the sample gas, the trap HgG will still not agree well with the Hg-CEMS values. In this case as long as the Hg-CEMS values falls between the trap HgT and HgG the only thing that can be ascertained is that it is likely that the particulates in the trap are scrubbing Hg. If the Hg-CEMS values fall below the trap HgG, it is likely that the Hg-CEMS is not operating properly.

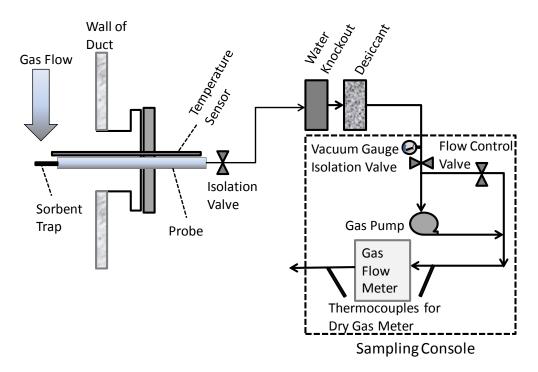


Figure 11. Method 30B Sample Train

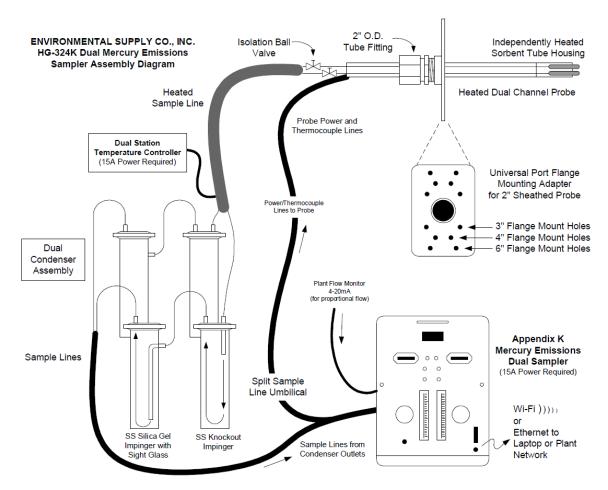


Figure 12. Environmental Supply Company HG-324K System

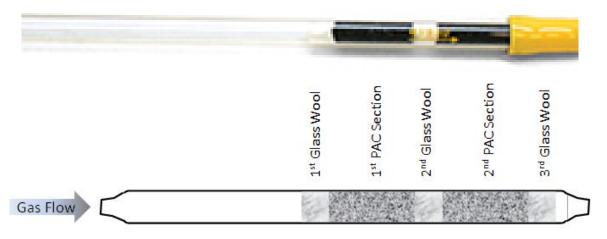


Figure 13. MM30B Two Section Sorbent Trap

2.3 Solids Sampling and Analysis

As discussed above, several of the host sites, including Minorca, recycle the process solids back to different points in the process. At Minorca, solids from the scrubber are recycled directly back to the concentrate thickener tank, however for this test solids from the multitube collector were disposed of. Therefore, it is likely that PAC, and the Hg absorbed on the PAC, would also be recycled into the green balls and the Hg would be re-released during the induration process. To investigate the possible effect of recycle, the host site sampled and analyzed several process streams on a regular basis. ADA received a split of selected samples twice during the test for analysis with the Ohio Lumex (OL). ADA received the independent analysis results conducted by Minorca for all the samples for both carbon and Hg analysis. Results of the analysis are included in Section 4.

Samples were collected from the following locations:

- Green Balls
- Multi-tube Collector drop out
- Concentrate Thickener Overflow
- Pellets
- Fine Tailings

2.4 Ohio Lumex

ADA used the OL RA-915+ to quantitatively recover and quantify Hg from sorbent traps and process samples. The analyzer meets the requirements for analysis specified in M30B. It utilizes differential atomic absorption spectrometry (Zeeman Effect) to measure mercury. The trap sections are inserted into the RP-91C furnace attachment and heated to 800C to vaporize and convert the mercury from a bound state to an atomic state. Organic compounds are completely burned to produce non-interfering carbon dioxide and water. The analyzer produces a desorption curve from which the mass of mercury emitted can be determined by comparison to desorption curves produced from National Institute of Standards and Technology traceable mercury standards. Samples containing 0.2 ppb to 30,000 ppm Hg can be analyzed. Results are obtained in minutes allowing for near real-time, onsite sample analysis. All of the raw data obtained with the OL for process samples and sorbent traps are included in Appendix C.

3.0 PAC SCREENING TEST (PST)

3.1 Description

The goals of the PAC Screening Test were:

- Determine which of several commercially available PACs performed the best.
- Determine what PAC rate was needed to achieve 75% Hg reduction.
- Perform PM stack tests for each PAC at each rate tested on stack D only.

The original plan called for testing PAC rates of 3, 5 and 7 lb/mmacf. However, because ADA had previously tested at Hibtac, which has a very similar exhaust gas layout as at Minorca, it was discovered that the higher rates of injection were not needed when a multi-tube dust collector is present. Therefore, rates of 1, 3 and 5 lb/mmacf were tested for the three candidate PACs.

A typical day of PAC screening involves:

- 1. Calibrate the Hg-CEMS
- 2. Obtain Hg-CEMS baseline data
- 3. Begin testing at the first ACI rate
- 4. Barr PM Test (when steady conditions are reached as determined by the Hg-CEMS)
- 5. Change ACI rate and repeat Step 4
- 6. Continue until all three rates have been tested

Each PAC was tested during a single day and the system was allowed to recover overnight. At Minorca, Hg levels returned to the original baseline conditions after running without ACI overnight. However, Hg reduction was calculated using baseline data obtained shortly before ACI began each day.

3.2 Results

Figure 14 through Figure 16 show the results of the PST at Minorca. Each figure has six traces and four shaded areas. The shaded areas represent the period during which the Hg-CEMS data was averaged in order to determine the HgG reduction.

- Black Dots Plant Production Rate
- Red Dots Stack D Hg-CEMS gas phase total Hg, μg/wscm
- Pink Dots Stack D Hg-CEMS gas phase elemental Hg, μg/wscm
- Dark Green Dots Stack B Hg-CEMS gas phase total Hg, μg/wscm
- Light Green Dots Stack B Hg-CEMS gas phase elemental Hg, μg/wscm
- Purple Line PAC Rate, lb/mmacf
- Grey Shade Data period averaged to calculate baseline Hg
- Blue Shade Data period averaged to calculate Hg at low ACI rate
- Red Shade Data period averaged to calculate Hg at medium ACI rate
- Green Shade Data period averaged to calculate Hg at high ACI rate

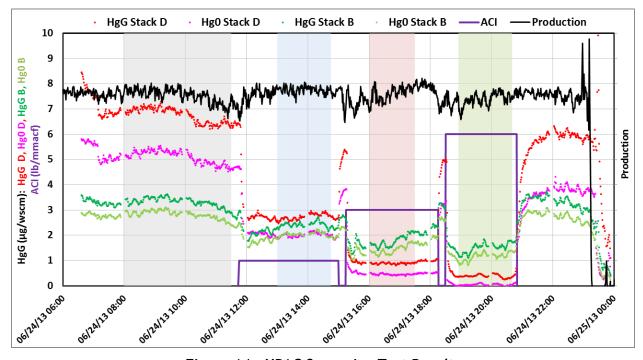


Figure 14. HPAC Screening Test Results

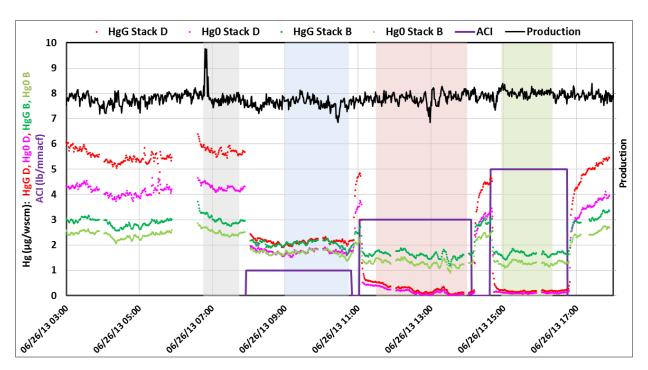


Figure 15. BPAC Screening Test Results

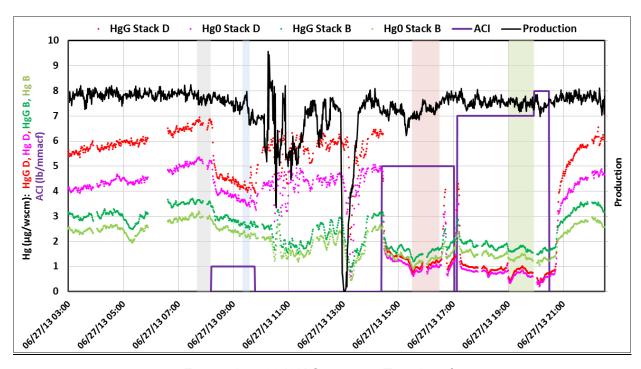


Figure 16. 2013N Screening Test Results

Table 4 is a compilation of the PST results showing the HgG baseline and test values for each PAC and ACI rate tested for both stacks D and B along with the calculated HgG reduction for each test as measured by the Hg-CEMS. Hg reduction was plotted in Figure 17 to produce a comparison of PAC performance. The figure shows that all of the PACs achieved 75% HgG reduction on stack D at 5 lb/mmacf. However, the coarser PAC did not perform as well in stack D as the other two PACs.

All of the PACs showed moderate reduction on stack B, but none reached 75% reduction. As shown in Figure 18, no injection occurs in the Hood Exhaust so there is no stack reduction for stacks A and B except from the limited mixing that occurs in the header.

BPAC was selected for Phase II testing at 3 lb/mmacf because it performed as well as the other PACs on stack B and much better on stack D. It is also a moderately priced, readily available sorbent.

Table 4. Summary of the PAC Screening Test at Minorca

Hg-CEMS, μg/wscm	HPAC	BPAC	2013N
Baseline Stack D	6.75	5.70	6.73
Baseline Stack B	3.32	2.96	3.57
With ACI			
1 lb/mmacf Stack D HgG (µg/wscm)	2.73	2.12	4.14
1 lb/mmacf Stack B HgG (µg/wscm)	2.42	2.05	2.63
Removal Stack D	60%	63%	39%
Removal Stack B	27%	31%	26%
3 lb/mmacf Stack D HgG (µg/wscm)	0.88	0.23	n/a
3 lb/mmacf Stack B HgG (µg/wscm)	1.76	1.60	n/a
Removal Stack D	87%	96%	n/a
Removal Stack B	47%	46%	n/a
5 lb/mmacf Stack D HgG (µg/wscm)	n/a	0.17	1.03
5 lb/mmacf Stack B HgG (ug/wscm)	n/a	1.63	1.50
Removal Stack D	n/a	97%	85%
Removal Stack B	n/a	45%	58%
6 lb/mmacf Stack D HgG (µg/wscm)	0.37	n/a	n/a
6 lb/mmacf Stack B HgG (ug/wscm)	1.49	n/a	n/a
Removal Stack D	94%	n/a	n/a
Removal Stack B	55%	n/a	n/a
7 lb/mmacf Stack D HgG (µg/wscm)	n/a	n/a	0.78
7 lb/mmacf Stack B HgG (ug/wscm)	n/a	n/a	1.66
Removal Stack D	n/a	n/a	88%
Removal Stack B	n/a	n/a	53%

 $\ensuremath{\mathsf{ug}}/\ensuremath{\mathsf{wscm}}$ - $\ensuremath{\mathsf{micrograms}}$ of Hg per wet standard cubic meter of gas.

n/a - system was not tested at this rate.

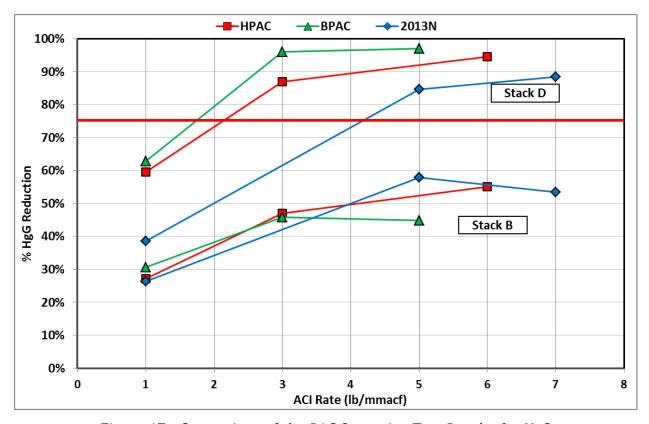


Figure 17. Comparison of the PAC Screening Test Results for HgG

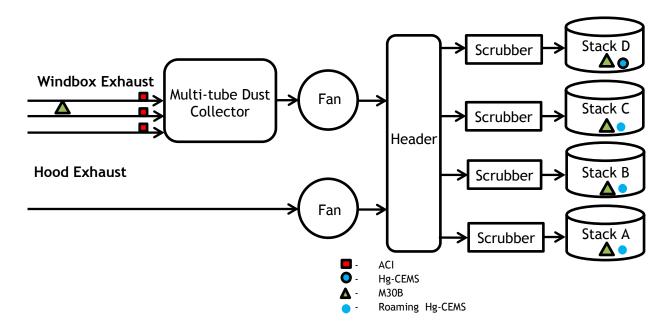


Figure 18. Minorca Gas Stream and Sampling Locations

4.0 PHASE II TESTING

4.1 Description

The goals of Phase II testing were:

- Determine the long term Hg reduction performance for BPAC at 3 lb/mmacf
- Determine the effects of PAC/Hg recycle on the mercury concentration in the process streams and the effects on Hg reduction
- Perform periodic PM tests at the Stack (Barr)

A typical day of Phase II testing involves:

- 1. Calibrate the Hg-CEMS
- 2. Collect and analyze samples
- 3. Collect and analyze MM30B sorbent traps

Phase II Testing commenced on 7/10/13 and was completed on 8/8/13 as scheduled. The ACI rate was held at 3 lb/mmacf except for short periods when the plant was off-line or minor maintenance was required on the Hg-CEMS or Mini-Silo. Barr performed weekly PM testing during Phase II testing.

4.2 Results

4.2.1 Phase II Testing

Figure 19 through Figure 23 show the data collected prior to and during Phase II testing. The shaded areas represent the periods during which the Hg-CEMS data were averaged in order to determine the HgG reduction. The figures use the following color designations:

- Black Dots Plant Production Rate
- Red Dots Stack D Hg-CEMS total gas phase Hg, μg/wscm
- Green Dots Stack B Hg-CEMS total gas phase Hg, μg/wscm
- Orange Dots Stack C Hg-CEMS total gas phase Hg, μg/wscm
- Blue Dots Stack A Hg-CEMS total gas phase Hg, μg/wscm
- Purple Line PAC Rate, lb/mmacf
- Pink Line Approximate shift in baseline
- Light Red Shade Data period averaged to calculate Stack D total gas phase Hg
- Light Green Shade Data period averaged to calculate Stack B total gas phase Hg
- Light Orange Shade Data period averaged to calculate Stack C total gas phase Hg
- Light Blue Shade Data period averaged to calculate Stack A total gas phase Hg

B-5-73

26

Figure 19 shows the baseline HgG data for all four stacks during the 10 days before Phase II testing began. The shaded sections in Figure 19 were the baselines chosen for each stack (C and D have the same time period). These periods represent relatively steady operation for production and Hg levels and were close to the beginning of the testing period.

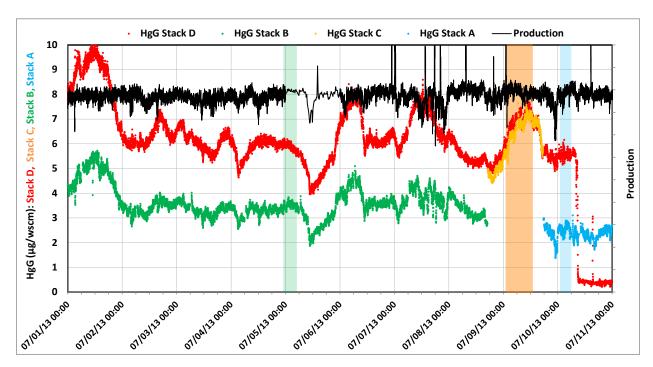


Figure 19. Phase II Testing Baseline Stack Data

Figure 20 through Figure 23 show the results of Phase II testing at Minorca. The figures show the mercury trend of the two stacks being sampled at any given time. Figure 23 shows all the stack data on a single graph. One Hg-CEMS probe was positioned in stack D for the duration of Phase II testing, and the second was rotated between stacks A, B, and C every two to three days. When ACI commenced, Figure 22 shows immediate and significant reduction in HgG emissions in stack D and C, and Figure 20 and Figure 21 show more gradual and less significant reduction in stacks A and B. This was expected because PAC was only being injected into the Windbox Exhaust that preferentially exits through stacks C and D. The data shows that some minimal mixing must occur between the Windbox and Hood Exhaust gas in the common header based on the HgG reductions measured in stacks A and B. HgG emissions in stack D were fairly stable with values usually under 1.0 µg/wscm during testing.

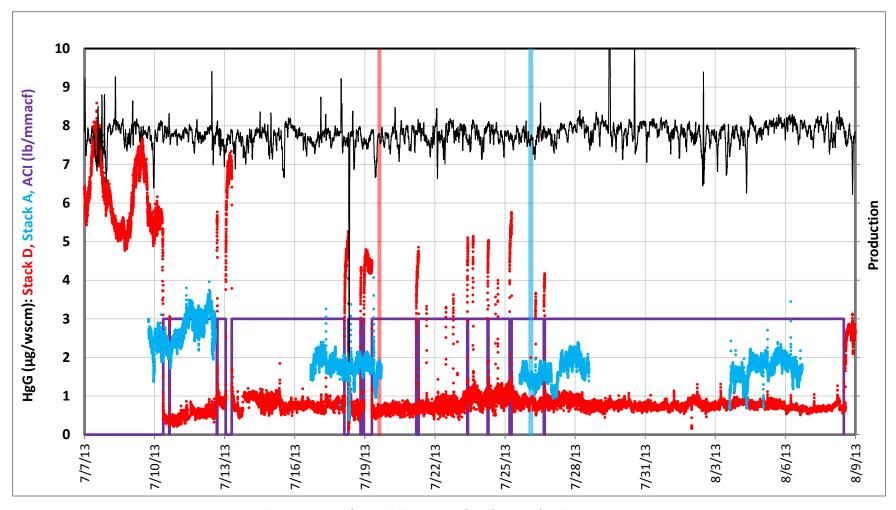


Figure 20. Phase II Testing - Stack D and A Emissions

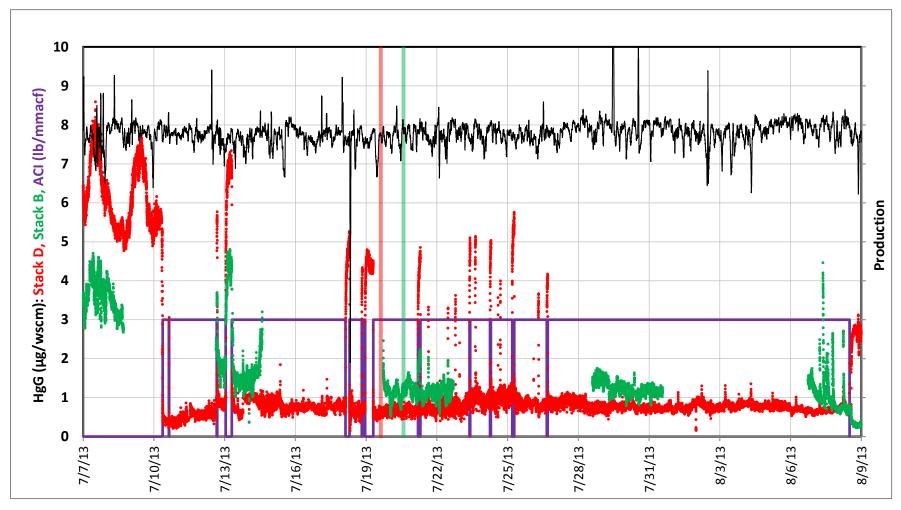


Figure 21. Phase II Testing - Stack D and B Emissions

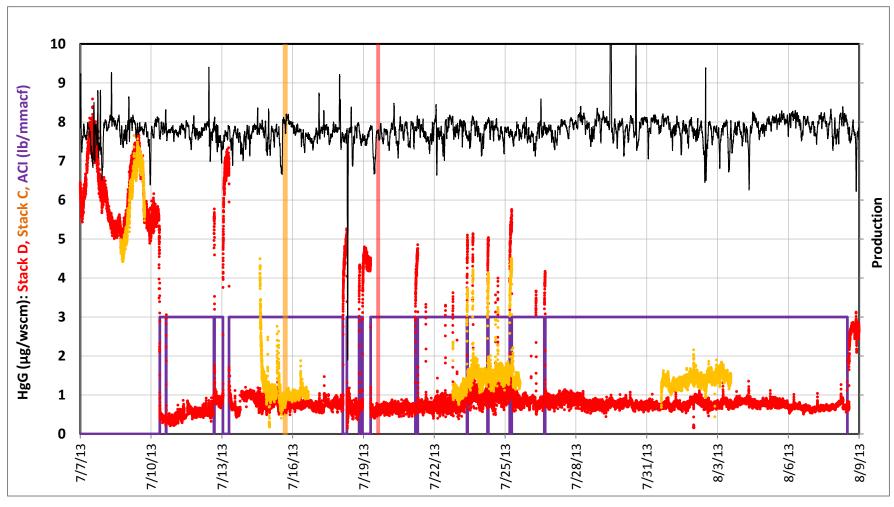


Figure 22. Phase II Testing - Stack D and C Emissions

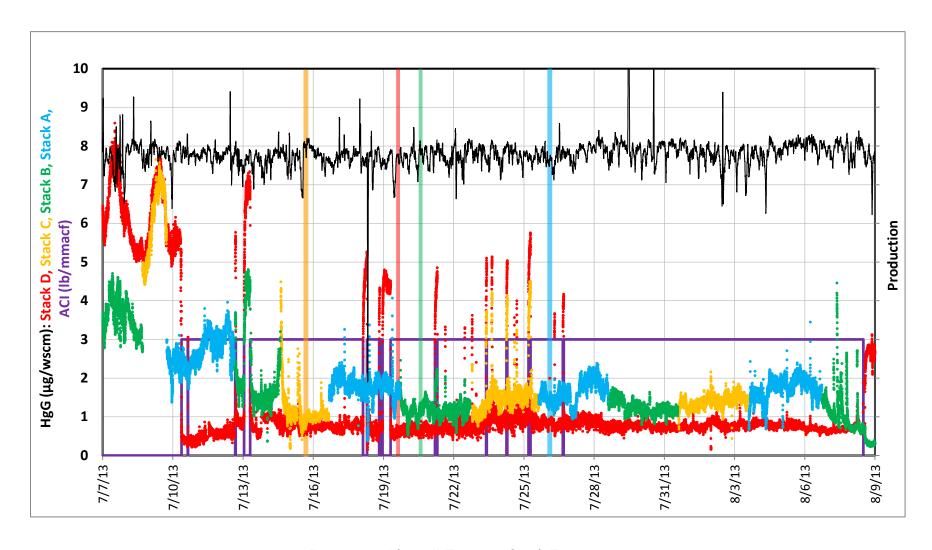


Figure 23. Phase II Testing - Stack Emissions

2013-0237

The results of Phase II testing, summarized in Table 5, list the Baseline and ACI Hg emissions, as well as the calculated Hg reductions, for the Hg-CEMS and MM30B measurements. Hg-CEMS data represent the HgG reduction whereas the MM30B data represents HgT reduction and includes particulate bound mercury (HgP). The table shows that stacks C and D had the highest baseline values and the highest reduction percentages. The total HgG reduction, considering all four stacks, was 76%. However, the HgT reduction based on MM30B data was 54%.

Table 5. Phase II Testing Mercury Reduction Summary via Hg-CEMS and MM30B

CEMS Hg-Gas Phase					
(ug/wscm)	Stack D	Stack C	Stack B	Stack A	Total
Baseline	7.26	5.85	3.02	3.51	19.64
With ACI	0.39	0.72	0.94	1.71	3.77
Reduction	95%	88%	69%	51%	76%

MM30B Hg-Total					
(ug/wscm)	Stack D	Stack C	Stack B	Stack A	Total
Baseline	11.11	6.74	3.46	4.07	25.38
With ACI	3.50	3.13	1.72	2.28	10.64
Reduction	68%	54%	50%	44%	54%

4.2.2 Stack MM30B Data

Figure 24 through Figure 27 show a comparison of the stack MM30B and Hg-CEMS data for each of the four stacks. The figure presents the MM30B data in three parts; HgT-dark symbol, HgG-medium colored symbol, and HgP-light symbol. Hg-CEMS values are shown as a line in the same color as the MM30B symbol for HgG. This was done because it was discovered that HgP was a significant portion of HgT as determined by analyzing the first glass wool section of the sorbent trap, which is assumed to contain all of the particulate, separately from the two sorbent sections. The Hg-CEMS can only measure gas phase mercury, so if the gas contains a significant fraction of HgP, the Hg-CEMS and MM30B will not agree well. The figure shows that the Hg-CEMS values agreed well with the MM30B HgG data for all stacks and the HgP was a major fraction of the mercury leaving Stacks C and D. The values for this graph were used in Table 5. This topic is discussed further in the QA/QC section and in Appendix D.

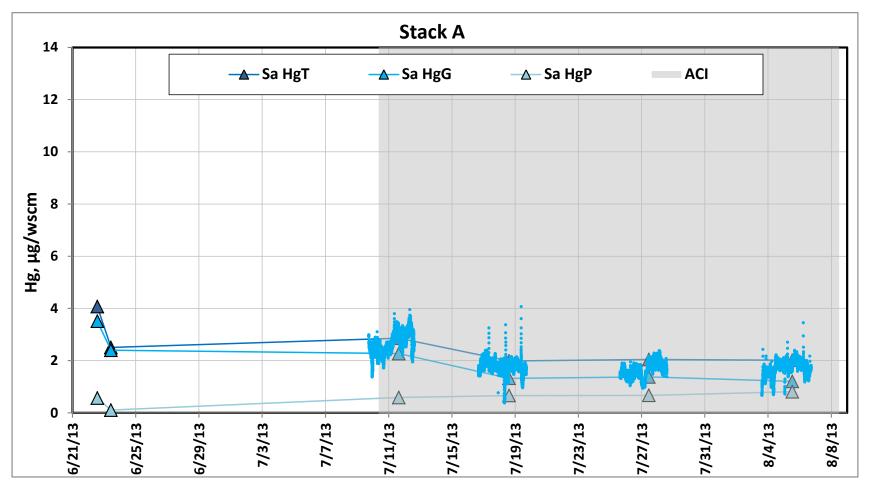


Figure 24. Stack A MM30B Data vs. Hg-CEMS

2013-0237

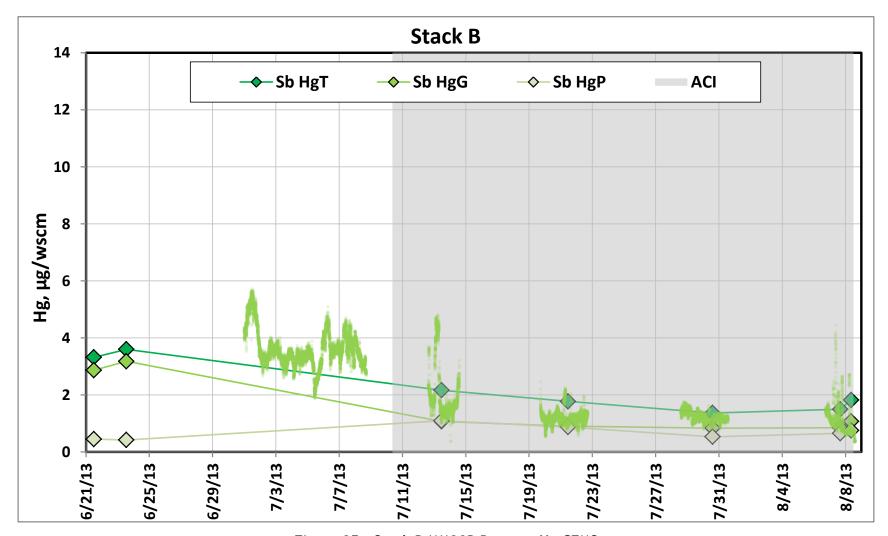


Figure 25. Stack B MM30B Data vs. Hg-CEMS

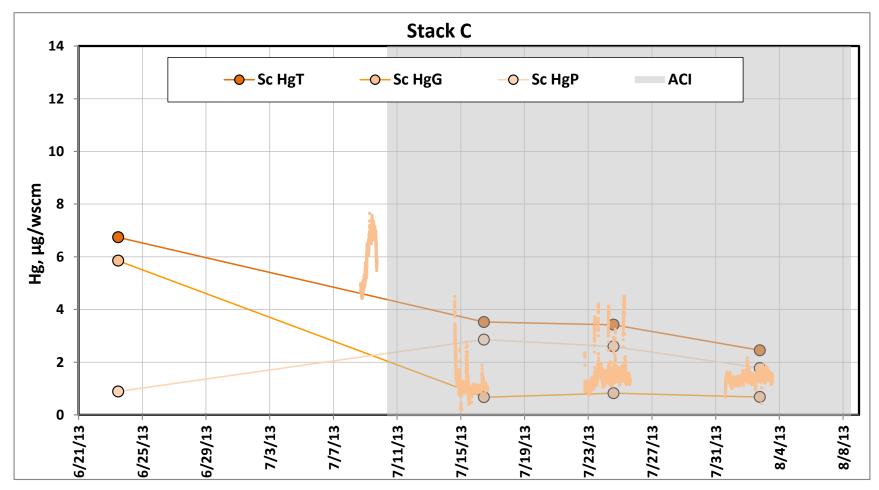


Figure 26. Stack C MM30B Data vs. Hg-CEMS

35

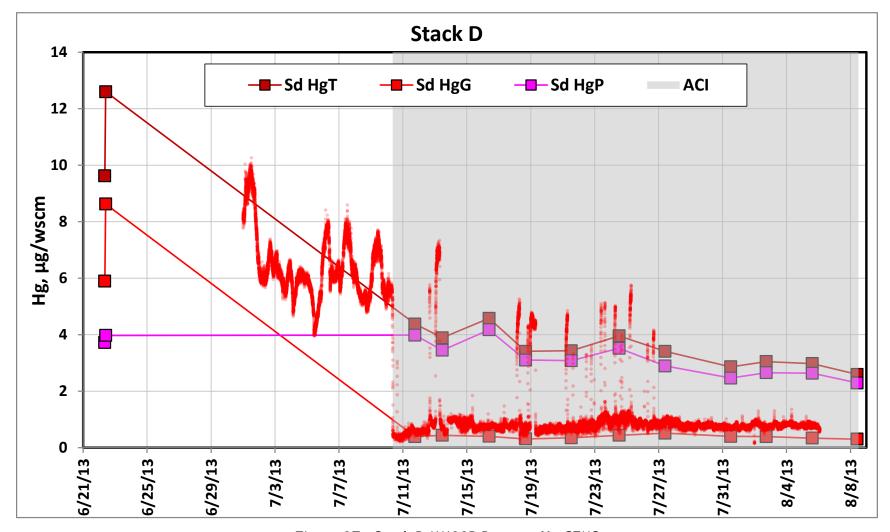


Figure 27. Stack D MM30B Data vs. Hg-CEMS

2013-0237

3

4.2.3 Inlet MM30B Data

Figure 28 shows the results of the MM30B sorbent traps that were collected upstream of the ACI grid including tests in each of the four inlet ducts prior to the PST. The gray shaded area represents Phase II testing. The red markers represent Hg concentration in the Green Balls. The figure shows that during the limited 30-day test, there was little or no increase in the inlet mercury concentration from Hg/PAC recycled back to the process. The inlet mercury corresponded well with changes in the Hg concentration of the Green Balls. Extended testing would be required to further identify long-term, inlet mercury concentration changes.

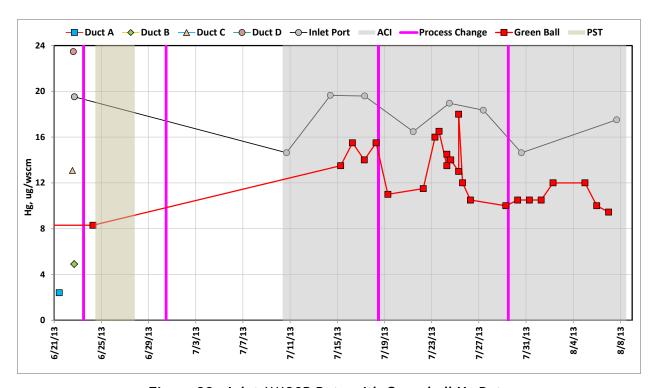


Figure 28. Inlet MM30B Data with Greenball Hg Data

4.2.4 Sample Carbon Analysis

Several samples were analyzed, as shown in Figure 29, for carbon content in an effort to track the Hg. It is believed that by tracing the carbon through the process it can be determined where the Hg is going because it is attached to the carbon and difficult to leach.

Multiclone, Thickener Overflow, Fine Tails, Green Balls, and Fired Pellets samples were analyzed by an independent lab for total carbon. Figure 30 through Figure 34 show the results of the analysis. Figure 30 and Figure 31 indicate the multiclone collector and thickener overflow sample carbon content had risen slightly. However, Figure 32, Figure 33, and Figure 34 do not show any significant increase in fine tails, green balls, or pellets.

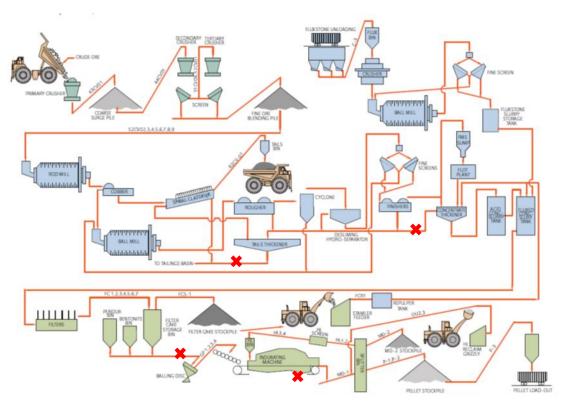


Figure 29. Process Diagram with Sampling Locations

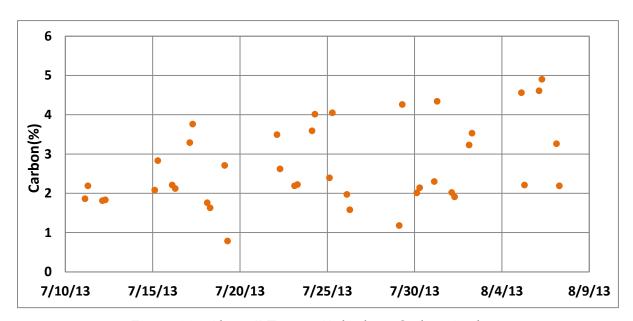


Figure 30. Phase II Testing Multiclone Carbon Analysis

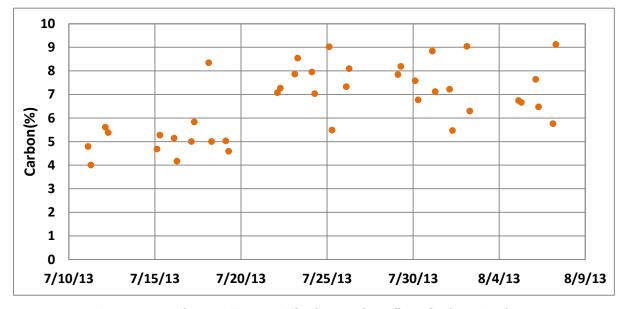


Figure 31. Phase II Testing Thickener Overflow Carbon Analysis

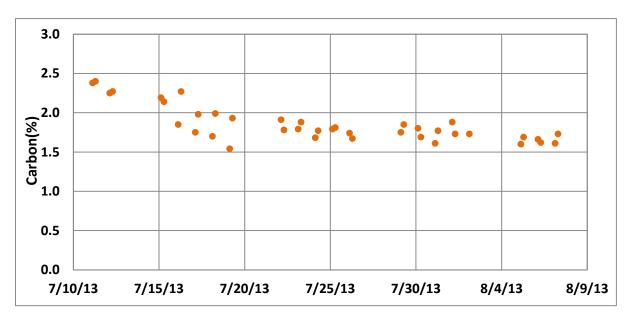


Figure 32. Phase II Testing Fine Tails Carbon Analysis

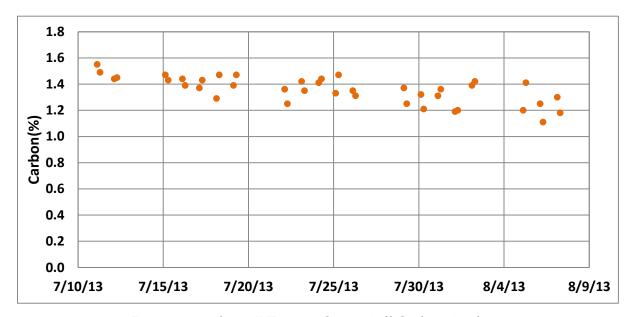


Figure 33. Phase II Testing Green Ball Carbon Analysis

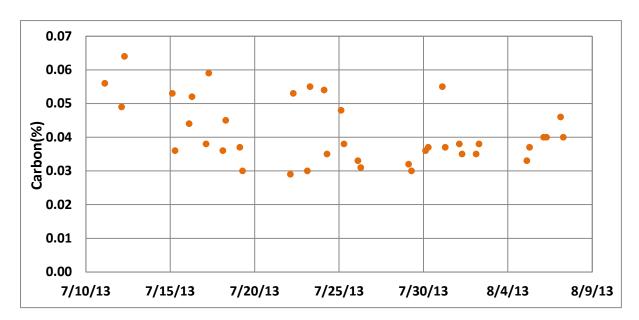


Figure 34. Phase II Testing Fired Pellets Carbon Analysis

4.2.5 Solids Analyses for Hg

Minorca recycles the solids collected in the scrubber back to the concentrate thickener; there is no magnetic separator in this recycle loop. Therefore, it is possible that PAC, and the Hg absorbed by the PAC, could also be recycled into the green balls and the Hg would be rereleased during the induration process. Since the scrubber water is recycled back to the concentrate thickener directly, it is possible the mercury could exit the process with the fine tailings (see Figure 29). The Phase II testing (30 days) was of sufficient length for PAC concentrations to reach steady levels in the internal process vessels; however, there are external influences the would require much longer test periods to determine the ultimate fate of Hg collected on the PAC.

To determine the fate of mercury recycled with the PAC in the scrubber water, several process streams were sampled on a regular basis. The host site contracted an independent lab to analyze the samples and provided ADA with a split on several occasions for analysis with the OL.

ADA received samples according to the schedule below.

- Green Balls Every day
- Pellets Twice during Phase II testing
- Multiclone drop out Twice during Phase II testing
- Thickener Overflow Twice during Phase II testing
- Fine Tailings Twice during Phase II testing

Minorca had the following samples analyzed for mercury.

- Green Balls Twice Daily on Week Days during Phase II testing
- Pellets- Twice Daily on Week Days during Phase II testing
- Multiclone drop out Twice Daily on Week Days during Phase II testing
- Thickener Overflow Twice Daily on Week Days during Phase II testing
- Fine Tailings Twice Daily on Week Days during Phase II testing

Figure 35 through Figure 43 show the results of the ADA OL Hg analysis and the independent lab Hg analysis of the solid samples in nanograms of mercury per gram of solid sample (ng/g) on a dry basis. Due to the relatively short test duration and small sample data set, more testing is needed to evaluate long-term Hg trend in the test samples. It is important to take notice of the range of the y-axis because what may appear to be a significant change in the Hg concentration may not be very significant compared to Hg concentrations in the other samples.

Figure 35 shows the ADA measured Hg concentration in the Green Ball samples from before the Screening Test to the end of Phase II testing. Figure 36 displays the Green Ball Hg concentration obtained by the independent lab for Phase II testing only. In general, Hg in the Green Balls was relatively stable and the two analyses agreed well.

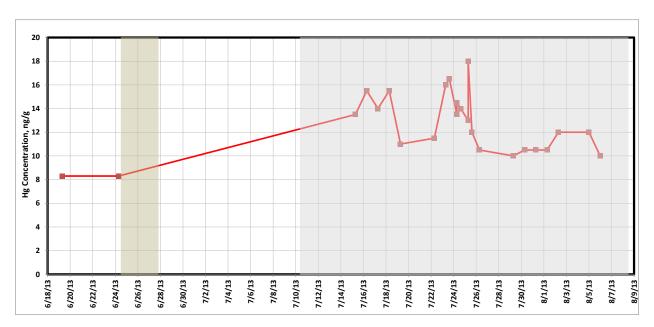


Figure 35. ADA Green Ball Hg Analyses

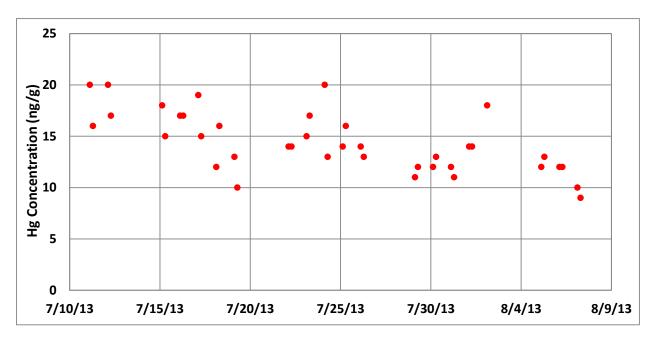


Figure 36. Independent Phase II Testing Green Ball Hg Analysis

Figure 37 shows the ADA measured Hg concentration in the Thickener Overflow from before and during Phase II testing. Figure 38 displays the independent lab results from the Thickener Overflow Phase II testing Hg analysis. Both analyses of the limited data set show elevated Hg during Phase II testing with a downward trend towards the end of Phase II testing. Note that the mercury concentration in this sample was higher than the other samples. PAC is smaller and less dense than taconite particulates so it is reasonable to find high Hg concentrations in these samples. Extended testing is needed to further evaluate the long term trends.

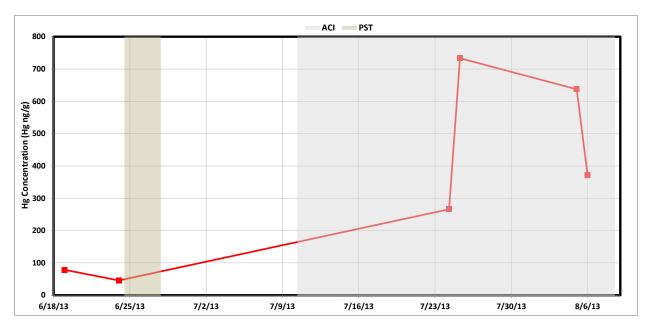


Figure 37. ADA Thickener Overflow Hg Analysis

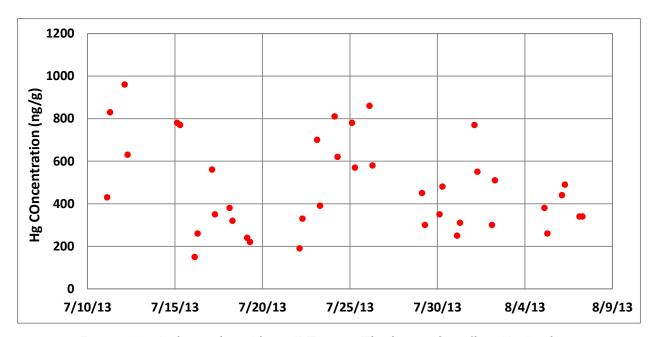


Figure 38. Independent Phase II Testing Thickener Overflow Hg Analysis

B-5-92

45

Figure 39 shows the ADA measured Hg concentration of the Multiclone solid samples which were collected at the drop out valves. Figure 40 displays the Hg analysis results from the independent lab for Phase II testing only. Both analyses show higher Hg concentration during Phase II testing, however, the analysis obtained by the independent lab shows less Hg concentration than some of ADA's results.

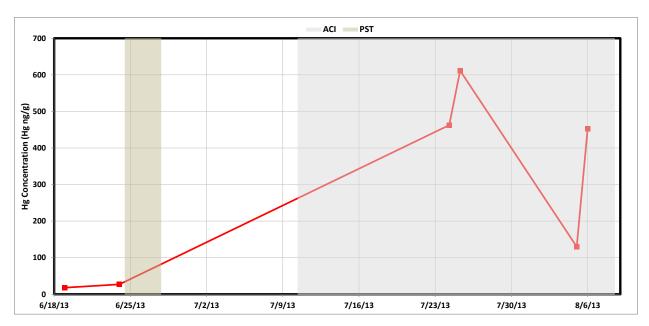


Figure 39. ADA Multiclone Hg Analyses

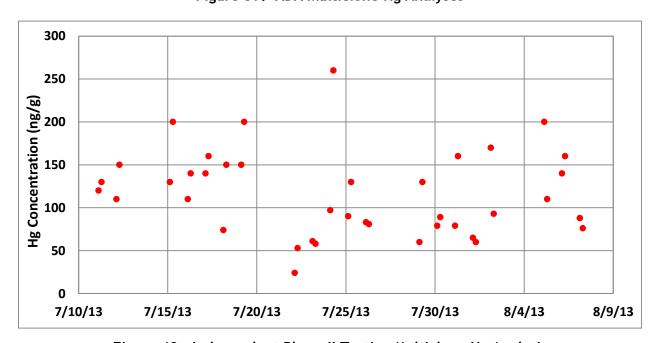


Figure 40. Independent Phase II Testing Multiclone Hg Analysis

Figure 41 shows the ADA obtained Hg concentration in the Fine Tailings. Figure 42 displays the Hg concentration acquired by the independent lab. Both analyses indicate higher concentrations at the beginning of Phase II testing but the available data appear to decrease toward the end of Phase II testing.

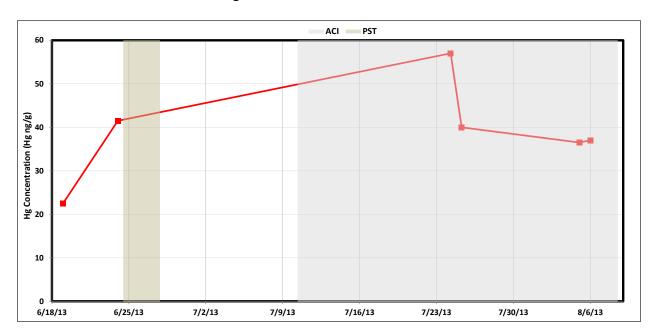


Figure 41. ADA Fine Tailings Hg Analyses

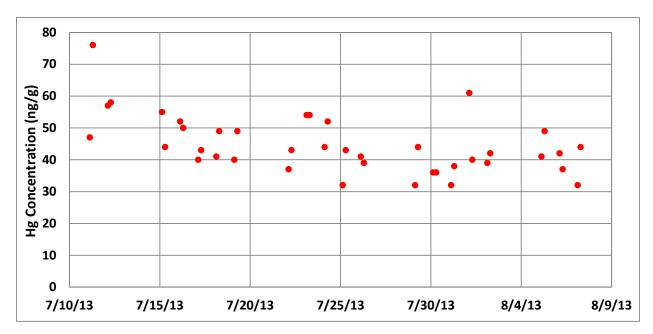


Figure 42. Independent Phase II Testing Fine Tailings Hg Analysis

2013-0237

Figure 43 shows the ADA measured Hg concentration in the fired Pellets. The figure shows no significant change in the relatively small amount of measured Hg within the Pellets as compared to the two data points from before the ACI injection. Little mercury was expected in this sample because the mercury should volatilize at the high temperatures in the furnace. The independent lab results showed all non-detects so the data is not presented.

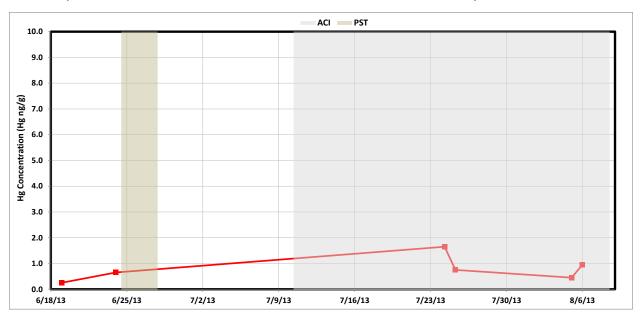


Figure 43. ADA Fired Pellets Hg Analysis

2013-0237

4.3 QA/QC

4.3.1 Sample Calculations

Modified Method 30B QA/QC Procedures

To provide assurance that the reported Hg-CEMS concentrations are accurate, ADA uses sorbent trap measurements as a quality control check. As a reference method, the paired sorbent trap measurements must meet a self-consistency criterion, and the average Hg-CEMS measurement must satisfy a relative accuracy criterion compared to the MM30B results. The criteria described below are derived from Title 40, CFR Part 75.

The paired sorbent trap results shall agree with each other according to Table 6.

Table 6. M30B Relative Deviation

Concentration Range	Criteria
C > 1 µg/dscm	Relative Deviation shall not exceed 10%
C < 1 µg/dscm	Relative Deviation shall not exceed 20%

To determine the concentration range for selecting the appropriate criteria, the average of the two sorbent trap concentrations, C, results shall be used.

Relative Deviation (RD) is defined in Title 40, CFR Part 75, Appendix K as:

$$RD = 100 \times \frac{\left| C_a - C_b \right|}{C_a + C_b}$$

Where: C_a and C_b are the paired MM30B concentrations of a sample run.

The average Hg-CEMS concentration shall agree with the average MM30B concentration, C, according to Table 7.

Table 7. Hg-CEMS Relative Accuracy

Concentration Range	Criteria
C > 5 µg/dscm	Relative Accuracy shall not exceed 20%
C < 5 µg/dscm	Absolute Mean Difference shall not exceed 1 µg/dscm

To determine the concentration range for selecting the appropriate criteria, average MM30B concentration, C, shall be used.

Relative Accuracy (RA) is defined as:

$$RA = 100 \times \frac{\left| C - C_{CEM,ave} \right|}{C}$$

Absolute Mean Difference (AMD) is defined as:

$$AMD = \left| C - C_{CEM,ave} \right|$$

The average Hg-CEMS concentration, $C_{\text{CEM},ave}$, shall be determined by numerically averaging the available concentration data from the period during which the MM30B measurements were obtained.

4.3.2 MM30B and Hg-CEMS Comparison

Appendix D contains all of the MM30B data obtained during the test at Minorca. The table also shows the average Hg-CEMS data at the stacks and the results of the comparison to corresponding MM30B data.

This comparison was done with one significant exception to the QA/QC procedure described above. The RA/AMD procedure assumes that there is no significant HgP in the stack gas. However, ADA discovered that with ACI operating at Minorca, HgP was a significant portion of the total mercury. This was determined by analyzing the first glass wool section of the sorbent trap, which is assumed to contain all of the particulate, separately from the other two sorbent sections. This allowed ADA to calculate a value for MM30B gas phase mercury (HgG=HgT-HgP) which was then used to perform the RA/AMD calculations. It is important to note that Hg-CEMS can only measure HgG. As Figure 27 shows, the MM30B HgG compared well with Hg-CEMS, but the MM30B HgT did not; indicating a significant amount of HgP.

The gas moisture at the Hood Exhaust was 6.1% and at the Windbox Exhaust was 8.5%. The moisture at stacks A, B, C, and D was 11.5%, 12.2%, 13.6%, and 14.9% respectively based on stack measurements by Barr during testing.

5.0 CONCLUSIONS

The Screening Test was conducted by injecting three different PACs at three rates into the Windbox Exhaust via an injection grid with 8 lances. Phase II testing ran for 30 days, injecting BPAC into only the Wind Box Exhaust at a rate of 3 lb/mmacf. Various solids samples were collected and analyzed for carbon and Hg to assess the fate of mercury recycled back to the process with the scrubber water.

The following conclusions can be drawn from the ACI tests at Minorca:

- Albemarle's BPAC performed well in the Screening Test and was selected for Phase II testing due to its performance and relatively low cost.
- The coarser ground PAC did not perform as well as the standard PACs in Stack D. The results of the PM tests with this material will be presented by Barr in a separate report.
- MM30B results, using the modified M30B procedure, show that total Hg reduction at 3 lb/mmacf of ACI was 54%; and therefore, the goal of 75% <u>total Hg reduction</u> is not obtainable at Minorca with the current system configuration.
- The Hg-CEMS showed the gas phase Hg reduction was 76% at 3 lb/mmacf.
- Particulate phase HgP in the stack gas significantly increased with ACI in Stacks C and D. Sorbent traps can be analyzed in such a way to give an estimate of HgP whereas the Hg-CEMS cannot. The Hg-CEMS values (HgG) agreed well with HgG MM30B data, but not with the total MM30B HgT values due to the particulate mercury (HgP).
- Mercury concentrations measured in the process samples during the 30-day trial provide an initial indication that most of the Hg recycled back to the process with the scrubber water does not end up in the green balls.
- Multiclone solids showed an increase in Hg with ACI.
- A three to four week period is not sufficient to determine the effects of all the
 external processes of ore type, green ball composition, plant operations, holding
 basin water recycle, etc. A longer period of time with a more rigorous effluent
 sampling plan would be required to determine the ultimate fate of mercury
 captured by the PAC.

B-5-98

51

6.0 APPENDIX A - HG-CEMS DATA (ELECTRONIC)

All Hg-CEMS data was sent to the ArcelorMittal Minorca Project Manager electronically with the Final Report.

7.0 APPENDIX B - HG-CEMS CALIBRATION DATA

							FULL RAK	CEMS CA	LIBRATION	N RECORD							
DATE	TIME	TYPE	LEVEL	SPAN	ELEM	ZERO	ELEM	SPAN	TOTAL	ZERO	TOTAL	. SPAN	OCOEF	TCOEF	ОВКС	TBKG	DILF
6/19	8:26	iMCAL	5.0	10		-							1.000	1.000	0.00	0.00	1.00
6/19	9:00	iMUP		-		-		-		-		-	1.000	1.000	0.04	0.04	1.00
6/19	9:00	iCALC		-		-		-		-						-	
6/19	9:01	iMCAL	10.0	10		-		-					1.000	1.000	0.04	0.04	1.00
6/19	9:37	iMUP		-	-	-	-	-	-	-		-	1.014	1.002	0.04	0.04	1.00
6/19	9:37	iCALC		-						-						-	
6/19	9:38	iCHK	10.0	10	0.00	0.0%	9.98	-0.2%	0.00	0.0%	10.01	0.1%	1.014	1.002	0.04	0.04	1.00
6/19	10:05	iCALC	-	-		_		_		_		-	1.016	0.999	0.04	0.04	1.00
6/19	10:06	iCHK	9.0	10	0.00	0.0%	9.04	0.4%	0.00	0.0%	9.04	0.4%	1.014	1.002	0.04	0.04	1.00
6/19	10:52	iCALC		-		_		_	-	-		-	1.009	1.003	0.04	0.04	1.00
6/19	11:00	CHG		-				-		-			0.989	0.934	1.19	0.98	29.50
6/19	13:07	MCAL	10.0	10	0.47	4.7%	7.66	-23%	0.94	9.4%	7.45	-26%	1.000	1.000	0.00	0.00	29.50
6/19	13:41	MUP		-		-		-		-			1.000	1.000	1.42	1.49	29.50
6/19	13:41	CALC		-		-		-		-			1.374	1.032	1.70	2.95	29.50
6/19	13:43	MCAL	10.0	10	0.10	1.0%	9.94	-0.6%	0.48	4.8%	10.22	2.2%	1.000	1.000	1.42	1.49	37.70
6/19	14:16	MUP		-						-			1.011	0.996	1.48	1.81	37.70
6/19	14:16	CALC		-		-		-		-			1.015	1.012	1.54	2.03	37.70
6/19	14:18	СНК	10.0	10	0.06	0.6%	10.18	1.8%	0.15	1.5%	10.24	2.4%	1.011	0.996	1.48	1.81	37.70
6/19	14:49	CALC	-	-	-	-	-	-	-	-	-	-	0.999	0.999	1.52	1.94	37.70
6/19	16:00	СНК	9.0	10	-0.02	-0.2%	8.54	-4.6%	-0.03	-0.3%	8.64	-3.6%	1.011	0.996	1.48	1.81	37.70
6/19	16:29	CALC		_		-		-	-	-		-	1.063	0.983	1.54	1.84	37.70
6/19	17:11	оСНК	10.0	10	-0.12	-1.2%	20.08	101%	-0.48	-4.8%	19.15	92%	1.011	0.996	1.48	1.81	37.70
6/19	17:40	oCALC		-						-			0.500	1.025	0.68	0.68	37.70
6/20	6:00	СНК	9.0	10	-0.04	-0.4%	8.59	-4.1%	-0.20	-2.0%	8.68	-3.2%	1.011	0.996	1.48	1.81	37.70
6/20	6:29	CALC		_		-		-	-	-		-	1.053	0.969	1.50	1.63	37.70
6/20	10:31	LIN	3.0	-		-	2.84	-6.1%		-	2.89	-4.7%	1.011	0.996	1.48	1.81	37.70
6/20	10:46	LIN	5.0	-	-	-	4.90	-2.1%	-	-	4.87	-2.7%	1.011	0.996	1.48	1.81	37.70
6/20	11:10	LIN	9.0	-		-	9.18	2.0%		-	9.11	1.2%	1.011	0.996	1.48	1.81	37.70
6/21	8:15	СНК	9.0	10	-0.12	-1.2%	9.37	3.7%	-0.41	-4.1%	9.12	1.2%	1.011	0.996	1.48	1.81	37.70
6/21	8:44	CALC	-	-		-		-	-	-	-	-	0.959	0.991	1.29	1.32	37.70
6/22	6:00	СНК	9.0	10	-0.07	-0.7%	9.75	7.5%	-0.32	-3.2%	9.57	5.7%	1.011	0.996	1.48	1.81	37.70
6/22	6:29	CALC		-		-		-	-	-		-	0.927	0.989	1.30	1.35	37.70
6/22	7:22	CHG		-						-			0.927	0.989	1.30	1.35	37.70
6/23	6:00	СНК	9.0	10	0.03	0.3%	8.86	-1.4%	0.06	0.6%	9.12	1.2%	0.927	0.989	1.30	1.35	37.70
6/23	6:29	CALC		-						-		-	0.945	0.964	1.35	1.40	37.70
6/24	6:00	СНК	9.0	10	0.05	0.5%	9.79	7.9%	0.06	0.6%	9.74	7.4%	0.927	0.989	1.30	1.35	37.70
6/24	6:29	CALC		-				-		-		-	0.856	0.995	1.24	1.31	37.70
6/24	7:11	CHG		-		-		-		-			0.856	0.995	1.24	1.31	37.70
6/24	21:52	DILP	CHANG	GE FROM 4	4 psi — D	OWN TO 4	40 psi AT 6	/24 22:02	— STABL	E TO 43 ps	si AT 6/24	22:08					
6/25	3:45	DILP	CHANG	GE FROM 4	3 psi — S	TABLE TO	45 psi AT 6	/25 03:51	1								
6/25	6:00	СНК	9.0	10	0.02	0.2%	9.12	1.2%	0.06	0.6%	9.35	3.5%	0.856	0.995	1.24	1.31	37.70
6/25	6:29	CALC		-				-		-			0.847	0.974	1.25	1.33	37.70
6/25	14:24	DILP	CHANG	GE FROM 4	3 psi — D	OWN TO	43 psi AT	— STABLE	TO 46 psi	AT 6/25 1	4:30						
6/25	23:50	DILP	CHANG	GE FROM 4	6 psi — S	TABLE TO	44 psi AT 6	i/25 23:56	5								
6/26	6:00	СНК	9.0	10	0.04	0.4%	9.19	1.9%	0.08	0.8%	9.44	4.4%	0.856	0.995	1.24	1.31	37.70
6/26	6:29	CALC								-			0.842	0.973	1.26	1.34	37.70
6/26	7:18	DILP	CHANG	GE FROM 4	6 psi — D	OWN TO	43 psi AT 6	/26 07:22	– STABL	E TO 46 ps	si AT 6/26	07:31					
6/27	6:00	СНК	9.0	10	0.04	0.4%	9.12	1.2%	0.05	0.5%	9.36	3.6%	0.856	0.995	1.24	1.31	37.70
6/27	6:29	CALC											0.848	0.971	1.27	1.31	37.70
6/28	6:00	СНК	9.0	10	0.04	0.4%	9.52	5.2%	0.01	0.1%	9.49	4.9%	0.856	0.995	1.24	1.31	37.70
6/28	6:29	CALC		-						-			0.812	0.996	1.21	1.26	37.70
6/28	14:51	CHG											0.812	0.996	1.21	1.26	37.70
6/29	6:00	СНК	9.0	10	0.00	0.0%	9.24	2.4%	0.04	0.4%	9.31	3.1%	0.812	0.996	1.21	1.26	37.70
6/29	6:29	CALC		-				-		-		-	0.791	0.993	1.18	1.27	37.70
6/29	13:59	CNVT	CHANG	GE FROM 7	60°C − L	JP TO 771°	°C AT 6/29	13:59 —	STABLE TO	761°C AT	6/29 14:0)5					
6/30	6:00	СНК	9.0	10	0.05	0.5%	9.27	2.7%	0.09	0.9%	9.16	1.6%	0.812	0.996	1.21	1.26	37.70
6/30	6:29	CALC		-				-		-		-	0.792	1.014	1.23	1.34	37.70
		СНК	9.0	10	0.06	0.6%	8.85	-1.5%	0.18	1.8%	8.91	-0.9%	0.812	0.996	1.21	1.26	37.70

7/1	6:29	CALC			-				-				0.832	1.002	1.30	1.48	37.70
7/2	6:00	СНК	9.0	10	0.10	1.0%	9.39	3.9%	0.16	1.6%	9.28	2.8%	0.812	0.996	1.21	1.26	37.70
7/2	6:29	CALC							-				0.787	1.014	1.27	1.40	37.70
7/3	6:00	СНК	9.0	10	0.08	0.8%	9.40	4.0%	0.11	1.1%	9.21	2.1%	0.812	0.996	1.21	1.26	37.70
7/3	6:29	CALC			_								0.784	1.020	1.25	1.36	37.70
7/3	20:39	DILP	CHANG	SE EROM A	fnsi <u> </u> Γ		I 14 nci ΔT 7	/3 20:41	STARLE	TO 45 psi	AT 7/3 20:	·//Ω	0.701	2.020	1.25	1.50	37.70
7/3	23:13	DILP								TO 47 psi							+
								i –					0.013	0.000	1.21	1.20	27.70
7/4	6:00	CHK	9.0	10	0.10	1.0%	9.46	4.6%	0.11	1.1%	9.36	3.6%	0.812	0.996	1.21	1.26	37.70
7/4	6:29	CALC											0.781	1.008	1.26	1.33	37.70
7/5	6:00	CHK	9.0	10	0.08	0.8%	9.36	3.6%	0.13	1.3%	9.26	2.6%	0.812	0.996	1.21	1.26	37.70
7/5	6:29	CALC			-				-				0.787	1.013	1.25	1.37	37.70
7/6	6:00	СНК	9.0	10	0.06	0.6%	9.43	4.3%	0.12	1.2%	9.25	2.5%	0.812	0.996	1.21	1.26	37.70
7/6	6:29	CALC			-				-				0.780	1.022	1.22	1.36	37.70
7/7	6:00	СНК	9.0	10	0.04	0.4%	8.85	-1.5%	0.13	1.3%	8.79	-2.1%	0.812	0.996	1.21	1.26	37.70
7/7	6:29	CALC			-				-				0.829	1.013	1.28	1.44	37.70
7/7	10:52	CNVT	CHANG	SE FROM 7	52°C − L	JNSTABLE '	728°C TO 7	779°C — 9	STABLE TO	758°C AT	7/7 11:04						
7/7	11:59	DILP								TO 47 psi		:43					
7/7	14:46	DILP								TO 46 psi							
7/8	6:00	CHK	9.0	10	0.06		9.29	2.9%	0.10	1.0%	9.17	1.7%	0.912	0.996	1.21	1.26	37.70
						0.6%	_	_					0.812				
7/8	6:29	CALC			-			7.40/	- 0.47	4.70/			0.791	1.014	1.23	1.35	37.70
7/9	6:00	CHK	9.0	10	0.11	1.1%	9.71	7.1%	0.17	1.7%	9.49	4.9%	0.812	0.996	1.21	1.26	37.70
7/9	6:29	CALC			-				-	-	-		0.761	1.027	1.23	1.38	37.70
7/9	8:05	CHG											0.761	1.027	1.23	1.38	37.70
7/10	0:28	CNVT	CHANG	SE FROM 7	59℃ — L	JNSTABLE!	554°C TO 7	770°C — 9	STABLE TO	759°C AT	7/10 00:4	5					
7/10	1:18	CNVT	CHANG	SE FROM 7	59°C — ι	JNSTABLE !	584°C TO 7	786°C — 9	TABLE TO	739°C AT	7/10 01:3	3					
7/10	1:45	CNVT	CHANG	SE FROM 7	39℃ — L	JNSTABLE (618°C TO 7	770°C — 9	TABLE TO	755°C AT	7/10 01:5	7					
7/10	1:58	CNVT	CHANG	SE FROM 7	55°C − ι	JNSTABLE (636°C TO 7	763°C — 9	TABLE TO	750°C AT	7/10 02:0	9					
7/10	6:00	СНК	9.0	10	0.07	0.7%	8.85	-1.5%	0.07	0.7%	8.97	-0.3%	0.761	1.027	1.23	1.38	37.70
7/10	6:29	CALC			_				_				0.780	1.014	1.33	1.47	37.70
7/11	8:00	CHK	9.0	10	0.04	0.4%	7.88	-11%	-0.01	-0.1%	8.40	-6.0%	0.761	1.027	1.23	1.38	37.70
		CALC			-		7.00	-11/0	-0.01	-0.170		-0.070					
7/11	8:29												0.874	0.957	1.46	1.46	37.70
7/11	9:40	MCAL	9.0	10	-0.26	-2.6%	5.60	-34%	-0.32	-3.2%	6.34	-27%	0.761	1.027	1.23	1.38	37.70
7/11	9:49	DILP	CHANG	SE FROM 4	7 psi — E	OOWN TO 4	11 psi AT 7	/11 09:56	— STABL	E TO 48 ps	i AT 7/11	1					-
7/11	10:14	MUP											0.761	1.027	0.93	1.05	37.70
7/11	10:14	CALC											1.169	0.903	1.48	1.43	37.70
7/11	10:36	iCHK	9.0	10	0.01	0.1%	10.31	13%	0.01	0.1%	10.41	14%	1.014	1.002	0.04	0.04	1.00
7/11	10:47	iCALC			-								0.886	0.992	0.04	0.04	1.00
7/11	10:53	CHG											0.761	1.027	0.93	1.05	37.70
7/11	11:58	MCAL	9.0	10	0.04	0.4%	6.06	-29%	0.01	0.1%	6.36	-26%	0.761	1.027	0.93	1.05	37.70
7/11	12:27	MUP			-								1.136	0.974	1.43	1.49	37.70
7/11	12:27	CALC											1.138	0.973	1.45	1.50	37.70
7/11	12:30	CHK	9.0	10	-0.01	-0.1%	8.99	-0.1%	0.00	0.0%	9.15	1.5%	1.136	0.974	1.43	1.49	37.70
7/11	12:59	CALC			-								1.136	0.957	1.42	1.46	37.70
7/12	7:30	CHK	9.0	10	0.00	0.0%	7.86	-11%	0.09	0.9%	8.13	-8.7%	1.136	0.974	1.43	1.49	37.70
7/12	7:59	CALC							- 0.05			4.60/	1.299	0.952	1.64	1.76	37.70
7/12	9:38	MCAL	9.0	10	-0.02	-0.2%	8.35	-6.5%	0.05	0.5%	8.54	-4.6%	1.136	0.974	1.43	1.49	37.70
7/12	10:10	MUP											1.221	0.959	1.50	1.58	37.70
7/12	10:10	CALC											1.221	0.960	1.52	1.63	37.70
7/12	10:15	СНК	9.0	10	0.00	0.0%	9.14	1.4%	0.02	0.2%	9.13	1.3%	1.221	0.959	1.50	1.58	37.70
7/12	10:44	CALC			-				-				1.203	0.961	1.48	1.58	37.70
7/12	15:02	PRBT	CHANG	SE FROM 2	20°C — [OWN TO	117°C AT 7	/12 15:21	— STABL	E TO 220°	C AT 7/12	15:49					
7/12	15:02	DILP	CHANG	SE FROM 4	8 psi — D	OWN TO	L.4 psi AT	7/12 15:3	7 — STAB	LE TO 48 p	si AT 7/12	15:45					
	17:20	СНК	9.0	10	0.00	0.0%	9.23	2.3%	0.06	0.6%	9.32	3.2%	1.221	0.959	1.50	1.58	37.70
7/12					_	-			_				1.191	0.956	1.47	1.59	37.70
		L CALC I					9.67	6.7%	0.06	0.6%	9.52	5.2%	1.221	0.959	1.50	1.58	37.70
7/12	17:49	CALC	q n	10	ሀሀን			0.770	0.00	0.070	5.52	J.Z/0	1.221	0.333	1.50	1.50	
7/12 7/13	17:49 7:30	СНК	9.0	10	0.03	0.3%							1 1 40	0.077	1 42	1 56	
7/12 7/13 7/13	17:49 7:30 7:59	CHK CALC			-				-				1.140	0.977	1.43	1.56	37.70
7/12 7/13 7/13 7/13	17:49 7:30 7:59 8:16	CHK CALC CHG											1.140	0.977	1.43	1.56	37.70
7/12 7/13 7/13 7/13 7/13	17:49 7:30 7:59 8:16 18:00	CHK CALC CHG CHK	9.0	 10	 -0.13	 -1.3%	7.03				7.24	-18%	1.140 1.140	0.977 0.977	1.43 1.43	1.56 1.56	37.70 37.70
7/12 7/13 7/13 7/13	17:49 7:30 7:59 8:16	CHK CALC CHG											1.140	0.977	1.43	1.56	37.70

7/13 18-47 ICHK 5.0 10 0.01 0.1% 4.91 -0.9% 0.01 0.1% 4.89 -1.3% 1.010 1.002 0.04 7/13 19:27 MUP	0.04 0.04 1.80 3.38 1.80 1.68 1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.43 1.49 1.49	1.00 1.00 37.70 37.70 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 19:27 MUP	1.80 3.38 1.80 1.68 1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.68 1.43 1.43	37.70 37.70 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 19:27 CALC	3.38 1.80 1.68 1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.43 1.68 1.43	37.70 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 19:29 MCAL 9.0 10 0.03 0.3% 9.08 0.8% 0.04 0.4% 9.49 4.9% 1.000 1.000 1.65 7/13 19:58 MUP 0.993 0.953 1.65 7/13 20:45 CALC	1.80 1.68 1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.68 1.43 1.68 1.43	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 19:58 MUP	1.68 1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.68 1.43	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 19-58	1.66 1.68 1.73 1.68 1.74 1.68 1.68 1.68 1.43 1.43	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 20:15 CHK 9.0 10 0.01 0.1% 8.92 0.8% 0.03 0.3% 8.93 0.7% 0.993 0.953 1.65 7/14 7:30 CHK 9.0 10 0.01 0.1% 8.85 1.5% 0.08 0.8% 9.16 1.6% 0.993 0.953 1.65 7/14 7:30 CHK 9.0 10 0.01 0.01 0.1% 8.85 1.5% 0.08 0.8% 9.16 1.6% 0.993 0.953 1.65 7/15 7:30 CHK 9.0 10 0.02 0.2% 8.80 2.0% 0.01 0.1% 8.93 0.7% 0.993 0.953 1.65 7/15 7:30 CHK 9.0 10 0.02 0.2% 8.80 2.0% 0.01 0.1% 8.93 0.7% 0.993 0.953 1.65 7/16 7:30 CHK 9.0 10 0.24 2.4% 8.90 1.0% 0.02 0.2% 9.08 0.8% 0.993 0.953 1.65 7/16 7:30 CHK 9.0 10 0.24 2.4% 8.90 1.0% 0.02 0.2% 9.08 0.8% 0.993 0.953 1.65 7/16 7:30 CHK 9.0 10 0.24 2.4% 8.90 1.0% 0.02 0.2% 0.90 0.8% 0.993 0.953 1.65 7/17 7:30 CHK 9.0 10 0.24 2.4% 8.90 1.0% 0.20 2.0% 9.08 0.8% 0.993 0.953 1.65 7/17 7:59 CALC □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1.68 1.73 1.68 1.74 1.68 1.68 1.68 1.43 1.43	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/13 20:44 CALC	1.73 1.68 1.74 1.68 1.68 1.68 1.43 1.43	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/14	1.68 1.74 1.68 1.68 1.68 1.43 1.43 1.49 1.49	54.00 54.00 54.00 54.00 54.00 54.00 54.00
7/14	1.74 1.68 1.68 1.68 1.43 1.43 1.49 1.49	54.00 54.00 54.00 54.00 54.00 54.00
7/14	1.74 1.68 1.68 1.68 1.43 1.43 1.49 1.49	54.00 54.00 54.00 54.00 54.00 54.00
7/15	1.68 1.68 1.68 1.43 1.43 1.68 1.49 1.49	54.00 54.00 54.00 54.00 54.00
7/15 7:59 CALC	1.68 1.68 1.43 1.68 1.49 1.49	54.00 54.00 54.00 54.00 54.00
7/16 7:30 CHK 9.0 10 -0.24 -2.4% 8.90 -1.0% -0.20 -2.0% 9.08 0.8% 0.993 0.953 1.65 7/16 7:59 CALC	1.68 1.43 1.68 1.49 1.49	54.00 54.00 54.00 54.00
7/16 7:59 CALC - <th< td=""><td>1.43 1.68 1.49 1.49</td><td>54.00 54.00 54.00</td></th<>	1.43 1.68 1.49 1.49	54.00 54.00 54.00
7/17 3:05 CNVT CHANGE FROM 746°C — UNSTABLE 568°C TO 777°C — STABLE TO 759°C AT 7/17 03:17 7/17 5:11 CNVT CHANGE FROM 759°C — DOWN TO 681°C AT 7/17 05:16 — STABLE TO 752°C AT 7/17 05:24 7/17 7:30 CHK 9.0 10 0.23 -2.3% 8.47 -5.3% 0.18 -1.8% 8.81 -1.9% 0.993 0.953 1.65 7/17 7:59 CALC — — — — — — — — — — — — — — — — 1.026 0.923 1.47 7/18 8:11 CHG — — — — — — — — — — — — — — — — — 1.026 0.923 1.47 7/18 7:25 CNVT CHANGE FROM 760°C — UNSTABLE 390°C TO 811°C — STABLE TO 735°C AT 7/18 07:42 7/18 9:00 CHK 9.0 10 0.02 0.2% 9.28 2.8% 0.05 0.5% 9.22 2.2% 1.026 0.923 1.47 7/18 9:29 CALC — — — — — — — — — — — — — 0.997 0.923 1.45 19-Jul 8:30 CHK 9 10 0.02 0.2% 9.64 6.40% 0.04 0.40% 9.24 2.40% 1.026 0.923 1.45 19-Jul 8:59 CALC — — — — — — — — — — — — — 0.997 0.957 1.39 20-Jul 7:30 CHK 9 10 0.04 0.40% 8.84 1.60% 0.07 0.70% 9.1 1.00% 0.959 0.957 1.39 20-Jul 7:59 CALC — — — — — — — — — — — — 0.981 0.933 1.46 7/21 8:30 CHK 9.0 10 0.08 0.8% 9.21 2.1% 0.09 0.9% 9.33 3.3% 0.959 0.957 1.39 7/21 8:30 CHK 9.0 10 0.06 0.6% 8.93 0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:30 CHK 9.0 10 0.06 0.6% 8.93 0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:59 CALC — — — — — — — — — — — — — 0.996 0.941 1.46 24-Jul 8:30 CHK 9.0 10 0.06 0.6% 8.93 0.7% 0.05 0.5% 9.13 1.3% 0.959 0.957 1.39 7/23 7:30 CHK 9.0 10 0.06 0.6% 8.93 0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/23 7:59 CALC — — — — — — — — — — — — — 0.966 0.941 1.46 24-Jul 8:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.088 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC — — — — — — — — — — — — — — 0.966 0.941 1.46 24-Jul 8:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.088 0.8% 9.41 4.1% 0.959 0.957 1.39 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.088 0.8% 9.41 4.1% 0.959 0.957 1.39 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.088 0.8% 9.41 4.1% 0.959 0.957 1.39	1.68 1.49 1.49	54.00 54.00
7/17 5:11 CNVT CHANGE FROM 759°C → DOWN TO 681°C AT 7/17 05:16 → STABLETO 752°C AT 7/17 05:24 7/17 7:30 CHK 9.0 10 -0.23 -2.3% 8.47 -5.3% -0.18 -1.8% 8.81 -1.9% 0.993 0.953 1.65 7/17 7:59 CALC	1.49 1.49	54.00
7/17 7:30 CHK 9.0 10 -0.23 -2.3% 8.47 -5.3% -0.18 -1.8% 8.81 -1.9% 0.993 0.953 1.65 7/17 7:59 CALC - - - - - - - - - 1.026 0.923 1.47 7/18 8:11 CHG - - - - - - 1.026 0.923 1.47 7/18 7:25 CNVT CHANGEFROM 760°C UNSTABLE 390°C TO 811°C STABLETO 734°C AT 7/180 7:42 -	1.49 1.49	54.00
7/17 7:59	1.49 1.49	54.00
7/17 8:11 CHG - - - - - - - 1 1.026 0.923 1.47 7/18 7:25 CNVT CHANGE FROM 760°C UNSTABLE 390°C TO 811°C STABLE TO 735°C AT 7/18 07:42 -	1.49	
7/18 7:25 CNVT CHANGE FROM 750°C — UNSTABLE 390°C TO 811°C — STABLE TO 735°C AT 7/18 07:42 CHANGE FROM 735°C — UNSTABLE 233°C TO 821°C — STABLE TO 734°C AT 7/18 08:39 CHANGE FROM 735°C — UNSTABLE 233°C TO 821°C — STABLE TO 734°C AT 7/18 08:39 CHK 9.0 10 0.02 0.2% 9.28 2.8% -0.05 -0.5% 9.22 2.2% 1.026 0.923 1.47 19-Jul 8:30 CHK 9 10 0.02 0.20% 9.64 6.40% -0.04 0.40% 9.24 2.40% 1.026 0.923 1.47 19-Jul 8:59 CALC	1.49	
7/18 8:24 CNVT CHANGE FROM 735°C — UNSTABLE 23°C TO 821°C — STABLE TO 734°C AT 7/18 08:39 CT/18 9:00 CHK 9.0 10 0.02 0.2% 9.28 2.8% -0.05 -0.5% 9.22 2.2% 1.026 0.923 1.47 7/18 9:29 CALC — — — — — — — 0.997 0.923 1.45 19-Jul 8:30 CHK 9 10 0.02 0.20% 9.64 6.40% -0.04 -0.40% 9.24 2.40% 1.026 0.923 1.47 19-Jul 8:59 CALC — — — — — — — — — 0.959 0.957 1.39 20-Jul 7:30 CHK 9 10 0.04 0.40% 8.84 -1.60% 0.07 0.70% 9.1 1.00% 0.959 0.957 1.39 20-Jul 7:59 CALC — — — —		54.00
7/18 9:00 CHK 9.0 10 0.02 0.2% 9.28 2.8% -0.05 -0.5% 9.22 2.2% 1.026 0.923 1.47 7/18 9:29 CALC - - - - - - - - 0.997 0.923 1.45 19-Jul 8:30 CHK 9 10 0.02 0.20% 9.64 6.40% -0.04 -0.40% 9.24 2.40% 1.026 0.923 1.47 19-Jul 8:59 CALC - - - - - - - - - 0.959 0.957 1.39 20-Jul 7:30 CHK 9 10 0.04 0.40% 8.84 -1.60% 0.07 0.70% 9.1 1.00% 0.959 0.957 1.39 20-Jul 7:59 CALC - - - - - - - - - - -		
7/18 9:29 CALC - - - - - - - 0.997 0.923 1.45 19-Jul 8:30 CHK 9 10 0.02 0.20% 9.64 6.40% -0.04 -0.40% 9.24 2.40% 1.026 0.923 1.47 19-Jul 8:59 CALC - - - - - - - - 0.959 0.957 1.39 20-Jul 7:30 CHK 9 10 0.04 0.40% 8.84 -1.60% 0.07 0.70% 9.1 1.00% 0.959 0.957 1.39 20-Jul 7:59 CALC - - - - - - - - - - 0.981 0.933 1.46 7/21 8:30 CHK 9.0 10 0.08 0.8% 9.21 2.1% 0.09 0.9% 9.33 3.3% 0.959 0.957 1.39		
19-Jul 8:30	1 40	54.00
19-Jul 8:59 CALC	1.40	54.00
20-Jul 7:30	1.49	54
20-Jul 7:59 CALC	1.4	54
7/21 8:30 CHK 9.0 10 0.08 0.8% 9.21 2.1% 0.09 0.9% 9.33 3.3% 0.959 0.957 1.39 7/21 8:59 CALC 0.945 0.45 1.45 7/22 7:30 CHK 9.0 10 0.06 0.6% 8.93 -0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:59 CALC 0.973 0.937 1.47 7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC <td>1.4</td> <td>54</td>	1.4	54
7/21 8:30 CHK 9.0 10 0.08 0.8% 9.21 2.1% 0.09 0.9% 9.33 3.3% 0.959 0.957 1.39 7/21 8:59 CALC 0.945 0.45 1.45 7/22 7:30 CHK 9.0 10 0.06 0.6% 8.93 -0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:59 CALC 0.973 0.937 1.47 7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC <td>1.47</td> <td>54</td>	1.47	54
7/21 8:59 CALC - - - - - - - 0.945 0.945 1.45 7/22 7:30 CHK 9.0 10 0.06 0.6% 8.93 -0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:59 CALC - - - - - - - - 0.973 0.937 1.47 7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC - </td <td>1.40</td> <td>54.00</td>	1.40	54.00
7/22 7:30 CHK 9.0 10 0.06 0.6% 8.93 -0.7% 0.05 0.5% 9.11 1.1% 0.959 0.957 1.39 7/22 7:59 CALC - - - - - - - - 0.973 0.937 1.47 7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC - - - - - - - - 0.966 0.941 1.46 24-Jul 8:30 CHK 9 10 0.09 0.90% 9.06 0.60% 0.08 0.80% 9.23 2.30% 0.959 0.957 1.39 24-Jul 8:59 CALC - - - - - - - - - - - - - -	1.45	54.00
7/22 7:59 CALC - - - - - - - 0.973 0.937 1.47 7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.0% 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC - - - - - - - - - - 0.966 0.941 1.46 24-Jul 8:30 CHK 9 10 0.09 0.90% 9.06 0.60% 0.08 0.80% 9.23 2.30% 0.959 0.957 1.39 24-Jul 8:59 CALC -	1.40	54.00
7/23 7:30 CHK 9.0 10 0.06 0.6% 9.00 0.0% 0.04 0.4% 9.13 1.3% 0.959 0.957 1.39 7/23 7:59 CALC 0.966 0.941 1.46 24-Jul 8:30 CHK 9 10 0.09 0.90% 9.06 0.60% 0.08 0.80% 9.23 2.30% 0.959 0.957 1.39 24-Jul 8:59 CALC 0.962 0.939 1.48 7/25 7:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.08 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC 0.933 0.949 1.43	1.45	54.00
7/23 7:59 CALC 0.966 0.941 1.46 24-Jul 8:30 CHK 9 10 0.09 0.90% 9.06 0.60% 0.08 0.80% 9.23 2.30% 0.959 0.957 1.39 24-Jul 8:59 CALC 0.962 0.939 1.48 7/25 7:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.08 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC 0.933 0.949 1.43 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09	1.40	54.00
24-Jul 8:30 CHK 9 10 0.09 0.90% 9.06 0.60% 0.08 0.80% 9.23 2.30% 0.959 0.957 1.39 24-Jul 8:59 CALC 0.962 0.939 1.48 7/25 7:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.08 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC 0.933 0.949 1.43 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09 CALC 0.959 0.950	1.43	54.00
24-Jul 8:59 CALC 0.962 0.939 1.48 7/25 7:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.08 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC 0.933 0.949 1.48 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09 CALC 0.950 0.950 1.38		
7/25 7:30 CHK 9.0 10 0.08 0.8% 9.33 3.3% 0.08 0.8% 9.41 4.1% 0.959 0.957 1.39 7/25 7:59 CALC 0.933 0.949 1.43 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09 CALC 0.905 0.950 1.38	1.4	54
7/25 7:59 CALC 0.933 0.949 1.43 7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09 CALC 0.905 0.950 1.38	1.46	54
7/26 6:40 CHK 9.0 10 0.08 0.8% 9.62 6.2% 0.07 0.7% 9.67 6.7% 0.959 0.957 1.39 7/26 7:09 CALC 0.905 0.950 1.38	1.40	54.00
7/26 7:09 CALC 0.905 0.950 1.38	1.43	54.00
	1.40	54.00
7/00 7/44 000	1.37	54.00
7/26 7:41 CHG 0.905 0.950 1.38	1.37	54.00
7/26 21:39 CNVT CHANGEFROM 758°C — UNSTABLE 732°C TO 775°C — STABLE TO 758°C AT 7/26 21:48	\bot	
7/27 6:40 CHK 9.0 10 0.04 0.4% 8.91 -0.9% 0.02 0.2% 8.81 -1.9% 0.905 0.950 1.38	1.37	54.00
7/27 7:09 CALC 0.919 0.959 1.44	1.43	54.00
7/28 3:47 CNVT CHANGE FROM 760°C — UNSTABLE 747°C TO 773°C — STABLE TO 760°C AT 7/28 03:54		
7/28 5:40 CNVT CHANGE FROM 760°C — UNSTABLE 733°C TO 768°C — STABLE TO 758°C AT 7/28 05:48		
7/28 6:40 CHK 9.0 10 0.08 0.8% 9.04 0.4% 0.06 0.6% 9.09 0.9% 0.905 0.950 1.38	1.37	54.00
7/28 7:09 CALC 0.909 0.942 1.47	1.42	54.00
7/29 6:40 CHK 9.0 10 0.09 0.9% 9.46 4.6% 0.05 0.5% 9.46 4.6% 0.905 0.950 1.38	1.37	54.00
7/29 7:09 CALC 0.870 0.946 1.42	1.36	54.00
7/30 6:40 CHK 9.0 10 0.06 0.6% 9.63 6.3% 0.06 0.6% 9.64 6.4% 0.905 0.950 1.38	1.37	54.00
7/30 7:09 CALC 0.851 0.949 1.36	1.34	54.00
7/30 9:12 CHG 0.851 0.949 1.36	1.34	54.00
7/30 9:49 CNVT CHANGE FROM 760°C — STABLE TO 757°C AT 7/30 09:55	1	
7/30 23:06 RFINT CHANGE FROM 50933 Hz — DOWN TO 49502 Hz AT 7/30 23:10 — STABLE TO 50858 Hz AT 7/30 23:16	+	
7/31 5:00 CHK 9.0 10 0.01 0.1% 8.95 -0.5% 0.01 0.1% 9.01 0.1% 0.851 0.949 1.36	1.34	54.00
7/31 5:29 CALC 0.857 0.942 1.38	1.35	54.00
		54.00
	1.34	54.00
8/2 5:00 CHK 9.0 10 0.03 0.3% 9.15 1.5% 0.07 0.7% 9.09 0.9% 0.851 0.949 1.36		54.00

8/2	5:29	CALC		-							-		0.840	0.960	1.37	1.41	54.00
8/2	10:28	CNVT	CHANG	SE FROM 7	60°C − L	INSTABLE :	736°C TO 7	783°C − 9	STABLE TO	755°C AT	8/2 10:36						
8/2	16:25	CNVT	CHANG	SE FROM 7	55°C — L	IP TO 795°	C AT 8/2 1	6:26 — S	TABLE TO	762°C AT 8	3/2 16:32						
8/3	5:00	СНК	9.0	10	0.07	0.7%	9.21	2.1%	0.08	0.8%	9.23	2.3%	0.851	0.949	1.36	1.34	54.00
8/3	5:29	CALC		-							-		0.838	0.949	1.40	1.40	54.00
8/4	7:05	СНК	9.0	10	0.08	0.8%	9.36	3.6%	0.13	1.3%	9.36	3.6%	0.851	0.949	1.36	1.34	54.00
8/4	7:34	CALC		-							-		0.825	0.955	1.39	1.44	54.00
8/5	5:00	СНК	9.0	10	0.08	0.8%	9.28	2.8%	0.09	0.9%	9.32	3.2%	0.851	0.949	1.36	1.34	54.00
8/5	5:29	CALC		-						-	-		0.833	0.946	1.41	1.40	54.00
8/6	5:00	СНК	9.0	10	0.06	0.6%	9.36	3.6%	0.09	0.9%	9.49	4.9%	0.851	0.949	1.36	1.34	54.00
8/6	5:29	CALC		-							-		0.823	0.940	1.38	1.37	54.00
8/7	5:00	СНК	9.0	10	0.06	0.6%	9.28	2.8%	0.11	1.1%	9.28	2.8%	0.851	0.949	1.36	1.34	54.00
8/7	5:29	CALC		-							-		0.830	0.954	1.38	1.42	54.00
8/8	5:00	СНК	9.0	10	0.09	0.9%	9.58	5.8%	0.16	1.6%	9.59	5.9%	0.851	0.949	1.36	1.34	54.00
8/8	5:29	CALC		-							-		0.807	0.955	1.38	1.43	54.00
8/8	7:42	CHG									-		0.807	0.955	1.38	1.43	54.00
8/9	5:00	СНК	9.0	10	0.04	0.4%	9.50	5.0%	0.03	0.3%	9.18	1.8%	0.807	0.955	1.38	1.43	54.00
8/9	5:29	CALC		-							-		0.768	0.988	1.35	1.44	54.00

							MODRAK	CEMS CA	LIBRATIO	N RECORD							
DATE	TIME	TYPE	LEVEL	SPAN	ELEM	ZERO	ELEM	SPAN	TOTA	ZERO	TOTAL	SPAN	OCOEF	TCOEF	OBKG	TBKG	DILF
6/18	17:09	CHG											1.028	0.987	10.29	10.12	52.50
6/18	18:13	VAC	CHANG	SE FROM 2	1 inHg —	DOWNTO	2.2 inHg	AT 6/18 18	3:18 — ST	ABLE TO 2	2 inHg AT	6/18 18:3	9				52.50
6/18	18:14	ORFP	CHANG	SE FROM 0	.4 psi — I	JP TO 0.5	psi AT 6/1	8 18:29 —	- STABLE 1	O 0.4 psi /	AT 6/18 18	3:37					
6/18	22:35	PMTV	CHANG	SE FROM 5	86V — ST	ABLE TO 5	69VAT6/	18 22:53									
6/19	8:26	iMCAL	5.0	10									1.000	1.000	0.00	0.00	52.50
6/19	9:10	iMUP											1.000	1.000	0.18	0.18	52.50
6/19	9:10	iCALC															
6/19	9:11	iMCAL	10.0	10									1.000	1.000	0.18	0.18	
6/19	10:29	iMUP											0.960	1.000	0.14	0.14	
6/19	10:29	iCALC							-				-				
6/19	10:30	iCHK	10.0	10	0.00	0.0%	9.93	-0.7%	0.00	0.0%	9.90	-1.0%	0.960	1.001	0.14	0.14	
6/19	10:53	iCALC							-				0.967	1.003	0.14	0.14	
6/19	10:54	iCHK	9.0	10	0.00	0.0%	8.83	-1.7%	0.00	0.0%	8.81	-1.9%	0.960	1.001	0.14	0.14	
6/19	11:30	iCALC							-				0.978	1.003	0.14	0.14	
6/19	11:35	CHG											1.028	0.987	10.29	10.12	
6/19	13:09	iMCAL	5.0	10									0.960	1.001	0.14	0.14	
6/19	13:29	iMUP											1.003	1.003	0.14	0.14	
6/19	13:29	iCALC			-				-				-				
6/19	13:30	iCHK	10.0	10	0.00	0.0%	10.30	3.0%	0.00	0.0%	10.30	3.0%	1.003	1.003	0.14	0.14	
6/19	14:12	iCALC			_				_	-			0.974	1.003	0.14	0.14	
6/19	14:18	MCAL	10.0	10	2.01	20%	12.17	22%	3.74	37%	12.34	23%	1.000	1.000	0.00	0.00	
6/19	14:52	MUP											1.000	1.000	7.24	7.13	
6/19	14:52	CALC											0.993	1.171	13.82	12.90	
6/19	14:54	MCAL	10.0	10	0.02	0.2%	10.07	0.7%	0.00	0.0%	10.39	3.9%	1.000	1.000	7.24	7.13	
6/19	15:26	MUP											0.994	0.968	7.20	6.86	
6/19	15:26	CALC											0.995	0.967	7.22	6.86	
6/19	16:15	СНК	10.0	10	0.01	0.1%	9.79	-2.1%	-0.02	-0.2%	9.83	-1.7%	0.994	0.968	7.20	6.86	
6/19	16:44	CALC			_	-	-		-			-	1.016	0.961	7.36	6.94	
6/19	17:11	оСНК	10.0	10	-0.01	-0.1%	16.87	69%	-0.01	-0.1%	16.80	68%	0.994	0.968	7.20	6.86	
6/19	17:41	oCALC			-				-				0.588	0.973	4.25	4.08	
6/20	6:00	СНК	9.0	10	-0.05	-0.5%	8.67	-3.3%	0.01	0.1%	8.78	-2.2%	0.994	0.968	7.20	6.86	
6/20	6:29	CALC			-	-			-			-	1.026	0.963	7.37	7.06	
6/20	10:18	LIN	3.0				3.04	1.3%	-		3.21	7.1%	0.994	0.968	7.20	6.86	
6/20	10:31	LIN	3.0				2.82	-6.2%			2.90	-3.7%	0.994	0.968	7.20	6.86	
6/20	10:46	LIN	5.0				4.74	-5.2%			4.86	-2.8%	0.994	0.968	7.20	6.86	
6/20	11:11	LIN	9.0				8.81	-2.1%			8.85	-1.7%	0.994	0.968	7.20	6.86	
6/20	11:46	LIN	9.0				8.73	-3.0%			8.81	-2.1%	0.994	0.968	7.20	6.86	
6/20	18:15	PMTV	CHANG	SE FROM 5	69V — UI	NSTABLE 5	68V TO 57	OV — STA	BLE TO 56	9V AT 6/2	18:22						
6/21	8:45	СНК	9.0	10	0.01	0.1%	8.64	-3.6%	-0.02	-0.2%	8.75	-2.5%	0.994	0.968	7.20	6.86	52.50
6/21	9:14	CALC			-	-	-		-			-	1.036	0.954	7.51	7.03	52.50
6/21	15:47	DILP	CHANG	SE FROM 4	4.2 psi —	STABLE TO	O -11.1 ps	i AT 6/21 1	.5:53								
6/21	17:10	DILP					45 psi AT										
6/22	11:30	СНК	9.0	10	0.00	0.0%	8.79	-2.1%	0.06	0.6%	8.91	-0.9%	0.994	0.968	7.20	6.86	52.50
6/22	11:59	CALC			-	_			-				1.017	0.962	7.37	7.04	52.50
		CALC					0.54	2.69/		0.4%	0.50	2.70/				6.86	52.50
6/23	6:00	СНК	9.0	10	-0.12	-1.2%	8.64	-3.6%	0.04	0.4%	8.73	-2.7%	0.994	0.968	7.20	0.00	
				10	-0.12 	-1.2%	8.64	-3.0%	0.04	0.4%	8.73	-2.7%	1.022	0.968	7.28	7.14	52.50
6/23	6:00	СНК	9.0		-												
6/23 6/23	6:00 6:29	CHK CALC	9.0 CHANG	 SE FROM 2	_ 20°С — D	OWN TO 1	 186°C AT 6	 /23 11:54	– STABL		 C AT 6/23	 12:41					
6/23 6/23 6/23	6:00 6:29 11:47	CHK CALC PRBT	9.0 CHANG	 SE FROM 2	_ 20°С — D	OWN TO 1	 186°C AT 6	 /23 11:54	– STABL	 E TO 220°(C AT 6/23	 12:41					
6/23 6/23 6/23 6/23	6:00 6:29 11:47 11:48	CHK CALC PRBT DILP	9.0 CHANG	 GE FROM 2 GE FROM 4	_ 20°C — D 5 psi — D	OWN TO 1	 186°C AT 6 1.2 psi AT 6	 /23 11:54 5/23 11:55	– STABL 5 – STAB	 E TO 220°(LE TO 45 p	 C AT 6/23 si AT 6/23	 12:41 12:02	1.022	0.975	7.28	7.14	52.50
6/23 6/23 6/23 6/23 6/24	6:00 6:29 11:47 11:48 6:00	CHK CALC PRBT DILP CHK	9.0 CHANG CHANG 9.0	 GE FROM 2 GE FROM 4 10	_ 20°C — D 5 psi — D 0.01	OWN TO 1	 186°C AT 6 1.2 psi AT 6 8.79	 /23 11:54 5/23 11:55 -2.1%	STABL 5 - STAB 0.05	 E TO 220°0 LE TO 45 p 0.5%	 C AT 6/23 si AT 6/23 8.85	 12:41 12:02 -1.5%	0.994	0.975	7.28	7.14 6.86	52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24	6:00 6:29 11:47 11:48 6:00 6:29	CHK CALC PRBT DILP CHK CALC	9.0 CHANG CHANG 9.0	 GE FROM 2 GE FROM 4 10	- 20°C — D 5 psi — D 0.01	 OWN TO 1 OWN TO 1 0.1%	 L86°C AT 6 L.2 psi AT 6 8.79	 /23 11:54 5/23 11:55 -2.1%	STABL 5 — STAB 0.05	 E TO 220°(LE TO 45 p 0.5%	 C AT 6/23 si AT 6/23 8.85	 12:41 12:02 -1.5%	0.994 1.019	0.975 0.968 0.965	7.28 7.20 7.39	7.14 6.86 7.06	52.50 52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24	6:00 6:29 11:47 11:48 6:00 6:29 7:10	CHK CALC PRBT DILP CHK CALC CHG	9.0 CHANG CHANG 9.0 	GE FROM 2 GE FROM 4 10	- 20°C — C 5 psi — C 0.01 -	OWN TO 1 0.1% -	 1.2 psi AT (8.79 	 /23 11:54 5/23 11:55 -2.1% 	STABL 5 — STABL 0.05 —	 E TO 220°(LE TO 45 p 0.5% 	 C AT 6/23 si AT 6/23 8.85 	 12:41 12:02 -1.5% 	1.022 0.994 1.019 1.019	0.975 0.968 0.965 0.965	7.28 7.20 7.39 7.39	7.14 6.86 7.06 7.01	52.50 52.50 52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24 6/24 6/25	6:00 6:29 11:47 11:48 6:00 6:29 7:10 6:00	CHK CALC PRBT DILP CHK CALC CHG	9.0 CHANG 9.0 9.0	 GE FROM 2 GE FROM 4 10 10	- 20°C — C 5 psi — C 0.01 - 0.00		 L.2 psi AT (8.79 8.96	 /23 11:54 5/23 11:55 -2.1% -0.4%	STABL 5 STAB 0.05 0.07	 E TO 220°(LE TO 45 p 0.5% 0.7%	 CAT 6/23 si AT 6/23 8.85 9.09	12:41 12:02 -1.5% 0.9%	1.022 0.994 1.019 1.019	0.975 0.968 0.965 0.965 0.965	7.28 7.20 7.39 7.39 7.39	7.14 6.86 7.06 7.01 7.01	52.50 52.50 52.50 52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24 6/24 6/25 6/25 6/26	6:00 6:29 11:47 11:48 6:00 6:29 7:10 6:00 6:29	CHK CALC PRBT DILP CHK CALC CHG CHK CALC	9.0 CHANG 9.0 9.0 	GE FROM 2 GE FROM 4 10 10	- 20°C — E 5 psi — D 0.01 - 0.00			 /23 11:54 5/23 11:59 -2.1% -0.4%	- STABL 5 — STABL 0.05 0.07	 E TO 220°(LE TO 45 p 0.5% 0.7%		 12:41 12:02 -1.5% 0.9%	1.022 0.994 1.019 1.019 1.019 1.023	0.975 0.968 0.965 0.965 0.965 0.958	7.28 7.20 7.39 7.39 7.39 7.42	7.14 6.86 7.06 7.01 7.01 7.06	52.50 52.50 52.50 52.50 52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24 6/24 6/25 6/25 6/26	6:00 6:29 11:47 11:48 6:00 6:29 7:10 6:00 6:29 6:00 6:29	CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC	9.0 CHANG 9.0 9.0 9.0				8.79 		- STABL 5 - STAB 0.05 - 0.07 - 0.03				1.022 0.994 1.019 1.019 1.023 1.019	0.975 0.968 0.965 0.965 0.965 0.958 0.965	7.28 7.20 7.39 7.39 7.39 7.42 7.39	7.14 6.86 7.06 7.01 7.01 7.06 7.01	52.50 52.50 52.50 52.50 52.50 52.50 52.50
6/23 6/23 6/23 6/23 6/24 6/24 6/24 6/25 6/25 6/26	6:00 6:29 11:47 11:48 6:00 6:29 7:10 6:00 6:29 6:00	CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHK	9.0 CHANG 9.0 9.0 9.0				8.79 		- STABL 5 - STAB 0.05 - 0.07 - 0.03	 E TO 220°(LE TO 45 p 0.5% 0.7%			1.022 0.994 1.019 1.019 1.023 1.019	0.975 0.968 0.965 0.965 0.965 0.958 0.965	7.28 7.20 7.39 7.39 7.39 7.42 7.39	7.14 6.86 7.06 7.01 7.01 7.06 7.01	52.50 52.50 52.50 52.50 52.50 52.50 52.50

6/28	6:00	СНК	9.0	10	0.05	0.5%	8.69	-3.1%	0.05	0.5%	9.14	1.4%	1.019	0.965	7.39	7.01	52.50
6/28	6:29	CALC	3.0		0.03	0.576	8.03	-3.170	0.03	0.576	9.14	1.470	1.062	0.903	7.75	6.99	52.50
6/28	19:26	DILP		GE FROM 4	F nci F	OWN TO	7 nci AT 6	/20 10:21		F TO 44 pc	: AT 6 /20 :	10.42	1.002	0.517	7.73	0.33	32.30
6/28	6:00		9.0	10	0.01	0.1%	8.76	-2.4%	0.08	0.8%	9.11	1.1%	1.019	0.965	7.39	7.01	52.50
	6:29	CHK	9.0		0.01	U.176 		-2.470		U.6% 	9.11	1.170		0.985	7.61	7.01	52.50 52.50
6/29			_					-0.8%					1.048				
6/30	6:00	CHK	9.0	10	0.08	0.8%	8.92	-0.8%	0.14	1.4%	9.18	1.8%	1.019	0.965	7.39	7.01	52.50
6/30	6:29	CALC	_										1.037	0.944	7.60	7.12	52.50
7/1	6:00	CHK	9.0	10	0.05	0.5%	9.08	0.8%	0.13	1.3%	9.31	3.1%	1.019	0.965	7.39	7.01	52.50
7/1	6:29	CALC			-					4.00/		2.60/	1.016	0.949	7.42	7.00	52.50
7/2	6:00	CHK	9.0	10	0.04	0.4%	9.11	1.1%	0.10	1.0%	9.36	3.6%	1.019	0.965	7.39	7.01	52.50
7/2	6:29	CALC											1.012	0.944	7.38	6.91	52.50
7/3	6:00	CHK	9.0	10	-0.03	-0.3%	8.93	-0.7%	0.06	0.6%	9.05	0.5%	1.019	0.965	7.39	7.01	52.50
7/3	6:29	CALC											1.024	0.961	7.40	7.08	52.50
7/4	6:00	CHK	9.0	10	0.02	0.2%	8.85	-1.5%	0.12	1.2%	9.22	2.2%	1.019	0.965	7.39	7.01	52.50
7/4	6:29	CALC											1.038	0.937	7.54	7.05	52.50
7/5	6:00	CHK	9.0	10	0.10	1.0%	8.91	-0.9%	0.16	1.6%	9.23	2.3%	1.019	0.965	7.39	7.01	52.50
7/5	6:29	CALC							-				1.041	0.937	7.65	7.11	52.50
7/6	6:00	CHK	9.0	10	0.11	1.1%	8.96	-0.4%	0.15	1.5%	9.25	2.5%	1.019	0.965	7.39	7.01	52.50
7/6	6:29	CALC											1.035	0.940	7.62	7.09	52.50
7/7	6:00	СНК	9.0	10	0.06	0.6%	8.91	-0.9%	0.17	1.7%	9.16	1.6%	1.019	0.965	7.39	7.01	52.50
7/7	6:29	CALC											1.037	0.949	7.58	7.19	52.50
7/8	1:49	PMTV	CHANG	SE FROM 5	68V — U	P TO 571V	AT — STA	ABLE TO 56	9V AT 7/8	01:55							
7/8	6:00	CHK	9.0	10	0.13	1.3%	8.86	-1.4%	0.21	2.1%	9.06	0.6%	1.019	0.965	7.39	7.01	52.50
7/8	6:29	CALC							-				1.050	0.952	7.74	7.34	52.50
7/8	16:56	PRBT	CHANG	SE FROM 2	20°C — [OWN TO	190°C AT 7	/8 17:08	- STABLE	TO 220°C	AT 7/8 17:	41					
7/8	17:02	DILP	CHANG	SE FROM 4	4 psi — D	OWN TO	L.3 psi AT	7/8 17:08	— STABLI	TO 44 psi	AT 7/8 17	:14					
7/9	6:00	СНК	9.0	10	0.24	2.4%	8.97	-0.3%	0.22	2.2%	9.18	1.8%	1.019	0.965	7.39	7.01	52.50
7/9	6:29	CALC			-				-				1.050	0.941	7.86	7.26	52.50
7/9	17:31	PRBT	CHANG	GE FROM 2	20°C — [OWN TO	193°C AT 7	/9 17:39	— STABLE	TO 220°C	AT 7/9 18:	20					
7/40																	
7/10	6:00	CHK	8900.0	8900	-0.08	0.0%	16.23	-100%	-0.05	0.0%	16.69	-100%	1.019	0.965	7.39	7.01	52.50
7/10	6:00	CHK	8900.0	8900	-0.08 	0.0%	16.23	-100% 	-0.05 	0.0%	16.69	-100% 	1.019 556.018	0.965 0.940		7.01 3701.95	52.50 52.50
7/10	6:29	CALC							-				556.018	0.940	3988.37	3701.95	52.50
7/10 7/10	6:29 9:30	CALC CHK	 9.0	 10	0.14	1.4%	 8.94	 -0.6%	0.23	2.3%	 9.29	2.9%	556.018 1.019	0.940 0.965	3988.37 7.39	3701.95 7.01	52.50 52.50
7/10 7/10 7/10	6:29 9:30 9:59	CALC CHK CALC	9.0 	 10 	- 0.14 -	- 1.4% -	 8.94 	 -0.6% 	- 0.23 -	- 2.3% -	 9.29 	 2.9% 	556.018 1.019 1.042	0.940 0.965 0.938	3988.37 7.39 7.70	3701.95 7.01 7.20	52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11	6:29 9:30 9:59 8:00	CALC CHK CALC CHK	9.0 9.0	 10 10	- 0.14 - 0.11	 1.4% 1.1%	 8.94 9.05	 -0.6% 0.5%	 0.23 0.24	 2.3% 2.4%	9.29 9.36	2.9% 3.6%	556.018 1.019 1.042 1.019	0.940 0.965 0.938 0.965	3988.37 7.39 7.70 7.39	3701.95 7.01 7.20 7.01	52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11	6:29 9:30 9:59 8:00 8:29	CALC CHK CALC CHK CALC	9.0 9.0 	10 10 	 0.14 0.11 	1.4% 1.1%	8.94 9.05	 -0.6% 0.5%	0.23 0.24 	2.3% 2.4%	9.29 9.36	2.9% 3.6%	556.018 1.019 1.042 1.019 1.026	0.940 0.965 0.938 0.965 0.945	3988.37 7.39 7.70 7.39 7.56	3701.95 7.01 7.20 7.01 7.16	52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12	6:29 9:30 9:59 8:00 8:29 7:30 7:59	CALC CHK CALC CHK CALC CHK	9.0 9.0 9.0 	10 10 10 	- 0.14 - 0.11 - 0.20	1.4% 1.1% 2.0%	8.94 9.05 8.99	 -0.6% 0.5% -0.1%	- 0.23 - 0.24 - 0.26	2.3% 2.4% 2.6%	9.29 9.36 9.35	2.9% 3.6% 3.5%	556.018 1.019 1.042 1.019 1.026 1.019	0.940 0.965 0.938 0.965 0.945 0.965	3988.37 7.39 7.70 7.39 7.56 7.39	3701.95 7.01 7.20 7.01 7.16 7.01	52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/11 7/12 7/12 7/12	6:29 9:30 9:59 8:00 8:29 7:30	CALC CHK CALC CHK CALC CHK CALC	9.0 9.0 9.0 CHANC	10 10 10 5E FROM 2		1.4% 1.1% 2.0% OOWN TO 2	8.94 9.05 8.99 		0.23 0.24 0.26 STABL	2.3% 2.4% 2.6% ETO 220°0	9.29 9.36 9.35 	2.9% 3.6% 3.5% 	556.018 1.019 1.042 1.019 1.026 1.019	0.940 0.965 0.938 0.965 0.945 0.965	3988.37 7.39 7.70 7.39 7.56 7.39	3701.95 7.01 7.20 7.01 7.16 7.01	52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12	6:29 9:30 9:59 8:00 8:29 7:30 7:59	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC	9.0 9.0 9.0 CHANC	10 10 10 		1.4% 1.1% 2.0% OOWN TO 2	8.94 9.05 8.99 		0.23 0.24 0.26 STABL	2.3% 2.4% 2.6% ETO 220°0	9.29 9.36 9.35 	2.9% 3.6% 3.5% 	556.018 1.019 1.042 1.019 1.026 1.019	0.940 0.965 0.938 0.965 0.945 0.965	3988.37 7.39 7.70 7.39 7.56 7.39	3701.95 7.01 7.20 7.01 7.16 7.01	52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48	CALC CHK CALC CHK CALC CHK CALC CHK DILP	9.0 9.0 9.0 9.0 CHANG	10 10 10 5E FROM 2	- 0.14 - 0.11 - 0.20 - 20°C - E	1.4%	8.94 9.05 8.99 L61°C AT 7	-0.6% -0.5% -0.1% -0.1% -1/12 14:56		2.3% 2.4% 2.6% E TO 220°(9.29 9.36 - 9.35 - 2AT 7/12	2.9% 3.6% 3.5% 15:47 15:17	556.018 1.019 1.042 1.019 1.026 1.019 1.043	0.940 0.965 0.938 0.965 0.945 0.965 0.933	3988.37 7.39 7.70 7.39 7.56 7.39 7.77	3701.95 7.01 7.20 7.01 7.16 7.01 7.20	52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK	9.0 9.0 9.0 9.0 9.0 CHANG	10 10 10 5E FROM 2 5E FROM 4 10		1.4% 1.1% 2.0% 00WN TO 2 2.1%	8.94 9.05 8.99 L61°C AT 7			2.3% 2.4% 2.6% ETO 220°(9.29 9.36 9.35 - 9.35 - CAT7/12 2	2.9% 3.6% 3.5% 15:47 15:17 5.9%	1.019 1.042 1.019 1.026 1.019 1.043	0.940 0.965 0.938 0.965 0.945 0.965 0.933	3988.37 7.39 7.70 7.39 7.56 7.39 7.77	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC	9.0 9.0 9.0 CHANG 9.0	10 10 10 5E FROM 4 10		1.4% 1.1% 2.0% OWN TO 2 2.1%	8.94 9.05 8.99 61°C AT 7	-0.6% -0.5% -0.1% -1/12 14:56 7/12 15:02		2.3% 2.4% 2.6% ETO 220°(9.29 9.36 9.35 - 9.35 - CAT7/12 2	2.9% 3.6% 3.5% 15:47 15:17 5.9%	556.018 1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965	3988.37 7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.10	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/13 7/13 7/13	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC	9.0 9.0 9.0 CHANC 9.0	10 10 10 5E FROM 2 5E FROM 4 10		1.4% - 1.1% - 2.0% - OWN TO 2 2.1%	8.94 9.05 8.99 61°C AT 7 1.2 psi AT 3			2.3% - 2.4% - 2.6% - ETO 220° LETO 44 p 3.1%	9.29 - 9.36 - 9.35 - CAT7/12: si AT7/12 9.59 -	2.9% 3.6% 3.5% 15:47 15:17 5.9%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.10 7.10 7.10 7.10	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/11 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/13	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC	9.0 	10 10 10 10 10 10 10 10 10 10	- 0.14 - 0.11 - 0.20 - 20°C — E 4 psi — E 0.21 	1.1%	8.94 		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 	2.3% - 2.4% - 2.6% - ETO 220°(LETO 44 p 3.1%0.7%	9.29 9.36 - 9.35 - CAT7/12: Si AT7/12 9.59 - 8.89	2.9% 3.6% 15:47 15:17 5.9%1.1%	556.018 1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907	3988.37 7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.10 7.10	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC CHC	9.0 9.0 9.0 9.0 CHANC 9.0 9.0	10 10 5E FROM 2 5E FROM 4 10 10 10 10	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E 0.21 	1.1%	8.94 		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.07		9.29 9.36 9.35 - 2AT7/12: si AT7/12 9.59 - 8.89 - 8.84	2.9% 3.6% 15:47 15:17 5.9%1.1%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.060 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.83 7.85	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.20 7.01 7.20 7.01 7.10 7.10 7.10 7.10	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59	CALC CHK CALC CHG CHK CALC CHK CALC	9.0 9.0 9.0 9.0 CHANC 9.0 9.0 	10 10	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E 0.21 	1.1%	8.94 		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.07	2.3% - 2.4% - 2.6% - ETO 220° LE TO 44 p 3.1% 0.7% 0.4%	9.29 9.36 9.35 - 2AT7/12: si AT7/12 9.59 - 8.89 - 8.84	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.060	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.77 7.39 7.85 7.85 7.85 7.83	7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59	CALC CHK CALC CHG CHK CALC	9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0	10 10 5E FROM 4 10 10 10 5E FROM 2 5E FROM 2	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E 0.21 	1.1%	8.94 9.05 8.99 1.2 psi AT : 8.94 8.84 8.76 63°C AT 7		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.04 - STABL		9.29 9.36 9.35 - 2AT7/12: si AT7/12: 9.59 - 8.89 - 8.84 - CAT7/14:	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.060 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.83 7.85	3701.95 7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.20 7.01 7.20 7.01 7.10 7.10 7.10 7.10	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHC CHC CHC CHC CHC CHC CHC CHC CALC CHC CHC CALC CHC CHC CALC CHC CALC CHC CALC CHC CALC CHC CALC	9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0 CHANC	10 10 5E FROM 2 10 10 10 5E FROM 2 5E FROM 2 5E FROM 4	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E - 0.09 - 0.06 - 20°C - E 4 psi - E	1.1%	8.94 9.05 8.99 1.2 psi AT : 8.94 8.84 8.76 1.3 psi AT : 1.4 psi AT :		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.04 - STABL 0 — STABL	2.3% - 2.4% - 2.6% - ETO 220°(LE TO 44 p 3.1% 0.7%	9.29 9.36 9.35 CAT7/12: si AT7/12: 9.59 8.89 8.84 CAT7/14: si AT7/14	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.060 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.904 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.96	7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.20 7.01 7.10 7.10 7.10 7.10 7.10 7.15	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC	9.0 9.0 9.0 	10 10 5E FROM 2 10	- 0.14 - 0.11 - 0.20 - 20°C - [4 psi - [- 0.09 - 0.06 - 20°C - [4 psi - [- 0.06]	1.1%	8.94 		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.04 - STABL 0 — STABL 0 — STABL		9.29 9.36 9.35 CAT7/12: si AT7/12: 9.59 8.89 8.84 CAT7/14: 8.70	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.051 1.073	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.96	7.01 7.20 7.01 7.16 7.01 7.20 7.01 7.20 7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.1	52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50 52.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/14 7/14 7/14 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC	9.0 9.0 9.0 	10 10 5E FROM 2 10	- 0.14 - 0.11 - 0.20 - 20°C - [0.21 - 0.09 - 0.06 - 0.06 - 0.06 - 0.06	1.1%	8.94 8.99 8.99 8.94 8.94 8.84 8.76 1.1 psi AT 7.19		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 	2.3% - 2.4% - 2.6% - ETO 220° LE TO 44 p 3.1% 0.7% - ETO 220° LE TO 44 p	9.29 9.36 9.35 - CAT7/12: SI AT7/12 9.59 - 8.89 - 8.84 - CAT7/14 8.70 -	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.073	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.96	7.01 7.10 7.10 7.10 7.16 7.01 7.20 7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.1	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC	9.0 9.0 9.0 	10 10	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E - 0.09 0.06 0.06 0.06 0.08	1.1%	8.94 8.99 8.99 8.94 8.94 8.84 8.76 1.1 psi AT : 7.19 5.33		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 - 0.07 - 0.04 - STABL 0 — STABL	- 2.3% - 2.4% - 2.6% - ETO 220°(LE TO 44 p 3.1% 0.7% 0.4% 0.7% 3.8%	9.29 9.36 9.35 CAT7/12: si AT7/12: 9.59 8.89 8.84 CAT7/14: 8.70 6.92	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85	7.01 7.10 7.10 7.10 7.16 7.01 7.20 7.01 7.10 7.10 7.10 7.10 7.15 7.10 7.15	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 8:25	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC CHK CALC CHK CALC CHK CALC MCALC MCAL	9.0 9.0 9.0 	10 10	- 0.14 - 0.11 - 0.20 - 20°C - E 4 psi - E - 0.09 0.06 0.06 0.06 0.084 0.084	1.1%	8.94 8.99 8.99 8.94 8.94 8.84 8.76 63°C AT 7 1.1 psi AT 7 7.19 5.33		- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 0.31 	2.3% - 2.4% - 2.6% - ETO 220° LE TO 44 p 3.1% 0.7% - ETO 220° LE TO 44 p	9.29 9.36 9.35 - 2AT7/12: si AT7/12: 9.59 - 8.89 - 8.84 - CAT7/14: 8.70 - 6.92	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 14:42 -3.0%21%	1.019 1.042 1.019 1.026 1.019 1.043 1.051 1.051 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900 0.900 0.907 0.907 0.907	7.39 7.56 7.39 7.77 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 9.66 7.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:59 14:12 7:30 7:59 14:12 7:30 7:59 8:25 8:25 8:25 8:25 8:58	CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC CHG CHK CALC MCAL MUP CALC	9.0 9.0 9.0 CHANC 9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0 9.0	10 10		1.4%	8.94 9.05 8.99 61°C AT 7 8.94 8.84 8.76 63°C AT 7 1.1 psi AT: 7.19 5.33	-0.6% -0.5% -0.1% -0.11/2 14:56 -0.6% -1.6% -1.6% -1.6% -1.6% -1.6% -1.7/14 14:21 -7/14 14:21 -7/14 14:21 -7/14 14:21 -7/14 14:21	- 0.23 - 0.24 - 0.26 - STABL 2 STABL 0.31 - 0.07 - 0.04 - STABL 9 STABL 0.07		9.29 9.36 9.35 CAT7/12: Si AT7/12: 9.59 8.89 8.84 CAT7/14: 8.70 6.92	2.9% 3.6% 3.5% 15:17 5.9%1.1%1.16% 15:07 14:42 -3.0%21%	1.019 1.026 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900 0.907 0.907 0.907 0.907 0.907	7.39 7.70 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 9.66 7.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:59 14:12 7:30 7:59 8:25 8:25 8:25 8:58 9:00	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHK CALC CHG CHC CALC CHG CALC CHC CHC CHC CHC CHC CHC CHC CHC CHC C	9.0	10 10		1.4%	8.94 9.05 8.99 61°C AT7 8.94 8.84 8.76 63°C AT7 1.1 psi AT: 7.19 5.33	-0.6% -0.5% -0.1% -0.18 -0.6% -0.6% -0.6% -0.6% -0.7/12 15:02 -0.6% -0.7/14 14:21 -0.7/14 14:25 -1.8% -0.7/14 14:25 -1.8% -0.7/14 14:25	- 0.23 - 0.24 - 0.26 - STABL 2 — STABL 2 — STABL 0.31 - 0.07 - 0.04 STABL 9 — STABL 9 — STABL		9.29 - 9.36 - 9.35 - AT7/12: Si AT7/12: 9.59 8.89 - 8.84 - CAT7/14: 8.70 - 6.92	2.9% 3.6% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%21%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.061 1.073 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.053 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.900 0.900 0.907 0.907 0.751 0.907 0.741 0.766 0.741	7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 9.66 7.85 9.66 7.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 8:25 8:58 9:00 9:05	CALC CHK CALC CHK CALC CHK CALC CHK CALC PRBT DILP CHK CALC CHG CHK CALC CHG CHC CHC CHC CHC CHC CHC CHC CHC CH	9.0 9.0 9.0 9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0 9.0 9.0 9.0	10 10			8.94 9.05 8.99 61°CAT7 8.94 8.84 8.76 63°CAT7 7.19 5.33 8.51		- 0.23 - 0.24 - 0.26 - STABL 2 - STABL 2 - STABL 3 0.07 - 0.04 STABL 9 - STABL 0.07 0.06	- 2.3% - 2.4% - 2.6% - 3.1% 0.7% 0.4%	9.29 - 9.36 - 9.35 - AT7/12: \$i AT7/12: 9.59 - 8.89 - 8.84 - CAT7/14: \$i AT7/14 8.70 - 6.92 - 8.97	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%21%0.3%	1.019 1.026 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.060 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900 0.907 0.751 0.907 0.741 0.766 0.741	7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.96 7.85 9.66 7.85 9.65 9.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/13 7/13 7/15 7/15 7/15 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 8:58 8:58 9:00 9:05 9:34	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC CHC CHC CHC C	9.0	10 10			8.94 9.05 8.99 61°CAT7 8.94 8.84 8.76 63°CAT7 7.19 5.33 8.51		- 0.23 - 0.24 - 0.26 - STABL 2 - STABL 2 - STABL 3 0.07 - 0.04	- 2.3% - 2.4% - 2.6% - 3.1% 0.7% 0.4%	9.29 - 9.36 - 9.35 - AT7/12: si AT7/12: 9.59 8.89 - 8.84 - CAT7/14: 8.70 - 6.92 - 8.97 -	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6% 15:07 14:42 -3.0%21%0.3%0.3%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.060 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.909 0.907 0.751 0.907 0.741 0.766 0.741 0.693	7.39 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 7.96 7.85 9.66 7.85 9.65 9.85 10.23 9.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/13 7/13 7/15 7/15 7/15 7/15 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 8:30 9:05 9:34 9:58	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC CHC CHC CHC C	9.0 9.0 9.0 9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0 9.0 9.0 9.0	10 10	- 0.14 - 0.11 - 0.20 - 20°C - [4 psi - [0.21		8.94 9.05 8.99 61°C AT 7 8.94 8.84 8.76 63°C AT 7 1.1 psi AT 7 7.19 5.33 8.51		- 0.23 - 0.24 - 0.26 STABL 2 - STABL 2 - STAB 0.31 0.07 0.04 STABL 3 - STAB 0.07 0.06		9.29 - 9.36 - 9.35 - CAT7/12: \$i AT7/12: 8.89 - 8.84 - CAT7/14: \$i AT7/14 8.70 - 6.92 8.97	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6%1.1%1.6%1.30%2.1%0.3%0.3%	1.019 1.026 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.060 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.900 0.907 0.751 0.907 0.741 0.766 0.741	7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.96 7.85 9.66 7.85 9.65 9.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/13 7/14 7/14 7/14 7/15 7/15 7/15 7/15 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 14:48 15:40 16:05	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC CHC CHC CHC C	9.0	10 10	- 0.14 - 0.11 - 0.20 - 0.21 - 0.21 - 0.06 -		8.94 9.05 8.99 61°C AT 7 8.94 8.84 8.76 63°C AT 7 5.33 8.51 8.4 psi AT 3		- 0.23 - 0.24 - 0.26 STABL 2 - STAB 0.31	- 2.3% - 2.4% - 2.6% - 2.6% - 3.1% - 0.7% - 0.4%	9.29 9.36 9.35 9.35 AT 7/12 9.59 - 8.89 - 8.84 - CAT 7/14 8.70 - 6.92 - 8.97 - si AT 7/15	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6%1.6%1.3%0.3%0.3%1.19	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.907 0.907 0.751 0.907 0.741 0.766 0.741 0.693 0.693	7.39 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 7.96 7.85 9.66 7.85 9.66 7.85 9.85 10.23 9.85 10.56 10.56	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50
7/10 7/10 7/10 7/11 7/11 7/12 7/12 7/12 7/12 7/13 7/13 7/13 7/13 7/13 7/13 7/15 7/15 7/15 7/15 7/15 7/15 7/15 7/15	6:29 9:30 9:59 8:00 8:29 7:30 7:59 14:48 7:30 7:59 8:25 18:00 18:29 7:30 7:59 14:12 14:12 7:30 7:59 8:25 8:25 8:30 9:05 9:34 9:58	CALC CHK CALC CHK CALC CHK CALC CHK CALC CHK CALC CHC CHC CHC CHC CHC CHC CHC CHC CHC C	9.0 9.0 9.0 9.0 9.0 9.0 9.0 CHANC 9.0 9.0 9.0 9.0 9.0 9.0	10 10	- 0.14 - 0.11 - 0.20 - 20°C - [4 psi - [0.21		8.94 9.05 8.99 61°C AT 7 8.94 8.84 8.76 63°C AT 7 1.1 psi AT 7 7.19 5.33 8.51		- 0.23 - 0.24 - 0.26 STABL 2 - STABL 2 - STAB 0.31 0.07 0.04 STABL 3 - STAB 0.07 0.06		9.29 - 9.36 - 9.35 - CAT7/12: \$i AT7/12: 8.89 - 8.84 - CAT7/14: \$i AT7/14 8.70 - 6.92 8.97	2.9% 3.6% 3.5% 15:47 15:17 5.9%1.1%1.6%1.1%1.6%1.30%2.1%0.3%0.3%	1.019 1.042 1.019 1.026 1.019 1.043 1.019 1.051 1.051 1.060 1.051 1.073 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	0.940 0.965 0.938 0.965 0.945 0.965 0.933 0.965 0.907 0.907 0.907 0.909 0.907 0.751 0.907 0.741 0.766 0.741 0.693	7.39 7.39 7.56 7.39 7.77 7.39 7.85 7.85 7.85 7.85 7.85 7.85 7.96 7.85 9.66 7.85 9.65 9.85 10.23 9.85 9.85	7.01 7.10 7.10 7.10 7.10 7.10 7.10 7.10	\$2.50 \$2.50

7/16	8:30	MCAL	9.0	10	-0.06	-0.6%	10.19	12%	-0.06	-0.6%	8.96	-0.4%	1.599	0.693	10.56	7.29	52.50
7/16	9:01	MUP							-				1.407	0.788	9.25	7.25	52.50
7/16	9:01	CALC											1.404	0.788	9.21	7.22	52.50
7/16	9:03	CHG											1.407	0.788	9.25	7.25	52.50
7/16	9:05	СНК	9.0	10	0.02	0.2%	8.92	-0.8%	0.06	0.6%	9.03	0.3%	1.407	0.788	9.25	7.25	52.50
7/16	9:34	CALC			-				-				1.424	0.782	9.38	7.34	52.50
7/16	15:43	PRBT	CHANG	SE FROM 2	20°C — [OWN TO	128°C AT 7	//16 15:55	— STABL	E TO 221°	C AT 7/16	16:41					
7/16	15:43	DILP	CHANG	SE FROM 4	4.1 psi —	STABLET	O 5.5 psi A	T 7/16 15	:51								
7/16	16:20	DILP	CHANG	SE FROM 5	.5 psi —	STABLE TO	44.2 psi A	T 7/16 16	:28								
7/17	7:30	СНК	9.0	10	0.01	0.1%	9.97	9.7%	0.02	0.2%	9.08	0.8%	1.407	0.788	9.25	7.25	52.50
7/17	7:59	CALC			-		-		-				1.271	0.867	8.36	7.23	52.50
7/17	8:14	CHG			-				-				1.271	0.867	8.36	7.23	52.50
7/18	9:00	CHK	9.0	10	0.02	0.2%	9.07	0.7%	0.05	0.5%	8.86	-1.4%	1.271	0.867	8.36	7.23	52.50
7/18	9:29	CALC			-				-				1.265	0.889	8.34	7.43	52.50
19-Jul	8:30	СНК	9	10	0.05	0.50%	9.27	2.70%	0.07	0.70%	8.92	-0.80%	1.271	0.867	8.36	7.23	52.5
19-Jul	8:59	CALC											1.24	0.904	8.21	7.43	52.5
					-	_				0.200/							
20-Jul	7:30	СНК	9	10	-0.02	-0.20%	8.84	-1.60%	-0.02	-0.20%	8.83	-1.70%	1.271	0.867	8.36	7.23	52.5
20-Jul	7:59	CALC											1.291	0.868	8.47	7.33	52.5
7/21	8:30	СНК	9.0	10	-0.02	-0.2%	8.87	-1.3%	-0.01	-0.1%	8.93	-0.7%	1.271	0.867	8.36	7.23	52.50
7/21	8:59	CALC			-								1.287	0.862	8.45	7.26	52.50
7/22	7:30	СНК	9.0	10	0.06	0.6%	8.54	-4.6%	0.07	0.7%	8.65	-3.5%	1.271	0.867	8.36	7.23	52.50
7/22	7:59	CALC	3.0	10	0.00	0.070	0.5 .	1.070	0.07	0.770	0.05	3.370	1.349	0.856	8.95	7.65	52.50
			CUANG				1 4 4	7/22.46.54	CTAR	57044	· ATT /22	47.24	1.345	0.830	8.33	7.03	32.30
7/22	16:49	DILP						7/22 16:50									
7/22	16:51	PRBT	CHANG	SE FROM 2	21°C — [OOWN TO 8	85°C AT 7/	22 17:15	— STABLE	TO 220°C	AT 7/22 1	8:07					
7/22	17:09	CNVT	CHANG	SE FROM 7	56°C — □	OWN TO	720°C AT 7	//22 17:10	— STABL	E TO 757°	C AT 7/22	17:21					
7/23	7:30	СНК	9.0	10	-0.01	-0.1%	8.47	-5.3%	-0.04	-0.4%	8.90	-1.0%	1.271	0.867	8.36	7.23	52.50
7/23	7:59	CALC							-				1.349	0.822	8.86	7.23	52.50
24-Jul	8:30	СНК	9	10	0.13	1.30%	9.17	1.70%	0.1	1.00%	9.15	1.50%	1.349	0.822	8.86	7.23	52.5
24-Jul	8:59	CALC			-								1.344	0.821	8.96	7.29	52.5
													1.344	0.821	8.30	7.23	32.3
7/25	3:12	INTT		1	1	1	T	3:16 — ST.			1						
7/25	7:30	CHK	9.0	10	0.18	1.8%	9.29	2.9%	0.18	1.8%	9.15	1.5%	1.349	0.822	8.86	7.23	52.50
7/25	7:59	CALC							-				1.333	0.835	8.94	7.44	52.50
7/25	15:02	PRBT	CHANG	SE FROM 2	20°C — [OWN TO	183°C AT 7	//25 15:11	- STABL	E TO 220°	C AT 7/25	15:53					
7/25	15:04	DILP	CHANG	SE FROM 4	4 psi — [OWN TO	1.2 psi AT	7/25 15:12	2 — STAB	LE TO 44 p	si AT 7/25	15:20					
7/26	6:40	СНК	9.0	10	0.07	0.7%	9.41	4.1%	0.07	0.7%	8.98	-0.2%	1.349	0.822	8.86	7.23	52.50
7/26	7:09	CALC			-	-			-	-			1.300	0.862	8.61	7.38	52.50
7/27	6:40	СНК	9.0	10	-0.05	-0.5%	7.24	-18%	-0.01	-0.1%	6.76	-22%	1.349	0.822	8.86	7.23	52.50
7/27	7:09	CALC							-				1.666	0.885	10.88	9.61	52.50
7/27	7:17	MCAL	9.0	10	-0.49	-4.9%	6.45	-26%	-0.32	-3.2%	6.11	-29%	1.349	0.822	8.86	7.23	52.50
7/27	7:52	MUP											1.774	0.881	11.09	9.78	52.50
7/27	7:52	CALC											1.748	0.887	10.85	9.67	52.50
7/27	8:10	СНК	9.0	10	0.18	1.8%	8.53	-4.7%	0.12	1.2%	8.91	-0.9%	1.774	0.881	11.09	9.78	52.50
7/27	8:39	CALC			-				-				1.912	0.837	12.14	10.14	52.50
7/28	6:40	CHK	9.0	10	0.14	1.4%	9.21	2.1%	0.03	0.3%	9.41	4.1%	1.774	0.881	11.09	9.78	52.50
_	_		5.0	10	0.14	1.4/0	J.Z1	2.1/0	0.03	0.370	5.41	7.1/0			_		
7/28	7:09	CALC		-							-	-	1.760	0.852	11.14	9.41	52.50
7/28	8:52	DILP						— STABLE		AI //28 0	8:58 I			-			
7/28	14:24	PRBT	CHANG	GE FROM 2	20°C — S	TABLE TO	220°C AT 7	7/28 14:30)								
7/29	6:40	СНК	9.0	10	0.25	2.5%	9.59	5.9%	0.19	1.9%	9.90	9.0%	1.774	0.881	11.09	9.78	52.50
7/29	7:09	CALC	-		-	-			-	-			1.708	0.848	10.91	9.24	52.50
7/29	7:23	CHG			-				-				1.708	0.848	10.91	9.24	52.50
7/29	22:55	INTT	CHANG	SE FROM ?	8°C — 111	TO 30°C A	AT 7/29 23	3:02 — ST.	ABLE TO 2	3°C AT 7/2	9 23:17						
7/30	5:43	INTT						:48 — ST									
								1			1	2.00/	1 700	0.040	10.01	0.24	F2 50
7/30	6:40	СНК	9.0	10	-0.01	-0.1%	8.79	-2.1%	0.05	0.5%	8.72	-2.8%	1.708	0.848	10.91	9.24	52.50
7/30	7:09	CALC			-								1.748	0.860	11.16	9.64	52.50
7/30	7:59	DILP	CHANG	SE FROM 4	5 psi — [OWN TO	1.2 psi AT	7/30 08:06	5 — STAB	LE TO 44 p	si AT 7/30	08:15					
7/30	8:21	СНК	9.0	10	-0.02	-0.2%	10.99	20%	0.02	0.2%	11.30	23%	1.708	0.848	10.91	9.24	52.50
7/30	8:50	CALC			-				-				1.397	0.827	8.91	7.38	52.50
7/30	9:16	MCAL	9.0	10	-0.13	-1.3%	11.28	23%	-0.15	-1.5%	11.29	23%	1.708	0.848	10.91	9.24	52.50
7/30	9:50	MUP											1.346	0.849	8.49	7.21	52.50
													1.347	0.846	8.50	7.15	52.50
7/30	9:50	CALC															

7/30	10:00	СНК	9.0	10	0.02	0.2%	8.91	-0.9%	0.01	0.1%	8.97	-0.3%	1.346	0.849	8.49	7.21	52.50
7/30	10:29	CALC											1.363	0.843	8.62	7.25	52.50
7/31	5:00	СНК	9.0	10	0.07	0.7%	9.06	0.6%	0.06	0.6%	8.89	-1.1%	1.346	0.849	8.49	7.21	52.50
7/31	5:29	CALC			-	-			-	-			1.349	0.863	8.59	7.40	52.50
7/31	13:42	DILP	CHANG	SE FROM 4	4.2 psi —	STABLE TO	0 1.2 psi A	T7/31 13	:50						0.00		00.00
7/31	13:43	PRBT			20°C — D					E TO 221°	CAT 7/31	15:04					
7/31	14:07	CNVT	CHANG	SE FROM 7	48°C — D	OWN TO 7	724°C AT	— STABLE	TO 756°C	AT 7/31 1	4:13						
7/31	14:44	DILP	CHANG	SE FROM 1	.2 psi — 5	STABLE TO	44.2 psi A	T 7/31 14	:52								
8/1	5:00	СНК	9.0	10	0.05	0.5%	8.69	-3.1%	0.04	0.4%	8.84	-1.6%	1.346	0.849	8.49	7.21	52.50
8/1	5:29	CALC			-				-				1.403	0.834	8.90	7.42	52.50
8/2	5:00	СНК	9.0	10	0.06	0.6%	8.71	-2.9%	0.01	0.1%	8.84	-1.6%	1.346	0.849	8.49	7.21	52.50
8/2	5:29	CALC			-								1.401	0.832	8.90	7.35	52.50
8/3	5:00	СНК	9.0	10	0.13	1.3%	8.88	-1.2%	0.04	0.4%	8.99	-0.1%	1.346	0.849	8.49	7.21	52.50
8/3	5:29	CALC			-				-				1.384	0.831	8.87	7.30	52.50
8/3	13:32	DILP	CHANG	SE FROM 4	4.2 psi —	STABLE TO	0 1.2 psi A	T 8/3 13:4	10								
8/3	13:33	PRBT	CHANG	SE FROM 2	20°C — D	OWN TO 1	122°C AT 8	/3 13:50	— STABLE	TO 221°C	AT 8/3 14	:55					
8/3	14:28	DILP	CHANG	SE FROM 1	.2 psi — 9	STABLE TO	44.2 psi A	T 8/3 14:3	16								
8/4	5:00	СНК	9.0	10	0.08	0.8%	9.25	2.5%	0.07	0.7%	8.85	-1.5%	1.346	0.849	8.49	7.21	52.50
8/4	5:29	CALC											1.321	0.887	8.41	7.46	52.50
8/5	5:00	СНК	9.0	10	0.11	1.1%	9.58	5.8%	0.07	0.7%	8.88	-1.2%	1.346	0.849	8.49	7.21	52.50
8/5	5:29	CALC											1.281	0.912	8.19	7.43	52.50
8/5	7:51	CHG											1.281	0.912	8.19	7.43	52.50
8/6	5:00	СНК	9.0	10	0.06	0.6%	8.92	-0.8%	0.05	0.5%	8.92	-0.8%	1.281	0.912	8.19	7.43	52.50
8/6	5:29	CALC			-				-				1.302	0.911	8.39	7.60	52.50
8/7	5:00	СНК	9.0	10	-0.05	-0.5%	12.56	36%	-0.06	-0.6%	12.57	36%	1.281	0.912	8.19	7.43	52.50
8/7	5:29	CALC											0.914	0.910	5.81	5.25	52.50
8/7	8:16	СНК	9.0	10	-0.06	-0.6%	12.23	32%	0.01	0.1%	13.27	43%	1.281	0.912	8.19	7.43	52.50
8/7	8:49	CALC			-								0.938	0.845	5.96	5.05	52.50
8/7	12:14	PRBT	CHANG	SE FROM 2	21°C — D	OWN TO 2	205°C AT 8	/7 12:21	— STABLE	TO 220°C	AT 8/7 12:	:51					
8/8	5:00	СНК	9.0	10	0.06	0.6%	10.24	12%	0.09	0.9%	12.40	34%	1.281	0.912	8.19	7.43	52.50
8/8	5:29	CALC			-				-				1.132	0.754	7.29	5.50	52.50

8.0 APPENDIX C - OHIO LUMEX DATA

No	Description: 6/22/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std10	1	9.8	7340	820	2:47:19 PM
2	Std50	1	49	36600	3350	2:51:07 PM
3	Std 100	1	100	75100	6450	2:55:47 PM
4	Std 150	1	148	111000	14400	3:00:28 PM
5	Std200	1	199	149000	19300	3:04:04 PM
6	Std250	1	250	187000	15700	3:08:10 PM
7	Std100 QA, RL = 3%	1	103	77300	6510	3:23:18 PM
	Standard100, R = 0%		103			
8	Std 100 SS, RL = 4%	1	104	77800	9330	3:29:01 PM
9	172276 FP	1	217	162000	17900	3:37:52 PM
13	172276 Section 1	1	243	182000	18400	3:52:05 PM
14	172276 Section 2	1	10	7540	280	3:53:59 PM
20	173282 FP	1	74	55900	4170	4:15:21 PM
21	173282 Section 1	1	361	270000	29600	4:18:55 PM
22	173282 Section 2	1	15	11200	505	4:21:30 PM
23	172358 FP	1	120	89700	7350	4:42:16 PM
24	172358 Section 1	1	222	166000	16500	4:44:56 PM
25	172358 Section 2	1	10	7970	298	4:47:24 PM
26	172485 FP	1	166	124000	7060	5:02:21 PM
27	Std 100 QA, RL = 1%	1	101	75900	5730	5:05:00 PM
28	172485 Section 1	1	207	155000	18100	5:08:27 PM
29	172485 Section 2	1	14	10800	453	5:13:08 PM
30	172458 FP	1	6.1	4570	327	5:26:58 PM
31	172458 Section 1	1	116	86700	10000	5:29:53 PM
32	172458 Section 2	1	1.2	920	40	5:31:57 PM
33	172474 FP	1	5.1	3840	339	5:42:53 PM
35	12474 Section 1	1	132	99200	12300	5:46:10 PM
36	12474 Section 2	1	1.0	750	62	5:48:25 PM
37	173272 FP	1	22	16600	1310	5:58:25 PM
38	173272 Section 1	1	120	90200	12100	6:00:42 PM
39	Std100 QA, RL = 5%	1	105	78600	7090	6:04:53 PM
40	173272 Section 2	1	7.3	5430	294	6:07:36 PM
41	173281 FP	1	20	15500	1010	6:17:06 PM
42	173281 Section 1	1	125	94000	12500	6:19:35 PM
43	173281 Section 2	1	7.4	5510	244	6:21:19 PM
44	173296FP	1	42	31600	2410	6:31:13 PM
45	173296 Section 1	1	644	481000	51300	6:34:31 PM
46	173296 Section 2	1	6.6	4930	343	6:39:03 PM
47	173273 FP	1	38	28800	2640	6:48:26 PM

48	173273 Section 1	1	633	473000	53600	6:51:48 PM
49	173273 Section 2	1	7.9	5920	351	6:56:11 PM
50	Std 100 QA, RL = 3%	1	103	77500	7070	6:59:50 PM
51	173262 FP	1	0.7	550	32	7:10:58 PM
52	173262 Section 1	1	167	125000	13500	7:13:09 PM
53	173262 Section 2	1	0.3	202	14	7:16:19 PM
54	173265 FP	1	0.9	684	35	7:28:18 PM
55	173265 Section 1	1	191	143000	16300	7:30:26 PM
56	173265 Section 2	1	0.4	326	17	7:32:22 PM
57	172122 FP	1	6.5	4850	403	7:40:08 PM
58	172122 Section 1	1	451	337000		7:43:05 PM
59	172122 Section 2	1	2.3	1700	144	7:45:23 PM
61	173268 FP	1	4.3	3220	199	7:52:46 PM
62	173268 Section 1	1	478	357000	43000	7:56:05 PM
63	173268 Section 2	1	3.5	2590	213	7:58:00 PM
65	172205 FP	1	80	60000	3680	8:06:46 PM
67	172205 Section 1	1	686	512000	51400	8:10:44 PM
68	172205 Section 2	1	3.4	2560	102	8:13:30 PM
69	172341 FP	1	79	59000	4680	8:20:20 PM
71	172341 Section 1	1	781	583000	51600	8:24:00 PM
73	172341 Section 2	1	5.4	4040	193	8:26:16 PM
74	Std 100 QC, RL = 7%	1	107	80100	8430	8:29:04 PM
No	Description: 6/23/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std10	1	9.8	7340	820	2:47:19 PM
2	Std50	1	49	36600	3350	2:51:07 PM
3	Std100	1	100	75100	6450	2:55:47 PM
4	Std150	1	148	111000	14400	3:00:28 PM
5	Std200	1	199	149000		3:04:04 PM
6	Std250	1	250	187000	15700	3:08:10 PM
7	Std100 QA, RL = 3%	1	103	77300	6510	3:23:18 PM
	Standard100, R = 0%		103			
8	Std100 SS, RL = 4%	1	104	77800	9330	3:29:01 PM
9	172276 FP	1	217	162000	17900	3:37:52 PM
13	172276 Section 1	1	243	182000	18400	3:52:05 PM
14	172276 Section 2	1	10	7540	280	3:53:59 PM
20	173282 FP	1	74	55900	4170	4:15:21 PM
21	173282 Section 1	1	361	270000	29600	4:18:55 PM
22	173282 Section 2	1	15	11200	505	4:21:30 PM
23	172358 FP	1	120	89700	7350	4:42:16 PM

24	172358 Section 1	1	222	166000	16500	4:44:56 PM
25	172358 Section 2	1	10	7970	298	4:47:24 PM
26	172485 FP	1	166	124000	_	5:02:21 PM
27	Std 100 QA, RL = 1%	1	101	75900	5730	5:05:00 PM
28	172485 Section 1	1	207	155000	18100	5:08:27 PM
29	172485 Section 2	1	14	10800	453	5:13:08 PM
30	172458 FP	1	6.1	4570	327	5:26:58 PM
31	172458 Section 1	1	116	86700	10000	5:29:53 PM
32	172458 Section 2	1	1.2	920	40	5:31:57 PM
33	172474 FP	1	5.1	3840	339	5:42:53 PM
35	12474 Section 1	1	132	99200	12300	5:46:10 PM
36	12474 Section 2	1	1.0	750	62	5:48:25 PM
37	173272 FP	1	22	16600	1310	5:58:25 PM
38	173272 Section 1	1	120	90200	12100	6:00:42 PM
39	Std 100 QA, RL = 5%	1	105	78600	7090	6:04:53 PM
40	173272 Section 2	1	7.3	5430	294	6:07:36 PM
41	173281 FP	1	20	15500	1010	6:17:06 PM
42	173281 Section 1	1	125	94000	12500	6:19:35 PM
43	173281 Section 2	1	7.4	5510	244	6:21:19 PM
44	173296FP	1	42	31600	2410	6:31:13 PM
45	173296 Section 1	1	644	481000	51300	6:34:31 PM
46	173296 Section 2	1	6.6	4930	343	6:39:03 PM
47	173273 FP	1	38	28800	2640	6:48:26 PM
48	173273 Section 1	1	633	473000	53600	6:51:48 PM
49	173273 Section 2	1	7.9	5920	351	6:56:11 PM
50	Std 100 QA, RL = 3%	1	103	77500	7070	6:59:50 PM
51	173262 FP	1	0.7	550	32	7:10:58 PM
52	173262 Section 1	1	167	125000	13500	7:13:09 PM
53	173262 Section 2	1	0.3	202	14	7:16:19 PM
54	173265 FP	1	0.9	684	35	7:28:18 PM
55	173265 Section 1	1	191	143000	16300	7:30:26 PM
56	173265 Section 2	1	0.4	326	17	7:32:22 PM
57	172122 FP	1	6.5	4850	403	7:40:08 PM
58	172122 Section 1	1	451	337000	41900	7:43:05 PM
59	172122 Section 2	1	2.3	1700	144	7:45:23 PM
61	173268 FP	1	4.3	3220	199	7:52:46 PM
62	173268 Section 1	1	478	357000	43000	7:56:05 PM
63	173268 Section 2	1	3.5	2590	213	7:58:00 PM
65	172205 FP	1	80	60000	3680	8:06:46 PM
67	172205 Section 1	1	686	512000	-	8:10:44 PM

73 172341 Section 2 1 5.4 4040 74 Std_100 QC, RL = 7% 1 107 80100 75 Std_100 QC, RL = 5% 1 105 78500 76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173255 Section 2 1 3.5 2600 79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173259 Section 1 1 205 15300 92 173259 Sec	102 4680 51600 193 8430 6950 322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	8:13:30 PM 8:20:20 PM 8:24:00 PM 8:26:16 PM 8:29:04 PM 2:09:12 PM 2:37:17 PM 2:40:04 PM 2:43:06 PM 2:55:15 PM 2:55:15 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
71 172341 Section 1 1 781 58300 73 172341 Section 2 1 5.4 4040 74 Std_100 QC, RL = 7% 1 107 80100 75 Std_100 QC, RL = 5% 1 105 78500 76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173288 FP 1 2.6 1910 80 173288 Section 2 1 4.4 3250 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 Sec	51600 193 8430 6950 322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	8:24:00 PM 8:26:16 PM 8:29:04 PM 2:09:12 PM 2:37:17 PM 2:40:04 PM 2:43:06 PM 2:52:51 PM 2:55:15 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:49:39 PM
73 172341 Section 2 1 5.4 4040 74 Std_100 QC, RL = 7% 1 107 80100 75 Std_100 QC, RL = 5% 1 105 78500 76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173288 FP 1 2.6 1910 80 173288 Section 2 1 4.4 3250 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 15 11800 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 94 173261 Section 2	193 8430 6950 322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	8:26:16 PM 8:29:04 PM 2:09:12 PM 2:37:17 PM 2:40:04 PM 2:43:06 PM 2:55:15 PM 2:55:15 PM 3:06:57 PM 3:06:57 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:35:34 PM 3:49:39 PM
74 Std_100 QC, RL = 7% 1 107 80100 75 Std_100 QC, RL = 5% 1 105 78500 76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 Section 2	8430 6950 322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	8:29:04 PM 2:09:12 PM 2:37:17 PM 2:40:04 PM 2:43:06 PM 2:52:51 PM 2:55:15 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
75 Std_100 QC, RL = 5% 76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173255 Section 2 1 3.5 2600 79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 15 \$85900 84 173274 Section 2 1 17 13000 86 173274 Section 1 87 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 Section 2 91 173259 Section 2 92 173259 Section 2 94 173261 Section 2 96 173261 Section 2 1 7.9 5860	6950 322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	2:09:12 PM 2:37:17 PM 2:40:04 PM 2:43:06 PM 2:52:51 PM 2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:35:34 PM 3:49:39 PM
76 173255 FP 1 5.7 4250 77 173255 Section 1 1 82 61400 78 173255 Section 2 1 3.5 2600 79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 2 1	322 5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	2:37:17 PM 2:40:04 PM 2:43:06 PM 2:52:51 PM 2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
77 173255 Section 1 1 82 61400 78 173255 Section 2 1 3.5 2600 79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 2 1 7.9 5860	5550 155 115 5360 177 808 8120 174 764 11600 7980 167 1180	2:40:04 PM 2:43:06 PM 2:52:51 PM 2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
78 173255 Section 2 1 3.5 2600 79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 94 173261 FP 1 30 22800 96 173261 Section 2 1 7.9 5860	155 115 5360 177 808 8120 174 764 11600 7980 167 1180	2:43:06 PM 2:52:51 PM 2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:35:34 PM 3:39:39 PM
79 173288 FP 1 2.6 1910 80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 94 173261 FP 1 30 22800 96 173261 Section 2 1 7.9 5860	115 5360 177 808 8120 174 764 11600 7980 167 1180	2:52:51 PM 2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
80 173288 Section 1 1 98 73200 81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 2 1 7.9 5860	5360 177 808 8120 174 764 11600 7980 167 1180	2:55:15 PM 2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:35:34 PM 3:39:39 PM
81 173288 Section 2 1 4.4 3250 82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	177 808 8120 174 764 11600 7980 167 1180	2:57:25 PM 3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
82 173267 FP 1 15 11800 83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	808 8120 174 764 11600 7980 167 1180	3:06:57 PM 3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
83 173267 Section 1 1 115 85900 84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	8120 174 764 11600 7980 167 1180	3:09:29 PM 3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
84 173267 Section 2 1 5.2 3910 85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	174 764 11600 7980 167 1180	3:11:31 PM 3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
85 173274 FP 1 17 13000 86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	764 11600 7980 167 1180	3:23:39 PM 3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
86 173274 Section 1 1 116 87100 88 Std100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	11600 7980 167 1180	3:26:44 PM 3:35:34 PM 3:38:35 PM 3:49:39 PM
88 Std_100 QA, RL = 5% 1 105 78900 90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	7980 167 1180	3:35:34 PM 3:38:35 PM 3:49:39 PM
90 173274 Section 2 1 5.8 4320 91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	167 1180	3:38:35 PM 3:49:39 PM
91 173259 FP 1 36 27100 92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	1180	3:49:39 PM
92 173259 Section 1 1 205 15300 93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	-	
93 173259 Section 2 1 7.1 5270 94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	47200	
94 173261 FP 1 30 22800 96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860) 1/300	3:52:52 PM
96 173261 Section 1 1 215 16100 97 173261 Section 2 1 7.9 5860	214	3:55:13 PM
97 173261 Section 2 1 7.9 5860	1680	4:03:46 PM
	18400	4:07:43 PM
00 C+d 100 OA DI - E0/	199	4:10:39 PM
98 Std_100 QA, RL = 5% 1 105 78800	8280	4:17:16 PM
No Description: 7/12/13 M, mg C, ng/g Area	Maximum	Time
1 Std5, RL = -11% 1 4.4 1560	177	11:47:51 AM
2 Std10, RL = -13% 1 8.7 3070	324	11:49:42 AM
3 Std100, RL = -2%, RL = -2% 1 98 34900	3510	11:51:34 AM
4 Std_50, RL = -2%, RL = -2% 1 49 17600	2160	11:53:49 AM
	18400	11:56:06 AM
6 Std_5, RL = 0% 1 5.0 1760	161	12:10:58 PM
7 Std 10, RL = -1% 1 9.8 3450	389	12:12:43 PM
8 Std 250 SS, RL = 0% 1 249 88300	9360	12:16:41 PM
9 OL 173271 Sec 1 Plug Stack A 1 20 7350	387	12:24:06 PM
10 OL 173271 Sec 1 1 82 29200		12:26:08 PM
11 OL 173271 Sec 2 and Plug 1 4.5 1600	2990	-
12 OL 173300 Sec 1 Plug Stack A 1 24 8550	2990 85	12:28:07 PM

13	OL 173300 Sec 1	1	79	28000	3820	12:34:15 PM
14	OL 173300 Sec 2 and Plug	1	4.6	1640	80	12:36:05 PM
15	OL 173276 Sec 1 Plug Stack D	1	158	56200	6250	12:40:47 PM
16	OL 173276 Sec 1	1	7.5	2670	291	12:42:20 PM
17	OL 173276 Sec 2 and Plug	1	6.1	2150	113	12:44:25 PM
18	OL 173284 Sec 1 Plug Stack D	1	150	53400	3620	12:47:23 PM
19	OL 173284 Sec 1	1	8.6	3060	422	12:49:45 PM
20	OL 173284 Sec 2 and Plug	1	8.0	2840	179	12:52:01 PM
21	OL 173257 Sec 1 Plug Inlet	1	33	11700	1020	12:54:28 PM
22	OL 173257 Sec 17 Tug milet OL 173257 Sec 1	1	460	163000		12:56:46 PM
	OL 173257 Sec 1 OL 173257 Sec 2 and Plug	1	10	3820	287	12:58:24 PM
24	OL 173275 Sec 2 and 1 rug OL 173275 Sec 1 Plug Inlet	1	35	12500	773	1:02:15 PM
25	OL 173275 Sec 17 Tug milet OL 173275 Sec 1	1	494	175000		1:04:22 PM
26	OL 173275 Sec 2 and Plug	1	13	4720	304	1:04:22 PW
27	Std 300 Chk, RL = 1%	1	305	108000		1:10:15 PM
21	3tu300 Clik, KL = 1%	1	303	100000	15500	1.10.15 PW
No	Description: 7/14/13	M ma	C, ng/g	Area	Maximum	Time
1	Std 5, RL = -4%	101, 111g	4.8	1550	165	11:24:33 AM
2	Std 10, RL = 0%	1	10	3290	307	11:24:55 AIVI
3	Std 100, RL = 3%	1	103	33300	2830	11:29:00 AM
4	Std 500, RL = 0%	1	499	161000		11:31:38 AM
5	Std500, KL = 0%	1	520	168000	-	11:34:27 AM
6	OL 165245 Sec 1 Plug	1	42	13600	1530	11:48:53 AM
7	OL 165245 Sec 1	1	613	198000	-	11:50:58 AM
8	OL 165345 Sec 2 and Plug	1	12	4100	178	11:52:36 AM
9	OL 165389 Sec 1 Plug	1	45	14800	1510	11:59:42 AM
10	OL 165389 Sec 1	1	688	222000	-	12:01:35 PM
11	OL 165389 Sec 2	1	17	5640	440	12:03:07 PM
12	OL 165482 Sec 1 Plug	1	131	42500	3090	12:17:01 PM
13	OL 165482 Sec 1	1	9.1	2920	278	12:17:01 PW
	OL 165482 Sec 2	1	8.4	2700	175	12:19:57 PM
	OL 165484 Sec 1 Plug	1	133	43000	4680	
	OL 165484 Sec 1 Plug OL 165484 Sec 1	1	8.6	2790	321	12:29:10 PM 12:30:53 PM
_	OL 165484 Sec 1	1	7.4	2380	124	12:30:53 PM
	OL 165484 Sec 2 OL 165385 Sec 1 Plug	1	40	13200	782	12:32:25 PM 12:39:59 PM
	OL 165385 Sec 1 Plug OL 165385 Sec 1	1	38	12400	1400	
	OL 165385 Sec 1 OL 165385 Sec 2	1	4.7	1530	83	12:41:43 PM 12:43:29 PM
	OL 165385 Sec 2 OL 165726 Sec 1 Plug	1	4. 7	14000	1160	
	OL 165726 Sec 1 Plug OL 165726 Sec 1	1	34	11200	1430	12:45:18 PM 12:47:02 PM
		1	_		71	
23	OL 165726 Sec 2	1	4.4	1410		12:48:19 PM

24	Std700 Chk, RL = 1%	1	713	230000	24100	12:52:53 PM
No	Description: 7/17/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std5, RL = 8%	1	5.4	1690	135	9:13:56 AM
2	Std10, RL = 0%, RL = 0%	1	10	3430	381	9:15:58 AM
3	Std5, RL = 5%, RL = 5%	1	5.3	1660	207	9:19:14 AM
4	Std100, RL = 8%, RL = 8%	1	108	34000	3360	9:22:26 AM
5	Std1000, RL = 0%, RL = 0%	1	999	313000	33700	9:24:56 AM
6	Std1000 SS, RL = 2%	1	1020	320000	35100	9:30:26 AM
7	OL 173258 Sec 1 Plug	1	161	50700	3940	9:36:52 AM
8	OL 173258 Sec 1	1	7.9	2490	260	9:38:50 AM
9	OL 173258 Sec 2 and Plug	1	8.0	2510	175	9:40:11 AM
10	OL 173292 Sec 1 Plug	1	166	52200	2560	9:43:53 AM
11	OL 173292 Sec 1	1	7.5	2340	221	9:45:44 AM
12	OL 173292 Sec and Plug	1	8.3	2590	189	9:47:39 AM
13	OL 171696 Sec 1 Plug	1	112	35100	2900	9:51:09 AM
14	OL 171696 Sec 1	1	19	5960	768	9:52:43 AM
15	OL 171696 Sec 2 and Plug	1	7.6	2380	182	9:54:04 AM
16	OL 171706 Sec 1 Plug	1	109	34200	2670	9:58:26 AM
17	OL 171706 Sec 1	1	18	5810	704	10:00:26 AM
18	OL 171706 Sec 2 and Plug	1	7.3	2290	164	10:02:12 AM
19	OL 173264 Sec 1 Plug	1	43	13500	1280	10:05:39 AM
20	OL 173264 Sec 1	1	663	208000	22500	10:08:09 AM
21	OL 173264 Sec 2 and Plug	1	23	7240	601	10:10:21 AM
22	OL 171680 Sec 1 Plug	1	25	8030	523	10:12:59 AM
23	OL 171680 Sec 1	1	648	203000	22900	10:15:18 AM
24	Ol 171680 Sec 2 and Plug	1	17	5340	381	10:17:02 AM
25	Std700 Chk, RL = 7%	1	753	236000	27000	10:21:11 AM
No	Description: 7/20/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std100, RL = 5%	50	105	1820	221	8:06:47 PM
2	Std100, RL = -2%	100	98	3410	410	8:09:43 PM
3	Std1000, RL = 0%	50	999	17300	2290	8:11:53 PM
4	GB-202 - 1	1066	14	5250	248	9:24:49 PM
5	GB-202 - 2	1387	13	6400	314	9:28:17 PM
6	GB-203 - 1	1838	15	9760	441	9:31:20 PM
7	GB-203 - 2	1093	16	6280	347	9:34:37 PM
8	GB-204 - 1	1295	13	6050	309	10:03:28 PM
9	GB-204 - 2	1621	15	8540	371	10:06:35 PM
10	GB-205 - 1	1120	18	7240	323	10:09:10 PM

11	GB-205 - 2	1276	13	5970	300	10:12:43 PM
12	GB-206 - 1	1264	11	4880	250	10:23:23 PM
13	GB-206 - 2	1329	11	5130	227	10:26:23 PM
14	Std100, RL = 1%	100	101	3500	463	10:33:05 PM
No	Description: 7/21/13	M, mg	C, ng/g		Maximum	
1	Std5, RL = -4%	1	4.8	1650	190	11:47:26 PM
2	Std10, RL = 0%	1	9.9	3410	366	12:23:41 AM
3	Std50, RL = 0%	1	50	17400	1930	12:25:47 AM
4	Std100, RL = 1%	1	101	35000	3870	12:28:25 AM
5	Std250, RL = 2%	1	257	89100	10800	12:42:23 AM
6	Std500, RL = 2%	1	511	177000	19500	12:45:20 AM
7	Std1000, RL = 0%	1	991	343000	29200	12:48:19 AM
8	Std30, RL = 0%	1	30	10500	1310	12:55:34 AM
9	171708 FP	1	24	8430	597	1:06:36 AM
10	171708 Section 1	1	45	15700	1930	1:08:45 AM
11	171708 Section 2	1	3.6	1240	59	1:11:01 AM
12	172004 FP	1	24	8630	662	1:18:06 AM
13	172004 Section 1	1	43	15000	1800	1:19:56 AM
14	172004 Section 2	1	4.1	1430	60	1:21:50 AM
15	172187 FP	1	121	42200	4510	1:31:45 AM
16	172187 Section 1	1	5.7	1980	234	1:33:48 AM
17	172187 Section 2	1	4.8	1660	84	1:35:26 AM
18	172200 FP	1	112	39000	3670	1:37:32 AM
20	Std30, RL = 0%	1	30	10600	1290	1:42:40 AM
21	172200 Section 1	1	6.8	2370	327	1:44:40 AM
22	172200 Section 2	1	5.9	2030	77	1:48:06 AM
23	171596 FP	1	32	11100	1090	1:56:28 AM
24	171596 Section 1	1	525	182000	19000	1:58:52 AM
25	171596 Section 2	1	13	4550	364	2:01:20 AM
26	172073 FP	1	33	11600	1510	2:15:33 AM
27	172073 Section 1	1	540	187000	20400	2:18:58 AM
28	172073 Section 2	1	11	3860	331	2:21:10 AM
29	171590 FP	1	32	11300	1100	2:23:54 AM
30	171590 Section 1	1	29	10300	1250	2:28:21 AM
31	Std 30, RL = 0%	1	30	10500	1200	2:30:54 AM
32	171590 Section 2	1	3.2	1090	53	2:42:56 AM
33	172237 FP	1	31	10800	966	2:44:44 AM
34	172237 Section 1	1	30	10600	1300	2:46:40 AM
35	172237 Section 2	1	3.0	1050	35	2:49:02 AM

36	171682 FP	1	115	39800	3460	2:57:35 AM
37	171682 Section 1	1	7.5	2610	298	2:59:58 AM
38	171682 Section 2	1	6.0	2080	93	3:02:04 AM
39	171683 FP	1	115	39900	3570	3:07:43 AM
40	171683 Section 1	1	6.8	2350	283	3:10:47 AM
41	171683 Section 2	1	5.8	1990	90	3:12:42 AM
42	Std 30, RL = 0%	1	30	10600	1220	3:14:56 AM
No	Description: 7/25/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std5, RL = -4%	1	4.8	1560	161	10:53:08 AM
2	Std10, RL = 0%	1	10	3370	281	10:54:51 AM
3	Std100, RL = 2%	1	102	33200	3020	10:56:51 AM
4	Std500, RL = 3%	1	517	167000	13300	10:58:47 AM
5	Std1000, RL = 0%	1	992	320000	32400	11:02:30 AM
6	Std1000 SS, RL = -3%	1	964	311000	26800	11:04:41 AM
7	OL 172080 Sec 1 Plug	1	95	30900	1870	11:19:08 AM
8	OL 172080 Sec 1	1	26	8610	913	11:20:50 AM
9	OL 172080 Sec 2 and Plug	1	7.2	2310	145	11:22:50 AM
10	OL 171698 Sec 1 Plug	1	103	33400	2950	11:25:02 AM
11	OL 171698 Sec 1	1	24	7770	940	11:28:02 AM
12	OL 171698 Sec 2 and Plug	1	5.4	1730	113	11:29:58 AM
13	OL 171679 Sec 1 Plug	1	134	43300	2950	11:33:28 AM
14	OL 171679 Sec 1	1	9.9	3180	354	11:35:57 AM
15	OL 171679 Sec 2 and Plug	1	6.7	2160	130	11:37:15 AM
16	OL 173013 Sec 1 Plug	1	133	43000	4110	11:42:15 AM
17	OL 173013 Sec 1	1	10	3300	349	11:44:32 AM
18	OL 173013 Sec 2 and Plug	1	6.8	2190	94	11:46:19 AM
19	OL 171689 Sec 1 Plug	1	48	15600	838	11:49:34 AM
20	OL 171689 Sec 1	1	595	192000		11:51:21 AM
21	OL 171689 Sec 2 and Plug	1	17	5520	325	11:54:09 AM
22	OL 172182 Sec 1 Plug	1	59	19200	832	11:57:52 AM
23	OL 172182 Sec 1	1	604	195000	19900	11:59:28 AM
24	OL 172182 Sec 2 and Plug	1	19	6350	453	12:01:11 PM
25	Std600, RL = 4%	1	626	202000	18200	12:06:21 PM
No	Description: 7/26/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std100, RL = 5%	50	105	1670	167	8:01:14 AM
2	Std100, RL = 4%	100	104	3290	333	8:03:10 AM
3	Std1000, RL = 5%	50	1050	16600	1650	8:05:33 AM
4	Std1000, RL = 3%	100	1030	32600	3500	8:07:39 AM

5	Std 10000, RL = 5%	50	10500	167000	14500	8:12:51 AM
6	Std 10000, RL = -1%	100	9850	311000	34000	8:15:35 AM
7	Pellets 7-24-2013 A	655	1.1	235	13	8:28:56 AM
8	Pellets 7-24-2013 B	1029	1.3	438	20	8:31:27 AM
9	Fine Tailings AM 7-24-2013 A	881	51	14400	867	8:33:57 AM
10	Fine Tailings AM 7-24-2013 B	847	40	10900	572	8:36:30 AM
11	Multiclone AM 7-24-2013 A	406	552	70800	4010	8:48:36 AM
12	Multiclone AM 7-24-2013 B	445	554	77800	4620	8:51:03 AM
13	Green Balls AM 7-24-2013 A	1091	16	5660	309	8:53:37 AM
14	Green Balls AM 7-24-2013 B	531	19	3340	211	8:55:26 AM
15	Conc Thick Overflow W AM 7-24-2013 A	420	353	46800	3500	9:09:26 AM
16	Conc Thick Overflow W AM 7-24-2013 B	652	354	72900	5100	9:12:51 AM
17	Multiclone PM 7-24-2013 A	655	362	74900	4350	9:17:02 AM
18	Multiclone PM 7-24-2013 B	700	360	79600	4630	9:19:36 AM
19	Pellets PM 7-24-2013 A	497	3.1	487	24	10:06:47 AM
20	Pellets PM 7-24-2013 B	855	2.4	655	29	10:08:55 AM
21	Green Balls PM 7-24-2013 A	646	19	3880	209	10:11:22 AM
22	Green Balls PM 7-24-2013 B	1206	25	9680	510	10:13:31 AM
23	Fine Tailings PM 7-24-2013 A	676	42	9120	543	10:26:11 AM
24	Fine Tailings PM 7-24-2013 B	522	43	7170	481	10:28:23 AM
25	Conc Thick Overflow W PM 7-24-2013 A	458	816	118000	7420	10:31:06 AM
26	Conc Thick Overflow W PM 7-24-2013 B	515	824	134000	8750	10:34:29 AM
27	Green Balls AM 7-25-2013 A	637	20	4110	275	10:52:40 AM
28	Green Balls AM 7-25-2013 B	716	16	3640	219	10:54:49 AM
29	Fine Tailings AM 7-25-2013 A	885	41	11600	627	10:57:09 AM
30	Fine Tailings AM 7-25-2013 B	867	41	11300	596	11:00:00 AM
31	Conc Thick Overflow W AM 7-25-2013 A	701	290	64300	4420	11:10:33 AM
32	Conc Thick Overflow W AM 7-25-2013 B	507	285	45700	3010	11:13:15 AM
33	Pellets AM 7-25-2013 A	1163	0.7	273	10	11:15:27 AM
34	Pellets AM 7-25-2013 B	923	0.5	141	8	11:16:58 AM
35	Multiclone AM 7-25-2013 A	689	667	145000	8680	12:19:02 PM
36	Multiclone AM 7-25-2013 B	932	666	196000	10300	12:22:10 PM
37	Pellets PM 7-25-2013 A	1033	0.3	111	7	12:24:13 PM
38	Pellets PM 7-25-2013 B	741	0.9	215	7	12:30:03 PM
39	Green Balls PM 7-25-2013 A	917	16	4810	266	12:40:58 PM
40	Green Balls PM 7-25-2013 B	862	14	4030	211	12:44:24 PM
41	Conc Thick Overflow W PM 7-25-2013 A	622	708	139000	8260	12:47:00 PM
42	Conc Thick Overflow W PM 7-25-2013 B	424	696	93200	5840	12:49:38 PM
43	Multiclone PM 7-25-2013 A	698	177	39000	2750	1:01:05 PM
44	Multiclone PM 7-25-2013 B	705	173	38600	2490	1:03:24 PM

45	Fine Tailings PM 7-25-2013 A	537	54	9270	576	1:05:59 PM
46	Fine Tailings PM 7-25-2013 B	1011	33	10800	566	1:08:28 PM
47	Std1000, RL = 9%	100	1090	34400	3770	1:13:54 PM
	<u> </u>					
No	Description: 7/27/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std100, RL = 1%	50	101	1770	184	9:35:50 PM
2	Std100, RL = -1%	100	99	3480	428	9:37:55 PM
3	Std1000, RL = 0%	50	1000	17500	2060	9:40:56 PM
4	GB-207-1	1497	11	6000	331	10:06:47 PM
5	GB-207-2	1217	13	5650	357	10:08:58 PM
6	GB-208-1	1371	13	6430	368	10:12:10 PM
7	GB-208-2	1683	19	11200	544	10:15:32 PM
8	GB-209-1	1563	18	9900	672	10:28:14 PM
9	GB-209-2	1656	15	8960	512	10:31:12 PM
10	GB-210-1	1442	14	7530	443	10:33:56 PM
11	GB-210-2	1216	13	5900	335	10:37:05 PM
12	GB-212-1	977	13	4770	246	10:53:59 PM
13	GB-212-2	1253	53	23400	2340	10:56:58 PM
14	GB-211-1	1537	14	7710	459	10:59:35 PM
15	GB-211-2	1277	14	6310	387	11:02:47 PM
16	GB-213-1	1786	11	7160	394	11:09:13 PM
17	GB-213-2	791	13	3740	206	11:11:57 PM
18	GB-214-1	1399	11	5580	302	11:14:55 PM
19	GB-214-2	1383	10	5250	291	11:18:38 PM
No	Description: 7/28/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std5, RL = 8%, RL = 8%	1	5.4	1800	156	9:59:54 AM
2	Std50, RL = 10%	1	55	18400	1590	10:01:42 AM
3	Std500, RL = 5%, RL = 5%	1	526	175000	19300	10:03:57 AM
4	Std1000, RL = -1%, RL = -1%	1	986	328000	32300	10:06:34 AM
5	Std50, RL = 2%	1	51	17200	1660	10:12:16 AM
	Std1000 SS, RL = -1%	1	989	329000	30500	10:14:26 AM
1	OL 171676 Sec 1 Plug	1	45	15100	811	10:20:09 AM
2	OL 171676 Sec 1	1	622	207000	16400	10:22:16 AM
3	OL 171676 Sec 2 and Plug	1	17	5790	235	10:24:31 AM
4	OL 172483 Sec 1 Plug	1	53	17900	1040	10:28:03 AM
5	OL 172483 Sec 1	1	613	204000		10:30:10 AM
6	OL 172483 Sec 2 and Plug	1	19	6600	350	10:32:02 AM
7	OL 171588 Sec 1 Plug	1	101	33900	3030	10:35:58 AM
8	OL 171588 Sec 1	1	17	5840	569	10:38:17 AM

2013-0237

70

9	OL 171588 Sec 2 and Plug	1	7.1	2360	135	10:40:56 AM
10	OL 171710 Sec 1 Plug	1	118	39400	3070	10:44:38 AM
11	OL 171710 Sec 1	1	11	3930	411	10:46:57 AM
12	OL 171710 Sec 2 and Plug	1	3.9	1280	76	10:48:59 AM
13	OL 171621 Sec 1 Plug	1	27	9160	441	10:52:39 AM
14	OL 171621 Sec 1	1	48	16200	1580	10:55:30 AM
15	OL 171621 Sec 2 and Plug	1	4.8	1580	103	10:57:12 AM
1 6	OL 171707 Sec 1 Plug	1	24	8180	525	10:59:39 AM
17	OL 171707 Sec 1	1	48	16200	1760	11:01:20 AM
18	OL 171707 Sec 2 and Plug	1	4.3	1430	129	11:02:58 AM
19	Std 650 Chk, RL = 4%	1	676	225000	23300	11:07:46 AM
No	Description: 8/2/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std10, RL = -1%	1	9.8	3390	378	8:45:16 AM
2	Std100, RL = -1%	1	99	34600	3550	8:48:51 AM
3	Std50, RL = -2%	1	49	17000	1980	8:57:10 AM
4	Std250, RL = 0%	1	251	87100	10800	9:01:42 AM
5	Std500, RL = 0%	1	499	173000	19000	9:06:26 AM
6	Std250 SS, RL = -2%	1	245	85100	10800	9:12:38 AM
7	171685 S1	1	10	3800	585	9:21:07 AM
8	171685 P1	1	95	33200	2650	9:24:29 AM
9	171685 S2 P2	1	3.7	1270	54	9:31:19 AM
10	173001 S1	1	12	4380	668	9:37:34 AM
11	173001 P1	1	92	32100	2140	9:40:28 AM
12	173001 S2 P2	1	4.5	1550	85	9:45:03 AM
13	172111 S1	1	30	10500	1560	9:51:41 AM
14	172111 P1	1	21	7390	425	9:54:17 AM
15	172111 S2 P2	1	2.7	947	61	9:59:34 AM
16	Std100, RL = -2%	1	98	34000	3740	10:04:46 AM
17	172235 S1	1	29	10200	1470	10:14:57 AM
18	172235 P1	1	20	7050	442	10:17:32 AM
19	172235 S2 P2	1	2.8	986	74	10:21:49 AM
20	172241 S1	1	450	156000	20100	10:30:25 AM
21	172241 P1	1	35	12200	1250	10:34:40 AM
22	172241 S2 P2	1	14	5190	477	10:39:20 AM
23	172495 S1	1	453	157000	21100	10:44:46 AM
24	172495 P1	1	54	18800	1180	10:48:50 AM
25	172495 S2 P2	1	14	5170	460	10:52:47 AM
26	Std 100	1	96	33500	3510	10:57:56 AM

No	Description: 8/4/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std 10, RL = 0%	1	10	3400	402	1:26:06 PM
2	Std 100, RL = -1%	1	99	33500	3800	1:29:23 PM
3	Std 50, RL = -2%	1	49	16800	1840	1:34:19 PM
4	Std 500, RL = 0%	1	497	168000	17800	1:38:06 PM
5	Std 250, RL = 2%	1	257	87000	10400	1:44:23 PM
6	StdSS 250	1	248	83900	10300	1:49:09 PM
7	K 173016 s1	1	192	65000	8340	1:56:01 PM
8	K 173016 P1	1	13	4600	261	1:58:03 PM
9	K 173016 S2 P2	1	0.2	67	8	2:01:31 PM
10	K 172496 S1	1	199	67300	8930	2:32:37 PM
11	K 172496 P1	1	8.9	3000	186	2:35:57 PM
12	K 172496 S2 P2	1	0.3	92	7	2:39:35 PM
13	K 171717 S1	1	180	60900	7770	2:46:01 PM
14	K 171717 P1	1	7.6	2560	157	2:51:21 PM
15	K 171717 S2 P2	1	0.3	102	9	2:54:58 PM
16	K 172231 S1	1	181	61400	8680	2:59:22 PM
17	Std100	1	101	34400	3470	3:04:58 PM
18	K 172231 P1	1	9.9	3350	191	3:10:54 PM
19	K172231 S2 P2	1	0.3	89	9	3:14:39 PM
20	172217 S1	1	11	3820	504	3:18:55 PM
21	172217 P1	1	107	36400	2360	3:22:38 PM
22	172217 S2 P2	1	4.8	1630	99	3:27:25 PM
23	171693 S1	1	22	7590	989	3:33:36 PM
24	171693 P1	1	69	23500	1400	3:36:00 PM
25	171693 S2 P2	1	5.4	1810	86	3:39:49 PM
26	171684 S1	1	20	6930	1000	3:46:22 PM
27	171684 P1	1	71	24100	1730	3:48:51 PM
28	Std100	1	102	34500	3690	3:53:15 PM
29	171684 S2 P2	1	5.9	2000	85	4:01:28 PM
30	171686 S1	1	586	198000	27300	4:07:24 PM
31	171686 P1	1	68	23300	1300	4:13:07 PM
32	171686 S2 P2	1	4.9	1670	134	4:17:44 PM
33	173009 S1	1	589	199000	23700	4:22:20 PM
34	173009 P1	1	85	29000	1450	4:25:42 PM
35	173009 S2 P2	1	4.1	1380	98	4:29:50 PM
36	Std1000, RL = -8%	1	911	308000	36900	4:34:02 PM
No	Description: 8/7/13	M, mg	C, ng/g	Area	Maximum	Time
1	Std100, RL = -4%	50	96	1600	180	5:44:13 PM

2	Std 100, RL = -4%	100	96	3200	369	5:46:46 PM
3	Std 1000	50	1000	16800	1800	5:49:31 PM
4	Std 1000, RL = 0%	50	1000	16600	1560	5:54:35 PM
	GB 8-2	970	11	3620	197	6:22:31 PM
1	GB 8-2	1338	13	5910	257	6:25:33 PM
2	GB 8-5	727	13	3350	166	6:27:56 PM
3	GB 8-5	678	11	2620	123	6:30:18 PM
4	GB 8-6	1102	35	12800	796	6:48:19 PM
5	GB 8-6	1096	9.1	3300	134	6:51:10 PM
6	GB 8-7	863	9.2	2630	102	6:53:35 PM
7	GB 8-7	1104	9.7	3530	127	6:56:34 PM
8	GB-SS 317	562	13	2570	110	7:04:38 PM
9	GB-SS 317	761	12	3050	141	7:07:08 PM
10	Std100, RL = -3%	100	97	3230	214	7:10:00 PM
11	GB-SS 322	793	13	3640	161	7:28:01 PM
12	GB-SS 322	439	13	1910	91	7:30:28 PM
13	GB-SS 320	1120	0.5	203	8	7:32:24 PM
14	GB-SS 320	1702	0.4	211	8	7:34:32 PM
15	P-SS 325	1179	0.9	357	10	7:46:00 PM
16	P-SS 325	599	1.0	193	9	7:47:59 PM
17	FT-SS 323	888	36	10800	405	7:50:56 PM
18	FT-SS 323	388	38	4960	193	7:53:25 PM
19	FT-SS 318	355	33	3920	159	8:01:22 PM
20	FT-SS 318	840	40	11200	429	8:04:35 PM
21	Std100, RL = -5%	100	95	3160	261	8:07:06 PM
NI -	December 10 10 142	N.4	C/-	A	D. 4	T :
	Description: 8/8/13	ivi, mg	C, ng/g		Maximum	
2	Std10, RL = 0%	_	10.0	3310	344	2:00:24 PM
3	Std100, RL = 0%	1	100 50	33500	3480	2:03:39 PM
4	Std50, RL = 0%	1		16800	1620	2:07:04 PM
5	Std500, RL = 0%	1	496	165000	_	2:10:33 PM
6	Std250, RL = 2%	_	255	_	8940	2:14:56 PM
7	Std250 SS, RL = 0%	1	250	83300	9160	2:18:34 PM
8	184732 s1	1	6.7	2210	322	2:25:22 PM
	184732 p1	1	86	28900	2190	2:28:42 PM
9	184732 s2 p2	1	3.7	1230	70 204	2:33:45 PM
10	184920 s1	1	8.0	2670	384	2:38:44 PM
11	184920 p1	1	85	28300	2570	2:42:17 PM
12	184920 s2 p2	1	4.2	1410	59	2:46:10 PM
13	184627 s1	1	35	11800	1500	2:50:06 PM

_		_	_		•	
14	184627 p1	1	28	9450	693	2:52:44 PM
15	184627 s2 p2	1	3.9	1280	84	2:56:07 PM
16	184853 s1	1	35	11700	1330	3:00:19 PM
17	Std100	1	102	34200	3360	3:36:12 PM
18	184853 p1	1	27	9150	610	3:46:51 PM
19	184853 s2 p2	1	4.4	1460	61	3:50:24 PM
20	171585 s1	1	44	14800	1910	4:09:31 PM
21	171585 p1	1	25	8590	939	4:12:01 PM
22	171585 s2 p2	1	3.8	1270	82	4:16:25 PM
23	172500 s1	1	36	12000	1860	4:19:35 PM
24	172500 p1	1	33	11200	1040	4:22:31 PM
25	172500 s2 p2	1	3.0	1010	43	4:25:20 PM
26	184614 s1	1	29	9820	1310	4:29:36 PM
27	184614 p1	1	25	8360	638	4:31:10 PM
28	Std100	1	104	34700	3130	4:34:42 PM
29	184614 s2 p2	1	2.6	874	42	4:40:19 PM
30	184821 s1	1	28	9550	1340	4:43:32 PM
31	184821 p1	1	23	7940	665	4:45:37 PM
32	184821 s2 p2	1	2.7	904	39	4:48:31 PM
33	171678 s1	1	9.3	3090	424	4:53:49 PM
34	171678 p2	1	102	34100	3160	4:56:22 PM
35	171678 s2 p2	1	4.2	1410	63	5:00:37 PM
36	172218 s1	1	7.7	2550	286	5:03:47 PM
37	172218 p1	1	98	32600	3300	5:05:42 PM
38	172218 s2 p2	1	4.5	1490	60	5:08:29 PM
39	Std100	1	101	33800	3950	5:14:47 PM
40	184646 s1	1	385	128000	17100	5:21:37 PM
41	184646 p1	1	59	19800	1990	5:25:26 PM
42	184646 s2 p2	1	13	4510	296	5:30:08 PM
43	184871 s1	1	409	136000	17100	5:34:58 PM
44	184871 p1	1	73	24300	1990	5:40:02 PM
45	184871 s2 p2	1	11	3890	290	5:43:50 PM
46	Std100	1	102	34000	3130	5:47:32 PM
1	Std100, RL = -3%	100	97	3340	342	5:57:10 PM
2	Std100, RL = -2%	50	98	1680	175	5:59:36 PM
3	Std1000, RL = 0%	50	1000	17100	2010	6:01:55 PM
4	8-61	1140	10	4030	205	6:09:37 PM
5	8-62	518	10	1800	97	6:13:59 PM
6	ss319 1	574	592	116000	8040	6:17:53 PM
7	ss319 2	336	583	66900	4740	6:21:08 PM
_		_	_	_	_	

8	ss325 1	307	372	39000	2800	6:25:28 PM
9	ss325 2	394	371	50000	3420	6:29:03 PM
10	ss327 1	460	726	114000	8490	6:32:57 PM
11	ss327 2	277	741	70100	5900	6:37:17 PM
12	ss326 1	301	452	46500	3820	6:41:49 PM
13	ss326 2	511	454	79300	5000	6:47:16 PM
14	ss321 1	444	131	19900	1380	6:49:46 PM
15	ss321 2	393	129	17400	1140	6:53:10 PM
16	bad 1000	100	943	32200	3110	6:56:59 PM
17	Std1000	100	978	33400	3570	6:59:41 PM

9.0 APPENDIX D - MM30B DATA

Table 8 shows the average Hg-CEMS data at the stack and the results of the comparison to corresponding MM30B data.

This comparison was done with one significant exception to the QA/QC procedure described in Section 4.3.1. The RA/AMD procedure assumes that there is no significant particulate mercury (HgP) in the stack gas. However, ADA discovered that with ACI operating at Minorca, HgP was a significant portion of the total mercury. This was determined by analyzing the first glass wool section of the sorbent trap, which is assumed to contain all of the particulate, separately from the other two sorbent sections. This allowed ADA to calculate a value for MM30B gas phase mercury (HgG=HgT-HgP) which was then used to perform the RA/AMD calculations. It is important to note that Hg-CEMS can only measure HgG. As Figure 27 shows, the MM30B HgG compared well with Hg-CEMS but the MM30B HgT did not.

Also, the gas moisture at the Hood Exhaust was 6.1% and at the Windbox Exhaust was 8.5%. The moisture at stacks A, B, C, and D was 11.5%, 12.2%, 13.6%, and 14.9% respectively based on stack measurements by Barr during testing.

Table 8. MM30B Data and RD, RA, AMD Calculations

Run	Sampling location	Trap ID				ow Rate	DGMi L	DGMf L	Volume L actual	Initial Leak Test Pass/Fail	Final Leak Test Pass/Fail	DGM L (STP)	M Plug 1 ONLY ng	M Sect 1 ONLY ng	M Plug 2 and Sect 2 ng	H₂O %	STM (dry) µg/dscm	STM μg/wscm	Total STM Avg μg/wscm	Gas Phase STM Hg µg/wscm	Gas Phase STM Avg Hg	Particulate STM Hg µg/wscm	Particulate STM Hg Avg	RD %	Pass/Fail	CEM Avg μg/wscm	RA %	AMD μg/wscm	Pass/Fail
1	Stack B, STM 1064	173279 173291	6/21/13	11:52 1	2:52	600	14538.2 12597.8	14574.4 12633.0	36.2 35.2	PASS PASS	PASS PASS	32.697 31.886		102 99	5.7 4.1	12.2	3.29 3.23	2.89 2.84	3.32		2.87		0.45	0.93	PASS				
2	Stack C, STM 1064	172422 172107	6/21/13	10:15 1:	1:15	600	12561.9 14501.1	12597.5 14538.0	35.6 36.9	PASS PASS	PASS PASS	32.434 33.29		124 140	6.3 6.9	13.6 13.6	4.02 4.41	3.47 3.81	~ 3.64					4.69	PASS	5.39	48.00	1.75	FAIL
3	Duct A, STM 1062	172108 168921	6/21/13	10:22 1:	1:22	600	8219.2 110259.7	8252.9 110293.0	33.7	PASS PASS	PASS	31.212		78 77	0.6	6.1	2.52 2.60	2.36	2.40					1.64	PASS				
4	Duct C, STM 1062	173268	6/22/13	13:25 14	4:25	600	110352.0 8326.7	110387.1 8365.0	35.1 38.3	PASS	PASS	31.311 35.155	4.3 6.5	478 451	3.5	8.5 8.5	15.52 13.08	14.20 11.97	13.08	14.07 11.80	12.93	0.13 0.17	0.15	8.52	PASS				
5	Duct A, STM 1062	172458 172474	6/22/13	11:22 12	2:22	600	110314.3 8286.2	110348.0 8323.1	33.7 36.9	PASS	PASS	29.893	6.1	116 132	1.2	6.1	4.12 4.10	3.87	3.86	3.68	3.69	0.19	0.17	0.33	PASS				
6	Stack D STM 1064	172358	6/22/13		_	600	14581.2 12641.2	14616.0	34.8 34.2	PASS	PASS PASS PASS	32.823	5.1 120	222	10.0	6.1 14.9	10.72 11.89	9.13 10.11	~ 9.62	3.71 6.02	5.90	3.11	3.72	5.14	PASS	8.41	42.65	2.51	FAIL
7	Stack D, STM	172276	6/22/13		-	600	14616.4	12675.4 14650.6	34.2	PASS	PASS	32.561 31.271	166 217	207 243	14.0 10.0	14.9 14.9	15.03	12.79	12.60	5.78 6.89	8.63	4.34 5.91	3.97	1.52	PASS	8.73	1.21	0.10	PASS
8	1064 Stack A, STM	173282 173272	6/22/13		4:42	600	12675.6 14690.0	12709.4 14726.0	33.8 36.0	PASS PASS	PASS PASS	30.865 33.12	74 22	361 120	15.0 7.3	14.9 11.5	14.58 4.51	12.41 3.99	4.07	10.37 3.40	3.51	2.04 0.59	0.57	2.06	PASS	2.97	15.30	0.54	PASS
9	1064 Inlet MM30B	173281 173273	6/22/13		-	600	12749.0 14768.4	12783.8 14804.9	34.8 36.5	PASS PASS	PASS PASS	32.442 32.708	20 38	125 633	7.4 7.9	11.5 8.5	4.70 20.76	4.16 18.99	19.52	3.61 17.93	18.38	0.55 1.06	1.14	2.70	PASS	2.57	15.50	0.5-1	1703
10	Port, STM 1064 Duct B, STM 1062	173296 173262	6/22/13			600	12825.0 110422.5	12860.1 110454.8	35.1 32.3	PASS PASS	PASS PASS	31.615 31.669	42 0.7	644 167.0	6.6 0.3	8.5 8.5	21.91 5.30	20.05 4.85	~ 4.90	18.83 4.83	4.88	1.22 0.02	0.02	0.99	PASS				
	Duct D, STM 1062	173265 172205					8403.8 110388.1	8438.6 110422.3	34.8 34.2	PASS PASS	PASS PASS	35.538 29.986	0.9 80	191.0 686.0	0.4 3.4	8.5 8.5	5.41 25.66	4.95 23.48		4.93 21.04		0.02 2.44							
11	Stack A, STM	172341 173255	6/22/13		-	600	8366.3 14809.0	8403.3 14846.2	37.0 37.2	PASS PASS	PASS PASS	33.749 36.236	79 5.7	781.0 82.0	5.4 3.5	8.5 11.5	25.64 2.52	23.46 2.23	23.47	21.32 2.09	21.18	2.14 0.14	2.29	0.03	PASS				
12	1064 Stack B, STM	173288 173267	6/23/13			600	12864.5 110512.6	12900.6 110549.2	36.1 36.6	PASS PASS	PASS PASS	33.464 33.256	2.6 15	98.0 115.0	4.4 5.2	11.5 12.2	3.14 4.07	2.78 3.57	2.50	2.71 3.17	2.40	0.07	0.10	10.98	FAIL	2.65	10.54	0.25	PASS
13	1062 Stack C, STM	173274 173259	6/23/13	13:13 14	4:13	600	8482.3 110473.4	8518.2 110508.8	35.9 35.4	PASS PASS	PASS	33.558	17 36	116.0 205	5.8	12.2	4.14	3.63 6.73	3.60	3.19 5.75	3.18	0.44	0.42	0.86	PASS	3.58	12.58	0.40	PASS
14	1062 Inlet. 30B Port,	173261 173257	6/23/13	11:40 12	2:40	600	8444.5 110553.2	8479.0 110588.5	34.5	PASS	PASS	32.374 31.309	30	215 460	7.9	13.6	7.81	6.75	~ 6.74	5.95 13.74	5.85	0.80	0.89	0.16	PASS				
15	STM 1062	173275	7/10/13	16:40 17	7:40	600	8521.8	8558.9	37.1	PASS	PASS	34.034	35	494	13.0	8.5	15.93	14.57	14.64	13.63	13.68	0.94	0.95	0.44	PASS				
16	Stack A, STM 1064	173271 173300	7/11/13	15:21 16	6:21	600	14850.5 12905.0	14887.6 12940.9	37.1 35.9	PASS PASS	PASS PASS	33.596 32.718	20	82 79	4.5 4.6	11.5 11.5	3.17 3.29	2.81 2.91	2.86	2.28	2.27	0.53 0.65	0.59	1.84	PASS	3.03	33.48	0.76	PASS
17	Stack D, STM 1064	173276 173284	7/11/13	18:06 19	9:06	600	14887.9 12941.2	14925.4 12977.1	37.5 35.9	PASS PASS	PASS PASS	33.513 32.255	158 150	7.5 8.6	6.1 8.0	14.9 14.9	5.12 5.17	4.36 4.40	4.38	0.35 0.44	0.39	4.01 3.96	3.98	0.43	PASS	0.55	40.43	0.16	PASS
18	Stack D, STM 1064	165482 165484	7/13/13	9:48 10	0:48	600	14927.6 12979.4	14963.8 13014.5	36.2 35.1	PASS PASS	PASS PASS	33.06 32.055	131 133	9.1 8.6	8.4 7.4	14.9 14.9	4.49 4.65	3.82 3.96	~ 3.89	0.45 0.42	0.44	3.37 3.53	3.45	1.71	PASS	0.70	59.96	0.26	PASS
19	Stack B, STM 1064	165385 165726	7/13/13	11:16	2:16	600	14964.5 13015.0	15002.0 13051.4	37.5 36.4	PASS PASS	PASS PASS	33.92 32.675	40 43	38 34	4.7 4.4	12.2 12.2	2.44 2.49	2.14 2.19	2.16	1.11	1.07	1.04 1.16	1.10	1.08	PASS	1.41	31.95	0.34	PASS
20	Inlet. 30B Port, STM 1062	165245 165389	7/14/13	09:57	0:57	600	110589.0 8562.8	110625.0 8599.0	36.0 36.2	PASS PASS	PASS PASS	31.736 34.204	42 45	613 688	12.0 17.0	8.5 8.5	21.02 21.93	19.23 20.06	19.65	18.02 18.86	18.44	1.21 1.20	1.21	2.12	PASS				
21	Stack D, STM 1064	173258 173292	7/16/13	9:27 10	0:27	600	15005.0 13054.9	15041.2 13090.5	36.2 35.6	PASS PASS	PASS PASS	33.629 33.065	161 166	7.9 7.5	8.0 8.3	14.9 14.9	5.26 5.50	4.48 4.68	4.58	0.40	0.40	4.07 4.27	4.17	2.21	PASS	0.74	82.94	0.34	PASS
22	Stack C, STM 1062	171696 171706	7/16/13	10:55 1:	1:55	600	15041.8 13090.8	15078.8 13126.8	37.0 36.0	PASS	PASS PASS	33.816 33.085	112 109	19 18	7.6 7.3	13.6 13.6	4.10 4.06	3.54 3.51	~ 3.52	0.68	0.67	2.86 2.85	2.85	0.48	PASS	1.05	56.68	0.38	PASS
23	Inlet. 30B Port, STM 1062	171680 173264	7/17/13	07:39 08	8:39	600	110625.8 8602.4	110661.8 8640.0	36.0 37.6	PASS PASS	PASS PASS	31.701 34.624	25	648.0 663.0	17.0	8.5	21.77	19.92 19.27	19.59	19.19 18.13	18.66	0.72	0.93	1.66	PASS				
24	Stack A, STM 1064	171708 172004	7/18/13	14:50 15	5:50	600	15082.7 13130.7	15119.0 13166.1	36.3 35.4	PASS	PASS	32.471 31.597	24	45.0 43.0	3.6	11.5 11.5	2.24	1.98	1.99	1.32	1.32	0.65	0.66	0.32	PASS	1.80	36.17	0.48	PASS

2013-0237

	Sampling			Start		Flow Rate	DGMi	DGMf	Volume	Initial Leak Test	Final Leak Test	DGM	M Plug 1 ONLY	M Sect 1 ONLY	M Plug 2 and Sect 2	H₂O		STM	Total STM Avg	Gas Phase STM Hg	Gas Phase STM Avg	Particulate STM Hg	Particulate STM Hg	RD	2 /5 11	CEM Avg	RA	AMD	. (5.
Run	location Stack D, STM	172187		Time	Time	cc/min	15123.0	15160.1	L actual 37.1	Pass/Fail PASS	Pass/Fail PASS	1 (STP) 32.66	ng 121	ng 5.7	ng 4.8	14.9	μg/dscm 4.03	μg/wscm 3.43		μg/wscm 0.27	Hg	μg/wscm 3.15	Avg	%	Pass/Fail	μg/wscm	%	μg/wscm	
25	1064	172200	//18/13	16:20	17:20	600	13169.7 110662.4	13205.1	35.4 35.2	PASS PASS	PASS PASS	31.271 31.657	112 32	6.8 525.0	5.9 13.0	14.9	3.99 18.01	3.39	3.41	0.35 15.55	0.31	3.05 0.92	3.10	0.48	PASS	0.66	113.18	0.35	PASS
26	Inlet. 30B Port, STM 1062	171596 172073	7/21/13	10:38	11:38	600	8642.9	110697.6 8677.7	34.8	PASS	PASS	32.417	33	540.0	11.0	8.5 8.5	18.01	16.48 16.48	~ 16.48	15.55	15.55	0.92	0.93	0.03	PASS				
27	Stack B, STM 1064	171590 172237	7/21/13	11:09	12:09	600	15164.1	15198.5	34.4 33.6	PASS	PASS	32.036 31.456	32 31	29.0	3.2	12.2	2.00	1.76 1.79	1.77	0.88	0.90	0.88	0.87	0.76	PASS	1.05	16.43	0.15	PASS
28	Stack D, STM	171682	7/21/13	12:55	13:55	600	15202.6	15238.4	35.8	PASS	PASS	32.137	115	7.5	6.0	14.9	4.00	3.40	3.43	0.36	0.35	3.05	3.08	0.83	PASS	0.71	103.12	0.36	PASS
	1064 Inlet, 30B Port,	171683 171689	//21/13	12.55	13.33	000	13245.7 110702.2	13280.6 110737.7	34.9 35.5	PASS PASS	PASS PASS	31.388	115 48	6.8 595	5.8 17.0	14.9 8.5	4.07 20.77	3.46 19.00	3.43	0.34 17.62	0.55	3.12 1.38	3.08	0.83	FAGG	0.71	103.12	0.30	FASS
29	STM 1062	172182	7/24/13	12:08	13:08	600	8682.3	8717.9	35.6	PASS	PASS	32.995	59	604	19.0	8.5	20.67	18.91	18.96	17.02	17.45	1.64	1.51	0.24	PASS				
30	Stack D, STM 1064	171679 173013	7/24/13	12:37	13:37	600	15241.5 13284.1	15277.9 13319.4	36.4 35.3	PASS PASS	PASS PASS	32.689 31.904	134 133	9.9 10	6.7	14.9	4.61 4.70	3.92 4.00	3.96	0.43	0.44	3.49 3.55	3.52	0.95	PASS	0.95	115.84	0.51	PASS
31	Stack C, STM	171698	7/24/12	14.00	15:08	600	15281.5	15319.4	37.0	PASS	PASS	33.394	103	24	5.4	13.6	3.96	3.43	3.42	0.45	0.82	2.66	2.60	0.19	PASS	1.72	109.19	0.90	PASS
31	1062 Inlet, 30B Port,	172080 171676	7/24/13	14:08	15:08	600	13323.0 110738.0	13358.7 110774.8	35.7 36.8	PASS PASS	PASS PASS	32.456 34.172	95 45	26 622	7.2 17.0	13.6 8.5	3.95 20.02	3.41 18.31	3.42	0.88 17.11	0.82	2.53 1.20	2.60	0.19	PASS	1./2	109.19	0.90	PASS
32	STM 1062	172483	7/27/13	9:10	10:10	600	8721.1	8757.0	35.9	PASS	PASS	34.092	53	613	19.0	8.5	20.02	18.38	18.35	16.96	17.04	1.42	1.31	0.19	PASS				
33	Stack D, STM	171588 171710	7/27/13	09:37	10:37	600	15324.5 13364.6	15358.6 13397.4	34.1 32.8	PASS PASS	PASS PASS	32.683 31.757	101 118	17 11	7.1	14.9	3.83 4.18	3.26 3.56	3.41	0.63	0.51	2.63 3.16	2.90	4.46	PASS	0.90	75.30	0.39	PASS
34	Stack A, STM	171710	7/27/12	11.02	12:03	600	13304.0	13397.4	32.0	PASS	PASS	34.033	27	48	4.8	11.5	2.34	2.08	2.04	1.37	1.38	0.70	0.67	1.52	PASS	1.82	32.23	0.44	PASS
34	1064	171707	//2//13	11:03	12.03	600	15404.2	15442.2	38.0	PASS PASS	PASS PASS	33.546	24 21	48 30	4.3 2.7	11.5 12.2	2.27 1.57	2.01	2.04	1.38 0.84	1.30	0.63	0.67	1.52	PASS	1.02	32.23	0.44	PASS
35	Stack B, STM 1064	172111 172235	7/30/13	14:20	15:20	600	13442.2	15442.2 13479.2	37.0	PASS	PASS	34.239 33.634	20	29	2.7	12.2	1.54	1.38 1.35	1.36	0.84	0.83	0.54	0.53	0.91	PASS	1.01	21.06	0.18	PASS
36	Inlet. 30B Port,	172241 172495	7/30/13	14:43	15:43	600	110776.8 8760.6	110811.8 8795.6	35.0	PASS	PASS	31.321	35	450	14.0 14.0	8.5	15.93 16.04	14.58 14.68	14.63	13.56	13.36	1.02	1.27	0.35	PASS				
27	STM 1062 Stack D, STM	171685	7/24/42	42.44	43.44	500	15445.2	15480.6	35.0 35.4	PASS PASS	PASS PASS	32.474 32.64	54 95	453 10	3.7	8.5 14.9	3.33	2.83	2.00	13.16 0.36	0.40	1.52 2.48	2.46	4.00	DACC	0.74	70.40	0.24	DACC
37	1064	173001	//31/13	12:11	13:11	600	13482.1	13516.7	34.6	PASS	PASS	31.934	92	12	4.5	14.9	3.40	2.89	2.86	0.44	0.40	2.45	2.46	1.00	PASS	0.71	78.19	0.31	PASS
38	Stack D, STM 1064	172217	8/2/13	17:27	18:27	600	15485.3	15523.8	38.5	PASS	PASS	34.288	107	11	4.8	14.9	3.58	3.05	3.05	0.39	0.39	2.66	2.66			0.71	81.06	0.32	PASS
39	Stack C, STM	171684	8/2/13	18:42	19:42	600	15526.4	15565.6	39.2	PASS	PASS	34.539	71	20	5.9	13.6	2.81	2.42	2.45	0.65	0.68	1.78	1.77	1.05	PASS	1.42	110.14	0.74	PASS
	Inlet. 30B Port,	171693 171686					13528.8 110966.3	13560.5 111004.9	31.7	PASS PASS	PASS PASS	33.648 34.755	69 68	22 586	5.4 4.9	13.6 8.5	2.86 18.96	2.48 17.35		0.70 15.56		1.77 1.79							
40	STM 1062	173009	8/4/13	14:10	15:10	600	8945.5	8982.9	37.4	PASS	PASS	35.1	85	589	4.1	8.5	19.32	17.68	17.51	15.46	15.51	2.22	2.00	0.94	PASS				
41	Stack A, STM 1064	171585 172500	8/5/13	12:57	13:57	600	15568.7 13569.0	15603.2 13602.8	34.5 33.8	PASS	PASS PASS	32.173 31.45	25 33	44 36	3.8	11.5	2.26	2.00	2.01	1.31	1.21	0.69	0.81	0.58	PASS				
42	Stack D, STM	171678	8/5/13	14:39	15:39	600	15607.0	15642.8	35.8	PASS	PASS	32.681	102	9.3	4.2	14.9	3.53	3.01	2.98	0.35	0.34	2.66	2.64	1.05	PASS	0.80	136.13	0.46	PASS
	1064 Stack B, STM	172218 184614	-,-,	- 1.00			13606.4 15646.2	13641.2 15681.2	34.8 35.0	PASS PASS	PASS PASS	31.842 32.583	98 25	7.7 29	4.5 2.6	14.9	3.46 1.74	2.95 1.53		0.33		2.62 0.67							
43	1064	184821	8/7/13	15:56	16:56	600	13644.8	13679.1	34.3	PASS	PASS	32.069	23	28	2.7	12.2	1.67	1.47	1.50	0.84	0.85	0.63	0.65	1.83	PASS	0.91	7.56	0.06	PASS
44	Inlet. 30B Port, STM 1062	184646 184871	8/7/13	16:30	17:30	600	111008.8 8988.6	111044.9 9025.6	36.1 37.0	PASS PASS	PASS PASS	31.815 33.957	59 73	385 409	13.0 11.0	8.5 8.5	14.36 14.52	13.14 13.28	13.21	11.45 11.32	11.38	1.70 1.97	1.83	0.53	PASS				
45	Stack B, STM	184627	0/0/12	0.22	00.22	600	15685.1	15719.5	34.4	PASS	PASS	33.957	28	35	3.9	12.2	2.06	1.81	1.02	1.05	1.07	0.76	0.75	0.50	DACC	0.65	20.27	0.42	PASS
45	1064	184853	8/8/13	0:32	09:32	000	13682.2 15723.1	13716.2	34.0 34.9	PASS	PASS	31.836	27	35 6.7	4.4 3.7	12.2	2.09	1.83	1.82	1.09	1.07	0.74	0.75	0.50	PASS	0.65	39.27	0.42	PASS
46	Stack D, STM 1064	184732 184920	8/8/13	10:04	11:04	600	13719.7	15758.0 13753.4	34.9	PASS PASS	PASS PASS	32.167 31.361	86 85	8	4.2	14.9 14.9	3.00 3.10	2.55 2.64	2.59	0.28	0.30	2.28	2.29	1.68	PASS	0.68	124.35	0.38	PASS

2013-0237

Attachment B

MPCA Phase II ACI Testing Review

Phase II ACI Testing Review (DRAFT)

Hongming Jiang and Marc Severin
Minnesota Pollution Control Agency
November 21, 2014

Summary

The Minnesota Pollution Control Agency (MPCA) has reviewed the five test reports from the taconite industry on its evaluation of the effectiveness of using activated carbon injection (ACI) technology to reduce mercury emissions from taconite indurating furnaces. In summary, the MPCA cannot determine the exact reduction in total mercury emissions capable by ACI due to the measurement methodologies used, lack of access to underlying data, and certain operating conditions during testing.

Total mercury (HgT) emissions are a sum of gas phase mercury (HgG) and particulate-bound mercury (HgP). Quantification of the total mercury capture efficiency relies on accurate measurement of both HgG and HgP. For HgG for four of the five indurating furnaces, the selected sorbent, at injection rates specifically selected for each indurating operation, has achieved 80% HgG reduction. The ACI tests confirmed qualitatively that improved downstream particulate control is needed for a comparable level of HgP reduction.

Why did the MPCA review the Phase II test reports?

The MPCA developed a state-wide mercury Total Maximum Daily Load (TMDL) to address mercury concentrations in Minnesota's lakes and streams, which was approved by the U.S. Environmental Protection Agency (EPA) in March 2007. The TMDL addresses impaired waters by evaluating the sources of mercury pollution, pollutant reduction necessary to meet water quality standards, and the allowable levels of future pollution. In Minnesota, mercury is primarily introduced to surface waters through atmospheric deposition.

In 2009, the Minnesota Taconite Mercury Control Advisory Committee was formed, with technical experts from industry, state, and academia, to help the taconite industry achieve a 75% reduction in industry-wide stack gas mercury emissions by 2025. Research conducted by this group from 2010 to 2012 focused on testing activated and brominated carbon sorbents to improve mercury capture in existing indurating furnaces. The project, also known as Phase I of the taconite mercury emission reduction research, was funded through various federal, state, and industry sources. The Phase I research reports provided valuable information to the reader, along with test methods used – for example, the Ontario Hydro method (OHM) and continuous mercury monitoring system (Hg-CEMS) – and how raw data were processed, analyzed, and reported. As a result of this research, Activated Carbon Injection was selected by the industry as potentially viable and worthy of additional investigation termed Phase II testing. ACI is well established in other industries including power generation but, because the exhaust gas of a boiler differs from that of an indurating furnace, it needs to be further validated with more furnaces for mercury capture in the taconite industry.

_

¹ "Minnesota Taconite Mercury Control Advisory Committee: Summary of <u>Phase One Research Results</u> (2010-2012)," a final report submitted to the EPA (Grant No. GL00E00655-0) by M.E. Berndt, Minnesota DNR, St. Paul, MN 55155, November 29, 2012.

Phase II testing included screening tests of several activated carbon products at five furnaces (U.S. Steel Minntac's Line 7, Hibbing Taconite's Line 3, ArcelorMittal Minorca's furnace, U.S. Steel Keetac's furnace, and United Taconite's Line 2) and 15-30 days of the most promising product (Albemarle's brominated powdered activated carbon). Because of the importance of the Phase II test results to understanding the potential design and operation of mercury reduction technologies, the MPCA reviewed the five Phase II ACI test reports for the five indurating furnaces. While the MPCA review was of the final Phase II ACI test reports, which were prepared by ADA-Environmental Solutions (ADA) in portable document format (pdf),² the MPCA also used the Phase I reports as a complementary information source. In addition, Minnesota Department of Natural Resources (DNR) Division of Lands and Minerals provided comments included in this document. See the attached DNR letter.

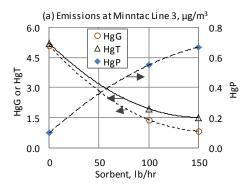
What is known about mercury captured with the ACI deployment from Phase II ACI testing?

Total mercury (HgT) emissions are a sum of emissions of gas phase mercury (HgG)³ and particulate-bound mercury (HgP). Greater than 80% of HgG was captured with ACI deployed upstream of the furnace scrubber for the first four furnaces. See Table 1. The tests confirm *qualitatively* that ACI, as a mercury capture technology, needs to have improved particulate control downstream to achieve 75 to 80% control of HgT.

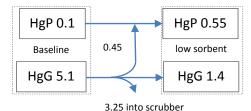
In a Phase I report by Benson, et al.⁴, a quantitative account was presented of HgT, HgG, and HgP at baseline condition (no use of sorbent, ESORB-HG-11) and at two sorbent injection rates. At the high sorbent injection rate, 71.2% capture of HgT and 83.7% capture of HgG were achieved. See Figure 1.

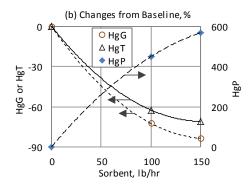
		•	•		•
Facility*	Minntac Line 7	Hibtac Line 3	ArcelorMittal	Keetac	United Line 2
ACI, lb/million ft ³	9	3	3	7	5-8
ADA: % HgG reduction	82	81	76	82	48
MPCA notes			Should be ⁵ :81		See text later

Table 1. Phase II ACI test results: Gas phase mercury reduction determined with Hg-CEMS


^{*} The ADA Phase II ACI test reports can be made available. For staff at the MPCA, follow the hyperlink of M, H, A, K, or U for the selected facility's test report.

² U.S. Steel did answer over the telephone some scrubber sampling questions raised by M.E. Berndt of the DNR.


³ Gas phase mercury (HgG) has two parts, oxidized mercury (Hg²⁺) and elemental mercury (Hg⁰ or Hg0). The reader will encounter HgG most often in this review document and Hg0 in Figures 2 and 3 only.


⁴ "Evaluation of Scrubber Additives and Carbon Injection to Increase Mercury Capture," by S.A. Benson, J. Nasah, C. Thumbi, S. Patwardhan, L. Yarbrough, H. Feilen, S.F. Korom, and S. Srinivasachar. <u>Phase I Project 1</u> Final Report, Aug. 17, 2012.

 $^{^{5}}$ At ArcelorMittal, 19.64 μg/m 3 was found for baseline with all 4 stacks' data combined; for ACI, it was 3.77 μg/m 3 ; thus, (19.64 – 3.77) × 100% / 3.77 = 81%. This would be similar to how ADA got 81% for Hibtac. The ADA value of 76% above is the average of 51% reduction for Stack A, 69% for Stack B, 88% for Stack C, and 95% for Stack D.

(c) 3-way split of HgG (μg/m³) at low sorbent injection rate: Baseline vs. 100 lb/hr of sorbent

(d) 3-way split of HgG (μ g/m³) at high sorbent injection rate: Baseline vs. 150 lb/hr of sorbent

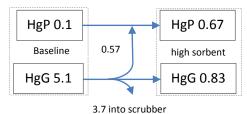


Figure 1. Phase I ACI test results at U.S. Steel Minntac's Line 3:⁴ at baseline, HgT = $5.2 \mu g/m^3$; at low sorbent, HgT = $1.95 \mu g/m^3$; at high sorbent, HgT = $1.5 \mu g/m^3$. At each sorbent injection rate, most HgG was capture in scrubber blowdown, some HgG was emitted as HgG, and the least of HgG was adsorbed to the sorbent powder then emitted as HgP. From (c) and (d), HgP is 1.9% of HgT for baseline (resulted from $0.1 \times 100\%/5.2$), but 28.2% at low sorbent injection rate and 44.7% at high sorbent injection rate.

Why is the particulate-bound mercury information for Phase II ACI considered merely qualitative?

The five Phase II ACI tests show the increase presence of HgP in the stack gas when ACI was deployed to treat the gas upstream of the existing wet scrubber. Method 30B,⁶ an EPA approved method for determining gas phase mercury, was modified by ADA in an attempt to determine particulate mercury based on a fraction of mercury captured in the sorbent trap.

Approved methods for determining particulate mercury such as Method 29 and the OHM employ isokinetic sampling procedures to ensure sample gas is collected at a representative rate. This is accomplished by sampling at multiple points along intersecting cross sectional travers lines within an exhaust stack while adjusting the sample rates to match the flow rates of the stack gas at each individual point. The modified 30B method used a fixed sample rate and at a single location within the stack disregarding the dynamic inter-stack flow field. Without either having the modified 30B method approved by the EPA or conducting stack tests using both the modified 30B method and an approved method simultaneously to quantify a useful relationship between the two resultant data sets, the modified 30B method can bring out only qualitative information.

Since "the filter bag essentially removes all of the particulate from the gas," as stated by ADA, HgT = HgG, which allows the Method 30B results to enter the reduction calculation for HgT for ADA's Mini

⁶ "Method 30B is only supposed to be applied in low particulate locations (see Section 1.2 of the method) and all mercury in the sorbent trap is supposed to be reported as gaseous mercury," wrote Robin R. Segall, of the EPA to Hongming Jiang, in an e-mail received on August 26, 2014 (for staff at the MPCA, follow this <u>link</u>).

Fabric Filter (MFF) ACI optimization test at Keetac. This test shows a 95% reduction in HgT at the sorbent injection rate of 7 lb/million ft³ of stack gas. It is worth noting that a slipstream testing of ACI with a baghouse was researched at the same indurating furnace in Phase I.⁷

Potential mercury feedback loops and their impacts on mercury capture estimates

Previous studies have indicated that at least some mercury captured by wet scrubbers (at Minntac except its Line 3, United Taconite, and ArcelorMittal) is attached to the dust particles and are returned eventually to the balling mills. ^{8,9,10,11,12} Although some mention of this potential was provided in the Phase II ACI test reports, it was not addressed with the rigor needed to allow determination of the quantitative impacts on the reduction estimates in any of the reports. It is reasonable to assume that removing the feedback loops while deploying ACI would greatly improve mercury capture compared to the estimates provided in the reports.

Insufficient scrubber measurements to facilitate mercury balance checks

A previous study performed at a taconite plant indicated that a considerable fraction of HgG was lost somewhere within the plant and ducts when CaBr₂ was injected into process gases.¹³ Mercury lost in the ducts or plant would not show up in the scrubber at first but could ultimately appear somewhere else later. Thus, tests involving brominated carbons should measure the total load of mercury that is captured by the scrubbers before and after the method is applied. Ideally, one would hope that the load captured and "blown down" by the scrubbers would balance mercury in the feed, fuel, product, and stack. Without such tests, the MPCA cannot determine what fraction of the mercury decreases occurred as a result of temporary hold-ups within the furnace (e.g., non-steady state) and that which was caused by increased capture in the scrubber. Although ADA made some attempt to evaluate materials in the scrubbers before and during the tests, the methods used to evaluate the effluent fell short of allowing quantification. In order to quantify, more information is needed on scrubber flow rates, and the concentrations of mercury in the scrubber solids and liquids would need to be analyzed using more refined methods.

⁷ "Evaluation of a slipstream baghouse for the taconite industry," by D.L. Laudal. <u>Phase I Project 4</u> Final Report, Jan., 2012, which also offers advice on making the control technology viable for further plant-scale testing.

⁸ "Bench scale tests to separate mercury from wet-scrubber solids from taconite plants," by B.R. <u>Benner</u>, Coleraine Minerals Research Laboratory, University of Minnesota, Duluth, MN 55811, January 7, 2008.

⁹ "Mercury transport in taconite processing facilities: (I) Release and capture during induration," by M.E. Berndt and J. Engesser, Iron Ore Cooperative Research Final Report, Minnesota DNR, <u>August 15, 2005</u>.

¹⁰ "Mercury transport in taconite processing facilities: (II) Fate of mercury captured by wet scrubbers," by M.E. Berndt and J. Engesser, Iron Ore Cooperative Research Final Report, Minnesota DNR, December 31, 2005.

¹¹ "Mercury chemistry and Mössbauer spectroscopy of iron oxides during taconite processing on Minnesota's Iron Range," by M.E. Berndt, J. Engesser, and T.S. Berquó, a poster paper shown at Air Quality V, a conference held in Washington, DC, organized by Energy and Environmental Research Center, <u>September 18-21, 2005</u>.

¹² United Taconite Line 2 was using a setting to allow scrubber captured dust particles to return to the balling mills during Phase II ACI testing, even though it could have been set to let the dust particles exit the feedback loop.

¹³ "On the measurement of stack emissions at taconite processing plants – a progress report <u>submitted to MPCA</u>," by M.E. Berndt, of Minnesota DNR, May 30, 2008, page 23.

Problems observed in the test results reported for United Taconite Line 2

In Table 1, while one sorbent injection rate is reported for each of other four furnaces along with the respective values of HgG reduction, a set of sorbent injection rates (5-8 lb/million ft³ of stack gas) were reported for United Taconite with a much lower reported value of HgG reduction. To provide illustration of this point, Figure 2 shows an image from the ADA test report for United Taconite.

Figure 2. Figure 16 from the ADA Phase II ACI test report for United Taconite – with the text boxes, "Out of coal" and "Rate reduced at UTAC's request," inserted by the MPCA.

Phase II ACI was planned as a longer-term test. One would expect ADA to keep the selected sorbent injection rate for a longer duration – such as 98 hours – to see how low HgG could go and to evaluate HgG reduction accordingly. Instead, ADA alternated the sorbent injection rate several times – 8 lb/million ft³ for 24.5 hours, 6 lb/million ft³ for 18.5 hours, 8 lb/million ft³ for 10 hours, and finally at 7 lb/million ft³.

An outage of coal occurred and lasted 10 hours 50 minutes. At the same time, mercury concentrations³ decreased while the sorbent injection rate was still at 7 lb/million ft³. At 14:45, on 9/24/2013, at United Taconite's request, ADA lowered the injection rate to 6 lb/million ft³ (after 45.25 hours at 7 lb/million ft³), which brought a prompt increase in mercury concentrations. About 9.25 hours later, a yellow-shaded text box appears to note "Hg-CEMS Data deleted due to issue with probe." Still early in the data deletion duration, at United Taconite's request again, ADA set the final injection rate to to 5 lb/million ft³ (after 45.58 hours at 6 lb/million ft³).

With the setting chosen¹² for Line 2 and the sorbent – brominated carbons – selected, the MPCA is concerned about non-steady state conditions, as discussed in previous sections. The frequent sorbent injection rate changes do not ease this concern. But, more importantly, deletion of a long duration of Hg-CEMS data is a much more serious problem that impairs the MPCA's ability to evaluate the ADA test report and its conclusions.

Benson, et al., also encountered questionable data points in their Phase I project. Figure 3 is how they reported the OHM results and Hg-CEMS data (or CMM, in their notation for continuous mercury monitoring); Hg^{VT} – for total vapor-phase mercury – is HgG in our terminology.

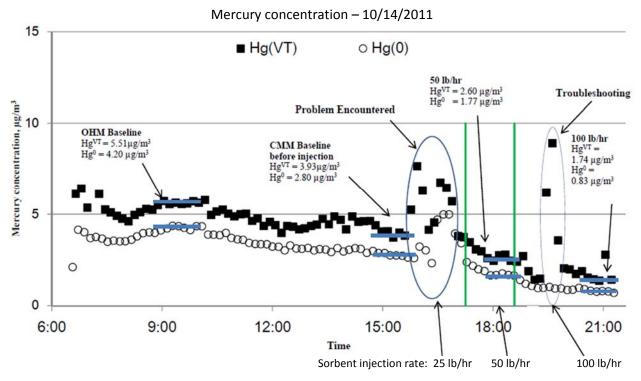


Figure 3. How to present and discuss questionable data? This is an example – Figure 8 from the Benson report and the original caption: "CMM data for Day 1 of ESORB-HG-11 injection. The average CMM mercury concentrations during OHM sampling are shown. It can be observed that the baseline decreased by approximately 1.50 μ g/m³ during the time from baseline OHM to start of injection at 16:10. However, when injection started, a problem occurred on the CMM. As soon as the problem was corrected, injection was increased to 50 lb/hr."

Including both the questionable data and the explanation about why the data should be treated differently would reflect greater transparency and improve the MPCA's confidence in the reported results.¹⁴

_

¹⁴ To provide a comprehensive technical review, the MPCA requires the data that were actually used to generate plots and graphs in the Phase II ACI test reports.

Concluding Remarks

Overall, the industry-initiated Phase II ACI testing confirms that the selected sorbent, Albemarle's Brominated, Powdered Activated Carbon, when injected into the furnace exhaust gas upstream of the existing particulate control wet scrubber, captured mercury in gas phase by more than 80%; that total mercury capture is indeterminate, but it potentially could be increased to approach 80% with better particulate control. Because of the complex interactions of mercury inside the dynamic pellet indurating process, with the brominated activated carbon particulate, as well as the scrubbing water loaded with reactive iron particles, if the ACI technology were to be examined further, more data must be collected to fully characterize the ACI technology in connection with the selected particulate control – either the existing wet scrubber or any other option – and to develop $PM_{2.5}$ emission data for purpose of fully evaluating the feasibility of the technology. The MPCA also encourages the industry to involve the MPCA when planning testing to address issues related to modifying performance test methods, treatment of apparent outliers, and other technical issues that may develop in the course of conducting field trials.

Attachment: DNR letter from Michael E. Berndt, 10/31/2014 (for staff at the MPCA, use this link)

10/31/2014

Minnesota Department of Natural Resources

500 Lafayette Road • St. Paul, MN • 55155-40_

Hongming Jiang Pollution Control Agency 520 Lafayette Road North St Paul, MN 55155

RE: Review of Phase II Hg Control Reports

Five taconite mining companies recently submitted reports to the Minnesota Pollution Control Agency evaluating activated and brominated carbon injection to control Hg in stack emissions. Subsequently, your agency made a request to the DNR that I review these documents. It was agreed that I would provide a general, less detailed analyses of the reports, but that MPCA would provide more in-depth detailed analyses. This letter provides my overall assessment of the five reports that were originally submitted by ADA-ES to each of the companies conducting the tests.

My general findings are as follows:

M30B analysis indicates capture is much less than what is analyzed by CMS, however, the sampling method used for M30B was not done iso-kinetically and so may not be quantitative. Two primary methods were used for the analysis of stack gases during the five studies: M30B and CEMS. M30B is a method that relies on the sampling of stack gases through a tube containing glass wool and a sorbent material while CEMS is a continuous monitoring method that only analyzes mercury in the gaseous phase. The former has the advantage that Hg bound to particulates that is trapped in the glass wool can be quantified and added to the estimation of total mercury in any sample passing through the tube. The latter only analyzes what is present in the gas phase, but has the advantage that it provides continuous monitoring rather than just a periodic "spot check".

Ultimately, the M30B method results show that ACI reduces gaseous mercury but that a substantial amount of particulate bound mercury is formed during ACI injection and some of this particulate fraction escapes the wet scrubber and is emitted at the stack. I will defer to those with more experience in measuring particulates in stack emissions to determine how much weight to place on the HgP and HgT measurements that were made using the M30B method.

Potential Hg feedback loops likely provided an additional interference for making reduction estimates at Minntac, Utac, and ArcelorMittal. Previous studies have indicated that at least some Hg captured by wet scrubbers at these plants is attached to the dust particles that are returned eventually to the balling mills (Benner, 2008; Berndt and Engesser, 2005a; Berndt and Engesser, 2005b; Berndt et al., 2005). Although some mention of this potential was provided in the reports, it was not addressed with the rigor needed to allow determination of the quantitative impacts on reduction estimates in any of the reports. It is reasonable to assume, however, that removing the feedback loops during ACI injection would greatly improve the percentages of mercury captured compared to the estimates provided in the reports.

Measurements provided for the scrubbers were inadequate to allow Hg balance checks to be conducted during any of the tests. Thus, we don't really know the fate of the captured mercury or how permanent (or ephemeral) the mercury reductions are. A previous study performed at a taconite processing plant indicated that a considerable fraction of the gas-phase Hg was lost somewhere within the plant and ducts when CaBr2 was injected into process gases (Berndt, 2008). Mercury lost in the ducts or plant would not show up in the scrubber at first but could ultimately show up somewhere else later. Thus, tests involving brominated carbons should measure the total load of Hg that is captured by the scrubbers before and after the method is applied. Ideally, one would hope that the load captured and "blown down" by the scrubbers would balance Hg in the feed, fuel, product, and stack. Without such tests, we cannot determine what fraction of the Hg decreases occurred as a result of temporary holdups within the furnace (e.g., non-steady state) and that which was caused by increased capture in the scrubber. Although ADA-ES made some attempt to evaluate materials in the scrubbers before and during the tests, the methods used to evaluate the effluent fell far short of allowing quantification. In order to do so, more information would be needed on scrubber flow rates and the concentrations of Hg in the scrubber solids and liquids would need to be analyzed using more refined methods.

These results need to be compared to results from other past studies. ACI testing was previously conducted at both Hibbing Taconite and US Steel, but results from those tests were not compared to results from the present tests (Benson et al., 2012; Miller et al., 2012). Also, as mentioned above, much work was done previously on scrubber water and scrubber solid characterization (Berndt and Engesser, 2005b). Measured correctly, the change in scrubber solid chemistry can be used as an alternative means to estimate or verify changes in Hg capture rates.

Despite the four criticisms mentioned above, the reports do provide relatively strong evidence that reemission of particulate-bound mercury is a pervasive issue that must be solved before brominated activated carbon injection methods can be considered suitable for the taconite industry. This potential issue was also identified previously in Phase 1 (Benson et al., 2012). Please let me know if I can be of any further assistance as the MPCA finalizes its review of the industry's reports.

Regards,

Michael E. Berndt

Min Seul

References (all available at http://www.dnr.state.mn.us/lands_minerals/dnr_hg_research.html)

Benner, B.R., 2008. Bench scale tests to separate mercury from wet-scrubber solids from taconite plants. Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, p. 26. Benson, S.A., Nasah, J., Thumbi, C., Patwardhan, S., Yarbrough, L., Feilen, H., Korom, S.F., Srinivasachar, S., 2012. Evaluation of Scrubber Additives and Carbon Injection to Increase Mercury Capture, Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, p. 67. Berndt, M., Engesser, J., 2005a. Mercury Transport in Taconite Processing Facilities: (I) Release and Capture During Induration. An Iron Ore Cooperative Research Final Report, Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, p. 60.

Berndt, M., Engesser, J., 2005b. Mercury Transport in Taconite Processing Facilities: (II) Fate of Mercury Captured by Wet Scrubbers, Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, p. 32.

Berndt, M., Engesser, J., Berquo, T.S., 2005. Mercury chemistry and Mossbauer spectroscopy of iron oxides during taconite processing on Minnesota's Iron Range, Air Quality V. Energy and Environmental Research Center, Washington, D. C., p. 15.

Berndt, M.E., 2008. On the measurement of stack emissions at taconite processing plants - a progress report submitted to MPCA, Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, St. Paul, MN, p. 23.

Miller, J., Zerangue, M., Tang, Z., Landreth, R., 2012. Mercury control for taconite plants using gas-phase brominated sorbents, Report submitted to the Minnesota Department of Natural Resources, St. Paul, MN, St. Paul, MN, p. 55.

CC Jennifer Engstrom

Attachment C

Minorca Extended ACI Test Plan

Technical Memorandum

To: ArcelorMittal Minorca Mine

From: Barr Engineering Co.

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017 **Project:** 23691731.00

This document provides the test plan for extended testing of activated carbon injection (ACI) to analyze mercury emissions capture from the pellet induration process. This test plan has been developed specifically for ArcelorMittal Minorca Mine (Minorca).

1.0 Introduction

This document outlines the next phase of extended ACI testing at Minorca. Minorca had previously completed ACI testing in 2013 as part of an overall Minnesota taconite industry research effort. The previous ACI testing, called Phase II, was conducted to determine if ACI could meet the 75% reduction total maximum daily load (TMDL) goal set by the Minnesota Pollution Control Agency's (MPCA's) 2009 Implementation Plan. Since the Phase II testing, Minnesota has finalized state regulations (Minn. R. 7007.0502) that require Minorca to reduce mercury emissions by January 1, 2025 to no more than 28% of the mercury emitted in 2008 or 2010, whichever is greater. The state regulations also require Minorca to submit a mercury emissions reduction plan by December 30, 2018 to show how Minorca will achieve the 72% reduction, or propose an alternate plan if Minorca concludes that a 72% reduction is not technically or economically feasible, impairs pellet quality, and/or causes excessive corrosion to plant equipment. Minorca has conducted a thorough review of potential mercury reduction technologies and has determined that ACI is one potential option for Best Available Mercury Reduction Technology (BAMRT).

The purpose of this test plan is to define the strategy and protocol for extended ACI testing to determine what amount of mercury capture is possible with ACI at a lower injection in order to adjust for the increased particulate rate previously tested in 2013, while also monitoring other aspects of the process to determine the technical or economic feasibility for implementation of a full-scale ACI system.

2.0 Proposed Schedule

The 90-day test for Minorca is scheduled to start with mobilization of the ACI equipment on January 4, 2017. Screening tests will commence on January 10, 2017 and extended testing will start on January 20, 2017 and end on April 7, 2017 prior to April shutdown of the furnace. Minorca will also be conducting baseline stack testing the week of December 12, 2016 prior to any ACI and the week of April 10, 2017 after ACI.

A detailed schedule is provided along with this testing plan in Attachment A.

3.0 Goals of Test

Determine % reduction in total Hg emissions using ACI at pre-determined injection rates.

To: ArcelorMittal Minorca Mine **From:** Barr Engineering Co.

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 2

Determine final destination of Hg following capture by ACI.
Evaluate scrubber performance with additional ACI loading via particulate stack testing.
Determine baseline Hg concentration in the stack emissions without ACI and with ACI.
Evaluate all forms of Hg stack emissions such as vapor and particulate as well as elemental/oxidized Hg (during stack tests conducted during ACI testing).
Quantify operating and maintenance cost at a specified injection rate.
Determine if the selected ACI is technically feasible to reduce Hg emissions by MPCA rule.
Determine if the selected ACI is economically feasible to reduce Hg emissions by MPCA rule.
Measure and analyze ACI impact on pellet quality.
Measure and analyze maintenance and equipment issues associated with ACI.
Document abnormal erosion/corrosion issues with plant equipment and ductwork during post shutdown visual inspections.
Identify safety/hygiene issues with ACI.

4.0 ACI Selection

The activated carbons recommended for this phase of ACI testing are high temperature brominated powdered activated carbon (HPAC) and brominated powdered activated carbon (BPAC). These were chosen based on previous testing of these types of activated carbon during Phase II testing in which these carbons showed the greatest mercury reduction compared to other types of activated carbons.

During Phase II, Minorca conducted screening tests of various types of powdered activated carbon (PAC) and at different injection rates to determine which PAC type at what injection rate should be used for extended testing. The screening results at Minorca as part of Phase II determined that HPAC at a 1 lb/mmacfm injection rate achieved a 60% reduction in gas phase mercury (HgG), and BPAC achieved a 63% HgG reduction at 1 lb/mmacfm injection rate. The measurements of the screening tests were taken from Stack D.

During the Phase II testing, ADA-ES, Inc. (ADA) employed the ThermoFisher mercury continuous emission monitor system (Hg-CEMS) to measure gas phase mercury emission at the stack. However, Hg-CEMS cannot measure particulate-bound Hg (HgP). In order to estimate the amount of HgP, ADA used a modified Environmental Protection Agency (EPA) Method 30B (M30B) by periodically measuring the Hg concentration of the inlet gas (before ACI), and to validate the performance of the Hg-CEMS at the stack. However, the modified M30B measurements were only conducted during the extended testing, not during the screening tests. Therefore, the recommended performance tests according to this test plan

To: ArcelorMittal Minorca Mine From: Barr Engineering Co.

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 3

(outlined below) will estimate the total Hg, HgT, as HgG + HgP, while Minorca conducts extended testing of PAC injection at a rate of 1lb/mmacfm.

Considering the past results, each PAC type is a good option to use during the 90-day test. Initial screening tests will be completed during a performance test (described in 7.1) for each PAC to determine which one should be used for long-term testing. Another main factor in determining the economic feasibility of a specific type of activated carbon is the cost associated with each.

5.0 Mercury Stack Test Method Applicability

It is important that the stack test mercury measurement method is most applicable to the type of source being measured. It is also important to note that mercury particulate issues identified during Phase II testing were a significant factor in determining the testing methods for this next round of testing.

The two methods that meet all the criteria for the mercury stack testing are the Ontario Hydro (O-H) ASTM D6784 and the EPA Method 29 (M29). M29 and O-H methods are recognized for their ability to accurately measure HgT and capture particulate emissions. The only difference in the two methods is that the O-H method can speciate the Hg (elemental and oxidized) in the samples, M29 cannot. The analytical results from this testing will take 2 to 4 weeks for return. M30B does not meet the requirements for this test work due to its inability to measure particulate matter in the process gas stream and can only measure Hg in the gas stream. M30B will be used as a screening method to determine the appropriate PAC type for long-term testing.

The Hg-CEMS is not recommended at this time due to mercury particulate issues identified during Phase II testing and high costs to maintain and operate this technology.

6.0 Test Plan

Given the main objectives and the overall activities to be accomplished during this testing campaign, the following test protocol is set forth as a guide to the operations once all equipment has been set up and commissioned.

- A. Nol-Tec Systems was selected as the vendor and test equipment provider for ACI
 - 1. Facilities Performance Group (FRP) (subcontractor to Nol-Tec)
- B. Project team members
 - 1. Nate Holmes, Minorca site manager; Jaime Johnson, designated alternative
 - 2. Ryan Siats, Barr Engineering project manager; Boyd Eisenbraun, designated alternative
 - 3. ACI testing project managers
 - a. Mitch Lund, Nol-Tec contract manager
 - b. Grace Whiteford, Nol-Tec project manager

To: ArcelorMittal Minorca Mine **From:** Barr Engineering Co.

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page:

- c. Jason Johnson, Nol-Tec setup manager
- d. Scott Spangenberg, Nol-Tec control engineer
- e. Layne Wesley, FPG field testing manager
- f. Jeremy Steele FPG field testing
- 4. Ben Wiltse, Barr Engineering stack testing project manager; Tom Leier, designated alternative
- Onsite testing team will also have a Minorca-supplied plant radio available for communication
- C. To contact the project team members related to the ACI testing, the subsequent procedures should be followed. Contact information for each team member can be found in Attachment B. Always contact Minorca's project manager first unless directed otherwise.
 - 1. Minorca plant operation and site testing management
 - a. Minorca project site manager testing and operating schedules, safety questions and concerns, accident or injury reports
 - (1) Nate Holmes primary contact
 - (2) Jaime Johnson secondary contact
 - b. Minorca operations team night shift, weekends, or not able to reach Minorca primary projects managers
 - (1) onsite shift manager
 - (2) control room operator
 - 2. Carbon injection system and operation responsibility
 - a. FPG Responsible for operating the carbon injection system
 - (1) Layne Wesley FPG test manager
 - (2) Jeremy Steele FPG onsite project lead
 - Nol-Tec Systems responsible for carbon injection system, questions related to carbon injection operation, injection equipment, schedules, carbon storage and supply questions
 - (1) Grace Whiteford Nol-Tec project manager
 - (2) Jason Johnson Nol-Tec setup project manager
 - (3) Scott Spangenberg Nol-Tec control engineer
 - 3. Barr Engineering
 - a. Stack testing manager

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 5

- (1) Ben Wiltse questions and stack testing schedules
- (2) Tom Leier secondary contact

b. Engineering assistance

- (1) Ryan Siats primary contact
- (2) Boyd Eisenbraun secondary contact

D. Safety

- 1. All staff working with the testing system:
 - a. Shall be aware of the equipment and materials being used and the associated hazards of the materials and work areas. SDS's are required for any chemicals being used for testing.
 - Shall be current on and have documentation available for their Mine Safety and Health Administration (MSHA) training, fall protection certified, and required sitespecific training.
 - c. Shall wear the appropriate personal protective equipment, including safety boots (metatarsals), hardhat, hearing protection, and safety glasses.
- 2. All accidents, injuries, or equipment damaged shall be reported immediately to the Minorca project manager or the onsite shift manager during nights and weekends.
- 3. In case of emergency, there is an emergency shutdown switch on the carbon injection system available if needed. Please refer to the procedure provided in Attachment C from Nate Holmes in the event the emergency shutdown switch is activated.

E. Planning

- 1. In addition to a safety briefing each morning, a daily planning discussion will also be held among the testing group and Minorca operation representatives. Communication is important to the success of this test. FPG personnel will complete daily a Hirac-Lite form as well as document a work place exam. Both of these will be updated if project conditions change throughout the day.
- 2. This daily plan will guide the work for that day.
- 3. The previous day's testing results will be reviewed to identify good and poor performance parameters and recommend adjustments or process changes if required.
- 4. Project team meetings will occur twice a week to update the team on testing

F. Data recording

 In order to maximize the value of this test work, data must be recorded as clearly and completely as possible. Utilization of the data control system (DCS) historian database will

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 6

be used to collect real time process and lab data, which will be critical in determining process operation and product quality during ACI testing.

- 2. Barr will work with the Minorca operations staff to develop a list of key process and lab data points to monitor during the ACI testing. This list will collect data from reports and the data historians from the process. These data lists will be finalized two weeks prior to testing and approved by Minorca management. The initial list is included as Attachment D to this document.
- G. Testing and project assistance from Barr
 - 1. Barr will assist Minorca as directed to manage the collection of process and test data collected from Minorca, analytical labs, and Nol-Tec. Minorca and Barr will confirm a list of key process variables required for analysis and data collection.
 - 2. Minorca will set up plant sample collection, and conduct the sample collection.
 - 3. Barr will provide containers for sample collection.
 - 4. Barr will manage the analytical data results and assist Minorca with the coordination and scheduling of analytical vendors.
- H. Recommended ACI type based on discussion with Minorca staff
 - 1. The recommended activated carbon for testing is BPAC or HPAC based on preliminary screening.
- I. ACI dose rate of 1 lb/mmacf for Minorca
 - 1. Change of dose rate will be determined by Minorca.
- J. Baseline stack emission testing prior to ACI testing
 - 1. December 13-14, 2016
 - 2. M30B for mercury capture analysis on all 4 stacks (1 time)
 - a. Minimum of 3 tests each time 1-hour duration each test
- K. Preliminary ACI selection and evaluation for long-term testing
 - 1. January 9-13, 2017
 - 2. M30B for mercury capture analysis (2 tests 2 stacks)
 - a. Minimum of 3 tests each time 30-minute duration each test
 - 3. EPA Method 5 for particulate measure (2 tests 2 stacks)
 - a. Minimum of 3 tests each time 30-minute duration each test
- L. Hg stack emissions reduction evaluation long-term testing
 - 1. Week of February 6 and week of March 28, 2017

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 7

- 2. Ontario Hydro Method (ASTM D6784) for mercury analysis and Method 5 for particulate analysis (2 tests 4 stacks)
 - a. 3 tests each time 2-hour duration each test
- 3. Compare Hg emissions during ACI to baseline

M. Baseline testing post-ACI

- 1. April 11-12, 2017
- 2. M30B for mercury capture analysis on all 4 stacks (1 time)
 - a. Minimum of 3 tests each time 1-hour duration each test
- 3. No ACI injection but continue wasting scrubber solids

N. Post-ACI testing analysis

Barr will assist Minorca in assessing the following aspects of ACI as a potential mercury reduction technology with the data and information collected during the extended ACI testing:

- 1. Determine final destination of Hg from scrubber blowdown
- 2. Determine effectiveness of discarding scrubber solids
 - a. All scrubber water and associated solids sent directly to tailings thickener following the stack testing during the week of February 6.
- 3. Document abnormal erosion/corrosion issues with plant equipment and ductwork during post shutdown visual inspections
- 4. Determine impact on pellet quality
- 5. Quantify operating and maintenance cost to determine economic feasibility

7.0 Mercury Measurement Method (Stack Emissions)

7.1 ACI Screening Test Hg Emission Measurement and Baseline Measurement

Measurement of Hg emissions during the screening tests of BPAC and HPAC will be conducted to determine which type shows the greatest reduction in stack mercury emissions. Previous ACI testing has shown particle bound Hg (HgP) is the significant portion of total Hg (HgT) when employing ACI for Hg control. However, historical compliance testing of stack mercury emissions has shown gas phase mercury (HgG) is the significant portion of HgT under normal operations. Therefore, for the purpose of screening tests, M30B will be used for Hg testing during ACI screening tests to determine the type of PAC with the greatest HgG reduction. These screening tests will be completed within the first week of testing.

7.2 ACI Performance Test Hg Emission Measurement

Measurement of Hg emissions during the ACI performance testing will be conducted to determine the total stack mercury emissions while injecting activated carbon. Previous ACI testing has shown HgP is the significant portion of HgT when employing ACI for Hg control. The O-H method will be utilized to

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 8

determine the total Hg capture during the long-term ACI testing. This will determine the total mercury and speciation of mercury in the stack emissions. The phase and speciation of mercury will allow for a complete assessment of ACI for technical feasibility if applied to Minorca's indurating furnace.

- A. Stack testing will be completed at the selected times during the test. The testing will occur during steady state operation, determined by Minorca plant management and operations.
 - 1. Baseline testing (December 13-14, 2016)
 - a. M30B on all 4 stacks (1 time)
 - (1) Minimum of 3 tests each time 1 hour duration each test
 - 2. ACI screening (January 10-11, 2017)
 - b. M30B on 2 stacks (2 times)
 - (1) Minimum of 3 tests each time 30-minute duration each test
 - c. EPA Method 5 on 2 stacks (2 times)
 - (1) Minimum of 3 tests each time 30-minute duration each test
 - 3. Long-term performance testing (February 7-8 and March 28-29, 2017)
 - d. Ontario Hydro (ASTM D6784) and Method 5 on all 4 stacks (2 times)
 - (1) 3 tests each time 2-hour duration each test
 - 4. Base line testing post-ACI (April 11-12, 2017)
 - e. M30B on all 4 stacks (1 time)
 - (1) Minimum of 3 tests each time 1-hour duration each test

8.0 Determine Hg Removal, Scrubber Performance, and Final Destination of Hg from the Scrubber Blowdown

The scrubber blowdown water stream will be recycled within the process as normal for the first half of the ACI testing to determine the impact on mercury recycle effects to the greenball and process water streams. Following the first long-term stack test in February, this scrubber water recycle including the solids will be diverted to the tailings thickener for the remainder of the ACI testing. Diversion of the scrubber water will help evaluate the mercury recycle in the process.

Similar to Phase II testing, selected process samples are to be collected and analyzed to determine Hg concentrations. Coordination of sampling will be completed by Barr with approval from the Minorca project manager. Minorca will be responsible for collection of the process samples identified at the locations below. Barr staff will be responsible for providing sample containers, coordination and scheduling of analytical mercury analysis for these samples. Process samples should be taken during steady state operation, which will be determined by Minorca staff. During the testing, it is recommended

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 9

that Minorca staff conduct visual audits of the process for the spent ACI solids recycle back into the process.

The recommended sample points for Hg analysis during ACI testing are listed below and identified in the process flow diagram in Attachment E.

Weekly Process Sampling

In addition to the stack testing and mercury mass balance sampling described in Section 13, weekly sampling will be completed to track the changes in mercury loading during the ACI testing. Below is a list of weekly sample collection points:

- 1. Tails Thickener (underflow) (fine tails)
- 2. Tails Thickener (overflow)
- 3. Concentrate Thickener (underflow)
- 4. Concentrate Thickener (overflow)
- 5. Green Ball (balling disc discharge)
- 6. Scrubber Blowdown/Scrubber Sump
- 7. Final Pellet Sample

To complete an accurate mass balance, flow measurements will be required for each sample location. If real-time process flow rate measurements are not available, historical performance data will be utilized.

8.1 Placement of Discarded Scrubber Solids

The spent PACs and associated scrubber solids will be transferred/pumped with the scrubber blowdown stream to the tailings thickener in early February 2017. This effort will direct all mercury solids and liquids to the tailings basin, thus reducing the potential for mercury recycle back into in the process water. Minorca currently recycles the scrubber blowdown stream with solids back to the process. After the first stack test event in early February 2017, the scrubber blowdown stream will be diverted to the tailings thickener. Additionally, a daily visual inspection of the tailings thickener overflow is required for review of any spent carbon particulate returning to the process via the water recovery system.

9.0 Determine Economic Feasibility of ACI by Quantifying Operating and Maintenance Costs to

Operating costs associated with testing will be collected and documented for the estimation of operating and maintenance costs if a full-scale system were to be implemented. Operating costs will be determined by recording the total amount of PAC injected and operator labor required during the testing. Maintenance costs can vary depending on the condition of the equipment and the operating duration; however, any costs associated with maintaining the testing equipment will be documented and

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 10

considered for a full-scale system. Barr will use the information gathered during the ACI testing and work with ACI vendors to extrapolate annual site-specific full-scale implementation costs associated with ACI.

10.0 Determine Technical Feasibility of ACI

Determining if ACI is technically feasible can be accomplished during the test by determining the Hg reduction at a rate of 1 lb/mmacf or lower without affecting normal operations or particulate emissions. Part of the technically feasible evaluation is to investigate the condition of the process equipment, ducting and equipment degradation. Barr and Minorca will develop an inspection plan to document possible effects to plant and process equipment from the extended testing of ACI. The inspection plan will be included in the final technical report for the overall ACI extended testing.

11.0 Determine Impact of ACI on Pellet Quality

Pellet physical and chemical quality parameters have been defined (see Table 1 below). Concentrate parameters will be evaluated if pellet quality parameters are out of specification. These parameters will be monitored during the testing to determine impacts associated with the ACI testing. The pellet quality parameters during ACI testing will be compared to historical pellet variability and quality parameter limits set at Minorca. If any pellet physical or chemical qualities exceed set parameters, the change will be identified and a root cause analysis will be performed to determine the potential cause. Minorca will continue to use the existing sampling procedure already in place for this task. Please refer to Section 8 for a list of sampling locations to be sampled weekly during the extended ACI testing, and Section 13 for a list of sampling locations to be sampled and collected during stack testing.

The quality parameters include:

Concentrate – review and inspect when pellet properties become out of spec
Greenball – not currently evaluated, moisture content
Pellet – physical and chemical properties (normal)

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 11

Table 1 Minorca Pellet Specifications

Greenballs	Lower Spec	Target	Upper Spec	Frequency
Moisture	9.00%	9.20-9.30%	9.50%	2 hours
Pellets	Lower Spec	Target	Upper Spec	Frequency
CaO/SiO2 Ratio (C/S Ratio)	1.00%	1.10%	1.20%	4 hours
MgO/SiO2 Ratio (M/S Ratio)	0.28%	0.35%	0.42%	4 hours
Pellet Silica	3.78%	4.20%	4.62%	4 hours
Contraction	N/A	8.00	10.00	24 hours
Pellet Cold Compression Strength (CSS)	400	500	N/A	8 hours
(BT-1/4") Pellet Size	N/A	1.00%	2.00%	4 hours
(AT+1/2") Pellet % Oversize	8.00%	20.00%	32.00%	4 hours
(AT-3/8 X 1/2") Pellet Size	46.00%	60.00%	N/A	4 hours
(AT-1/4") Pellet Size	N/A	4.75%	6.00%	4 hours

12.0 Determine Potential Erosion/Corrosion Issues Associated with ACI

It was determined that for this ACI test period at Minorca, inspection of erosion/corrosion will be conducted. The outage in October 2016, prior to the ACI testing, did not allow cooling down of the furnace for entry into ductwork or furnace areas. Barr and Minorca will develop an inspection plan to document possible effects to plant and process equipment from the extended testing of ACI. The inspection plan will be included in the final technical report for the overall ACI extended testing.

13.0 Plant Process Sampling During Stack Testing

Four plant sampling events will take place during stack testing, corresponding to baseline testing before/after ACI testing, and the two stack tests during ACI. No plant sampling will be completed during ACI screening tests. These samples will strengthen the existing mercury mass balance data set already established.

The previous Minorca mercury baseline sampling efforts identified the following recommended process sampling locations during stack testing while conducting ACI. They are also identified in the process flow diagram in Attachment F:

- 1. Rod Mill Discharge
- 2. Sands of Spiral Classifier to Tails Bin (Cobber Tails)
- 3. Spiral Classifier (overflow)

Subject: Test Plan for Extended Testing of Activated Carbon Injection

Date: January 26, 2017

Page: 12

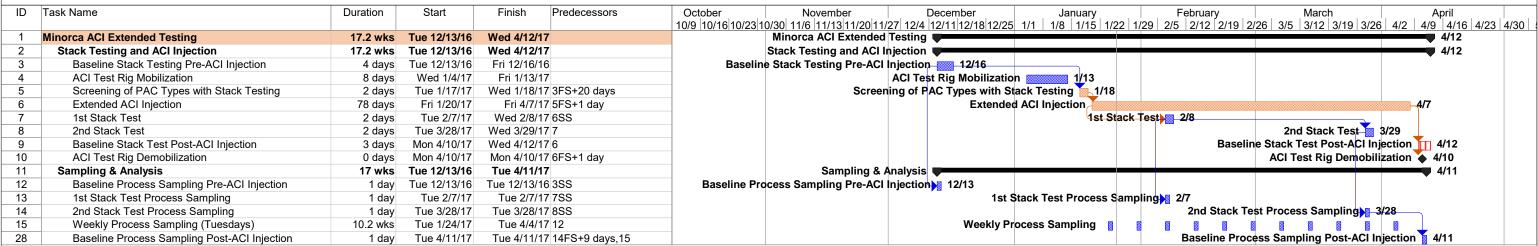
- 4. Tails Thickener (underflow) (Fine Tails)
- 5. Tails Thickener (overflow)
- 6. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump
- 7. Flotation Reject Product to Tailings Thickener
- 8. Concentrate Thickener Feed
- 9. Concentrate Thickener (underflow)
- 10. Concentrate Thickener (overflow)
- 11. Fluxstone Feed (from Fluxstone Slurry Storage Tank)
- 12. Binder Supply (feed to bin)
- 13. If in use, Repulper Tank (Concentrate Reclaim Feed to Acid Concentrate Slurry Tank/Fluxed Concentrate Slurry Tank)
- 14. Green Ball (balling disc discharge)
- 15. Multiclones (windboxes recycle to concentrate thickener)
- 16. Scrubber Blowdown/Scrubber Sump
- 17. Final Pellet Sample
- 18. Make-up water sample from plant head tank/raw water feed to plant

To complete an accurate mass balance, flow measurements will be needed at each sample location. If real-time process flow rate measurements are not available, historical performance data will be utilized.

14.0 Report

Barr will produce a report detailing the results and conclusions of the testing that can be used to finalize a site-specific BAMRT analysis of ACI at Minorca.

Attachment A


Detailed Schedule

Task

Minorca ACI Testing

Coordination Schedule

Summary

Milestone

Critical Task

Rolled Up Critical Task

Rolled Up Task

Attachment B

Contact Information

ACI Project Team Contacts - Minorca Mine									
Company	Description	First Name	Contact Number (cell)						
	Project Lead	Grace	Whiteford	651-440-0411					
Nol-Tec	Project Controls	Scott	Spangenberg	651-491-1744					
7407-766	Service Manager	Jason	Johnson	651-295-4298					
	Technical Sales	Mitch	Lund	612-418-7108					
FPG	Onsite Project Lead	Jeremy	Steele	770-283-0638					
77.0	Offsite Project	Layne	Wesley	770-283-0298					
	Project Lead	Nate	Holmes	218-410-0506					
Minorca Mine	Secondary Contact	Jaime	Johnson	218-290-0160					
williored wille	Safety	Karla	McKenzie	218-750-1077					
	Secondary Safety	Joyce	Vesel	218-421-8145					
Barr	Project Lead	Ryan	Siats	218-788-6364 (office)					
Engineering	Stack Testing Lead	Ben	Wiltse	952-832-2885 (office)					

EMERGENCY CONTACT at MINORCA MINE

Control Room - 218-305-3407

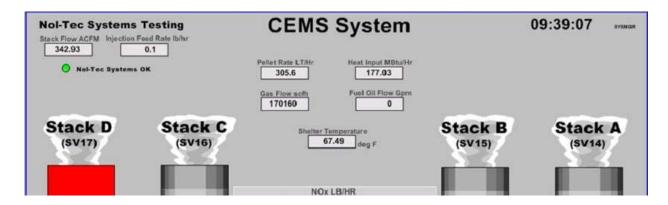
Control Room - Channel 1 on Radio

Attachment C

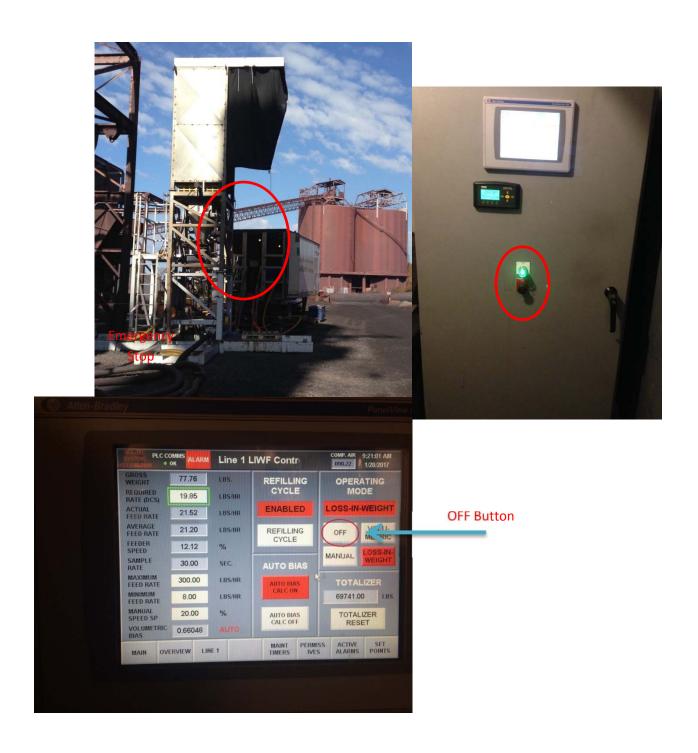
ACI Testing Emergency Shutdown Procedure

To: Shift Managers/SOT, Control Room Operators, Robb Peterson, and Dave Tomassini

From: Nate Holmes


Date: January 23rd, 2017

Subject: Activated Carbon Testing


Nol-tec is currently injecting activated carbon at 20-25lb/hr. The carbon is being injected to remove mercury from the exhaust stacks. The test unit is set up west of the process fans.

There will be a Nol-tec representative on site during day shift, 7 days a week. The shift coordinator will need to check the system a couple times a night during night shifts. This check is a quick walk through the system to make sure everything is running correctly and that carbon is not being blown everywhere. If a problem is discovered, there is an "OFF" button located on the HMI screen in the front portion of the trailer. Enter the back of the trailer, walk thru the trailer, open the door at the back, to the right is the control panel with the "OFF" button. Just below the control panel is an emergency stop button, which should be used if the HMI screen is unavailable or if the issue is creating an immediate safety hazard. If you shutdown the system, please call Nol-tec. Alarms have been programmed into the DCS system to make sure the system is feeding carbon in the correct operating range. If an alarm occurs, please take a quick walk thru of the system and call Nol-tec. The Nol-tec representative is Layne Wesley (770) 283-0298.

Alarms have been programmed into the DCS system to make sure the system is feeding carbon in the correct operating range (per email from Todd Sarazine on 1/20/2017 at 9:30am). If an alarm occurs, the Control Room Operator shall notify the Shift Manager/SOT to complete a site visit of the unit.

ACI TEST UNIT

ACI Project Team Contacts - Minorca Mine									
Company	Description	First Name	Last Name	Contact Number (cell)					
	Project Lead	Grace	Whiteford	651-440-0411					
Nol-Tec	Project Controls	Scott	Spangenberg	651-491-1744					
1401-166	Service Manager	Jason	Johnson	651-295-4298					
	Technical Sales	Mitch	Lund	612-418-7108					
FPG	Onsite Project Lead	Jeremy	Steele	770-283-0638					
	Offsite Project Layne		Wesley	770-283-0298					
	Project Lead	Nate	Holmes	218-410-0506					
Minorca Mine	Secondary Contact	Jaime	Johnson	218-290-0160					
Willior Ca Willie	Safety	Karla	McKenzie	218-750-1077					
	Secondary Safety	Joyce	Vesel	218-421-8145					
Barr	Project Lead	Ryan	Siats	218-788-6364 (office)					
Engineering	Stack Testing Lead	ack Testing Lead Ben		952-832-2885 (office)					

EMERGENCY CONTACT at MINORCA MINE

Control Room - 218-305-3407

Control Room - Channel 1 on Radio

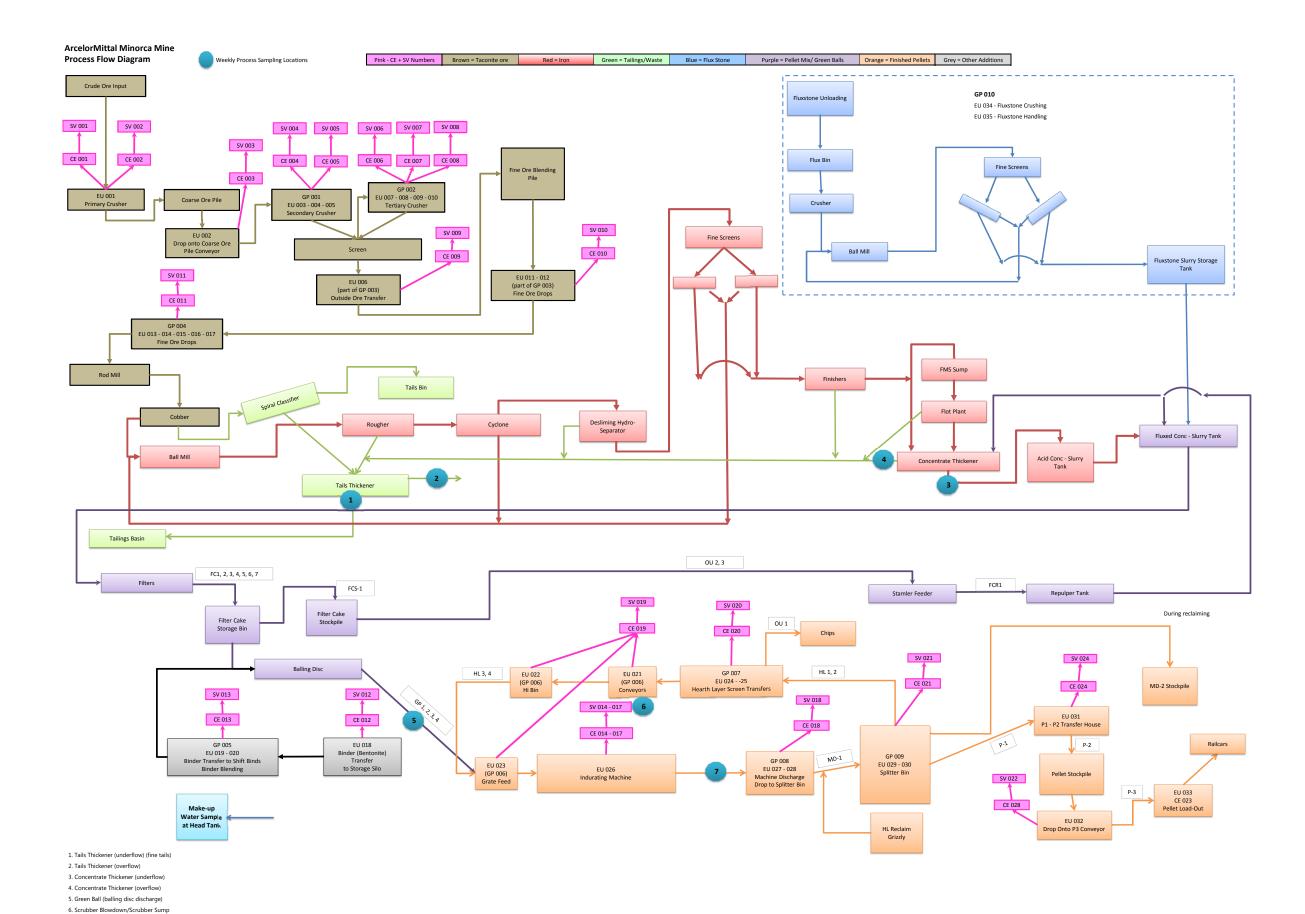
Attachment D

Process and Lab Data Points

ArcelorMittal Minorca Mine Test Plan for Extended Testing of Activated Carbon Injection Attachment D - Minorca Process Data Matrix Table

Will Not Monitor - Available on data base if problem occurs

Mine/Plant Location	Description
nes Crusher	Mine Blend
	Silica Target
	projected wt recovery/project silica
Finos Crushor	FC Tonnage
Tilles Clusilei	Reclaim tonnage from storage or piles- not to worry about this
	Dust Collector data
	Dust Supressant Data
Concentrator	Rod Mill Feed tons
	Rod Mill Feed Prodcut Size
	Plant Weight Recovery
	Iron Recovery
	Conc Iron
	Silica
	Grind Size- Final Concentrate
	Process Water Temperature
	Abiant Temperature
	Repulper Tank (Concentrate Reclaim Feed to Acid Conc - Slurry
	Head Tank Water flow
	Process Water Tank Flow
	Flotation data- Control Targets
	Tailing Coarse tonnage
	Tailings Fine tonnage
	Filter Cake Moisture
	Flux addition rate
	Dust Collection Emmission Data
	Flocculant Rates
	Flotation Chemical Rate

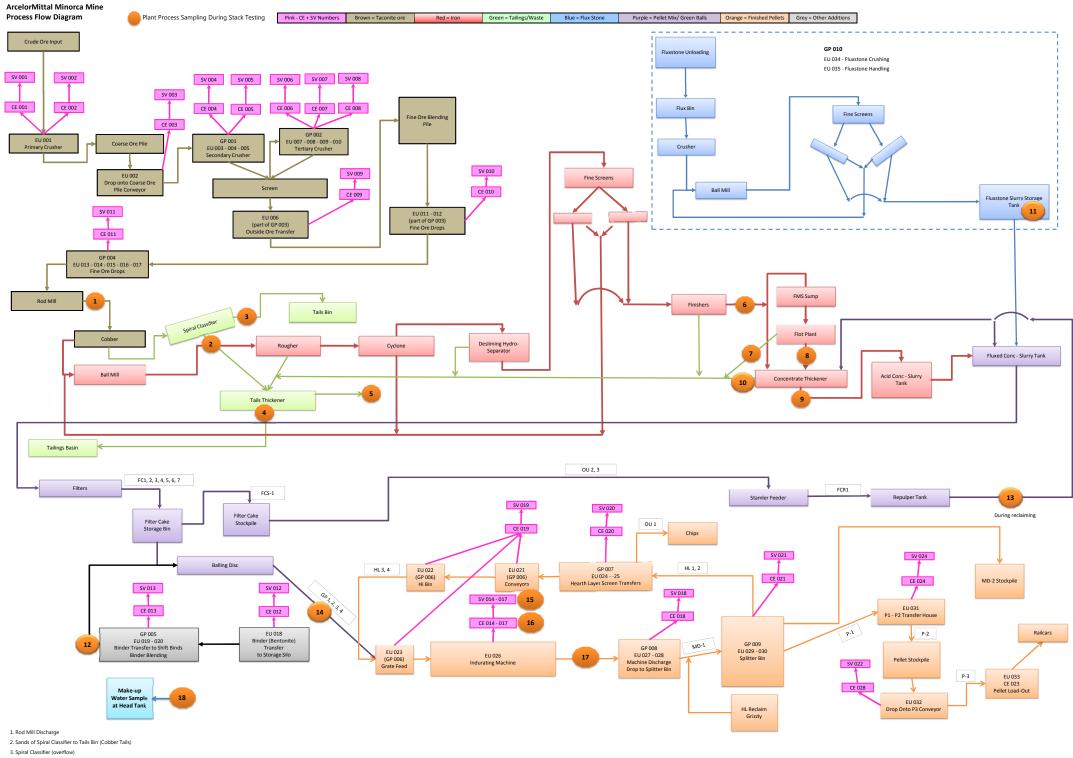

Pellet Plant	Feed tonnage to Grate
	Begin Preheat Temp
	Mid Preheat Temp
	End Preheat Temp
	Begin Firing Temp
	End Firing Temp
	Grate Temperature
	Exhaust Stack Temperatures
	Preheat Burner Tempertaure
	Recoup Temperature
	Pellet Temperature
	CEMS Data
	Fan Data - Motor amps (all)
	Pallet/Grate Speed
	Updraft Flows and Temperature
	DownDraft Flows and Temeperature
	Fuel Rate- Nat Gas Flow
	Air Flow - Inlet
	Windbox Information
	Windbox Fan Information
	Binder addition rate
	Scrubber Flow
	Scrubber Flow water
	All emmision data - pressures flows
	Cooling Zone Temperatures
	Recoup Fan Data
	Cooling Fan Data
	Updraft Drying Fan Data
	ExHaust Fan Data
	Greenball Quality Parameters?
	Greenball Moisture
	windbox exhaust fan vibration monitor

Pellet Quality Parameters	CaO/SiO2 Ratio (C/S Ratio)
	MgO/SiO2 Ratio (M/S Ratio)
	Pellet Silica
	Contraction
	Pellet Cold Compression Strength (CSS)
	(BT -1/4") Pellet Size
	(AT +1/2") Pellet % Oversize
	(AT 3/8 X 1/2") Pellet Size
	(AT -1/4") Pellet Size

Enviromental Monitor Parameters	Indurator scrubber (4 stacks) water flow
	Stack Temp (each stack)
	Stack Exhaust Gas Flow(each stack)
	Stack SO2 (each stack)
	Stack NOx (each stack)

Attachment E

Weekly Process Sampling Locations



7. Final Pellet Sample

B-5-162

Attachment F

Process Sampling Locations during Stack Testing

- Spiral Classifier (overflow)
 Tails Thickener (underflow) (Fine Tails)
- Tails Thickener (overflow)

 Tails Thickener (overflow)
- 6. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump
- 7. Flotation Reject Product to Tailings Thickener
- Concentrate Thickener Feed
 Concentrate Thickener (underflow)
- Concentrate Thickener (overflow)
- 11. Fluxstone Feed (from Fluxstone Slurry Storage Tank)
- 12. Binder Supply (feed to bin)
- 13. If in use, Repulper Tank (Concentrate Reclaim Feed to Acid Concentrate Slurry Tank/Fluxed Concentrate Slurry Tank)
- 14. Green Ball (balling disc discharge)
- 15. Multiclones (windboxes recycle to concentrate thickener)
- 16. Scrubber Blowdown/Scrubber Sump 17. Final Pellet Sample
- 18. Make-up water sample from plant head tank/raw water feed to plant

Attachment D

Coleraine Minerals Research Laboratory Report - Mercury Removal from Induration Off Gas by Wet Scrubbers

MAY 0 3 2002

MERCURY REMOVAL FROM INDURATION OFF GAS BY WET SCRUBBERS

COLERAINE MINERALS RESEARCH LABORATORY

November 15, 2001

Blair R. Bennei

Program Director - Minerals

Approved by

David W. Hendrickson/ Director

Coleraine Minerals Research Laboratory

Project #5601403 CMRL/TR-01-19 NRRI/TR-2001/37

University of Minnesota Duluth Natural Resources Research Institute 5013 Miller Trunk Highway Duluth, Minnesota 55811 Coleraine Minerals Research Laboratory
P O Box 188
One Gayley Avenue
Coleraine, Minnesota 55722

Mercury Removal from Induration Off Gas by Wet Scrubbers

SUMMARY

During the induration of taconite pellets, green balls are heated to greater than 2200°F. A previous study indicated that greater than 90 percent of the mercury contained in the green balls is volatilized during induration. Some of the volatilized mercury is removed by the gas scrubbers. Studies²⁻⁴ on coal burning power plants indicate that the mercury in flue gas is present as either elemental mercury or as divalent mercury. In power plant scrubbers, the majority of the divalent mercury is removed, but very little elemental mercury is removed by the scrubbers. The particulate matter in the off gas appears to remove a significant portion of the mercury that is removed. It is thought that the off gas chemistry and the scrubber water chemistry could affect the removal of To determine if the scrubber water chemistry could affect the removal of mercury from taconite pelletizing off gases, the Minnesota Department of Natural Resources' (MNDNR) environmental cooperative funded a study to sample around the scrubbers from the plants equipped with wet scrubbers to determine if water chemistry affects mercury removal. Another objective of the study was to determine the role of solids entrained in the off gases and removed by the scrubbers. These solids are returned to the process. If they were discarded, then some amount of mercury could be eliminated from the system, but at a cost of iron units.

Samples were obtained from Minntac, EVTAC, Minorca, Hibtac and Northshore. With the exception of the mercury analyses, all chemical analyses were conducted at Coleraine. Mercury analyses were run by Frontier Geosciences of Seattle, Washington.

While the various plants have different scrubber configurations and scrubber water chemistries, these differences appeared to have no significant affect on mercury removal. Accurate mercury balances were not possible because mercury content in the fired pellets from all of the plants was below the detection limit of about 0.6 parts per billion (ppb). Solids entrained in the off gases removed significantly more mercury than the scrubber water. Of the mercury removed in the scrubber systems, the amount contained in the solids ranged from 75 percent at Northshore to greater than 99 percent at EVTAC. The minus 10 micron fraction of the solids in the off gases appears to remove the most mercury. Analysis of the solids that are continually recycled to the Minorca wet scrubbers indicates a high capacity for mercury removal (the solids assayed over 3000 ppb mercury). This result indicates that the mercury should remain with the solids and should not leach if the solids were sent to the tailings basin.

INTRODUCTION

During the pelletizing process, the majority of mercury contained in the green balls is vaporized and leaves with the off gases. Wet scrubbers remove some of this mercury. Mercury that is removed is either dissolved in the water or is associated with the solids entrained in the off gas stream. It is generally assumed that mercury removed by the scrubber water and solids is present as divalent mercury and mercury that is not removed by the scrubbers is present as elemental mercury. Based on research on coal fired power plant emissions, most of the removed mercury is associated with the solids that are generally recovered in the electrostatic precipitators and that the amount of carbon, chlorine, and sulfur in the off gas can affect the amount of mercury removed. It is possible that other elements in the indurating off gas may also affect the amount of mercury removed by the wet scrubbers.

In most cases, the solids contained in the scrubber water are recovered and are recycled to green ball feed. This practice tends to increase the amount of mercury in the green balls. One of the objectives of this program is to determine how much mercury is being recycled and how much iron would be lost if the material was wasted instead of recycled.

The MNDNR's environmental cooperative funded a study by the Coleraine Minerals Research Laboratory (CMRL) to sample the various plants and conduct chemical analyses of the various streams. Sampling was conducted at the five operating taconite plants (Hibtac, Minntac, EVTAC, Minorca, and Northshore) that are equipped with some type of wet scrubbers on the indurating off gases. The main objective of the sampling program was to determine if scrubber water chemistry could be related to mercury removal by the wet scrubbers. The test program was not designed to provide a mercury balance around the indurating plant. Data contained in this report cannot be used to accurately calculate the amount of mercury being released to the atmosphere by any of the sampled plants.

SAMPLING PROGRAM

Grab samples were taken of the materials entering the system: green balls, solid fuel (if any), and scrubber inlet water; and exiting the system: fired pellets, scrubber water out, and multiclone solids (if any). Sampling devices were cleaned with dilute acid and distilled water prior to the sampling. Each of the sampling devices were purged with the material being sampled. All samples were brought to the Coleraine Minerals Research Laboratory (CMRL) for filtering and chemical analysis. (Samples from Hibtac were from a previous sampling program conducted by Hibtac in October of 1998.) All liquid samples were filtered through 0.45 micron paper, with the solids content being measured. All solids samples were dried, with the moisture content being recorded. All solids processing equipment was thoroughly cleaned and was purged with the material being processed (when possible). Splits of the solids and water samples were sent to Frontier Geosciences in Seattle for mercury analysis. All remaining analyses were run at CMRL by ICP.

OFF GAS TREATMENT SCHEMES

Each of the plants has slightly different wet scrubbers. Minntac has the simplest flowsheet, Figure 1, where the exhaust from the grate-kiln system is sent to one scrubber per line, fresh water is added to the scrubber, and the water with entrained solids is removed and sent to a thickener. Both the water and solids are eventually recycled to the process, but nothing is recycled to the scrubber.

EVTAC also employs the grate-kiln system, but has a more complicated scrubber flowsheet, as shown schematically in Figure 2. EVTAC's system consists of a scrubber and a de-misting tank. Fresh water is added through slats in the top of the de-misting tank. That water plus the water and solids from the scrubber are sent to a thickener. The thickener overflow is recycled to the scrubber. Thickener underflow is sent back to the process. In steady state, the water added at the slats (slat water) is equal to the amount of water removed with the thickener underflow.

Minorca has a traveling grate machine with two separate gas streams going to the scrubber as shown in Figure 3. The first (hood exhaust) goes directly to the scrubber, while the second and larger stream (window exhaust) goes to a series of "multi clones" to remove most of the entrained dust. Gas from the multi clones goes to the scrubber. Water to the scrubbers is continuously recycled, with fresh water being added to maintain sump level.

Hibtac is similar to Minorca in that it has a traveling grate and a dry dust removal step prior to the wet scrubbers, as shown schematically in Figure 4. It is not known if all of the off gas passes through the dry dust removal section, but all of the off gas is treated by the wet scrubbers. Scrubber water is not recycled directly to the scrubber.

Northshore also employs a traveling grate machine and has two off gas streams, as shown in Figure 5. Unlike Minorca and Hibtac, there is no dust removal prior to the scrubbers and there are separate scrubbers for each exhaust stream. Fresh water is added to the scrubbers with no direct recycle.

WATER CHEMISTRY

Chemical analyses for the water samples taken in the test program are given in Table I. All of the analyses are in parts per million (ppm) except for the mercury analyses, which are in nanograms per liter (ng/l) or parts per trillion (ppt).

For Minntac there were only two water samples; scrubber water in and scrubber water out. Looking at the Minntac analysis in Table I, the mercury results appear to be wrong in that the scrubber in water has more mercury than the water out. Previous work showed a mercury content of 2.05 ng/l in the water in and 491.55 ng/l in the scrubber out water. The scrubber in water analysis was a quality control sample for Frontier, which means that it was run in duplicate and was run with a known addition. The duplicate analyses were 74.5 and 83.3 ng/l for an average of 78.9 ng/l report in Table I. Frontier's reports for all samples with the quality control results are given in Appendix I. Since the duplicate analyses were reasonably close, it appears that the mercury analysis of the

scrubber in water is truly the mercury content on the sample sent to Frontier. It is possible that the scrubber out sample was accidentally poured into both the scrubber in and scrubber out bottles that were sent to Frontier. Based on the cation and anion analyses for the Minntac waters (Table I), samples were taken of the scrubber in and scrubber out waters

For EVTAC there were five water samples as shown in Table I. EVTAC has two thickeners for the scrubbers; therefore, there is an overflow and underflow sample for each thickener as well as the makeup water (slat spray water). Again, there appears to be a problem with the mercury analyses. In this case, thickener overflow 2A appears to be too high in mercury. The other analyses look appropriate.

For Northshore there were also five water samples (Table I), since both lines 11 and 12 were sampled. With the exception of the Waste Gas Water from line 11, the analyses look consistent. The reason for the low cation and anion concentrations in line 11 waste gas water is unknown. Northshore has the most unique water chemistry due to the addition of soda ash to soften the water.

Only two water samples were obtained from Minorca - the recycled scrubber water and the make up water. As would be expected from recycling the water, the Minorca scrubber water had the highest mercury content of 112 ppt.

Hibtac supplied three water samples for analyses. It appears that only the make-up water and the scrubber water are germane to this study.

As mentioned above, some sampling of scrubber water was conducted as part of a previous study in 1997¹. Mercury analyses of those waters were significantly different from the current study, as shown in Table II. For Minntac and Hibtac, there was a large decrease in the mercury content of the water coming out of the scrubber, while the mercury concentration in the water from the Northshore scrubbers increased, especially line 11: For Hibtac and Northshore, the mercury content in the scrubber input water had increased. The 1997 mercury analyses were also conducted by Frontier Geosciences.

SOLIDS CHEMISTRY

Solids from the sampling program were analyzed for mercury by Frontier. The samples were analyzed at Coleraine for total iron, ferrous iron, silica, CaO, MgO, alumina, sulfur and carbon (coal sample only). Results are given in Table III. Frontier Geosciences' reports of mercury analysis for the solid samples are included in Appendix I. Values in Table III are in dry weight percent except for the mercury, which are in ng/g (ppb).

For Minntac there were four solid samples: the greenballs, fired pellets, solids contained in the scrubber discharge, and coal. Fired pellet mercury content was below the detection limit of 0.6 ppb. For Minorca there were also four solid samples: the greenballs, fired pellets, multiclone dust, and the solids in the recycling scrubber water. As with the Minntac sample, the fired pellet mercury content was below detection limits. For EVTAC there were 7 solid samples: greenballs, fired pellets, coal, two thickener underflows (A & B), and two thickener overflows. Again, the fired pellets were below the mercury detection limits (0.69 ppb in this case). Hibtac provided 7 solid samples: filtercake, concentrate, greenballs, limestone, bentonite, fired pellets and multi-tube dust.

Unfortunately, Hibtac did not supply a sample of the solids in the scrubber discharge. Again, the fired pellets were below the mercury detection limits of 0.69 ppb. For Northshore there were eight samples (four per line): greenballs, fired pellets, solids from the hood exhaust scrubber and solids from the waste gas scrubber. Line 12 fired pellets were reported to contain 1.85 ppb mercury, which is most likely a mistake. Line 11 fired pellets were below the detection limit as were all the other fired pellet samples from the other plants.

Comparing the greenball mercury analysis with the 1997 study indicated essentially the same mercury concentration for both studies, as shown in Table IV.

Part of the work on the solids included screening selected samples on a 10 micron screen and having mercury analyses run on the size fractions. Samples screened were the two thickener underflow samples from EVTAC and the multitube dust from Hibtac. Results are given in Table V. As was expected, there was very little minus 10 micron material in the multitube dust. About 30 percent of the thickener underflow solids was minus 10 micron. Due to the relatively small amount of minus 10 micron material, no analysis was performed on that fraction. Mercury concentration in the minus 10 micron fraction and the weight split. Mercury was concentrated in the minus 10 mesh fractions. All of the minus 10 mesh material had a calculated mercury concentration of greater than 1 ppm.

ESTIMATED MERCURY BALANCES

Estimated mercury balances for the various plant scrubbers are given in Table VI. Since all of the fired pellet mercury analyses were below detection limits, a value of 0.5 ng/g (ppb) was assumed for all fired pellets. Also included in Table VI is the mercury balance if the pellets contain 0 ng/g and 0.69 ng/g (detection limit).

Minntac - For the period tested, the greenball feed rate was 450 ltph at a moisture of 9.5 percent. Coal was added at the rate of 13,000 lb/hr and the flow rate to the scrubber was 2,960 gpm. As shown in Table VI, the greenballs added 3.355 grams per hour (g/hr) of mercury to the system; the coal added 0.149 g/hr and the scrubber water added 0.0067 g/hr. (a value of 10 ng/l was assumed for the scrubber in water). Coming out of the system the fired pellets (at the assumed mercury content) removed 0.194 g/hr mercury; the solids with the scrubber water removed 0.0447 g/hr. Based on the calculated tonnage of solids with the scrubber water and the iron analysis (Table III) of the scrubber, there are about 0.832 tph of iron in the scrubber solids. Assuming 100 percent operating time (8,760 hours per year), not recycling the scrubber solids would result in about 2.2 pounds of mercury being removed from the system with a loss of about 7,300 tons of iron units per year.

Northshore - Line 11 was being fed 196 ltph of greenballs at 10.1 percent moisture with an estimated scrubber feed rate of 1,000 gpm. As shown in Table VI, this results in 0.258 g/hr mercury being added to the system with the greenballs and 0.0016 g/hr being added with the scrubber water. Coming out of the system, the fired pellets removed 0.0847 g/hr (using the assumed mercury content in the fired pellets); the combined scrubber solids removed 0.021 g/hr, and the combined scrubber water removed

0.007 g/hr. Line 12 was very similar, as shown in Table VI. As was the case for Minntac, more mercury was removed with the scrubber solids than with the scrubber water.

EVTAC - The system was being fed 600 ltph of greenballs at 9.5 percent moisture. Coal was being added at a rate of 7.52 ltph and slat water at 980 gpm. At these rates, the greenballs added 6.627 g/hr mercury; the coal added 0.0788 g/hr; and the slat water added 0.0012 g/hr as shown in Table VI. Exiting the system, the fired pellets removed 0.2619 g/hr mercury, the combined solids in the thickener underflows removed 0.7761 g/hr mercury; and the thickener underflow water removed 0.0040 g/hr mercury. Assuming 100 percent operating time, discarding the thickener underflow solids would remove 14.99 pounds of mercury a year from the system with a loss of about 5,423 tons of iron units.

Minorca - Since there was no estimate of the amount of dust from the multiclone, there was no way to estimate a mercury balance. It is of interest to note the high mercury concentration (3.179 ppm) in the solids recycled with the scrubber. This indicates that magnetite dust has a high capacity for removing mercury and would suggest that any scrubber solids sent to the tailing basin would not be leached by the water.

<u>Hibtac</u> - As with Minorca, there was no estimate of the rate of multitube dust production. That, combined with a lack of the solids contained with the scrubber water, precluded the calculation of a mercury balance.

CONCLUSIONS

Sampling around the scrubbers at five taconite plants has indicated that the majority of the mercury that is removed by the various scrubbers is removed by the solids, either wet or dry. Mercury in the solids appears to be concentrated in the minus 10 micron fractions. There was no indication that the scrubber water chemistry had any affect on the amount of mercury removed by the water. Discarding the solids from the scrubber system could remove significant amounts of mercury from the system without a catastrophic loss of iron units. Results from Minorca's scrubber solids recycling indicates that the scrubber solids have a relatively high capacity for the deposition of mercury, which implies that the scrubber solids would retain the mercury in the tailings basin. Since the fired pellet mercury analyses were all below detection limits, no accurate mercury balances could be calculated. Using an assumed value of 0.5 ng/g mercury in the fired pellets, the fired pellets removed a significant amount of mercury compared to the scrubber solids and water.

REFERENCES

- 1. Engesser and Niles, Mercury Emissions for Taconite Pellet Production, Technical Report CMRL/TR-97-11, September 1997.
- 2. Meij, Vredenbregt, and Winkel, The Fate of Mercury in Coal-Fired Power Plants, The A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control, Chicago, IL, August, 2001.
- 3. Gibb, Clarke, and Mehta, The Fate of Coal Mercury During Combustion, Fuel Processing Technology, Vol. 65-66, pp 365-377, 2000.
- Galbreath and Zygarlicke, Mercury Speciation in Coal Combustion and Gasification Flue Gases, Environmental Science and Technology, Vol. 30, No. 8, page 2421, 1996.

Table I - Chemical Analysis of Water Samples

						ppm					
Minntac	Hg, ng/g	pН	IC	Na	K	Ca	Mg	SO4	CI	F.	TOC
Scrub in	78.90	8.11	41.00	73.23	26.26	117.14	176.81	717.60	141.80	2.91	3.70
Scrub out	66.50	6.62	5.60	74.57	27.47	135.63	180.27	878.10	163.80	8.00	2.80
				2%	$L_{\mathcal{D}}/c$	15%	2%	ンジス	1690	1757	
Inland					.*	1270	2 10	, .	707 G	1. 5. 6	
Process water	5.67	7.88	37.10	41.41	9.72	32.69	52.46	74.70	82.00	5.79	3.80
Scrub out	112.00	4.57	1.40	52.07	14.61	62.03	73.63	154.20	205.70	47.50	2.80
Northshore											
Feed Water	7.05	9.71	36.90	738.50	53.33	22.57	6.08	426.30	395.00	35.80	6.70
Hood Exhaust 11	32.80	7.65	30.30	780.60	56.01	24.32	7.12	531.60	436.30	130.90	6.80
Hood Exhaust 12	15.70	7.54	31.40	808.30	53.01	23.42	7.00	504.30	458.30	136.30	7.80
Waste Gas Wat 11	29.10	7.81	34.20	441.40	33.70	19.65	7.17	279.30	266.70	68.50	5.00
Waste Gas Wat 12	15.70	7.79	44.60	851.30	63.77	25.29	7.34	518.10	487.20	130.90	9.10
Evtac											
Thick unflo 2A	15.48	4.44	2.76	103.38	20.83	175.16	67.73	752.10	79.50	31.70	5.12
Thick oflo 2A	82.22	3.92	2.96	103.50	20.26	168.11	65.29	766.50	84.10	45.70	5.81
Thick unflo 2B	18.12	4.49	2.61	100.26	18.82	146.36	67.62	704.10	76.00	38.80	5.44
Thick oflo 2B	24.35	4.53	3.32	98.92	18.69	136.31	65.30	668.40	78.20	40.40	5.17
Slat Spray Water	5.25	7.25	29.24	74.30	10.89	44.57	55.74	246.60	55.00	12.00	6.41
Hibtac	•										
Conc water	8.61	7.99	90.89	58.75	10.80	74.79	128.89	265.20	64.20	8.30	7.92
Make-up water	5.37	8.00	40.79	58.31	16.26	40.32	74.58	204.90	57.20	9.80	3.62
Scrub water	11.95	7.63	22.79	58.95	16.94	41.23	74.77	267.60	62.30	18.00	2.84

Table II - Comparison of Mercury Content in Water Samples From 1997 and Current Study.

	•		Hg, ng/l	
Minntac	•	1997	Current	Current
	Scrubber in	2.05	78.9	
	Scrubber out	491.55	66.5	
Hibtac				
•	Scrubber in	2.81	5.37	
	Scrubber out	63.35	11.95	
Northshore			Line 11	Line 12
	Scrubbers in	2.21	7.05	7.05
	Hood Exhaust out	6.61	32.8	15.7
	Waste Gas out	10.87	29.1	15.7

Table III - Chemical Analyses of Solid Samples

				ı	Percent	- ampioo				
F.1. 6	Hg, ng/g	Fe	SiO2	CaO	MgO	Al2O3	Sat Mag	Fe+2	S	С
Evtac Greenball	12.00	66.60	6.14	0.80	0.48	0.10	66.53	22.92	0.016	•
Evtac Fired Pellet	<0.69	64.90	6.18	0.72	0.48	0.10	0.58	0.79	0.003	
Evtac Coal	10.30	0.09	2.01			0.95	•	•	2.980	74.63
Evtac Thickner Unflow 2A	527.00	55.00	17.56	0.98	1.25	0.74	39.56	14.50	0.064	_
Evtac Thickner Oflow 2A	233.00	49.60	23.64	0.85	1.68	1.08	28.53	11.89	0.083	
Evtac Thickner Unflow 2B	367.00	57.20	15.53	0.87	1.06	0.53	43.86	14.93	0.099	
Evtac Thickner Oflow 2B	826.00	48.30	24.21	1.31	1.81	0.90	28.47	11.83	0.074	
Hibtac Filter Cake	13.90	67.90	4.17	0.31	0.30	0.07	68.90	22.88	0.015	
Hibtac Concentrate	18.20	68.40	3.97	0.16	0.28	0.05	68.12	23.24	0.015	
Hibtac Limestone	3.72	0.02	0.46	55.05	0.69	0.11	00.12	20.24	0.003	•
Hibtac Multi-tube Dust	154.00	66.90	4.56	0.28	0.32	0.13	38.01	12.58	0.203	
Hibtac Greenball	16.70	67.60	4.69	0.31	0.30	0.18	68.67	21.39	0.020	
Hibtac Bentonite	26.40	3.03	61.47	0.09	1.91	17.60	00.07	21.00	0.022	
Hibtac Fired Pellet	<0.69	66.20	4.62	0.31	0.33	0.17	1.99	1.09	0.000	
Northalana 187, 4 o										
Northshore Waste Gas 11	211.00	61.20	5.94	3.80	1.25	0.35	52.76	16.49	0.030	
Northshore Waste Gas 12	110.00	62.20	4.34	3.96	1.12	0.32	52.74	16.40	0.022	
Northshore Hood Exhaust 11	26.00	63.20	3.92	3.68	1.02	0.33	56.68	18.53	0.030	
Northshore Hood Exhaust 12	26.40	62.70	4.56	3.72	1.04	0.35	54.26	17.01	0.031	
Northshore Greenball 11	1.44	63.20	3.86	3.85	1.03	0.28	63.33	20.73	0.013	
Northshore Greenball 12	1.10	63.10	4.06	3.85	1.04	0.32	62.81	20.29	0.018	
Northshore Fired Pellet 11	<0.69	63.30	4.42	3.91	1.05	0.34	2.01	0.21	0.011	
Northshore Fired Pellet 12	1.85	63.20	4.25	3.94	1.04	0.33	1.76	0.18	0.014	
Minntac greenball	8.10	62.90	4.48	3.27	1 10	0.40	00.00	04.00		
Minntac fired pellet	<0.6	63.60	4.64	5.27 5.58	1.12	0.18	62.88	21.00	0.016	
Minntac scrubber out	87.00	64.00	4.57	2.19	1.13	0.20	1.45	0.20	0.014	•
Minntac coal	25.30	0.20	0.86	2.19	1.10	0.25	52.50	15.20	0.015	
		0.20	0.00			0.74			0.327	66.39
Minorca scrubber solids	3179.00	55.40	14.13	2.88	1.78	0.22	10 OF	4.00	0.050	
Minorca multiclone dust	193.00	49.40	5.18	9.63	4.94	0.22	13.85	4.38	0.050	
Minorca green balls	7.80	61.10	4.29	4.35	1.39		13.47	4.26	0.058	
Minorca fired pellet	<0.6	62.60	4.38	4.52	1.39	0.15	61.00	20.99	0.014	
			,	7.52	1.40	0.15	6.44	1.47	0.004	

Table IV - Comparison of Mercury Content in Greenballs and Fired Pellets From 1997 and Current Study.

			Hg, ng/g	
Minntac		1997	Current	Current
	Greenballs	7.5	8.1	
	Fired Pellets	0.65	<0.60	
Hibtac				
	Greenballs	16.2	16.7	
	Fired Pellets	0.94	< 0.69	
Northshore			Line 11	Line 12
	Greenballs	0.83	1.44	1.1
	Fired Pellets	0.29	<0.69	<0.69

Table V - Distribution of Mercury Between Plus and Minus 10 Micron Fractions

EVTAC	Sample	Wt, g	Wt %	Hg, ng/g	Hg Dist, %
Un'flow 2A	+10 microns	2.75	66.91	38.8	4.93
	-10 microns	1.36	33.09	1514.2	95.07
	head			527.0	
Un'flow 2B	+10 microns	4.70	73.90	48.6	9.79
01111017 ==	-10 microns	1.66	26.10	1268.5	90.21
•	head			367.0	
Hibtac					
Multitube	+10 microns	5.40	93.43	86.8	52.66
Dust	-10 microns	0.38	6.57	1108.9	47.34
	head			154.0	

Table VI - Estimated Mercury Balances for the Various Plants

Minntac	IN Greenball Coal Scrubber water Total in OUT	Hg Analysis 8.1 ng/g 25.3 ng/g 10 ng/l	Flow Rate 450 Itph 13000 Ib/hr 2960 gpm	Total Hg g/hr 3.3547 0.1493 0.0067 3.5107	% solids 90.50
	Pellets Scrubber solids Scrubber water Total out	0.5 ng/g 87 ng/g 66.5 ng/l	382.5 ltph 1.33 tph 2960 gpm	0.1945 0.1150 0.0447 0.3542	0.18
Northshore					
Line 11	IN Green Balls Scrubber water Total in OUT	1.44 ng/g 7.05 ng/l	196 lpth 1000 gpm	0.2583 0.0016 0.2599	89.90
	Pellets	0.5 ng/g	166.6 ltph	0.0847	
	Waste Gas Solids	211 ng/g	0.08 tph	0.0171	0.08
	Waste Gas water Exhaust Solids Exhaust water Total out	29.1 ng/l 26 ng/g 32.8 ng/l	400 gpm 0.15 tph 600 gpm	0.0026 0.0039 0.0045 0.1129	0.10
Line 12	IN				
-	Green Balls Scrubber water Total in OUT	1.1 ng/g 7.05 ng/l	184 ltph 1000 gpm	0.1852 0.0016 0.1869	90.00
	Pellets Waste Gas Solids Waste Gas water	0.5 ng/g 110 ng/g 15.7 ng/l	156.4 ltph 0.09 tph 400 gpm	0.0795 0.0100 0.0014	0.09
	Exhaust Solids Exhaust water Total out	26.4 ng/g 15.7 ng/l	0.09 tph 600 gpm	0.0024 0.0021 0.0955	0.06
EVTAC	IN Green balls Slat water Coal Total in	12 ng/g 5.25 ng/l 10.3 ng/g	600 lpth 980 gpm 7.52 ltph	6.6265 0.0012 0.0788 6.7064	90.50
	OUT Fired pellets Underflow water Underflow solids a Underflow solids b Total out	0.5 ng/g 18.12 ng/l 527 ng/g 826 ng/g	515 ltph 980 gpm 0.49 tph 0.61 tph	0.2619 0.0040 0.2621 0.5140 1.0420	0.40 0.50

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109

phone: (206) 622-6960 fax: (206) 622-6870 email: nicolasb@frontier.wa.com

Sample	Sample Dry Total Hg, ng		Ig, ng/g*
Identification	Fraction	wet wt basis	dry wt basis
Evtac Green Ball	1.000	12.0	12.0
Evtac Final Pellet	0.999	ND(<0.69)	ND(<0.69)
Evtac Coal	0.998	10.3	10.3
Evtac Thickener Un'flow 2A	0.999	526	527
Evtac Thickener O'flow 2A	0.998	233	233
Evtac Thickener Un'flow 2B	0.997	366	367
Evtac Thickener O'flow 2B	0.996	823	826
Hibtac Filter Cake	0.998	13.9	13.9
Hibtac Concentrate	0.999	18.2	18.2
Hibtac Limestone	0.999	3.72	3.72
Hibtac Mult-tube Dust	1.000	154	154
Hibtac Green Ball	1.000	16.7	16.7
Hibtac Bentonite	0.980	25.9	26.4
Hibtac Fired Pellet	1.000	ND(<0.69)	ND(<0.69)
North Shore Waste Gas Line 11	0.999	211	211
North Shore Waste Gas Line 12	0.999	110	110
North Shore Hood Exhaust Line 11	0.998	25.9	26.0
North Shore Hood Exhaust Line 12	1.000	26.4	26.4
North Shore Green Ball Line 11	0.999	1.44	• 1.44
North Shore Green Ball Line 12	1.000	1.10	1.10
North Shore Fired Pellet Line 11	0.999	ND(<0.69)	ND(<0.69)
North Shore Fired Pellet Line 12	1.000	1.85	1.85

^{*}Blank corrected

ND-less than estimated MDL

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109

phone: (206) 622-6960 fax: (206) 622-6870 email: nicolasb@frontier.wa.com

Sample	Dry	Total F	Ig, ng/g
Identification	Fraction	wet wt basis	dry wt basis

Method Blanks

Blank-1	0.89
Blank-2	1.96ª
Blank-3	0.49
Blank-4	0.49
Mean method blank	0.62
Estimated MDL	0.69

^{*}Excluded from calcuation of mean method blank

Standard Reference Materials

NIST-2709	1,529
recovery	109.2%
reference value	1,400

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109

phone: (206) 622-6960 fax: (206) 622-6870 email: nicolasb@frontier.wa.co
--

Sample			g, ng/g*	
Identification	Fraction	wet wt basis	dry wt basis	
trix Duplicates				
North Shore Hood Exhaust Line 11		25.89		
North Shore Hood Exhaust Line 11 MD		25.85		
Mean		25.87		
RPD		0.2%		
North Shore Fired Pellet Line 11		-0.01		
North Shore Fired Pellet Line 11 MD		1.32		
Mean		0.66		
RPD		203.1%		
Evtac Green Ball		11.98		
Evtac Green Ball MD		11.95		
Mean		11.97		
RPD		0.3%		

RPD	5.4%	
recovery	99.7%	·
net	9,867	
spiking level	9,901	
North Shore Fired Pellet Line 11 MSD	9,868	
recovery	105.2%	
net	9,979	
spiking level	9,488	
North Shore Fired Pellet Line 11 MS	9,980	

^{*}Blank corrected

Total Mercury in Process Water (University of Minnesota)

analyzed by

Frontier Geosciences R&C 414 Pontius North, Suite B Seattle WA 98109 phone: 206-622-6960 fax: 206-622-6870 e-mail: nicolasb@frontier.wa.com

sample ID	description	[Hg], ng/L	comments
#8	evtac thickener u'flow water 2A	15.48	
#20	evtac concentrate water	8.61	
#12	evtac slat spray water	5.25	
#10	evtac thickener u'flow water 2B	18.12	
#22	hibtac scrubber water	11.95	
#21	hibtac makeup water	5.37	
#9	evtac thickener o'flow water 2A	82.22	
#11	evtac thickener o'flow water 2B	24.35	
B-1	blank-1	0.12	
B-2	blank-2	0.16	
B-3	blank-3	0.16	
	mean	0.15	
	estimated MDL	0.07	
#12	evtac slat spray water rep 1	4.97	
#12	evtac slat spray water rep 2	6.21	
	mean	5.25	10.5% RPD
	matrix spike level	40.40	
#8	evtac thickener u'flow water 2A + MS	53.71	94.6% recovery
#8	evtac thickener u'flow water 2A + MSD	54.77	97.3% recovery
	mean	52.24	2.1% RPD
ST-1641d	NIST certified water CRM rep 1	7,751	diluted 200x
ST-1641d	NIST certified water CRM rep 2	7,751	diluted 200x
31-10410	mean	7,403	9.4% RPD
	certified value		
	certified value	7,950	93.1% recovery
	analysis date	2-Jul-01	

Total Mercury in Process Water (University of Minnesota)

analyzed by

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B Seattle WA 98109 phone: (206) 622-6960 fax: (206) 622-6870 email: ericv@frontier.wa.com

sample ID	description	[Hg], ng/L	comments
#9	N.S. Feed Water	7.05	
#10	N.S. Hood Exhaust Water Line 11	32.8	
#11	N.S. Hood Exhaust Water Line 12	15.7	
#12	N.S. Waste Gas Water Line 11	29.1	
#13	N.S. Waste Gas Water Line 12	15.7	
B-1	blank-1	0.05	
B-2	blank-2	0.10	
B-3	blank-3	0.05	
	mean	0.06	
	estimated MDL	0.09	
#11	N.S. Hood Exhaust Water Line 12	15.72	
#11	N.S. Hood Exhaust Water Line 12	17.67	
	mean	15.89	11.7% RPD
	matrix spike level	40.40	
#11	N.S. Hood Exhaust Water Line 12 + MS	57.94	97.2% recovery
#1.1	N.S. Hood Exhaust Water Line 12+ MSD	56.11	92.9% recovery
	mean	57.03	3.2% RPD
NIST-1641d	NIST certified CRM (diluted 200x)	8,042	101.2% recovery
	certified value	7,950	
	analysis date	July 9, 2001	

Total Mercury in Taconite Mill Substances (Coleraine Minerals Research Lab)

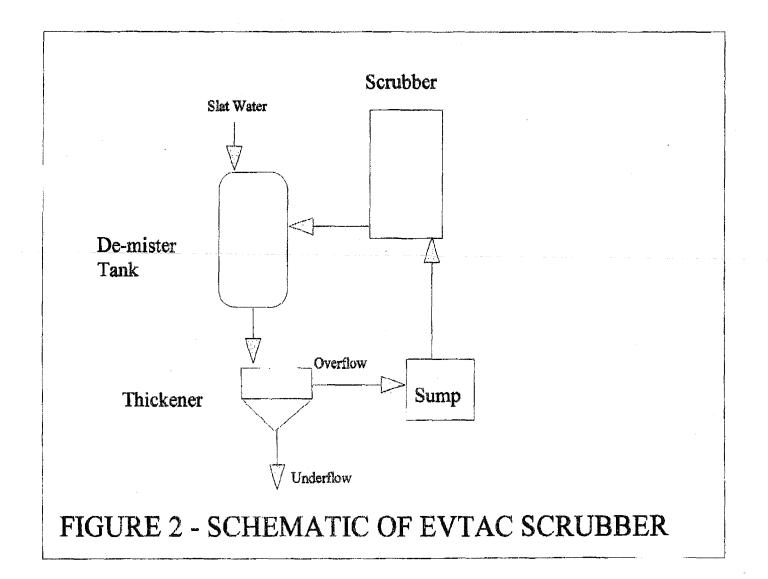
analyzed by
Frontier Geosciences Inc. 414 Pontius North, Seattle WA 98109

phone: 206-622-6960 fax: 206-622-6870 e-mail: nicolasb@frontier.wa.com

1-4		## 1 2.M		date	comment
sample #	sample description	[Hg]	units	analyzed	
#01	Mintac scrubber in water	78.9	ng/L	18-Jul-01	QC sample
#02	Mintac Scrubber out water	66.5	ng/L	18-Jul-01	
#03	Inland process water	5.67	ng/L	18-Jul-01	
#04	Inland scrubber water	112	ng/L_	18-Jul-01	
#05	Mintac greenball	8.1	ng/g	31-Aug-01	QC sample
#06	Mintac fired pellet	< 0.6	ng/g	31-Aug-01	
#07	Mintac scrubber out solids	87.0	ng/g	31-Aug-01	
#08	Mintac coal	25.3	ng/g	31-Aug-01	
#09	Inland scrubber water solids	3,179	ng/g	31-Aug-01	
#10	Inland multi-clone dust	193	ng/g	31-Aug-01	
#11	Inland fired pellet	< 0.6	ng/g	31-Aug-01	
#12	Inland greenball	7.8	ng/g	31-Aug-01	
#13	Evtac thickener 2A + 10m	38.8	ng/g	31-Aug-01	
#14	Evtac thickener 2B + 10m	48.6	ng/g	31-Aug-01	
#15	Hibtac multi-tube dust + 10m	86.8	ng/g	31-Aug-01	
	solids blank #1	0.4	ng/g	31-Aug-01	
	solids blank #2	0.4	ng/g	31-Aug-01	
	solids blank #3	0.2	ng/g	31-Aug-01	
	solids blank #4	0.8	ng/g	31-Aug-01	
	solids blank #5	0.3	ng/g	31-Aug-01	
	solids blank #6	0.2	ng/g	31-Aug-01	
	mean	0.4	ng/g	31-Aug-01	estimated MDL = 0.6 ng/g
ļ	water blank #1	0.05	ng/L	18-Jul-01	·
	water blank #2	0.05			
	water blank #3		ng/L	18-Jul-01	
		0.09	ng/L	18-Jul-01	
	mean	0.07	ng/L	18-Jul-01	estimated MDL = 0.06 ng/L

Total Mercury in Taconite Mill Substances (Coleraine Minerals Research Lab)

analyzed by


Frontier Geosciences Inc. 414 Pontius North, Seattle WA 98109 phone: 206-622-6960 fax: 206-622-6870 e-mail: nicolasb@frontier.wa.com

sample #	sample description	[Hg]	units	date analyzed	comment
#05	Mintac greenball	8.3	ng/g	31-Aug-01	
#05	Mintac greenball dup	7.8	ng/g	31-Aug-01	
	mean	8.1	ng/g	31-Aug-01	6.2% RPD
#05	Mintac greenball + 93.5 ng/g MS	97.4	ng/g	31-Aug-01	
	% recovery	95.6			
#05	Mintac greenball + 99.7 ng/g MSD	107.2	ng/g	31-Aug-01	
	% recovery	99.4			3.9% RPD
	NIST-2709 (soil)	1,367	ng/g	31-Aug-01	certified = 1,400 ng/g
	% recovery	97.6			
#01	Mintac scrubber in water	74.5	ng/L	18-Jul-01	
#01	Mintac scrubber in water dup	83.3	ng/L	18-Jul-01	
	mean	78.9	ng/L	18-Jul-01	11.2% RPD
#01	Mintac scrubber in water + 202 ng/L MS	292.5	ng/L	18-Jul-01	
	% recovery	105.7			
#01	Mintac scrubber in water + 202 ng/L MSD	279.7	ng/L	18-Jul-01	
	% recovery	99.4			6.4% RPD
	NIST-1641d (water)	7,926	ng/L	18-Jul-01	certified 7,950 ng/L @ 200x dilution
	% recovery	99.7			

Water and Solids Out

FIGURE 1 - SCHEMATIC OF MINNTAC SCRUBBER

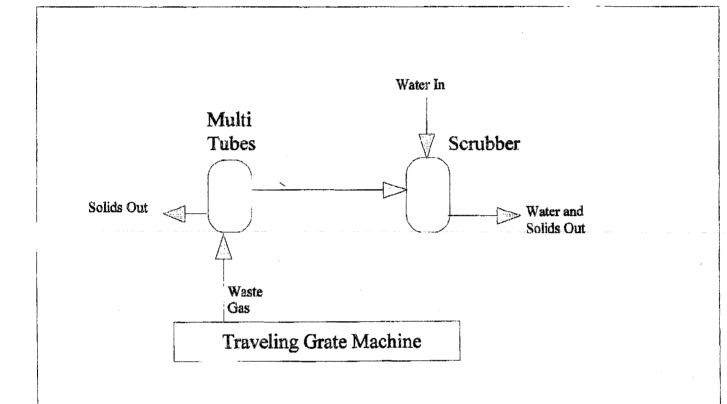


FIGURE 4 - SCHEMATIC OF HIBTAC SCRUBBER

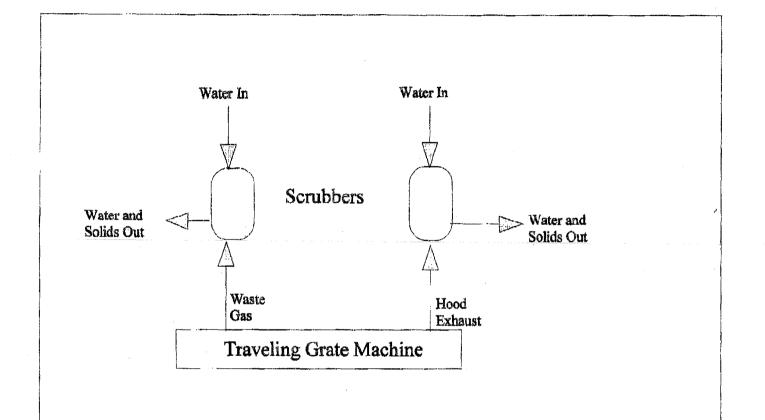


FIGURE 5 - SCHEMATIC OF NORTHSHORE SCRUBBERS

APPENDIX I - MERCURY ANALYSES REPORTS FROM FRONTIER GEOSCIENCE

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109

phone: (206) 622-6960 fax: (206) 622-6870 email: nicolasb@frontier.wa.com Sample Dry Total Hg, ng/g* Identification Fraction wet wt basis dry wt basis 12.0 12.0 Evtac Green Ball 1.000 Evtac Final Pellet 0.999 ND(<0.69) ND(<0.69) Evtac Coal 0.998 10.3 10.3 0.999 Evtac Thickener Un'flow 2A 526 527 Evtac Thickener O'flow 2A 0.998 233 233 Evtac Thickener Un'flow 2B 0.997 366 367 0.996 Evtac Thickener O'flow 2B 823 826 Hibtac Filter Cake 0.998 13.9 13.9 Hibtac Concentrate 0.999 18.2 18.2 0.999 Hibtac Limestone 3.72 3.72 Hibtac Mult-tube Dust 1.000 154 154 Hibtac Green Ball 1.000 16.7 16.7 Hibtac Bentonite 0.980 25.9 26.4 ND(<0.69) Hibtac Fired Pellet 1.000 ND(<0.69) North Shore Waste Gas Line 11 0.999 211 211 North Shore Waste Gas Line 12 0.999110 110 0.998 North Shore Hood Exhaust Line 11 25.9 26.0 North Shore Hood Exhaust Line 12 1.000 26.4 26.4 North Shore Green Ball Line 11 0.999 1.44 1.44 North Shore Green Ball Line 12 1.000 1.10 1.10 North Shore Fired Pellet Line 11 0.999 ND(<0.69) ND(<0.69) North Shore Fired Pellet Line 12 1.000 1.85 1.85

ND-less than estimated MDL

^{*}Blank corrected

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109

	pnone: (200) 022-0900 Tax: (200) (ozz-os/v emai.	i. nicolaso(@ifonne	r.wa.com
	Sample	Dry	Total H	
1	Sample	EPL J	TO SEE THE	4) "F/F
į	Identification	Fraction	wet wt basis	dry wt basis
Ì				

Method Blanks

Blank-1	0.89
. Blank-2	1.96
Blank-3	0.49
Blank-4	0.49
Mean method blank	0.62
Estimated MDL	0.69

Excluded from calcuation of mean method blank

Standard Reference Materials

NIST-2709	1,529
recovery	109.2%
reference value	1,400

analyzed by:

Frontier Geosciences R&C 414 Pontius Avenue North, Suite B, Seattle WA 98109 phone: (206) 622-6960 fax: (206) 622-6870 email: nicolasb@frontier.wa.com

phone.	200) 022°0700 10A. (200)	OZZ-OO/O CHIAH. III	corasolectionner.v	/c.tou
	Sample	Dry	Total Hg.	ng/g*
-	A	· · · · · · · · · · · · · · · · · · ·		
10	dentification	Fraction	wet wt basis	dry wt basis

Matrix Duplicates

ILIX DADUCETES		and the state of t
North Shore Hood Exhaust Line 11	25.89	
North Shore Hood Exhaust Line 11 MD	25.85	
Mean	25.87	
RPD	0.2%	
North Shore Fired Pellet Line 11	-0.01	
North Shore Fired Pellet Line 11 MD	1.32	
Mean	0.66	
RPD	203.1%	
Evtac Green Ball	11.98	
Evtac Green Ball MD	11.95	
Mean	11.97	
RPD	0.3%	

Matrix Spikes

North Shore Fired Pellet Line 11 MS	9,980	
spiking level	9,488	
net	9,979	
recovery	105.2%	
North Shore Fired Pellet Line 11 MSD	9,868	
spiking level	9,901	
net	9,867	
recovery	99.7%	
RPD	5.4%	

^{*}Blank corrected

	Total Mercury in Process Water	r (University	of Minnesota)
	analyzed		
	Frontier Geosciences R&C 414 Pontius		
	phone: 206-622-6960 fax: 206-622-687	0_e-mall: nicolasi	b@frontier.wa.com
			anni paramenta di Amerika di Amer
sample ID	description	[Hg], ng/L	comments
#8	evtac thickener u'flow water 2A	15.48	
#20	evtac concentrate water	8.61	
#12	evtac slat spray water	5.25	
#10	evtac thickener u'flow water 2B	18.12	
#22_	hibtac scrubber water	11.95	
#21	hibtac makeup water	5.37	
#9	evtac thickener o'flow water 2A	82.22	
#11	evtac thickener o'flow water 2B	24.35	
B-1	blank-1	0.12	
B-2	blank-2	0.16	
B-3	blank-3	0.16	The state of the s
	mean	0.15	
	estimated MDL	0.07	
#12	evtac slat spray water rep 1	4.97	
#12	evtac slat spray water rep 2	6.21	
	mean	5,25	10.5% RPD
	matrix spike level	40.40	
#8	evtac thickener u'flow water 2A + MS	53.71	94.6% recovery
#8	evtac thickener u'flow water 2A + MSD	54,77	97.3% recovery
	mean	52.24	2.1% RPD
NIST-1641d	NIST certified water CRM rep 1	7,751	diluted 200x
NIST-1641d	NIST certified water CRM rep 2	7,054	diluted 200x
	mean	7,403	9.4% RPD
	certified value	7,950	93.1% recovery
	analysis date	2-Jul-01	

Total Mercury in Process Water (University of Minnesota)

analyzed by
Frontier Geosciences R&C 414 Pontius Avenue North, Suite B Seattle WA 98109 phone: (206) 622-6960 fax: (206) 622-6870 email: ericv@frontier.wa.com

sample ID	description	[Hg], ng/L	comments
#9	N.S. Feed Water	7.05	
#10	N.S. Hood Exhaust Water Line 11	32.8	
#11	N.S. Hood Exhaust Water Line 12	15.7	
#12	N.S. Waste Gas Water Line 11	29.1	
#13	N.S. Waste Gas Water Line 12	15.7	
B-1	biank-1	0.05	
B-2	blank-2	0.10	
B-3	blank-3	0.05	
	mean	0.06	
A CONTRACTOR OF THE PARTY OF TH	estimated MDL	0.09	
		The state of the s	
#11	N.S. Hood Exhaust Water Line 12	15.72	
#11	N.S. Hood Exhaust Water Line 12	17.67	
	mean	15.89	11.7% RPD
	matrix spike level	40.40	
#11	N.S. Hood Exhaust Water Line 12 + MS	57.94	97.2% recovery
#11	N.S. Hood Exhaust Water Line 12+ MSD	56.11	92.9% recovery
	mean	57.03	3.2% RPD
NIST-1641d	NIST certified CRM (diluted 200x)	8,042	101.2% recovery
	certified value	7,950	
	enalysis date	July 9, 2001	
	CHAITII VAR	1 441 4, 2001	

Total Mercury in Taconite Mill Substances (Coleraine Minerals Research Lab)

analyzed by
Frontier Geosciences Inc. 414 Pontius North, Seattle WA 98109
phone: 206-622-6960 fax: 206-622-6870 e-mail: nicolasb@frontier.wa.com

				date	
sample #	sample description	[Hg]	units	analyzed	comment
#01	Mintac scrubber in water	78.9	ng/L	18-Jul-01	QC sample
#02	Mintac Scrubber out water	66.5	ng/L	18-Jul-01	
#03	Inland process water	5.67	ng/L	18-Jul-01	
#04	Inland scrubber water	112	ng/L	18-Jul-01	
#05	Mintac greenball	8.1	ng/g	31-Aug-01	QC sample
#06	Mintac fired pellet	< 0.6	ng/g	31-Aug-01	
#07	Mintac scrubber out solids	87.0	ng/g	31-Aug-01	
#08	Mintac coal	25.3	ng/g	31-Aug-01	
#09	Inland scrubber water solids	3,179	ng/g	31-Aug-01	
#10	Inland multi-clone dust	193	ng/g	31-Aug-01	
#11	Inland fired pellet	< 0.6	ng/g	31-Aug-01	
#12	Inland greenball	7.8	ng/g	31-Aug-01	
#13	Evtac thickener 2A + 10m	38.8	ng/g	31-Aug-01	
#14	Evtac thickener 2B + 10m	48.6	ng/g	31-Aug-01	
#15	Hibtac multi-tube dust + 10m	86.8	ng/g	31-Aug-01	
	solids blank #1	0.4	ng/g	31-Aug-01	
	solids blank #2	0.4	ng/g	31-Aug-01	
	solids blank #3	0.2	ng/g	31-Aug-01	
	solids blank #4	0.8	ng/g	31-Aug-01	
	solids blank #5	0.3	ng/g	31-Aug-01	
	solids blank #6	0.2	ng/g	31-Aug-01	
	mean	0.4	ng/g	31-Aug-01	estimated MDL = 0.6 ng/g
	water blank #1	0.05	ng/L	18-Jul-01	
	water blank #2	0.06	ng/L	18-Jul-01	
	water blank #3	0.09	ng/L	18-Jul-01	
	mean	0.07	ng/L	18-Jul-01	estimated MDL = 0.06 ng/L

Total Mercury	in	Taconite	Mill	Substances	(Coleraine	Minerals	Research	Lab)

analyzed by
Frontier Geosciences Inc. 414 Pontius North, Seattle WA 98109
phone: 206-622-6960 fax: 206-622-6870 e-mail: nicolasb@frontier.wa.com

sample #	sample description	[Hg]	units	date analyzed	comment
			1		
#05	Mintac greenball	8.3	ng/g	31-Aug-01	
#05	Mintac greenball dup	7.8	ng/g	31-Aug-01	·
	mean	8.1	ng/g	31-Aug-01	6.2% RPD
#05	Mintac greenball + 93.5 ng/g MS	97.4	ng/g	31-Aug-01	
	% recovery	95.6			
#05	Mintac greenball + 99.7 ng/g MSD	107.2	ng/g	31-Aug-01	
	% recovery	99.4			3.9% RPD
	NIST-2709 (soil)	1,367	ng/g	31-Aug-01	certified = 1,400 ng/g
	% recovery	97.6			
#01	Mintac scrubber in water	74.5	ng/L	18-Jul-01	
#01	Mintac scrubber in water dup	83.3	ng/L	18-Jul-01	
	mean	78.9	ng/L	18-Jul-01	11.2% RPD
#01	Mintac scrubber in water + 202 ng/L MS	292.5	ng/L	18-Jul-01	
	% recovery	105.7			
#01	Mintac scrubber in water + 202 ng/L MSD	279.7	ng/L	18-Jul-01	
	% recovery	99.4			6.4% RPD
	NIST-1641d (water)	7,926	ng/L	18-Jul-01	certified 7,950 ng/L @ 200x dilution
	% recovery	99.7			

Frontier Geosciences Inc.

Environmental Research & Specialty Analytical Laboratory 414 Pontius Ave N · Seattle WA 98109

Mr. Blair Benner University of Minnesota Duluth Coleraine Minerals Research Lab P.O. Box 188 Coleraine, MN 55722

July 16, 2001

Dear Mr. Blair,

Enclosed please find our results for the determination of total Hg in 22 solids samples which were received on June 25 and July 2, 2001 and 8 water samples received on July 2. Following receipt, the water samples were preserved with 1% (v/v) 0.2N BrCl and allowed to oxidze at least overnight prior to analysis.

One gram aliquots of the samples were accurately weighed into HF cleaned Teflon bombs, and 25 mL of a mixture of 2:1:1 (v/v) HNO₃ + HF + HCl were added. The samples were digested for 12 hours at 100°C. We find that even though common soils and rocks will easily go into solution in less than 4 hours under these conditions, the "conc." and "pellet" samples did not fully solubilize even after the full 12 hours. Although certain ores, including taconite and bauxite, do not fully solubilize during digestion, we have performed intercomparison exercises with thermal volatilization and aqua regia digestion which suggest that grinding to a powder, followed by HF/HNO₃/HCl digestion is never-the-less the most effective way to liberate the Hg for analysis.

After digestion, the samples were cooled and diluted to 100 mL with reagent water, and stored in their respective digestion bombs until analysis. Aliquots (2.0 mL) of the digests were analyzed using SnCl₂ reduction, purge and trapping on gold coated sand, and cold vapor atomic fluorescence spectrometry (CVAFS) detection. Overall, the analysis went very well, with excellent spike and CRM recoveries, and low blanks. One of the four blanks prepared and analyzed with the set was noted to be higher than the other three, and was excluded from calculation of the mean blank employed to blank correct the data.

206 622 6960 fax 206 622 6870 email: info@Frontier.WA.com www.FrontierGeosciences.com

Frontier Geosciences Inc.

Environmental Research & Specialty Analytical Laboratory 414 Pontius Ave N · Seattle WA 98109

July 24, 2001

Mr. Blair Benner University of Minnesota-Duluth Coleraine Minerals Research Lab P.O. Box 188 Coleraine, MN 55722

Dear Mr. Benner,

Enclosed please find our results for the determination of total mercury in process water samples received on July 2, 2001. The samples were received in good condition and immediately oxidized with 1% (v/v) 0.2N BrCl. All samples were allowed to oxidize at least overnight prior to analysis.

Aliquots of each sample were analyzed using SnCl₂ reduction, dual gold amalgamation, and cold vapor atomic fluorescence (CVAFS) detection. Analysis went very well, with no analytical problems encountered. Please feel free to contact me if you have any questions regarding these results.

Regards,

Eric J. von der Geest Analytical Chemist

206 622 6960 fax 206 622 6870 emaik: info@Frontier,WA.com www.FrontierGeosciences.com

Mr. Blair Benner University of Minnesota Duluth Coleraine Minerals Research Lab P.O. Box 188 Coleraine, MN 55722

September 9, 2001

Dear Mr. Blair,

Enclosed please find our results for the determination of total Hg in 11 taconite process solid samples and 4 waters, which were received on July 16, 2001. This is a hard copy report of the data table already forwarded to you by email on September 8, 2001.

One gram aliquots of the solid samples were accurately weighed into HF cleaned Teflon bombs, and 25 mL of a mixture of 2:1:1 (v/v) HNO₃ + HF + HCl were added. The samples were digested for 12 hours at 100°C. We find that even though common soils and rocks will easily go into solution in less than 4 hours under these conditions, some ore samples do not fully solubilize even after the full 12 hours. Although certain ores, including taconite and bauxite, do not fully solubilize during digestion, we have performed intercomparison exercises with thermal volatilization and aqua regia digestion which suggest that grinding to a powder, followed by HF/HNO₃/HCl digestion is never-the-less the most effective way to liberate the Hg for analysis. After digestion, the samples were cooled and diluted to 100 mL with reagent water, and stored in their respective digestion bombs until analysis. Water samples were digested by the addition of 1% (v/v) of 0.2 N BrCl in 12N HCl to the original sample bottle, and allowing to sit over night at room temperature prior to analysis.

Aliquots (0.1-2.0 mL of the solids digests, or 5-50 mL of the waters) were analyzed using SnCl₂ reduction, purge and trapping on gold coated sand, and cold vapor atomic fluorescence spectrometry (CVAFS) detection. Overall, the analysis went very well, with excellent spike and CRM recoveries, and low

blanks. One sample (Inland scrubber water solids) went off scale, but was reanalyzed on a different analyzer on the same day.

Please feel free to call or e-mail me if you have any questions, or are in need of additional analytical or contract research services.

Best Wishes,

Nicolas Bloom

Sr. Research Scientist

11, 0

Attachment E
Nol-Tec Report

Sorb - N - Ject® Technology

www.nol-tec.com

August 7, 2017

PURPOSE

Nol-Tec Systems supplied injection Activated Carbon Injection (ACI) test at ArcelorMittal Minorca Mine from January to April, 2017. The purpose of the injection was mercury removal.

TESTING EQUIPMENT

PAC Injection System

The carbon was supplied in super sacks weighing 1000 lbs each. The supersacks are positioned using a fork lift and loaded into the system using an electric hoist to an unloading platform. Mechanical agitators are installed on this platform to assist in getting material out of the bags.

The material falls out of the bag into a confinement hopper. The bottom of the confinement hopper has aeration jets installed on it to influence material flow. Material flows out of the confinement hopper into a loss in weight feeder hopper through an air operated butterfly valve.

Once in the feeder hopper, a screw feeder controlling the injection rate feeds into a drop through rotary airlock. Both the feeder hopper and the airlock have dust filters mounted on top of them.

Please see Appendix A for list of components. Please see Appendix B for photos of the injection system.

Carbon Convey/ Injection Set up

The discharged material fell into a 4 inch convey line. The material in the convey line was carried using a 40 HP blower package. The 4 inch convey line went from the bulk bag unloader to the splitter. From here, the line splits into three (3) 1-1/2" hoses connected to 36" length injection lances.

Running/Injection Parameters Data

Through the course of the testing, the bulk bag unloader data collected includes:

- Required lbs (ReqLbs) rate requested from the DCS based on stack air flow.
- Actual lbs (ActLbs) The actual injection rate recorded.
- Blower Speed (BlowerSpd) percentage associated with total speed (100% possible) of the variable frequency drive controlling the blower.
- Blower Pressure (BlowerPress) The system backpressure seen at the blower.
- Feeder Speed Percent (FdrSpdPct) percentage associated with total speed (100% possible) of the variable frequency drive controlling the screw feeder.

Please see Appendix C for rate data collected.

APPENDIX

Appendix A: Bulk Bag Unloader Equipment Components

1. One (1) Portable free standing bulk bag unloader, welded mild steel construction, having a maximum weight capacity of 4,000 lbs. for the storage of material at the unloader. The portable bulk bag unloader is complete with the following features:

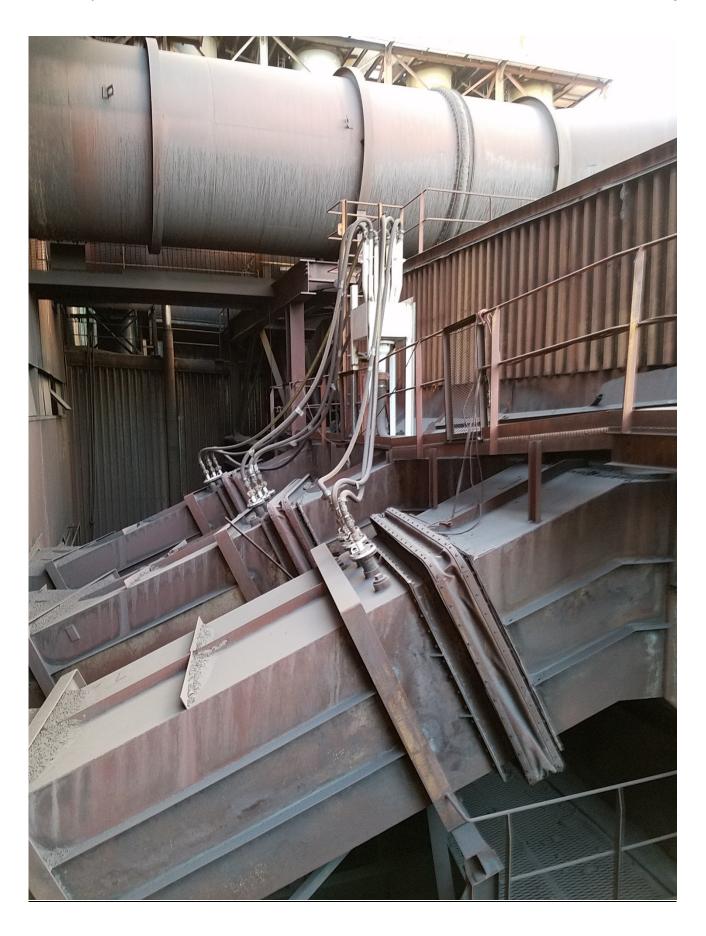
- Need for a crane to raise or lower the bulk bag unloader.
- Bulk bag unloader upper section assembly consisting of one (1) hoist with a 2-ton certified capacity, mild steel construction. Includes frame and one (1) beam, bag spreader, electric hoist with power trolley, chain container, pendant controls and festooning.
- One (1) Bulk bag pneumatic agitator systems, to assist in material flow during the discharge of the bulk bags. Agitator system is of mild steel construction and includes pneumatic operated massaging bars, with solenoid valves.
- One (1) Surge Hopper, mild steel construction with 60° discharge cone and 8" air-operated "re-fill" butterfly valve.
- One (1) Single cartridge dust filter, Model 279, 9" dia., mild steel fabricated for mounting direct to hopper top. Complete with 30 square feet of cartridge filter media, 36" long top removal mild steel cartridge, ½" dia. air hose. (Plumbing shipped loose for field assembly.) Includes solenoid valve, ½", 2-way, 24-volt.
- Exterior painted finish is enamel. Interior is unpainted.

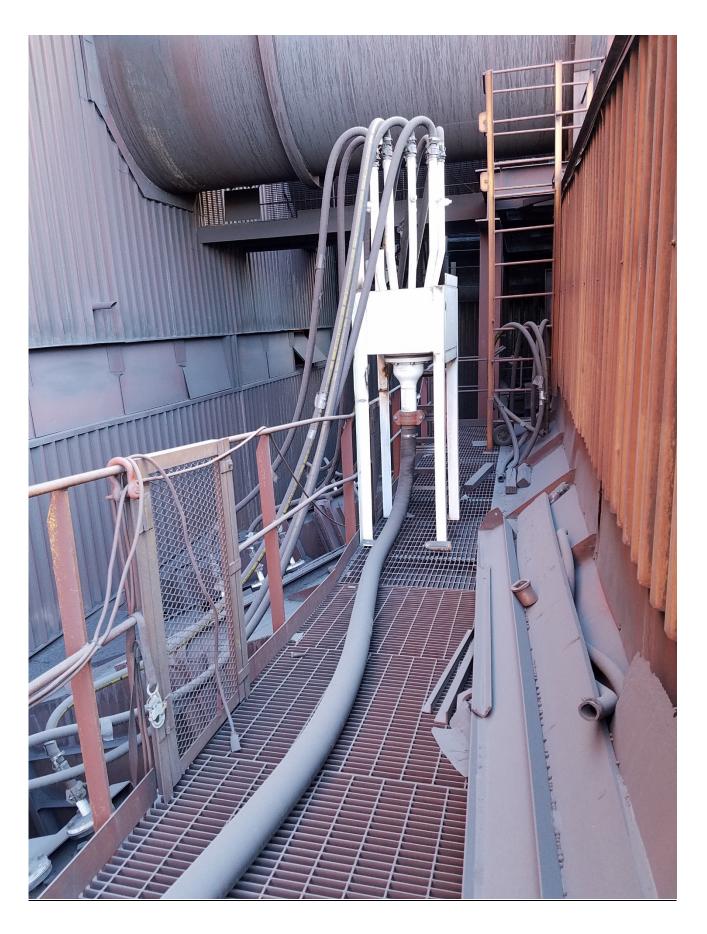
Please Note: The bulk bag unloader is trailer delivered to the job-site via semi-tractor. The base will need to be set on level, compacted ground (no special foundation is required). Flexible connections at the surge hopper discharge system are connected to the inlet of weigh hopper after the bulk bag unloader is in position.

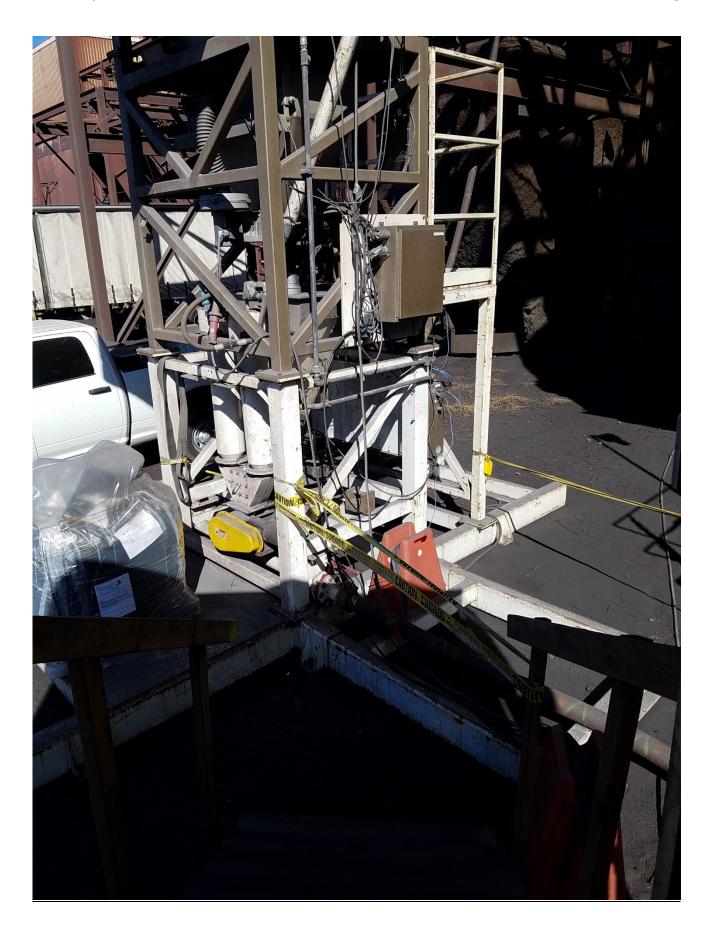
- 1.a One (1) Loss-in-weight feeder assembly. Flexible polyurethane hopper has 10 cu. ft. of holding capacity, includes a 10" dia. inlet and a 7-7/8" dia. discharge. The feeder discharges to a 6" airlock.
- 1.b One (1) Airlock package, drop thru type, 8", with 0.065 CFR displacement. Cast iron housing construction with 8-vane welded steel rotor with fixed blades with beveled edges. Driven by a 0.5 HP, 230/460 volt, 3 phase, 60 hertz, 1750 RPM, TEFC inverter duty motor and chain drive which is side-mounted from the valve housing.
- 1.c One (1) Portable blower enclosure, coupled with the above bulk bag equipment will allow an injection capacity of 1 TPH of sorbent per hour maximum. Includes:
 - One (1) Control enclosure, capable of operating the injection system, requires 460/3/60 VAC @ 200 Amps, to power all of the following equipment.
 - One (1) Blower packages, positive displacement rotary blowers, each driven by a 40 HP, TEFC, 230/460/3/60 motor, mounted on a structural base with motor slide rails, each capable of providing 500 SCFM @11.5 PSIG.
 - One (1) Air Compressor, capable of generating 84 SCFM @ 125 PSIG, with 20 HP, TEFC, 230/460/3/60 motor.
 - One (1) Air Receiver, 120 gallon capacity.

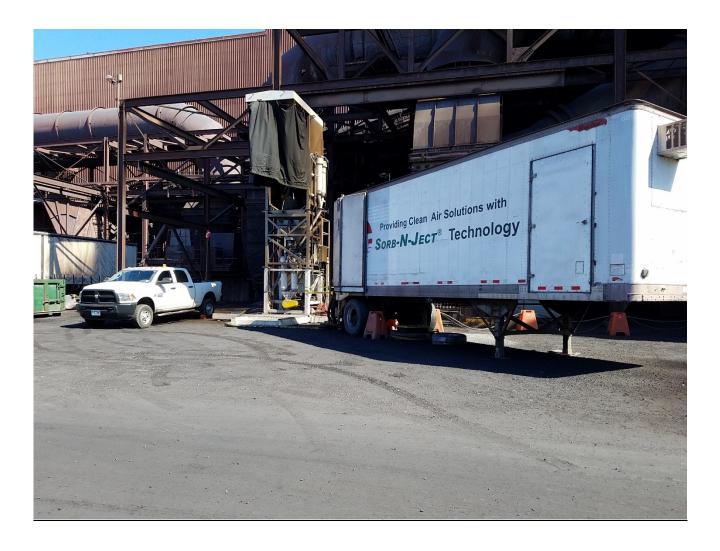
- One (1) Heat Exchangers each with 2 HP, TEFC, 230/460/3/60 motor.
- One (1) Compressed air dryer, requires 120 VAC.
- Convey piping, hoses, couplings and miscellaneous components.
- Eight (8) Custom designed injection lances.
- 1.d One lot of Consumables. Includes: splitters (one 9 way, one 3 way), 9 injection lances and a lot of filters.

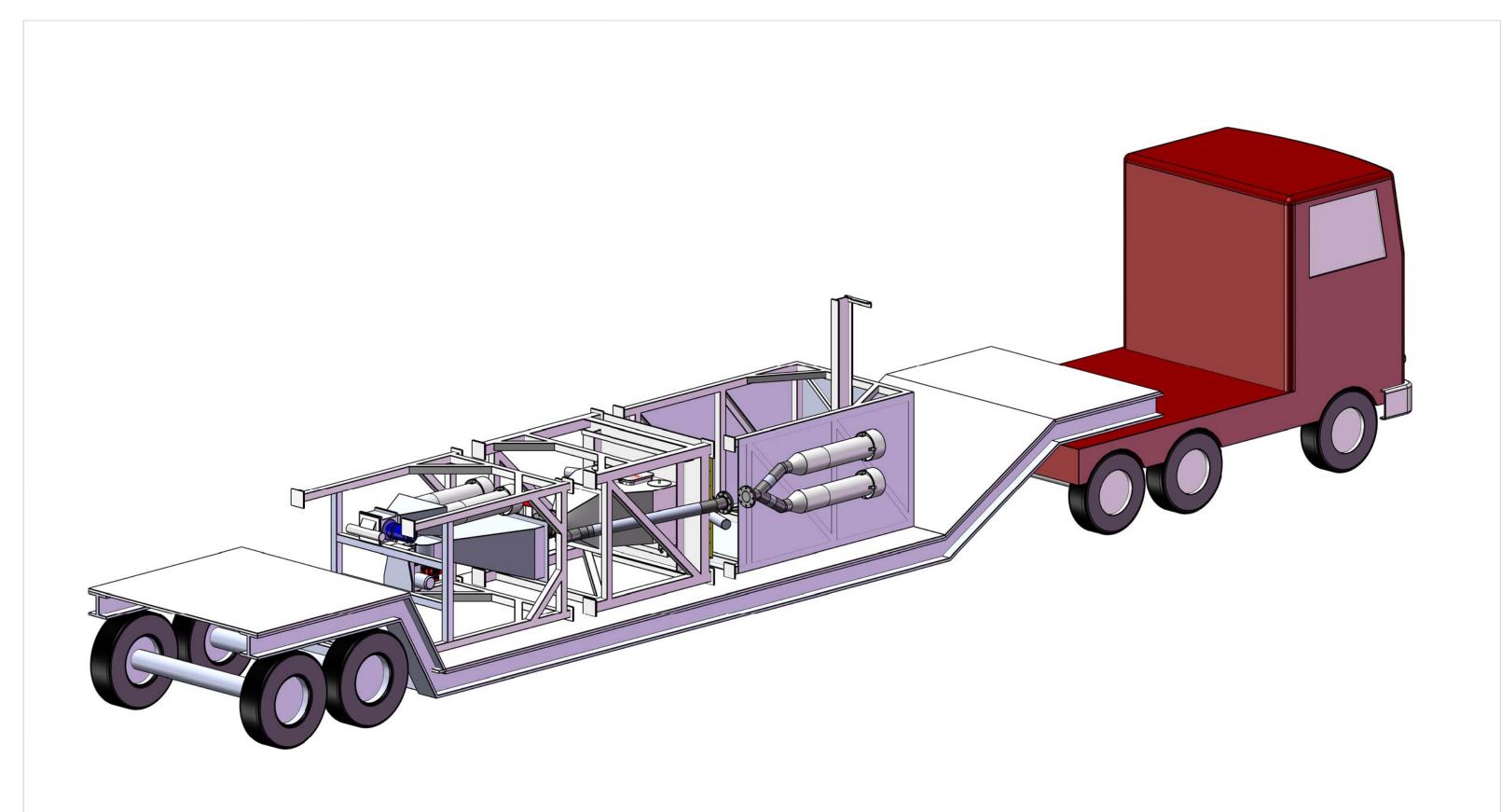
Appendix B: Bulk Bag Unloader Photographs and Sales Drawings

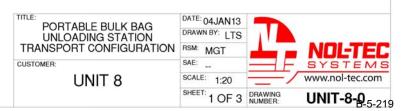

*Please note that the following site specific photographs will not be used outside of this report and will not be shared outside of Nol-Tec systems without prior authorization from ArcelorMittal Minorca Mine.

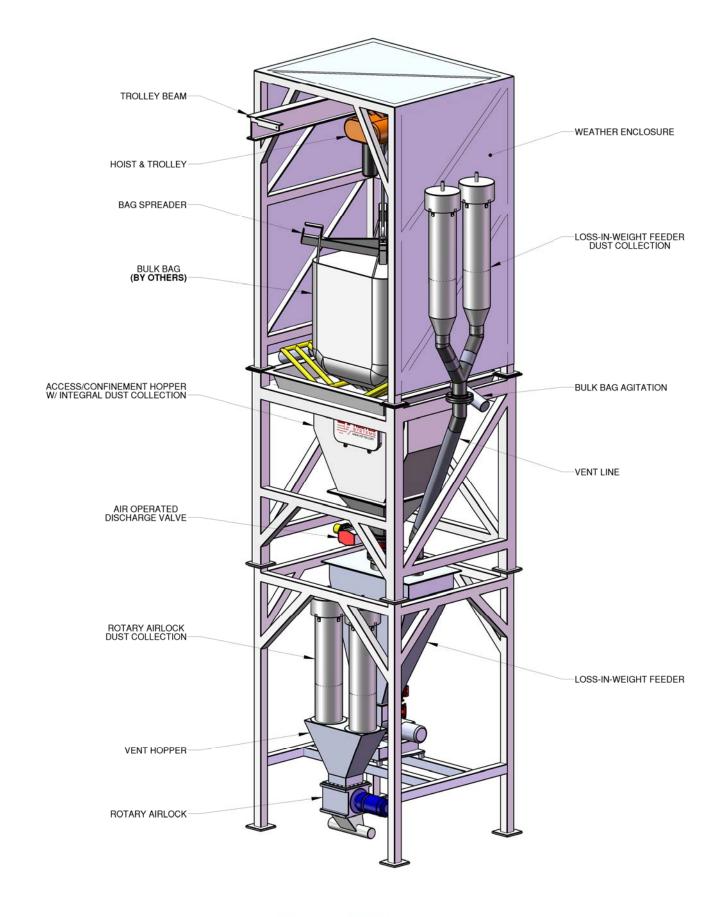






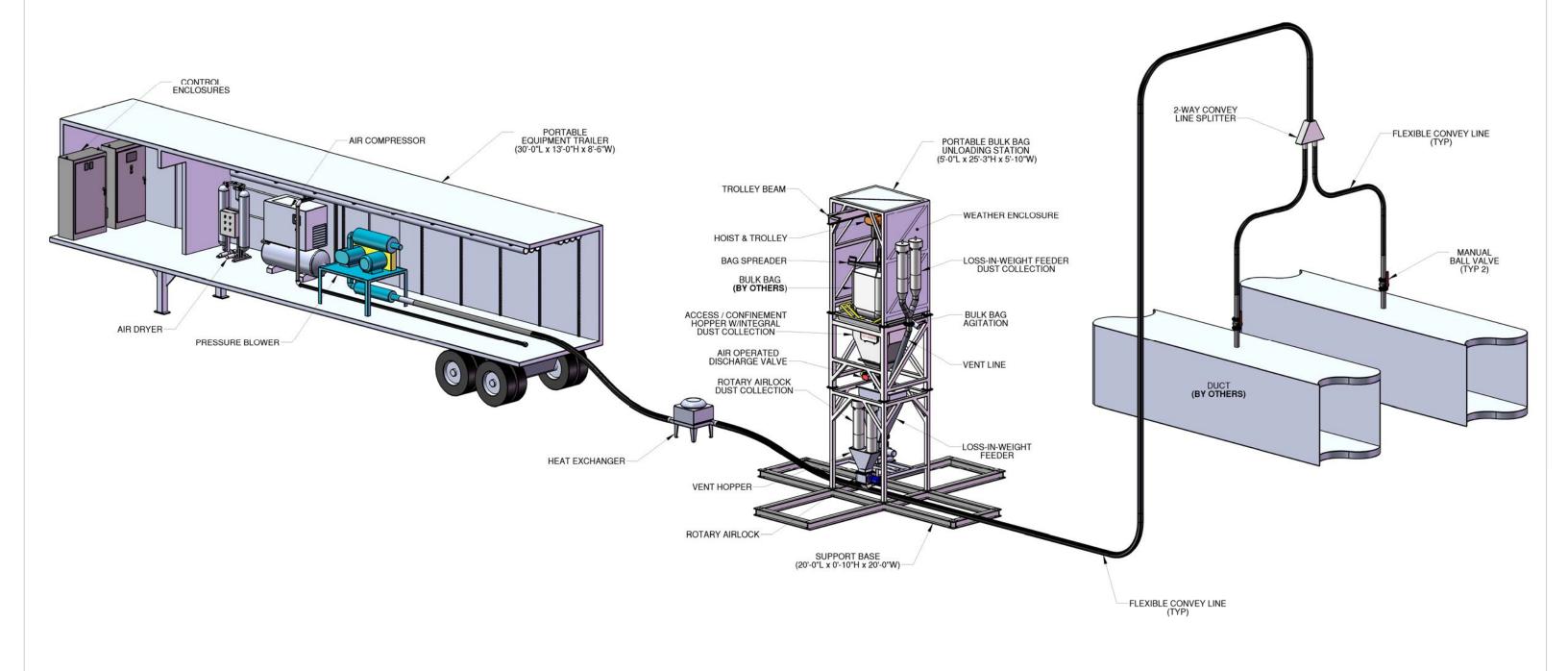






PORTABLE BULK BAG UNLOADING STATION IN TRANSPORT CONFIGURATION

SORB-N-JECT™ Technology



NOTES: -APPOXIMATE OVERALL DIMENSIONS: 5'-0"L x 25'-3"H x 5'-10"W

SORB-N-JECT™ Technology

PORTABLE BULK BAG UNLOADING STATION OPERATING CONFIGURATION RSM: MGT DATE: 30APR13 DRAWN BY: LTS NOLTEC SYSTEMS SCALE: 1:16 UNIT 8 www.nol-tec.com SHEET: 2 OF 3 DRAWING NUMBER:

UNIT-8-<u>8-5-220</u>

PORTABLE STAND ALONE BULK BAG UNLOADER IN OPERATION CONFIGURATION

PROPRIETARY AND CONFIDENTIAL

The information contained in this drawing is the sole property of NOL-TEC SYSTEMS. Any reproduction in part or as a whole without the written permission of NOL-TEC SYSTEMS is prohibited.

Sorb-N-Ject™ Technology NOTES:
-ALL DIMENSIONS ARE APPROXIMATE.

PORTABLE BULK BAG UNLOADER OPERATING CONFIGURATION

UNIT 8

DATE: 30APR13
DRAWN BY: LTS

SCALE: 1:42

SHEET: 3 OF 3 DRAWING NUMBER:

NOLTEC SYSTEMS www.nol-tec.com 651-780-8600 USA

UNIT-8-8-5-221

Attachment F

2015 Method 29 Stack Testing Summary

TABLE 5
EPA METHOD 29 TEST RESULTS SUMMARY

Indurating Furnace Stacks A-D (SV014-017), (EU026)

Parameter	Stack A SV014	Stack B SV015	Stack C SV016	Stack D SV017	EU026
Test Date	6/23/2015- 6/24/2015	6/25/2015	6/23/2015- 6/24/2015	6/25/2015	
Air Flow Rate					
acfm	210,500	222,000	211,200	217,500	
scfm	177,600	186,400	175,000	178,200	Total dscfm
dscfm	159,700	166,200	152,600	152,600	631,100
Mercury Concentration, μg/dscf					
Front Half (Filterable) Mercury	0.013	0.012	0.011	< 0.0013	
Back Half Mercury	0.053	0.067	0.114	0.148	Flow Weighted Average
Total Mercury	0.066	0.079	0.126	0.150	0.10
Total Mercury Concentration, µg/dscm	2.3	2.8	4.4	5.3	3.7
Mercury Emission Rate, lb/hr					
Front Half (Filterable) Mercury	0.0003	0.0003	0.0002	< 0.000027	
Back Half Mercury	0.0011	0.0015	0.0023	0.0030	Total lb/hr
Total Mercury	0.0014	0.0017	0.0025	0.0030	0.0087
Process Rate					
Fired Pellet Production Rate, LTPH	361	352	361	352	357
Emission Factor					
Total Mercury lb/LT Fired Pellet	4.0E-06	4.9E-06	7.0E-06	8.6E-06	2.5E-05

MERCURY TEST RESULTS SUMMARY EPA Method 30B Stack D (SV017)

Parameter	Run 1	Run 2	Run 3	Average
Test Date	6/25/2015	6/25/2015	6/25/2015	
Test Period	756-1013	1110-1310	1433-1633	
Test Duration, min.	120	120	120	
Air Flow Rate				
acfm	219,600	220,100	212,800	217,500
scfm	180,200	180,500	174,000	178,233
dscfm	153,700	154,800	149,300	152,600
Mercury Sorbent Trap Loading, ng				
Trap A	327.60	289.00	307.00	307.87
Mercury Concentration, μg/dscm	1			
Mercury Concentration, μg/dscm Trap A	5.9	5.2	5.5	5.5
	5.9	5.2	5.5	

Attachment G

Water Sampling Protocol

STANDARD OPERATING PROCEDURE

Collection of Low Level Mercury Water Samples

Revision 5

September 4, 2014

Dana Pasi	y A		9-4-14
	QA Manager(s)	Signature	Date
		Signature	9-4-14 Date
	KEVIN MCGIH	Print QA Manager(s) KEVIN M°GILP Kin	Print QA Manager(s) Signature KEVIN M°GILP KEVIN M°GILP

Barr Engineering Company
4700 West 77th Street • Minneapolis, MN 55435-4803
Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND • Calgary, AB, Canada

Ar	Annual Review of the SOP has been performed and the SOP still reflects current practice.								
Initials:		Date:							
Initials:		Date:							
Initials:		Date:							
Initials:		Date:							
Initials:		Date:							

Page 1 Rev. 5: 09/4/2014

Standard Operating Procedures for the Collection of Low Level Mercury Water Samples

Purpose

To describe the standard procedures for collection of low level mercury (EPA methods 1631 and 1669) samples.

Applicability

These procedures apply to the collection of groundwater and/or surface water for laboratory analysis of mercury by EPA methods 1631 and 1669.

Definitions

BrCl Bromine Chloride

HCl Hydrochloric acid

Aliquot A part that is a definite fraction of a whole, as in aliquot samples for testing or analysis.

Clean Hands Person wearing polyethylene shoulder length non talc gloves

Dirty Hands Person wearing normal (wrist) non talc surgical gloves

Equipment

Pre-cleaned wind suits or Tyvek

Ziploc Baggies

Cooler

Bagged Ice

Chain of Custody Form

Sample Label

Talc-free nitrile and polyethylene gloves

0.45 micron pore size filter – required when filtering in the field

Peristaltic Pump- required when filtering in the field

Bubble Wrap

Fluoropolymer or glass bottles and preserved with high purity 0.5% BrCl or .05% HCl solution

Fluoropolymer tubing

Dual Inlet Sampler

References

Federal Register: October 29, 2002 (Volume 67, Number 209) Guidelines Establishing Test Procedures for the Analysis of Pollutants; Measurement of Mercury in Water; Revisions to EPA Method 1631EPA

Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels EPA Document EPA821-R-01-023

Page 2 Rev. 5: 09/4/2014

Responsibilities

The Field Operations/QA Officer or the field technician(s) will order the sample containers prior to the sampling event. The field technician(s) is responsible for the proper collection of groundwater and surface water samples, sample identification, quality control procedures, and documentation.

Discussion

Guidance for the collection of the low level mercury samples indicates that two person sampling teams be utilized. The following SOP is the procedure for a two person team collecting the samples.

Procedure

Samples collected for the determination of trace level mercury (0.5 - 100 ng/L) using EPA Method 1631 must be collected in tightly-capped fluoropolymer or borosilicate glass bottles with fluoropolymer-lined caps and preserved with high purity 0.5% BrCl or 0.05% HCl solution to a pH of less then 2, within 48 hours of sample collection. The time to preservation may be extended to 28 days if a sample is oxidized in the sample bottle.

Samples that have been collected for determination of total or dissolved trace level mercury must be analyzed within 90 days of sample collection.

The low level mercury samples will be collected first at each sampling location.

Collection of low level mercury samples to be filtered in the lab

Note: Due to the low analytical reporting limits required for low level mercury and the possibility of contamination in the field environment, laboratory filtration is preferred over field filtration methods. Lab filtration should be completed within 48 hours after collection and when the samples have been cooled consistently to 4 degrees C. If the samples are to be filtered in the laboratory, no preservative will be present in the containers upon receipt from the laboratory. The samples are then preserved as required at the laboratory upon receipt.

- 1. Complete the label with pertinent sample information, date, time, location. Samples can be labeled directly on outside baggie, minimizing potential for contaminating sample.
- 2. Both personnel don Wind or Tyvek suits.
- 3. Sampling staff should position themselves downwind to minimize cross contamination.
- 4. With dirty hands, open outside transit plastic Ziploc® baggies with container inside.
- 5. Clean hands open inside baggie and container.
- 6. Place appropriate sample container at the tubing flow outlet, or submerge the container into the water body for a surface water sample.
- 7. Clean hands fill container to the top, caps and places the container into baggie and seals.
- 8. Dirty hands close outside baggie.
- 9. Attach the sample label to the outside baggie.
- 10. Put sample container into cooler with bagged ice.
 - **Note:** The samples should be double wrapped individually (as received from the laboratory) and stored in a separate cooler from other samples.
- 11. Dispose of in-line filter. A new filter is used for each sampling location. Depending on groundwater conditions, additional filters may be required.

Page 3 Rev. 5: 09/4/2014

- 12. Decontaminate sampling equipment.
- 13. Replace gloves.

Collection of low level mercury samples to be filtered in the field

Samples collected for dissolved trace level mercury should be filtered in the laboratory. However, If circumstances prevent overnight shipment, samples should be filtered in a designated clean area in the field, using the standard 0.45 micron filter as specified in Method 1669.

- 1. Complete the label with pertinent sample information, date, time, location. Samples can be labeled directly on outside baggie, minimizing potential for contaminating sample.
- 2. Both personnel don Wind or Tyvek suits.
- 3. Sampling staff should position themselves downwind to minimize cross contamination.
- 4. With dirty hands, open outside transit plastic Ziploc® baggies with container inside.
- 5. Clean hands open inside baggie and container and pours out "travel" solution.
- 6. Dirty hands connects 0.45 micron pore size filter to end of purge tubing, ensuring direction of flow is correct.
- 7. Place appropriate sample container at the filter outlet.
- 8. Turn on peristaltic pump and adjust speed until desired flow is obtained.
- 9. Purge a minimum of one filter volume before collecting sample.
- 10. Clean hands fills container to the top, caps and places the container into inside baggie.
- 11. Dirty hands close outside baggie.
- 12. Attach the sample label to the outside baggie.
- 13. Put sample container into cooler with bagged ice.
 - **Note:** The samples should be double wrapped individually (as received from the laboratory) and stored in a separate cooler from other samples.
- 14. Dispose of in-line filter. A new filter is used for each sampling location. Depending on groundwater conditions, additional filters may be required.
- 15. Decontaminate sampling equipment.
- 16. Replace gloves.

Quality Control Samples

Field Blank samples are prepared on-site and are a sample of analyte-free water exposed to environmental conditions at the sampling site by transfer from one vessel to another. The field blank samples will be handled in the same manner as the sample group for which they are intended (i.e. blanks will be stored and transported with the sample group). It measures field and laboratory sources of contamination.

Equipment Blank (or Rinsate Blanks) samples are a type of field blank. The field technician pours analyte-free water through decontaminated sample collection equipment (bailer or pump, hand-trowl, etc.) and collects the "rinsate" in the appropriate sample container(s). In addition to the field sources of contamination that may be introduced in the transferring of samples to one vessel to another, it also tests the potential cross contamination from incomplete decontamination.

Field (or Masked) duplicate samples are collected to measure relative sampling precision. Five percent of all samples collected are collected in duplicate or as prescribed by the project data quality objectives. These samples are collected at the same time using the same procedures, equipment, and types of containers as the required samples. They are also

Page 4 Rev. 5: 09/4/2014

preserved in the same manner and are either co-located or split and submitted for the same analyses as the required samples.

Sample Storage

The samples will be double bagged immediately after collection, stored in a sample cooler, packed on double bagged wet ice and accompanied with the proper chain of custody documentation. Samples must be kept cold $(4 \pm 2^{\circ}C)$ at all times until delivery to the laboratory. Custody seals may be present, but at minimum, the coolers must be taped shut with three straps of fiberglass tape. Samples must be secure to prevent tampering with or loss of samples. If sample coolers are left in a vehicle or field office for temporary storage, the area will be locked and secured. The coolers must be delivered to the laboratory via hand or over night delivery courier in accordance with all Federal, State and Local shipping regulations.

Note: Samples may have to be stored indoors in winter to prevent freezing.

Interferences

Collect samples facing upstream or upwind, at least 100 feet away from metal supports, bridges, wires, poles, busy roadways and from areas of lowest concentration to highest concentration whenever possible to minimize the introduction of contamination.

Documentation

The technician(s) will document the water sampling events on field log data sheets, field log cover sheets, and field log data reports. The technicians will document the number of filters and pre-filters used for each sample filtered on the field log data sheet. They will also document the type and number of bottles on both the field log data sheet and chain-of-custody record. The analysis for each bottle and the laboratory used will be documented on the chain-of-custody record. The sampling request form will document which sampling containers are used for which water samples.

Attachments

Attachment 1: Chain of Custody Form

Attachment 2: Sample Label

Attachment 3: Custody Seal – if applicable

Attachment 4: Field Sampling Report

Attachment 5: Field Log Cover Sheet

Attachment 6: Field Log Data Sheet

Page 5 Rev. 5: 09/4/2014

Attachment 1 Chain of Custody Form

Chain of	Cust	ody								Г		1	Nun	iber	of Cont	aine	rs/P	rese	rvat	tive						
BARR Minneapolis,	MN 5543.	5-4803								Н	_		Vate	er		+			Soi	1		H	_		of	
(952) 832-260	0						_			1						1						П	Projec Manag			
Project Number:														<u></u>		1						STS	80.00000			
Project Name:											#2	(3)	1#3	s (HC		1	I# (H	(pan	£	npres.)		ontain	Project QC C	t ontact:_		
Sample Origination State	_ (use two	letter j	postal st	ate abbreviation)							erved)	(HNO ₃)	(unpreserved)	organic		OHO	d Meo	(tared unpreserved)	(panie	vial, u		of Co				
COC Number:										(1)	Meta	als (F	unpre	D agu		W pa	K (tare	un pa	aprese	plastic		nber	Sampl	ed by:_		
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Water		Typ Quap Quap		VOCs (HCl)	SVOCs (unpreserved) #2	Total Metals	General (Diesel Range Organics (HCI)		VOCs (tared McOH)#1	GRO, BTEX (tared MeOH) #1	DRO (tared unpreser	Metals (unpreserved)	% Solids (plastic vial, unpr		Total Number Of Container	Labor	atory:		
1.							T					T	П			T	П		T			П				
2.							T				Ť	t	П	Ť		Ť	T	Ħ	Ť	t	Ħ	Ħ				
3.							t			H	Ť	t		Ť		t	t		Ť	t		Ħ				
4.							t				Ť	t	Н	Ť		t	T		Ť	t	Ħ	Ħ				
5.	1									П	Ī	T				1	T		Ť	T	П	Ħ				
6.							-			П			П	T		T	T		T	T		Ħ				
7.							T		Ī		T	T		Ť		T	Ī	П	Ť	T	Т	Ħ				
8.							Ť				Ť	T		Ť		Ť	T	П	Ť	T		Ħ				
9.							t				Ť	T		Ť		Ť	T		Ť	T		Ħ				
10.							1					T		1		T	T		T		7	Ħ				
Common Parameter/Contain	er - Preser	vation l	Key F	Relinquished By:			11-25	Ice?	1	Date			Tim	e	Receiv	ed b	y:							Date	2	Time
#1 - Volatile Organics = BTEX, G. #2 - Semivolatile Organics = PAH: Full List, Herbicide/Pesticide/F	, PCP, Diox			Relinquished By:			On	Ice?	1	Date		ं	Tim	e	Receiv	ed by	y:						\dashv	Date	2	Time
#3 - General = pH, Chloride, Fluo TDS, TS, Sulfate #4 - Nurients = COD, TOC, Phen Nitrogen, TKN	ride, Alkalin		L	samples Shipped 'stribution: White-	Other:			Feder						_	Air Bi											

Page 6 Rev. 5: 09/4/2014

Attachment 2 Example - Sample label

Client		
Project Number		
Date:	Time	
Preservative:		
Sampled By:		
Sample Location:		

Attachment 3 Custody Seal – if applicable

Cı	ıstody Seal		
Date	Pro	ject	
Sign	ature	Container#	of

Page 8 Rev. 5: 09/4/2014

Attachment 4 Field Sampling Report

Attachment 5 Field Log Cover Sheet

BARR				
Client:		Pro	ject No.:	
Technician:		Sampling	Period:	
Date	Temperature	Wind Speed	Wind Direction	Cloud Cover
Summary of	Field Activities			

Attachment 6 Field Log Data Sheet

Barr Engineering Company Field Log Data Sheet

Client:					Monitoring Point:							
Location:					Date:							
Project #:		Sample Time:										
GENERAL DAT	A		·		STABIL	IZATION	TEST					
Barr lock: Casing diameter:		Time/ Ter		mp. Cond. C @ 25		pН	Eh	D.O.	Turbidity Appearance			
Total well depth:*		Vocano			W 2.5	pr.		5.0.	Афрания			
Static water level:*												
Water depth:*												
Well volume: (gal)			_									
Purge method:			_									
Sample method:		<u> </u>										
Start time:		Odor:										
Stop time:		Purge App	earan	ce:								
Duration: (minutes)		Sample Ap	opeara	nce:								
Rate, gpm:		Comments	30									
Volume, purged:												
Duplicate collected?		-										
Sample collection by:		CO2-		Mn	2-	Fe(T)	<u>-</u>	Fe2	:-			
Others present:												
WELL INSPECTION (answer for			placed	, detail :		eeded on ba	ack of fo					
CASING & CAP:	COLI				LOCK:			OTHE	R:			
MW: groundwater monitoring we		supply well			sce water	SE: sedim	DRO-	other: Sulfide				
VOC- semi-volatile- oil,grease- bacteria-	gene	metal-	nutrie	ns- tered n	cyanid netal-	meth			ter-			
Officers Dateria-	Cotai			Corod II	10.00	1170411	3110		161			

*Measurements are referenced from top of riser pipe, unless otherwise indicated. 8:4DM/Template/FichtLogDmiSheet.doc

Attachment H

Minorca Process Data Matrix

ArcelorMittal Minorca Mine Activated Carbon Injection Testing To Control Mercury Air Emissions Attachment H Minorca Process Data Matrix

Did Monitor Did Not Monitor

Did Not Monitor - Available on data base if problem occurs

Mine/Plant Location	Description						
Mine Data	Mine Blend						
	Silica Target						
	projected wt recovery/project silica						
Fines Crusher	FC Tonnage						
	Reclaim tonnage from storage or piles- not to worry about this						
	Dust Collector data						
	Dust Suppressant Data						
Concentrator	Rod Mill Feed tons						
	Rod Mill Feed Product Size						
	Plant Weight Recovery						
	Iron Recovery						
	Conc Iron						
	Silica						
	Grind Size- Final Concentrate						
	Process Water Temperature						
	Ambient Temperature						
	Repulper Tank (Concentrate Reclaim Feed to Acid Conc - Slurry						
	Head Tank Water flow						
	Process Water Tank Flow						
	Flotation data- Control Targets						
	Tailing Coarse tonnage						
	Tailings Fine tonnage						
	Filter Cake Moisture						
	Flux addition rate						
	Dust Collection Emission Data						
	Flocculant Rates						

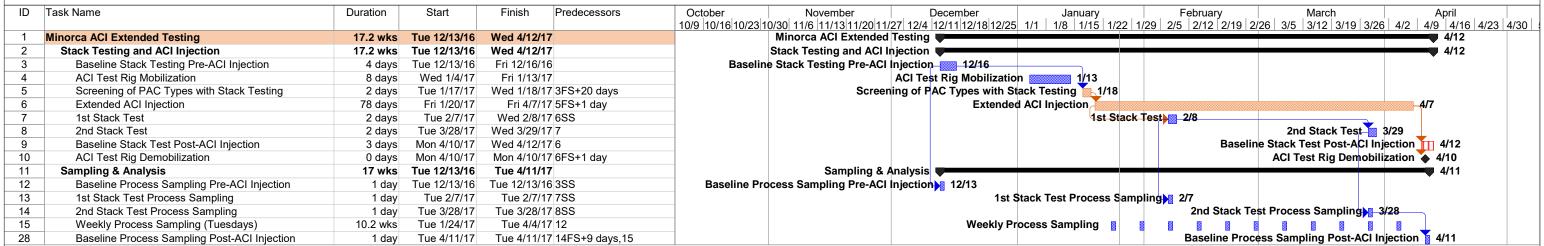
Pellet Plant	Feed tonnage to Grate
	Begin Preheat Temp
	Mid Preheat Temp
	End Preheat Temp
	Begin Firing Temp
	End Firing Temp
	Grate Temperature
	Exhaust Stack Temperatures
	Preheat Burner Temperature
	Recoup Temperature
	Pellet Temperature
	CEMS Data
	Fan Data - Motor amps (all)
	Pallet/Grate Speed
	Updraft Flows and Temperature
	DownDraft Flows and Temperature
	Fuel Rate- Nat Gas Flow
	Air Flow - Inlet
	Windbox Information
	Windbox Fan Information
	Binder addition rate
	Scrubber Flow
	Scrubber Flow water
	All emission data - pressures flows
	Cooling Zone Temperatures
	Recoup Fan Data
	Cooling Fan Data
	Updraft Drying Fan Data
	Exhaust Fan Data
	Greenball Quality Parameters?
	Greenball Moisture
	windbox exhaust fan vibration monitor

Pellet Quality Parameters	CaO/SiO2 Ratio (C/S Ratio)
	MgO/SiO2 Ratio (M/S Ratio)
	Pellet Silica
	Contraction
	Pellet Cold Compression Strength (CSS)
	(BT -1/4") Pellet Size
	(AT +1/2") Pellet % Oversize
	(AT 3/8 X 1/2") Pellet Size
	(AT -1/4") Pellet Size

Environmental Monitor Parameters

Indurator scrubber (4 stacks) water flow
Stack Temp (each stack)
Stack Exhaust Gas Flow(each stack)
Stack SO2 (each stack)
Stack NOx (each stack)

Attachment I


Process Sampling and Stack Testing Schedule

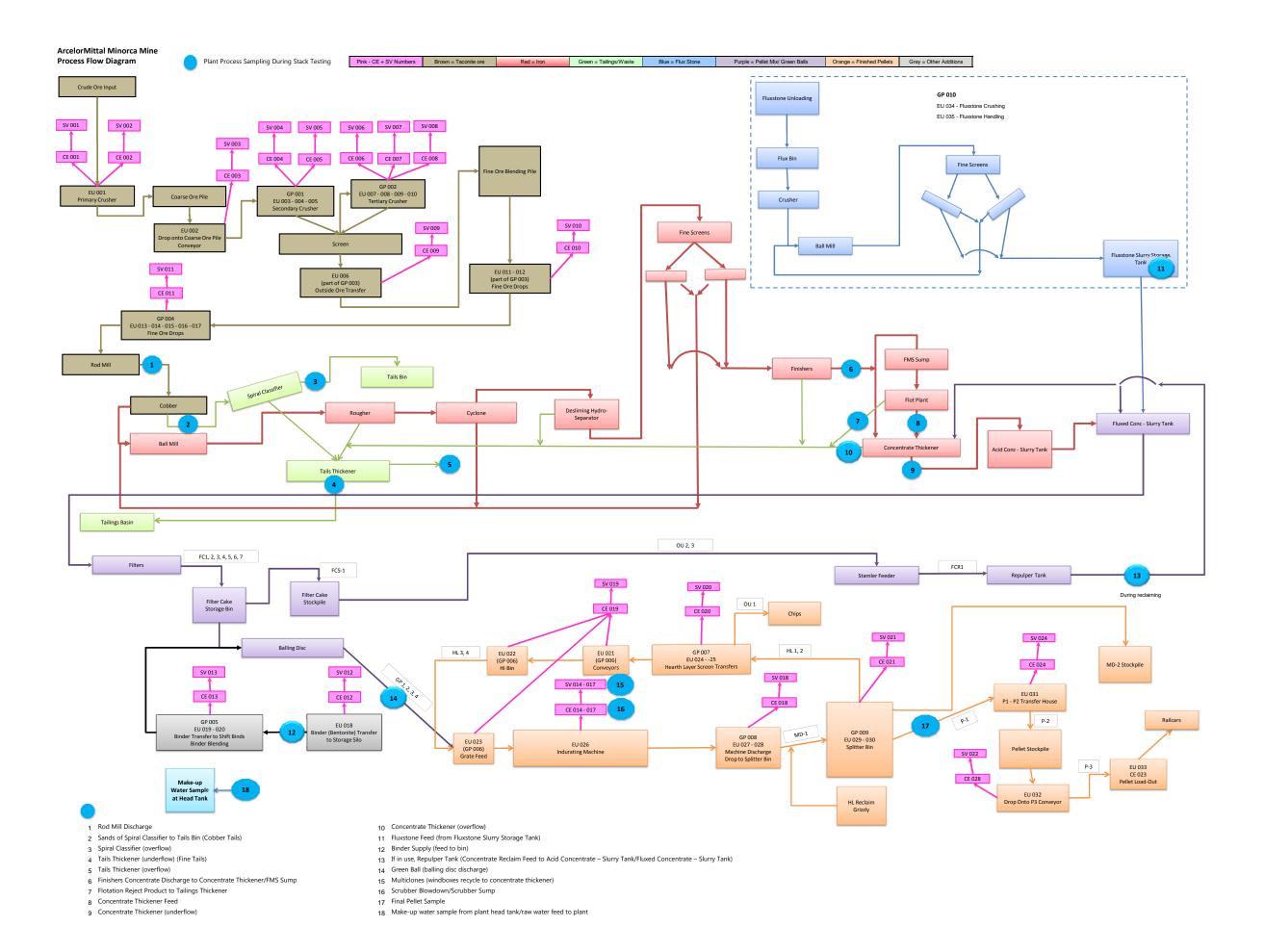
Task

Minorca ACI Testing

Coordination Schedule

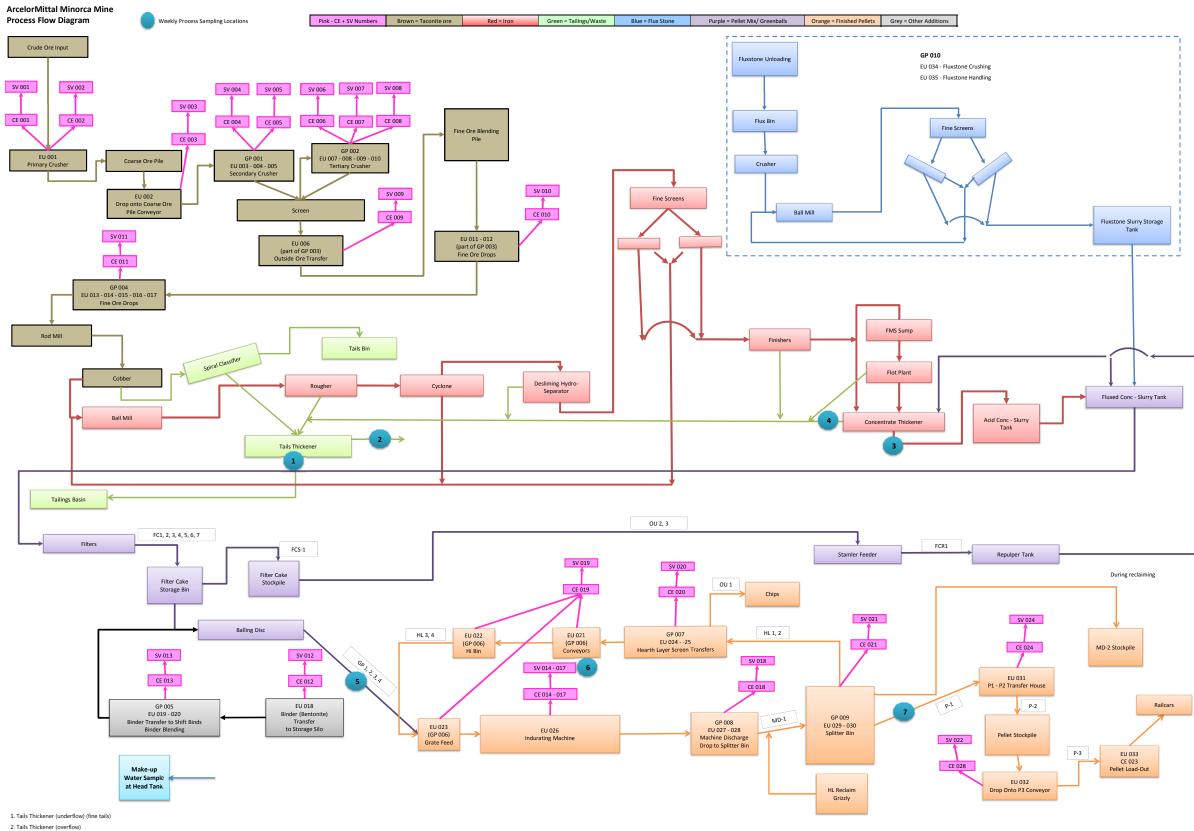
Summary

Milestone


Critical Task

Rolled Up Critical Task

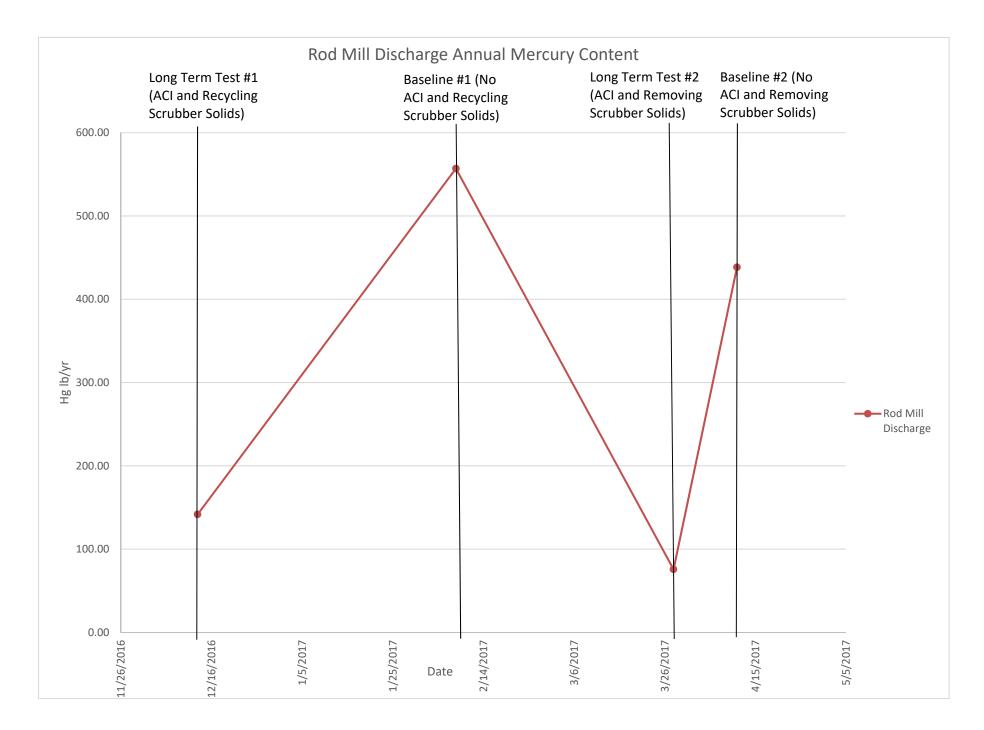
Rolled Up Task

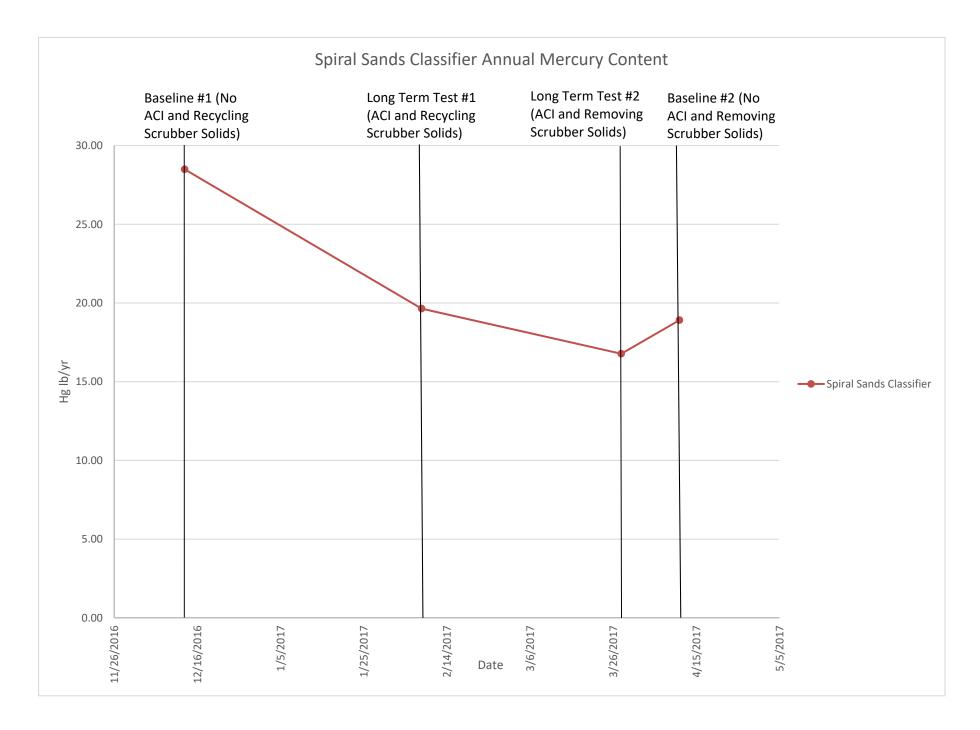

Attachment J

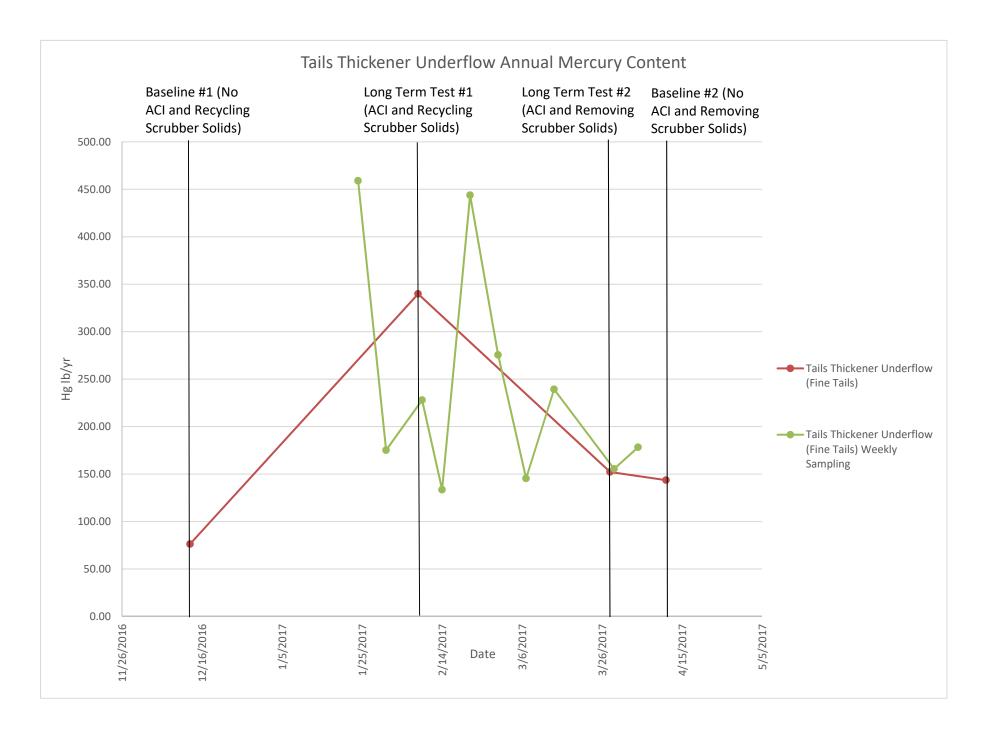
Process Sampling Locations during Stack Testing

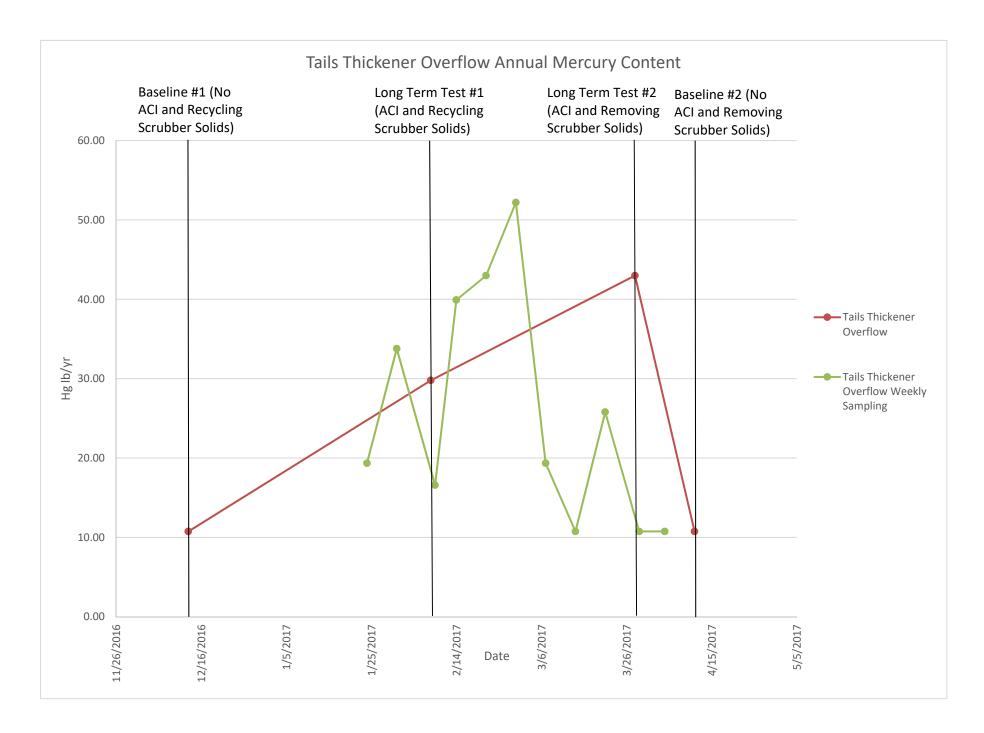
Attachment K

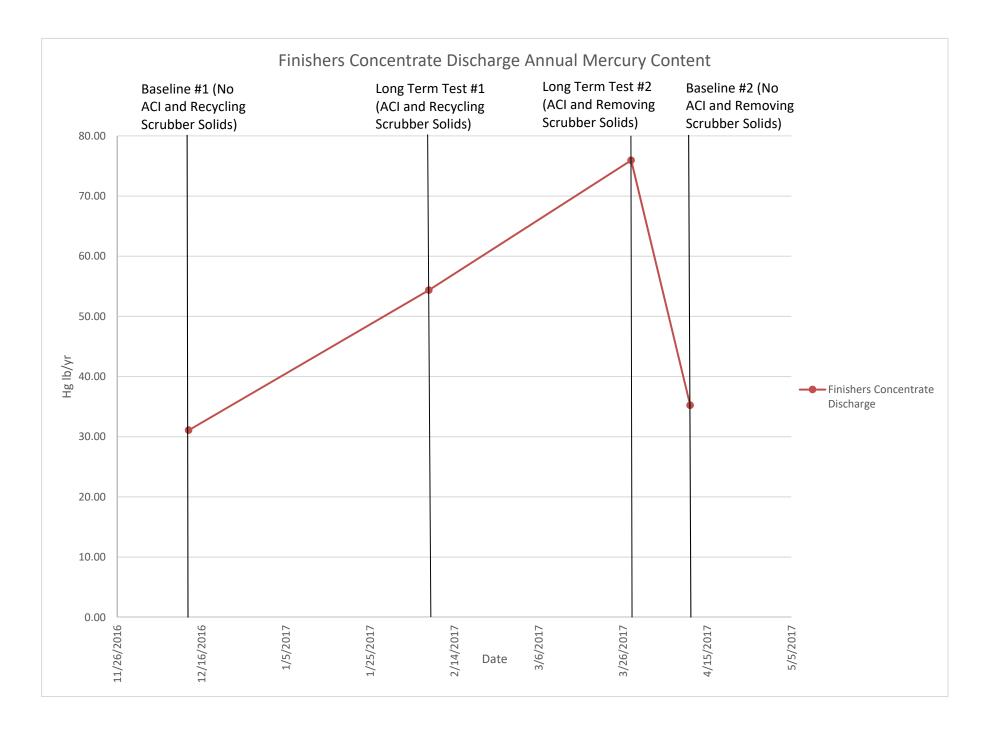
Weekly Process Sampling Locations

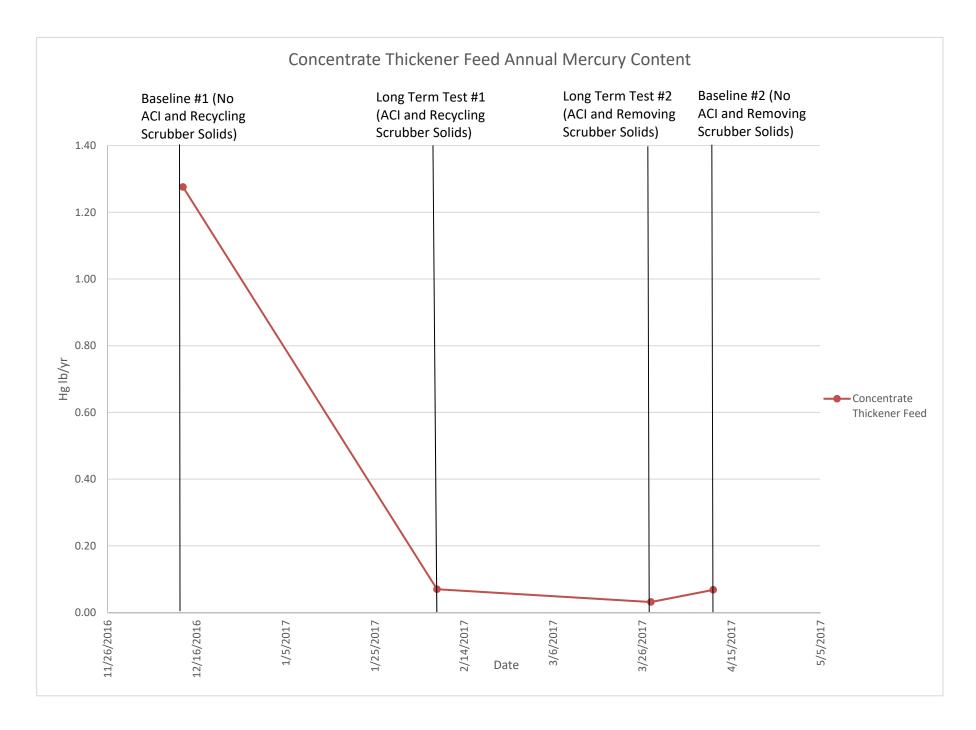


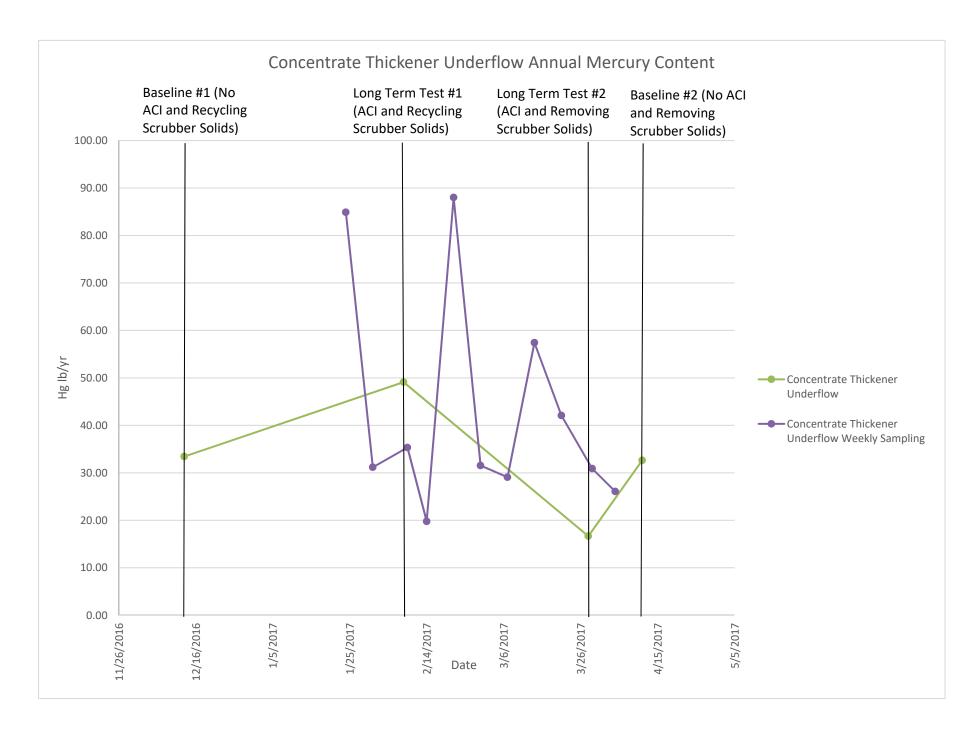

- 3. Concentrate Thickener (underflow)
- 4. Concentrate Thickener (overflow) 5. Greenball (balling disc discharge)
- 6. Scrubber Blowdown/Scrubber Sump
- 7. Final Pellet Sample

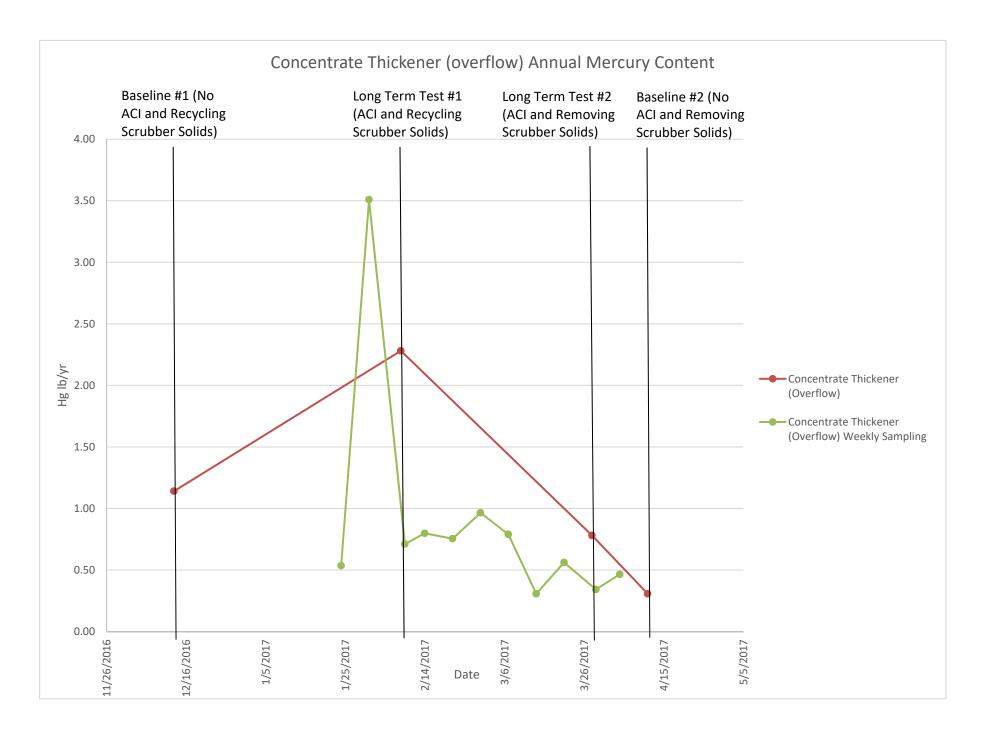

Weekly Process Samples Page 1 of 1

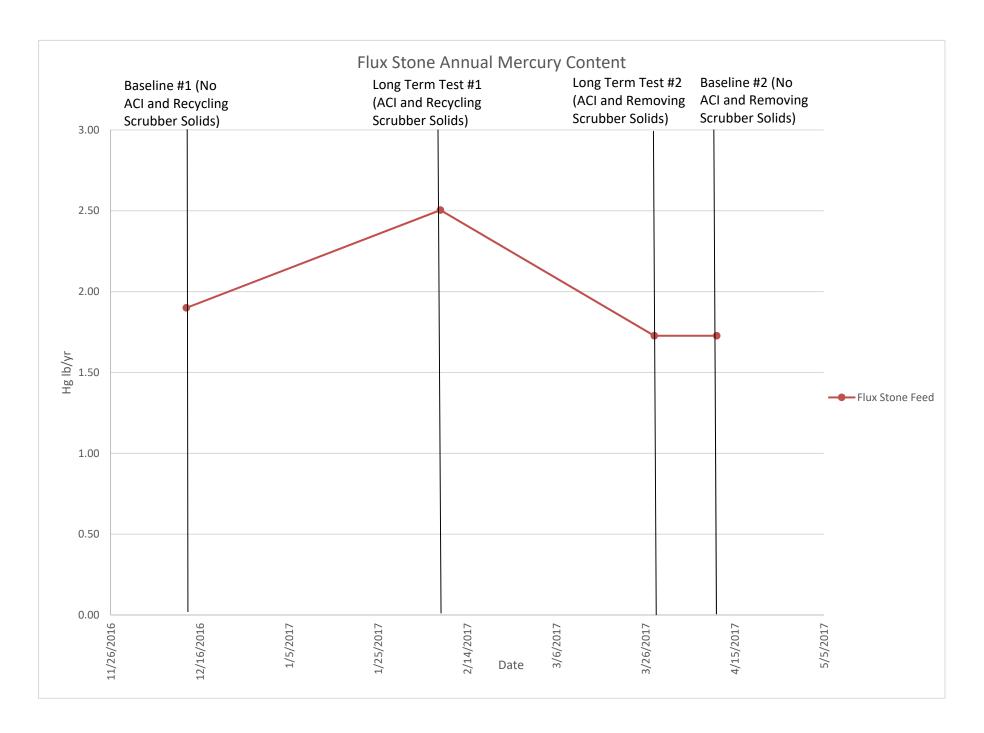

Attachment L

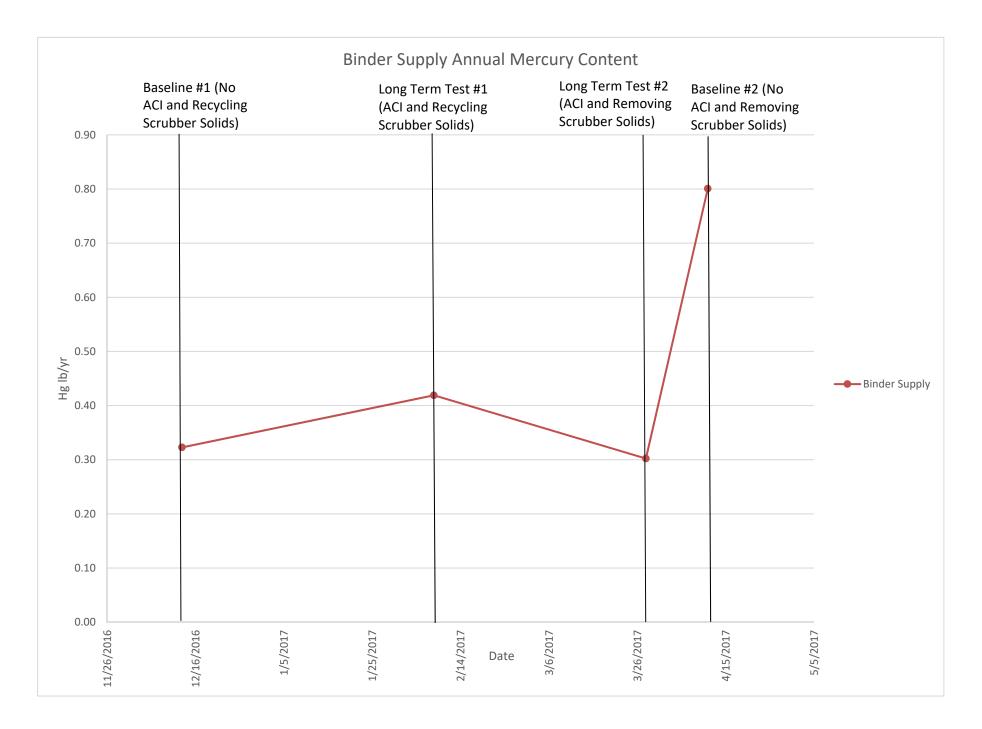

ACI Testing Results

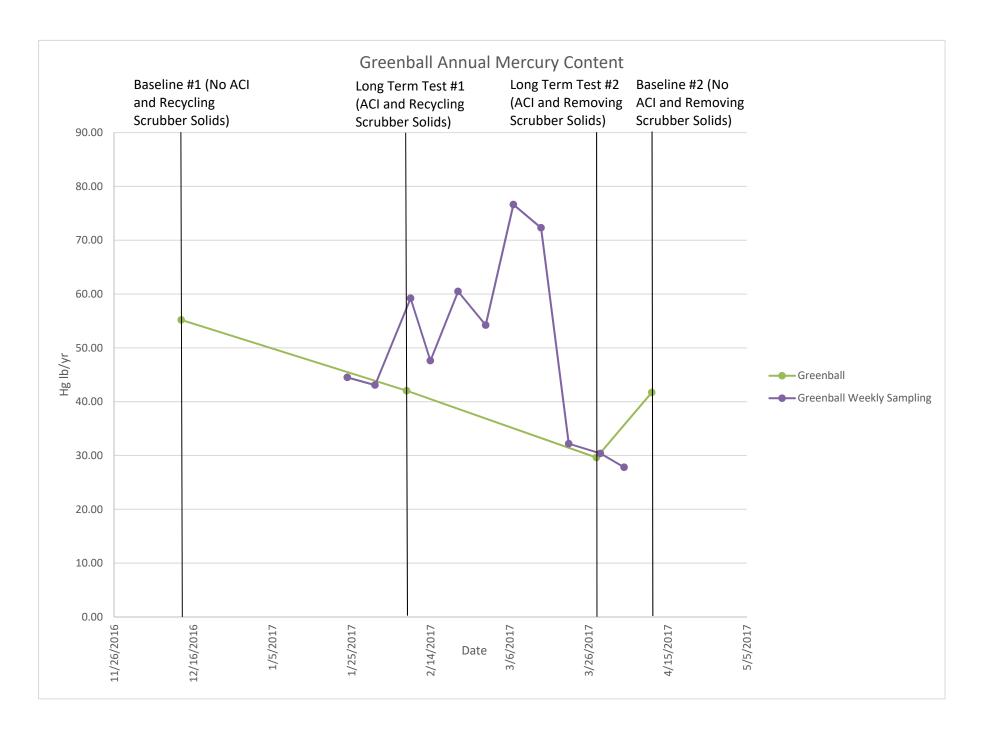


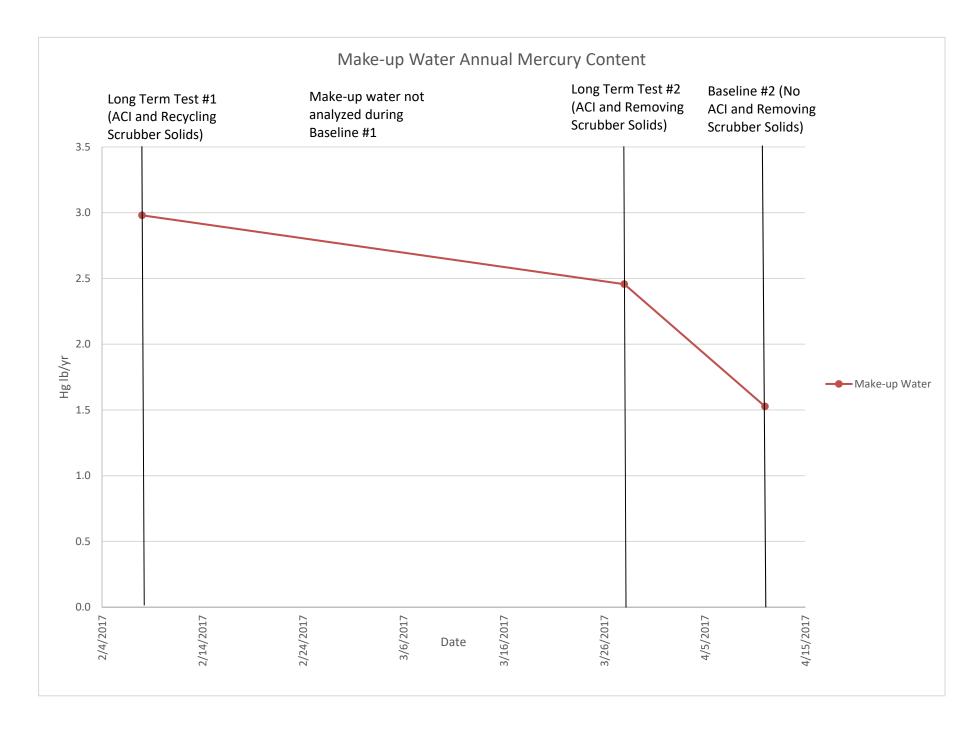


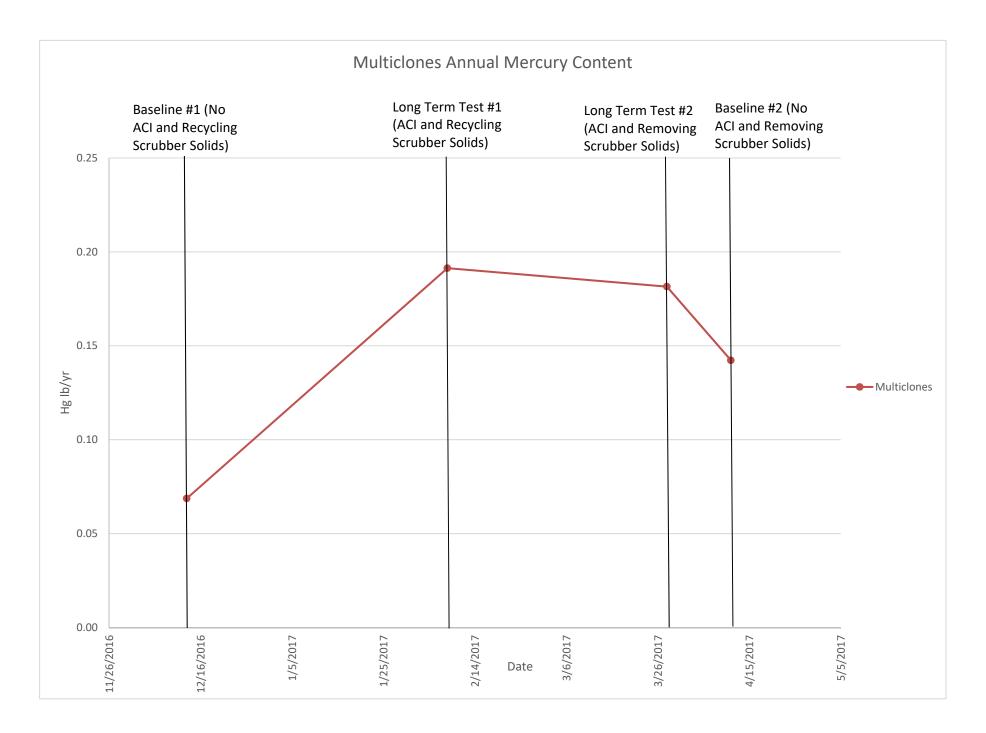


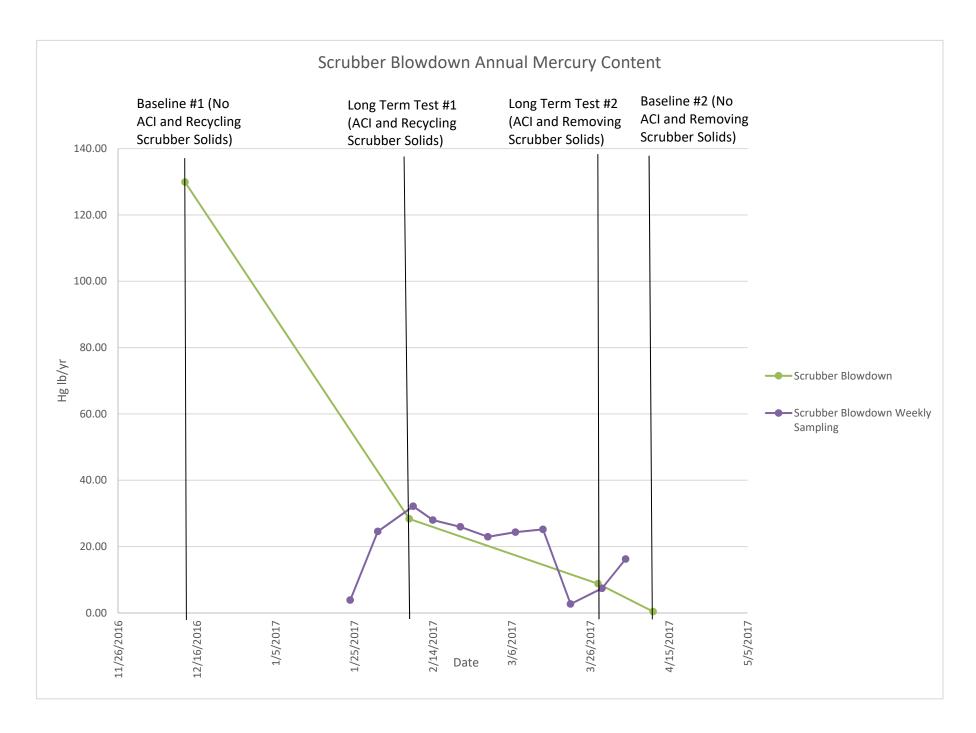












Attachment M Stack Test Report

Results of the December 2016 through April 2017 Mercury Emissions Tests Performed during Activated Carbon Injection Testing at ArcelorMittal Minorca Mine Inc. Located in Virginia, Minnesota

Indurating Furnace	Stack A	SV014
Indurating Furnace	Stack B	SV015
Indurating Furnace	Stack C	SV016
Indurating Furnace	Stack D	SV017

Agency Interest ID 699 Air Emissions Permit No. 13700062-003 Barr Project No. 23691863.00

Prepared for ArcelorMittal Minorca Mine Inc. Virginia, Minnesota

November 2017

Results of the December 2016 through April 2017 Mercury Emissions Tests Performed during Activated Carbon Injection Testing at ArcelorMittal Minorca Mine Located Inc. in Virginia, Minnesota

Indurating Furnace	Stack A	SV014
Indurating Furnace	Stack B	SV015
Indurating Furnace	Stack C	SV016
Indurating Furnace	Stack D	SV017

Agency Interest ID 699 Air Emissions Permit No. 13700062-003 Barr Project No. 23691863.00

Prepared for ArcelorMittal Minorca Mine Inc. Virginia, Minnesota

November 2017

Results of the December 2016 through April 2017 Mercury Emissions Tests Performed during Activated Carbon Injection Testing at ArcelorMittal Minorca Mine Inc. Located in Virginia, Minnesota

November 2017

Contents

Report	t Certification	iii
	Certification of Sampling Procedures:	iii
	Certification of Analytical Procedures:	iii
	Certification of Test Report by Testing Company:	iii
	Certification of Test Report by Owner or Operator of Emission Facility:	iv
Execut	ive Summary	5
1.0	Introduction	
2.0	Results Summary	9
	eline 1	9
Scre	ening	9
Lon	g-term 1	9
Lon	g-term 2	9
Base	eline 2	10
3.0	Process Description	11
4.0	Stack Testing Procedures and Methods	

List of Tables in Text

Table ES-1	Executive Summary Table 16
Table 1-1	Emission Source Information
Table 4-1	EPA Method 1 Criteria12
	List of Tables
Table 1	Mercury Project Results Summary – Indurating Furnace Line
	List of Figures
Figure 1	Test Port Locations – A & B Indurating Furnace Stacks (SV014) & (SV015)
Figure 2	Test Port Locations – C & D Indurating Furnace Stacks (SV016) & (SV017)
	List of Appendices
A	Device to Color detrice and Management and
Appendix A Appendix B	Report Calculations and Nomenclature Field Data Sheets
Appendix C	Laboratory Reports and Sample Chain of Custody
Appendix D	Calibration Data
Appendix E	Cylinder Gas Certifications
Appendix F	Project Participants
	· · · · · · · · · · · · · · · · · · ·

Report Certification

Certification of Sampling Procedures:

I certify under penalty of law that the sampling procedures were performed in accordance with the approved test plan and that the data presented in this test report are, to the best of my knowledge and belief, true, accurate, and complete. All exceptions are listed and explained below.

Ben Wiltse

Senior Air Quality Technician

Barr Engineering Co.

Certification of Analytical Procedures:

I certify under penalty of law that the analytical procedures were performed in accordance with the requirements of the test methods and that the data presented for use in the test report were, to the best of my knowledge and belief, true, accurate, and complete. All exceptions are listed and explained below.

Richard Berg

Senior Air Quality Technician

Barr Engineering Co.

Date

Certification of Test Report by Testing Company:

I certify under penalty of law that this test report and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the test information submitted. Based on my inquiry of the person or persons who performed sampling and analysis relating to the performance test, the information submitted in this test report is, to the best of my knowledge and belief, true, accurate, and complete. All exceptions are listed and explained below.

Tom Kuchinski

Stack Testing Services Coordinator

Barr Engineering Co.

Certification of Test Report by Owner or Operator of Emission Facility:

I certify under penalty of law that the information submitted in this test report accurately reflects the operating conditions at the emission facility during this performance test and describes the date and nature of all operational and maintenance activities that were performed on the process and control equipment during the month prior to the performance test. Based on my inquiry of the person or persons who performed the operational and maintenance activities, the information submitted in this test report is, to the best of my knowledge and belief, true, accurate, and complete. All exceptions are listed and explained below.

Date January 2018

Jaime Johnson

Manager - Environmental

ArcelorMittal Minorca Mine Inc.

Executive Summary

Barr Engineering Company performed five mercury emissions stack tests on the Indurating Furnace Line (EU026, SV014-017) at ArcelorMittal Minorca Mine Inc. (Minorca) located in Virginia, Minnesota. The stack tests were completed during extended testing of activated carbon injection (ACI) to determine its feasibility to reduce mercury emissions from Minorca's indurating furnace. Previous ACI testing at Minorca suggested that the technology has the potential to significantly reduce mercury emissions. However, the initial results left several data gaps that this round of testing sought to address while determining if the technology is technically and economically feasible for a full-scale installation.

Two baseline tests were performed with no carbon injection on December 13-14, 2017 and April 11-12, 2017, here on referred to as Baseline 1 and Baseline 2, respectively. A screening test was performed on January 17-18, 2017 to determine which type of carbon to inject long term, here on referred to as Screening. Two long-term tests were performed, one on February 8-9, 2017 and another on March 28-29, 2017 to obtain mercury data during injection, here on referred to as Long-term 1 and Long-term 2 respectively. Determinations were made for filterable particulate matter during the Screening, Long-term 1, and Long-term 2 tests.

A project summary of results for all five tests is presented in Tables ES-1.

Table ES-1 Executive Summary Table 1

Mercury Project Results Summary							
Parameter	EPA Method	Stack A	Stack B	Stack C	Stack D		
Baseline 1 Results – December 13-14, 2016							
Hg, lb/yr	30B	12.4	14.8	19.0	20.6		
Total Hg, lb/yr 66.8							
Screening Results – January 17-18, 2017							
BPAC			,		<u>, </u>		
PM – Filterable, lb/hr	5			8.9	9.3		
PM – Filterable, gr/dscf	5			0.0064	0.0074		
Hg, lb/yr	30B			11.4	12.9		
НРАС							
PM – Filterable, lb/hr	5			9.2	9.5		
PM – Filterable, gr/dscf	5			0.0067	0.0078		
Hg, lb/yr	30B			9.7	10.6		
Long-term 1 Results – F	ebruary 8-9, 20	17					
PM – Filterable, lb/hr	5	6.3	6.7	8.1	8.2		
PM – Filterable, gr/dscf	5	0.0046	0.0047	0.0059	0.0068		
Hg, lb/yr	Ont-Hydro	10.6	11.5	14.4	17.2		
Total Hg, lb/yr			5	3.6			
Long-term 2 Results – I	March 28-29, 20	17					
PM – Filterable, lb/hr	5	6.0	6.4	7.4	7.4		
PM – Filterable, gr/dscf	5	0.0045	0.0047	0.0056	0.0064		
Hg, lb/yr	Ont-Hydro	7.3	7.5	10.2	9.3		
Total Hg, lb/yr 34.3							
Baseline 2 Results – April 11-12, 2017							
Hg, lb/yr	30B	6.4	8.1	12.1	12.8		
Total Hg, lb/yr			3	9.4			

Annual emissions calculated assuming 8760 operating hours per year.

1.0 Introduction

Barr Engineering Company performed five mercury emissions stack tests on the Indurating Furnace Line (EU026, SV014-017) at ArcelorMittal Minorca Mine (Minorca) located in Virginia, Minnesota. The stack tests were completed during extended testing of activated carbon injection (ACI) to determine its feasibility to reduce mercury emissions from Minorca's indurating furnace. Previous ACI testing at Minorca suggested that the technology has the potential to significantly reduce mercury emissions. However, the initial results left several data gaps that this round of testing sought to address while determining if the technology is technically and economically feasible for a full-scale installation.

Two baseline tests were performed with no carbon injection on December 13-14, 2017 and April 11-12, 2017, here on referred to as Baseline 1 and Baseline 2, respectively. A screening test was performed on January 17-18, 2017 to determine which type of carbon to inject long term, here on referred to as Screening. Two long-term tests were performed, one on February 8-9, 2017 and another on March 28-29, 2017 to obtain mercury data during injection, here on referred to as Long-term 1 and Long-term 2 respectively. Emissions tests were performed on the Indurating Furnace Line (EU026) Stacks A-D (SV014-SV017). Determinations were made for filterable particulate matter during the Screening, Long-term 1, and Long-term 2 tests.

Ben Wiltse led the Barr test teams. Jaime Johnson of Minorca provided the coordination of the test team with facility operations. A list of project participants is provided in Appendix F.

Baseline 1 testing results are shown in Table 1 in the appendices and consisted of three (3) one-hour test runs of Method 30B on Stacks A-D (SV014-SV017). This test was performed to establish a baseline mercury concentration and emission rate for determination of mercury reduction during activated carbon injection (ACI). Baseline 1 testing was conducted under normal operating conditions with scrubber solids recycled to the concentrator process.

Two different powered activated carbons were screened for mercury removal and filterable particulate matter emissions performance. Screening test results are shown in Table 1 in the appendices and consisted of three (3) thirty-minute test runs of Method 5 and Method 30B on Stacks C and D (SV016 and SV017). Two different carbons were injected during the screening test, B-PAC, a brominated powered activated carbon the first day, and H-PAC, a high temperature brominated powered activated carbon, the second day. The screening test of H-PAC showed a greater mercury reduction than B-PAC, therefore H-PAC was chosen as the powered activated carbon for long-term testing.

Long-term 1 was performed to collect mercury and filterable particulate matter data during extended ACI. Three (3) two-hour test runs on Stacks A-D (SV014-SV017) by Ontario-hydro with Method 5 were performed for mercury and particulate matter emissions. During Long-term 1 testing was conducted under normal operating conditions with scrubber solids recycled to the concentrator process. Results from this test can be found in Table 1 in the appendices.

Long-term 2 was performed to collect mercury and filterable particulate matter data during extended ACI. Three (3) two-hour test runs on Stacks A-D (SV014-SV017) by Ontario-hydro with Method 5 were performed for mercury and particulate matter emissions. During Long-term 2 testing, scrubber solids were re-routed to the tailings thickener. Results from this test can be found in Table 1 in the appendices.

Baseline 2 testing consisted of three (3) one-hour test runs of Method 30B on Stacks A-D (SV014-SV017). This test was performed to check baseline mercury results after ACI had stopped. Baseline 2 testing was conducted under normal operating conditions, however scrubber solids were re-routed to the tailings thickener during this test. Results from this test can be found in Table 1 in the appendices.

Table 1-1 Emission Source Information

Source	Emission Unit	Control Equipment	Plant ID	Stack Vent
Indurating Furnace	EU026	CE014	Stack A 108DC01	SV014
	CE015		Stack B 108DC02	SV015
		CE016	Stack C 108DC03	SV016
		CE017	Stack D 108DC04	SV017

2.0 Results Summary

Mercury results are presented in pounds per year (lb/yr) based on 8760 hours and particulate results are presented in grains per dry standard cubic foot (gr/dscf) and lb/hr. Results displayed in the executive summary and on Table 1 are the average of three test runs.

Baseline 1

Baseline 1 testing was conducted under normal operating conditions with scrubber solids recycled to the concentrator process. Results of the Baseline 1 sample event performed at SV014-SV017 on December 13-14, 2016 are provided in Table 1 in the appendices. Total Hg emissions were 66.8 lb/yr. Detailed results for report calculations and nomenclature can be found in Appendix A. Baseline 1 established the base mercury concentration and emissions to be used for future mercury reduction calculations. Cold weather conditions caused testing equipment to freeze. Due to the freezing of equipment, five traps experienced reduced flow rates and therefore lower sample volumes. Although the sample volumes were lower on these traps, there was enough mercury on each trap for accurate analysis of all of the traps. The test results showed similar mercury emissions to those obtained in during the 2015 mercury stack test, which was analyzed using EPA Method 29.

Screening

Results of the Screening sample event performed at Stack C (SV016) and Stack D (SV017) on January 17-18, 2017 for mercury and particulate matter are provided in Table 1 in the appendices. Detailed results for report calculations and nomenclature can be found in Appendix A. H-PAC performance during the screening determined its use as the powered activated carbon for long-term testing.

Long-term 1

Long-term 1 testing was conducted under normal operating conditions while injecting H-PAC at approximately 1 lb/mmacf. Results of the Long-term 1 sample event performed at SV014-SV017 on February 8-9, 2017 for mercury and particulate matter are provided in Table 1 in the appendices. Total Hg emissions were 53.6 lb/yr. Detailed results for report calculations and nomenclature can be found in Appendix A.

Long-term 2

Long-term 2 testing was conducted under normal operating conditions while injecting H-PAC at approximately 1 lb/mmacf, however scrubber solids were re-routed to the tailings thickener. Results of the Long-term 2 sample event performed at SV014-SV017 on March 28-29, 2017 for mercury and particulate matter are provided in Table 1 in the appendices. Total Hg emissions were 34.3 lb/yr. Detailed results for report calculations and nomenclature can be found in Appendix A.

Baseline 2

Baseline 2 testing was conducted under normal operating conditions, however scrubber solids were rerouted to the tailings thickener. The ACI was stopped on April 7, 2017, and testing for Baseline 2 commenced on April 11, 2017. Results of the Baseline 2 sample event performed at SV014-SV017 on April 11-12, 2017 for mercury are provided in Table 1 in the appendices. Total Hg emissions were 39.4 lb/yr. Detailed results for report calculations and nomenclature can be found in Appendix A.

3.0 Process Description

ArcelorMittal mines taconite ore (magnetite) and produces iron pellets that are shipped to the company's blast furnace in Indiana.

Concentrate slurry flows to a storage tank where limestone is added to make flux pellets. The concentrate is dewatered by vacuum disk filters, mixed with bentonite and conveyed to balling disks. Green balls produced on the balling disks are transferred to a roll conveyor for additional removal of over and undersize material.

The green balls are distributed evenly across pallet cars, prior to entry into the pellet furnace. The pallet cars have a layer of fired pellets, called the hearth layer, on the bottom and sides of the car. The hearth layer acts as a buffer between the pallet car and the heat generated through the exothermic conversion of magnetite to hematite.

There is one natural gas fired furnace at ArcelorMittal's taconite plant. The straight grate furnace has several distinct zones. The first two stages are updraft and downdraft drying zones. The next zones are the preheat zone and firing zone. The temperature increases as the pellets pass through each zone reaching a peak in the firing zone. The pellets enter the after-firing zone, where the conversion of magnetite to hematite is completed. The last two zones are cooling zones that allow the pellets to be discharged at a temperature of around 120 degrees Fahrenheit.

Heated air discharged from the two cooling zones is recirculated to the drying, preheat and firing zones. Off-gases from the furnaces are vented primarily through two ducts, the hood exhaust that handles the drying and recirculated cooling gases, and the windbox exhaust, which handles the preheat, firing, and after-firing gases. The windbox exhaust flows through a multiclone, which protects the downstream fan, and then enters a common header shared with the hood exhaust stream. The exhaust gases are subsequently divided into four streams which lead to four venturi rod scrubbers and exhaust from individual stacks.

4.0 Stack Testing Procedures and Methods

The testing was performed from ports meeting U.S. EPA Method 1 criteria. Sample port locations are provided in Figures 1-2.

Table 4-1 EPA Method 1 Criteria

Stack Vent Number	Distance to Upstream Disturbances (Diameters)	Distance to Downstream Disturbances (Diameters)	Number of Ports	Number of Points
SV014	8.2	3.5	4	12
SV015	8.2	3.5	4	12
SV016	8.1	3.5	4	12
SV017	8.0	3.4	4	12

Volumetric airflow determinations were performed in accordance with U.S. EPA Method 2 using an S type pitot tube. Airflows were determined in conjunction with the EPA Method 5 and EPA 30B tests.

Stack gas oxygen and carbon dioxide compositions were determined using modified U.S. EPA Method 3A during the Baseline 1 and Screening tests. An integrated sample of dry stack gas was collected in a Tedlar bag during each test run. The stack gas was analyzed for oxygen and carbon dioxide concentrations using a Servomex Model 1440 analyzer calibrated with EPA protocol gases. Instrument calibration and analysis data are documented in the field data sheets in Appendix B. Calibration gas certifications are located in Appendix E. During Long-term 1, Long-term 2, and Baseline 2 oxygen and carbon dioxide concentrations were obtained from the CEMS and cross checked with a portable oxygen analyzer.

Stack gas moisture content was determined by the performance of U.S. EPA Method 4, in conjunction with the Method 30B, Ontario Hydro, and/or Method 5 tests.

Particulate matter concentrations and emission rates were determined in accordance with U.S. EPA Method 5 as allowed in ASTM D6784-16 Ontario Hydro method. Particulate matter laboratory analysis was performed at Barr.

Mercury concentrations and emission rates for Baseline 1, Screening, and Baseline 2 were determined in accordance with EPA Method 30B. Samples were analyzed on-site by Barr during the Baseline 1 and Screening tests. Samples were analyzed off site by Ohio Lumex of Solon, Ohio for the Baseline 2 test.

Mercury concentrations and emission rates for Long-term 1 and Long-term 2 were determined in accordance with ASTM D6784-16 Ontario Hydro. All glassware and reagent preparation was completed at Barr laboratory facilities. Potassium permanganate sample reagents were prepared on site daily. Sample recovery was completed within Barr's lab trailer to minimize contamination. Mercury samples were analyzed by Element One of Wilmington, North Carolina. The average result of the sample analysis and duplicate analysis are used in the calculation of emissions.

Sample analysis results and chain of custody for all samples are located in Appendix C.

The test methods referenced above are found in 40 CFR Part 60, Appendix A and ASTM.

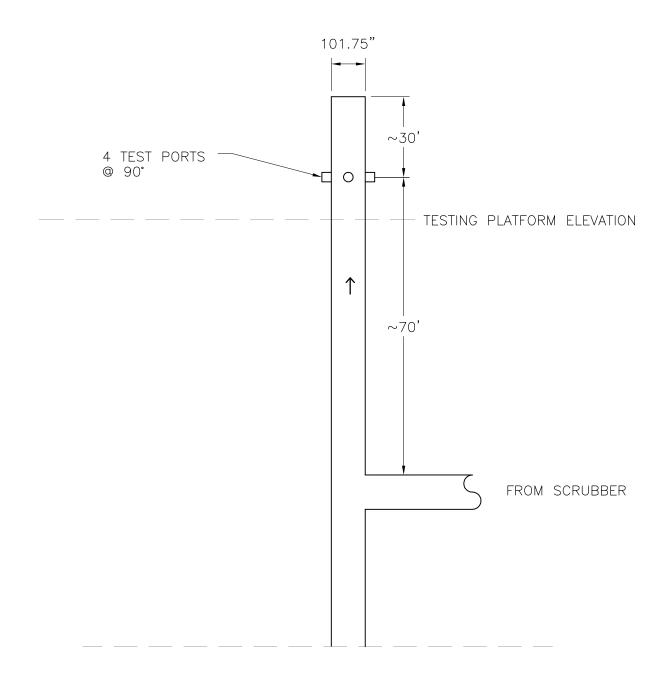
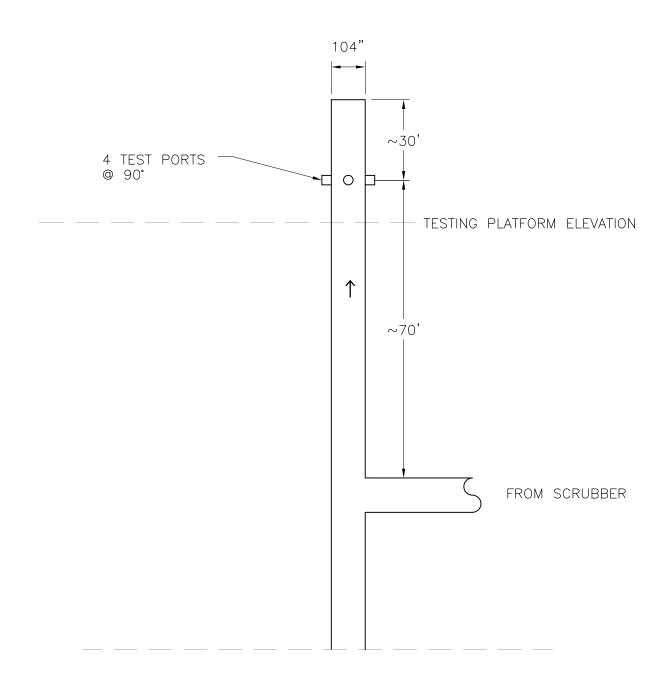

Tables

TABLE 1

Mercury Project Results Summary Indurating Furnace Line

Parameter	Date of Test	EPA Method	Stack A	Stack B	Stack C	Stack D
Baseline 1 Results						
Hg, lb/yr	Dec 13-14 2016	30B	12.4	14.8	19.0	20.6
Total Hg, lb/yr				66	6.8	
Screening Results						
BPAC				T		T
PM - Filterable, lb/hr	January 17-18, 2017	5			8.9	9.3
PM - Filterable, gr/dscf	January 17-18, 2017	5			0.0064	0.0074
Hg, lb/yr	January 17-18, 2017	30B			11.4	12.9
HPAC						
PM - Filterable, lb/hr	January 17-18, 2017	5			9.2	9.5
PM - Filterable, gr/dscf	January 17-18, 2017	5			0.0067	0.0078
Hg, lb/yr	January 17-18, 2017	30B			9.7	10.6
Longterm 1 Results						
PM - Filterable, lb/hr	February 8-9, 2017	5	6.3	6.7	8.1	8.2
PM - Filterable, gr/dscf	February 8-9, 2017	5	0.0046	0.0047	0.0059	0.0068
Hg, lb/yr	February 8-9, 2017	Ont-Hydro	10.6	11.5	14.4	17.2
Total Hg, lb/yr	, , , , , ,	, ,		53	3.6	<u>I</u>
Longterm 2 Results	T			2.4		
PM - Filterable, lb/hr	March 28-29, 2017	5	6.0	6.4	7.4	7.4
PM - Filterable, gr/dscf	March 28-29, 2017	5	0.0045	0.0047	0.0056	0.0064
Hg, lb/yr	March 28-29, 2017	Ont-Hydro	7.3	7.5	10.2	9.3
Total Hg, lb/yr				34	4.3	
Baseline 2 Results						
Hg, lb/yr	April 11-12, 2017	30B	6.4	8.1	12.1	12.8
Total Hg, lb/yr	· ·			39	9.4	•

Figures


TEST PORT LOCATIONS

ARCELORMITTAL MINORCA MINE INC.

VIRGINIA, MINNESOTA

A & B INDURATING FURNACE STACKS (SV014) & (SV015)

NOT TO SCALE

TEST PORT LOCATIONS

ARCELORMITTAL MINORCA MINE, INC.

VIRGINIA, MINNESOTA

C & D INDURATING FURNACE STACKS (SV016) & (SV017)

NOT TO SCALE

Appendices

Appendix A

Report Calculations and Nomenclature

Indurating Furnace Stack A (SV014) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	12/13/2016	12/13/2016	12/13/2016
Test Period	-	1	1205-1217	1355-1408	1640-1655
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.20	28.20	28.20
Stack Static Pressure	Pg	in. H ₂ O	-0.60	-0.60	-0.60
Stack Temperature, dry bulb	Tsf	degrees F	102	101	102
Stack Temperature, wet bulb bulb	Twb	degrees F	102	101	102
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(∆P)^0.5	-	0.902	0.901	0.917
Orsat Results, Dry Basis (EPA Method 3A)	0/ 00	- · ·			
Carbon Dioxide	%CO ₂	%v/v	0.9	0.7	0.6
Oxygen	%O ₂	%v/v	19.9	20.0	20.1
Carbon Monoxide + Nitrogen	-	%v/v	79.2	79.3	79.3
Coloulated Data	Cumphal	Lleite	Dun 1	Dum 0	Dun 2
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	Α	sq ft	56.47	56.47	56.47
A = (D/24)^2 x PI (Circular Duct) Stack Pressure	Ps	in Ua	28.16	28.16	28.16
	P5	in Hg	20.10	20.10	20.10
Ps = Pbar + Pg/13.6 Average Moisture Content of Stack Gas	MC	% Vol	8.8	7.8	7.1
Average Moisture Content of Stack Gas	IVIC	/6 V OI	0.0	7.0	7.1
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	28.94	28.91	28.90
Md = $(0.44 \times (\%CO_2))+(0.32 \times (\%O_2))+(0.28 \times (\%N_2+\%CO))$	1110	10/1011101	20.01	20.01	20.00
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.97	28.06	28.13
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	54.74	54.54	55.47
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	185,500	184,800	187,900
Qa = 60 x Vs x A				·	
Volumetric Flowrate at Standard Conditions	Qs	scfm	164,000	163,600	166,000
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)				·	
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	149,500	150,900	154,300
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack B (SV015) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	12/13/2016	12/13/2016	12/13/2016
Test Period	-	1	1228-1240	1420-1444	1700-1705
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.20	28.20	28.20
Stack Static Pressure	Pg	in. H ₂ O	-0.77	-0.75	-0.74
Stack Temperature, dry bulb	Tsf	degrees F	107	106	107
Stack Temperature, wet bulb bulb	Twb	degrees F	107	106	107
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(∆P)^0.5	-	0.958	0.949	0.949
Orsat Results, Dry Basis (EPA Method 3A)	L av 0.0				
Carbon Dioxide	%CO ₂	%v/v	1.3	1.4	1.1
Oxygen	%O ₂	%v/v	19.4	19.3	19.5
Carbon Monoxide + Nitrogen	-	%v/v	79.3	79.3	79.4
Colordate d Data	Comple ed	Llaita	D 4	D O	D O
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	Α	sq ft	56.47	56.47	56.47
A = (D/24)^2 x PI (Circular Duct) Stack Pressure	Ps	in Hg	28.14	28.14	28.15
	PS	III ⊓g	20.14	20.14	20.15
Ps = Pbar + Pg/13.6 Average Moisture Content of Stack Gas	MC	% Vol	6.6	6.9	8.0
Average Moisture Content of Stack Gas	IVIC	76 VUI	0.0	0.9	6.0
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	28.98	29.00	28.96
$Md = (0.44 \times (\%CO_2)) + (0.32 \times (\%O_2)) + (0.28 \times (\%N_2 + \%CO))$,	20.00	_0.00	_0.00
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	28.26	28.23	28.08
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	58.07	57.53	57.70
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	196,700	194,900	195,500
Qa = 60 x Vs x A				·	
Volumetric Flowrate at Standard Conditions	Qs	scfm	172,400	171,000	171,200
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)				·	
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	161,100	159,100	157,500
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack C (SV016) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	12/14/2016	12/14/2016	12/14/2016
Test Period	-	1	1130-1148	1425-1438	1610-1622
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	104	104	104
Barometric Pressure	Pbar	in. Hg	28.21	28.21	28.21
Stack Static Pressure	Pg	in. H ₂ O	-0.75	-0.80	-0.80
Stack Temperature, dry bulb	Tsf	degrees F	109	112	111
Stack Temperature, wet bulb bulb	Twb	degrees F	109	112	111
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(∆P)^0.5	-	0.928	0.929	0.929
Orsat Results, Dry Basis (EPA Method 3A)	0,00	24 4	4.0	0.0	4.0
Carbon Dioxide	%CO ₂	%v/v	1.8	2.0	1.9
Oxygen	%O ₂	%v/v	18.9	18.7	18.9
Carbon Monoxide + Nitrogen	-	%v/v	79.3	79.3	79.2
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	A		58.99	58.99	58.99
A = (D/24)^2 x PI (Circular Duct)	_ ^	sq ft	56.99	56.99	56.99
Stack Pressure	Ps	in Hg	28.15	28.15	28.15
Ps = Pbar + Pg/13.6	Г5	iii i ig	20.13	20.13	20.13
Average Moisture Content of Stack Gas	MC	% Vol	10.1	10.2	11.6
Average moisture content of clack cas	IVIO	70 V OI	10.1	10.2	11.0
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.04	29.07	29.06
$Md = (0.44 \times (\%CO_2)) + (0.32 \times (\%O_2)) + (0.28 \times (\%N_2 + \%CO))$					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.93	27.94	27.78
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	56.70	56.85	57.02
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	200,700	201,200	201,800
Qa = 60 x Vs x A				·	
Volumetric Flowrate at Standard Conditions	Qs	scfm	175,200	174,800	175,500
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	157,500	157,000	155,200
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack D (SV017) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	12/14/2016	12/14/2016	12/14/2016
Test Period	-	1	1201-1217	1447-1501	1630-1645
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	104	104	104
Barometric Pressure	Pbar	in. Hg	28.20	28.20	28.20
Stack Static Pressure	Pg	in. H ₂ O	-0.55	-0.66	-0.60
Stack Temperature, dry bulb	Tsf	degrees F	115	117	115
Stack Temperature, wet bulb bulb	Twb	degrees F	115	117	115
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(∆P)^0.5	-	0.828	0.813	0.819
Orsat Results, Dry Basis (EPA Method 3A)	2/22				
Carbon Dioxide	%CO ₂	%v/v	2.2	2.2	2.3
Oxygen	%O ₂	%v/v	18.4	18.4	18.3
Carbon Monoxide + Nitrogen	-	%v/v	79.4	79.4	79.4
Colordate d Data	Comple ed	Llaita	D 4	D O	D O
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	Α	sq ft	58.99	58.99	58.99
A = (D/24)^2 x PI (Circular Duct) Stack Pressure	Ps	in Ua	28.16	28.15	28.16
	P5	in Hg	20.10	20.13	20.10
Ps = Pbar + Pg/13.6 Average Moisture Content of Stack Gas	MC	% Vol	10.3	10.7	9.7
Average Moisture Content of Stack Gas	IVIC	70 V OI	10.5	10.7	9.1
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.09	29.09	29.10
Md = $(0.44 \times (\%CO_2))+(0.32 \times (\%O_2))+(0.28 \times (\%N_2+\%CO))$	1110	10/1011101	20.00	20.00	20.10
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.95	27.90	28.02
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	50.84	50.03	50.24
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	179,900	177,100	177,800
Qa = 60 x Vs x A				·	
Volumetric Flowrate at Standard Conditions	Qs	scfm	155,600	152,500	153,600
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)				·	
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	139,500	136,300	138,700
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack A (SV014) Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	12/13/2016	12/13/2016	12/13/2016	
Test Period	-	-	1148-1248	1350-1450	1634-1734	
Barometric Pressure	P _{bar}	in. Hg	28.20	28.20	28.20	28.20
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	149,500	150,900	154,300	151,567

Trap A	٩Re	sults
--------	-----	-------

Trap A Results						
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	16.502	28.703	28.334	24.513
Dry Gas Meter Calibration Factor	Y_A	-	0.9904	0.9904	0.9904	0.9904
Average Meter Temperature	T_{mfA}	degrees F	76	79	80	78
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T_{mrA}	degrees R	536	539	540	538
Meter Volume at Standard Conditions V _{mstd A} = 17.64 x (V _{mA} x 0.03531) x Y _A x P _{bar} / T _{mrA}	V _{mstd A}	cubic feet	0.536	0.926	0.913	0.792
Laboratory Results						
Trap ID			OLC035280	OLC035377	OLC035418	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	41.5	71.2	50.6	54.4
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	1.17	2.26	2.32	1.91
Mercury, Total amount collected	M_A	ng	42.7	73.4	52.9	56.4
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	2.815	2.802	2.047	2.554
Mercury Emission Rate E_(lb/hr)A = (MA-M _{spike A}) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00158	0.00158	0.00118	0.00145
Mercury Emission Rate $E_{(lb/r)A} = E_{(lb/r)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	13.8	13.9	10.4	12.7

Trap B Results

Trap B Nesuns	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	24.560	11.491	35.306	23.786
Dry Gas Meter Calibration Factor	Y _B	-	0.9846	0.9846	0.9846	0.9846
Average Meter Temperature	T _{mfB}	degrees F	76	79	80	78
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	536	539	540	538
Meter Volume at Standard Conditions $V_{mstd} = 17.64 \times (V_{mB} \times 0.03531) \times Y \times P_{bar} / T_{mrB}$	V _{mstd B}	cubic feet	0.792	0.368	1.131	0.764
Laboratory Results						
Trap ID			OLC632147	OL390546	OL390502	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	220	169	212	200
Mercury Sorbent Trap, Section 2	M _{2 B}	ng	2.71	1.67	3.23	2.54
Mercury, Total amount collected	M _B	ng	222	171	215	203
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	150	150	150	
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	3.231	2.027	2.040	2.432
Mercury Emission Rate $E_{\text{(lb/hr)B}} = \text{(M}_B\text{-M}_{spike B}) \times (2.2046 \times 10^{-12} \text{ (lb/ng)}) \times \text{Qd } \times 60 \text{ / V}_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00181	0.00115	0.00118	0.00138
Mercury Emission Rate $E_{(lb,by)B} = E_{(lb,br)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	15.8	10.0	10.3	12.1

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2,A} / M_{1,A} \times 100$	B _A	%	2.8	3.2	4.6	3.5
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} x 100$	B _B	%	1.2	1.0	1.5	1.2
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	32.4	-151.3	19.3	-33.2
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	106.2	94.6	99.8	100.2
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) X 100$	RD	%	6.9	16.0	0.2	7.7

Indurating Furnace Stack B (SV015) Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	12/13/2016	12/13/2016	12/13/2016	
Test Period	-	-	1148-1248	1350-1450	1634-1734	
Barometric Pressure	P _{bar}	in. Hg	28.20	28.20	28.20	28.20
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	161,100	159,100	157,500	159,233

Tran	Δ	Pacul	te

Trap A Results								
	Symbol	Units	Run 1	Run 2	Run 3	Test Average		
Actual Dry Gas Meter Volume	V _{mA}	liters	20.556	26.204	30.382	25.714		
Dry Gas Meter Calibration Factor	Y _A	-	1.0002	1.0002	1.0002	1.0002		
Average Meter Temperature	T _{mfA}	degrees F	77	82	83	80		
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	537	542	543	540		
Meter Volume at Standard Conditions $V_{mstdA} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	0.673	0.850	0.984	0.835		
Laboratory Results								
Trap ID			OLC035312	OLC035276	OLC035395			
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	54.9	77.9	65.4	66.1		
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	2.21	1.74	2.04	2.00		
Mercury, Total amount collected	M _A	ng	57.2	79.6	67.4	68.1		
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0			
Mercury Stack Concentration $C_{(\mu g)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	C _{(µg)A}	μg/dscm	3.000	3.310	2.420	2.910		
Mercury Emission Rate E(b/nr)A = (M _A -M _{spike A}) x (2.2046x10 ⁻¹² (b/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00181	0.00197	0.00143	0.00174		
Mercury Emission Rate E(tb/ry)A = E(tb/ry)A x 8760 hr/yr	E _{(lb/yr)A}	lb/yr	15.9	17.3	12.5	15.2		

Trap B Results

Trap B Nesuna	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	18.675	25.157	18.555	20.796
Dry Gas Meter Calibration Factor	Y _B	-	1.0069	1.0069	1.0069	1.0069
Average Meter Temperature	T _{mfB}	degrees F	77	82	83	80
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mfB} + 460$	T _{mrB}	degrees R	537	542	543	540
Meter Volume at Standard Conditions V _{mstd B} = 17.64 x (V _{mB} x 0.03531) x Y x P _{bar} / T _{mrB}	V _{mstd B}	cubic feet	0.615	0.821	0.605	0.680
Laboratory Results						
Trap ID			OLC032030	OL390537	OLC032133	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	198	228	182	203
Mercury Sorbent Trap, Section 2	M _{2B}	ng	2.06	1.31	0.87	1.41
Mercury, Total amount collected	M _B	ng	200	230	183	204
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	150	150	150	
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	2.886	3.428	1.948	2.754
Mercury Emission Rate $E_{(lb/hr)B} = (M_B - M_{Spike B}) \times (2.2046 \times 10^{-12} (lb/ng)) \times Qd \times 60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00174	0.00204	0.00115	0.00164
Mercury Emission Rate $E_{(lb,by)B} = E_{(lb,br)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	15.3	17.9	10.1	14.4

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2A} / M_{1A} x 100$	B _A	%	4.0	2.2	3.1	3.1
B Train Breakthrough each run <10% $B_B = M_{2B} \ / \ M_{1B} \times 100$	B _B	%	1.0	0.6	0.5	0.7
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-9.3	-3.5	-62.7	-25.2
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	98.7	101.8	94.6	98.4
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) \times 100$	RD	%	1.9	1.8	10.8	4.8

Indurating Furnace Stack C (SV016) Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	12/14/2016	12/14/2016	12/14/2016	
Test Period	-	-	1122-1222	1422-1522	1604-1704	
Barometric Pressure	P _{bar}	in. Hg	28.21	28.21	28.21	28.21
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	157,500	157,000	155,200	156,567

Trap	Α	Results	5
			Г

Trap A Results	•					
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	27.725	28.917	28.854	28.499
Dry Gas Meter Calibration Factor	Y_A	-	0.9904	0.9904	0.9904	0.9904
Average Meter Temperature	T _{mfA}	degrees F	77	78	80	78
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	537	538	540	538
Meter Volume at Standard Conditions $V_{mstd A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	0.898	0.935	0.931	0.921
Laboratory Results						
Trap ID			OLC035270	OLC035362	OLC035381	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	91.6	90.7	104.9	95.7
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	4.70	4.82	2.10	3.87
Mercury, Total amount collected	M _A	ng	96.3	95.5	107.0	99.6
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	3.787	3.609	4.060	3.819
Mercury Emission Rate E_(lb/hr)A = (MA-M _{spike A}) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00223	0.00212	0.00236	0.00224
Mercury Emission Rate $E_{(lb/yr)A} = E_{(lb/hr)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	19.6	18.6	20.7	19.6

Trap B Results

·	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	27.690	34.442	31.047	31.060
Dry Gas Meter Calibration Factor	Y _B	-	0.9846	0.9846	0.9846	0.9846
Average Meter Temperature	T _{mfB}	degrees F	49	52	57	53
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T_{mrB}	degrees R	509	512	517	513
Meter Volume at Standard Conditions $V_{mstd B} = 17.64 \times (V_{mB} \times 0.03531) \times Y \times P_{bar} / T_{mrB}$	V _{mstd B}	cubic feet	0.941	1.164	1.040	1.048
Laboratory Results						
Trap ID			OLC032010	OLC032055	OL390556	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	226	273	264	254
Mercury Sorbent Trap, Section 2	M _{2B}	ng	2.29	3.36	3.15	2.93
Mercury, Total amount collected	M _B	ng	228	277	267	257
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	150	150	150	
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	$C_{(\mu g)B}$	μg/dscm	2.933	3.841	3.965	3.579
Mercury Emission Rate $E_{(lb/hr)B} = (M_B - M_{spike B}) \times (2.2046 \times 10^{-12} (lb/ng)) \times Qd \times 60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00173	0.00226	0.00230	0.00210
Mercury Emission Rate $E_{(lb,lyr)B} = E_{(lb,lyr)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	15.2	19.8	20.2	18.4

LFA Method 30B QA/QC Data						
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2,A} / M_{1,A} \times 100$	B _A	%	5.1	5.3	2.0	4.1
B Train Breakthrough each run <10% $B_B = M_{2B} \ / \ M_{1B} \times 100$	B _B	%	1.0	1.2	1.2	1.1
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	4.6	19.7	10.5	11.6
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	84.8	105.1	98.1	96.0
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) \times 100$	RD	%	12.7	3.1	1.2	5.7

Indurating Furnace Stack D (SV017) Baseline 1

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	12/14/2016	12/14/2016	12/14/2016	
Test Period	-	-	1122-1222	1422-1522	1604-1704	
Barometric Pressure	P _{bar}	in. Hg	28.20	28.20	28.20	28.20
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	139,500	136,300	138,700	138,167

Trap A Results									
	Symbol	Units	Run 1	Run 2	Run 3	Test Average			
Actual Dry Gas Meter Volume	V_{mA}	liters	30.503	30.933	29.779	30.405			
Dry Gas Meter Calibration Factor	Y _A	-	1.0069	1.0069	1.0069	1.0069			
Average Meter Temperature	T_{mfA}	degrees F	77	77	78	78			
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mrA} + 460$	T _{mrA}	degrees R	537	537	538	538			
Meter Volume at Standard Conditions $V_{msld\ A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar}/T_{mrA}$	V _{mstd A}	cubic feet	1.004	1.019	0.978	1.000			
Laboratory Results									
Trap ID			OLC035311	OLC035286	OLC035259				
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	131	139	133	134			
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	1.37	1.13	1.40	1.30			
Mercury, Total amount collected	M _A	ng	133	140	135	136			
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0				
Mercury Stack Concentration $C_{(\mu g)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	C _{(µg)A}	μg/dscm	4.665	4.849	4.867	4.794			
Mercury Emission Rate $E_{(lb/hr)A} = (M_A - M_{spike} A) \times (2.2046 \times 10^{-12} (lb/ng)) \times Qd \times 60 / V_{mstd A}$	E _{(lb/hr)A}	lb/hr	0.00244	0.00248	0.00253	0.00248			
Mercury Emission Rate $E_{(lb/ly)A} = E_{(lb/hy)A} \times 8760 \text{ hr/yr}$	E _{(Ib/yr)A}	lb/yr	21.4	21.7	22.1	21.7			

Trap B Results								
	Symbol	Units	Run 1	Run 2	Run 3	Test Average		
Actual Dry Gas Meter Volume	V _{mB}	liters	19.840	30.683	29.820	26.781		
Dry Gas Meter Calibration Factor	Y _B	-	1.0002	1.0002	1.0002	1.0002		
Average Meter Temperature	T _{mfB}	degrees F	77	77	78	78		
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mlB} + 460$	T _{mrB}	degrees R	537	537	538	538		
Meter Volume at Standard Conditions V _{mstd B} = 17.64 x (V _{mB} x 0.03531) x Y x P _{bar} / T _{mrB}	V _{mstd B}	cubic feet	0.649	1.004	0.973	0.875		
Laboratory Results								
Trap ID			OLC032026	OL3905509	OLC032056			
Mercury Sorbent Trap, Section 1	M _{1 B}	ng	220	281	270	257		
Mercury Sorbent Trap, Section 2	M _{2 B}	ng	0.99	0.84	0.77	0.87		
Mercury, Total amount collected	M _B	ng	221	282	271	258		
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	150	150	150			
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	$C_{(\mu g)B}$	μg/dscm	3.857	4.627	4.384	4.289		
Mercury Emission Rate $E_{(lb/hr)B} = (M_B - M_{spike B}) \times (2.2046 \times 10^{-12} (lb/ng)) \times Qd \times 60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00202	0.00236	0.00228	0.00222		
Mercury Emission Rate $E_{(lbb/r)B} = E_{(lbhr)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	17.7	20.7	19.9	19.4		

EPA Method 30B QA/QC Data							
	Symbol	Units	Run 1	Run 2	Run 3	Test Average	
A Train Breakthrough each run <10% $B_A = M_{2A} / M_{1A} \times 100$	B _A	%	1.0	0.8	1.0	1.0	
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} x 100$	B _B	%	0.5	0.3	0.3	0.3	
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-54.8	-1.5	-0.5	-18.9	
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	90.1	95.8	91.1	92.3	
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) \times 100$	RD	%	9.5	2.3	5.2	5.7	

Determination of Volumetric Air Flow Rate, Gas Composition, Moisture Content, and Particulate Matter Emissions EPA Methods 2, 3, 4 and 5 Indurating Furnace Stack C (SV016)

Symbol				
- Cynnoon	Units	Run 1	Run 2	Run 3
-	-			1/17/2017
-	-			1216 - 1249
-	-			2
-	-			6
	inches			104.00
	in. Hg			28.24
				-0.80
				115
				22.71
		1		0.9852
				1.75
	degrees F			86
	-			0.84
				0.953
				48
Vwsg	g	4	5	5
2/0-	C' '	10.5	10.5	40.5
				18.8
				1.6
				79.6
				0.214
theta	minutes	30	30	30
M	~	0.00012	0.00700	0.00872
IVIPM	y	0.00612	0.00790	0.00672
Cymbol	Linita	Pup 1	Pup 2	Pun 2
Symbol	Units	Kuii i	Rull 2	Run 3
Tsr	degrees R	574	576	575
Ps	in. Hg	28.18	28.18	28.18
А	Sq. ft	58.992	58.992	58.992
Vmstd	cubic feet	20.13	19.09	20.51
МС	% Vol	8.94	7.95	10.69 see note
Md	lh/lhmol	29.01	29.01	29.01
IVIG	10/1011101	23.01	23.01	25.01
Ms	lb/lbmol	28.03	28.13	27.83
Vs	ft/sec	58.97	57.23	58.60
Qa	acfm	208,722	202,582	207,434
Qs	scfm	180,837	175,009	179,304
Qd	dscfm	164,662	161,102	160,140
An	sq. ft	0.000250	0.000250	0.000250
1	%	96.3	93.4	100.9
C_{sPM}	gr/dscf	0.0062	0.0064	0.0066
		1	I .	I .
	Ps A Vmstd MC Md Ms Vs Qa Qs Qd An		1007 - 1041 2 6 D, L X W inches 104.00 Pbar in. Hg 28.24 Pg in. H ₂ O -0.80 Tsf degrees F 114 Vm cubic feet 22.13 Y - 0.9852 DH in H ₂ O 1.65 Tmf degrees F 82 Cp - 0.84 (DP)Y0.5 - 0.963 Vwc ml 38 Vwsg g 4 %O2 %v/v 18.9 %CO2 %v/v 1.6 %N2 + %CO %v/v 79.5 Dn inches 0.214 theta minutes 30 M _{PM} g 0.00812 Symbol Units Run 1 Tsr degrees R 574 Ps in. Hg 28.18 A Sq. ft 58.992 Vmstd cubic feet 20.13 MC % Vol 8.94 Md Ib/Ibmol 29.01 Ms Ib/Ibmol 29.01 Ms Ib/Ibmol 28.03 Vs ft/sec 58.97 Qa acfm 208,722 Qa scfm 180,837 Qd dscfm 164,662 An sq. ft 0.000250 I % 96.3	1007 - 1041 1116 - 1147 2 2 2 6 6 - 6 - 7

E_{dry}(lb/hr) = C_{sPM} x Q_d x 60 / 7000

Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Air Flow Rate, Gas Composition, Moisture Content, and Particulate Matter Emissions EPA Methods 2, 3, 4 and 5 Indurating Furnace Stack D (SV017) BPAC Screening

BPA	C Screening				1
Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	1/17/2017	1/17/2017	1/17/2017
Test Period	-	-	1007 - 1041	1116 - 1147	1216 - 1249
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-	-	6	6	6
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	104.00	104.00	104.00
Barometric Pressure	Pbar	in. Hg	28.24	28.24	28.24
Stack Static Pressure	Pg	in. H ₂ O	-0.70	-0.70	-0.70
Average Stack Temperature	Tsf	degrees F	116	117	116
Actual Dry Gas Meter Volume	Vm	cubic feet	19.59	20.31	20.97
Dry Gas Meter Calibration Factor	Y	-	0.9973	0.9973	0.9973
Average Orifice Meter Pressure Drop	DH	in H ₂ O	1.39	1.43	1.59
Average Meter Temperature	Tmf	degrees F	73	74	75
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(DP)^0.5		0.854	0.862	0.910
Volume of Water Vapor Condensed in Impingers	Vwc	ml	44	48	44
Mass of Water Vapor Collected in Desiccant	Vwsg	g	3	4	5
Orsat Results, Dry Basis	vwog	9	, J	-	U
Oxygen	%O2	%v/v	18.4	18.4	18.4
7.5	%CO2		2.0	2.0	
Carbon Dioxide Nitrogen + Carbon Monoxide	%CO2 %N2 + %CO	%v/v %v/v	79.6	79.6	2.0 79.6
Nozzle Diameter	Dn	inches	0.217	0.217	0.217
Run Time	theta	minutes	30	30	30
Particulate Loading (From Lab Results) PM - Filterable	M	_	0.00000	0.00005	0.00000
PW - Filterable	M _{PM}	g	0.00963	0.00895	0.00866
	0 1 1	11.7	5 4	D 0	D 0
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature Tsr = Tsf + 460	Tsr	degrees R	576	577	576
Stack Pressure Ps = Pbar + Pg / 13.6	Ps	in. Hg	28.19	28.19	28.19
Duct Area A = $3.14 \times D^2 / (4 \times 144)$ or A = L x W / 144	А	Sq. ft	58.992	58.992	58.992
Meter Volume at Standard Conditions Vmstd = 17.64 x Vm x Y x ((Pbar + (DH / 13.6)) / (Tmf + 460))	Vmstd	cubic feet	18.32	18.98	19.54
Average Moisture Content of Stack Gas MC = ((0.04707 x Vwc + 0.04715 x Vwsg) / ((0.04707 x Vwc + 0.04715 x Vwsg) + (Vmstd)) x 100	МС	% Vol	10.78	11.09	10.56
				see note	
Molecular Weight of Stack Gas, dry Md = (0.44 x %CO2) + (0.32 x %O2) + (0.28 x (%N2 + %CO))	Md	lb/lbmol	29.06	29.06	29.06
Molecular Weight of Stack Gas, wet Ms = Md x (1-(MC/100))+18 x (MC/100)	Ms	lb/lbmol	27.86	27.83	27.89
Average Stack Gas Velocity Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)	Vs	ft/sec	52.52	53.09	55.95
Actual Volumetric Air Flow Rate Qa = 60 x Vs x A	Qa	acfm	185,900	187,912	198,030
Volumetric Air Flow Rate at Standard Conditions Qs = Qa x (528 / (Ts + 460)) x (Ps / 29.92)	Qs	scfm	160,640	162,097	170,924
Dry Volumetric Air Flow Rate at Standard Conditions Qd = Qa x (1 - (MC / 100)) x (528 / Tsr) x (Ps / 29.92)	Qd	dscfm	143,328	144,112	152,874
Nozzle Cross-Sectional Area An =(3.14 x Dn²) /(4 x 144)	An	sq. ft	0.000257	0.000257	0.000257
Isokinetic Variation I = (0.0945 x Tsr x Vmstd) / (Ps x Vs x An x theta x (1 - (MC / 100)))	1	%	97.9	100.9	97.9
PARTICULATE CONCENTRATION	*				
PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{mstd}	C _{sPM}	gr/dscf	0.0081	0.0073	0.0068
	_1		1		
PARTICULATE EMISSION RATE PM - Filterable	E _{dry}	lb/hr	10.0	9.0	9.0
E _{dry} (lb/hr) = C _{sPM} x Q _d x 60 / 7000	□dry	ID/III	10.0	5.0	5.0

 $E_{dry}(lb/hr) = C_{sPM} \ x \ Q_d \ x \ 60 \ / \ 7000$ Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Air Flow Rate, Gas Composition, Moisture Content, and Particulate Matter Emissions EPA Methods 2, 3, 4 and 5 Indurating Furnace Stack C (SV016) HPAC Screening

HPAC	Screening			T	
Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	1/18/2017	1/18/2017	1/18/2017
Test Period	-	-	901 - 934	1009 - 1041	1116 - 1148
Number of Sample Ports	-	-	2	2	2
Number of Traverse Points	-		6	6	6
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	104.00	104.00	104.00
Barometric Pressure	Pbar	in. Hg	28.07	28.07	28.07
Stack Static Pressure	Pg	in. H ₂ O	-0.80	-0.80	-0.80
Average Stack Temperature	Tsf	degrees F	115	114	115
Actual Dry Gas Meter Volume	Vm	cubic feet	21.99	21.83	22.18
Dry Gas Meter Calibration Factor	Y		0.9852	0.9852	0.9852
Average Orifice Meter Pressure Drop	DH	in H ₂ O	1.67	1.67	1.67
Average Meter Temperature	Tmf	degrees F	67	78	84
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(DP)^0.5	-	0.967	0.960	0.948
Volume of Water Vapor Condensed in Impingers	Vwc	ml	48	42	44
Mass of Water Vapor Collected in Desiccant	Vwsg	g	3	4	5
Orsat Results, Dry Basis					
Oxygen	%02	%v/v	18.8	18.8	18.8
Carbon Dioxide	%CO2	%v/v	1.7	1.7	1.6
Nitrogen + Carbon Monoxide	%N2 + %CO	%v/v	79.5	79.5	79.6
Nozzle Diameter	Dn	inches	0.214	0.214	0.214
Run Time	theta	minutes	30	30	30
Particulate Loading (From Lab Results)					
PM - Filterable	M _{PM}	g	0.00924	0.00855	0.00824
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature Tsr = Tsf + 460	Tsr	degrees R	575	574	575
Stack Pressure Ps = Pbar + Pg / 13.6	Ps	in. Hg	28.01	28.01	28.01
Duct Area A = $3.14 \times D^2 / (4 \times 144)$ or A = L x W / 144	Α	Sq. ft	58.992	58.992	58.992
Meter Volume at Standard Conditions Vmstd = 17.64 x Vm x Y x ((Pbar + (DH / 13.6)) / (Tmf + 460))	Vmstd	cubic feet	20.45	19.89	19.99
Average Moisture Content of Stack Gas MC = ((0.04707 x Vwc + 0.04715 x Vwsg) / ((0.04707 x Vwc + 0.04715 x Vwsg) + (Vmstd)) x 100	МС	% Vol	10.51	9.82	10.34
Molecular Weight of Stack Gas, dry Md = (0.44 x %CO2) + (0.32 x %O2) + (0.28 x (%N2 + %CO))	Md	lb/lbmol	29.02	29.02	29.01
Molecular Weight of Stack Gas, wet Ms = Md x (1-(MC/100))+18 x (MC/100)	Ms	lb/lbmol	27.87	27.94	27.87
Average Stack Gas Velocity Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)	Vs	ft/sec	59.60	59.04	58.39
Actual Volumetric Air Flow Rate Qa = 60 x Vs x A	Qa	acfm	210,943	208,988	206,662
Volumetric Air Flow Rate at Standard Conditions Qs = Qa x (528 / (Ts + 460)) x (Ps / 29.92)	Qs	scfm	181,290	179,871	177,766
Dry Volumetric Air Flow Rate at Standard Conditions Qd = Qa x (1 - (MC / 100)) x (528 / Tsr) x (Ps / 29.92)	Qd	dscfm	162,244	162,208	159,378
Nozzle Cross-Sectional Area An =(3.14 x Dn²) /(4 x 144)	An	sq. ft	0.000250	0.000250	0.000250
Isokinetic Variation I = (0.0945 x Tsr x Vmstd) / (Ps x Vs x An x theta x (1 - (MC / 100)))	I	%	99.3	96.6	98.8
PARTICULATE CONCENTRATION	1				
PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{mstd}	C_{sPM}	gr/dscf	0.0070	0.0066	0.0064
PARTICULATE EMISSION RATE					
PM - Filterable $E_{dry}(lb/hr) = C_{sPM} \times Q_d \times 60 / 7000$	E _{dry}	lb/hr	9.7	9.2	8.7

Determination of Volumetric Air Flow Rate, Gas Composition, Moisture Content, and Particulate Matter Emissions EPA Methods 2, 3, 4 and 5 Indurating Furnace Stack D (SV017)

HPAC Screening Input Data Units Symbol Run 1 Run 2 Run 3 1/18/2017 1/18/2017 Test Date 1/18/2017 901 - 934 1009 - 1041 1116 - 1148 Test Period Number of Sample Ports Number of Traverse Points 6 6 Duct Dimensions (diameter or Length x Width) D, LXW inches 104.00 104.00 104.00 Barometric Pressure 28.07 28.07 28.07 Pbar in. Hg Stack Static Pressure Pg in. H₂O -0.70 -0.70 -0.70 Average Stack Temperature Tsf degrees F 117 117 116 19.63 19.73 20.30 Actual Dry Gas Meter Volume Vm cubic feet 0.9973 Dry Gas Meter Calibration Factor 0.9973 0.9973 in H₂O DH Average Orifice Meter Pressure Drop 1.37 1.37 1.43 Average Meter Temperature Tmf degrees F 60 70 74 Pitot Tube Coefficient Ср 0.84 0.84 0.84 Average Square Root of Velocity Head (DP)^0.5 0.856 0.854 0.857 Volume of Water Vapor Condensed in Impingers Vwc 46 40 44 ml Mass of Water Vapor Collected in Desiccant Vwsg g 4 3 6 Orsat Results, Dry Basis Oxygen %02 %v/v 18.3 18.3 18.3 Carbon Dioxide %CO2 2.0 Nitrogen + Carbon Monoxide %N2 + %CO %v/v 79.7 79.7 79.7 0.217 0.217 0.217 Nozzle Diameter Dn inches Run Time theta minutes 30 30 30 Particulate Loading (From Lab Results) 0.01022 0.00892 0.00904 PM - Filterable g Calculated Data Symbol Units Run 1 Run 2 Run 3 Average Absolute Stack Temperature degrees R Tsr = Tsf + 460Stack Pressure Ps in. Hg 28.02 28.02 28.02 Ps = Pbar + Pg / 13.6Duct Area Α Sa. ft 58.992 58.992 58.992 $A = 3.14 \times D^2 / (4 \times 144)$ or $A = L \times W / 144$ Meter Volume at Standard Conditions Vmstd cubic feet 18.69 18.46 18.84 Vmstd = 17.64 x Vm x Y x ((Pbar + (DH / 13.6)) / (Tmf + 460)) Average Moisture Content of Stack Gas MC % Vol 11.18 9.88 10.95 MC = ((0.04707 x Vwc + 0.04715 x Vwsg) / ((0.04707 x Vwc + 0.04715 x Vwsg) + (Vmstd)) x 100 see note Molecular Weight of Stack Gas, dry Md lb/lbmol 29.05 29.05 29.05 $Md = (0.44 \times \%CO2) + (0.32 \times \%O2) + (0.28 \times (\%N2 + \%CO))$ Molecular Weight of Stack Gas, wet Ms lb/lbmol 27.82 27.96 27.84 $Ms = Md \times (1-(MC/100))+18 \times (MC/100)$ Average Stack Gas Velocity Vs ft/sec 52 92 52 63 52 90 $Vs = 85.49 \times Cp \times (dP)^0.5 \times ((Tsr/(Ps \times Ms))^0.5)$ Actual Volumetric Air Flow Rate Qa acfm 187,324 186,272 187,230 Qa = 60 x Vs x A Volumetric Air Flow Rate at Standard Conditions 160,430 159,713 160,720 Qs scfm $Qs = Qa \times (528 / (Ts + 460)) \times (Ps / 29.92)$ Dry Volumetric Air Flow Rate at Standard Conditions Ωd dscfm 142,488 143,929 143,114 Qd = Qa x (1 - (MC / 100)) x (528 / Tsr) x (Ps / 29.92) Nozzle Cross-Sectional Area 0.000257 0.000257 0.000257 An sq. ft $An = (3.14 \times Dn^2) / (4 \times 144)$ Isokinetic Variation ī % 100.5 98.3 100.9 I = (0.0945 x Tsr x Vmstd) / (Ps x Vs x An x theta x (1 - (MC / 100)))PARTICULATE CONCENTRATION PM - Filterable C_{sPM} gr/dscf 0.0084 0.0075 0.0074 C_{sPM} = 15.432 x M_{PM} / V_{mstd} PARTICULATE EMISSION RATE

 $\mathsf{E}_{\mathsf{dry}}$

10.3

lh/hr

92

9 1

Note: Moisture Content limited to moisture at saturation

 $E_{dry}(Ib/hr) = C_{sPM} \times Q_d \times 60 / 7000$

PM - Filterable

Indurating Furnact Stack C SV016 BPAC Screening

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	1/17/2017	1/17/2017	1/17/2017	
Test Period	-	-	1007 - 1041	1116 - 1147	1216 - 1249	
Barometric Pressure	P _{bar}	in. Hg	28.24	28.24	28.24	28.24
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	164,662	161,102	160,140	161,968

Trap A	Results	

Парапез	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Astro-I Des Oss Mates Values		+				
Actual Dry Gas Meter Volume	V _{mA}	liters	30.376	29.556	30.769	30.234
Dry Gas Meter Calibration Factor	YA	-	1.0069	1.0069	1.0069	1.0069
Average Meter Temperature	T _{mfA}	degrees F	74.3	77.8	78.8	77
Average Absolute Meter Temperature (R)	_	d D	504	500	500	507
$T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	534	538	539	537
Meter Volume at Standard Conditions	.,					
$V_{mstd A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_{A} \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.007	0.973	1.011	0.997
Laboratory Results						
Trap ID			399746	394752	391536	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	55.36	58.65	56.12	56.71
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	4.40	4.95	4.83	4.73
Mercury, Total amount collected	M _A	ng	59.76	63.60	60.95	61.44
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration	0					
$C_{(\mu g)A} = (M_A - M_{spikeA}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	2.096	2.308	2.128	2.177
Mercury Emission Rate	_					
$E_{\text{(lb/hr)A}} = (M_A - M_{\text{spike A}}) \times (2.2046 \times 10^{-12} \text{ (lb/ng)}) \times Qd \times 60 / V_{\text{mstd A}}$	E _{(lb/hr)A}	lb/hr	0.00129	0.00139	0.00128	0.00132
Mercury Emission Rate	_	lb/ur	11.2	12.2	11.2	11.6
$E_{(lb/yr)A} = E_{(lb/hr)A} \times 8760 \; hr/yr$	E _{(lb/yr)A}	lb/yr	11.3	12.2	11.2	11.6

Trap B Results

Trap B Results							
	Symbol	Units	Run 1	Run 2	Run 3	Test Average	
Actual Dry Gas Meter Volume	V _{mB}	liters	31.895	29.355	30.898	30.716	
Dry Gas Meter Calibration Factor	Y _B	-	1.0002	1.0002	1.0002	1.0002	
Average Meter Temperature	T _{mfB}	degrees F	74.0	76.8	78.0	76	
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	534	537	538	536	
Meter Volume at Standard Conditions V _{mstd B} = 17.64 x (V _{mB} x 0.03531) x Y x P _{bar} / T _{mrB}	V _{mstd B}	cubic feet	1.051	0.962	1.010	1.008	
Laboratory Results							
Trap ID			391640	391663	391890		
Mercury Sorbent Trap, Section 1	M _{1 B}	ng	104.40	106.93	105.41	105.58	
Mercury Sorbent Trap, Section 2	M _{2 B}	ng	5.62	4.62	4.88	5.04	
Mercury, Total amount collected	M _B	ng	110.02	111.54	110.29	110.62	
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50		
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	2.017	2.259	2.107	2.128	
Mercury Emission Rate $E_{(lb/hr)B} = (M_B - M_{spike B}) \times (2.2046 \times 10^{-12} (lb/ng)) \times Qd \times 60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00124	0.00136	0.00126	0.00129	
Mercury Emission Rate $E_{(lbhyr)B} = E_{(lbhyr)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	10.9	11.9	11.1	11.3	

ETA MEGIOG SUB WANGO BAGA								
	Symbol	Units	Run 1	Run 2	Run 3	Test Average		
A Train Breakthrough each run <10% B _A = M _{2 A} / M _{1 A} x 100	B _A	%	8.0	8.4	8.6	8.3		
B Train Breakthrough each run <10% B _B = M _{2 B} / M _{1 B} x 100	B _B	%	5.4	4.3	4.6	4.8		
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	4.2	-1.2	-0.1	1.0		
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	95.3	97.4	98.8	97.2		
Paired Trap Agreement each run <10% RD = $((C_{\mu 0A} - C_{\mu 0B}) / (C_{\mu 0A} + C_{\mu 0B})) \times 100$	RD	%	1.9	1.1	0.5	1.2		

Indurating Furnace Stack D (SV017) BPAC Screening

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	1/17/2017	1/17/2017	1/17/2017	
Test Period	-	-	1007 - 1041	1116 - 1147	1216 - 1249	
Barometric Pressure	P _{bar}	in. Hg	28.24	28.24	28.24	28.24
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	143,328	144,112	152,874	146,772

Trap A	Results

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mA}	liters	33.888	30.260	30.047	31.398
Dry Gas Meter Calibration Factor	Y _A	-	0.9904	0.9904	0.9904	0.9904
Average Meter Temperature	T _{mfA}	degrees F	75.2	77.8	79.5	77.5
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	535	538	540	538
Meter Volume at Standard Conditions $V_{mstd A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.103	0.980	0.970	1.018
Laboratory Results					•	
Trap ID			394925	399693	394777	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	80.89	76.85	74.82	77.52
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	3.13	2.13	2.19	2.48
Mercury, Total amount collected	M _A	ng	84.02	78.98	77.01	80.00
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration C _{(µg)A} = (M _A - M _{spikeA}) / 1000 / V _{mstdA} x 0.0283168	C _{(µg)A}	μg/dscm	2.690	2.846	2.803	2.779
Mercury Emission Rate E_(b/hr)A = (MA-Mspike A) × (2.2046x10 ⁻¹² (b/ng)) × Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00144	0.00154	0.00161	0.00153
Mercury Emission Rate $E_{(lb/ly)A} = E_{(lb/hy)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	12.6	13.5	14.1	13.4

Trap B Results

Trap B Result	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	33.582	30.110	29.912	31.201
Dry Gas Meter Calibration Factor	Y _B	-	0.9846	0.9846	0.9846	0.9846
Average Meter Temperature	T _{mfB}	degrees F	75.3	77.8	79.5	78
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	535	538	540	538
Meter Volume at Standard Conditions $V_{mstd} = 17.64 \times (V_{mB} \times 0.03531) \times Y \times P_{bar} / T_{mrB}$	V _{mstd B}	cubic feet	1.086	0.970	0.960	1.005
Laboratory Results						
Trap ID			391876	391866	391891	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	130.94	117.04	117.54	121.84
Mercury Sorbent Trap, Section 2	M _{2B}	ng	2.18	1.75	2.22	2.05
Mercury, Total amount collected	M _B	ng	133.12	118.79	119.76	123.89
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50	
Mercury Stack Concentration $C_{(\mu,g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	2.702	2.505	2.566	2.591
Mercury Emission Rate $E_{(lb/hv)B} = (M_B - M_{spike B}) \times (2.2046x10^{-12} (lb/ng)) \times Qd x60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00145	0.00135	0.00147	0.00142
Mercury Emission Rate $E_{(lb,lyr)B} = E_{(lb,hr)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	12.7	11.8	12.9	12.5

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2.A} / M_{1.A} \times 100$	B _A	%	3.9	2.8	2.9	3.2
B Train Breakthrough each run <10% $B_B = M_{2B} \ / \ M_{1B} \times 100$	B _B	%	1.7	1.5	1.9	1.7
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-1.5	-1.1	-1.0	-1.2
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	100.7	81.3	87.1	89.7
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) \times 100$	RD	%	0.2	6.4	4.4	3.7

Indurating Furnace Stack C (SV016) HPAC Screening

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	1/18/2017	1/18/2017	1/18/2017	
Test Period	-	-	901-931	1009-1039	1116-1146	
Barometric Pressure	P _{bar}	in. Hg	28.07	28.07	28.07	28.07
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	162,244	162,208	159,378	161,277

Tran	Δ	Paci	ılte

Trap A Result	3					
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mA}	liters	30.602	29.845	29.978	30.142
Dry Gas Meter Calibration Factor	Y _A	-	1.0069	1.0069	1.0069	1.0069
Average Meter Temperature	T _{mfA}	degrees F	60	71	77	69
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	520	531	537	529
Meter Volume at Standard Conditions $V_{mstd A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.036	0.990	0.983	1.003
Laboratory Results						
Trap ID			399654	399571	401323	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	54.45	47.08	47.31	49.61
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	5.23	4.30	4.48	4.67
Mercury, Total amount collected	M _A	ng	59.67	51.38	51.79	54.28
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	C _{(µg)A}	μg/dscm	2.034	1.832	1.860	1.909
Mercury Emission Rate E(b/hr)A = (M _A -M _{spike} A) x (2.2046x10 ⁻¹² (b/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00124	0.00111	0.00111	0.00115
Mercury Emission Rate $E_{(lbhy)A} = E_{(lbhy)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	10.8	9.8	9.7	10.1

Trap B Results

·	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	30.393	30.026	30.208	30.209
Dry Gas Meter Calibration Factor	Y _B	-	1.0002	1.0002	1.0002	1.0002
Average Meter Temperature	T _{mfB}	degrees F	60	70	76	68
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	520	530	536	528
Meter Volume at Standard Conditions $V_{mstd B} = 17.64 \times (V_{mB} \times 0.03531) \times Y \times P_{bar} / T_{mrB}$	V _{mstd B}	cubic feet	1.023	0.991	0.986	1.000
Laboratory Results						
Trap ID			391879	401329	401282	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	98.91	91.06	96.05	95.34
Mercury Sorbent Trap, Section 2	M _{2B}	ng	4.55	4.93	4.58	4.68
Mercury, Total amount collected	M _B	ng	103.46	95.99	100.63	100.02
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50	
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	1.846	1.639	1.814	1.766
Mercury Emission Rate $E_{(lb/hr)B} = (M_B - M_{spike B}) \times (2.2046x10^{-12} (lb/ng)) \times Qd x60 / V_{mstd B}$	E _{(lb/hr)B}	lb/hr	0.00112	0.00100	0.00108	0.00107
Mercury Emission Rate $E_{(lb/ly)B} = E_{(lb/ly)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	9.8	8.7	9.5	9.3

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2,A} / M_{1,A} \times 100$	B _A	%	9.6	9.1	9.5	9.4
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} x 100$	B _B	%	4.6	5.4	4.8	4.9
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-1.3	0.1	0.3	-0.3
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	89.1	89.1	97.4	91.9
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) X 100$	RD	%	4.9	5.6	1.3	3.9

Indurating Furnace Stack D (SV017) HPAC Screening

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	1/18/2017	1/18/2017	1/18/2017	
Test Period	-	-	901-931	1009-1039	1116-1146	
Barometric Pressure	P _{bar}	in. Hg	28.07	28.07	28.07	28.07
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	142,488	143,929	143,114	143,177

Trap A Result	s					
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	30.301	29.949	30.079	30.110
Dry Gas Meter Calibration Factor	Y _A	-	0.9904	0.9904	0.9904	0.9904
Average Meter Temperature	T_{mfA}	degrees F	56	66	73	65
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mrA} + 460$	T _{mrA}	degrees R	516	526	533	525
Meter Volume at Standard Conditions $V_{mstdA} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.017	0.986	0.977	0.993
Laboratory Results						
Trap ID			399568	394870	401324	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	67.05	61.34	62.53	63.64
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	1.61	2.02	1.60	1.74
Mercury, Total amount collected	M _A	ng	68.65	63.36	64.13	65.38
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu g)A} = (M_A - M_{spikeA}) / 1000 / V_{mstdA} \times 0.0283168$	C _{(µg)A}	μg/dscm	2.383	2.270	2.318	2.324
Mercury Emission Rate E_(lb/hr)A = (M _A -M _{spike} _A) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00127	0.00122	0.00124	0.00125
Mercury Emission Rate $E_{(lbhy)A} = E_{(lbhy)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	11.1	10.7	10.9	10.9

Trap B Results Test Average Units Run 1 Run 2 Run 3 Symbol V_{mB} Actual Dry Gas Meter Volume 29.832 29.953 30.067 29.951 liters 0.9846 0.9846 0.9846 0.9846 Dry Gas Meter Calibration Factor Y_{B} Average Meter Temperature $\mathsf{T}_{\mathsf{mfB}}$ degrees F 57 66 74 65 Average Absolute Meter Temperature (R) T_{mrB} degrees R 517 526 534 525 $T_{mrB} = T_{mfB} + 460$ Meter Volume at Standard Conditions $V_{\text{mstd B}}$ cubic feet 0.994 0.980 0.981 $V_{mstd B} = 17.64 x (V_{mB} x 0.03531) x Y x P_{bar} / T_{mrB}$ Laboratory Results 401293 401281 Trap ID M_{1 B} 108.97 116.02 106.51 104.37 Mercury Sorbent Trap, Section 1 ng Mercury Sorbent Trap, Section 2 $M_{2\,B}$ ng 0.73 1.49 2.78 1.67 Mercury, Total amount collected M_{B} ng 116.75 108.00 107.15 110.64 Amount of Mercury in spiked traps-from laboratory M_{spike B} 50 50 50 ng Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$ Mercury Emission Rate $C_{(\mu g)B}$ μg/dscm 2.372 2.090 2.080 2.181 0.00117 lb/hr 0.00127 0.00113 0.00112 $E_{(lb/hr)B}$ $E_{\text{(lb/hr)B}} = (M_B - M_{\text{spike B}}) \times (2.2046 \times 10^{-12} \text{ (lb/ng)}) \times Qd \times 60 / V_{\text{mstd B}}$ Mercury Emission Rate $\mathsf{E}_{\mathsf{(lb/yr)B}}$ lb/yr 11.1 9.9 9.8 10.2 $E_{\text{(lb/yr)B}} = E_{\text{(lb/hr)B}} \times 8760 \text{ hr/yr}$

EPA Method 30B QA/	QC Data					
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2,h} / M_{1,h} \times 100$	B _A	%	2.4	3.3	2.6	2.7
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} \times 100$	B _B	%	0.6	1.4	2.7	1.6
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-2.3	-0.6	-0.7	-1.2
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	99.3	90.0	86.9	92.1
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} \cdot C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) \times 100$	RD	%	0.2	4.1	5.4	3.3

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 1 Indurating Furnace Stack A (SV014) Longterm 1

	Longterm 1				
Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	2/8/2017	2/8/2017	2/8/2017
Test Period	-	-	807 - 1020	1313 - 1313	1754 - 175
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.33	28.33	28.33
Stack Static Pressure	Pg	in. H2O	-1.00	-1.00	-1.00
Average Stack Temperature, dry bulb	Tsf	degrees F	104	104	105
Actual Dry Gas Meter Volume	Vm	cubic feet	85.93	91.21	87.61
Dry Gas Meter Calibration Factor	Y	-	1.0038	1.0038	1.0038
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.65	1.82	1.72
Average Meter Temperature	Tmf	degrees F	68.90	74.38	67.85
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head		-	0.951	0.965	0.934
· · · · · · · · · · · · · · · · · · ·	(ΔP)^0.5				
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	148	141	147
Orsat Results, Dry Basis			1	ı	
Oxygen	%O2	%v/v	19.6	19.6	19.6
Carbon Dioxide	%CO2	%v/v	1.2	1.2	1.2
Carbon Monoxide + Nitrogen	-	%v/v	79.2	79.2	79.2
Nozzle Diameter	Dn	in	0.215	0.215	0.215
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results					
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	0.018	0.029	0.017
Filter	Hg _{filter}	μg	1.080	1.290	0.650
Oxydized Mercury (KCI)	Hg _{KCI}	μg	1.235	0.928	1.170
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	0.002	0.015	< 0.013
Elemental Mercury (KMnO4)		μg			
* * * * * * * * * * * * * * * * * * * *	Hg _{KMnO4}		2.52	2.73	2.72
Total Mercury	Hg _(total)	μg	4.85	4.99	4.56
Particulate Loading (From Lab Results)	B.4		0.001	0.000	0.00
PM - Filterable	M _{PM}	g	0.02421	0.02680	0.02383
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	564	564	565
Tsr = Tsf + 460					
Stack Pressure	Ps	in Hg	28.26	28.26	28.26
Ps = Pbar + Pg / 13.6					
Duct Area	A	Sq. ft	56.467	56.467	56.467
$A = (D/24)^2 \times \pi$	**	04. 11	00.101	00.101	00.101
Meter Volume at Standard Conditions	Vmstd	cubic feet	81.85	86.03	83.63
	VIIISIU	cubic reet	61.65	80.03	03.03
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)					
Average Moisture Content of Stack Gas	MC	% Vol	7.70	7.15	7.67
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100			see note		
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	28.98	28.98	28.98
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	28.13	28.19	28.13
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	57.51	58.34	56.52
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)					
Actual Volumetric Flowrate	Qa	acfm	194,856	197,651	191,508
Qa = 60 x Vs x A	Qu.	donn	134,000	107,001	131,000
	0-	cofee	172 250	174 644	160.004
Volumetric Flowrate at Standard Conditions	Qs	scfm	172,250	174,644	169,091
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)			450	100 : : -	486
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	158,987	162,149	156,118
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)					
Nozzle Cross-Sectional Area	An	sq. ft	0.000252	0.000252	0.000252
An =(3.14 x Dn^2) /(4 x 144)					
Isokinetic Variation	1	%	96.2	99.1	100.1
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))			<u> </u>		<u></u>
Mercury Concentrations					
Particulate Hg: $Hg^{tp} = (Hg_{pr} + Hg_{filter}) / (V_{mstd} / 35.314)$	Hg ^{tp}	μg/dscm	0.474	0.541	0.281
Oxidized Hg: Hg ^o = Hg _{KCI} / (V _{mstd} / 35.314)	Hg ^o	μg/dscm	0.53	0.38	0.49
Elemental Hg: Hg ^E = (Hg _{H2O2} + Hg _{KMnO4}) / (V _{mstd} / 35.314)	Hg ^E	μg/dscm	1.1	1.1	1.2
Total Hg: Hg ^{tot} = Hg/total) / (V _{mstd} / 35.314)	Hg ^{tot}	μg/dscm	2.1	2.0	1.9
Mercury Emission Rates	. 19	r.g. 000111		2.0	1.3
	=to	IF #	0.05.04	2.25.24	1050:
Particulate Hg: E-Hg ^{tp} = Hg ^{tp} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tp}	lb/hr	2.8E-04	3.3E-04	1.6E-04
Oxidized Hg: E-Hg ^O = Hg _{KCl} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^O	lb/hr	3.2E-04	2.3E-04	2.9E-04
Elemental Hg: $E-Hg^E = Hg_{H202} \times 62.43 \times 10^{-12} \times 60 \times dscfm$	E-Hg ^E	lb/hr	6.5E-04	6.8E-04	6.7E-04
Total Hg: E-Hg ^{tot} = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tot}	lb/hr	1.2E-03	1.2E-03	1.1E-03
Estimated Annual Mercury Emissions					
$E-Hg^{tot} = 8,760 \text{ hr/yr x } E-Hg^{tot}$	E-Hg ^{tot}	lb/yr	10.9	10.9	9.9
PARTICULATE CONCENTRATION					
PM - Filterable		g=/d= - f	0.0040	0.0040	0.0011
$C_{sPM} = 15.432 \times M_{PM} / V_{mstd}$	C _{sPM}	gr/dscf	0.0046	0.0048	0.0044
PARTICULATE EMISSION RATE	-				
PM - Filterable	-	п. л.	0.0	^ 7	
$E_{dry}(lb/hr) = C_{sPM} \times Q_d \times 60 / 7000$	E _{dry}	lb/hr	6.2	6.7	5.9
Note: Moisture Content limited to moisture at saturation					

Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 2 Indurating Furnace Stack B (SV015) Longterm 1

Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	2/9/2017	2/9/2017	2/9/2017
Test Period	-	-	754 - 1030	1330 - 1330	1610 - 1610
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.40	28.40	28.40
Stack Static Pressure	Pg	in. H2O	-0.90	-0.90	-0.90
Average Stack Temperature, dry bulb	Tsf	degrees F	107	106	107
Actual Dry Gas Meter Volume	Vm	cubic feet	88.00	93.66	95.52
Dry Gas Meter Calibration Factor	Y	-	1.0038	1.0038	1.0038
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.77	1.98	2.03
Average Meter Temperature	Tmf	degrees F	56.52	69.50	74.35
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.959	0.994	1.011
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	122	167	166
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	19.3	19.3	19.3
Carbon Dioxide	%CO2	%v/v	1.5	1.5	1.5
Carbon Monoxide + Nitrogen	-	%v/v	79.2	79.2	79.2
Nozzle Diameter	Dn	in	0.215	0.215	0.215
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results					
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	0.030	0.030	0.042
Filter	Hg _{filter}	μg	1.670	1.725	1.675
Oxydized Mercury (KCI)	Hg _{KCI}	μд	0.626	0.932	0.657
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	0.02	< 0.013	< 0.013
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	2.46	3.05	2.98
Total Mercury	Hg _(total)	μg	4.81	5.74	5.36
Particulate Loading (From Lab Results)	· · ə(totai)	1.0		J., T	0.50
PM - Filterable	M _{PM}	g	0.02432	0.03134	0.02588
THE THOUGHT		9	0.02.102	0.00101	0.02000
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
	Tsr	degrees R	567	566	567
Average Absolute Stack Temperature (R)	ISI	degrees R	507	200	507
Tsr = Tsf + 460	D-	to the	00.00	00.00	00.00
Stack Pressure	Ps	in Hg	28.33	28.33	28.33
Ps = Pbar + Pg / 13.6					
Duct Area	A	Sq. ft	56.467	56.467	56.467
$A = (D/24)^2 \times \pi$					
Meter Volume at Standard Conditions	Vmstd	cubic feet	86.07	89.41	90.37
$Vmstd = 17.64 \times Vm \times Y \times ((Pbar + (\Delta H/13.6))/Tmr)$					
Average Moisture Content of Stack Gas	MC	% Vol	6.27	8.10	7.95
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100				see note	
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.01	29.01	29.01
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	28.32	28.12	28.14
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	57.92	60.18	61.23
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)					
Actual Volumetric Flowrate	Qa	acfm	196,221	203,898	207,452
Qa = 60 x Vs x A					
Volumetric Flowrate at Standard Conditions	Qs	scfm	172,948	180,165	183,090
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	162,105	165,581	168,536
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)			1		
Nozzle Cross-Sectional Area	An	sq. ft	0.000252	0.000252	0.000252
An =(3.14 x Dn^2) /(4 x 144)					
Isokinetic Variation	1	%	99.2	100.9	100.2
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))		,			
Mercury Concentrations		I .	1	l-	I
Particulate Hg: Hg ^{tp} = (Hg _{pr} + Hg _{filter}) / (V _{mstd} / 35.314)	Hg ^{tp}	μg/dscm	0.698	0.693	0.671
Oxidized Hg: Hg ^o = Hg _{KCI} / (V _{mstd} / 35.314)	Hg ^O	μg/dscm	0.26	0.37	0.071
Elemental Hg: Hg ^E = $(Hg_{H2O2} + Hg_{KMrO4}) / (V_{mstd} / 35.314)$	Hg ^E	μg/dscm	1.0	1.2	1.2
Elemental Hg: Hg = $(Hg_{H2O2} + Hg_{KMnO4}) / (V_{mstd} / 35.314)$ Total Hg: Hg ^{tot} = $Hg_{(total)} / (V_{mstd} / 35.314)$	Hg ^{tot}	μg/dscm	2.0		2.1
Mercury Emission Rates	119	pg addin	2.0	2.3	2.1
Mercury Emission Rates Particulate Hg: E-Hg ^{tp} = Hg ^{tp} x 62.43x10 ⁻¹² x 60 x dscfm	=to	IL #	4.05.04	4.05.04	4.05.01
	E-Hg ^{tp} E-Hg ^O	lb/hr	4.2E-04	4.3E-04	4.2E-04
Oxidized Hg: E-Hg ⁰ = Hg _{KCI} x 62.43x10 ⁻¹² x 60 x dscfm		lb/hr	1.6E-04	2.3E-04	1.6E-04
Elemental Hg: E-Hg ^E = Hg _{H2O2} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^E	lb/hr	6.2E-04	7.5E-04	7.4E-04
Total Hg: E-Hg ^{tot} = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tot}	lb/hr	1.2E-03	1.4E-03	1.3E-03
Estimated Annual Mercury Emissions				T.	1
$E-Hg^{tot} = 8,760 \text{ hr/yr x } E-Hg^{tot}$	E-Hg ^{tot}	lb/yr	10.5	12.3	11.6
·					
PARTICULATE CONCENTRATION					
PM - Filterable	C ~	ar/decf	0.0044	0.0054	0.0044
	C _{sPM}	gr/dscf	0.0044	0.0054	0.0044
PM - Filterable C _{SPM} = 15.432 x M _{PM} / V _{mstd} PARTICULATE EMISSION RATE	C _{sPM}	gr/dscf	0.0044	0.0054	0.0044
PM - Filterable $C_{sPM} = 15.432 \times M_{PM} / V_{mstd}$	C _{sPM}	gr/dscf	0.0044	0.0054	0.0044

E_{dry}(lb/hr) = C_{sPM} x Q_d x 60 / 7000 Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 3

Indurating Furnace Stack C (SV016)

Input Data	ongterm 1 Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	2/8/2017	2/8/2017	2/8/2017
Test Period	-	-	807 - 1020	1313 - 1313	1651 - 1651
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points Duct Dimensions (diameter or Length x Width)	D, L X W	inches	12 104.00	12 104.00	12 104.00
Barometric Pressure	Pbar	in. Hg	28.33	28.33	28.33
Stack Static Pressure	Pg	in. H2O	-0.85	-0.85	-0.85
Average Stack Temperature, dry bulb	Tsf	degrees F	113	113	113
Actual Dry Gas Meter Volume	Vm	cubic feet	85.04	89.35	87.48
Dry Gas Meter Calibration Factor	Y	- 1100	0.9950	0.9950	0.9950
Average Orifice Meter Pressure Drop Average Meter Temperature	ΔH Tmf	in H2O degrees F	1.68 68.56	1.81 76.17	1.73 79.06
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.954	0.959	0.929
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	166	195	190
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	18.5	18.5	18.5
Carbon Dioxide Carbon Monoxide + Nitrogen	%CO2	%v/v %v/v	2.2 79.3	2.2 79.3	79.3
Nozzle Diameter	Dn	in	0.214	0.214	0.214
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results					
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	0.072	0.114	0.090
Filter	Hg _{filter}	μg	2.070	2.215	1.825
Oxydized Mercury (KCI)	Hg _{KCI}	µg µg	0.245	0.472	0.512
Elemental Mercury (HNO3/H2O2) Elemental Mercury (KMnO4)	Hg _{H2O2} Hg _{KMnO4}	µg µg	< 0.013 3.15	< 0.013 4.28	< 0.013 3.77
Total Mercury	Hg _(total)	μд	5.55	7.09	6.20
Particulate Loading (From Lab Results)	···S(total)		0.00		0
PM - Filterable	M _{PM}	g	0.02863	0.03382	0.03116
		ı	T.	T.	ı
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R) Tsr = Tsf + 460	Tsr	degrees R	573	573	573
Stack Pressure	Ps	in Hg	28.27	28.27	28.27
Ps = Pbar + Pg / 13.6		9			
Duct Area	А	Sq. ft	58.992	58.992	58.992
$A = (D/24)^2 \times \pi$					
Meter Volume at Standard Conditions	Vmstd	cubic feet	80.35	83.25	81.06
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)	MC	% Vol	8.89	9.95	9.93
Average Moisture Content of Stack Gas MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100	IVIC	% VOI	0.09	9.95	9.93
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.09	29.09	29.09
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	28.11	27.99	27.99
Ms = Md x (1-(MC/100))+18 x (MC/100)					
Average Stack Gas Velocity	Vs	ft/sec	58.20	58.65	56.80
Vs = $85.49 \times Cp \times (dP)^0.5 \times ((Tsr/(Ps \times Ms))^0.5)$ Actual Volumetric Flowrate	Qa	acfm	205,991	207,611	201,047
Qa = 60 x Vs x A	Qa	aciiii	203,331	207,011	201,047
Volumetric Flowrate at Standard Conditions	Qs	scfm	179,252	180,635	174,950
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	163,314	162,670	157,572
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)					
Nozzle Cross-Sectional Area An =(3.14 x Dn^2) /(4 x 144)	An	sq. ft	0.000250	0.000250	0.000250
Isokinetic Variation	1	%	96.9	100.8	101.3
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))		,,			
Mercury Concentrations					•
Particulate Hg: $Hg^{tp} = (Hg_{pr} + Hg_{filter}) / (V_{mstd} / 35.314)$	Hg ^{tp}	μg/dscm	0.941	0.988	0.834
Oxidized Hg: $Hg^O = Hg_{KCI} / (V_{mstd} / 35.314)$	Hg ^O	μg/dscm	0.11	0.20	0.22
Elemental Hg: $Hg^{E} = (Hg_{H2O2} + Hg_{KMnO4}) / (V_{mstd} / 35.314)$	Hg ^E Hg ^{tot}	μg/dscm	1.4	1.8	1.646
Total Hg: Hg ^{tot} = Hg _(total) / (V _{mstd} / 35.314) Mercury Emission Rates	rig	μg/dscm	2.4	3.0	2.7
Particulate Hg: E-Hg ^{ip} = Hg ^{ip} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tp}	lb/hr	5.8E-04	6.0E-04	4.9E-04
Oxidized Hg: E-Hg ^O = Hg _{KCI} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^o	lb/hr	6.6E-05	1.2E-04	1.3E-04
Elemental Hg: E-Hg ^E = Hg _{H2O2} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^E	lb/hr	8.5E-04	1.1E-03	9.7E-04
Total Hg: E-Hg ^{tot} = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tot}	lb/hr	1.5E-03	1.8E-03	1.6E-03
Estimated Annual Mercury Emissions					
	tot				14.0
E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot}	E-Hg ^{tot}	lb/yr	13.1	16.0	14.0
E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot}	E-Hg ^{tot}	lb/yr	13.1	16.0	14.0
E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot} PARTICULATE CONCENTRATION PM - Filterable					
$ E-Hg^{tot} = 8,760 \text{ hr/yr x E-Hg}^{tot} $ $ PARTICULATE CONCENTRATION $ $ PM - Filterable $ $ C_{\text{SPM}} = 15.432 \times M_{\text{PM}} / V_{\text{meld}} $	E-Hg ^{tot}	lb/yr gr/dscf	0.0055	0.0063	0.0059
$E-Hg^{tot} = 8,760 \text{ hr/yr x E-Hg}^{tot}$ $PARTICULATE CONCENTRATION$ $PM - Filterable$ $C_{pPM} = 15.432 \times M_{PM} / V_{med}$ $PARTICULATE EMISSION RATE$					
$ E-Hg^{tot} = 8,760 \text{ hr/yr x E-Hg}^{tot} $ $ PARTICULATE CONCENTRATION $ $ PM - Filterable $ $ C_{\text{SPM}} = 15.432 \times M_{\text{PM}} / V_{\text{meld}} $					

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 4

Indurating Furnace Stack D (SV017)

Input Data	ngterm 1 Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	2/9/2017	2/9/2017	2/9/2017
Test Period	-	-	1001 - 1221	1545 - 1545	1810 - 1810
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points		-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	104.00	104.00	104.00
Barometric Pressure Stack Static Pressure	Pbar Pg	in. Hg in. H2O	28.40 -0.95	28.40 -0.95	28.40 -0.95
Average Stack Temperature, dry bulb	Tsf	degrees F	116	118	118
Actual Dry Gas Meter Volume	Vm	cubic feet	72.64	77.74	76.11
Dry Gas Meter Calibration Factor	Y	-	0.9950	0.9950	0.9950
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.28	1.41	1.35
Average Meter Temperature	Tmf	degrees F	63.42	76.85	76.98
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.837	0.844	0.839
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	144	189	187
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	18.0	18.0	18.0
Carbon Dioxide	%CO2	%v/v %v/v	2.7 79.3	2.7 79.3	2.7 79.3
Carbon Monoxide + Nitrogen Nozzle Diameter	Dn	in	0.214	0.214	0.214
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results					
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	0.108	0.127	0.094
Filter	Hg _{filter}	μg	3.135	3.340	2.700
Oxydized Mercury (KCI)	Hg _{KCI}	μg	0.340	0.293	0.493
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	< 0.013	< 0.013	0.016
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	3.60	3.83	4.26
Total Mercury	Hg _(total)	μg	7.20	7.60	7.56
Particulate Loading (From Lab Results) PM - Filterable	M _{PM}	0	0.03039	0.03217	0.03073
FWI - FIILERADIE	МРМ	g	0.03039	0.03217	0.03073
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	576	578	578
Tsr = Tsf + 460					
Stack Pressure	Ps	in Hg	28.33	28.33	28.33
Ps = Pbar + Pg / 13.6					
Duct Area	Α	Sq. ft	58.992	58.992	58.992
$A = (D/24)^2 \times \pi$					
Meter Volume at Standard Conditions	Vmstd	cubic feet	69.41	72.44	70.90
Vmstd = $17.64 \times Vm \times Y \times ((Pbar + (\Delta H/13.6))/Tmr)$					
Average Moisture Content of Stack Gas	MC	% Vol	8.92	10.96	11.07
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100 Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.15	29.15	29.15
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))	IVIG	ID/IDITIOI	29.15	29.10	29.15
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	28.16	27.93	27.92
Ms = Md x (1-(MC/100))+18 x (MC/100)		ID/IDITIO!	20.10	27.00	27.02
Average Stack Gas Velocity	Vs	ft/sec	51.08	51.79	51.54
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)					
Actual Volumetric Flowrate	Qa	acfm	180,786	183,322	182,414
Qa = 60 x Vs x A					
Volumetric Flowrate at Standard Conditions	Qs	scfm	156,836	158,633	157,712
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	142,852	141,249	140,260
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)	A	4	0.000050	0.000050	0.000050
Nozzle Cross-Sectional Area An =(3.14 x Dn^2) /(4 x 144)	An	sq. ft	0.000250	0.000250	0.000250
Isokinetic Variation	ı	%	95.7	101.0	99.6
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))		,0	30.7	101.0	33.0
Mercury Concentrations	L	I	1	I	I
Particulate Hg: $Hg^{tp} = (Hg_{pr} + Hg_{filter}) / (V_{mstd} / 35.314)$	Hg ^{tp}	μg/dscm	1.650	1.690	1.391
Oxidized Hg: $Hg^O = Hg_{KCI} / (V_{mstd} / 35.314)$	Hg ^o	μg/dscm	0.17	0.14	0.25
Elemental Hg: $Hg^{E} = (Hg_{H2O2} + Hg_{KMnO4}) / (V_{mstd} / 35.314)$	Hg ^E	μg/dscm	1.8	1.9	2.1
Total Hg: $Hg^{tot} = Hg_{(total)} / (V_{mstd} / 35.314)$	Hg ^{tot}	μg/dscm	3.7	3.7	3.8
Mercury Emission Rates					
Mercury Emission Rates Particulate Hg: E-Hg ^{tp} = Hg ^{tp} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tp}	lb/hr	8.8E-04	8.9E-04	7.3E-04
Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ \times 62.43 \times 10 ⁻¹² \times 60 \times dscfm Oxidized Hg: E-Hg ⁰ = Hg _{KCl} \times 62.43 \times 10 ⁻¹² \times 60 \times dscfm	E-Hg ^o	lb/hr	9.2E-05	7.5E-05	1.3E-04
Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{KCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^E = Hg _{H2C2} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^o E-Hg ^E	lb/hr lb/hr	9.2E-05 9.8E-04	7.5E-05 9.9E-04	1.3E-04 1.1E-03
Mercury Emission Rates Particulate $Hg: E-Hg^{10} = Hg^{10} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Oxidized $Hg: E-Hg^0 = Hg_{KCI} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Elemental $Hg: E-Hg^E = Hg_{H2G2} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Total $Hg: E-Hg^{tot} = Hg_{H2GB} \times 62.43 \times 10^{-12} \times 60 \times dscfm$	E-Hg ^o	lb/hr	9.2E-05	7.5E-05	1.3E-04
Mercury Emission Rates Particulate Hg: E-Hg th = Hg th x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^E = Hg _{HCI} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{to} = Hg _{Hcoall} x 62.243x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03
Mercury Emission Rates Particulate $Hg: E-Hg^{10} = Hg^{10} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Oxidized $Hg: E-Hg^0 = Hg_{KCI} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Elemental $Hg: E-Hg^E = Hg_{H2G2} \times 62.43 \times 10^{-12} \times 60 \times dscfm$ Total $Hg: E-Hg^{tot} = Hg_{H2GB} \times 62.43 \times 10^{-12} \times 60 \times dscfm$	E-Hg ^o E-Hg ^E	lb/hr lb/hr	9.2E-05 9.8E-04	7.5E-05 9.9E-04	1.3E-04 1.1E-03
Mercury Emission Rates Particulate Hg: E-Hg th = Hg th x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^E = Hg _{HCI} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{to} = Hg _{Hcoall} x 62.243x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03
Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ⁶ = Hg _{HCI} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰ = Hg _{HOID} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰ = Hg _{HOID} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{10x} = 8,760 hr/yr x E-Hg ^{10x} PARTICULATE CONCENTRATION PM - Filterable	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03
Mercury Emission Rates Particulate Hg: E-Hg ^{1p} = Hg ^{1p} × 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{Mc1} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^E = Hg _{Hc02} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{1cd} = Hg _{hc01} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{1cd} = Hg _{hc01} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{1cd} = 8,760 hr/yr x E-Hg ^{1cd} PARTICULATE CONCENTRATION PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{mstd}	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03
Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ²⁰ = Hg _{100x} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ¹⁶ = Hg _{100x1} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{10x1} = Hg _{100x1} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{10x1} = 8,760 hr/yr x E-Hg ^{10x1} PARTICULATE CONCENTRATION PM - Filterable C _{PM} = 15.432 x M _{PM} / V _{matd} PARTICULATE EMISSION RATE	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03
Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ⁶ = Hg _{HCI} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰ = Hg ₁₀₀₀₁ x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰ = Hg ₁₀₀₀₁ x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{10x} = 8,760 hr/yr x E-Hg ^{10x} PARTICULATE CONCENTRATION PM - Filterable C _{SPM} = 15.432 x M _{PM} / V _{mstd}	E-Hg ^o E-Hg ^E E-Hg ^{tot}	lb/hr lb/hr lb/hr	9.2E-05 9.8E-04 2.0E-03	7.5E-05 9.9E-04 2.0E-03	1.3E-04 1.1E-03 2.0E-03

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions
EPA Methods 2, 3, 4, 5, Ontario-Hydro
TEST 1
Indurating Furnace Stack A (SV014)
Longterm 2

Lon	gterm 2	1			
Input Data Test Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date Test Period	-	-	3/28/2017 804 - 1011	3/28/2017 1250 - 1250	3/28/2017 1526 - 1526
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.47	28.47	28.47
Stack Static Pressure	Pg	in. H2O	-1.00	-1.00	-1.00
Average Stack Temperature, dry bulb	Tsf	degrees F	112	114	116
Actual Dry Gas Meter Volume	Vm	cubic feet	83.41	84.85	84.09
Dry Gas Meter Calibration Factor	Y	- in H2O	1.0113	1.0113	1.0113
Average Orifice Meter Pressure Drop Average Meter Temperature	ΔH Tmf	in H2O degrees F	1.71 52.25	1.72 64.83	1.68 69.50
Pitot Tube Coefficient	Cp	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.955	0.962	0.949
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	184	183	175
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	19.6	19.6	19.6
Carbon Dioxide	%CO2	%v/v	1.2	1.2	1.2
Carbon Monoxide + Nitrogen	-	%v/v	79.2	79.2	79.2
Nozzle Diameter Run Time	Dn theta	in	0.213	0.213	0.213
Ontario Hydro Mercury Results	trieta	min	120	120	120
Probe Rinse (0.1 N HNO3)	Hgpr	μg	0.037	< 0.010	< 0.010
Filter	Hg _{filter}	μg	0.723	0.412	0.511
Oxydized Mercury (KCI)	Hg _{KCI}	μg	0.855	0.879	0.995
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	0.014	0.013	0.017
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	1.78	1.80	1.86
Total Mercury	Hg _(total)	μg	3.41	3.11	3.39
Particulate Loading (From Lab Results) PM - Filterable	M _{PM}	~	0.02311	0.02279	0.02581
FW - Filterable	IVIPM	g	0.02311	0.02279	0.02561
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	572	574	576
Tsr = Tsf + 460					
Stack Pressure	Ps	in Hg	28.40	28.40	28.40
Ps = Pbar + Pg / 13.6					
Duct Area	A	Sq. ft	56.467	56.467	56.467
A = (D/24) ² x π Meter Volume at Standard Conditions	Vmstd	aubia faat	02.06	00.40	04.04
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)	vmsta	cubic feet	83.06	82.48	81.01
Average Moisture Content of Stack Gas	MC	% Vol	9.48	9.48	9.23
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100		70 101	0.10	0.10	0.20
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	28.98	28.98	28.98
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.94	27.94	27.96
Ms = Md x (1-(MC/100))+18 x (MC/100)					
Average Stack Gas Velocity	Vs	ft/sec	58.27	58.75	58.03
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate	0-		407.400	400.057	400 500
Qa = 60 x Vs x A	Qa	acfm	197,408	199,057	196,592
Volumetric Flowrate at Standard Conditions	Qs	scfm	172,907	173,755	171,082
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)	۵,	001111	112,001	110,100	111,002
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	156,523	157,283	155,284
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)					
Nozzle Cross-Sectional Area	An	sq. ft	0.000247	0.000247	0.000247
An =(3.14 x Dn^2) /(4 x 144)					
Isokinetic Variation	I	%	101.3	100.1	99.6
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations		1	1	1	1
Mercury Concentrations Particulate Hg: $Hg^{tp} = (Hg_{pr} + Hg_{filter}) / (V_{mstd} / 35.314)$	Hg ^{tp}	μg/dscm	0.323	0.180	0.227
Oxidized Hg: Hg ^o = Hg _{KCI} / (V_{mstd} / 35.314)	Hg ^o	μg/dscm	0.363	0.180	0.434
Elemental Hg: Hg ^E = (Hg _{H2O2} + Hg _{KMnO4}) / (V _{mstd} / 35.314)	Hg ^E	μg/dscm	0.762	0.774	0.818
Total Hg: Hg ^{tot} = Hg _(total) / (V _{mstd} / 35.314)	Hg ^{tot}	μg/dscm	1.449	1.331	1.479
Mercury Emission Rates					-
Particulate Hg: E-Hg ^{tp} = Hg ^{tp} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tp}	lb/hr	1.89E-04	1.06E-04	1.32E-04
Oxidized Hg: E-Hg ^O = Hg _{KCl} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ⁰	lb/hr	2.13E-04	2.22E-04	2.52E-04
Elemental Hg: E-Hg ^E = Hg _{H2O2} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^E	lb/hr	4.47E-04	4.56E-04	4.76E-04
Total Hg: E-Hg ^{lot} = Hg _(lotal) x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	E-Hg ^{tot}	lb/hr	8.49E-04	7.84E-04	8.60E-04
E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot}	E-Hg ^{tot}	lb/yr	7.4	6.9	7.5
_ rig = 0,700 fili/yi / E*Fig	L-11g	ID/yI	7.4	0.3	7.0
PARTICULATE CONCENTRATION					
PM - Filterable	C_{sPM}	gr/dscf	0.00429	0.00426	0.00492
C _{sPM} = 15.432 x M _{PM} / V _{mstd}	- or wi	3			
PARTICULATE EMISSION RATE PM - Filterable					
$E_{dry}(lb/hr) = C_{sPM} \times Q_d \times 60 / 7000$	E _{dry}	lb/hr	5.76	5.75	6.54
Lary(ID/TIT) = OsPM X Qa X 00 7 7 000					

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 2 Indurating Furnace Stack B (SV015)

Longterm 2

Lon	gterm 2				
Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	3/29/2017	3/29/2017	3/29/2017
Test Period	-	-	745 - 952	1234 - 1234	1512 - 1512
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.63	28.63	28.63
Stack Static Pressure	Pg	in. H2O	-0.90	-0.90	-0.90
Average Stack Temperature, dry bulb	Tsf	degrees F	113	112	112
Actual Dry Gas Meter Volume	Vm	cubic feet	83.98	85.81	85.45
Dry Gas Meter Calibration Factor	Y	-	1.0113	1.0113	1.0113
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.74	1.76	1.74
Average Meter Temperature	Tmf	degrees F	53.71	67.85	69.08
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.974	0.967	0.955
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	191	192	197
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	19.3	19.3	19.3
Carbon Dioxide	%CO2	%v/v	1.5	1.5	1.5
Carbon Monoxide + Nitrogen	-	%v/v	79.2	79.2	79.2
Nozzle Diameter	Dn	in	0.213	0.213	0.213
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results	•				
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	< 0.010	< 0.010	0.015
Filter	Hg _{filter}	μg	1.10	0.744	0.897
Oxydized Mercury (KCI)	Hg _{KCI}	μg	0.547	0.600	0.579
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	0.021	0.018	0.023
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	1.96	1.96	1.82
Total Mercury	Hg _(total)	μg	3.63	3.33	3.33
Particulate Loading (From Lab Results)	_,,				
PM - Filterable	M _{PM}	g	0.02322	0.02605	0.02669
	<u>'</u>				
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	573	572	572
Tsr = Tsf + 460		dogrood it	0.0	0.2	0.2
Stack Pressure	Ps	in Hg	28.56	28.56	28.56
Ps = Pbar + Pg / 13.6		g	20.00	20.00	20.00
Duct Area	A	Sq. ft	56.467	56.467	56.467
$A = (D/24)^2 \times \pi$	^	Oq. 11	30.407	30.407	30.407
Meter Volume at Standard Conditions	Vmstd	cubic feet	83.87	83.40	82.86
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)	VIIIsta	cubic reet	00.07	00.40	02.00
Average Moisture Content of Stack Gas	MC	% Vol	9.69	9.58	9.54
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100	WIC	76 VOI	3.03	see note	see note
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.01	29.01	29.01
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))	Wid	ID/ID/IIO/	25.01	20.01	20.01
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.95	27.96	27.96
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$	WIS	ID/ID/IIO/	21.50	27.50	27.50
Average Stack Gas Velocity	Vs	ft/sec	59.25	58.74	58.00
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)	VS	10/500	39.23	30.74	36.00
	0.0		200 752	100.000	100 500
Actual Volumetric Flowrate	Qa	acfm	200,752	199,009	196,508
Qa = 60 x Vs x A	0-	oofer	176,576	175 207	172 224
Volumetric Flowrate at Standard Conditions Os = O3 × (528//Ts+460)) × (Ps/29.92)	Qs	scfm	1/0,5/6	175,387	173,221
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)	0.1	- بالمدالم	150 470	150 500	150.007
Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)	Qd	dscfm	159,470	158,586	156,687
Qd = Qd x (1-(MC/100)) x (528/15f) x (PS/29.92) Nozzle Cross-Sectional Area	۸۰	ea ft	0.000248	0.000248	0.000248
	An	sq. ft	0.000240	0.000246	0.000240
An =(3.14 x Dn^2) /(4 x 144)		0/	00.0	00.0	100.2
Isokinetic Variation	I	%	99.8	99.8	100.3
I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))		1	1	l .	
Mercury Concentrations	ıı_tp		0.407	0.010	0.000
Particulate Hg: $Hg^{tp} = (Hg_{pr} + Hg_{filter}) / (V_{mstd} / 35.314)$	Hg ^{tp}	μg/dscm	0.467	0.319	0.388
Oxidized Hg: Hg ^O = Hg _{KCI} / (V _{mstd} / 35.314)	Hg ^O	μg/dscm	0.230	0.254	0.247
Elemental Hg: $Hg^{E} = (Hg_{H2O2} + Hg_{KMrO4}) / (V_{mstd} / 35.314)$	Hg ^E	μg/dscm	0.832	0.838	0.785
Total Hg: Hg ^{tot} = Hg _(total) / (V _{mstd} / 35.314)	Hg ^{tot}	μg/dscm	1.530	1.411	1.421
Mercury Emission Rates	e · · to				
Particulate Hg: E-Hg ^{tp} = Hg ^{tp} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tp}	lb/hr	2.79E-04	1.90E-04	2.28E-04
Oxidized Hg: E-Hg ^O = Hg _{KCI} x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^O	lb/hr	1.38E-04	1.51E-04	1.45E-04
Elemental Hg: $E-Hg^E = Hg_{H202} \times 62.43 \times 10^{-12} \times 60 \times dscfm$	E-Hg ^E	lb/hr	4.97E-04	4.98E-04	4.61E-04
		lb/hr	9.14E-04	8.38E-04	8.34E-04
Total Hg: E-Hg ^{tot} = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	E-Hg ^{tot}	10/111			
Estimated Annual Mercury Emissions	_	1			
	E-Hg ^{tot}	lb/yr	8.0	7.3	7.3
Estimated Annual Mercury Emissions E-Hg ^{lot} = 8,760 hr/yr x E-Hg ^{lot}	_	1	8.0	7.3	7.3
Estimated Annual Mercury Emissions E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot} PARTICULATE CONCENTRATION	_	1	8.0	7.3	7.3
Estimated Annual Mercury Emissions E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot} PARTICULATE CONCENTRATION PM - Filterable	_	1	8.0 0.00427	7.3	7.3
Estimated Annual Mercury Emissions E-Hg ^{ot} = 8,760 hr/yr x E-Hg ^{ot} PARTICULATE CONCENTRATION PM - Filterable C _{uPM} = 15.432 x M _{PM} / V _{mstd}	E-Hg ^{tot}	lb/yr			
Estimated Annual Mercury Emissions E-Hg ^{lot} = 8,760 hr/yr x E-Hg ^{lot} PARTICULATE CONCENTRATION PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{matd} PARTICULATE EMISSION RATE	E-Hg ^{tot}	lb/yr			
Estimated Annual Mercury Emissions	E-Hg ^{tot}	lb/yr			

Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3 4, 5, Ontario-Hydro TEST 3

Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	3/28/2017	3/28/2017	3/28/2017
Test Period	-	-	804 - 0	1250 - 1250	1526 - 152
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-		12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	104.00	104.00	104.00
Barometric Pressure	Pbar	in. Hg	28.47	28.47	28.47
Stack Static Pressure	Pg	in. H2O	-0.85	-0.85	-0.85
Average Stack Temperature, dry bulb	Tsf	degrees F	118	117	119
Actual Dry Gas Meter Volume	Vm	cubic feet	78.39	79.10	77.00
Dry Gas Meter Calibration Factor	Y	-	1.0044	1.0044	1.0044
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.47	1.47	1.38
Average Meter Temperature	Tmf	degrees F	51.60	63.25	67.08
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.933	0.936	0.903
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	212	207	206
Orsat Results, Dry Basis					
Oxygen	%O2	%v/v	18.5	18.5	18.5
Carbon Dioxide	%CO2	%v/v	2.2	2.2	2.2
Carbon Monoxide + Nitrogen	-	%v/v	79.3	79.3	79.3
Nozzle Diameter	Dn	in	0.210	0.210	0.210
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results					
Probe Rinse (0.1 N HNO3)	Hg _{pr}	μg	0.013	0.049	< 0.100
Filter	Hg _{filter}	μg	2.100	1.825	1.265
Oxydized Mercury (KCI)	Hg _{KCI}	μg	0.173	0.282	0.377
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μg	< 0.013	0.014	0.023
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	2.11	2.18	2.47
Total Mercury	Hg _(total)	μg	4.40	4.34	4.24
Particulate Loading (From Lab Results)					
PM - Filterable	M _{PM}	g	0.02926	0.02911	0.02403
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	578	577	579
Tsr = Tsf + 460					
Stack Pressure	Ps	in Hg	28.41	28.41	28.41
Ps = Pbar + Pg / 13.6					
Duct Area	A	Sq. ft	58.992	58.992	58.992
$A = (D/24)^2 \times \pi$					
Meter Volume at Standard Conditions	Vmstd	cubic feet	77.58	76.54	73.95
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)					
Average Moisture Content of Stack Gas	MC	% Vol	11.30	11.13	11.59
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100			see note	see note	
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.09	29.09	29.09
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.84	27.86	27.81
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	57.26	57.39	55.51
	Vs	ft/sec	57.26	57.39	55.51
Average Stack Gas Velocity Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate	Vs Qa	ft/sec acfm	57.26 202,690	57.39 203,119	55.51 196,486
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate					
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)					196,486
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions	Qa	acfm	202,690	203,119	196,486
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92)	Qa	acfm	202,690	203,119	196,486 170,219
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions	Qa Qs	acfm scfm	202,690 175,923	203,119	
$Vs = 85.49 \times Cp \times (dP)^{0.5} \times ((Tsr/(Ps \times Ms))^{0.5})$ Actual Volumetric Flowrate $Qa = 60 \times Vs \times A$ Volumetric Flowrate at Standard Conditions $Qs = Qa \times (528/(Ts+460)) \times (Ps/29.92)$ Dry Volumetric Flowrate at Standard Conditions $Qd = Qa \times (1-(MC/100)) \times (528/Tsr) \times (Ps/29.92)$	Qa Qs	acfm scfm	202,690 175,923	203,119	196,486 170,219 150,492
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A	Qa Qs Qd	acfm scfm dscfm	202,690 175,923 156,050	203,119 176,461 156,828	196,486 170,219
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area	Qa Qs Qd	acfm scfm dscfm	202,690 175,923 156,050	203,119 176,461 156,828	196,486 170,219 150,492
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144)	Qa Qs Qd An	acfm scfm dscfm sq. ft	202,690 175,923 156,050 0.000240	203,119 176,461 156,828 0.000240	196,486 170,219 150,492 0.000240
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dr^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/wrstd)/(Psx/vsxAn x theta x(1-(MC/100)))	Qa Qs Qd An	acfm scfm dscfm sq. ft	202,690 175,923 156,050 0.000240	203,119 176,461 156,828 0.000240	196,486 170,219 150,492 0.000240
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dr^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/wrstd)/(Psx/vsxAn x theta x(1-(MC/100)))	Qa Qs Qd An	acfm scfm dscfm sq. ft	202,690 175,923 156,050 0.000240	203,119 176,461 156,828 0.000240	196,486 170,219 150,492 0.000240
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945Xrsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations	Qa Qs Qd An	acfm scfm dscfm sq. ft	202,690 175,923 156,050 0.000240 101.7	203,119 176,461 156,828 0.000240 99.8	196,486 170,219 150,492 0.000240 100.5
\text{Vs} = 85.49 \times \text{Cp} \times \text{(HP}^0.5 \times \text{((Tsr/(Ps \times Ms))}^0.5)} \text{Actual Volumetric Flowrate} \text{Qa} = 60 \times \text{Vs} \times \text{A} \text{Volumetric Flowrate} \text{at Standard Conditions} \text{Qs} = \text{Qa} \times \text{(528/(Ts+460))} \times \text{(Ps/29.92)} \text{Dry Volumetric Flowrate} \text{at Standard Conditions} \text{Qd} = \text{Qa} \times \text{(1-(MC/100))} \times \text{(528/Tsr)} \times \text{(Ps/29.92)} \text{Nozzle Cross-Sectional Area} \text{An} = \text{(3.14 \times \text{Dr}^2) / (4 \times 144)} \text{Isokinetic Variation} \text{Isokinetic Variation} \text{Is} = \text{Is} \text{(0.0945xTsr\text{Vmstd})(Ps\text{VsxAn} \times \text{theta} \text{x} \text{(1-(MC/100)))} \text{Mercury Concentrations} \text{Particulate} \text{Hg}^{\text{W}} = (Hg_{pr} + Hg_{limer}) / (V_{matsf} / 35.314)	Qa Qs Qd An I	acfm scfm dscfm sq. ft %	202,690 175,923 156,050 0.000240 101.7	203,119 176,461 156,828 0.000240 99.8	196,486 170,219 150,492 0.000240 100.5
\(\text{Vs} = 85.49 \times \text{Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)} \) \(\text{Actual Volumetric Flowrate} \) \(\text{Qa} = 60 \times \text{Vs x A} \) \(\text{Volumetric Flowrate} \) \(\text{ds} = \text{Qs} \) \(\text{Volumetric Flowrate} \) \(\text{ds} = \text{Qs} \) \(\text{Cs28/(Ts+460)} \) \(\text{Ves/29.92} \) \(\text{Dr} \) \(\text{Volumetric Flowrate} \) \(\text{ds} \) \(\text{Vs28/Tsr} \) \(\text{Ves/29.92} \) \(\text{Volumetric Flowrate} \) \(\text{ds} \) \(\text{ds} \) \(\text{Cs28/Tsr} \) \(\text{Ves/29.92} \) \(\text{Nozzle Cross-Sectional Area} \) \(\text{An} = (3.14 \times \text{Dr}^2) / (4 \times 144) \) \(\text{Isokinetic Variation} \) \(\text{Isokinetic Variation} \) \(\text{Isokinetic Variation} \) \(\text{Isokinetic Variation} \) \(\text{Psr(29.92)} \) \(\text{Volumetric Flowrate} \) \(\text{Psr(29.92)} \) \(\text{Vestar Ark Tsr/Vmstd/(PsxVsxAn x theta x(1-(MC/100)))} \) \(\text{Mercury Concentrations} \) \(\text{Particulate Hg: Hg\$^0 = (Hg_{NC} / (V_{matd} / 35.314) } \) \(\text{Oxidized Hg: Hg\$^0 = Hg_{NC} / (V_{matd} / 35.314) } \)	Qa Qs Qd An I	acfm scfm dscfm sq. ft % µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079	203,119 176,461 156,828 0.000240 99.8	196,486 170,219 150,492 0.000240 100.5 0.652 0.180
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/wrstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg [©] = (Hg _{Pr} + Hg _{Ilbar}) / (V _{matd} / 35.314) Oxidized Hg: Hg [©] = (Hg _{HCC2} + Hg _{Ilbar}) / (V _{matd} / 35.314)	Qa Qs Qd An I Hg ^{lp} Hg ^o Hg ^e	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010	196,486 170,219 150,492 0.000240 100.5 0.652 0.180 1.190
$Vs = 85.49 \times Cp \times (dP)^{0.5} \times ((Tsr/(Ps \times Ms))^{\wedge}0.5)$ Actual Volumetric Flowrate $Qa = 60 \times Vs \times A$ Volumetric Flowrate at Standard Conditions $Qs = Qa \times (528/(Ts+460)) \times (Ps/29.92)$ Dry Volumetric Flowrate at Standard Conditions $Qd = Qa \times (1+(MC/100)) \times (528/Tsr) \times (Ps/29.92)$ Nozzle Cross-Sectional Area $An = (3.14 \times Dn^{\wedge}2) / (4 \times 144)$ Isokinetic Variation $I = (0.0945xTsrxVmstd)/(PsxVsxAn \times theta \times (1+(MC/100)))$ Mercury Concentrations $Particulate Hg: Hg^{0} = (Hg_{pr} + Hg_{max}) / (V_{matd} / 35.314)$ $Oxidized Hg: Hg^{0} = Hg_{RCI} / (V_{matd} / 35.314)$ $Elemental Hg: Hg^{6} = (Hg_{H2C2} + Hg_{RMnCA}) / (V_{matd} / 35.314)$ $Total Hg: Hg^{6d} = Hg_{(Gus)} / (V_{matd} / 35.314)$	Qa Qs Qd An I Hg ^{lp} Hg ^o Hg ^e	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004	196,486 170,219 150,492 0.00024(100.5 0.652 0.180 1.190 2.022
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dr^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrX/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _(lister) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{(Cd / V(matd / 35.314)} Total Hg: Hg ¹⁶ = (Hg _{HCD2} + Hg _(NthCa) / (V _{matd / 35.314)} Total Hg: Hg ^{16d} = Hg _(Usul) / (V _{matd / 35.314)} Mercury Emission Rates Particulate Hg: EHg ¹⁶ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm	Qa Qs Qd An I Hg ^{lp} Hg ⁰ Hg ⁰ Hg ⁰ Hg ⁰ Hg ⁰ Hg ⁰	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004	196,486 170,219 150,492 0.00024(100.5 0.652 0.180 1.190 2.022 3.67E-04
Vs = 85.49 × Cp × (dP)^0.5 × ((Tsr/(Ps × Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs × A Volumetric Flowrate at Standard Conditions Qs = Qa × (528/(Ts+460)) × (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa × (1-(MC/100)) × (528/Tsr) × (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 × Dr^2) /(4 × 144) Isokinetic Variation I = (0.0945xTsrVmstd)/(PsxVsxAn × theta ×(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ^{0*} = (Hg _{hr} + Hg _{lister}) / (V _{matd} / 35.314) Oxidized Hg: Hg ^{0*} = Hg _{hcc1} / (V _{matd} / 35.314) Elemental Hg: Hg ^{8*} = (Hg _{hc20} + Hg _{louco}) / (V _{matd} / 35.314) Total Hg: Hg ^{1st} = Hg _{lougol} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ^{0*} = Hg ^{0*} × 62.43×10 ⁻¹² × 60 × dscfm Oxidized Hg: E-Hg ⁰ = Hg _{hc2} × 62.43×10 ⁻¹² × 60 × dscfm	Qa Qs Qd An I Hg ^{lp} Hg ⁰ Hg ^c Hg ^{cd} E-Hg ^p E-Hg ⁰	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05	196,486 170,219 150,492 0.00024(100.5 0.652 0.180 1.190 2.022 3.67E-0- 1.01E-0-
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dr^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/Vmstd)/(Psx/vsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg th = (Hg _{hr} + Hg _{floso}) / (V _{matd} / 35.314) Oxidized Hg: Hg th = (Hg _{hr202} + Hg _{floso}) / (V _{matd} / 35.314) Total Hg: Hg th = Hg _{floso} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg th = Hg th x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg th = Hg th x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg th = Hg th x 62.43x10 ⁻¹² x 60 x dscfm	Qa Qs Qd An I Hg ^{lp} Hg ⁰ Hg ⁰ Hg ^E Hg ^{1ot} E-Hg ^{1ot} E-Hg ⁰ E-Hg ^E	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05 5.64E-04	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05 5.93E-04	196,486 170,219 150,492 0.00024(100.5 0.652 0.180 1.190 2.022 3.67E-0-6.71E-0-6
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg [®] = (Hg _{Hr} + Hg _{lisen}) / (V _{matd} / 35.314) Oxidized Hg: Hg [®] = (Hg _{HrD2} + Hg _{Minol}) / (V _{matd} / 35.314) Total Hg: Hg ^{Mst} = Hg _(total) / (V _{mid} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg [®] = Hg [®] x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg [®] = Hg _{HrD2} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg [®] = Hg _{Rca} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg [®] = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	Qa Qs Qd An I Hg ^{lp} Hg ⁰ Hg ^c Hg ^{cd} E-Hg ^p E-Hg ⁰	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05	196,486 170,219 150,492 0.000240 100.5 0.652 0.180 1.190
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-{MC/100}) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I= (0.0945xTsrx/mstd)/(Psx/sxAn x theta x(1-{MC/100}))) Mercury Concentrations Particulate Hg: Hg [®] = (Hg _{hr} + Hg _{lister}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{hcCQ} + V _{matd} / 35.314) Total Hg: Hg ^{lst} = Hg _{lister} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg [®] = Hg [®] x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{hcCQ} x 62.43x10 ⁻¹² x 60 x dscfm	Qa Qs Qd An I Hg ^{lp} Hg ^o Hg ^e Hg ^{ot} E-Hg ^p E-Hg ^{ot} E-Hg ^{ot} E-Hg ^{ot}	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm µb/hr lb/hr	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05 5.64E-04 1.17E-03	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05 5.93E-04 1.18E-03	196,486 170,219 150,492 0.00024i 100.5 0.652 0.180 1.190 2.022 3.67E-0. 1.01E-0. 6.71E-0. 1.14E-0.
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg [®] = (Hg _{Hr} + Hg _{lisen}) / (V _{matd} / 35.314) Oxidized Hg: Hg [®] = (Hg _{HrD2} + Hg _{Minol}) / (V _{matd} / 35.314) Total Hg: Hg ^{Mst} = Hg _(total) / (V _{mid} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg [®] = Hg [®] x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg [®] = Hg _{HrD2} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg [®] = Hg _{Rca} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg [®] = Hg _(total) x 62.43x10 ⁻¹² x 60 x dscfm	Qa Qs Qd An I Hg ^{lp} Hg ⁰ Hg ⁰ Hg ^E Hg ^{1ot} E-Hg ^{1ot} E-Hg ⁰ E-Hg ^E	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05 5.64E-04	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05 5.93E-04	196,486 170,219 150,492 0.00024(100.5 0.652 0.180 1.190 2.022 3.67E-0-6.71E-0-6
Vs = 85.49 × Cp × (dP)^0.5 × ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa × (528/(Ts+460)) × (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa × (1-(MC/100)) × (528/Tsr) × (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 × Dn^2) /(4 × 144) Isokinetic Variation I= (0.0945xTsrX/mstd)/(PsxVsxAn × theta ×(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{listen}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{listen} / (V _{matd} / 35.314) Elemental Hg: Hg ^E = (Hg _{H2C2} + Hg _{listen}) / (V _{matd} / 35.314) Total Hg: Hg ¹⁶⁴ = Hg _(total) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁶ = Hg ¹⁶ × 62.43x10 ⁻¹² × 60 × dscfm Oxidized Hg: E-Hg ⁰ = Hg _{0cc} × 62.43x10 ⁻¹² × 60 × dscfm Total Hg: E-Hg ¹⁶ = Hg _{0cc} × 62.43x10 ⁻¹² × 60 × dscfm Total Hg: E-Hg ¹⁶ = Hg _{0cc} × 62.43x10 ⁻¹² × 60 × dscfm Estimated Annual Mercury Emissions E-Hg ¹⁶⁴ = 8,760 hr/yr × E-Hg ¹⁶⁴	Qa Qs Qd An I Hg ^{lp} Hg ^o Hg ^e Hg ^{ot} E-Hg ^p E-Hg ^{ot} E-Hg ^{ot} E-Hg ^{ot}	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm µb/hr lb/hr	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05 5.64E-04 1.17E-03	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05 5.93E-04 1.18E-03	196,486 170,219 150,492 0.00024i 100.5 0.652 0.180 1.190 2.022 3.67E-0. 1.01E-0. 6.71E-0. 1.14E-0.
Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5) Actual Volumetric Flowrate Qa = 60 x Vs x A Volumetric Flowrate at Standard Conditions Qs = Qa x (528/(Ts+460)) x (Ps/29.92) Dry Volumetric Flowrate at Standard Conditions Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92) Nozzle Cross-Sectional Area An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I= (0.0945xTsrx/mstd)/(Psx/vsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg [®] = (Hg _{br} + Hg _{lister}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰⁰ = Hg _{NCC} / (V _{matd} / 35.314) Total Hg: Hg ^{lst} = (Hg _{lossl}) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg [®] = Hg [®] x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰¹ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰¹ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰¹ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰¹ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰¹ = Hg _{NCC} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	Qa Qs Qd An I Hg ^{lp} Hg ^o Hg ^e Hg ^{ot} E-Hg ^p E-Hg ^{ot} E-Hg ^{ot} E-Hg ^{ot}	acfm scfm dscfm sq. ft % µg/dscm µg/dscm µg/dscm µg/dscm µb/hr lb/hr	202,690 175,923 156,050 0.000240 101.7 0.962 0.079 0.964 2.004 5.62E-04 4.60E-05 5.64E-04 1.17E-03	203,119 176,461 156,828 0.000240 99.8 0.864 0.130 1.010 2.004 5.08E-04 7.64E-05 5.93E-04 1.18E-03	196,486 170,219 150,492 0.00024 100.5 0.652 0.180 1.190 2.022 3.67E-0. 1.01E-0. 6.71E-0. 1.14E-0.

 $\mathsf{E}_{\mathsf{dry}}$

lb/hr

7.78

7.89

6.47

PARTICULATE EMISSION RATE
PM - Filterable
E_{dy}(lb/hr) = C_{aPM} x Q_d x 60 / 7000
Note: Moisture Content limited to moisture at saturation

Determination of Volumetric Airflow Rate, Gas Composition, Moisture Content, and Speciated Mercury Emissions EPA Methods 2, 3, 4, 5, Ontario-Hydro TEST 4
Indurating Furnace Stack D (SV017)
Longterm 2

Longte	•				1
Input Data	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	3/29/2017	3/29/2017	3/29/2017
Test Period Number of Sample Ports	-	-	745 - 952 4	1234 - 1234	1512 - 1512 4
Number of Traverse Points		-	12	12	12
Duct Dimensions (diameter or Length x Width)	D, L X W	inches	104.00	104.00	104.00
Barometric Pressure	Pbar	in. Hg	28.63	28.63	28.63
Stack Static Pressure	Pg	in. H2O	-0.95	-0.95	-0.95
Average Stack Temperature, dry bulb	Tsf	degrees F	123	123	123
Actual Dry Gas Meter Volume	Vm	cubic feet	67.80	70.45	68.24
Dry Gas Meter Calibration Factor	Y	-	1.0044	1.0044	1.0044
Average Orifice Meter Pressure Drop	ΔΗ	in H2O	1.11	1.14	1.08
Average Meter Temperature Pitot Tube Coefficient	Tmf	degrees F	52.54 0.84	71.10	72.08
Average Square Root of Velocity Head	Cp (ΔP)^0.5		0.832	0.84 0.827	0.84
Mass of Water Vapor Collected in Impingers and Desiccant	Vwc	g	198	199	197
Orsat Results, Dry Basis					-
Oxygen	%O2	%v/v	18.0	18.0	18.0
Carbon Dioxide	%CO2	%v/v	2.7	2.7	2.7
Carbon Monoxide + Nitrogen	-	%v/v	79.3	79.3	79.3
Nozzle Diameter	Dn	in	0.210	0.210	0.210
Run Time	theta	min	120	120	120
Ontario Hydro Mercury Results	Ha	ua.	0.000	0.040	0.040
Probe Rinse (0.1 N HNO3) Filter	Hg _{pr} Hg _{filter}	µg µg	0.038 1.520	< 0.010 1.590	< 0.010 1.615
Oxydized Mercury (KCI)	Hg _{KCI}	μд	0.160	0.142	0.148
Elemental Mercury (HNO3/H2O2)	Hg _{H2O2}	μд	0.021	0.025	0.019
Elemental Mercury (KMnO4)	Hg _{KMnO4}	μg	2.39	2.03	2.11
Total Mercury	Hg _(total)	μg	4.12	3.80	3.90
Particulate Loading (From Lab Results)					
PM - Filterable	M _{PM}	g	0.02882	0.02610	0.02784
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Average Absolute Stack Temperature (R)	Tsr	degrees R	583	583	583
Tsr = Tsf + 460			00.50	00.50	00.50
Stack Pressure	Ps	in Hg	28.56	28.56	28.56
Ps = Pbar + Pg / 13.6 Duct Area	A	Sq. ft	58.992	58.992	58.992
$A = (D/24)^2 \times \pi$	^	5q. it	30.332	30.332	30.332
Meter Volume at Standard Conditions	Vmstd	cubic feet	67.29	67.48	65.24
Vmstd = 17.64 x Vm x Y x ((Pbar +(ΔH/13.6))/Tmr)					
Average Moisture Content of Stack Gas	MC	% Vol	12.19	12.20	12.47
MC = ((0.04715*Vwc)/((0.04715*Vwc) + (Vmstd)) x 100					
Molecular Weight of Stack Gas, dry	Md	lb/lbmol	29.15	29.15	29.15
Md = (0.44x(%CO2))+(0.32x(%O2))+(0.28x(%N2+%CO))					
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.79	27.79	27.76
Ms = Md x (1-(MC/100))+18 x (MC/100)	Vs	ft/sec	51.25	50.91	49.82
Average Stack Gas Velocity Vs = 85.49 x Cp x (dP)^0.5 x ((Tsr/(Ps x Ms))^0.5)	VS	TVSeC	51.25	50.91	49.02
Actual Volumetric Flowrate	Qa	acfm	181,385	180,203	176,336
Qa = 60 x Vs x A			,	,	,
Volumetric Flowrate at Standard Conditions	Qs	scfm	156,718	155,807	152,387
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	137,608	136,805	133,377
Qd = Qa x (1-(MC/100)) x (528/Tsr) x (Ps/29.92)					
			,,,,,		
Nozzle Cross-Sectional Area	An	sq. ft	0.000240	0.000240	0.000240
An =(3.14 x Dn^2) /(4 x 144)			0.000240		
An =(3.14 x Dr^2) /(4 x 144) Isokinetic Variation	An	sq. ft		0.000240	0.000240
An =(3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100)))			0.000240		
An =(3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations	I	%	0.000240	100.9	100.0
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg th = (Hg _{pr} + Hg _{titter}) / (V _{mstd} / 35.314)		% µg/dscm	0.000240	100.9	100.0
An =(3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations	I Hg ^{tp}	%	0.000240	100.9	100.0
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrxVmstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ^{to} = (Hg _{pr} + Hg _{titter}) / (V _{mstd} / 35.314) Oxidized Hg: Hg ^o = Hg _{xC1} / (V _{mstd} / 35.314)	I Hg ^{tp} Hg ^O	% µg/dscm µg/dscm	0.000240 100.0 0.817 0.084	0.837 0.074	0.880 0.080
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.9945xTsnx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg th = (Hg _{pr} + Hg _{theth} / (V _{mstd} / 35.314) Oxidized Hg: Hg th = (Hg _{theth} / (PsxHg _{theth} / (V _{mstd} / 35.314)) Elemental Hg: Hg th = (Hg _{theth} + Hg _{totheth} / (V _{mstd} / 35.314)	Hg ^{tp} Hg ^O Hg ^E	% µg/dscm µg/dscm µg/dscm	0.000240 100.0 0.817 0.084 1.262	0.837 0.074 1.075	0.880 0.080 1.152
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{litter}) / (V _{mstd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{MCL} / (V _{mstd} / 35.314) Elemental Hg: Hg ⁶ = (Hg _{HCD2} + Hg _{MMD4}) / (V _{mstd} / 35.314) Total Hg: Hg ⁰ = Hg _(total) / (V _{mstd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm	Hg ^{tp} Hg ⁰ Hg ^E Hg ^{tot}	% µg/dscm µg/dscm µg/dscm µg/dscm	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04	0.837 0.074 1.075 1.987	0.880 0.080 1.152 2.112
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{ttte}) / (V _{mstd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{HCCI} / (V _{mstd} / 35.314) Elemental Hg: Hg ⁶ = (Hg _{HCD2} + Hg _{MothCol}) / (V _{mstd} / 35.314) Total Hg: Hg ⁰ = Hg _(total) / (V _{mstd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ⁰ = Hg ⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCI} x 62.43x10 ⁻¹² x 60 x dscfm	Hg ^{lp} Hg ⁰ Hg ^E Hg ^{tot} E-Hg ^{lp} E-Hg ⁰	% µg/dscm µg/dscm µg/dscm µg/dscm	0.000240 100.0 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05	0.837 0.074 1.075 1.987 4.29E-04 3.81E-05	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{lise}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{Mcc1} / (V _{matd} / 35.314) Elemental Hg: Hg ⁰ = (Hg _{Hc021} + Hg _{Mct021}) / (V _{matd} / 35.314) Total Hg: Hg ⁰ = Hg _{Hc021} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ⁰ = Hg _{Hc021} x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{Hc02} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ⁰ = Hg _{Hc02} x 62.43x10 ⁻¹² x 60 x dscfm	Hg ^{sp} Hg ^o Hg ^e Hg ^{tot} E-Hg ^{sp} E-Hg ^o E-Hg ^e	% μg/dscm μg/dscm μg/dscm μg/dscm lb/hr lb/hr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04	0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsnx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{lister}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{licotal} / (V _{matd} / 35.314) Elemental Hg: Hg ^E = (Hg _{HCDC2} + Hg _{RobnCa}) / (V _{matd} / 35.314) Total Hg: Hg ^{lot} = Hg _{RobnCa} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{RC1} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ¹⁰ = Hg _{RC2} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰⁴ = Hg _{RC02} x 62.43x10 ⁻¹² x 60 x dscfm	Hg ^{lp} Hg ⁰ Hg ^E Hg ^{tot} E-Hg ^{lp} E-Hg ⁰	% µg/dscm µg/dscm µg/dscm µg/dscm	0.000240 100.0 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05	0.837 0.074 1.075 1.987 4.29E-04 3.81E-05	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.9945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ¹⁰ = (Hg _{pr} + Hg ₈₈₆) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{MCCI} / (V _{matd} / 35.314) Elemental Hg: Hg ⁰ = (Hg _{H2CQ2} + Hg _{MACQA}) / (V _{matd} / 35.314) Total Hg: Hg ^{10d} = Hg _(total) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	Hg ^{tp} Hg ^o Hg ^E Hg ^{fot} E-Hg ^{tp} E-Hg ^o E-Hg ^o E-Hg ^c E-Hg ^c	% µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsnx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{lister}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{licotal} / (V _{matd} / 35.314) Elemental Hg: Hg ^E = (Hg _{HCDC2} + Hg _{RobnCa}) / (V _{matd} / 35.314) Total Hg: Hg ^{lot} = Hg _{RobnCa} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{RC1} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ¹⁰ = Hg _{RC2} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰⁴ = Hg _{RC02} x 62.43x10 ⁻¹² x 60 x dscfm	Hg ^{sp} Hg ^o Hg ^e Hg ^{tot} E-Hg ^{sp} E-Hg ^o E-Hg ^e	% μg/dscm μg/dscm μg/dscm μg/dscm lb/hr lb/hr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04	0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ¹⁰ = (Hg _{pr} + Hg ₈₈₆) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{NCCI} / (V _{matd} / 35.314) Elemental Hg: Hg ¹⁰ = (Hg _H 202 + Hg _{NADCOA}) / (V _{matd} / 35.314) Total Hg: Hg ¹⁰⁴ = Hg ₍₁₀₄₈₎ / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ¹⁰ = Hg _{NCCI} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ¹⁰ = Hg _{NCDI} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰ = Hg _{NDDIAD} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emission E-Hg ¹⁰⁴ = 8,760 hr/yr x E-Hg ¹⁰⁵	Hg ^{tp} Hg ^o Hg ^E Hg ^{fot} E-Hg ^{tp} E-Hg ^o E-Hg ^o E-Hg ^c E-Hg ^c	% µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.9945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ¹⁰ = (Hg _{pr} + Hg ₈₈₆) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{MCCI} / (V _{matd} / 35.314) Elemental Hg: Hg ⁰ = (Hg _{H2CQ2} + Hg _{MACQA}) / (V _{matd} / 35.314) Total Hg: Hg ^{10d} = Hg _(total) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions	Hg ^{tp} Hg ^O Hg ^E Hg ^{tot} E-Hg ^O E-Hg ^O E-Hg ^C E-Hg ^E E-Hg ^E E-Hg ^E	% µg/dscm µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr lb/hr lb/yr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	100.0 0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.9945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ⁰ = (Hg _{pr} + Hg _{titel}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{RCC1} / (V _{matd} / 35.314) Elemental Hg: Hg ^E = (Hg _{HDO2} + Hg _{ROMO2}) / (V _{matd} / 35.314) Total Hg: Hg ^{bit} = Hg _{ROMO1} / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ⁰ = Hg _{RC} x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{RCO2} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^E = Hg _{RCO2} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{ot} = Hg _{RCO2} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{tot} = 8,760 hr/yr x E-Hg ^{tot}	Hg ^{tp} Hg ^o Hg ^E Hg ^{fot} E-Hg ^{tp} E-Hg ^o E-Hg ^o E-Hg ^c E-Hg ^c	% µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.9945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ¹⁰ = (Hg _{pr} + Hg _{liste}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{MCI} / (V _{matd} / 35.314) Elemental Hg: Hg ¹⁶ = (Hg _{H2CQ2} + Hg _{MACQA}) / (V _{matd} / 35.314) Total Hg: Hg ^{10x} = Hg _(total) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ¹⁰ = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{10x} = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ^{10x} = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ^{10x} = Hg _{MCQ} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ^{10x} = 8.760 hr/yr x E-Hg ^{10x} PARTICULATE CONCENTRATION PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{matd} PARTICULATE EMISSION RATE	Hg ^{tp} Hg ^O Hg ^E Hg ^{tot} E-Hg ^O E-Hg ^O E-Hg ^C E-Hg ^E E-Hg ^E E-Hg ^E	% µg/dscm µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr lb/hr lb/yr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	100.0 0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03
An = (3.14 x Dn^2) /(4 x 144) Isokinetic Variation I = (0.0945xTsrx/mstd)/(PsxVsxAn x theta x(1-(MC/100))) Mercury Concentrations Particulate Hg: Hg ¹⁰ = (Hg _{pr} + Hg _{flater}) / (V _{matd} / 35.314) Oxidized Hg: Hg ⁰ = Hg _{RC1} / (V _{matd} / 35.314) Elemental Hg: Hg ¹⁶ = (Hg _{HC027} + Hg _{RdnC04}) / (V _{matd} / 35.314) Total Hg: Hg ¹⁶⁰ = Hg _(lotal) / (V _{matd} / 35.314) Mercury Emission Rates Particulate Hg: E-Hg ¹⁰ = Hg ¹⁰ x 62.43x10 ⁻¹² x 60 x dscfm Oxidized Hg: E-Hg ⁰ = Hg _{RC1} x 62.43x10 ⁻¹² x 60 x dscfm Elemental Hg: E-Hg ⁶ = Hg _{RC2} x 62.43x10 ⁻¹² x 60 x dscfm Total Hg: E-Hg ¹⁰⁴ = Hg _{RC2} x 62.43x10 ⁻¹² x 60 x dscfm Estimated Annual Mercury Emissions E-Hg ¹⁰⁵ = 8,760 hr/yr x E-Hg ¹⁰⁵ PARTICULATE CONCENTRATION PM - Filterable C _{sPM} = 15.432 x M _{PM} / V _{matd}	Hg ^{tp} Hg ^O Hg ^E Hg ^{tot} E-Hg ^O E-Hg ^O E-Hg ^C E-Hg ^E E-Hg ^E E-Hg ^E	% µg/dscm µg/dscm µg/dscm µg/dscm µg/dscm lb/hr lb/hr lb/hr lb/hr lb/yr	0.000240 100.0 0.817 0.084 1.262 2.164 4.21E-04 4.33E-05 6.51E-04 1.12E-03	100.9 0.837 0.074 1.075 1.987 4.29E-04 3.81E-05 5.51E-04 1.02E-03	100.0 0.880 0.080 1.152 2.112 4.39E-04 4.00E-05 5.76E-04 1.06E-03

Indurating Furnace Stack A (SV014) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	4/11/2017	4/11/2017	4/11/2017
Test Period	-	-	830-930	1000-1100	1200-1300
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.40	28.40	28.40
Stack Static Pressure	Pg	in. H ₂ O	-0.90	-0.90	-0.90
Stack Temperature, dry bulb	Tsf	degrees F	110	111	110
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.948	0.953	0.944
Orsat Results, Dry Basis (EPA Method 3A) Carbon Dioxide	%CO ₂	%v/v	1.0	1.0	1.0
Oxygen	%CO ₂	%v/v %v/v	19.4	19.4	19.4
	7002				
Carbon Monoxide + Nitrogen	-	%v/v	79.6	79.6	79.6
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	А	sq ft	56.47	56.47	56.47
$A = (D/24)^2 \times PI$ (Circular Duct)					
Stack Pressure	Ps	in Hg	28.33	28.33	28.33
Ps = Pbar + Pg/13.6					
Average Moisture Content of Stack Gas	MC	% Vol	8.5	9.3	7.6
Molecular Weight of Stack Gas, dry $Md = (0.44 \times (\%CO_2))+(0.32 \times (\%O_2))+(0.28 \times (\%N_2+\%CO))$	Md	lb/lbmol	28.94	28.94	28.94
Molecular Weight of Stack Gas, wet Ms = Md x (1-(MC/100))+18 x (MC/100)	Ms	lb/lbmol	28.00	27.92	28.11
Average Stack Gas Velocity	Vs	ft/sec	57.70	58.14	57.39
Vs = 85.49 x Cp x $(\Delta P)^0.5$ x ((Ts/Ps x Ms) $^0.5$)	VS	11/560	37.70	30.14	37.39
Actual Volumetric Flowrate	Qa	acfm	195,500	197,000	194,400
Qa = 60 x Vs x A	Qα	dollii	100,000	137,000	104,400
Volumetric Flowrate at Standard Conditions	Qs	scfm	171,500	172,700	170,500
Qs = Qa x $(528/(Ts+460))$ x $(Ps/29.92)$	3,5	55111	171,000	1,2,700	170,000
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	156,900	156,700	157,600
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)	3.0	3001111	100,000	100,700	101,000

Indurating Furnace Stack B (SV015) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	4/12/2017	4/12/2017	4/12/2017
Test Period	-	-	736-836	906-1006	1030-1130
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	101.75	101.75	101.75
Barometric Pressure	Pbar	in. Hg	28.43	28.43	28.43
Stack Static Pressure	Pg	in. H ₂ O	-0.75	-0.75	-0.75
Stack Temperature, dry bulb	Tsf	degrees F	111	112	113
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.991	0.990	0.995
Orsat Results, Dry Basis (EPA Method 3A) Carbon Dioxide	%CO ₂	%v/v	0.9	0.9	0.9
Oxygen	%CO ₂	%v/v %v/v	19.3	19.3	19.3
· ·	7002				
Carbon Monoxide + Nitrogen	-	%v/v	79.8	79.8	79.8
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	А	sq ft	56.47	56.47	56.47
A = (D/24)^2 x PI (Circular Duct)					
Stack Pressure	Ps	in Hg	28.37	28.37	28.37
Ps = Pbar + Pg/13.6					
Average Moisture Content of Stack Gas	MC	% Vol	9.4	7.5	10.0
Molecular Weight of Stack Gas, dry Md = (0.44 x (%CO ₂))+(0.32 x (%O ₂))+(0.28 x (%N ₂ +%CO))	Md	lb/lbmol	28.92	28.92	28.92
Molecular Weight of Stack Gas, wet Ms = Md x (1-(MC/100))+18 x (MC/100)	Ms	lb/lbmol	27.88	28.09	27.82
Average Stack Gas Velocity	Vs	ft/sec	60.45	60.24	60.88
Vs = $85.49 \times \text{Cp} \times (\Delta P)^{0.5} \times ((\text{Ts/Ps} \times \text{Ms})^{0.5})$	V3	11/300	00.40	00.24	00.00
Actual Volumetric Flowrate	Qa	acfm	204,800	204,100	206,300
Qa = 60 x Vs x A	3.0	301111	201,000	201,100	200,000
Volumetric Flowrate at Standard Conditions	Qs	scfm	179,500	178,700	180,200
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)		55,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,	
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	162,600	165,200	162,200
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)			- ,	,—	- ,—

Indurating Furnace Stack C (SV016) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	4/11/2017	4/11/2017	4/11/2017
Test Period	-	-	830-930	1000-1100	1200-1300
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	104	104	104
Barometric Pressure	Pbar	in. Hg	28.40	28.40	28.40
Stack Static Pressure	Pg	in. H ₂ O	-0.80	-0.80	-0.80
Stack Temperature, dry bulb	Tsf	degrees F	122	122	122
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.946	0.932	0.941
Orsat Results, Dry Basis (EPA Method 3A)					
Carbon Dioxide	%CO ₂	%v/v	0.8	0.8	0.8
Oxygen	%O ₂	%v/v	19.7	19.7	19.7
Carbon Monoxide + Nitrogen	-	%v/v	79.5	79.5	79.5
- Interest		70171		. 0.0	. 0.0
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	А	sq ft	58.99	58.99	58.99
$A = (D/24)^2 \times PI (Circular Duct)$					
Stack Pressure	Ps	in Hg	28.34	28.34	28.34
Ps = Pbar + Pg/13.6					
Average Moisture Content of Stack Gas	MC	% Vol	9.2	11.5	12.9 *
Molecular Weight of Stack Gas, dry Md = (0.44 x (%CO ₂))+(0.32 x (%O ₂))+(0.28 x (%N ₂ +%CO))	Md	lb/lbmol	28.92	28.92	28.92
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.91	27.66	27.51
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	58.27	57.65	58.41
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	206,200	204,100	206,800
Qa = 60 x Vs x A					
Volumetric Flowrate at Standard Conditions	Qs	scfm	177,200	175,500	177,600
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	160,800	155,300	154,700
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack D (SV017) Determination of Volumetric Airflow Rate, Gas Composition and Moisture Content Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3
Test Date	-	-	4/12/2017	4/12/2017	4/12/2017
Test Period	-	-	736-836	906-1006	1030-1130
Number of Sample Ports	-	-	4	4	4
Number of Traverse Points	-	-	12	12	12
Duct Dimensions (diameter for circular duct)	D	inches	104	104	104
Barometric Pressure	Pbar	in. Hg	28.43	28.43	28.43
Stack Static Pressure	Pg	in. H ₂ O	-0.90	-0.90	-0.90
Stack Temperature, dry bulb	Tsf	degrees F	126	126	126
Pitot Tube Coefficient	Ср	-	0.84	0.84	0.84
Average Square Root of Velocity Head	(ΔP)^0.5	-	0.821	0.823	0.829
Orsat Results, Dry Basis (EPA Method 3A)					
Carbon Dioxide	%CO ₂	%v/v	2.2	2.2	2.2
Oxygen	%O ₂	%v/v	17.9	17.9	17.9
Carbon Monoxide + Nitrogen	-	%v/v	79.9	79.9	79.9
Calculated Data	Symbol	Units	Run 1	Run 2	Run 3
Duct Area	Α	sq ft	58.99	58.99	58.99
A = (D/24)^2 x PI (Circular Duct)					
Stack Pressure	Ps	in Hg	28.36	28.36	28.36
Ps = Pbar + Pg/13.6					
Average Moisture Content of Stack Gas	MC	% Vol	11.6	12.1	12.3
Molecular Weight of Stack Gas, dry Md = (0.44 x (%CO ₂))+(0.32 x (%O ₂))+(0.28 x (%N ₂ +%CO))	Md	lb/lbmol	29.07	29.07	29.07
Molecular Weight of Stack Gas, wet	Ms	lb/lbmol	27.79	27.72	27.70
$Ms = Md \times (1-(MC/100))+18 \times (MC/100)$					
Average Stack Gas Velocity	Vs	ft/sec	50.86	51.01	51.41
Vs = 85.49 x Cp x (ΔP)^0.5 x ((Ts/Ps x Ms)^0.5)					
Actual Volumetric Flowrate	Qa	acfm	180,000	180,600	182,000
Qa = 60 x Vs x A					
Volumetric Flowrate at Standard Conditions	Qs	scfm	153,700	154,300	155,500
Qs = Qa x (528/(Ts+460)) x (Ps/29.92)					
Dry Volumetric Flowrate at Standard Conditions	Qd	dscfm	135,900	135,500	136,300
Qd = Qa x (1-(MC/100)) x (528/(Ts+460)) x (Ps/29.92)					

Indurating Furnace Stack A (SV014) Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	4/11/2017	4/11/2017	4/11/2017	
Test Period	-	-	830-930	1000-1100	1200-1300	
Barometric Pressure	P _{bar}	in. Hg	28.60	28.60	28.60	28.60
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	156,900	156,700	157,600	157,067

Tran	Δ	Pacu	lte

Trap A Results							
	Symbol	Units	Run 1	Run 2	Run 3	Test Average	
Actual Dry Gas Meter Volume	V_{mA}	liters	36.084	35.316	34.362	35.254	
Dry Gas Meter Calibration Factor	Y_A	-	1.0176	1.0176	1.0176	1.0176	
Average Meter Temperature	T _{mfA}	degrees F	67	72	76	72	
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	527	532	536	532	
Meter Volume at Standard Conditions $V_{mstd A} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.241	1.203	1.162	1.202	
Laboratory Results							
Trap ID			OLC043081	OLC043452	OLC043076		
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	39.4	33.6	42.3	38.4	
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	4.40	3.30	4.70	4.13	
Mercury, Total amount collected	M _A	ng	43.8	36.9	47.0	42.6	
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0		
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	1.246	1.083	1.428	1.252	
Mercury Emission Rate E_(lb/hr)/A = (M _A -M _{spike} _A) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00073	0.00064	0.00084	0.00074	
Mercury Emission Rate $E_{(lbhy)A} = E_{(lbhy)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	6.4	5.6	7.4	6.5	

Trap B Results

Trup 2 House	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	32.380	30.808	29.999	31.062
Dry Gas Meter Calibration Factor	Y _B	-	0.9857	0.9857	0.9857	0.9857
Average Meter Temperature	T _{mfB}	degrees F	67	72	76	72
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	527	532	536	532
Meter Volume at Standard Conditions V _{metd B} = 17.64 x (V _{mB} x 0.03531) x Y x P _{bar} / T _{mrB}	V _{mstd B}	cubic feet	1.078	1.016	0.982	1.025
Laboratory Results						
Trap ID			OL411154	OL411134	OL411192	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	83.5	79.8	83.0	82
Mercury Sorbent Trap, Section 2	M _{2B}	ng	4.50	2.60	4.40	3.83
Mercury, Total amount collected	M _B	ng	88.0	82.4	87.4	85.9
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50	
Mercury Stack Concentration $C_{(\mu_0)B} = (M_B \cdot M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	1.245	1.126	1.345	1.239
Mercury Emission Rate E_(b/hr B = (Mg-M _{spike B}) x (2.2046x10 ⁻¹² (b/ng)) x Qd x60 / V _{mstd B}	E _{(lb/hr)B}	lb/hr	0.00073	0.00066	0.00079	0.00073
Mercury Emission Rate $E_{(lbhyl)B} = E_{(lbhyl)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	6.4	5.8	7.0	6.4

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
A Train Breakthrough each run <10% $B_A = M_{2,A} / M_{1,A} \times 100$	B _A	%	11.2	9.8	11.1	10.7
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} x 100$	B _B	%	5.4	3.3	5.3	4.6
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-15.1	-18.4	-18.3	-17.3
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	99.9	102.5	95.4	99.3
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} - C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) X 100$	RD	%	0.1	1.9	3.0	1.7

Indurating Furnace Stack B (SV015) Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	4/12/2017	4/12/2017	4/12/2017	
Test Period	-	-	736-836	906-1006	1030-1130	
Barometric Pressure	P _{bar}	in. Hg	28.43	28.43	28.43	28.43
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	162,600	165,200	162,200	163,333

Tran	Δ	Pacu	lte

Trap A Results	3					
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	32.142	31.910	30.975	31.676
Dry Gas Meter Calibration Factor	Y_A	-	1.0176	1.0176	1.0176	1.0176
Average Meter Temperature	T _{mfA}	degrees F	77	81	80	79
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	537	541	540	539
Meter Volume at Standard Conditions $V_{mstdA} = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	1.079	1.064	1.033	1.059
Laboratory Results						
Trap ID			OLC043153	OLC043415	OLC043121	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	43.8	43.9	41.1	42.9
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	3.30	2.80	2.80	2.97
Mercury, Total amount collected	M _A	ng	47.1	46.7	43.9	45.9
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	1.541	1.550	1.501	1.531
Mercury Emission Rate E_(lb/hr)/A = (M _A -M _{spike} _A) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00094	0.00096	0.00091	0.00094
Mercury Emission Rate $E_{(lbhy)A} = E_{(lbhy)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	8.2	8.4	8.0	8.2

Trap B Results

Trup 2 House	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	29.980	29.797	29.903	29.893
Dry Gas Meter Calibration Factor	Y _B	-	0.9857	0.9857	0.9857	0.9857
Average Meter Temperature	T _{mfB}	degrees F	77	81	81	80
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	537	541	541	540
Meter Volume at Standard Conditions V _{metd B} = 17.64 x (V _{mB} x 0.03531) x Y x P _{bar} / T _{mrB}	V _{mstd B}	cubic feet	0.974	0.961	0.964	0.967
Laboratory Results						
Trap ID			OL411174	OL411166	OL411193	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	89.8	85.4	86.6	87.3
Mercury Sorbent Trap, Section 2	M _{2B}	ng	3.20	3.60	3.30	3.37
Mercury, Total amount collected	M _B	ng	93.0	89.0	89.9	90.6
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50	
Mercury Stack Concentration $C_{(\mu_0)B} = (M_B \cdot M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	1.558	1.433	1.461	1.484
Mercury Emission Rate E_(b/hr B = (Mg-M _{spike B}) x (2.2046x10 ⁻¹² (b/ng)) x Qd x60 / V _{mstd B}	E _{(lb/hr)B}	lb/hr	0.00095	0.00089	0.00089	0.00091
Mercury Emission Rate $E_{(lbhyl)B} = E_{(lbhyl)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	8.3	7.8	7.8	8.0

ET A Medica 300 AAVO Data								
	Symbol	Units	Run 1	Run 2	Run 3	Test Average		
A Train Breakthrough each run <10% $B_A = M_{2.A} / M_{1.A} \times 100$	B _A	%	7.5	6.4	6.8	6.9		
B Train Breakthrough each run <10% B _B = M _{2 B} / M _{1 B} x 100	B _B	%	3.6	4.2	3.8	3.9		
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	-10.7	-10.7	-7.1	-9.5		
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	100.9	93.6	97.8	97.4		
Paired Trap Agreement each run <10% RD = $((C_{\mu 0A} - C_{\mu 0B}) / (C_{\mu 0A} + C_{\mu 0B})) \times 100$	RD	%	0.6	3.9	1.4	1.9		

Indurating Furnace Stack C (SV016) Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	4/11/2017	4/11/2017	4/11/2017	
Test Period	-	-	830-930	1000-1100	1200-1300	
Barometric Pressure	P _{bar}	in. Hg	28.40	28.40	28.40	28.40
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	160,800	155,300	154,700	156,933

Trap A Results

	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	23.893	28.733	30.650	27.759
Dry Gas Meter Calibration Factor	Y _A	-	1.0141	1.0141	1.0141	1.0141
Average Meter Temperature	T _{mfA}	degrees F	69	74	79	74
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	529	534	539	534
Meter Volume at Standard Conditions $V_{mstd} A = 17.64 \times (V_{mA} \times 0.03531) \times Y_A \times P_{bar} / T_{mrA}$	V _{mstd A}	cubic feet	0.810	0.966	1.020	0.932
Laboratory Results	<u>.</u>					
Trap ID			OLC043459	OL413031	OLC043422	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	53.4	62.9	71.6	62.6
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	1.00	1.20	1.40	1.20
Mercury, Total amount collected	M _A	ng	54.4	64.1	73.0	63.8
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration	C _{(µg)A}	μg/dscm	2.373	2.344	2.527	2.414

 $\mathsf{E}_{(lb/hr)A}$

E_{(lb/yr)A}

lb/hr

lb/yr

0.00143

12.5

0.00136

11.9

0.00146

12.8

0.00142

12.4

Mercury Emission Rate

Mercury Emission Rate

 $E_{(lb/yr)A} = E_{(lb/hr)A} \times 8760 \text{ hr/yr}$

 $E_{(lb/hr)A} = (M_A - M_{spike\ A}) x (2.2046x10^{-12} (lb/ng)) x Qd x60 / V_{mstd\ A}$

Trap B Results Test Average Units Run 1 Run 2 Run 3 Symbol Actual Dry Gas Meter Volume V_{mB} 26.083 29.317 29.142 28.181 liters 1.0063 1.0063 1.0063 1.0063 Dry Gas Meter Calibration Factor Y_{B} Average Meter Temperature $\mathsf{T}_{\mathsf{mfB}}$ degrees F 49 52 57 53 Average Absolute Meter Temperature (R) 509 512 517 513 T_{mrB} degrees R $T_{mrB} = T_{mfB} + 460$ Meter Volume at Standard Conditions $V_{\text{mstd B}}$ 0.912 1.019 0.978 cubic feet $V_{mstd B} = 17.64 x (V_{mB} x 0.03531) x Y x P_{bar} / T_{mrB}$ Laboratory Results OL411122 OL411171 OL411153 Trap ID M_{1B} 112.0 Mercury Sorbent Trap, Section 1 107.7 115.6 112.7 ng $M_{2\,B}$ Mercury Sorbent Trap, Section 2 ng 1.00 1.60 0.90 1.17 Mercury, Total amount collected M_{B} ng 108.7 117.2 113.6 113.2 Amount of Mercury in spiked traps-from laboratory M_{spike B} 50 50 50 ng Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$ Mercury Emission Rate $C_{(\mu g)B}$ μg/dscm 2.274 2.328 2.236 2.279 lh/hr 0.00137 0.00135 0.00130 0.00134 $E_{(lb/hr)B}$ $E_{\text{(lb/hr)B}} = (M_B - M_{\text{spike B}}) \times (2.2046 \times 10^{-12} \text{ (lb/ng)}) \times Qd \times 60 / V_{\text{mstd B}}$ Mercury Emission Rate $\mathsf{E}_{\mathsf{(lb/yr)B}}$ lb/yr 12.0 11.9 11.4 11.7 $E_{(lb/yr)B} = E_{(lb/hr)B} \times 8760 \text{ hr/yr}$

EPA Method 30B QA/QC Data							
	Symbol	Units	Run 1	Run 2	Run 3	Test Average	
A Train Breakthrough each run <10% $B_A = M_{2A} / M_{1A} \times 100$	B _A	%	1.9	1.9	2.0	1.9	
B Train Breakthrough each run <10% $B_B = M_{2B} / M_{1B} \times 100$	B _B	%	0.9	1.4	0.8	1.0	
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	11.2	5.3	-1.6	5.0	
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	94.9	99.1	83.5	92.5	
Paired Trap Agreement each run <10% RD = $((C_{\mu gA} \cdot C_{\mu gB}) / (C_{\mu gA} + C_{\mu gB})) X 100$	RD	%	2.1	0.3	6.1	2.9	

Indurating Furnace Stack D (SV017) Baseline 2

Data Entry	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Test Date	-	-	4/12/2017	4/12/2017	4/12/2017	
Test Period	-	-	736-836	906-1006	1030-1130	
Barometric Pressure	P _{bar}	in. Hg	28.65	28.65	28.65	28.65
Dry Volumetric Flowrate at Standard Conditions (EPA Method 2)	Q_d	dscfm	135,900	135,500	136,300	135,900

Tra	рΑ	Res	ults

Trap A Results						
	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V_{mA}	liters	29.836	28.317	30.146	29.433
Dry Gas Meter Calibration Factor	Y_A	-	1.0141	1.0141	1.0141	1.0141
Average Meter Temperature	T_{mfA}	degrees F	78	82	80	80
Average Absolute Meter Temperature (R) $T_{mrA} = T_{mfA} + 460$	T _{mrA}	degrees R	538	542	540	540
Meter Volume at Standard Conditions V _{mstd A} = 17.64 x (V _{mA} x 0.03531) x Y _A x P _{bar} / T _{mrA}	V _{mstd A}	cubic feet	1.003	0.946	1.010	0.986
Laboratory Results		•				
Trap ID			OLC043472	OLC043364	OL413042	
Mercury Sorbent Trap, Section 1	M _{1 A}	ng	81.3	73.6	80.2	78
Mercury Sorbent Trap, Section 2	M _{2 A}	ng	0.70	1.00	1.00	0.90
Mercury, Total amount collected	M_A	ng	82.0	74.6	81.2	79.3
Amount of Mercury in spiked traps-from laboratory	M _{spike A}	ng	0	0	0	
Mercury Stack Concentration $C_{(\mu_0)A} = (M_A - M_{spike,A}) / 1000 / V_{mstdA} \times 0.0283168$	$C_{(\mu g)A}$	μg/dscm	2.887	2.786	2.838	2.837
Mercury Emission Rate E_(lb/hr)A = (MA-M _{spike A}) x (2.2046x10 ⁻¹² (lb/ng)) x Qd x60 / V _{mstd A}	E _{(lb/hr)A}	lb/hr	0.00147	0.00141	0.00145	0.00144
Mercury Emission Rate $E_{(lb/r)A} = E_{(lb/r)A} \times 8760 \text{ hr/yr}$	E _{(lb/yr)A}	lb/yr	12.9	12.4	12.7	12.7

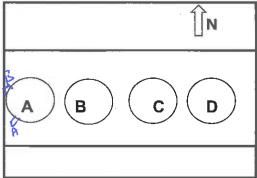
Trap B Results

Trap B Result	Symbol	Units	Run 1	Run 2	Run 3	Test Average
Actual Dry Gas Meter Volume	V _{mB}	liters	30.189	29.291	30.196	29.892
Dry Gas Meter Calibration Factor	Y _B	-	1.0063	1.0063	1.0063	1.0063
Average Meter Temperature	T _{mfB}	degrees F	78	81	80	80
Average Absolute Meter Temperature (R) $T_{mrB} = T_{mrB} + 460$	T _{mrB}	degrees R	538	541	540	540
Meter Volume at Standard Conditions $V_{mstd} = 17.64 \times (V_{mB} \times 0.03531) \times Y \times P_{bar} / T_{mrB}$	V _{mstd B}	cubic feet	1.008	0.972	1.005	0.995
Laboratory Results						
Trap ID			OL411172	OL411102	OL411132	
Mercury Sorbent Trap, Section 1	M _{1B}	ng	134.1	126.7	130.5	130
Mercury Sorbent Trap, Section 2	M _{2B}	ng	1.10	1.50	1.00	1.20
Mercury, Total amount collected	M _B	ng	135	128	132	132
Amount of Mercury in spiked traps-from laboratory	M _{spike B}	ng	50	50	50	
Mercury Stack Concentration $C_{(\mu g)B} = (M_B - M_{spikeB}) / 1000 / V_{mstdB} \times 0.0283168$	C _{(µg)B}	μg/dscm	2.986	2.842	2.864	2.897
Mercury Emission Rate E(Ib/hr)B = (M _B -M _{Spike B}) x (2.2046x10 ⁻¹² (Ib/ng)) x Qd x60 / V _{mstd B}	E _{(lb/hr)B}	lb/hr	0.00152	0.00144	0.00146	0.00147
Mercury Emission Rate $E_{(lb,lyr)B} = E_{(lb,hr)B} \times 8760 \text{ hr/yr}$	E _{(lb/yr)B}	lb/yr	13.3	12.6	12.8	12.9

ET A Method 30D QA/QO Data								
	Symbol	Units	Run 1	Run 2	Run 3	Test Average		
A Train Breakthrough each run <10% B _A = M _{2 A} / M _{1 A} x 100	B _A	%	0.9	1.4	1.2	1.2		
B Train Breakthrough each run <10% B _B = M _{2 B} / M _{1 B} x 100	B _B	%	0.8	1.2	0.8	0.9		
Sample volume agreement each run +/- 20% SV= 100 - ((V _{mstd A} / V _{mstd B}) x 100)	SV	%	0.4	2.7	-0.5	0.9		
Field Recovery Test 3 run avg 85%< R >115% R = (M _A / V _{mstd A} - M _B / V _{mstd B}) x V _{mstd A} / M _{spike A} x 100	R	%	105.7	103.1	101.5	103.4		
Paired Trap Agreement each run <10% RD = $((C_{\mu0A} - C_{\mu0B}) / (C_{\mu0A} + C_{\mu0B})) X 100$	RD	%	1.7	1.0	0.4	1.0		

Appendix B

Field Data Sheets



Project	ArcelorMitt	a Mine	
Sample Location	Furnaçe St	ack 🔼	
Date	12/13/	16	21
Operators	M- Vo-	sham	
Duct Dimensions	101-75		inches
Port Length	4.5		inches
Pitot Tube No.	20	Ср	0.84
Pitot Tube No. Manometer ID	20 m-11	Cp Bar. ID	0.84 8A-28
	20 m-11 Dual det		

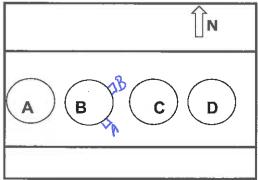
	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28,20		一 ク	
Stat. Press (In H ₂ O)	- 0.60	-0.60	-0,60	
Temp - Dry Bulb °F				
Temp - Wet Bulb °F	Se	e Meth	od 4	
Moist Content - %				
O ₂ %	Se	e Meth		
Time of Meas.	1205-	13.55	1640-	
	12.17	17-108	~ 1055	

Pitot Leak Check Positive: Negative:

umB	200-2	TIOM	6000								
Traverse Po	oint Informa	ation	Cyclonic			d - Inches F		Stack Temperature - °F			
Point		From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔΡ	ΔΡ	ΔΡ	Temp.	Temp.	Temp.	Temp.
A	4.43	8.93		0.77	0.86	0.83			77		
2	14.90	19,40		6.85	0.84	0.85					
3	30/11	39.61		0.84	0.83	0.85		See	Meth	od 4	
y	71,64	76:14		0.78	0.78	0.81		300	IVICU	10017	
5	86.85	9135		000	0.73	6,86					
6	97.32	101.82		076	0.73	0.82					
B-1				0.76	0.76	0.84			1.		
2				0/80	0.77	0.73					
3				0.80	0,82	0.82					
Ч				0,84	0,87	0.85					
5				0.85	0,85	0,91					
ь				0,95	092	0.92				7 =	
	· ·										
-											
,											
								11 - 24	1		
						-		,			

Schematic o	of Duct	Cross-Section
-------------	---------	---------------

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg. Temp °F	See	App	endix	A
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				



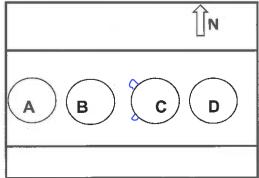
Project	ArcelorMittal Minorca Mine				
Sample Location	Furnace St	ack 🔼			
Date	12/13/	16			
Operators	M. Non	strem			
Duct Dimensions	1012	75	inches		
Port Length	4.5	1	inches		
Pitot Tube No.	20_	Ср	0.84		
Manometer ID	M-11	Bar. ID	BA-25		
Digital Therm ID	ASOL	T.C. ID	791		

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28.20		-17	
Stat. Press (In H ₂ O)	-0.77	-0.75	-0.74	
Temp - Dry Bulb °F				
Temp - Wet Bulb °F	Se	e Meth	od 4	
Moist Content - %				
O ₂ %	Se	e Meth	od 3	
Time of Meas.	1228-	1420 -	1700	
	1240	1444	. 1715	

	7,2 10		
Pitot Leak Check	Positive:	Negative:	

- Ui	MB 300	3, 71	0#6268	3	Pitot Leal	k Check	Positive:		Negative:		
Traverse Po			Cyclonic		locity Hea	d - Inches I	l ₂ O	Stack Temperatu			
Point	Inche	s From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔP	ΔΡ	ΔÞ	Temp.	Temp.	Temp.	Temp.
A-1	4.43	8.93		0.99	0.96	0.95					100
2	1490			1.02	102	1-00					
3	30.11	34.61		0.95	0.98	0.95		See	Meth	od 4	
ų	71.6	76.14		0.89	0.89	0.90		500	IVICE		
	06.85	91.35		0.83	0.81	0.82				П	
6	97,32	101.82		0,79	0.72	0.75					
B-1				0.90	6,88	0.90					
2				0.90	0,91	0.88					
3				0.94	0.88	0.88					
4				094	0.98	0.94					
3				0.94	0.92	0.99					
6				0.94	0.80	0.90					
						1					
	r										
						1					
									- 19		

Schematic of Duct Cros	ss-Section
------------------------	------------


	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg. Temp °F	266	App	endix	A
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

Project	ArcelorMittal Minorca Mine				
Sample Location	Furnace Stack 🔼				
Date	12/14/16				
Operators	M. Peterson, M	Norskan			
Duct Dimensions	104.00	inches			
Port Length	4.50	inches			
Pitot Tube No.	<u></u> <i>2</i>	0.84			
Manometer ID	M-11 Bar. ID	BA-28			
Digital Therm ID	AS-01 T.C. ID	791			

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28.21		P	
Stat. Press (In H ₂ O)	-0,75	-0B0	-0.80	
Temp - Dry Bulb ºF				
Temp - Wet Bulb °F	Se	e Meth	od 4	
Moist Content - %				
O ₂ %	Se	e Meth	od 3	
Time of Meas.	1130 -	1425-	1610	,
	1146	1438/	1527	

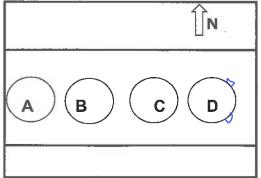
Pitot Leak Check Positive: ______Negative: _____

		3-3 , TI						VI			
Traverse Po			Cyclonic			d - Inches H				oerature - °F	
Point	Inches	From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔΡ	ΔΡ	ΔP·	Temp.	Temp.	Temp.	Temp.
A - 1	4.53	9-03		0.85	0.86	0.86				==41	
2	1523	19-73		0.88	0.87	0,87			-1		
3	30.77	3527		0.90	0,86	O-BB		See	Meth	od 4	
Ч	73-23	77.73		0,89	0.87	0.88		000	101001	-04 -	
5	88.77	93.27		0.83	0,84	0.89		6,-			
6	99.47	103.97		0,90	0,81	0.84					
B - 1				0,89	0.83	0,85					
2				6,84	0,87	0,87				- 117	
3				0 82	0.87	0.87					
4				0.88	0.89	0,88					
5				0.87	0.80	0,88			S LLT		
6				0.79	0.88	0,84		:			
					-						
	_										
					-						
	1	<u> </u>									
			_								
					<u> </u>						

Schematic	of	Duct	Cross-Section

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg. Temp °F	See	App	endix	A
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

2


TH

Project	ArcelorMitta	al Minorc	a Mine
Sample Location			
Date	12/14		
Operators		son, 1	1. Norstrem
Duct Dimensions	104-0	0	inches
Port Length	4.5	Ó	inches
Pitot Tube No.	20	Ср	0-84
Manometer ID	M-11 .	Bar. ID	BA-28
Digital Therm ID	As-o	T.C. ID	7-85

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28.21		─	
Stat. Press (In H ₂ O)	-0.55	-0.66	-0,60	
Temp - Dry Bulb °F				
Temp - Wet Bulb °F	Se	e Meth	od 4	
Moist Content - %				
O ₂ %	Se	e Meth		
Time of Meas.	1201 -	1447-	1630-	
	1217	1501	1645	

		 , 13	. 1
Pitot Leak Check	Positive:	Negative:	V

.14	1B 200	-2 TH	Onthe Ma		Pitot Leak	Check	Positive:		Negative:		
Traverse Po			Cyclonic	Ve	locity Head	d - Inches I	1-0		Stack Tem	erature - °F	
Point		From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔΡ	ΔΡ	ΔΡ .	Temp.	Temp.	Temp.	Temp.
A - 1	4.53	9-03		0.69	0.74	0.72					
2	15,23	19.73		6,73	0,65	0.68					
3	3077	35,27		0.66	0.62	0.65		Soo	Meth	od A	
4	73.23	3רגדל		6.71	0.65	065		Jee	MEG	100 4	
5	88.77			0.68	0,67	0.67					
6	99.47	103,97		0.73	0,68	068					
B -1				0.73	0,65	0.70					
2				0.65	0.62	0,68					
3				0.66	0.64	0.65					
4				0.68	0,64	0.65					
5				0.68	0,64	0,65					
6				0.64	0.74	0,68					
						ļ					
	:										

Schematic	of	Duct	Cross-Section

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md	, , , , , ,))			
Mole Weight - Ms				
Avg. Temp °F	5ee	ADD	endix	A
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

EPA METHOD 3A -- Instrument Analysis Data Sheet

Project Sample Location Date

Operators

ArcelorMittal - Hg Screening
Furnace Stacks A and B / Tests 1, 2
12/13/2016

M. Petersen

Analyzer Make / Model / Serial No. Servomex 1440

Analyzer O_2 Range (span), %: 0-25%Analyzer CO_2 Range (span), %: 0-25%

	Cylinder		
	Serial No.	O2 Cert. Conc.	CO2 Cert. Conc.
Zero Gas	Nitrogen Lot#0317VC16	0.0	0.0
O2/CO2 Mid gas	CC116801	9.5	9.5
O2 High gas	CA03203	21.6	-
CO2 High gas	CC115022	-	18.9

PRETEST ANALYZER CALIBRATION DATA

	C)2	CO2		
	Cylinder Analyzer		Cylinder	Analyzer	
	Value,	Calibration	Value,	Calibration	
	%	Response, %	%	Response, %	
Zero Gas	0.0	0	0.0	0	
Mid-range:	9.5	9.5	9.5	9.6	
High-range:	21.6	21.5	18.9	18.9	

Time of Calibration___ 1000-1805

INTEGRATED BAG ANALYSIS

Location/Test No. Run No. Time Sampled Time Analyzed O2, % CO2,%

Furnace Stack A / Test 1			Furnace Stack B / Test 2		
1	2	3	1	2	3
1148-1248	1350-1450	1634-1734	1148-1248	1350-1450	1634-1734
1410	1640	1745	1415	1643	1747
19.9	20	20.1	19.4	19.3	19.5
0.9	0.7	0.6	1.3	1.4	1.1

POSTTEST ANALYZER CALIBRATION DATA

	O2		CO2	
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.5	9.5	9.5
High-range:	21.6	21.6	18.9	18.8

EPA METHOD 3A -- Instrument Analysis Data Sheet

Project Sample Location Date

Operators

ArcelorMittal - Hg Screening
Furnace Stacks C and D / Tests 3, 4
12/14/2016
M. Petersen

Analyzer Make / Model / Serial No. _____ Servomex 1440

Analyzer O_2 Range (span), %: 0-25%Analyzer CO_2 Range (span), %: 0-25%

	Cylinder		
	Serial No.	O2 Cert. Conc.	CO2 Cert. Conc.
Zero Gas	Nitrogen Lot#0317VC16	0.0	0.0
O2/CO2 Mid gas	CC116801	9.5	9.5
O2 High gas	CA03203	21.6	-
CO2 High gas	CC115022	-	18.9

PRETEST ANALYZER CALIBRATION DATA

	C)2	CC	02
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.6	9.5	9.5
High-range:	21.6	21.6	18.9	18.8

Time of Calibration___ 1203-1545

INTEGRATED BAG ANALYSIS

Location/Test No. Run No. Time Sampled Time Analyzed O2, % CO2,%

Furnace Stack C / Tes	st 3		Furnace Stack D / Te	st 4	
1	2	3	1	2	3
1122-1222	1422-1522	1604-1704	1122-1222	1422-1522	1604-1704
1430	1615	1715	1433	1618	1718
18.9	18.7	18.9	18.4	18.4	18.3
1.8	2	1.9	2.2	2.2	2.3

POSTTEST ANALYZER CALIBRATION DATA

		02	(CO2
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.5	9.5	9.5
High-range:	21.6	21.7	18.9	18.8

ArcelorMittal Minorca Mine Inc. Virginia, Minnesota

RESULTS OF STACK MOISTURE DETERMINATIONS

Fumace Stack A (SV014) Test Date: December 13, 2016 Baseline 1

1.87

Meter ∆H:

0.9919

Meter Coefficient:

Meter ID: AS-01

Meter Outlet (°F) Tota 2 18 70 Moisture Content (%v/v) 7.06 in. Hg Hg Average Meter Temp. (°F) 80.96 Meter 79.2 79.9 82.8 82.8 80.4 81.0 81.5 82.2 82.2 Inlet (°F) 81.0 982 964 8 2 Impinger Temp. (°F) Average Impinger Moisture Recovery Data Temp. (°F) RUN 3 (1634-1734) 51.3 54.1 54.9 0.9919 33.8 36.1 38.7 41.5 44.1 46.4 49.5 56.7 58.5 ੜ ੜ 102 102 102 103 103 103 103 103 103 103 103 8 Average Stack Stack Temp. Ts, °F Pre-test: 0.000
Post-test: 0.000 Temp. (°F) 128 100 28 102 22 28 Standard Meter Volume 6.6 in. Hg Meter Coefficient Barometric Pressure (in Hg) 1.87 1.87 Average Orifice ∆H, in H₂O $\stackrel{\Delta H}{\text{in}} H_2O$ Orifice 44.13 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 122 Volume Vm, ft³ Volume Vm, ft³ Vacuum: 15.71 19.65 23.59 27.54 31.50 35.40 43.38 47.35 Total 3.90 7.83 11.77 Meter Meter Final Initial Diff. Meter Outlet (°F) 13 964 0 950 13 14 76 Moisture Content (%v/v) in. Hg Hg Average Meter Temp. (°F) Meter Inlet (°F) 79.9 80.4 81.0 81.5 81.5 82.2 82.2 82.8 82.8 83.3 7 Impinger Temp. (°F) Average Impinger Temp. (°F) RUN 2 (1350-1450) 0.9919 37.9 40.5 42.3 45.1 46.9 48.7 50.0 51.3 51.8 52.3 54.1 ੜ ੜ Average Stack 7 in. Hg
Pre-test: 0.000
Post-test: 0.000 Stack Temp. Ts, °F Temp. (°F) 101 101 102 102 134 100 34 101 101 101 101 9 Standard Meter Volume Meter Coefficient Barometric Pressure (in Hg) 1.87 1.87 Average in H₂O in H_2O Orifice Orifice 43.20 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 ۸ħ ΔH, 115 Volume Vm, ft³ Volume Vm, ft° Vacuum: 18.84 22.78 26.68 30.63 34.58 38.53 42.47 46.42 Total 10.97 Meter 14.91 46.42 Meter 3.05 inal Meter Outlet (°F) 98 Moisture Content (%v/v) 8.82 in in Hg Hg Average Meter Temp. 79.45 (S) Meter Inlet (°F) 4:77 4:77 4:77 78.1 78.6 79.2 80.4 81.0 81.5 81.5 79.9 950 940 10 6 6 Moisture Recovery Data Impinger Temp. (°F) 48.7 50.5 52.3 54.9 Average Impinger Temp. (°F) RUN 1 (1148-1248) 30.7 33.3 35.1 37.4 40.5 42.8 45.1 0.9919 28.20 47.7 43 ੜ ਝ Stack Temp. Ts, °F Average Temp. (°F) Pre-test: 0.000 Post-test: 0.000 Stack 102 132 100 32 102 102 Standard Meter Volume 7 in. Hg Meter Coefficient sarometric Pressure (in Hg) Average Orifice in H₂O Orifice ^AH, in H_2O 42.55 1.87 ÅH, 140 1.87 1.87 1.87 1.87 40 Volume Vm, ft³ Meter Volume Vm, ft Vacuum: 11.23 15.04 18.84 22.65 26.45 34.06 37.84 41.68 45.52 Total Meter 30.26 45.52 7.42 Run Time, Leak Checks

RESULTS OF STACK MOISTURE DETERMINATIONS

Furnace Stack B (SV015)
Test Date: December 13, 2016
Baseline 1

1.8303

Meter ∆H:

1.0173

Meter Coefficient:

Meter ID: C-7

			DI IN 4 (44 40 4040)	1070707					D 141 0	100 4 450)					24/014110	17047		
			KUN I (II	46-1246)					KUN 2 (1350-1450)	550-1450)					KUN 3 (1634-1734)	034-1734)		
	Meter	Orifice	Stack	Impinger	Meter	Meter	Meter	Orifice	Stack	Impinger	Meter	Meter	Meter	Orifice	Stack	Impinger	Meter	Meter
	Volume	ΔH,	Temp.	Temp.	Inlet	Outlet	Volume	ΔH,	Temp.	Temp.	Inlet	Outlet	Volume	γH,	Temp.	Temp.	Inlet	Outlet
Run Time,	Vm, ft³	in H ₂ O	Ts, °F	(°F)	(°F)	(°F)	Vm, ft³	in H ₂ O	Ts, °F	(°F)	(°F)	(°F)	Vm, ft³	in H ₂ O	Ts, °F	(, F)	(°F)	(*F)
Minutes	800.91						848.35						889.10					
2	804.66	1.83	107	24.4	89	89	851.75	1.83	106	33.3	74	74	892.71	1.83	106	26.4	22	75
10	808.90	1.83	106	25.7	20	20	855.24	1.83	106	35.1	78	74	896.24	1.83	106	29.5	92	75
15	812.62	1.83	107	27.7	71	70	858.56	1.83	106	36.9	79	75	899.79	1.83	107	32.5	92	75
20	815.55	1.83	107	31.5	72	70	861.97	1.83	107	39.7	81	75	903.51	1.83	107	36.1	77	75
25	818.96	1.83	107	35.6	73	71	865.32	1.83	106	42.3	82	92	907.20	1.83	106	2.68	77	75
30	822.75	1.83	106	39.2	74	71	868.71	1.83	107	45.9	82	92	910.89	1.83	107	43.3	78	75
32	826.09	1.83	107	42.3	75	71	872.09	1.83	107	49.5	83	92	914.45	1.83	108	48.2	62	75
40	829.91	1.83	107	46.4	92	71	875.57	1.83	106	53.1	83	92	918.15	1.83	109	54.1	80	92
45	833.15	1.83	106	48.7	77	72	878.80	1.83	106	57.2	83	92	921.75	1.83	108	63.9	81	92
20	836.90	1.83	106	51.3	78	72	882.05	1.83	106	60.3	84	22	925.46	1.83	107	2.99	82	92
22	840.05	1.83	106	53.6	78	73	885.35	1.83	106	63.9	84	22	929.20	1.83	107	9.17	83	92
09	843.64	1.83	106	55.9	62	73	888.59	1.83	106	66.2	84	82	932.91	1.83	107	0.57	83	77
	Total	Average	Average	Average	Average	age	Total	Average	Average	Average	Ave	Average	Total	Average	Average	Average	Average	age
	Meter	Orifice	Stack	Impinger	Meter	ter	Meter	Orifice	Stack	Impinger	Meter	ter	Meter	Orifice	Stack	Impinger	Meter	er
	Volume	ΔH,	Temp.	Temp.	Temp.	np.	Volume	ΔH,	Temp.	Temp.	Ter	Temp.	Volume	ΔH,	Temp.	Temp.	Temp.	ъ.
	Vm, ft³	in H ₂ O	(°F)	(°F)	(°F)	(<u>-</u>	Vm, ft³	in H_2O	(°F)	(°F)	<u>.</u>	(°F)	Vm, ft³	in H ₂ O	(°F)	(°F)	(°F)	
	42.73	1.8	107	40	72.63	63	40.24	1.8	106	49	78.	78.58	43.81	1.8	107	49	77.21	21
		M	Moisture Recovery Data	overy Data				7	Moisture Recovery Data	covery Data:				2	loisture Rec	Moisture Recovery Data:		
	Impinger	1	2	3	Desiccant	Total	Impinger	1	2	3	Desiccant	Total	Impinger	1	2	3	Desiccant	Total
	Final	110	133	10	928		Final	112	133	12	943		Final	113	138	16	953	
	Initial	100	100	0	920		Initial	100	100	0	928		Initial	100	100	0	943	
	Diff.	10	33	10	8	61	Diff.	12	33	0	15	09	Diff.	13	38	16	10	77
	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(///%)	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(%/%)	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(_N / _N)
		41.48			6.58			38.63			6.92			42.17			8.04	
	Barometric	Barometric Pressure (in Hg)	Hg)	28.20			Barometric	Barometric Pressure (in Hg)	ר (Hg	28.20			Barometric	Barometric Pressure (in Hg)	Hg)	28.20		
		Meter Coefficient	icient	1.0173				Meter Coefficient	ficient	1.0173				Meter Coefficient	icient	1.0173		
	Vacuum:	8	8 in. Hg				Vacuum:	8	8 in. Hg				Vacuum:	6	9 in. Hg			
Leak		Pre-test:	0.000	at		in. Hg		Pre-test:	0.000	at	6	in. Hg		Pre-test:	0.000	at		in. Hg
Checks		Post-test:	0.000	äŧ	10	in. Hg		Post-test:	0.000	ä		in. Hg		Post-test:	0.000	at	10	n. Hg

RESULTS OF STACK MOISTURE DETERMINATIONS

Furnace Stack C (SV016) Test Date: December 14, 2016 Baseline 1

Meter Outlet (°F) Total 77 77 77 77 77 77 Moisture Content (%v/v) 11.58 in. Hg Hg 77 Average Meter Temp. (°F) Meter Inlet (°F) 950 943 17 78 79 79 80 80 80 81 81 81 Impinger Temp. (°F) Average Impinger Temp. (°F) 1.0173 RUN 3 (1604-1704) 8.09 62.1 63.9 64.9 43.3 45.1 48.2 50.0 52.3 54.1 59.0 56.7 ੜ ੜ Moisture Recovery Average Stack Temp. Ts, °F Temp. (°F) Pre-test: 0.000
Post-test: 0.000 Stack 112 110 110 112 110 140 100 40 Standard Meter Volume 10 in. Hg Meter Coefficient Barometric Pressure (in Hg) 1.83 1.83 1.83 Average ∆H, in H₂O $\stackrel{\Delta H}{\text{in}} H_2O$ Orifice Orifice 39.10 1.83 1.83 1.83 1.83 1.83 1.83 1.83 160 09 Volume Vm, ft³ Volume Vm, ft³ Vacuum: 24.60 28.11 31.50 34.98 38.35 41.72 45.08 54.98 58.45 61.86 48.41 51.70 Total Meter 40.69 Meter Final Initial Diff. Meter Outlet (°F) 75 76 76 77 77 77 2 2 2 Moisture Content (%v/v)
10.21 26 in. Hg Hg Average Meter Temp. (°F) Meter Inlet (°F) 943 936 12 7 7 76 78 78 79 81 81 81 Impinger Impinger Average Temp. (°F) RUN 2 (1422-1522) Temp. (°F) 1.0173 63.9 30.7 34.3 39.2 43.3 47.7 55.9 59.0 62.1 66.2 ੜ ੜ Average 8 in. Hg
Pre-test: 0.000
Post-test: 0.000 Stack Temp. Ts, °F Stack Temp. (°F) 112 112 130 30 30 Standard Meter Volume Meter Coefficient Barometric Pressure (in Hg) Average Pre-test: in H_2O in H_2O Orifice Orifice 40.83 1.83 1.83 1.83 90 00 ۸ħ ΔH, 1.8303 1017.20 1020.83 Total Volume Vm, ft³ Volume Vm, ft³ 1013.56 982.07 985.74 996.27 999.75 1003.17 1009.99 Vacuum: 989.23 992.71 1006.65 Meter 42.41 Meter inal-Meter ∆H: Meter Outlet (°F) 100 78 78 78 78 79 79 Moisture Content (%v/v) 10.08 77 77 17 77 in in Hg Hg Average Meter Temp. (S) 79.2′ Meter Inlet (°F) 936 926 10 9 79 83 83 84 84 84 Moisture Recovery Data 1.0173 45.9 46.9 47.7 Average Impinger Impinger Temp. (°F) Temp. 1.0173 28.9 31.5 34.3 36.9 38.7 40.5 44.6 44.1 40 ੜ ਝ Meter Coefficient: Average Stack Temp. Ts, °F Temp. (°F) Pre-test: 0.000
Post-test: 0.000 Stack 109 110 109 134 109 Standard Meter Volume 9 in. Hg Meter Coefficient sarometric Pressure (in Hg) Average Orifice in H_2O in H₂O Orifice 1.83 1.83 1.83 1.83 1.83 42.71 1.83 1.83 ÅH, 150 ΔH, 20 920.08 Volume Vm, ft³ Volume Vm, ft³ 937.45 941.09 945.03 948.78 952.54 956.30 960.00 974.53 978.17 Total Meter 967.36 Vacuum: 963.68 44.52 Meter ID: C-7 Run Time, Leak Checks

ArcelorMittal Minorca Mine Inc. Virginia, Minnesota

RESULTS OF STACK MOISTURE DETERMINATIONS

Furnace Stack D (SV017)
Test Date: December 14, 2016
Baseline 1

1.87

Meter ∆H:

0.9919

Meter Coefficient:

Meter ID: AS-01

			DIIN 4 (44.00 4.000)	4000					DIIN 2 (4422 4522)	(100 4 500)					DIM S /4/	011N 2 (4604 4704)		Ī
			II) I NOV	(777 777					L) Z NON	(7701-774					L) C NON	004-1704)		
	Meter	Orifice	Stack	Impinger	Meter	Meter	Meter	Orifice	Stack	Impinger	Meter	Meter	Meter	Orifice	Stack	Impinger	Meter	Meter
	Volume	ΔH,	Temp.	Temp.	Inlet	Outlet	Volume	ΔH,	Temp.	Temp.	Inlet	Outlet	Volume	ÅH,	Temp.	Temp.	Inlet	Outlet
Run Time,	, Vm, ft³	in H ₂ O	Ts, °F	(°F)	(°F)	(°F)	Vm, ft³	in H ₂ O	Ts, °F	(°F)	(°F)	(°F)	Vm, ft³	in H ₂ O	Ts, °F	(³F)	(°F)	(°F)
Minutes	0.00						0.00						0.00					
2	3.30	1.87	114	30.2	78.6		98.0	90.0	117	30.7	73.9		3.84	90'0	116	46.9	78.6	
10	7.22	1.87	115	32.5	6.62		0.62	0.01	117	34.3	73.9	-	7.73	90'0	116	48.7	78.6	
15	11.14	1.87	114	37.4	6.62		0.89	0.01	115	36.1	74.5		11.63	90.0	117	51.8	78.6	
20	15.05	1.87	114	43.3	6.62		1.16	0.01	116	36.1	75.0	-	15.53	90'0	116	299	78.6	1
25	18.98	1.87	114	51.8	80.4		1.46	0.02	117	35.6	75.7	-	19.43	90'0	116	63.9	79.2	
30	22.91	1.87	114	62.1	81.0		1.76	0.02	117	35.1	75.7		23.33	90.0	113	70.3	78.6	
35	26.84	1.87	115	71.1	81.0		2.26	0.02	117	39.2	76.3		27.25	90.0	117	74.7	78.6	
40	30.77	1.87	115	76.5	81.0		60.9	1.87	117	36.9	76.8		31.17	90.0	114	0.77	78.6	
45	34.70	1.87	114	78.3	81.0		10.01	1.87	117	38.7	78.1		35.09	90.0	113	78.3	78.1	
20	38.64	1.87	115	78.8	81.5		13.93	1.87	117	44.1	78.6	٠	39.01	90.0	116	78.8	77.4	
22	42.58	1.87	116	78.8	81.5		17.86	1.87	117	51.8	79.2	-	42.93	90'0	114	79.3	77.4	
09	46.51	1.87	116	78.3	81.5		21.78	1.87	117	62.6	79.2		46.85	90.0	114	80.1	76.8	
	Total	Average	4	Average	Average	age	Total	Average	Average	Average	Avei	Average	Total	Average	Average	Average	Average	age
	Meter	Orifice		Impinger	Meter	ter	Meter	Orifice	Stack	Impinger	Me	Meter	Meter	Orifice	Stack	Impinger	Meter	ier
	Volume	ΔH,	ċ	Temp.	Temp.	.du	Volume	ΔH,	Temp.	Temp.	Ter	Temp.	Volume	ΔH,	Temp.	Temp.	Temp.	.dr
	Vm, ft³	in H ₂ O	(°F)	(, F)	(°F)	(I	Vm, ft ³	in H ₂ O	(°F)	(°F)	<u>.</u>	(°F)	Vm, ft³	in H ₂ O	(°F)	(, F)	(°F)	(-
	46.51	1.9	115	09	80.60	09	21.78	8.0	117	40	76.41	.41	46.85	0.1	115	29	78.26	26
		2	Moisture Recovery Data	overy Data.				2	Aoisture Re	Moisture Recovery Data:				_	Aoisture Re	Moisture Recovery Data:		
	Impinger	1	2	3	Desiccant	Total	Impinger	1	2	3	Desiccant	Total	Impinger	1	2	3	Desiccant	Total
	Final	134	140	14	983		Final	114	122	9	992		Final	112	170	0	1008	
	Initial	100	100	0	196		Initial	100	100	0	983		Initial	100	100	0	992	
	Diff.	34	40	14	16	104	Diff.	14	22	9	6	51	Diff.	12	20	0	16	86
	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(/////)	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(///%)	Stand	Standard Meter Volume	olume	Moistu	Moisture Content (%v/v)	(%/\%)
		43.30			10.30			20.42			10.00			43.07			9.70	
	Barometric	Barometric Pressure (in Hg)	Hg)	28.20			Barometric	Barometric Pressure (in Hg)	n Hg)	28.20			Barometric	Barometric Pressure (in Hg)	n Hg)	28.20		
		Meter Coefficient	icient	0.9919				Meter Coefficient	ficient	0.9919				Meter Coefficient	ficient	0.9919		
	Vacuum:	8	8 in. Hg				Vacuum:	9	6 in. Hg				Vacuum:	7	7_in. Hg			
Leak		Pre-test:	0.000	at	7	in. Hg		Pre-test:	0.000	at	80	in. Hg		Pre-test:	0.000	at	12	in. Hg
Checks		Post-test:	0.000	at	14	in. Hg		Post-test:	0.000	at	14	in. Hg		Post-test:	0.000	at	8	in. Hg
		•		•		,				•						ī		1

_		- A 1
	ļ	
	Ŀ	
	15	u

Sample Location Furrece Stack R Arcelorahital Minorea Mine Arcelorahital Mine Arcelorahital Minorea Mineral Minorea Arcelorahital Mino	BARR	Ţ.				EPA Method 30B FIELD DATA SHEET	EPA Method 30B IELD DATA SHEE'	L			
Sample A Sample B C.) in Hg Ts. Tr Tp. Tr Outlet Temp Outlet	Project Sample Loc Date		ArcelorMittal Furnace Stac	Minorca Mine	J. r. strew		Meter ID Meter A γ Meter B γ Samble Rati	- 13	450	Spiked R	est nn
Sample A Sample B Suck Sample B Suck Sample B Suck Sample B Suck Sumple B Suck Substant Probe Meter A Meter B		Jusphy	105			•	Bar. Press.	28		in. Hg	
See Method 4	Sample	Meter A	Meter	Stack	Sample A	Sample B					
See Method 4 2 7.5 75 93.7 75 75 75 75 75 75 75 75 75 75 75 75 75	Time ∆Ţ	Volume Vma, liters	Volume Vmb, liters	Temp °F	Vacuum, (-) in Hg	Vacuum, (-) in Hg	Sorbent Ts, °F	Probe Tp, °F	Meter A Outlet Temp	Meter B Outlet Temp	Notes
See Method 4 2 7.5 257 75 75 75 75 75 75 75 75 75 75 75 75 7		Н	0.000								
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	>	2,6		See Method 4	7	1.5	287	215	24	12	
2.	01	5,2	6,0		2.2	2	258	258	75	156	
2.6	15	م 2.	8.3		2-6	7	2.33	255	ブズ	75	
2	70	و. څو	7-01		2.5	2	218	2,0	75	ンく	
2	23	77	12,4		3	7	210	2,0	76	76	
2 2.5 200 700 75 75 75 75 75 75 75 75 75 75 75 75 75	20	INS	14.2		2	5.4	201	203	9 L	26	
2 2. ≤ 200 70 77 77 77 77 77 77 77 77 77 77 77 7	25	113	9/5/		ç	23	200	002	aL	ar C	
200 200 37 17 17 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1	017	[2.3	1771		2	2.5	500	200	94	9 스	
Se Ta≡ See M4	415	13.9	19,2		3.5	2.5	200	200	たし	7	
Store	R	15,1	20.9		7,7	17.72	200	900	כר		
S6	Ċ	_a_			2	Z	200	200	ハ		
Sample Train B Leak Rate (lpm) in Hg Pretest	ည်စ	18 al			どん	N	700	200	28	78	
Substress M4 Sample Train B Leak Rate (lpm) In Hg Pretest In Hg Pretest In Hg Posttest In Hg Posttest In Hg Spike Level Spike Level Spike Level Spike Level Spike Level	4										
Sample Train B Leak Rate (lpm) In Hg Pretest 0.00 at 6 in Hg Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level Spike Level 2	(12 70										
Sample Train B Leak Rate (lpm) In Hg Pretest 0.00 at 6 in Hg Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level Spike Level Spike Level											
Sample Train B Leak Rate (lpm) In Hg Pretest 0.00 at 6 in Hg Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level Spike Level 2 Spike Level	}										
Sample Train B Leak Rate (lpm) In Hg Pretest 0.00 at 6 in Hg Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level Spike Level											
Sample Train B Leak Rate (lpm) Trap A ID Trap B ID In Hg Pretest 0.30 at 6 in Hg Spike Level In Hg Posttest 0.00 at 6 in Hg Spike Level In Hg Posttest 0.00 at 6 in Hg Spike Level											
Sample Train B Leak Rate (lpm) Trap A ID C1 C C3 \$ 23 8 0 Trap B ID											
Seb M4 Trap A ID Trap B ID In Hg Pretest 0.00 at 6 in Hg Spike Y/N Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level Spike Level											
Sample Train B Leak Rate (lpm) In Hg Pretest In Hg Posttest In Hg Posttest In Hg Spike Viv In Hg Posttest In Hg Spike Level Spike Level Spike Level		,									
Sample Train B Leak Rate (lpm) In Hg Pretest 0.00 at 6 in Hg Spike Y/N In Hg Posttest 0.00 at 6 in Hg Spike Level											
Sample Train B Leak Rate (lpm) Trap A ID CLCC353280 Trap B ID in Hg Pretest 0.00 at 6 in Hg Spike Level Spike Level Spike Level	-	11.500		Tow Coo MA					76	- -	
Sample Train B Leak Rate (lpm) Trap A ID CLCCSSSRD Spike Y/N No Spike Y/N Spike Y/N Spike Level Spike Level	1	Vma	嶌						Тша	Tmb	
at 7 in Hg Spike Level	Sample Trai	in A Leak Rat≀ ₃.od	Ţ.	Sample Trair	າ B Leak Rat ດໜ່	e (Ipm)	Trap A ID	02403		- 1	26632147
	Posttest	0000	# # # # # # # # # # # # # # # # # # #		900,00	at C in Ha	Spike Level	-1		Snike Level	Sono

EPA Method 30B FIELD DATA SHEET

Second Weler Stack Sample Sample Sample Sample Weler Sample Samp	Project Sample Location Date Operators	3	Stac	Minorca N	Mr. Norska		Meter ID Meter A Y Meter B Y Sample Rate Bar. Press.	0.4904 (1) 0.4904 (1) 0.4876 (2)		Spilcol Ipm in. Hg	Test Run	48
Time Volume Volume Temp Vacuum, Sorbent Probe Meter A Meter B 15. T Tp. T To. Temp Outlet Temp School Volume Temp Vacuum, Sorbent Probe Meter A Temp School Volume Te		Meter A	Meter B		Sample A	Sample B						
350) 0.000 0.000 32		Volume Vma liters	Volume Vmb liters	Temp	Vacuum,	Vacuum,	Sorbent Ts, °F	Probe Tp, °F	Meter A Outlet Temp			Notes
2 2.7 2.9 See Method 4 2.5 2.4 226 226 79 25 25 25 25 25 25 25 25 25 25 25 25 25	 -	0.00	000.9		D	6						
15 8.4 2.6 2.7 2.7 32 320 79 75 75 17 19 75 17 19 19 19 19 19 19 19 19 19 19 19 19 19	м	4.0		See Method 4	2.8	2:5	0 % C	260	74	64		
15 8.0 4.8 2.5 4 2.60 2.60 79 25 15.2 8.3 2.6 2.6 2.6 79 26 17.4 10.4 2.5 2.6 2.6 2.6 79 41 20.4 10.4 2.5 2.6 2.6 2.6 79 41 20.4 10.4 2.5 2.6 2.6 2.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8	10	h/5	Ş		3.7	5.6	2, 1	261	24	29		
30 10.0 6.1 79.5 9.5 56.0 26.1 79.2 15.3 15.2 8.3 15.2 8.3 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	15,	Ó	ir ir		シン	Ž) (S	200	49	20		
25 15.2 82.3 9.4 15 24.1 74.1 25.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 3	200	0.0	بدا		5,0	0	09	261	Ď,	7		
30 15.3 10.3 0.3 0.5 26 260 79 15 17.4 11.4 2.5 20 261 2.50 79 15 17.4 11.4 2.5 23 261 2.50 80 15 20.2 11.4 2.5 22 22 260 80 15 20.3 11.40 2.5 23 2.50 80 150 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.	25	13.2	£ (2)		2,6	15	100	761	ğ	かり		
25 17.4 11.4 2.6 34 340 340 45 40 340 340 40 40 40 40 40 40 40 40 40 40 40 40 4	30	5.7	٦.5		ら、べ	1200 1000	260	200	19	64		
40, 25.2 114 25.5 25. 260 200 80 40 25.5 25.2 25.0 25.0 80 80 80 80 80 80 80 80 80 80 80 80 80	25	ž.	=		76	07	196	200	5	lo L		-
45 22.4 11.4 2.5 2.3 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	40,	200.5	2		2,7	33	26t	200	Ç.	(C)		
53 34.5 11.4 2.5 33 360 80 80 80 80 80 80 80 80 80 80 80 80 80	24	72.4	(J ==		is or	20	Dion	260	000	Sign Control		
55 76.7 11.46 2.4 2.5 260 260 80 80 80 80 80 80 80 80 80 80 80 80 80	3	ンプイ	7.5		2	53) Se (1)	200	දිවූ	Z		
450) 450) 450) 60 08735 11,441 Ts= See M4	5	75.7	27.2		s. Sr.	73.	20°0		80	ŭ Ĉ		
U50) U50 U50 U50 U50 U50 U50 U50	2	18,703	1,49		2.5	22	200	260	99	S C		
1450) 1												
60 98735 11,44 Ts= See M4	450)											
ь о 98.705 11,241 Тs= See M4									à.			
ь о 98.705 11,241 Тs= See M4							,					
60 08.705 11.741 Ts= See M4												
60 08.705 11.741 Ts= See M4											_	
08.7.05 (1,04) Ts= See M4												
50 98705 11,44\ Тs= See M4												
50 98.705 11,441 Тs= See M4												
50 98705 11,44\ Тs= See M4												
50 08/105 11,441 Тs= See M4 79 .												
20 1787 US 1.5= See M4	0.7	7000		1					50	7.0		
	20	70 / QT		1S= 266 M4						4		

Trap B ID Spike Y/N Spike Y/N Spike Level 150ng 01003937 Sample Train A Leak Rate (lpm)

Pretest 0.000 at 2 in Hg Pretest 0.000 at 2 in Hg Spike YN

Posttest 0.000 at 8 in Hg Posttest 0.000 at 2 in Hg Spike Level

fights to matchery Place (-10 whole

Arbient temp below zero.

C
ô

	24		
•	Test 3	Notes Just 1000 Solver 1000 So	0L390502 Ve3 150ng
	April 1997 Per 1997 P	Meter B Outlet Temp	Trap B ID Spike Y/N
	#33	Meter A Outlet Temp	500 Tma
Ļ.	0.44 Vost 0.9846 0.55	Probe Tp, °F 75.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	0LC035418
EPA Method 30B FIELD DATA SHEET	Meter ID Meter A Y Meter B Y Sample Rate Bar, Press.	Sorbent Ts, °F 196 200 2260 2260 2260 2260 2260 2260 226	Trap A ID Spike Y/N Spike Level
EPA Me FIELD DA	1 1 721	Sample B Vacuum, (-) in Hg	te (lpm) Trap A ID at $\overrightarrow{\mathcal{F}}$ in Hg Spike Y/N at $\overrightarrow{\mathcal{Z}}$ in Hg Spike Level
	Noiska-	Sample A Vacuum, (-) in Hg	Sample Train B Leak Rate (lpm) Prefest 0.001 at 7
	Minorca Mine ack No	Stack Temp °F See Method 4	Ts= See M4 Sample Tra Pretest Posttest
	ArcelorMittal M Furnace Stack 12-113/1/6 19-113/1/6 19-113/1/6		25.300 Vmb at X in Hg
	Sation	Meter A Volume Vma, liters 0.00 2.5 7.5 17.5 17.5 17.5 27.6 27.8 27	Ø= 60 2.8,753 353 Sample Train A Leak Rate (lpm) Pretest 0.002 at \$5 Posttest 0.002 at \$5 at \$5
	Project Sample Location Date Operators	Sample Time Time AT (1634) 200 200 200 200 200 200 200 2	Ø= (o0) Sample Tra Pretest Posttest

Project ArcelorMittel Minorce Mine Water Ay Arcelor Los Sample Los L	Project	NA KA			_	FIELD DA	FIELD DATA SHEET				
Stack Sample Sample Rate 1.0007 1.00	10]601		Arologn Mittal	Minorco Mino			Motor I			F	
Neter B	Sample Loca	tion	Furnace Sta	\$ \frac{\dagger}{\dagger}			Meter A Y		~	Patigene (
Sack Sample A Sample Bar Press 28.20 In . Hg	Date		12/12/16	2			Meter B γ			1 50. Ka	
Stack Sample A Sample B Sorbent Probe Meter A Meter B	Operators		M. Pekes	-	Orskem		Sample Rate)	md ₁	
## Stack Sample A Sample B Stack Sample A Sample B Sorbent Probe Meter A Meter B Sorbent Te, °F Tp, °F Outlet Temp Outlet Temp Outlet Temp Temp		からないつ	107,05				Bar. Press.	28.7		in. Hg	
	Sample	Meter A	Meter B	Stack	Sample A	Sample B		=			
See Method 4 (-5 1.5 25.7 25.7 74) 784 75 75 75 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75	Time ΔT	Volume Vma, liters	Volume Vmb, liters	Temp °F	Vacuum, (-) in Hg	Vacuum, (-) in Hg	Sorbent Ts, °F	Probe Tp, °F	Meter A Outlet Temp	Meter B Outlet Temp	Notes
See Method 4 . S S	(1148)	000° W	010"0								
7	5.	476	02	See Method 4	ist.	13.1	456	257	146	INUL	
7	9/	4.0	1.17		7	7	27.18	01.6	7	2.5	
7	18	7.3	29		2	d	236	238	76	άr,	
15	200	8,78	£.8		2	d	225	577	76	94	
1	27	12,3	9.11		2	q	318	218,	90	75	
2 200 200 77 77 77 77 77 77 77 77 77 77 77 77 7	30	14.7	12.8		73	ςb	507	507	77	۲Ļ	
2 2 200 77 74 74 74 74 74 74 74 74 74 74 74 74	25	15,4	13.7		7	Ċ	200	700	77	7	
2	100	9.01	2		7	0	000	80	11	77	
7	77	8, []	16.8		3	D	200	200	18	78	
13	3	15/2	15,51		I	2	200	200	28	36	
31\$	50	ā.	17,15		ī	ž	200	200	טר	20	
335 Ts= See M4 Tmb	do	20.556	14,675		17	2	200	000	54	64	
33	-										
335 Ts= See M4 Tmb	1244										
335 Ts= See M4 Tmb											
335 Ts= See M4 Tma Tmb											
335 Ts≖ See M4											
and Ts= See M4											
33											
13											
15= See M4								:			
and Ts= See M4 Tma Tmb Tmb											
77 77 77 77 77 77 77 77 77 77 77 77 77										,	
nb Tma Tmb		20.55b	16/675	Ts= See M4					77	77	
7		Vma	√mb						Tma	qω <u>T</u>	
									, c		1 C 430 00 B
	Prefest	2000	at The III and Prefest		200	al C III TIG Jobike 7/N	UDIRG 1/IN	2			

V	83	Notes	01390537 Ve 5 150ng
	Test Run		0139 Vess 150ng
	Populary Proplem In. Hg	Meter B Outlet Temp 82 82 83 83 83 83	### A Paragraph ### A Paragra
		Meter A Outliet Temp 81 82 82 82 82 82 82 82 82 82 82 82	92 Tma
	1,0607 B	Probe Tp. °F Tp.	91-C03-52-11
EPA Method 30B FIELD DATA SHEET	Meter ID Meter A γ Meter B γ Sample Rate Bar. Press.	Sorbent Ts, °F T	
EPA Met FIELD DA		Sample B Vacuum, (-) in Hg	in Hg
_	Jorshen	Sample A Vacuum, (-) in Hg	B Leak Rate
	Dollar T	See Method 4	Sample Train B Leak Rate (lpm) Pretest 0.000 at 1
	Furnace Stack 12 13 16 m. Peterson	Meter B Volume Vmb, liters 1,200 12,4 13,4 14,4 15,4 16,4 17,5 18,4 1	S(lpm) at Ex in Hg
THE CL	13/04/0	Meter A Volume Vma, liters (0.000 / 2.6 / 2.4 / 2.4 / 2.4 / 2.4 / 2.4 / 2.4 / 2.4 / 2.4 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.4 / 2.5 / 2.5 / 2.4 / 2.5 /	Ø= 61 26, 75 75,15 7 Ts= See M Sample Train A Leak Rate (lpm) Sample Train A Leak Rate (lpm) Sample Train A Leak Rate (lpm) Sample Train A Leak In Hg Pretest Pretest 0.400 at 65 in Hg Pretest Posttest 0.400 at 67 in Hg Posttest
SAR	Project Sample Location Date Operators	Sample Time	Ø= 60 Sample Trair Pretest Posttest

N.	

		African .	
	au	Notes Notes Lane Spikes	0LC032 33 Ves 150ng
	Test	ag de la	
	Jungahed Soi ked Ipm In. Hg	Meter B Outlet Temp	Trap B ID Spike Y/N Spike Level
	[42]	Meter A Outlet Temp	28. Tma
_	D. 1 Vost B 1,0062 1,0069 0.5 28.20	Probe Tp. °F 250 250 250 250 250 250 250 250 250	0LC03539/5
EPA Method 30B IELD DATA SHEET	Meter ID Meter A γ Meter B γ Sample Rate Bar. Press.	Sorbent Ts, °F 260 260 260 260 260 260 260 260 260 260	
EPA Method 30B FIELD DATA SHEET	Į.	Sample B Vacuum, (-) in Hg	e (lpm) at 6 in Hg at 21 in Hg
	ne T. Norskew	Sample A Vacuum, (-) in Hg	n B Leak Rate
	inorca Mi	Stack Temp °F See Method 4	Sample Train B Leak Rate (lpm) Pretest 0.00% at 10 in Hg Spike Y/N Posttest 0.001 at 21 in Hg Spike Level
	Furnace Stack 2//3//6		e (lpm) at 6 in Hg Pretest at 5 in Hg Posttest
N. N.		Meter A Volume Volume Vma, liters 0.000 1.3 1.3 1.3 1.3 1.5 1.5 1.5 1.5	0= 6.0
BAR	Project Sample Location Date Operators	Sample Time AT (1634) 20 20 20 20 20 20 20 20 20 2	Ø≈ $\frac{6}{6}$ $\frac{6}{6}$ Sample Trai

Œ
7
3
'n

EPA Method 30B FIELD DATA SHEET

12 14 15 15 15 15 15 15 15	Project Sample Location		ArcelorMittal M Furnace Stack	ArcelorMittal Minorca Mine Furnace Stack			Meter ID Meter A y	Dual Vost	A to	12410	Test Run	m-
## Stack Sample B Sorbent Probe Weter B Weter B		. 117		1	Norstrem	,,,,	Meter B γ Sample Rat		2	kest		
Weler B Stack Volume Sample A volume Sample A volume Sombert Probe Meter B volume V.V. b, liters "F (-) in Hg (-) in Hg Ts. *F Tp. *F Outlet Temp Outlet Temp 2.2. See Method 4 2 3 2 251 75 76 4.3. 3 3 2 251 75 76 10.0 4 3 3 3 76 76 10.0 4 3 3 3 76 76 10.0 4 3 3 3 3 76 10.0 4 3 3 3 3 76 10.0 4 3 3 3 79 79 10.0 4 3 3 3 79 79 10.0 4 3 3 3 79 79 10.0 4 3 3 3 79 79	j		50, Led				Bar. P res s.	38		in. Hg		
Volume volume Temp (²) in High (²) in		leter A	Meter B	Stack	Sample A	Sample B						
2.2 See Method 4 2 3 2 5 1 75 15 16 16 16 16 16 16 16 16 16 16 16 16 16	^ E	Volume	Volume Vmb, liters	Temp °F	Vacuum, (-) in Hg	Vacuum, (-) in Hg	Sorbent Ts, °F	Probe Tp, °F	Meter A Outlet Temp	Meter B Outlet Temp		Notes
2.4 3.2 See Method 4 3 3 251 75 75 75 75 75 75 75 75 75 75 75 75 75	ð	000	0,000									
11 125 250 35 35 350 360 360 360 360 360 360 360 360 360 36	18	1.4	3.2	See Method 4	7	3	156	152	76	76		
5.8 9.3 7. 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6		4.7	6.3		E)	r	251	25	70	76		
1.1.	9	18	9.3		9	S	b MC。	250	76	76		
14 11.75 14.0 14 5.5 545 546 177 173 17.040 Te=See M4 Te	6	1/1	12,0		3	8	90°	870	76	76		
3.4 16.2	11	73	0-51		Н	3,5	15.50 15.50	250	してし	77		
7.9 18.6 4 7.5 250 250 78 79 79 79 79 79 79 79 79 79 79 79 79 79	1	1,4	7.91		И	3.5	252	351	77	77		
7.9 25.9 4 3.5 250 78 2.8 24.3 4 3.5 250 78 2.8 24.3 4 3.5 250 79 3.5 250 79 3.5 250 79 3.5 250 79 3.5 250 79 3.6 250 79 3.7 250 79 3.7 350 79 3.8 350 79), S	1.8	7		7	5%	250	251	7.8	7.9		
25.6 25.0 250 79 25.4 24.5 4 3.5 250 79 25.4 24.5 4 12 250 79 25.4 25.0 253 76 25.4 25.0 253 76 25.4 250 79 27.725 7.600 4 12 250 79 27.725 7.600 6 10 10 10 10 10 10 10 10 10 10 10 10 10		5,6	6.02		T	2.5	250	250	84	28		
25.4 24.3 4 3.5 250 250 79 25.4 24.3 4 7 250 257 76 37.3 76.0 4 12 250 250 79 37.3 27.2 37.5 4 1 15 See M4 Tma	9	1/6	23.0		7	3,5	250	250	78	28		
154 213 1480 4 7 250 253 79 79 79 79 79 79 79 79 79 79 79 79 79	2	2,8	24.3		7	3.5	250	250	66	29		
37.55 37.630 4 12 2.50 2.50 39! 79! 79! 79! 79! 79! 79! 79! 79! 79! 7	Ċ	h' 5	からろ		Ž	7	250	2.58	コロ	62		
17.725 27.1240 Ts= See M4 Tma	λc	אנה'רו	27.690		7	12	250	750	79(7		
21775 27.0% T= See M4 Tma												
27.725 27.25 47.40 Ts= See M4 Tma	4											
277 27 27 5ee M4 Ta= See M4 Tma	$\frac{1}{1}$											
27.72												
27.73		-										
27.735 27.640 Ts= See M4 Tma												
27,735 27,640 Ts= See M4 Tma												
77									:			·
77												;
7 7 27 27 27 27 77 77 77 77 77 77 77 77	+											
77 Tay Trans See M4 Trans Tran												
Vma Vmb		7.7.25	27.690	Ts= See M4					77	1		
		Vma	√mb						Tma	Tmb	L	
	Posttest 0.006	i.	at 5_ in Hg Posttest		0.000	at 🚺 in Hg Spike Level	Spike Level			Spike Level	150ng	

	RR	

BARR				_	EPA Method 30B FIELD DATA SHEET	EPA Method 30B IELD DATA SHEE	L			
Project Sample Location Date Operators	ation sation		linorca Min	Noisher		Meter ID Meter A γ Meter B γ Sample Rate Bar. Press.	0.990 0.990 0.384	100+ A (11) (2)	April Led	Test 3
	\vdash		Stack Temp °F	Sample A Vacuum, (-) in Hg	Sample B Vacuum, (-) in Hg	Sorbent Ts, °F	Probe Tp, °F	Meter A Outlet Temp	Meter B Outlet Temp	Notes
(624)	0001 1-1	2.5	See Method 4	Vo	2,5	252	252	PF PF	79	A freez '3 of
285	2,7 2 Nóy	000		200	TEN S	250	250	35 97	78 78	
300	41 (1 2) (1)	3000		といい	415	255	255	78	220	A thomas as
2223	22.42	28.7 28.7 26.4 36.4 37.4		ym	7777	1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44	2551 2551 2550	2010 L	2000	
(181)										
9= 60	28.917 Vma	34.442. Vmb	Ts= See M4					7.8 Fma	Fmb	
Sample Trai Pretest Posttest	in A Leak Rai 0,000 0.000	Sample Train A Leak Rate (lpm) Pretest 0.000 at 10 in Hg Pretest Posttest 0.000 at 12 in Hg Posttest	Sample Trair Pretest Posttest	Sample Train B Leak Rate (lpm) Prefest 0.000 at 5 Positiest 0.000 at 6	at 5 in Hg Spike Y/N at 6 in Hg Spike Level	Trap A ID Spike Y/N Spike Level	016035362	.1.1.1	Trap B ID Spike Y/N Spike Level	0LC 032055 VB 150ng

	RR	- Company of the Comp

V	α	JM				Notes																				71. 390554 7-5 150ng
	i F	Run																					Ц		L	07.39 150ng
		bishing 1), ked	in. Hg		Meter B	dillo lamo	A	بهد	79	9	29	B	B	20	ο ς Χος	200	7 C	0					80	Tmb	Trap B ID Spike Y/N Spike Level
	4 /4	Ş Ş	x(2)	:		Meter A	durer learn	A	Ž	7	79	77	2	S,	80	Ž	200	200	0					3	Tma	
	A. I wat	0.9904	0.9846	28,21		Probe Tn °F		250	250	251	250	250	25	250	250	200		2 C C	7							NC03538
nod 30B		Meter A 7	Meter B y	Bar. Press.		Sorbent Ts °F	-	252	9-29	25(250	251	250	250	75	4700 100 100	400	150	200							m) Trap A ID C In Hg Spike Y/N In Hg Spike Level
EPA Method 30B			_ 0	,	Sample B	Vacuum,	B	W.	3.5	ب گر	3,5	3,5	3.5	20	~	7	10	74						10.		at Cin Hg s
			A Nocker	Canal Const	Sample A	Vacuum,	B	3,5	3.5	3.5	3,5	ぶん	3, 1/1	3,5	2.5	יאי אי	7/20	かいい								Sample Train B Leak Rate (lpm) Pretest 0.000 at 6 Posttest 0.000 at 4
		Villuorca Mine	٥		Stack	Temp	-	See Method 4																Ts= See M4		Sample Train Pretest
		§ §	7/61		Meter B	Volume	O.CO.O.		6.0	6,6	63	14.1	16,5	19,0	21.3	25.7	7000	からなべ	1 50/15					(1.64)	Vmb	(lpm)
			20	1 Johan	Meter A		┰	3.6	5.3	Cゾ	(Oct	12.5	74.50	17.2	V.	2,0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	री जेट्य	10000					28.85d	√ma	A Leak Rate
0 Y 0		Project Sample Location	Date	Operators	Sample	Time	(1797)	5	0/	15	90	2.5	30	35	70	45	2/2	55	04	(1704)				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Sample Train A Leak Rate (Ipm) Pretest ADD at Pretest Posttest DOD at Prin Hg Posttest

h-
1
- [[

`	i I		* 1 1
7	7-	Notes to the state of the state	01.c 032.02.0 Ves 150ng
	Test Run		
	Sp. ked	Meter B Outlet Temp	Trap B ID Spike Y/N Spike Level
		Meter A Outlet Temp 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	1.0004 (1) 1.0007 (2)	Probe Tp. fr 2250 2250 2250 2250 2250 2250 2250 225	0LC03631
nod 30B A SHEET	Meter ID Meter A γ Meter B γ Sample Rate	Sorbent Ts, °F 725 255 255 255 255 255 255 255 255 255	
EPA Method 30B FIELD DATA SHEET		Sample B Vacuum, (-) in Hg	in Hg
ш.	Mars hem	Sample A Vacuum, (-) in Hg	0.000 a leak Rate
	Minorca Min	Stack Temp °F See Method 4	Sample Traii Pretest Posttest
	E E	Meter B Volume Vmb. liters 0.000 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	at (pm) at (p) at (p) in Hg
		Meter A Volume Vma, liters 0.000 11.8 11.8 11.8 11.8 11.8 11.8 11.	0.000 0.000
BARR	Project Sample Location Date Operators	Sample Time AT (1127) 30 30 30 30 40 40 50 60 60 60 60 60 60 60 60 6	Sample Train A Leak Rate (lpm) Pretest 0.000 at 8 in Hg Posttest 0.000 at 10 in Hg

	íY.	
	Ż	MILE DOMESTIC

	ļģ	
	ŀ	
	ı	

06032050 Notes Trap B ID 0LUC Spike Y/N CS Spike Level 150ng Test Run Outlet Temp Outlet Temp Meter B F and (1) Unspiked in. Hg Шd Pury Vost B Meter A o N 010035259 1,0002 28.21 Probe Tp, °F 2520 Sample Rate **FIELD DATA SHEET** Meter ID Bar. Press. Sample Train A Leak Rate (lpm) Pretest 0.000 at 5 in Hg Pretest 0.000 at 5 in Hg Spike Y/N Posttest 0.000 at 4 in Hg Posttest 0.000 at 4 in Hg Posttest **EPA Method 30B** Meter A γ 250 250 Meter B y Sorbent Ts, °F 056 Vacuum, Sample B (-) in Hg M. Norshan Sample A Vacuum, (-) in Hg ArcelorMittal Minorca Mine See Method 4 Ts= See M4 Stack Temp M. Petersoc Furnace Stack 14/14 Volume Vmb, liters 29,820 & Ke Meter B 900 Zm/ Vma, liters 74.7.60 Meter A Volume 3 Sample Location Operators Sample 9 Time ∆T |664 300 60 40 Project 28 82 9 30 $\tilde{\lambda}$

EPA METHOD 3A -- Instrument Analysis Data Sheet

Project Sample Location Date

Operators

ArcelorMittal - Hg Screening
Furnace Stacks C and D / Tests 1, 2
1/17/2017
M. Petersen

Analyzer Make / Model / Serial No. Servomex 1440

Analyzer O_2 Range (span), %: 0-25%Analyzer CO_2 Range (span), %: 0-25%

	Cylinder	_	
	Serial No.	O2 Cert. Conc.	CO2 Cert. Conc.
Zero Gas	Nitrogen Lot#N70001633603	0.0	0.0
O2/CO2 Mid gas	CC116801	9.5	9.5
O2 High gas	CA06643	21.6	-
CO2 High gas	-	-	-

PRETEST ANALYZER CALIBRATION DATA

	02		CC	02
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.6	9.5	9.5
High-range:	21.6	21.6	-	-

Time of Calibration___ 1020

INTEGRATED BAG ANALYSIS

Location/Test No. Run No. Time Sampled Time Analyzed O2, % CO2,%

Furnace Stack C / Test 1			Furnace Stack D / Tes	st 2	
1	2	3	1	2	3
1007 - 1041	1116 - 1147	1216 - 1249	1007 - 1041	1116 - 1147	1216 - 1249
1100	1155	1300	1104	1157	1303
18.9	18.8	18.8	18.4	18.4	18.4
1.6	1.6	1.6	2	2	2

POSTTEST ANALYZER CALIBRATION DATA

	O2			CO2
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	% Response, %		%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.6	9.5	9.5
High-range:	21.6	21.7	-	-

EPA METHOD 3A -- Instrument Analysis Data Sheet

Project Sample Location Date

Operators

ArcelorMittal - Hg Screening
Furnace Stacks C and D / Tests 3, 4
1/18/2017
M. Petersen

Analyzer Make / Model / Serial No. Servomex #1440

Analyzer O_2 Range (span), %: 0-25%Analyzer CO_2 Range (span), %: 0-25%

	Cylinder		
	Serial No.	O2 Cert. Conc.	CO2 Cert. Conc.
Zero Gas	Nitrogen Lot#N70001633603	0.0	0.0
O2/CO2 Mid gas	CC116801	9.5	9.5
O2 High gas	CA06643	21.6	-

PRETEST ANALYZER CALIBRATION DATA

	02		CC	02
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.5	9.5	9.5
High-range:	21.6	21.6	-	-

Time of Calibration___ 905

INTEGRATED BAG ANALYSIS

Location/Test No. Run No. Time Sampled Time Analyzed O2, % CO2,%

Furnace Stack C / Tes	st 3		Furnace Stack D / Test 4			
1 2 3			1	2	3	
901 - 934	1009 - 1041	1116 - 1148	901 - 934	1009 - 1041	1116 - 1148	
950	1051	1200	953	1053	1203	
18.8	18.8	18.8	18.3	18.3	18.3	
1 7	1 7	1.6	2	2	2	

POSTTEST ANALYZER CALIBRATION DATA

		O2		CO2
	Cylinder	Analyzer	Cylinder	Analyzer
	Value,	Calibration	Value,	Calibration
	%	Response, %	%	Response, %
Zero Gas	0.0	0	0.0	0
Mid-range:	9.5	9.6	9.5	9.5
High-range:	21.6	21.7	-	-

7/1/21

	in Hg in Hg			Nozzle Calibration In 1 Date Date	
	at at H	Oxygen Content, % (Optional) 18.7		Nozzi See Run 1 Tech. Nozzie No. 2 3	Avg.in. DSCFM
	Sample Train L. Pretest O.O. Posttest O.O. Pitot (3 in. Pos. 🖸	Meter Outlet Outlet	028	Nozzle Pri 0.219 0.214	Air Flows DSC
	in Hg in H ₂ O ft TC	Meter inlet inlet in the state of the state	Τm=	Components Nozzle No.	AILE AILE
-	28.27 in 20.20 in 1	Sample Train Temperatures, *F -ilter Impinger Mete 30 30 30 30 30 30 30 30 30 30 30 30 30		Sample Train Filter No.	A 206
EPA METHOD 5 FIELD DATA SHEET	Bar. Pres Stat. Pres Otter.	Sample 73.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 2		at 15 in Hg	Run
EPA ME	5.2 5.2 5.8 5.8.	Probe 230 230 230 242 242 242 242 242 242 242 242 242 24		ORSAT System Bag Vol	Total 42
	Probe ID Pitot No. Pitot Cp Glass	Stack Temp.	Ts 16	Bag No.	Desiccant 979
8		Sample Vacuum, in Hg		Test Run Times T Time End Time	<u>N</u>
	Meter ID Meter Y Orifice H@	Office And Hand	AH 145	Test R Start Time	SUN SUN
	M.M.	Velocity AP 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Moisture Content	1870 1000 30
	ArcelorMittal Minorca Mine Furnace Stack C SV016 Run C Run C Roberators	Meter Volume vm. II.	Vm22.13	Initialization Values Oxygen Content	-884
, c	ArcelorMittal Furnace Star	Sample Time Ain	O= 30		MOISTURE RECOVERY: Impinger Final wt., g Initial wt., g
BARR	Project Smpl Loc Test No. Date	Sample Point		Run	MOISTUR Im Finz Inititi

Pretest 6,000 at 10 in Hg Posttest 0.000 at 1 to in Hg

Neg.

Pitot (3 in. Pos.

Imp TC

0.84 Probe Lgth Other:

Pitot Cp

Liner Type: Glass

Orifice H@ Meter ID Meter Y

25

1-17-17 Operators

Date

S.S.

Sample Train Leak Rate (cfm)

Meter ID 85-0 Meter Y 0.985		EPA METHOD 5 FIELD DATA SHEET	rca Mine Meter ID AS-O I Probe ID S-A Bar. Pres 28/27 in Hg Samilar SV016 Meter Y 0.94851 Pitot No. 5-A Stat. Pres -0.80 in H2O Prest	
--------------------------------	--	----------------------------------	---	--

BARR

Smpl Loc Test No.

Project

Oxygen	Meter Content,		63 169 1-6	^	18.0 c	1 18816								3,50	Nozzle Calibration	See Ru	O-214 Nozzle No.	7- 70 (3 Avg. in.		
ratures, °F	Meter		50	83	34	070								Tm= 63	Sample Train Components	_	Nozzie No.			Air Flows	
Sample Train Temperatures, °F	r Impinger Outlet		24 2	2 43	2 1 2 E	100	67	-							Sample Trai		1				
Sar	Probe Filter		777 23:	-4B 23×	ロンスト マゴロ	220	35 233								ORSAT System		20-6 0.00			Total	
Stack	Temp.		115	115 2	0	8 25	10							Ts 115/67	OR		L-C.			Desiccant	
Sample	Vacuum, in Hg	A COLUMN TO SERVICE A COLU		1	77	7	1								Test Run Times	17 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13			RUN	4	
_	AH, in H ₂ O		1.72	30.	1,66	100	162							\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Test F		116		EX.	က	
	AP, in H ₂ O		0.0	0.81	-		0.86							~	alues	-	(A)9			2	
	Volume Vm, tr	000	2.64	6.35	17,66	17.38	21.05							Vm 21.0	Initialization Values	Oxygen	19.0			4	
0)	Point Time		8-3 e	7 - 10	7 15	2 25	30							0= 30		Meter	Run 83		MOISTURE RECOVERY:	Impinger	

EPA METHOD 5 FIELD DATA SHEET

	Sample Train Leak Rate (cfm) Pretest 0,000 at 6 in Hg Posttest 0,000 at 7 in Hg Pitot (3 in. Pos. 17 Neg. 17
L	ss <u>28,24</u> in Hg ss <u>0,80</u> in H ₂ 0 Lgth
EPA METHOD 5 FIELD DATA SHEET	Stat. Pres Stat. Pres C 0.84 Probe Lgth S. Other
EPA MI FIELD DA	0)
	AS-c Probe ID O 9852 Pitot No. B Pitot Cp Inner Type: Glass ©
	6.985 0.985 1.86 Liner Type:
	Meter ID Meter Y Orifice H@
	my my
	ArcelorMittal Minorca Mine Furnace Stack C SV016 Run 717 Operators
光	4 1
BARE	Project Smpl Loc Test No. Date

		9		Γ.		1.6								
Oxygen	Content,		O V	かん		189								
	Meter Outlet	770	200	200	86	48	BB							Be-00
tures, °F	Meter	20		36	B6	83	B							Tm=
Sample Train Temperatures, °F	Impinger Outlet	2/7	25	1/2	1/2	2	24							
Sample	Filter	250	227	325	224	270	240							
	Probe	200	220	336	236	246	246							2
Stack	Temp. Ts, °F	116	19	1	113	0	113							Ts 115,3
Sample	Vacuum, in Hg	C	٦٢		7.5	O	80							S
Orifice	ΔH, in H ₂ O	7.0.	260	764	18/1	[.]	1.76							NH 1.75
Velocity	ΔP, in H ₂ O	, 0/h	4 8 4	0.00		0.97	5,0							7
Meter	Volume vm, rr	2000	28	11/11	100	18.93	12.71							Vm 22.77
Sample	Time A1	ıc	9 0	15	20	25	30							05 =0
Sample	Point	A.3	. ~	-										

	7	Initialization Values	ser	Test Ru.	Test Run Times)	ORSAT System	r.	Sample Train Components	Components		Nozzle	Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	☐ See E-Copy
	Temp	Content	Content	Start Time	Start Time End Time	Bag No.	Bag Vol	at 15 in Hq	Filter No.	at 15 in Hg Filter No. Nozzle No. Nozzle Dn	Nozzle Dn	Tech.	Date
Run_	F	200	22	1216	1219	1-3	200	20.00	421695	7-7 0.214	0.214		
												-	
												2	
	-											က	
MOISTURE	MOISTURE RECOVERY:			RUN								Avg. in.	
Impi	Impinger	-	2	8	4/	Desiccant	Total			Air Flows	lows		
Final	Final wt., g	126	120	ત		489							
Initial	Initial wt., 9	00)	00/	0	*	186			AC	ACEM	DSC	DSCEM	
Diffe	Difference	26	30	ч	1	L	22	Š	1869906	181	621	797	

D T2/R1

	tate (cfm) in Hg loo in Hg Neg.			Nozzle Calibration	0
	eak F	Oxygen Content, % % (Optional)		Nozz See Run 1 Tech. Nozzle No. 1 2 2 3 3 Avg. in.	
	Sample Train L Pretest 0.00 Posttest 0.00 Pitot (3 in. Pos.12	Meter Outlet Outlet 774 774 774 774 774 774 774 774 774 77	73.26	Nozzle Dn	Air Flows DSCI
	2V in Hg 30 in H ₂ O mp TC	Meter Inlet	.m	Sample Train Components Filter No. Nozzie No.	Air I 35,52
	28. 10.	Sample Train Temperatures, °F Sample Train Temperatures, °F So 24 73 So 24 74 So 2		Sample Train Filter No.	AC 189
EPA METHOD 5 FIELD DATA SHEET	Bar. Pres Stat. Pres Probe Lgth Other:	Sample 750 250 251 255 255 255 255 255 255 255 255 255		cc/min * at 15 in Hg	Run
EPA ME	S.S. \(\text{S.S.} \)	255 255 257 257 249 249		ORSAT System Bag Vol	Total 47
	Probe ID Pitot No. Pitot Cp Glass	Stack Temp. Ts., ° F 15. ° F 1	19 (1) ST	Bag No.	Desiccant (004)
	2-10 29973 1-882 Liner Type:	Sample Vacuum, in Hg		End Time	7
	- × ⊕ H@	Omice OMICE	<u>м</u> 1.39	Start Time End Times Start Time End TIMES RUN	OO
	- W	Velocity AP. In H ₂ O CO CO CO CO CO CO CO CO CO		Moisture Content	100
	oselorMittal Minorca Mine rnace Stack D SV017 2 Run	Meter Volume vm. II. 1827.00 836.75 833.00 836.77 845.27 845.27 845.27 845.27 845.27 845.27	Vm 1957	Initialization Values Oxygen Content	138
T C	ArcelorMittal Minorca Mine Furnace Stack D SV017 2 Run 1-17-17Operators	Sample Time A1 10 15 20 25 20 25 30 (1041)	c= 30	Meter Temp Temp n.m. Temp	Impinger Final wt., g Initial wt., g Difference
BARR	Project Smpl Loc Test No. Date	Point Point		Run	Imp Final Initial Diffe

D /2/A2

THOD 5	TA SHEET
Σ	DA
EPA	FIELD

	Sample Train Leak Rate (cfm) Pretest (0,000) at 1 in Hg Postlest (0,00) at 8 in Hg Pitot (3 in. Pos. Neg. 14
O S HEET	Bar. Pres 28,21 in Hg Stat. Pres -0.30 in H ₂ 0 Probe Lgth ft
EPA METHOD 5 FIELD DATA SHEET	5.3 5.3 0.84 S.S.
	Meter ID 2-10 Probe ID Meter Y 09977 Pitot No. Orifice H@ 1.8829 Pitot Cp
	ArcelorMittal Minorca Mine Furnace Stack D SV017 2 Run 2 I-1717 Operators
BAR	Project Smpl Loc Test No. Date

		60%	2,0		2,0		<u> </u>					 				
Oxygen	Content,	(Optional)	7,361		18,5		184									
	Meter		14	74	74	12	74	h								73.67
itures, °F	Meter	+	73	77	72	7.5	74	44								Τm=
Sample Train Temperatures, °F	Impinger Outlet		27	25	50	12	1	74								
Sample	Filter	1811	250	252	250	252	849	517								
	Probe		752	276	125	26	256	248								t
Stack	Temp. Ts, °F		116	= 2	91	11	117	113								Ts 116,67
Sample	Vacuum, in Hg		6.8	7	7	9	9	٥								
Orifice	ΔH, in H ₂ O	10	1.50	1.53	1,53	1,30	1.37	1.26								2H 1.45
Velocity	ΔP, in H ₂ O		6,93	0,30	O/BN	0.68		6.66							4	jui L
Meter	Volume vm, tr	54748	850.81	BS4.38	85.79	461.14	261.42									Vm 2031
Sample	Time Δ1	(1116)	2	10	15	20	25									0- 30
Sample	Point	(14-3	2	1	KB-3	2	-								

	_	nitialization Values	ser	Test Ru	Test Run Times	O	ORSAT System		Sample Train Components	omponents		Nozzle	Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	See E-Copy
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in Hg	at 15 in Hg Filter No. Nozzle No.	Nozzie No.	Nozzie Dn	Tech.	Date
Run	7	0.01	8,02	1116	1147	2-8	200	00	45124	5-7	217	Nozzle No.	
						7						1	
												2	
												m	
MOISTURE	MOISTURE RECOVERY:			RUN	Į Z							Avg. in.	
Imi	Impinger	-	2	3	4 0	Desiccant	Total			Air Flows	lows		
Fina	Final wt., g	05/	90/	ଦ	>	E101							
Initie	nitial wt., g	0,0)	8	۵	<u> </u>	8			ACFM	>	DSC	DSCFM	
Diffe	Difference	٥٨	ω	0	/	7	g s	Run	187 529	529	143	619	
								ĺ					

D 72/83

	Sample Train Leak Rate (cfm) Pretest 6.000 at 7 in Hg Posttest 0.000 at 7 in Hg Pitot (3 in. Pos. 🖃 Neg. 🖼
EPA METHOD 5 FIELD DATA SHEET	C 10 Probe ID 5-3 Bar. Pres 29.21 in Hg O 9973 Pitot No. 5-3 Stat. Pres −0.70 in H₂O L 8872 Pitot Cp 0.84 Probe Lgth 5 ft Liner Type: Glass ☑ S.S. ☐ Other: Imp TC
	Meter 1D Meter Y Orifice H@
BARR	Project ArcelorMittal Minorca Mine Smpl Loc Furnace Stack D SV017 Test No. Run Date

		ĺ	0,		0-2		0/2		
Oxygen	Content, %	(Optional)	18.4		184		3/8		
	Meter		75	73	73	ンダ	77	76	2hSL
ures, °F	Meter		75	75	75	75	76	9	I E
Sample Train Temperatures, °F	Impinger Outlet	9	38	3.8	39	29	17/17	7	
Sample T	Filter		251	230	235	251	251	250	
	Probe	180	326	250	250	255	249	250	
Stack	Temp. Ts, °F	The same of	7	1/6	<u>9</u>	9/	a	<u> </u>	12. [6.2]
Sample	Vacuum, in Hg		0	8	8	7.5	7.5	28	
Orifice	ΔH, in H ₂ O		1415	1.78	181	1.5%	66/	hh.	H
Velocity	ΔP, in H ₂ O		N. 0	6,93	6.9x	0,83	200	0,15	
Meter	Volume Vm, tr	R67,78	911/16		^	882.03	965.5	888.43	700 my
Sample	Time Δ1		2	10	15	20	25	30	6.30
Sample	Point	TEORET AND	4-3	2	-	15-3	2		

	<u>r</u>	Initialization Values	ser	Test Rui	Test Run Times	O	ORSAT System		Sample Train Components	Components		Nozzle	Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	☐ See E-Copy
	Temp	Content	Content	Start Time	Start Time End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No.	Filter No. Nozzle No.	Nozzle Dn	Tech.	Date
Run	7	18,0	0,11	917	1249	3/5	603	00'0	969124	2-7	0.217	Nozzie No.	
												-	
												2	
												က	
MOISTURE	MOISTURE RECOVERY:			RUN	7							Avg. in.	
dwj	Impinger	1	2	8	4	Desiccant	Total			Air F	Air Flows		
Final	Final wt., g	13	117	2	1)	8101							
Initia	Initial wt., g	eg	8	10	×	10/			AC	ACFM	DSC	DSCFM	
Diffe	Difference	30	7	N		V	87	Run	270	1625	153	195	

73/R1

EPA METHOD 5

FIELD DATA SHEET

-0.80 in H₂O 5-2 Bar. Pres 28,07 in Hg 7-2 Stat. Pres -0.80 in HgO **#** 0.84 Probe Lgth

Imp TC Other.___

Pretest 0.000 at 😝 in Hg Posttest 0 at 9 in Hg
Pitot (3 in. Pos. 12 Neg. 12 Sample Train Leak Rate (cfm)

T10#X/62 14-20

Meter Outlet Meter Injet Sample Train Temperatures, °F Filter Impinger Meter impinger Outlet Probe Orifice ^{ΔH}, in H₂O Velocity AP, in H₂O

S.S.

Pitot Cp

Liner Type: Glass M

Stack Temp. Ts, °F

Sample Vacuum, in Hg

Orifice H@ STO OUK

-18+17-Operators

101

Test No. 3 Smpl Loc

Date

6.9852 NS-01

Meter ID Meter Y

ArcelorMittal Minorca Mine Furnace Stack C SV016

Project

BARR

201

Oxygen Content, %

(Optional)

9

64

18-6

DH

27

00

0

200

70 75

0000

100 P. 10

30 25 30

١

4

65

0,90

5

0.000 3.64

Meter Volume Vm, tt

Sample Time Δ1

Sample Point 200

Probe ID Pitot No.

Nozzle Calibration In 1 See E-Copy

See Run 1 Nozzle No.

Tm= 66.8

Tech.

Nozzle Dn

Hilter No. Nozzle No. Nozzle Dn

Filter No.

at 15 in Hg

Bag No.

End Time

Start Time

Moisture

Oxygen Content 1970

Meter Tem

Run

Initialization Values 10 10 mV

W= 50

106

3-1

0.00

Sample Train Components

ORSAT System Bag Vol 20.2

Test Run Times

Ts 115,17

AH 1.67

Avg. in.

Air Flows

Total

Desiccant

2

MOISTURE RECOVERY:

6 00

00

136 30

Final wt., g Initial wt., g Difference

B-5-347

Impinger

266 E. 5971291

Run

C 73 (R2

	Į.
5	ш
100	H
Ĭ	₫
Ш	ΔT
Σ	2
ă	C
EPA	ū
	FIFI

	Sample Train Leak Rate (cfm)	Pretest 0,000 at 6 in Hg	Posttest 6 COC at 8 5 in Hg	Pitot (3 in. Pos. Neg.
6	SDO1 in Hg	-0.80 in H ₂ 0	× 4	Imp TC
0	5' A Bar. Pres	5-2 Stat. Pres	0.84 Probe Lgth	S.S. Other:
	Probe ID	Pitot No.	Pitot Cp	
- 50	420	0,985	1.86	Liner Type: Glass 🔼
	Meter ID	Meter Y	Orifice H@	7/10
ı	ď	Furnace Stack C SV016	S Run 2	1-18-13 Operators MTP
	Project	Smpl Loc	Test No.	Date

	_	٦ ٢		۲		4										
_	602	1 1		۲,7			_		_	_	_	1	_	_	_	
Oxygen	Content,	(Optional)	000	P. DI		18-8										
	Meter Outlet	1	15	17	26	80	61									77.83
iures, °F	Meter		17	770	78	3	D									Tm=
Sample Train Temperatures, °F	Impinger Outlet	0.0	11	36	2	47	4									
Sample T	Filter	200	1000	32	233	236	23.3									
	Probe	220	200	720	223	245	345									~
Stack	Temp. Ts, °F	1	2	2=	63	611	3									Ts 1143
Sample	Vacuum, in Hg	2	01	2	1	4	F									
Orifice	ΔH, in H ₂ O	121	1.8	40,	1.78	1.62	1,57									M 167
Velocity	AP, in H ₂ O	20.0	200	3	6,98	0.89	0.80									
Meter	Volume vm, n	0000			14.54	18:05	21.83									8,100 mv
Sample	Time Δ1	ч	o 5	5 5	20	25	30									30
Sample	Point	2-0		s -	13.3	7	-									

	Ē	Initialization Values	ser	Test Ru	Test Run Times	7	ORSAT System		Sample Train Components	Components		Nozzke	Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	☐ See E-Copy
	Temp	Content	Content	Start Time	Start Time End Time	Bag No.	Bag Vol		Filter No.	Nozzle No. Nozzle Dn	Nozzle Dn	Tech.	Date
Run	25	Q <u>T</u>	5.01	6001	100	5-7	200		421709	2-4	1120	Nozzle No.	
												1	
												2	
	0											က	
MOISTURE	MOISTURE RECOVERY:			RUN	z							Avg. in.	
idmi	Impinger	-	2	က	4	Desiccant	Total			Air F	Air Flows		
Final	Final wt., g	130	112	0	/ /	966							
Initial	Initial wt., g	001	100	0	×	266			AC	ACFM	SO	DSCFM	
Diffe	Difference	30	71	0	<	2	46	Run	200,000	210.	162,1791	29	

METH	FIELD DATA SHEET
------	------------------

BARR

O in Hg in Hg Sample Train Leak Rate (cfm) Neg. Pretest 0,000 at ë Posttest 0,000 Pitot (3 in. Pos. 5-2 Bar. Pres 28.07 in Hg 5-2 Stat. Pres _0,80 in H₂0 Imp TC_ 0.84 Probe Lgth Other: S.S. Probe ID Pitot No. Pitot Cp Liner Type: Glass 🔼 00 3 Orifice H@ 1.86 180 Meter ID Meter Y -18-17 Operators ArcelorMittal Minorca Mine Furnace Stack C SV016 Smpl Loc Test No. Project Date

9: 0/2 (Optional) Oxygen Content, % 188 18,0 8300 Meter Outlet BKEB Meter Sample Train Temperatures, °F Filter Impinger Meter Impinger Outlet Probe 25000 Stack Temp. Ts, °F 2 Sample Vacuum, in Hg 3/2 Sing. 00 Orifice AH, in H₂O Velocity AP, in H₂O 20000 27.77 18.50 Meter Volume vm, tr* 3,74 Sample Time s 15 15 88 88 88 Sample Point A-3

	Nozzle Calibration	☐ See E-Copy	Date								
	Nozzle	See Run 1	Tech.	Nozzie No.	2	က	Avg. in.			ZEM	いか
2000			Nozzle Dn	0.214				Air Flows		DSCFM	159.25
Tm=	Components		at 15 in Hg Filter No. Nozzle No. Nozzle Dn	2-7				Air F		ACFM	h35
	Sample Train Components		Filter No.	421711						AC	206
	۴	cc/min *	at 15 in Hg	0.00 421711		-					Run
7	ORSAT System		Bag Vol	202				Totai			79
TS 1146			Bag No.	3-3				Desiccant	1001	366	4
	Test Run Times		End Time	1140			7	4/	>	_	1
1-67 HA	Test Ru		Start Time	9			RUN	ro	0	۵	9
	es	Moisture	Content	2,8				2	130	901	30
Vm2218	Initialization Values	Oxygen	Content	25				-	114	00	5/
v= 30	l	Meter	Temp	87			MOISTURE RECOVERY:	mpinger	Final wt., g	Initial wt., g	Difference
				Run			MOISTUF	<u>ri</u>	Fin	Init	ļī.

84-58

EPA METHOD 5

FIELD DATA SHEET

BARR

Smpl Loc Test No.

Date

Project

Prefest 0.000 at 1.0 in Hg Posttest 0.000 at < in Hg
Pitot (3 in. Pos. 🗹 Neg. 🔝 Sample Train Leak Rate (cfm) Bar. Pres 2907 in Hg
Stat. Pres -0.70 in H20 Imp TC 0.84 Probe Lgth Other: Liner Type: Glass 🗗 S.S. Probe ID Pitot No. 01-7 Meter ID DOK Run L ArcelorMittal Minorca Mine Furnace Stack D SV017

		> 0	3					
		2000	202					
	607	_	1	9,		22		
Oxygen	Content, %	(Optional)	4.8	18,3		18.4		
	Meter Outlet		99	30	60	9	70	1K09
ıres, "F	Meter Inlet		200	200	62	49	65	T _m
Sample Train Temperatures, "F	Impinger Outlet		200	152	30	23	23	1
Sample T	Filter		27.70	450	かんか	223	5 To	
	Probe		251	250	250	348	251	
Stack	Temp. Ts, °F	1	+4	300	110	117	9	Ts 117.3
Sample	Vacuum, in Hg		20	m	M	3	M	
Orifice	ΔH, in H ₂ O		1,37	1.36	ノロバ	ト,	36	AH 1-3 PA
Velocity	$^{\Delta P}_{2}$ in $^{H}_{2}$ O	1	7/10	0,73	0,70	510	0.72	
Meter	Volume Vm, π	884.20	295.5	89899	90226	29'506	406.83	60,P1 mv
Sample	Time Δ1	1000	2 5		20		30	d= 30
Sample	Point		2-2	d-	A-3	7	-	

	III	Initialization Values	ses	Test Run Times	n Times	5	ORSAT System		Sample Train Components	Components		Nozzle	Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	☐ See E-Copy
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Voi	at 15 in Hg	Filter No.	at 15 in Hg Filter No. Nozzle No. Nozzle Dn	Nozzie Dn	Tech.	Date
Run	2	18.5	5,01	1060	2934	1-4	20.02	000	42(708	t-5	5-7 0217	Nozzle No.	
												-	
												2	
												က	
MOISTURE RECOVERY:	OVERY:			RUN	7							Avg. in.	
Impinger	jt.	f	2	က	4	Desiccant	Total			Air F	Air Flows		
Final wt., g	O	136	0)1	0	/)	20 74							
Initial wt., g	01	Q	80/	0	>	011/			AC)FM	DSC	OFM	
Difference	9,	35	2	C	<	2	2	Run	197	1001 100	2 h !	522'2h	

D T4/R2

	Sample Train Leak Rate (cfm) Pretest 0.000 at 7 in Hg Posttest 0.000 at 6 in Hg Pitot (3 in. Pos. 17 Neg. 117
EPA METHOD 5 FIELD DATA SHEET	Liner Type: Probe ID 5-2 Bar. Pres 28.07 in Hg 0.99829 Pitot Cp 0.84 Probe Lith 7 ft Liner Type: Glass ID* S.S. □ Other: Imp TC
	ArcelorMittal Minorca Mine Furnace Stack D SV017 Run 2 Orifice H@ 1.8829 1-18-12 Operators MTP 03K Liner Type: 0
BARR	Project Arcelo Smpl Loc Furnac Test No.

	207		9		2,0		2,0		
Oxygen	Content, %	(Optional)	18.4		(B:3		18.3		
	Meter Outlet		-	200	00	69	76	T	69.75
tures, °F	Meter Inlet		67	00	0	Pr.	73	8	
Sample Train Temperatures, °F	Impinger Outlet		26	20	-	m	36	38	
Sample 1	Filter		276	250	25(228	250	250	Thomas I
	Probe		230	246	201	050	250	25-1	*
Stack	Temp. Ts, °F	THE WATER	117	٩	9)1	117	(1)	4 11	Ts 116,6
Sample	Vacuum, in Hg		m	3	m	3	3		
Orifice	ΔH, in H ₂ O		1.35	141	1,26	ナイトリ	14.	1.3°C	<u>™ (.37</u>
Velocity	AP, in H ₂ O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.0	2.75	6.67	0,78	0,75	0.7	
Meter	Volume Vm, 11"	70164	912.35		0	01226		the state of the s	Vm 1973
Sample	Time A1		ß	10	15	20	25	98	\$ 30
Sample	Point	30.00	F13	cf		8-3	٦		

Meter Oxygen M Temp Content C G 7 18.5 poisture recovery: Impinger 1 Final wt, g 13.0		Charl aysiem Sample Train Components	ponents	Nozzle	Nozzle Calibration
Start Time End Time Bag No.		cc/min *		See Run 1	See E-Copy
6 2 16.5 1.2 1004 1011 7-2 1011 7-2 1011 7-2 1011 1011 7-2 1011 1011 7-2 1011	Bag No.	Fifter No.	Nozzle No. Nozzle Dn	Tech.	Date
1 2 3 4 Desicant 130 110 0 1117		またの十	5-7 0.217		
1 2 3 4 Desicant 130 110 0	1	41170		1	
1 2 3 4 Desiceant				2	
1 2 3 4 Desiceant				m	
1 2 3 4 Desiceant				Avg. in.	
111 \ 0 011 0.57			Air Flows		
	VIII /				
Initial wt., g (OO /OO /OO		ACFM	DS	DSCFM	
Difference 30 10 60 13 43	5 0	Run 86, 05	27	767	

	Н
2	Ш
9	I
¥	S
Ш	AT
Σ	C
EPA	
Ш	1
	-

ETHOD 5	ATA SHEET
Σ	D
EPA	FIELD

	Sample Train Leak Rate (cfm)	Pretest 6,000 at 7 in Hg	Posttest (22) at 6 in Hg	Pitot (3 in. Pos. Idea Neg. Idea
	& BO Fin Hg	-0.70 in H20	- V-	Imp TC
EPA METHOD 5 FIELD DATA SHEET	Probe ID 5-3 Bar. Pres	Stat. Pres	0.84 Probe Lgth	Other
	Probe ID	Pitot No.	Pitot Cp	Liner Type: Glass ☑ S.S. □
	01-7	0.9973	1-8829	Liner Type:
	Meter ID	Meter Y	Orifice H@	DOK
	ine	7	n 3	MIP
ш. С	ArcelorMittal Minorca M	Furnace Stack D SV017	T Run	1-18-17 Operators
BARE	Project	Smpl Loc	Test No.	Date

	207) 0	1.9		2.0		5.0									
Oxygen	Content, %	(Optional)	76,7		18.3		18,3									
	Meter Outlet		73	23	22	126	75	75								
itures, °F	Meter Inlet		12	13	工	74	75	76								
Sample Train Temperatures, "F	Impinger Outlet		215	25	49	25	43	56								
Sample	Filter		257	251	220	250	250	249								
	Probe		229	250	248	250	251	246	1							
Stack	Temp. Ts, °F		91	9/1	9	9	0	2								
Sample	Vacuum, in Hg		M	3	2	0)	3	2	١							
Orifice	∆H, in H ₂ O		27.0	1,49	1.48	1.94	1.38	1.37								
Velocity	ΔP, in H ₂ O		0.76	46,00	07V	2,74	0.71	0/10)							
Meter	Volume Vm, fr	36.9%	932.33	435,79	9785	942.55	GWS. BB	949.25								
Sample	Time Δ1		ц	10	15	20	25	30								
Sample	Point		8-3	ત	_	A-3	7	_								

	in	Initialization Values	es	Test Ru	Test Run Times		ORSAT System		Sample Train Components	Components		Nozzie (Nozzle Calibration
	Meter	Oxygen	Moisture					cc/min *				See Run 1	☐ See E-Copy
	Temp	Content	Content	Start Time	Start Time End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No		Nozzle No. Nozzle Dn	Tech.	Date
Run	73	18.5	66	716	1110	4-3	20 x	0.0	42/7/2	2-3	0.217	Nozzle No.	
												-	
												2	
												m	
MOISTURE RECOVERY.	RECOVERY:			RUN	7							Avg. in.	
Impinger	nger	7	2	3	4	Desiccant	Total			Air F	Air Flows		
Final wt., g	wt. g	132	112	9	1	1123							
Initial	Initial wt., g	00/	001	0	>	<u> </u>			AC	ACFM	DSCFM	N-K	
Differe	Difference	22	71	0		0	57	Run	147	K7 MI	142	42.949	

Tm= 7400

Ts 116,00

OH 1.43

ArcelorMittal Minorca Mine Furnace Stack C SV016

Sample Location

Project

Operators

Date

BARR

SEX. クーナー A F

mdl James +00-1 PUB. Sample Rate Meter B y Meter A γ Meter ID

in. Hg

Bar. Press.

Test Run

			_								_	T	Т	Т		_						
	Notes																					
	Meter B	Outlet Temp		77	73	74	20	75	75													Tmb= 740
	Meter A	Outlet Temp		73	73	74	75	75	210													Tma=74.5
	Probe	Tp, °F		260	252	250	251	252	252													
	Sorbent	Ts, °F		260	252	251	152	250	152													
Sample B	Vacuum,	in Hg		ונ	-35	2	2	and	5-													100
Sample A	Vacuum,	in Hg		7-	2-	2-	2-	7-	2-													The state of the s
Stack	Temp	٩		SEE	S-W				4													Ts=
Meter B	Volume	Vmb, liters	0000	5,516	1120	16.405	21.300	26.413	31.895											,	31,43	Nmb=
Meter A	Volume	Vma, liters	000.0	<u>ල</u> . අගුට	11.510	16,400	20 21,140	26.205	32,376											5	919	Vma=
Sample	Time	ΔT	(1007)	5	10	15	20	25 2	30												₹ .	0=1051

391640 Trap B ID Spike SylN Spike Level 349746 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest 0.00 at 7 in Hg Spike Y/N Posttest 0.008 at 5 in Hg Posttest 0.008 at 5 in Hg Spike Level

B-5-353

EPA Method 30B	IELD DATA SHEET
Ш	쁜
	_

ArcelorMittal Minorca Mine Furnace Stack C SV016 MUR 117 MI

Sample Location

Project

Operators

Date

BARR

in. Hg <u>md</u> 2/mn Pago 1, 10069 2000 0 > 0 Sample Rate Bar. Press. Meter A y Meter ID Meter B y

Test Run

	Notes																				
	Meter B	Outlet Temp			20	177	F	\CL	11											0	Tmb= /
0.000	Meter A	Outlet Temp		28	17	797	78	200	p												Tma-7.0
	Probe	Tp, °F		255	250	250	282	757	181												
	Sorbent	Ts, °F		152	152	251	250	250	250												
Sample B	Vacuum,	in Hg		h	£ 4	7	h-	W. 2	ዯ												
Sample A	Vacuum,	in Hg		13	2-	2-	-3	-2	7-												
Stack	Temp	J,		100 X	SIM	-			4	•											Ts=
Meter B	Volume	Vmb, liters	0,000	5.788	10 105	14.020	2000 6 10	75,800	29.355										2000	550.67	Vmb=
Meter A	Volume	Vma, liters	00000	5.791	10 9.900	15 14.08D	20 20.180	25 29.310	3029.556										10000	911116	
Sample	Time	ΔŢ	(911)	5	10	15	20	25	30		(14%)										Q= Q

Trap B ID Spike Y/N Spike Level 394752 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest 0.000 at 4 in Hg Spike Y/N Posttest 0.000 at 4 in Hg Spike Level

ArcelorMittal Minorca Mine Furnace Stack C SV016 MAN DAK イーナー

Sample Location

Project

Operators

Date

md 1,0002 1-0069 P Sample Rate Meter B y Meter A γ Meter (D

Test Run 2/10

in. Hg

28,24

Bar. Press.

	Notes																			
	Meter B	Outlet Temp		77	r	L'L	287	790	200										Tmb= 78.0	
	Meter A	Outlet Temp		11	18	30	79	200	z z)									Tma=)8 6 Tmb=	
	Probe	۳, °F		182	181	252	280	230	251											
	Sorbent	Ts, °F	STATE STATE	250	282	251	787	152	25										11 TH SV EN	
Sample B	Vacuum,	in Hg		Į,	-3	4	4	2	7	101									- KE 187	
Sample A	Vacuum,	in Hg		7-	62	2-	7.	2-	-3										d .	
Stack	Temp	よ		ろにた	MS				P										Ts= /	
Meter B	Volume	Vmb, liters	0,000	5.050	9.890	15,320	19.740	25:210	30.998									8,00,89B		
Meter A	Volume	Vma, liters	000,0	4,610	10 9.150	15 15,540	20 19, 472	2574.780	30 30 761									20,769		
Sample	Time	ΔT	(2/2)	5	10	15	20	25	30		(0h71)								0= 30	(1749)

Trap B ID Spike Y/N Spike Level at 4 in Hg Spike Y/N at 4 in Hg Spike Level Trap A ID Sample Train B Leak Rate (lpm)
Pretest 0.000 at H at S in Hg Pretest at S in Hg Posttest Sample Train A Leak Rate (lpm)
Pretest 2.00 at G
Posttest 0.00 at S

391890

B-5-355

ArcelorMittal Minorca Mine Furnace Stack D SV017 11/10

Sample Location

Project

Operators

Date

48 Meter ID

Шd 4465- 0.984b 0.9904 1.0

Test Run in. Hg 78.24 Sample Rate Bar. Press. Meter B γ Meter A γ

-	Meter A Meter B Notes Outlet Temp Outlet Temp	-	75 75	シムかい	20 25 76	75 75	75 76	25 7c
	Sorbent Probe M Ts, °F Tp, °F Out		50 250	250 150	180 1	52 251 >	50 251 1	150 750 7
cattlple D	Vacuum, in Hg		5 -5	2 5- 5	7	1	7 7	7 h-
	Temp Vacuum,		- HON	M5 -	A. A.	7	74	4
_	Volume Volume Vma, liters Vmb, liters	-	1	_	15 19.370 18,300	2025.775 24.250	V	30 33,888 33,582
_	Time ΔŤ Vr	(log) 0	2	10 12	15 19	20 25	25 3	30 23

Trap B ID Spike N Spike Level 526 HX Sample Train A Leak Rate (lpm) | Sample Train B Leak Rate (lpm) | Trap A ID | Pretest | 0.00 | at 5 in Hg | Spike YM | Posttest | 0.00 | at 5 in Hg | Spike Level

341814

ArcelorMittal Minorca Mine Furnace Stack D SV017 1-17-1 MA

Sample Location

Project

Operators

BARR

3.9846 6066 0, Sample Rate Meter A y Meter B y Meter ID

md | 2821

in. Hg

Bar. Press.

Test Run

0

Notes 1 mb= 74 8 Outlet Temp | Outlet Temp Meter B 200 Meter A Tma= 78 2000 1520 290 Probe Tp, °F 307 2778 Sorbent Ts, °F Sample B Vacuum, in Hg 7-4 Sample A Vacuum, in Hg Temp °F Stack 5.100 10.090 15.050 19.530 Vmb, liters 24.980 30.110 Vma= Vmb= 0.00 Volume Meter B 30.110 25 25.350 30 30. UeO Vma, liters 15 5.160 20 19. 440 0.000 5 4.940 1010.120 Volume Meter A Sample Time ∆T 3111

399693 Sample Train A Leak Rate (lpm)

Pretest 0.000 at 6 in Hg Pretest 0.000 at 6 in Hg Spike Y/N

Posttest 0.000 at 5 in Hg Posttest 0.000 at 7 in Hg Spike Level

Spike Level Trap B ID

ArcelorMittal Minorca Mine Furnace Stack D SV017

Sample Location

Project

MJN DJR F1-17-17

Operators

FIELD DATA SHEET **EPA Method 30B**

9904 Meter B y Meter A γ Meter ID

0.9846 Sample Rate

Ed. Bar. Press.

in. Hg 28.24

Test Run Notes

Meter B

Meter A

Sample B Vacuum, in Hg

Sample A Vacuum, in Hg

Temp °F

Vmb, liters

Vma, liters

Time ΔT

0,00

Volume

Meter B

Meter A Volume

Sample

15.420 20.060 24.750

15 H. SOS

216.82

026.6

54,940

1912

Outlet Temp | Outlet Temp 252833 300 Probe Tp, °F 298 28 Sorbent Ts, °F 30-

Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest 0.000 at 4 in Hg Spike Y/N Posttest 0.000 at 6 in Hg Spike Level

391891 Spike Level Trap B ID

Tmb= 74/5

Tma=

Vmb=

6421

0= 20

B-5-358

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine Furnace Stack C SV016 1-18-17

Sample Location

Project

Operators

Date

Test	Run			
1			md	E.
D1-13	1.004	1,0002	9	28.67
Meter ID	Meter A y	Meter B y	Sample Rate	Bar Press

_			_		_	_	_	_	_			_	_	_	·	_	_	 	_	_	_	_	_	_	_		_
	Notes																										
	Meter B	Outlet Temp		200	58	09	10)	و	6.2																		Tmb=
	Meter A	Outlet Temp		56	200	09	200	29	60.3)																	Tma=
	Probe	Тр, °F		250	252	2.49	250	252	250																		
	Sorbent	Ts, °F	8	252	250	222	13	250	25																		100
Sample B	Vacuum,	in Hg		-3	ゴリ	7	7	コー	7																		
Sample A	Vacuum,	in Hg		5-	2	7-	2	2-	2.																		
Stack	Temp			SEE					4																		Ts=
Meter B	Volume	Vmb, liters	0000	0264	10,050	4.86	20,100	25.105	30,343																6	といろ	Vmb=
Meter A	Volume	Vma, liters	0000	5 4.75		15 14 DIO	20 19.810	25 75 .450	30 30.602	Ā											2					700005	Vma=
Sample	Time	ΔT	(901)	5	10	15	20	25	30		(04/34)	,														1	Ø= 30

391879	2	vel So uy
Trap B ID	Spike Y/N	Spike Level
79965H	02	\
(ate (lpm) Trap A ID	at 6 in Hg Spike Y/N	at sin Hg Spike Level
Sample Train B Leak Rate (lpm)	0000	
Sample Tr	in Hg Pretest	in Hg Posttest
(Rate (lpm)	at	atS
Train A Leak	0.00	0,010
Sample	Pretest	Posttes

\mathbf{m}	Ш
<u></u>	Ш
3	T
	S
0	V
0	⋖
Z	-
-	⋖
Ψ.	\simeq
2	
-	
⋖	-
Ω.	
Ш	ш
	$\overline{\mathbf{H}}$
	4

	0
SHEET	
FIELD DATA SHEET	

Notes Test Run Outlet Temp | Outlet Temp 22269 Meter B 30 in. Hg Meter A 7766 1-0069 28.01 1000 D1-13 0-32,400 300 Probe Tp, °F Sample Rate Bar. Press. Sorbent Ts, °F 2289 Meter ID Meter B y Meter A y Sample B Vacuum, in Hg 2723 11 Sample A Vacuum, in Hg ArcelorMittal Minorca Mine Furnace Stack C SV016 Temp °F Stack MJN DJK SEE MS 41-81-1 5.010 9.850 (5.070 20 720-0350 20,110 25 25.180 24f.930 30 24.945 30,024 Vmb, liters Volume Meter B 00000 10 9 77 0 15 14 780 20 70 0 30 55,210 Vma, liters Meter A Volume Sample Location (0000) Sample Operators Time ∆T Project 10.4 Date

Tmb=

ĭma=

29,845 30,026 Vma= Vmb=

Ø= 30

B-5-360

FIELD DATA SHEET **EPA Method 30B**

LI.	
Li .	
FIELD DATA SHEE	
2	
~	
_	
~	
*	
2	
3	
ш	
_	
_	

BARR

Sample Location

Project

Date Operators

Meter ID	OK S
Meter A y	1.0069
Meter B y	1-0002
0.000	-

	00	4
4	1.006	1-000

norca Mine	a		Meter ID	SYC		T	Test	~
SV016		W 02	Meter A y	1.0069	0	œ	Run	CC
+			Meter B y	1-000				
DJK			Sample Rate			lpm		
		100	Bar. Press.	28	307	in. Hg		
Stack	Sample A	Sample B						
Temp	Vacuum,	Vacuum,	Sorbent	Probe	Meter A	Meter B	Notes	Se
ŗ.	in Hg	in Hg	Ts, °F	Tp, °F	Outlet Temp	Outlet Temp Outlet Temp		
SEE								
MS	4	2	300	300	7.4	hL		
	7-	7	300	200	75	なっ		
						1		

5 4.090 6.610 10 965 10.350 15 14.986 14.950 20 10.150 19.600 25 24.360 24.100 30 29.978 30.268

170

Vmb, liters

Volume Vma, liters Meter A

Sample Time ΔT

0,000

0

Meter B Volume

401282	405	50 00	
Trap B ID	Spike Y/N	Spike Level	
401323	2	1	
Trap A ID	at 5.5in Hg Spike Y/N	u in Hg Spike Level	
Rate (Ipm)	at Shin F	at tr in h	
Sample Train B Leak Rate (lpm)	20070	600	
Sample	4g Pretest	at 4 in Hg Posttest	
Rate (ipm)	at	at to in h	
Train A Leak Ra	0000	2000	
Sample Tr	Pretest	Posttest	

Tmb=

Tma≕

74,476 30208 Vma= Vmb=

0= 20

74/1/21

FIELD DATA SHEET **EPA Method 30B**

ArcelorMittal Minorca Mine Furnace Stack D SV017 りナイク 1-18-17 2 わど

Sample Location

Project

Operators

Date

BARR

Test Run in. Hg шαј 280 0,7846 0 0.9904 Sample Rate Bar. Press. Meter A y Meter B y Meter ID Solle

		Т	Т	Т		Т			-		Т	Τ	Т								
	Notes																				
	Meter B	duier remb	7	200	25	47	22	25													Tmb=
	Meter A	dua i jaino	7	23	Ne	25	57	57													Tma=
	Probe	- 2	717.	712	112	2609	212	270													
	Sorbent	- 12	270	270	270	211	270	269													
Sample B	Vacuum,	D	12-	1	7	7	5.	5													
Sample A	Vacuum,	Di II	Y	フー	77	7	フィ	וים													
Stack	Temp	-	7111	25				-p													TS=
Meter B	Volume	VIIID, IIIGIS	5.310	10.230	14.910	Orr. P1	24 830	24.832											1 May 1	75001	Vmb=
Meter A	Volume	VIIIA, IIICIS	55930	210 01 01	14.90S	20 19 89 0	25 25,110	30 30, 301												201	Vma=
Sample	Time	000		10	15	20	25	30		25											30

401243 50 ng 503 Spike Y/N Spike Level Trap B ID 399568 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest 0.000 at 6 in Hg Pretest 0.012 at 5 in Hg Posttest 0.012 at 5 in Hg Spike Level

D 74/R2

EPA Method 30B FIELD DATA SHEET

;				

BARR

Sample Location

Project

Date Operators

Test	Run			
1			md)	in. Hg
DVA	4066.0	0,9846	07/	28.07
Meter ID	Meter A y	Meter B y	Sample Rate	Bar. Press.

	Notes																		
	Meter B	Odilet Tellip	65	65	(20)	do	01	89											Tmb=
	Meter A	Outlet Letting	64	100	45	3	27	107)										Tma≂
	Probe To °F		3000	300	2005	38	105	301											
	Sorbent		301	299	300	300	300	298											
Sample B	Vacuum,	20	7-	4	15	>	^	-5											
Sample A	Vacuum,	20	ブ ー	5-	1	7	5	-5											× - ×
Stack	Temp		See	MS	_				>										_s_
Meter B	Volume Vmb liters	0000	CC5.71	9.800	つて か	20.010	25.965	29 953										29.953	Vmb=
Meter A	Volume Vm3 litere	1	55,290	10 10. 420	14.775	20 19 875	25 25.130	946										29.449	Vma=
Sample	Time	-	5	10	15	20	25	30 29		CIOCHE									0= 30

1	1	1
401281	705	50 ng
Trap B ID	Spike Y/N	Spike Level
394870	02	
ate (lpm) / Trap A ID	at 65in Hg Spike Y/N	at 💪 in Hg Spike Level
Sample Train B Leak Rate (lpm)	いない	0000
	n Hg Pretest	า Hg Posttes
Rate (lpm)	atSi	at S in Hg
Sample Train A Leak Rate (lpm)	2000	0,000
Sample T	Pretest	Posttest

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine	Furnace Stack D SV017	1-18-17	MYN DUIL

Project Sample Location

Date Operators

BARR

Test	Run				
	1	, I	lpm	in. Hg	
とって	0,9904	0.9846	07	2807	
Meter ID	Meter A y	Meter B γ	Sample Rate	Bar. Press.	
				3	30,16

Г		Τ	Т	Т	Т	Т	П			П	Г	П	П	Г	Г	Г	П	Г	Г	Т	Г			
	Notes																							
	Meter B Outlet Temp		75	22	73	7r	74	75																Tmb=
	Meter A Outlet Temp		41	53	23	2/3	٦٦	75																Tma=
	Probe Tp, °F		300	300	300	200	300	300																
	Sorbent Ts, °F		300	300	301	299	300	300																
Sample B	Vacuum, in Hg		7.7	4	7	7!	カー	h																
Sample A	Vacuum, in Hg		I	7.4	7-	2:	h-	7-																
Stack	Temp °F		SEE	MS				A														,		Ts=
Meter B	Volume Vmb, liters	0.000	5.230	10,250	15,100	19.860	24.940	30.067					,										となみ	Vmb=
Meter A	Volume Vma, liters	00000	55.150	10 jo 160	15 5.004	20 19.85	2	3030,079														0	300077	Vma≃
Sample	Time ΔT	(0)11)	5	10	15	20	25	30	1	00)													Ø= 30

401291	405	50 ny
Trap B ID	Spike Y/N	Spike Level
401324	20	1
Trap A ID	at (2.) in Hg Spike Y/N	at 💪 in Hg Spike Level
le Train B Leak Rate (lpm)		0,000 at (b)
Sample Train B	ig Pretest	1g Posttest 💍
Rate (Ipm)	w	at sin t
Trair	0000	0,000
Sample	Pretest	Posttest

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

		"	*** 1140L	11112001	LIVI			
Project Are	lor Mirtal			Date 2/8	3/17			
Project No. 25		D LONG		Operators	BAW			
Source Sta	CK A SV	014		Sample Lo	cation			
1			IMPIN	GER VOLU	MES _{JCL}	748.5	148:9	DRY
RUN 1	1	2	3	4	5	6	1/18/1	COLUMN
KONT	g	g	g	g	g	g	g	g
START.	754.3	7625	164.4	748.9	7557	7432	7483	959.0
END	772.7	811.8	801,1	772,3	760,8	751.8	744.5	976.4
CHANGE								
				MA	SS OF MOI	STURE COL	LECTED, g	
				055 10111				
TEST			4	GER VOLU	1		1 -	DRY
RUN 2	1	2	3	4	5	6	7	COLUMN
OTABY	g	g 250 2	9 700 7	g 7-(52	9 · 76-11 1/	760.2	g	9/11 1
START.	7545	752.3	758.7	756.8	754.4		758.4	964.1
END	765.0	799,0	788,5	777,1	761,0	765.8	758,8	984.8
CHANGE			I	8.6.0	CC OF MOL	CTUDE COL	LECTED ~	
				IVIP	SS OF MOI	STURE COL	LECTED, 9	
TEST			IMPIN	GER VOLU	MES			DRY
RUN	1	2	3	4	5	-6	7	COLUMN
rion y	g	g	g	g	g	g	g	g
START.	755 8	7423	742,0	765 7	755.2	758.1	796.9	1005.9
END								
CHANGE								_
				MA	SS OF MOI	STURE COL	LECTED, g	
			IMPINI	GER VOLUI	MES			DRY
TEST	1 1	2	3	4	5	6	7	COLUMN
RUN#3	g	g			g	g	g	g
START.	764,4	756.5	9 774,6	751.9	763.3	766.3	766.8	942.0
END	792.2	755.5 802,8	903,5	768,6	771.5	768	765.2	960,3
CHANGE	11012	200, -	200,5	10010	7 (11.3	100.	103 4	(00,0
01000								
COMMENTS		2						
OOMMENTO								

	104
	L
	IO.
	7
	\simeq
	ım

Colored 1.30 1.2	Smpl Loc		rulliace olack A SVO 14		Meter Y	1.0034	Pitot No.	5.7	Stat. Pres	1,0	in H ₂ O	Prefest	Prefest (0,0) at 15 in	in Ho
	st No.		1 Run	_	Orifice H@	1.8432	Pitot Cp			4	' . ∉=	Posttest		80
Time Volume Vol	te 2	1/8/11	_Operators	MICH EM	PTARZ	Liner Type:		(ó			TC 2162	Pitot (3 in.	Pos. Ne	×
Time Volume A.P. Alth Melen Vacuum Tamp Frobe Fifter Traphogen Meer Outside Outs	ample	-	Meter	Velocity	Orifice	Ideat	Sample	Stack		Sample	Train Tempera	atures, °F		Oxygen
13.5.10 13.5	Point	Time A1	Volume Vm, Tr	ΔP , in H_2O	ΔH, in H ₂ O	Meter Volume	Vacuum, in Hg	Temp.	Probe	Filter	Impinger	Meter	Meter	Content,
10 10 10 10 10 10 10 10		L080	(135.10									No.		2
10 147.0 6 0.81 1.45 - 5.0 104 251 25.2 44 66 65 25 104 0.1 1.45 - 5.0 104 251 25.2 2.49 67 66 65 25 104 251 25.2 2.49 67 66 65 25 2.49 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 68 104 251 25.2 2.49 67 67 67 68 104 251 25.2 2.49 67 67 67 68 104 251 25.2 2.49 67 67 67 68 104 251 25.2 2.49 67 67 67 67 68 104 251 25.2 2.49 251 251 251 251 251 251 251 251 251 251	-	5	138.49	0.85	1.55	42	-5.0	104	730	219	34	30)	3	
15	2	10	145.06	0.97	25'\		-5.0	105	555	250	34	107	35	
20 Mct. Ot. O. O. O. O. O. O. O	က	15	145.60	0.85	1.55		5	104	282	249	34	19	200	
25 15.64 0.80 1.45 -5 104 2.50 2.52 45 67 68 68 68 69 69 69 69 69	4	20	149.0Z	0.95	1.55		1	104	152	252	47	1010	000	
35 55.64 0.80 1.416 -5 1.04 2.52 2.39 96 6.8	5	25	152.38	©.%O	1.45		15	101	250	7252	47	60	2	
35 59.12 0.86 1.40 -5 103 252 259 59 68 68 40 162.74 0.99 1.60 -6 104 249 255 252 67 68 45 16.24 0.99 1.60 -6 104 249 251 251 251 69 46 175 175 175 -6 104 251 251 251 251 251 47 175 175 175 -6 104 252 254 251 251 48 175 175 175 -6 104 255 249 37 69 69 49 175 175 175 -6 104 255 249 37 69 69 40 175 175 175 -6 104 255 249 37 69 109 40 175 175 175 -6 104 255 254 37 69 109 40 175 175 175 -6 104 255 255 259 259 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 175 40 175 175 175 175 175 175 175 175 175 40 175	9	30	155.69	0.80	1.46		5	101	220	35	79		8	
45 \(\langle \text{Lor} \) \(\langle \text	2-1	35	159.22	ø. 8 <i>&</i>	09.		5	ナシ	256	682	8	80	000	
45 \(\begin{array}{c c c c c c c c c c c c c c c c c c c	2	40		0,00	1.64		9	-103	750	252	25	67	8	
50 [64 G G G G G G G G G G G G G G G G G G G	က	45	166.39	68.0	70')		و	401	bh2	252	25	107	5.0	
6.6 17\$.5\$ 0.6\$ 1.6\$ -6 104 7.5\$ 2.5\$ 2.5\$ 6.7 6.9	4	50	169.98	0.90	7.64		9	104		142	25	601	00	
86	2	55	17256	0,00	1.62		2	104	757	152	53	(,7	60	
1	9	90	in-th		1.60		2-	501	1230		57	67	69	
10 10 10 10 10 10 10 10	3-1	65	180.52	0,95	1.73		٥	100	652	249	30	69	60	
10 11.00 0.95 1.73 -6 104 250 249 37 69 70 70 70 70 70 70 70 7	2	20	124.35	6.96 6.96	1.75		9	401	250	543	39	20	00	
86 91, 169 0.96 1.15 -6 105 251 250 35 68 70 70 90 90 90 90 90 90	m	75	187.93		57.		9	101	250	220	37	69	70	
85 [45.24] 0.85 [1.60] -6 [1.65] 2.51 2.49 40 67 70 100 [26.43] 1.00 [1.57] -7 [104] 2.50 [2.52] 446 71 71 110 [26.43] 1.00 [1.63] -7 [104] 2.50 [2.52] 46 71 71 110 [26.64] 1.00 [1.63] -7 [104] 2.50 [2.52] 46 71 72 110 [26.64] 1.00 [1.63] -7 [104] 2.50 [2.52] 46 71 111 [27.13] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 72 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 72 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 77 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 77 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 77 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 77 120 [221.03] 0.89 [1.63] -7 [103] 2.51 [2.50] 5.4 76 70 120 [221.03] 0.89 [1.63] -7 [2.04] 0.89 [2.04	4	80	191.68	0.0	1.75		٩	57	152	252	33	108	70	
90 1948,75 0.86 1.57	ιΩ	82	195.24	Q.8%	1.60		ۅ	165	1572	249	34	3	70	
100 100 100 1,0	9	06	198,73	9 9 9	1.57		9-	105	250	249	707	60	10	
100 100	4-1	95	201.62	01.1	7,01		5	104	252	752	46	ī	-	
105 210.34 699 1.91 77 104 750 7251 第 77 71 71 71 110 213 80 0.69 1.63 72 76 1.05 75 75 75 75 75 75 75 75 75 75 75 75 75	7	100	706.43	39.	.87		7.	72	230	233	20	1	72	
110	m	105	210.24	699	1.9		7	104	250	152	R	10	ī	
115 2/1/39 0.43 1.74 -6 103 251 250 54 76 77 72 72 72 72 72 72	4	110	213.80	0.61	-,63		٩	105	250	250	25	0	K	
120 221.03 0.89 1.63 V -6 103 251 250 56 70 72 Al=1.05 A	ιΩ	115	217.39	0.93	<u>.</u>		9	103	152	250	25	78	77	
Ref 12 12 13 14 15 15 15 15 15 15 15	9	120	221.03	- 41	1.63	>	\sim	103	12	250	25	70	72	
Initialization Values Test Run Times ORSAT System Sample Train Components Tech.		07Q=Q	Vm+55.93		NH=1,605			_2					Tm+68,90	
Initialization Values													ž	Nozzle Calibration
Temp Content Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. Nozzle Dn Content Content Content Content Content Content Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle Dn Content Cont		P. Motor	Initialization Val	nes	Test Ru	n Times		ORSAT Syste		Sample Train	Components		Tech.	Date
67 196% 17.0% 2007 1020 A-1 60 0.0 490588 A-1 0.25		Temp	Content	Content	Start Time	Fnd Time	Bag No	Rag Vol	cc/min *	Eilfor Mo	Mozzlo No	AC-14C	Nozzle No.	100
	- 0	67	9690	12.0%	7507	1070	1-4	9	0.0	Sason	A 100.	0.45	2	5ec 6
	2												ന	

Method 5/Ontario Hydro FIELD DATA SHEET

in Hg in Hg Content, Sample Train Leak Rate (cfm) Oxygen ٥ ă Ħ Pitot (3 in.) Pos. XX Neg. Meter Outlet 2 9/ Posttesto - 00 Pretest 0 00 Meter lnlet Sample Train Temperatures, °F Imp TC 262 Impinger Outlet 330 0 in H₂O in Hg 752 250 252 252 280 220 28.33 250 259 Filter 250 549 52 0.1 0.84 Probe Lgth Stat. Pres 252 Bar. Pres 150 225 252 5225 1250 250 220 Probe 250 Other 25 100 Temp. Is, *⊦ Stack 30 07 500 5 B 20 22 70 2228 88 ठ 04 MTW RAM TARZ Liner Type Blass IS.S. Pitot No. Probe ID Pitot Cp Vacuum, in Hg Sample 7 9832 0033 Meter Volume 010 Ideal Orifice H@ 63 900 1.07 $_{\rm in}^{\Delta H_{\rm i}}$ 9 Orifice 385 1.84 1 Meter ID 0000 Meter Y و Velocity 0.98 20.00 0.00 0.80 $_{1}^{\Delta P}$, in $_{1}^{\Delta P}$ 0.89 0.00 0.97 0.83 0 0.95 ર્શ 0 2 , et 00, ArcelorMittal Minorca Mine Smpl Loc Furnace Stack A SV014 Run 156.07 284.20 Operators 222.70 266.85 265.53 30.05 130.35 38.36 19891 Volume Vm, rr 27.8% 280.40 287.8 295.10 126.5 区区 269.14 Sample Time ∆I 110 100 105 48/17 9 45 99 65 20 22 8 85 95 5 20 25 30 35 50 9 90 TO Sample Point Test No. Project Ţ 2-1 4-1 4-1 N Ŋ 9 40 Date ო 4 ß 9 N ന 4 N n 4 ဖ N 'n 4

												111-11-00	
												Z	Nozzle Calibration
		Initialization Values	lues	Test Ru	Test Run Times		ORSAT System	-	Sample Train Components	Components		Tech.	Date
	Meter	Oxygen	Moisture					cc/min *	Service .			Nozzle No.	
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No.	Filter No. Nozzle No.	Nozzte Dn	-	1
Run Z	15	19.6%	12.00%	3	3.7	1-¥	700	0.0	ユロのの中の	1-4	5.7.5		Les F
Run 2												l m	10.
												Avg. in.	1
	Moisture R	ecovery Data a	nd impinger co	Moisture Recovery Data and impinger content information:	on: Pun	,						6,1,7	
mpinger	-	2	က	4	c)	9	7	Desiccant	Total			Air	Air Flows
Final wt., g	المالية										ACEM		DSCEM
nitial wt., ç	275	nitial wt. 9 7245 752.3 158.7	1.36.7	3.251	7.76.7	7.091	158.4	964.1					
Difference													

HN03/H202

1 N KCI

H2SO4/KMN04

20

0

242

90

9

0.00

313.9

115 120

ß ဖ

	323
	IC.
	₩
	15
	ΙŒ
	lm

Rate (cfm) at C in Hg at C in Hg	Oxygen Content,	8																										Nozzle Calibration	Date	
Train Leak	Meter	Outlet	773	T	73	73	24	726	r	-	1	70	70	01	60	50)	2	o e	ē	3	(00	e	es	(,05	60	64	Tm=67.85		Tech.	Nozzle No.
Sample Pretest Posttest Pitot (3 in.)	itures, °F Meter	Inlet	74	25	7	20	70	59	20	600	50)	200	600)	68	9	رد	4	000	70)	59	60	63	29	<u>ر</u>	و	00				
in Hg in H ₂ O TCZZ6Z	Sample Train Temperatures, °F ilter Impinger Met	Ourier	-7	72	7	54	しり	67	20	57	S	V	23	53	25	25	5	23	25	2	こって	47	7	٥	45	44			Components	
28.33 in F	Sample		245	232	250	248	250	251	250	252	543	250	S. S.	562	746	250	182	248	787	253	250	549	22	121	250	250			Sample Train Components	i
Bar. Pres Stat. Pres Probe Lgth	Probe		245	152	250	250	751	222	250	152	220	121	23	229	255	150	242	7.81	120	252	249	249	150	250	122	252				cc/min *
5.2 5.2 0.84 5. [Other	Stack Temp.		hal	401	201	105	18	501	105	8	1	701	101	105	105	105	100	104	108	106	1.05	100	105	105	105		75=10F.69		ORSAT System	
Probe ID Pitot No. Pitot Cp Glass □S.S.	Sample Vacuum,	ב ב	7	7	יר	7	7	7-4	-5	4	7	10	Y	1.5	22	Y	15	->	8	4-	1/4	2	77	4	7	5				:
1.03 & Pro 1.03 & Pitc 1.6037 Pit Liner Type: ☐Glass	Ideal	AOIGINA	ST-										_	300	2									1	>	77			Times	j
□ > □ H	Orifice AH,	27	1.79	1.75	1.79	1,70	148	ا. ال	1.76	980	176	1.68	48	2h7	STITES.	155	1 5.1	1.96	1,45	37.	1.92	- 96	25	1.95	1,19	-	7L'1=HV		Test Run	157.8
3 SU/LMOS	Velocity AP,	2	0.40	Ø.8.0	0.90	0.8c	51.0	51.0	62.50	0.94	6.89	085	54.0	6.74	0.85 C.	8-8%	0.47	00°	6.74	0.75	00 b W	1.00	8	ာ	260	0-91			es	Moisture
ArcelorMittal Minorca Mine Furnace Stack A SV014 1 Run	Meter Volume Vm. n.	34690	350.38		551.80	361.49	364.98	368.57	50.715	375, 489	79.54	25.23	386.05	340.16	343.54	397,14	10.101	प्रजा. ७९	408.39	411-69	415.52	119.40	453.55	427.14	430.84	るがで	Vm=61,6		Initialization Values	Oxygen
ArcelorMitta Furnace Sta	Sample Time			10	15	20	25	30	35	40	45	20	55	09	65	20	75	80	82	06	95	100	105	110	115	120	1 L L Z L			Meter
Project Smpl Loc Test No. Date 7	Sample Point		1-1	2	ო	4	ις	ဖ	2-1	2	m	4	2	φ	3-1	2	က	4	ഹ	ဖ	4-1	2	ო	4	2	ဖ				

DIAMOIL	Date		1	S C		200			DSCFM	51.127	7117	
NOZZIE CAIIDI AUDI			5	7)	in.		Air Flows		1		
	Tech.	Nozzie No.		2	8	Avg. in.	Cund		ACFM	CDC		
			Nozzle Dn	0.215						0		
	Components		Nozzle No.	1-t								
	Sample Train Components							Total			1474	
		cc/min *	at 15 in Hg Filter No.	0.0				Desiccant	260.3	245	200	
	ORSAT System		Bag Vol	100				7	7.501	3.001	1	
			Bag No.	A-3			•	9	168.1	5.99	0	H2SO4/KMNO4
	Times		End Time	1154			Punz	9	271.5	703.3	7.3	
	Test Run Times	1728	Start Time	1			Moisture Recovery Data and impinger content information:	4	2000	1519	10	HN03/H202
	sen	Moisture	Content	7.7.6			id impinger con	က	203.5	シャル	10.01	
	Initialization Values	Oxygen	Content	196%			covery Data an	2	8708	7555	473	1 N KCI
	=	Meter	Temp	2			Moisture Rec	1	7266	764.4	27.6	
				Run S	Run 2			Impinger	Final wt., g	Initial wt., g	Difference	

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

Project No. 2	1369 1843,0	D		Operators	BAW			
Source Sta	UKB SV	015		Sample Loc				
TEST 2	1	2	IMPIN 3	GER VOLUI	MES 5	6	7	DRY COLUMN
TON M	g	g	g	g	g	g	g	g
START.	758 8	770,3	7689	754.0				9188
END								
CHANGE								
				MA	SS OF MOI	STURE CO	LECTED, g	
TEST 2			IMPIN	GER VOLUI	MES			DRY
TEST	1	2	3	4	5	6	7	COLUMN
1.014	g	g	g	g	g	g	g	g
START.	759.8	757,7	763.7	754.8	753,8	766.2	761.6	960,8
END 790,6	777.6	781-8-A	772.0	762.0	757.5	769.7	7612	992,3
CHANGE		795.21						
				MA	SS OF MOI	STURE COI	LECTED, g	
TEST A			IMPIN	GER VOLU	MES			DRY
TEST A	1	2	3	4	5	6	7	COLUMN
KON # of	g	g	g	g	g	g	g	g
START.	764.1	747,7	772.6	752.5	739.8	741.6	745,2	968.4
END	7691	792,3	806.0	775.2	756.8	753,2	750,4	996,3
CHANGE								
				MA	SS OF MOI	STURE COL	LECTED, g	
TEST 2			IMPIN	GER VOLUM	MES			DRY
1 - 0 1	1	2	3	4	5	6	7	COLUMN
RUN43	g	g	g	g	g	, g	g	
START.	761.4	748.1	775.8	760.5	755.1	768.1	760.4	955,3
END	800.0	804.1	806.6	776,5	761.1	769.4	758.8	973.7
							-	

	1		ľ
			I۳
			ゥ
			13
ı		Ġ	Ш

									4				0	3		()	331	٥	2													200				V		
ate (cfm)	Oxygen	Content,																											Nozzle Calibration	Date	1	756 C			OWS	DSCFM 102, 116		
Sample Train Leak Rate (cfm) Pretest (), (X) at (O in oosttest (∫, (O oo at S in (3 in.) Pos. ⊠ Neg. (X)		Meter		45	٠	47	48	79	ટડ	53	53	24	53	22	25	9	9	و	9	13	eo eo	00)	9	61	20	63	200	(m=06.07	N HOCK	Nozzle No.	-	2 8	Avg. in.	Run	Air Flows			
Sample 7 Pretest (Posttest // Pitot (3 in.) F	tures, °F	Meter		2	200	49	471)	Si	2	天	53	Se	26	7	50	50	29	و	60	00	9	000	و	19	20	m ,	(0.2				Nozzle Dn	0.715		CZ		19 CEMB		
in Hg in H2O ft ft fmp Tc 2062	Sample Train Temperatures, °F	Impinger Outlet		5	25	2	20	25	59	(PO)	ۅٙ	29	8	20	63	34	34	33	30	33	33	34	34	34	34	34	35		standandamo	Supplieding	Nozzle No.	1-0						
28.40 -09.90 - 0.90	Sample	Filter		253	260	400	961	260	452	197	702	092.	260	700 (254	2000	260	250	26-	253	Se	2	750.7	200	3	250	154		Sample Train Components		Filter No.	100H2			Totál		122.1	
Bar. Pres Stat. Pres Probe Lgth		Probe		187	260	260	260	26	260	240	7601	200	261	200	750	259	240	7801	260	261	250	132	255	23	160	260	000			cc/min *	g H	D Š			Desiccant	8.7.79	315	
5-7 5-7 0.84 5. Edther	Stack	Temp.		101	701	00	101	101	101	101	30	8	1000	108	30	8	101	<u>හ</u>	10%	200	80	107	106	100	107	<u>ه</u>	90	19-101-2	OBSAT System	lendo i più	Bag Vol	(e) L			7	76.7	10-	
Probe ID Pitot No. Pitot Cp SGlass S.S.	Sample	Vacuum, in Hg		-3	+3	-3	-3	-3	2	M	-3	~	۲-	r	5	-2	m	5,	?	2	5	2	-3	~	-	7,	^				Bag No.	2-1			9	766.7	3.5	TZSO4/KIMINO4
レイン Prot 1.033名 Pito 1.8832 Pito Liner Type: 内Glass	Ideal	Meter Volume		MA																							>		n Times		End Time	0501		n: Pun 1		25.55	3.1	
Meter ID Meter Y Orifice H@	Orifice	ΔH, in H ₂ O		1.8/	5	1.75	٦ ا	59.	1.67	2,10	7.10	2.10	1	76.1	190	-60	z,	7	197	71		53	74.	1.57	1.73	1.73	9 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		Test Run Times		Start Time	754		Moisture Recovery Data and impinger content information:	4	754.8	776	11000111000
MSW/pup	Velocity	ΔP_1 in H_2O		ال مالي	0.95	0.93	6,90	C 8.9	0.50	0.10	01.	0.1	01:	000	6.98	6.63	0.93	ق ئ ئ	6,99	200	و ۲.	20.0	0.13	0.0	ල ව ව	- 1	0.02		les	Moisture	Content	7.5%		d impinger con	င	277	83	
ArcelorMittal Minorca Mine Furnace Stack B SV015	Meter	Volume vm, nr	08. rzh	441.40	445,14	0	451.36	45.85	454.57	463.36	4.69.34	471.37	28.22	4 9.10	483.01	486.36	490.75	495.85	49753	21.10	87.78	508.CT	51.55	212,02		577.50	720 72. 50 0-10-7. Vm-60	20.00	Initialization Values	Oxygen	Content	0/.5		covery Data an	2	757	37.5	201
1	Sample	Time Δ1	154	2	10	15				35	40	45	20	55	09	65		75		82	06	95	100	105	110	1	0Z1 0Z1 -M	2		10	Temp	7		Moisture Re	-	780.6	-	
Project Smpl Loc Test No. Date	Sample	Point		1-1	2	က	4	w	9	2-1	2	ო	4	ഹ	9	ş-	7	က	4	က	ဖ	4-1	2	က	4	ഗ	۵					Run 1			Impinger	Final wt. g Initial wt. g	Difference	

W.	œ
	7
	7
	3
<u> </u>	ш

7				3000	Pitot No.	ンノレ	Stat. Pres	16%	in H ₂ O	Pretest	000	at C = Hg
Sample	Run Operators	MON/Pr	Orifice H@	1.8037 Pito	Pitot Cp Glass DS.S.	0.84 1. Lother	Probe Lgth	5	t Imp TC 2162	Posttest (§	So. MIN	² / ₈
Limo	Meter	Velocity	Orifice	Ideat	Sample	Stack		Sample	Sample Train Temperatures. °F	tures, °F		Oxvaen
	Volume vm, rr	$_{\rm In}^{\Delta P_{\rm i}}$	ΔH, in H ₂ O	Meter Volume	Vacuum, in Hg	Temp.	Probe	Filter	Impinger Outlet	Meter	Meter	Content,
	16.125				,							
	531.80	26.0	(.80	NA	51	107	300	278	00	100	Cou	
10	535.20	0.80	711		77	30	300	385	20	100	3	
15	539.21	0.88	711		7 1	101	300	296	Co	63	59	
20	542a1	O.88	172		ブー	157	30	201	63	3	65	
25	Fre F	0.08	177		7	166	512	278	Cou	100	68	
30	950.30	880	1.75		7-	00	274	273	50	9	62	
35	Bull	1.10	2.2		7	105	275	774	63	و	65	
40	55.35	1.10	220		01 =	100	122	212	(08	e	62	
45	2501.52	1.10	220		721-	105	220	275	eq	e	ee	
20	563.60	ಕ್ಷ ರ. ⊜	198		6	105	1231	251	65	67	2	
55	Slee .00	1;B	8,7		1	100	250	249	65	(6)	67	
90	19.16	6.01 10.00	1.94		٥	רסו	250	282	ho)	60	9	
65	515.62	00.0	10-7		91	105	252	252	e	10	69	
70	5 A.SD	3.	102		ي و	100	282	282	S	21	-	
75	583.72	155	2/2		91	105	152	152	64	24	F	
80	861.88	1,05	212		٩	100	152	5 h 2	65	73	24	
85	292.16	9	27.7		<u>ی</u>	107	751	229	604	76	73	
90	596 57	1.10	2.13		t.	rac	152	251	63	75	77	
95	600.39	1.05	T id		1-	105	250	150	29	74	21	
100	66.400		2.03		1	90	250	349	62	74	73	
105	0000	000	30,1		؈	107	152	152	26	310	76.	
13,607	2000	0.97	1,21		S	100	252	247	53	75	35	
115	GIT153	0.20	1.95		5	105	250	Ma	75.	يا و	75	\
	121.51	6.90	- 1	>	1	104	200	520	5	77	75	
0=1330	Vm43.66		096, =H∆			Ts+ 05,9					Tm69.56	

												N.	Nozzie Calibration
		Initialization Values	nes	Test Ru	Test Run Times		ORSAT System	_	Sample Train Components	Components		Tech.	Date
	Meter	Oxygen	Moisture					cc/min *				Nozzle No.	
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in Ho	Filter No.	Nozzle No.	Nozzle Dn	,	1
Run 1	59	19.35%	7.5%	1115	1330	7-8	700	<u>ဂ</u>	7	Bri	⊢	2	J J
Run 2												3	200
												Avg. in.	5
	Moisture Re	scovery Data a	nd impinger co	Moisture Recovery Data and impinger content information: $\mathcal{P}_{\mathcal{W}_{\mathcal{V}}}$	II. Pur 7	(:						Run7	
mpinger	~	2	3	4	2	9	7	Desiccant	Total			Air Flows	SWO
Final wt., g	1.80	2797	208	724	126.50	2554	コペライ	996.3			AC	ACFM	DSCFM
Initial wt. g	TOW.	T.CHC	72.6	25.5	73.5	77	7,97	468.4			7030	699	100 AB
Difference	Å	7,77	33 H	22.7	2	٥	2.5	27.9	167.4				1
		1 N KC		HN03/H202		H2SO4/KMND4							

Method 5/Ontario Hydro FIELD DATA SHEET

(cfm)	at o in Hg	×	Oxygen	Content, %										-																
ea	Pretest 0.00 at Posttest 0.00 at	Pos. WNeg.		Meter Outlet		77	78	4	おんん	74	73	73	73	24	22	75	F	22	74	73	74	75	22	76	76	76	76	2	に	Tm=74.35
Sample	Pretest Posttest	Pitot (3 in.)	tures, °F	Meter Inlet	SHEET IN	128	77	25	1	43	76	75	21	22	20	72	71.	213	5 []	25	18	75	2	76	75	26	20	20	77	
E Ha	# 12 C	TC CLIGIC	Sample Train Temperatures, °F	Impinger Outlet		28		00	20	50	63	29	29	ē	3	59	24	15	70	43	70	33	35	36	35	30	2	3	2	
بالم	25.00	Imp TC	Sample	Filter		248	44	252	282	282	282	249	748	253	253	252	スカノ	152	547	249	250	250	251	255	250	th.	747	721	250	
Bar. Pres	Stat. Pres Probe Lgth			Probe		252	642	250	253	25	180	249	282	282	182	080	272	2 20	257	642	152	250	647	248	182	220	252	647	250	
25	0.84	S. LOther_	Stack	Temp.		30	107	901	108	107	(0)	ુ જુ	101	90	107	107	101	ان م	106	106	200	201	902	00-	<u>9</u>	106	100	<u>ه</u>	30	Ts-106,5
Probe ID	Pitot Cp	IGlass [5.8.	Sample	Vacuum, in Hg		9-	9	P	- (0	1	5	12	-5	77	יר	12	R	1	-5	>	1-5	2	7-	7	7	1	Ī	h-	7	
070	26832	Liner Type: ☐Glass	Ideal	Meter Volume		42	_					,													•			>		
Meter ID	Meter Y Orifice H@	ter.	Orifice	ΔH, in H ₂ O		2.28	7.14	42.2	2.13	1.87	206	1.88	192	1771	7.67	1.96	ન.૧૦	2-16	2.20	2/6	1,97	2.17	- Sp	ري	21.28	2,27	21.2	20,	-	AH=2 03
<u>a</u>	W	rov/emptaer	Velocity	ΔP, in H ₂ O		1.10	1.05	01.	50,	0.40	1.05	0.46	0.18	0.87	0.9%	Q,00	ORT	01/1	1.15	610	3	01.1	5,02	6.99	1.15	50	1,00	0.03	5.0	
ArcelorMittal Minorca Mine	Furnace Stack B SV015	Operators MSD	Meter	Volume vm, tr	622.00	626.20	14.059	634.63	11.89	G11.58	G46052	650.39	654.30	658.00	661.87	GG5/80	609.65	673.65	671.92	00.78g	685.94	689.86	ET. 5.73	697.64	701.88	706,10	10.01	1287	755-176	Vm95,52
	38	19/11	Sample	Time Δ1	1356	s,	10	15	20	25	30	35	40	45	50	55	90	65	70	75	80	85	06	95	100	105	110	115		0191=0
Project	Smpi Loc Test No.	Date 7	Sample	Point		1-1	2	ო	4	2	9	2-1	2	m	4	2	9	3-1	2	ო	4	ß	9	4-1	2	က	4	ഹ	9	

Meter Oxygen Moisture Test Run Times ORSAT System Sample Train Components Temp Content Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. <td< th=""><th>e.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>NOZZIE CAMDI AUDII</th><th></th></td<>	e.													NOZZIE CAMDI AUDII	
Meter Oxygen Moisture Confent			nitialization Va.	nes	Test Rui	Times -	J	ORSAT Systen		Sample Train	Components		Tech.	Date	
Temp Content Content Content Start Time End Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. Nozzle No. 1		Meter	Oxygen	Moisture					cc/min *				Nozzle No.		
Parish Parish		Temp	Content	Copyegg	Start Time	End Time			at 15 in Hg	Filter No.	Nozzie No.	Nozzle Dn	7-	١	
Moisture Recovery Data and imbinger content information: Ln. 2 Recovery Data and imbinger content information: Ln. 2 Avg. in. Avg. in. 4 2 3 4 5 6 7 Desiccent Total Avg. in. 2 3 4 5 6 7 Desiccent Total Avg. in. 3 4 5 6 7 Desiccent Total Avg. in. 10 4 3 4 5 4 Avg. in. Avg. in. 10 4 3 4 4 4 4 Avg. in. Avg. in. Avg. in. 5 4 4 4 4 4 4 Avg. in.		20	19.36	30 P	13.56	000	52		0.0	UQ0593	1-8	0.215	2	5-00 DI	
Moisture Recovery Data and impinger content information: Loc 2 6 7 Desiccent Total Avg. in. 4 2 3 4 5 6 7 Desiccent Total ACFM Ari Flows 4 3 4 5 16 4 458.3 475.7 Ari Flows 16 4 7 16 4 455.5 16 4 457.5 10 5 6 1 1 16 16 16 16 10 10 5 6 1	Run 2			N									က		
Moisture Recovery Data and impinger content information: Loc 2 6 7 Desiccent Total ACFM AIr Flows 20 20 3 4 5 6 7 Desiccent Total ACFM AIR Flows 30 4 5 1 1 1 3 1				9,000									Avg. in.	1	
5 6 7 Desiccant Total ACEM Air Flows ACEM Air Flows ACEM ACEM ACEM ACEM ACEM ACEM ACEM ACEM		Moisture Re	covery Data a	nd impinger co	ntent informatior	Lr 3						3	_	7	
30 004 866.6 76.5 76.1 76.4 158.8 473.7 ACFM 76.4 788.1 715.8 76.5 76.1 76.4 455.3 56.4 655.3 56.4 16.5.5 10.48 10.5.5 10.48 10.5.5 10.48 10.5.5		-	2	3	4	5	9	7	Desiccant	Total	_	3		Flows	
76.4 748.1 715.8 70.5 76.1 76.1 76.4 955.3 10.5 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	W. O	3	Chon!	306.6	276.5	761.1	7.69.4	158.8	9-13-7			AC			
58.4 56 70.8 (6 6	wt. g	761.4	न्युक्त ।	2.51	2.00.5	1.551	1.892	760.4	955.3			707	חחם,	168.553	
HNO3/H2O2	ence	58.6	56	30.6	و	و	5.	3	7.9	165.5					
			1 N KC		HN03/H202		HZSO4/KMNO4								

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

Project Arc	elor Mitta	.1		Date 2	18/17			
	23691843.		1	Operators	B4n	,		
	CK C	SVOIL		Sample Loc	cation			
TEOT 3			IMPIN	Sample Loc GER VOLUI 4	MES 1	2002	200 7	DRY
TEST	1	2	3	4	5	750.0	759.7	COLUMN
17014 1	g	g	g	g	g	g	g	g
START.	768.6	763.9	758.8	754.6	749.5	757.0	758.7	976,5
END	797,2	815.3	791,9	775.2	756.0	755.7	760,1	997,1
CHANGE								
				MA	SS OF MOI	STURE COL	LECTED, g	
	·							
TEST 3			IMPIN	GER VOLUI	MES		v	DRY
RUN 2	11	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g	g	g
START.	758.6	749.9	768.8	750,0	757.8	760	764.2	9694
END	7920	814.9	808.8	776,3	772.0	762.4	765,6	981.8
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
	1							
TEST 3		_	1 1	GER VOLUI	1		1 _	DRY
RUN 3	1	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g -7(0,0	g	g
START.	775.2	769,2	764.9	760.6	751.2	762.9	762,6	915.6
END	825.8	838.2	800.7	777.0	755.1	765.4	761,9	927,7
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
	1		INADINI	GER VOLUM	MEC			DDV
TEST	1 1	2	3	4	5	6	7	DRY COLUMN
RUN 4								
START.	g	g	g	g	g	g	g	g
END								
CHANGE								
CHANGE								
COMMENTS								
COMMENTS								

¥ Method 5/Ontario Hydro FIELD DATA SHEET

										34	4.90																				4	30/14	100		W. 15235
	(ate (cfm)	5 in Hg	in Hg	Ø	Oxygen.	Content,										¥																	Nozzle Calibration	Date	
	Sample Train Leak Rate (cfm)	Pretest 0.00 at	Posttestro 20 at	Pos. XIN		Meter Outlet		9	600	67	67	727	67	100	(0)	(07	89	39	Se	િક	60	e	70	70	2	1	71	_ [E.	72	72	721	Tm-68.56	ž	Tech.	Nozzia No
	Sampl	Pretest	Posttest	Pitot (3 in.)	ıtures, °F	Meter		وا	وو	ee	ee	99	600	67	2	67	67	10)	(01	az C	28	69	69	10	70	1/	76	۶	7	16	72				
	in Ha	in H ₂ O	#	Imp TC TEO-1	Sample Train Temperatures, °F	Impinger		34	36	36	34	34	34	7.7	38	86	37	38	202	72 1	13	7	2	25	5	25	90	25	25	54	09			Components	
	28.23	-0.85	M		Sample	Filter		52	250	250	152	642	153	187	220	250	しなり	250	252	282	250	251	250	250	282	252	542	288	292	C20	3			Sample Train Components	
	Bar. Pres	Stat. Pres	Probe Lgth			Probe		249	250	25	273	249	122	352	252	251	250	220	251	542.	247	242	244	249	727	253	582	253	457	257	22			П	cc/min *
בל לודו	5-3	5-3	0.84	S. LÖther	Stack	Temp.		113	7.1	414	-(13	113	ЙЧ	113	113	113	(1)	113	113	113	13	2	113	113		2	<u>5</u>	7	7	<u> </u>	2	Ts4(3,3		ORSAT System	
	Probe ID	O. A. Prot No.	1.987 Pitot Cp	er Type: XGlass DS.S.	Sample	Vacuum, in Hg	2	-8	-5	3 1	al I	7-	h_	7-	h -	7-	-5	18	5	5	-5	13	15	1.8	10	h	5		9	51	h				
	7-7) DOC	7056	er Type:	ideal	Meter		MM																						1	A			Test Run Times	
	Meter ID	Meter Y	Orifice H@	7445	Orifice	ΔH, in H ₂ O		1.74	1.78	.65	111	1.54	1.52	1.67	1.69	19,	71.	1,77	1,73	.67	, 64	1.17	170	3	151	99	2.	5	170	1. 24	12	AH= 1, 68		Test R	
	ine			MEN/CAP	Velocity	ΔP, in H ₂ O		0.95	0.97	0.0	6.93	े. कर्	0.03	6.9	26.0	9.80	0.96	90.0	6.01	0.41	0.50	0.96	200	9	0.82	20.00	6.98	160	6.47	0.0	6.8V			lues	Moisture
	ArcelorMittal Minorca Mine	Furnace Stack C SV016	3 Run	Operators	Meter	Volume vm, π	330.70	334.25	337.99	341.63	345.19	348,56	351.91	35240	358.90	362.3%	36.03	369-65		376.74	200.50	553. 85	587.58	\$0,82	SC 78	1 m	401.45	455.04	108.75	41215	45.14	Vm-05.01		Initialization Values	Oxygen
1	ArcelorMit	9 (0)		2/0/12	0,	Time Δ1	1000	5	10	13	20	25	30	35	40	45	20	55	09	92	70	75	80	85	06	98	100	105	110	115	120	970 =0			Meter
	Project	Smpl Loc	Test No.	Date	Sample	Point	No.	7-	7	က	4	2	9	2-1	2	က	4	ហ	9	3-1	2	က	4	ro.	9	4-1	2	m	4	2	9				

Meter Oxygen Moisture Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. Nozzle No. 1 66 18.5% 12.5% 0.04H 2 5 2 Avg. in. 60 48.65% 6.0 6.0 48.65% 6.0 6.0 48.65% 6.0 </th <th></th> <th></th> <th>Initialization Values</th> <th>nes</th> <th>Test Ru</th> <th>Test Run Times</th> <th></th> <th>ORSAT System</th> <th></th> <th>Sample Train Components</th> <th>Components</th> <th></th> <th>Tech</th> <th>Date</th> <th>100</th>			Initialization Values	nes	Test Ru	Test Run Times		ORSAT System		Sample Train Components	Components		Tech	Date	100
End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. Nozzle Dn 1 Set 10.20 C-1 Co. O.0 H&oS14 C-1 0.214 2 Set 3 Avg. in.		Richard	0	K. C. L.										Sass	
Temp Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle Dn 1 1 1 1 1 1 1 1 1		Meter	Oxygen	Moisture					cc/min *				Nozzie No.		1
1 66 18,5% 125% 125% 3807 1010 C-1 60 0.0 480594 C-1 0.144 3 6 809 10 10 10 10 10 10 10 10 10 10 10 10 10		Temp	Content	Content	Start Time	End Time		10/1 -00			A Committee of the Comm	(
2 85% 125% 125% 0807 1020 C-1 60 0.0 480594 C-1 0.214 2 58		1	1100	OOU II CHI	סומור נוווום	רומיום		Dag vol			Nozzle No.	Nozzle Un		1	
3 3 3 4 Avg. in. Avg. in.	1	8	8.2%	125%	6807	3,5	_	Coo	0.0	H00059H	-	6214	0	100	
3 Avg. in.	0									-	,		7)	
Avg. in.	7 4												m	- / /	
AVG. in.														10011	
		1											Avg. in.	0	

ACFM DSCFM

Impinger Final wt., g Initial wt., g Difference

þ	ii	œ
		7
		7
	9	~
	¥	ш

The control of the	ack C SV016
Sample Sample Sample Train Temperatures, F Oxygen	Operators MONTH STARS L
1 1 2 2 2 2 2 2 2 2	Velocity
-6	ne ΔP, ΔH, π' in H ₂ O in H ₂ O
-6 113 231 250 35 14 74 75 35 14 74 75 35 14 74 75 35 74 74 75 75 75 75 75 7	49.85 6.963 1.87
-6 113 223 251 35 14 74 74 75 35 74 74 74 75 35 74 74 74 75 35 74 74 75 75 75 75 75 7	50.98 1.87
-6	0.98
-6	98 0.94 (
-5 113 246 250 36 75 75 75 75 75 75 75 7	50 0.83
113	457.45 6.80
114	50.0
11	30,0
-7 113 244 250 41 76 76 76 77 77 76 77 77 77 77 77 77 77	0.99
14 250 44 76 76 76 76 76 76 77 76 76 77	0.80
114 256 250 45 77 76 77 77 77 77 77 7	0.89
14 15 150 46 77 77 77 77 77 77 77	58 0,94
113 125	121 87 807
113 124 125 124 125 127 177	しゅく けるこ
11	76.0
113 1.50 1	20
113 125 125 126 126 126 126 126 126 126 127 125	0.65 1.
113 1250 525 72 78 78 78 78 78 78 78	490,95 6.90 1.97
-7 IIS 4.8 2.50 5.3 7.8 7.8 - 6 IIS 2.46 2.50 5.3 7.8 7.9 Ins=IIS.3 Tin=IIC.IT Nozzle Calibration of the components Institute of the components Tech. Discription of the components Inse Bag No. Bag Vol at 15 in Hg Fifter No. Nozzle No. Nozzle No. C.2 C.0 H&O.5Tription of the country of t	9.87
- 6 1 3 246 250 53 79 79 79 79 79 79 79 7	1 0.76 1,
Time	19.0
Nozzle Calibration	Vm-61.35 AH=[, &i
me Bag No. Bag Vol at 15 in Hg Fifter No. Nozzle No. Nozzle Dn 1 Components No. Nozzle No. Nozzle No. 1 Co. 2 Co.	Initialization Values Took Dun Times
Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. 1 2 C-7 C-0 O,O H@OSTS C-1 0.UH 2 C-1	Moisture
3	Content Content Start Time End
	7 2 3

Impinger 1 Final wt., g 797. Initial wt., g 756.4 Difference 33, 1

=	i
LL.	ŧ
₩	į
<u> </u>	į
4	ı
	į
[11	l

				Dawsee	1401 for equip						rawe @ 1516	I problem/w/stack	A. 172	Sest 55																	
Rate (cfm) 1 (O in Hg	Oxygen	Content,																											Nozzle Calibration	Date	
Sample Train Leak Rate (cfm) Pretest (0,000 at (0 in Posttest 0,000 at (0 in Pitot (3 in.) Pos. KNeg. K		Meter		79	00	<u>w</u>	<u>a</u>	20	5	<u>a</u>	$\frac{v}{2}$	æ	න 1	ā	80	<u>z</u>	\$	30	0	02	<u>ක</u> ට	79	20	7	20	77	1	Tm=79.04	Ž	Tech.	Nozzle No.
Samp Pretes Posttes Pitot (3 in	atures, °F	Meter		79	ග	000	90	S S	29	<u>e</u>	න	800	8	08	80 ()	500	5	300	T	7	7	1,	7.5	75	74	7.	5 F				
in Hg in H ₂ O	Sample Train Temperatures, °F	Impinger Outlet		36	34	\$ \$	36	3.4	34	72	35	35	34	35	35	24	34	34	34	35	35	34	37	39	4	43	77			Components	
28.50 28.50 78.50 Mm	Sample	Filter		240	252	250	260	260	260	260	200	192	200	2002	rles	260	260	125	Nes	Les	159	261	261	260	002	26	200			Sample Train Components	
Bar. Pres Stat. Pres Probe Lgth		Probe		230	542	243	250	252	257	255	255	332	253	260	260	202	263	263	197:	102	202	243	259	192	201	26	288				cc/min *
5.3 5.3 0.84 S. IDther	Stack	Temp. 1s, 'r		113	112	113	113	-113	113	113	13	113	114	14	114	113	113	-113	7-1-	11	113	- 52	413	114	113	113	114	Ts=13,3		ORSAT System	
Probe ID OPPLIOT No. AND Pitot Cp Dellass IS.S.	Sample	Vacuum, in Hg		5.	-5	7	-5	7-1	7	12	Ş	-5	18	75	S	15	b	10	>	18	8	12	4	5	r	6	5				ř
7 - 12 Pro	Ideal	Meter Volume		MA																					Z	>				Times	
Weter ID Weter Y Orifice H@-	Orifice	ΔH, in H ₂ O		90.	1.8)	1.73	1.55	シュ	lo:	1.87	85 85	.e3.	1.77	Lifol	9	1.15	1.75	1.87	1.82	١.60	68	38.	99	1.75	08.1	1,54	65.	∆H= (.73		Test Run Times	
3/0m	Velocity	ΔP, in H ₂ O		6.95	0,90	0.80	12.0	0.80	6.72	0.93	25.0	0.91	ි. ව	ල. ප <u>ි</u>	0.02	C8-0	0.67	16:0	0.9	0.80	0.83	0.93	0.94	Ø.88	0.40	にてら	51-0			les	Moisture
ArcelorMittal Minorca Mine Furnace Stack C SV016 3 Run 70/17 Operators	Meter	Volume Vm, rr	508,90		27.90	50.015	220.24	513.80	527.39	331.10	534.96 534.96	338.72 I	(A6,00	54.57	553.22	1556 BB	500.54	Set.30	301.00	571.39	575.10	518.95	287.70	586.38	590,05	543.58	Vm=81.48		Initialization Values	Oxygen
6/	Sample	Time Δ1	1436	2	10	15	20	Ì		35	40	45	50	55	09	65	70	75	80	85	06	95	100	105	110	115	120	S S S S S S S S S S			Meter
Project Smpl Loc Test No. Date	Sample	Point		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	2	ო	4	ις	ω	2-1	2	n	4	ა	9	3-1	2	ო	4	3	မ	4-1	2	ო	4	ເດ	9				

		Initialization Values	nes	Test Run Tim	Times		ORSAT System		Sample Train Components	Components		Tech.	Date
	Meter	Oxygen	Moisture					cc/min *				Nozzle No.	
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No.	Nozzle No.	Nozzle Dn	-	(
Rung	79	18.5%	0,0,0	1436	50	(-3	7.00	0.0	4	1-2	710	0	766
Run 2												6	ならりが
												Avg. in.	
	Moisture Re	covery Data a	Moisture Recovery Data and impinger content informations	itent information	Pun3						ı	Chn 3	
mpinger	-	2	က	4	2	9	7	Desiccant	Total			Air Flows	SWO
Final wt., g	878.8	2.852	500°	111	75.1	しるか、日	5/94	627.7			ACEM		DSCEM
Initial wt., g	7.51	7.00.2	764.9	760.6	7.156	762.9	762.6	915.60			7 00 007	٣	72 52
Difference	39.6	69	35.8	1.0	.30	7.5	1.8.7	7	3000				
		1 N KC		HNO3/H202		H2SO4/KMNO4							

ONTARIO HYRDO D-6784-16 MERCURY TESTING **IMPINGER RECOVERY**

Project Ara	lormy tra	1		Date 2/9	1/17			
Project No. 23	69 1843 .			Operators				
Source Sta	KD SU	717		Sample Loc	cation			
2.4			IMPIN	IGER VOLU	MES			DRY
TESTRUN	1	2	3	4	5	6	7	COLUMN
	g	g	g	g	9	g	g	g
START.	760,5	768,5	7679	758.3	758.2	749.4	753.7	921,3
END								
CHANGE								
				MA	SS OF MOI	STURE CO	LECTED, g	
	T							
TEST 4			1	GER VOLUI	1.5		i	DRY
RUN # (11	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g	g	g
START.	774	769.7	766.6	759.9	731.3	740,1	740,6	926.2
END	796,7	809.5	790.6	774,9	742,4	741,6	737.7	942,0
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
TEST 4			IMPIN	GER VOLUI	MFS			DRY
	1	2.	3	4	5	6	7	COLUMN
RUN 4, 2	g		g	g	g	g	g	g
START.	759.6	767,4	770,9	758.7	756.1	749.2	753,3	943.9
END	834.9	832,3	791.8	766,8	7614	747.3	794.2	959.5
CHANGE					150011			
				MA	SS OF MOIS	STURE COL	LECTED, g	
			INADINI	OED VOLUE	450			
TEST 4			1	GER VOLUI	i i	0	7	DRY
RUN# 3	1	2	3	4	5	6	7	COLUMN
OTABT	_ g	g	g	g ~~~~~	g	g 7011	9	Ø 20 0
START.	775.8	769.9	765.4	737,0	757,4	761.4	761.5	939.9
END	848: 4	840.5	790,0	744,4	759,5	761,2	760.0	951.6
CHANGE								
COMMENTS					У			

B-5-377

10	œ
	$\overline{\sim}$
	5
	Q,
	\Box

Project Smpl Loc		ArcelorMittal Minorca Mine Furnace Stack D SV017	eu.	Meter ID Meter Y	258	Probe ID Pitot No.	5.3	Bar. Pres 28,40 Stat. Pres +0.9	6.40 0.05	in Hg O'H ni	Sample	Sample Train Leak Rate (cfm)	Rate (cfm)	
Test No.	1/6/17	4 Run Operators	Mg/W/	Orifice H@	Liner Type: [X]Glass	Pitot Cp [Glass [5.S.	0.84 S. [Other		8	ft Imp TC TEP-1	Pitot (3 in.) Pos.	Z Z	NX	
Sample	Sample	H	Velocity	Orifice	Ideal	Sample	Stack		Sample	Sample Train Temperatures, °F	tures, °F		Oxygen	
Point	Time Δ1	Volume Vm, 117	AP, in H ₂ O	Δ H , in H ₂ O	Meter Volume	Vacuum, in Hg	Temp.	Probe	Filter	Impinger	Meter	Meter	Content,	
100	1001	630.10					~							
7	5	633.20	51.0	1.31	YW.	2	111	257	300	25	(07	20)		
2	10	636.26	0.72	1.32) JO	115	969	301	25	5	120		
т	15	639.46	6.00	1.26		9 9	116	277	301	()	ē	29		
4	20	29.279	0.69	1.74		<u> </u>	117	622	301	24	9	63		
r.	25	pr. Sna	0.13	1,33		7-	17	182	30	Se	(0.1	63		
9	30	9,870	21.0	1.32		₽,	115	1.62	300	58	<u>-</u>	63		
2-1	32		5	1.30		P	15/	36	299	00	64	59		
2	40		٠ ٠	1.54		න	9	301	300	29	67	64		
60	45	650.71	21.0	1.32		30	و	300	300	67	(0)	2		vacuum froutific
4	20	GC 130	0.77	1.3:1		3)	<u>-</u>	296	300	20)	09	59		pushible D.C. Arecze
2	22	1		1.34		21	115	301	749	ec	40	200		
9	09	G67.80		3.		0	و	207	300	64	10)	60		ewitch dry colour
3-1	65	-	0,70	1.70		<u>0.</u>	2	795	500	65	9	29		Paster+1115
7	70	669.94	9,7	1.23		10	9=	294	200	49	63	64		•
60	75	20-210	730	1.23		- 10	117	794	300	64	4	500		
4	80	676.15	0.68	1.25		71-	111	283	278	7.0	63	\v.		
ιΩ	85	679.45	0.69	126		71-	- ונש	212	275	700	(03	65		
9	06	682.51	- L. 0	1.30		-12	9-	277	270	62	63	63		
4-1	92	686.88	0.62	. H.		===	-	269	282	6	200	ee		
7	100	(ego) 80	07.0	1.29		71-	و=	197	252	ed	20	90		
က	105	693.22	19.0	1.53		=-	و,	270	2	67	64	9		
4	110	696.44	0.70	1.78		011	4-	253	127	Col	75	0)0)		
ιΩ	115	०क.८	0.70	1.28	>	011	()	283	540	200	Cos	000		
9	120	70274	01.0	1.29		0)-		220	240	22	er	12		
	127=10T	Vm=75,64		AH=1,2%			Ts=116,3					Tm=63.42		
												z	Nozzle Calibration	
		Initialization Values	nes	Test Ru	Test Run Times		ORSAT System	L	Sample Train Components	Components		Tech.	Date	
	Meter		Moisture	Start Time	Fnd Time	Rad No	Rad Vol	cc/min *	Eilfor No	ON CITY	() () () () () () () () () ()	Nozzle No.		
Run 1	29	1,0.01	1.02	1001	1221	. N-1	700	0.0	HOOGH &	NOZZIE NO.	0.219	- 2	1001	IV.

	œ
	2
н	3
١	m

	Switch	a de la companya de l		V
ite (cfm) in Hg	Oxygen Content,		Nozzle Calibration Date Date Corp	DSCFM
Sample Train Leak Rate (cfm) Pretest (O. O.O. at O. in Posttest (O.O.O. at < in pt (3 in.) Pos. (M.Neg. M.	Meter	55 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	in e No	Air Flows
Sample Pretest(Posttest (Pitot (3 in.)	rtures, °F Meter Inlet	当人がないちょうちょうちょうちょうちょうちょう	Nozzle Dn O, 2, 14	AC
in Hg in H ₂ O in H ₂	Sample Train Temperatures, °F ilter Impinger Mete	757997985EEEEEEE	Components Nozzle No.	
7.00	Sample	द्राहर दे हम	Sample Train Components Filter No. Nozzle No. 485 CHP. 1	Total
Bar. Pres Stat. Pres Probe Lgth	Probe	まきまるままれる。 まままままままままままままままままままままままままままままままままままま	cc/min * at 15 in Hg	Desiccant 943, 4
5-3 5-3 0.84 S. [Other_	Stack Temp.	223222 25	ORSAT System Bag Vol	7
Probe ID Pitot No. Pitot Cp	Sample Vacuum, in Hg	だいいいくかんかんないかんないないないない。 でいいいないないないないないないないないない。	Bag No.	6 749.2 H2SO4/KMNO4
C-12 Pro O-9950 Pitc 1-9878 Pit Liner Type: AGlass	ideal Meter Volume	2	Test Run Times t Time End Time	
Meter ID Meter Y Orifice H@	Orifice ^{ΔH} , in H ₂ O	\$\frac{1}{2}\frac{1}\frac{1}{2}\f	Moisture Becouary Data and implication Values Temp Content Conjunt Start Time End To 100.0% To 100.0% To 100.0% Moisture Becouary Data and implication of the conjunction of the conjun	1587 HN03/H202
May Par	Velocity ΔP_1 in H_2O	771 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Moisture Conjent Conjent Conjent Conjent Conjent	nd impinger co
ArcelorMittal Minorca Mine Furnace Stack D SV017 4 Run [4/17 Operators Y	Meter Volume vm, tř	128.25 12	Initialization Values Oxygen Content Outent	2 2 2 767, H
W W ~~	Sample Time	5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Moisture Bo	
Project Smpl Loc Test No. Date	Sample	7- 1 0 0 1 - 1 0 0 1 - 1 0 0 0 1 - 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	Run 2	Impinger Final wt., g Initial wt., g Difference

	104
	뜼
	IL,
	⋖
	m

(cfm) in Hg		Oxygen	Content,																								*3			Nozzle Calibration	Date		ee C.	100
Leak Rate	Neg.	1	Meter Outlet		83	83	283	23	en en	\$ 1	200	20	20	000	Ŝ	79	79	r a	51	11	76	76	76	75	75	74	bL	thu.	Tm=76.98		Tech.	Nozzle No.	2 2	S 500 0
Sample Train L Pretest 0.00 Posttest0 Posttest0 Posttest0	r1(01 (3 III.) POS.	atures, °F	Meter		K	700	200	5	79	S.	7.5	12	11	ې	75	1	T T	Mr.	25	26	71	1	10	1	ŗ	20	70	7.0					Nozzle Dn O. 2.1 4	
in Hg in H ₂ O	1253	Sample Train Temperatures, °F	Impinger Outlet		Se	57	S	(Sa)	63	23	27	5	Ch	43	39	36	34	33	33	33	34	34	34	344	34	33	23	33			Components		Nozzle No.	2
28 in 28		Sample	Filter		252	280	258	249	251	549	250	252	250	252	220	652	220	1251	282	229	286	540	29	255	278	251	282	282			Sample Train Components	i	H & sound	
Bar. Pres Stat. Pres Probe Lgth			Probe		582	230	235	235	34%	544	6h2	252	253	276	246	542	246	253	378	285	5472	250	250	bh2	250	577.0	220	252				cc/min *	at 15 in Hg	
5.3 5.3 0.84		Stack	lemp. Is, "r		19	8	120	19	119	118	111	3	2	61	114	120	118	118	પ્રક	51	<u>Ge</u>	1.7	116	20	2	<u>~</u>	11.7	119	Ts= 163		ORSAT System		Pag vol	
Probe ID Probe ID Prope ID Prope ID Prope ID Proper ID P	Separate A	Sample	Vacuum, in Hg		5	15	3	5-	5.2	<u>۾</u>	و	٥	١	8	0	9	-5	-5	0	9-	21	9	٩	٩	٥	q	9	٩					Day No.	
2-12 02990 19878	Tilled 1 year	Ideal	Meter		さつ																							フ			n Times	ji ji	SIO 1 IME	
Meter ID Meter Y Orifice H@		Orifice	oh in H ₂ O		446	32	199	1,33	1.35	1.45	1,37	1.34	1.34	1.32	1.57	1.39	1.33	1.33	1.37	1.37	1.35	1.37	1.35	-32	1.2	30	36	1	AH= 1,35		Test Run	i.L	1400	
W &	·	Velocity	ΔΡ', in H ₂ O		500	0,65	10-10-0	69.00	0.7.0	のゴロ	0.71	0,70	٥٢،٥	0.69	21.0	51.0	07.0	O, 70	27.0	27.0	11.0	プレの	0.7.	0.70	0.69	È	らいん	-10			ser	Moisture	11.00%	
ArcelorMittal Minorca Mine Furnace Stack D SV017 4 Run		Meter	volume vm, π	785.10	788.02	721.2c	18.48	787.80	801.10	24,42	(S) : (S)	810.78	913.4C	Ø17.10	820.29	828.50	826.66	629.62		330.08	839.20	245.30	のよう。よう	848.53	261.69	200	858.07	B6 21	Vm= 76.11		Initialization Values	Oxygen	18,0%	
ArcelorMitta Furnace Sta		Sample	11111e	1600	ß	10	15	20	25	30	35	40	45	20	55	09	65	7.0	75	80	85	06	95	100	105	110	115	120	048F0			Meter	200	
Project Smpl Loc Test No.		Sample	IIIO		1-1	2	က	4	r)	9	2-1	2	ო	4	ນ	9	3-1	2	m	4	5	9	4-1	2	ო	4	5	9					Run 3	Kun z

	- 1	וווומוולמווסוו אמותב	ings.	ומאו	Lest Mail Hilles		URAM! System		sample train components	Components		ech.	Date	
	Meter	- Oxygen	Moisture					cc/min *				Nozzle No.		
1	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No.	Nozzle No.	Nozzle Dn	,	1	П
Run \$	200	200%	1000	2400	010	5-0	700	0.0			0.7.0	2	26000	1
Run 2										V		m	110	1
												Avg. in.	1	
	Moisture Re	ecovery Data ar	nd impinger cor	Moisture Recovery Data and impinger content information:	m. Kun3						3	2		
mpinger	7.848	2	က	4	2	9	7	Desiccant	Total			Air	Air Flows	
Final wt., g	1	2700	240	ה"אמ"ו	759.5	7601	760	9516			ACEM		DSCEM	
Initial wt., g	3,500	78.9	765,4	737	7574	7601.4	7001	929,9			1007	3002	200	MI.
Difference	72	200	746	ゴゴ	7.1	7.0-	V. T	1.11	1.621					1
-		→ N KC		HNO3/H202		H2SC4/KMN04				=1				

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

		•	INILIIAOL	K KECOV	EKI			
Project Asce	lor mitta	il		Date 3/	28/17			
Project No.				Operators				
Source Sta	CK A SU	014		Sample Lo				
		1	IMPIN	GER VOLU				DRY
TEST RUN 1	1	2	3	4	5	6	7	COLUMN
IXON I	g	g	g	g	g	g	g	
START.	781,5	764.5	752.8		741.7	757,9	764.8	926,3
END	8888	810.8	761.6	766,3	742,7	757,6	765.0	944,2
CHANGE						1		
				MA	SS OF MOI	STURE CO	LLECTED, g	
1			IMPINI	CEB VOLUI	VICO			
TEST	1	2	3	GER VOLUI 4	r.		7	DRY
RUN 2					5	6	7	COLUMN
START.	757, 2	764.9	749.0	732,0	765.8	748.4	800.5	935,9
END	856.0	812,4	763.4	738.4	760.4	748.3	799.3	952,7
CHANGE	000	0 7-07		7301	190,7	11813	11112	Pail
				MA	SS OF MOI	STURF COI	LECTED a	
TEST (K	IMPING	GER VOLU	VIES .			DRY
RUN 3	1	2	3	4	5	6	7	COLUMN
	753.0	9 755,0	g	g	g	g	g	g
START.			161,5	760.2	754,0	758.5	758,6	938,6
END	828.9	815,4	776.4	768.8	755.3	759,5	757.3	9526
CHANGE					00.05.110.4			-
				MA	SS OF MOIS	STURE COL	LECTED, g	
TEST			IMPINO	SER VOLUN	/IES			DRY
RUN 4	1	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g	g	g
START.								
END								
CHANGE								
COMMENTS								

23 47 in Hg Bar. Pres Stat. Pres Probe ID 57 Pitot No.

01-0.84 Probe Lgth Operators MSN/PMP/TARL Liner Type: AGlass CS.S. Tother Pitot Cp_

19583 0113

Orifice H@

Run

Test No. Date

Meter ID Meter Y

ArceforMittal Minorca Mine

Project

BARR

Smpl Loc Furnace Stack A SV014

Pitot (3 in.) Pos. MNeg. Prefest 000 Posttest 6. 00 Imp TC5843 in H₂O

in Hg at O in Hg Sample Train Leak Rate (cfm)

Sample	Weter	Velocity	Orifice	Ideal	Sample	Stack		Sample	Sample Train Temperatures, °F	atures, °F	8	Oxygen
Time ∆ I	Volume Vm, tr	ΔP_1 in H_2O	ΔH, in H ₂ O	Meter Volume	Vacuum, in Hg	Temp.	Probe	Filter	Impinger Outlet	Meter	Meter	Content,
D000	840.30	100			38-1							
	B43.84	697	1.79	V V	2,	113	745	246	d to	77	177	
10	S47.45	C.9.	1.79	_	٠.٦	113	hh2	7,46	45	717	7/5	
15	950.95	0.45	1.75		-3	112	7,45	245	77	113	47	
20	B54.38	0.93	172		-3	Ξ	シャン	, yrc	ココ	1.0	23	
25	027.60	31.0	1.40		52-	117	22.5	スス	275	2	2/3	
30	S60.67	20.76	1,40		1	<u>-</u>	245	22	77	3	77	
35	B64.07	ි දැන ව	1.63		->	111	746	747	5	2	7	
40	G67.53	6.91	1.68		500	112	h12	243	1 L	V	7/2	
45	870.65	್ ೧ ೧	1 59		*	-13	746	246	45	5	7	
50	17.418	0.86	000		-3	7/1	25	245	7	3	2	
55	S2.7LB	٥, ٦٢	1.37		- F	71	いなが	246	2.8	38	r _D	
99	B80.49	٥. ٢٢	1.38		7-	211	22	2.0	7	5	27	
65	84415	36.0	- 500 - 500		-3	11	245	248	45	55	25	
20	357.75	1.00	. S.		-3	112	577	25	41,	25	70	
75	391.38	6,99	1000		-3	171	248	141	70	00	55	
80	995,10	00,00	1.80		-3	1,1	246	245	410	200	1	
85 M		0.84	1.58		-3	117	727	245	47	9	25	
06	801.78	6.07	1.5%		-3	11	245	245	47	9	2	
92	905,41	. GO,	න න 		1	Ξ	745	248	CIL)	213	r	
100	91.00	50.	١,٩٦		-3	111	745	243	90	10	12	
105	915.90	1.05	20.		2-	113	-W.	226	55	29	2	
110	319.65	135	200.		-3	117	542	245	X	(,3	5	
115	31.026	0.92	74		<u></u>	113	542	245	7	603	K.	
120	923.71	0.45	71		-3	113	22	225	7	700	r	
1101=0	Vm=93.41		<u>Λ</u> Η=1.7.1	~		Ts=117.13				*	下でいって	

	Nozzle Calibration	Date	Calc		(20)	200	000		-00		
Tm-51.75	No.	Tech		Nozzle No.			2		m	Avo. in.	
					Nozzla Dn	ווס בידור בווו	0 73				
		Components			Fifter No Nozzie No Nozzie Dn		114				
		Sample Train Components					20000				
				cc/min :	at 15 in Ho		0				
Ts=1/7.13		ORSAT System			Bag Vol		100				
100					Bag No.		-				
1		n Times			End Time	100					
ΔH=		Test Ru		į	Start Time	- W.V.	500				
		ser	Moieture	DING:	Content	12 1001	0 0 0				
Vm-D>,41		Initialization Values	Ovvoen	5000	Content	10	9				
N= N		ᅩ	Mater	1	emp w	7	P				
						Rin 1	1000	Run 2			

Impinger		Moisture Re	scovery Data as	Moisture Recovery Data and impinger content information:	ntent information	on:		
t. 9 388 3 519. 8 719. 6 714. 7 757. 4 15. 5 741. 7 757. 4 16. 5 8. 8 5. 5 5. 6 741. 7 757. 4 16. 5 8. 8 5. 6 5. 6 5. 6 5. 6 6 6 6 6 6 6 6 6 6 6		-	2	ო	4		9	
101.3 46.3 9.8 3.1 74.7 757	Final wt., g	90% 3	B.9(2	7616	5.101	247.7	727 (71.5
107.3 46.3 8.8 3.1	. 7	751.5	164.5	3756	7637	74.0	1220	135
	Difference	107.3	463	8.6	3.		21	0.7

ACTIVI	USCEM
- AN - AN -	000
	700 54

A	ACEM	197 125		
				,
S C			184.4	
בייונימיון	L hhb.	9767	4	
,	7115	764 8	-0.7	
0	757. (6	757	1.3	H2SO4/KMN04
,	してわし	74.3		
-	7663	763.2	3.1	HNO3/H2O2
0	7516	3756	8.8	
7	P. 10. 15.	764.5	463	1 N KCI
	36.3	61.5	5.10	

Method 5/Ontario Hydro FIELD DATA SHEET

1. Hg Imp TCS # 78847 0 0.84 Probe Lgth Bar. Pres Stat. Pres Liner Type: MGlass S.S. Other Probe ID 572 Pitot No. Pitot Cp 4563 Orifice H@ Operators MTW/PMP/JARZ Meter ID Meter Y ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack A SV014 3/20/17 Test No. Project Date

(cfm)	O in Hg	G in Hg	×
Sample Train Leak Rate (cfm)	Pretest る , つつ at	Posttest 0.00 at	Pitot (3 in.) Pos. Nog.
6	 		3843

7.7

_		_	T	T-	_	_	T		_	_		T		T	_	_	_	_	_	_	_	_	_	_	T	Ť	
Oxygen	Content,																										
	Meter	1 1 1 1	57	V	V	25	58	2	2	0.5	000		20	20	709	107	S	7,0	3	60	Colo	(10)	3	50	5.5	(0)	Tm-(04.03
tures, °F	Meter		15	(100)	(27	170	3	20	29	0)0).	6.	200	6.9	(-0	200	CR) - -	Ē	11	72	20	77	1-	F	06	٥٢	
Sample Train Temperatures, °F	Impinger Outlet		09	00	60	27	100	000	00	200	17	2	P.	T	3	2	2	r	22	S.	4	23	2	2,2	\$	T	
Sample	Filter		27	7 410	1111	シスト	246	246	25.10	ってん	しかる	120	יחת	133	225	the sale	276	243	245	142	25	27.3	247	246	842.	225	3 TO 1
	Probe		752	121	740	727	745	272	225	725	245	24	246	245	200	744	245	7,11	245	7410	725	225	25/4	727	245	シゴク	
Stack	Temp.		711	112	2	1.3	113	112	113	114	12	Ā	12	112	7	و	2	1/2	11.	1.5	15	12	و	117	1.0	115	Ts= 114,1
Sample	Vacuum, in Hg	Common of the	p-:	7	7	7	7	77	Ŧ	7	71	7	71	7-	71	171	171	7-1	7-	7-	7	コー	77	n-	7,	7	
Ideal	Meter Volume		XX																						7	2	
Orifice	ΔH, in H ₂ O		2.03	2.03	200	2004	1.73	1.74	20,7	1.00	1.82	100.1	25-	1.53	1.64	19.1	10)-	1.62	1.45	1.43	1.70	[:13	11.11	1.73	1.56	55.	2L-1-H∑
Velocity	ΔP, in H ₂ O		1.10	01	1.10	1,10	0.93	093	00.1	0.00	960	0.97	0.84	20.0	6,8%	76.0	L8:0	L8:0	6.78	LL.0	0.4	0.93	25.0	6.63	D. 9. 0	280	100
Meter	Volume vm, rr	SO.12P	927.85	75172	935.54	75.125	<u> </u>	95.94	93.18	953,87	997.51	961.13	964.50	961.98	971.31	974.78	91.81		5	00.836	विसा ६०		999.63	100 H	1005 52	0 6 8001	Vm=94.95
Sample	Time Δ1	1043	c)	10	15	20	25	30	35	40	45	20	55	09	99	70	75	80	85	06	92	100	105	110	115	120	0=11-00
Sample	Point		1-1	2	3	4	5	9	2-1	2	က	4	5	9	9-1	2	က	4	ß	O	4-1	2	ო	4	ω	φ	

Nozzle Calibration	Date	250					MOW!	111	0		
No	Tech		Nozzle No.				c	7	6	,	Avg. in.
					Nozzle Dn		2100	1			
	Components			:	Nozze No.		- V				
	Sample Train Components				Filter No.		1000	1			
			cc/min *		at 15 in Hg		0 6				
	ORSAT System			2.00	Bag Vol		Cool	1			
				100	Bag No.		レーナ				
	Run Times			The Times	End Lime		250				
	Test Ru				Staff Time		^ 10				
	nes		Moisture	Contont	Content	(CV)	0/0				
	Intialization Val		Oxygen	Contont	COLITE	70.1	200				
		8.6-4	Meter	Lower		-	2				
						7 41.0	מחצ	0 000	Z IIIV		

DSCFM	151307
ACFM	991051
	-0.77

Total			.183		
Desiccant	956-1	975	3		
7	5 PP.	2000	7.5		
9	128.5	7187	100-1	H2SO4/KMNO4	
2	7.00.7	265.6	3		
4	こっきて	727.0	100	HN03/H202	
	163.4	249.0	14,4		
2	4010	764.9	2015	1 N KCI	
-	0,028	7121	96.8		
Impinger	Final wt. g	Initial wt., g	Difference		

Moisture Recovery Data and impinger content information:

		0		
Total			. 463 6	
Desiccant	952-1	6 526	8	
7	5 PH.	5.000	75	
တ	1287	חממר	1.0-1	H2SO4/KMNO4
2	7.086.7	265.8	3	
4	てきてしてきて	727.0	1	HN03/H202
37)		249.0	14,4	
7	2010	764.9	グログ	1 N KCI
	830,0	757.2	Ference 96.8	
nger	al wt. g	al wt., g	erence	

Method 5/Ontario Hydro FIELD DATA SHEET

Posttest 0.00 Imp TC5843 in H₂O in Hg # 78,47 0. 0.84 Probe Lgth 5.2 Bar. Pres 7/20/17 Operators MYN/ LMD/TINE Liner Type: Chicass CS.S. Dither Probe ID Pitot No. Pitot Cp 5110. Orifice H@ 19587 Meter ID Meter Y ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack A SV014 Project Test No. Date

in Hg Sample Train Leak Rate (cfm)
Pretest O O at O in Hg at at Pitot (3 in.) Pos. KNeg. 环

Oxygen	Content,																										
0	Meter Co		50	100)	50)	60	5	(05)	150	200	ee	و	000	2	رح	(67	75	89	Co8	89	n S	89	ea	30	وه	70	Tm=(91.50
res, °F	Meter Inlet		40	20	2	7	E.	-	9	20	=	76	26	12	207	ユル	27	74	75	75	72	9	17	20	6/.	3	
Sample Train Temperatures, °F	Impinger Outlet	N N N N	15	P	46	22	77	47	70	17	70	8	5	F.	S.	7	2	25	25	25	33	53	55	2	27	\$	
Sample Ti	Filter		342	12	245	245	244	250	242	777	245	245	んさ	など	246	25	27.0	242	242	243	248	245	245	542	245	747	
	Probe		25	2416	245	ンスト	245	277	228	245	245	シュル	246	225	246	22	375	942	243	SHZ	247	245	245	245	245	MC	
Stack	Temp.		75	II C	7	2	116	Ī	9=	200	11.	-10-	2	-	117	117	115	911	3	100	١	و	114	114	113	112	Ts= 115.%
Sample	Vacuum, in Hg		-3	1	r	7	5	1-1	ch	the state of	2	2	2	2-	12	h	£2	- 3	7-	7-	- 3	-3	-3	-3	٧٠/	-3	T
Ideal	Meter Volume		NA							_																>	
Orifice	ΔH, in H ₂ O		1.79	08.	172	1.73	7251	1.43	150	01.1	- P.S.	- PS	52:1	1.25	1.77	1.90	PT 1	1.79	1.42	1.48	201	1.79	202	2.07	1.87	27.	<u>अ</u> भु.] = <u>म</u> ⊽
Velocity	ΔP, in H ₂ O		0.97	96.0	0.93	6.93	28.0	LL.0	0.39	726.0	0.90	6.87	0,67	6.67	0.95	(M.97)	0.96	0.96	0.76	61.0	0.95	0.90	01/0	<u></u> 2	0.97	76.0	Ā
Meter	Volume vm, π	9.45	13.09	16.78	75.02	13.83			33 34	5741		44.37		7	53.87	57.49	61.15	64.80	200	35	01.77	05,25	8730	\dashv			Vm=gh, B
Sample	Time Δ1	1519		10	15	20 1	25	30	35	40	45	50 6	55	09	65	20	75 6	80	85	06	95	100	105 20	110	115		0=526 V
Sample	Point		1-1	2	က	4	5	9	2-1	2	,w	4	2	9	3-1	2	က	4	2	9	4-1	2	ო	4	2	ဖ	

												Š	Nozzle Calibration
		Initialization Val	nes	Test Run Times	n Times		ORSAT System	_	Sample Train Components	Components		Tech.	Date
	Meter	Oxygen	Moisture					cc/min *				Nozzie No.	
	Temp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	Bag Vol at 15 in Hg	Filter No.	Nozzle No. Nozzle Dn	Nozzle Dn	,-	1 1
Run 1	2	19.60	95.6	13.19	1276	A-3		0.0	400690	4	217.0	2	5//
Run 2			**************************************									m	
												Avg. in.	

Air Flows	DSCFM	155302
Air	ACFM	196587

174.8

H2SO4/KMNO4

Total

	Moisture Re	Moisture Recovery Data and imping	nd impinger co	ntent information:	on:				
Impinger	-	2	3	4	5	9	7	Desiccant	
Final wt., g	8.68.9	20121	706	1288	7553	I.A.	757.3	9256	
Initial wt., g	753.0	7550	7015	7 00	154.0	158.5	758.60	43% 6	
Difference	15,3	\$ \$00°,1	6 77	9	- 12		2 1	2	

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

		ll ll	MPINGE	K KECOV	EKY			
Project Arcel	or Mittal			Date 3/3	19/17			
Project No.				Operators	BAN			
Source Star	K B SVD	15		Sample Loc	cation			
TEST 2			IMPIN	GER VOLU	MES		0	DRY
RUN 1	1	2	3	4	5	6	7	COLUMN
KON	g	g	g	g	g	g	g	g
START.	800.5	770,7	755.5	765.8	743,0	760,4	765.5	941.6
END	932,4	806,5	761.4	766.9	742,7	760.0	765,5	949581
CHANGE								800
				MA	SS OF MOI	STURE COI	LECTED, g	
TEST 2		ř.	1	GER VOLU	1		Ĭ.	DRY
RUN 2	1	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g	g	g
START.	760.5	762,8	760,5	734.5	768.0	749,4	802.7	948.3
END	887.0	802.3	767.0	739.2	768.9	748.9	801,1	964,4
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
TEST 2			E.	GER VOLUI	E 3		r _	DRY
RUN 3	11	2	3	4	5	6	7	COLUMN
07407	g	g 1000	g 7// 12	g	g	g	g 7/12 0	g
START.	760,8	750.9	766.0	764.1	756.1	761.6	7629	958.4
END	870,7	805.6	776.8	768.5	757.3	762,5	762,8	974,0
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
			IMPINI	GER VOLUM	AEC			227
TEST	1	2	3	GER VOLUI	VIES 5	6	7	DRY COLUMN
RUN 4								
START.	g	g	9	9	g	g	g	g
END								
CHANGE			l					
CHANGE								
CONTRACTO					12 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		- I - TO - CATET	
COMMENTS								

Method 5/Ontario Hydro FIELD DATA SHEET

in Hg Pretest 6.00 at /O in Hg Sample Train Leak Rate (cfm) Pitot (3 in.) Pos. KNeg. Posttest 0 & 3 Imp TcS843 -0.90 in H20 28.63 in Hg 0.84 Probe Lgth Bar. Pres Stat. Pres Other Probe ID 5-2 AND Liner Type: Glass B.S. Pitot No. Pitot Cp 1.9583 Orifice H@ Meter ID Meter Y Operators 7 A14 ArcelorMittal Minorca Mine Smpl Loc Furnace Stack B SV015 Run 29 177 Test No. Project Date

		_	T	_	_	T	_		_		1			_	_	1		1	- T	T-	_	_	Т	_	_	1	
Oxygen	Content,	-																									
	Meter		72	200	70	49	44	6	20	10	in	15	te	1	15	S	14	75	25	25	250	53	(-)	22	55	12	Tm=53,71
rres, °F	Meter		3	2	53	55	15.15	T.	23	رح	25	S	53	45	55	5	200	0:	30	20	T'V	54	16	56	0	. 3	525
Sample Train Temperatures, °F	Impinger Outlet		26	32	2 63	33	27	3.5	20	33	4	36	70	3	39	7	7	715	47	11/2	27	7	2	27.7	<u>ر</u>	7	,
Sample T	Filter		642	272	55	242	245	743	126	542	220	243	-547	245	243	23.6	142	145	246	243	246	244	274	543	74x	248	1 213
	Probe		27.2	246	244	244	162	27.2	the	243	246	244	101	245	741	242	240	hh2	2176	242	542	245	376	246	245	542	
Stack	Temp.		71-	2	113	(13	113	113	113	113	113	113	13	113	11.3	(13	13	113	52	(1.5	113	エー	113	211		-13	Ts= 113,08
Sample	Vacuum, in Hg		2.0	2.0	0	3,0	3,0	5.0	3,0	3.0	3:0), 0	3.0	3,0	2.5	3.5	27	5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	5.0	
Ideal	Meter Volume		42	_																							
Orifice	ΔH, in H ₂ O		19.	ر و	1.51	1.51	1124	ا ، كاد	1.91	1.6:1	1.92	2,31	19.	9	201	2,00	2,10	2110	7.12	1.92	ایل:ا	1,79	1.74	1.6%	1.43	1.44	AF= 1.74
Velocity	ΔP, in H ₂ O		0.89	(A)	0.84	「かつ	16.0	199.0	1.05	755	1105	1.10	0.80	3° 0	ر (ن	0	51.1	1.15	1,05	(.05	6.95	0.98	6:45	76.0	0000		
Meter	Volume Vm, π ^τ	94.00	24, CP 04	100,80	104.15	えいしの	110.34	113,30	16.90	120 05	114.22	127.94	13/136	134.30	130,45	142,34	14,65	149.45	153.59	157.75	المو، ماه	しとからな	163.10	171,53		171.94	Vm= 83,91
Sample	Time Δ1	37HS	5	10	15	20	25	30	35	40	45	20	55	09	65	02	7.5	80	85	06	92	100	105	110	115	120	N 87 = 0
Sample	Point		1-1	2	က	4	υ	ဖ	2-1	2	m	4	2	9	9-1	2	က	4	r.	9	4-1	2	ო	4	5	9	

		Initialization Values	nes	Test Rui	Test Run Times		ORSAT System	1	Sample Train Components	Components		Tach	Date
	8.6.4							ı		on including			Calc
	Meter	Oxygen	Moisture					cc/min *				Nozzle No.	
	lemp	Content	Content	Start Time	End Time	Bag No.	Bag Vol	at 15 in He	Filter No	at 15 in He Filter No Nozzle No Mozzle De	Mozzie De	-	
2000	All agents	100	1400	1	100			0		TOTAL INC.	ווח בודיהוו		
100	0	12. 20	200	V 1 1 0	ここと	1/2	1000	3.0	10/00/	7	2000	c	1-1
0 4110)	5000	-	120	7	71
7 110												6	
												>)
												Avo in	

	ŀ
content information:	
and impinger content	,
)ata	,
Moisture Recovery [7
м	

200		7	,	,	0	0	,	Desiccani	0.23
Final wt., g	426 P	Sev.	5.3	1000	1777	7600	いくいろい	046	
Initial wt., g	500	7.02	7555	7658	145.0	100gt	765,5	01110	
Difference	131.9	35.8	5,6		500-	P. 0 -	0	16.65	16,00
		I N KCI		HNO3/H202		H2SO4/KMNO4			

	W.	5
SWOIL IIV	DSCFM	150 48
2	ACFM	しかしのし

Method 5/Ontario Hydro FIELD DATA SHEET

Pretest O co at 15 in Hg
Posttest O CO at 5 in Hg Sample Train Leak Rate (cfm) * Pitot (3 in.) Pos. Neg. X Imp TC5843 in H₂O in Hg 26.63 0.90 0.84 Probe Lgth Stat. Pres Bar. Pres Other Probe ID 5 · 1 Pitot No. 5 -2 Rmp/JARL Liner Type: AGlass IB.S. Pitot Cp 1.0113 1.9333 C- 9 Orifice H@ Meter ID Meter Y TAK ArcelorMittal Minorca Mine Run Furnace Stack B SV015 3/29/17 Operators 7 Smpl Loc Test No. Project Date

Oxygen	Content,																										
	Meter		را	ty	100	100	60	0	100	12	200	100	L'S	3	35	79	200	89	5	000	00	S	70	70	70	2	Tmto7.85
ures, °F	Meter		211	19	2	2	100	62	000	70	r	26	7	72	0	17	20	7	בור	77	ה	2	5	平	זת	2	
Sample Train Temperatures, °F	fmpinger Outlet		40	20	2	77	42	74	22	1,7	42	43	22	25	ーず	727	الم	43	43	273	47	23	2	プラ	43	5h	
Sample T	Filter		376	245	720	240	246	222	14.7	747	246	カベン	245	246	248	244	245	CHZ	245	245	747	707	243	777	51,4	245	
	Probe		740	244	105	the	216	244	245	77.4	747	245	200	777	272	244	くろ	245	245	22	245	546	246	246	24%	243	TAN SAN
Stack	Temp.		13	111	111	51,1	[13	7.	711	112	101	12	117	113	711	111	112	711	14	11	1.1	1	711	111	111		Ts= 112.0
Sample	Vacuum, in Hg		20	3.0	3,00	3.0	2:0	200	3.5	W	C	5	~	en	3	3	2	3	3	2	3	5	2	N	3	3	Y
Ideal	Meter Volume		NY.	-																						7	
Orifice	ΔH, in H ₂ O		20'-	1,30	1.68	5.6.3	1.56	09.1	1,96	205	206	206)%/	1.83	107	1.98	ا رئ	က တ	1.65	<u> </u>	1.105	Ch.)	1.64	١, 6 ٦	1.40	1.37	اجار]=HΣ
Velocity	ΔP, in H ₂ O		t 6.0	0.93	0.91	160	O. 34	0,86	507	1.10	1,10	(. lo	9.50	1200	<u>ر.</u>	1.05	6.99	0.	129.0	6.83	0.87 m	#3600	しゃ.0	O.0%	41.0	21.0	7
Meter	Volume Vm, π	35.40	181.95	185 62	139,15	192.55	195,80	199.6	102.87	200-75	2007	214.63	70.79	121.94	25.80	229.61	233.29			244.09		120.95		201.19	20.107	12.4.27	Vm=&5.81
Sample	Time Δ1	5501	2	10	15	20	25	30	35	40	45	20	55	09	65 7	70	75 7	08	82	06	いる。また。これで	100	105	110	115		DILY!
Sample	Point		1-1	2	က	4	49	9	2-1	2	က	4	5	9	3-1	2	က	4	2	9	4-1	2	60	4	ιΩ	9	

o lo			Initialization Val	1		i							Ž	Nozzle Calibration
Meter Oxygen Moisture Temp Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. 1 5 10,0 0,0 10,0 0,0 10,0 2 2 6 0,0 10,0 0,0 0,0 0,0 0,0			ווווומווקמווסוו אמי	sani	I est kui	I Imes		ORSAT Syster	3	Sample Train	Components		Tech	Oato
Temp Content Content Start Time End Time Bag No. Bag Vol at 15 in Hg Filter No. Nozzle No. 1 1 2 2 2 2 2 2 3 2 2 3 2 3 3		Meter	Oxygen	Moisture									Nozzle No	
2 57 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,		Тетр	Content	Content	τ	End Time	Bag No				Nozzlo No	Nozzlo Da		
2 5 T 14,5 10,0 10,0 12,0 12,0 12,0 12,0 10,0 40,0 10,0 10,0 10,0 10,0 10,0 10	0,10	1		1		1000					NOZZIG INO.	יייטלבופ טוו	-	
2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	שמוו	2 +	5.5	0	により	727	RIL		0	10011001	B-	5.7.13	c	()
	Rin 2						1			3 7 7	-	1	7	3
Avenia	7 1011	-											ო)
													Δ. Ο. Α	

Moisture Recovery Data and impinger content information:	3 4 5	20 2023 167.0 18.2 768.9 1440	1.5 Tel. 6 1605 7.45 2.600 3.705 2.1001	50- 50- 60 1-1 000 500 500
Moisture Recover	-	\$27.5°	25- S-621	124.5 3
	Impinger	Final wt., g	Initial wt., g	Difference

Air Flows	DSCFM	158586
Air F	ACEM	Iddoca

2 460

Method 5/Ontario Hydro FIELD DATA SHEET

Imp TC > 드 도 도 # 20.63 0.84 Probe Lgth Bar. Pres Stat. Pres 2.5 2.5 Other / Km / / JA Miner Type: # Glass IS.S. Probe ID Pitot No. Pitot Cp 1,9583 1101 63 Orifice H@ Meter ID Meter Y 3/24/17 Operators MSN ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack B SV015 Project Test No. Date

	Sample Train Leak Rate (cfm)	_
0	Pretest 0.00 at LO in	in Hg
2007	Posttest 0.00 at ≤ ir	in Hg
7 9	Pitot (3 in.) Pos. 🔁 Neg. 💢	

Oxygen	Content, %																										
	Meter Outlet		726	26	72	-	7	1	-1	ŗ	ī	ř	70	83	و	S.	\\ \cdots	ev	es	88	25	60	(s)	750	S	65	Tm=coq.co@
tures, °F	Meter Inlet		72	72	13	26	73	74	71	412	75	12	ئ و	64	9	25	50	70	69	89	3	(23)	وط	B	59	20	
Sample Train Temperatures, °F	Impinger Outlet		72	77	29	411	- 2	77	7	Z	7	77	4	75	7	-7	ī	7	45	276	にろ	40	25	77	47	71-	11.50
Sample	Filter		77	146	S.	Zyle	5	SEO E	223	Mis	245	24	云	245	245	いれ	243	242	SHS	245	542	243	25	THE	245	24he	
	Probe		2HS	725	746	245	246	3	245	740	200	245	2410	245	747	したっ	22	244	242	H	245	242	241	245	245	275	
Stack	Temp.		I	111	111	711.		711	7:1	112	111	711	711	112	111	7211	711	112	112		112	117	113	[13	115	113	Ts=(11.48
Sample	Vacuum, in Hg	- 1	0.5	2	u	c	W	2	3	3	n	n	2	73	ψ	n	2	2	ы	M	ď	5	r	M	n	n	
Ideal	Meter Volume		VV																						_;	9	
Orifice	ΔH, in H ₂ O		1.83	31.1	1.68	71	天	1.34	01.6	1.00	2.11	102	162	1.69	1.09	1,78	1,78	35.1	1.000	08.	B	1,49	104	5.5	1.51		hし) =HV
Velocity	ΔP, in H ₂ O	38	∂ 0.00.0	6.93	0.98	6.90	07.0	010	01.	1.05	01.1	1.8	0.95	0.80	1.10	6.94	0.94	C,94	0.49	0,95	0.0 0.0	0.0	و د.86	ر ئ ئ ف	0.80	0.00	
Meter	Volume vm, rr	264.60		211.85	25.39	86.112.	781.12	785.29	784.74	793,12	22705	300.93	204 GT	308.17	311.80	35.55	319.10	322.45	376.30	329.93	933.30	336.60	339.96	342.75	346.76	350,05	/m=Dン、イン
Samble	Time Δ1	130H	2	10	15	20	25	30	35	40	45	50	55	09	65	70	75	80	82	06	95	100	105	110	115	120	の=プランm=カルメル
Sample	Point		1-1	2	e	4	5	9	2-1	2	6	4	5	9	3-1	2	က	4	2	9	1-4	2	က	4	2	ø	

Nozzle Calibration	Date			8001	>	
Nozzle C	Tech.	Nozzie No.	-	2	8	Avg. in.
	F	\perp	Nozzle Dn	2.213		
	Sample Train Components		Filter No. Nozzle No. Nozzle Dn	1-6		
	Sample Train	T		400 695		
	m	-	at 15 in Hg	0.0		
	ORSAT System		Bag Vol	1001		
			Bag No.			
	Test Run Times		End Time	スプ		
	Test Ri		Start Time	1201		
	alues	Moisture	Content	9.5		
	nitialization Va	Oxygen	Content	[4.3		
		Meter	Temp	Ē		
				Run 1	Run 2	

Impinger		2	c	4	4	9	7	Docionant	L
Final wt., g	50.00	805.6	1768	7.807	7573	2701	762.5	974.0	-
Initial wt., g	3.0°L	500	35	7,64.1	- 550 -	766	2529	8 रहे प	_
Difference	6.60	アマ	10.3	1	12	0.0	1.01	17	-
		1 N KC		HNO3/H202		H2SO4/KMN04			4

NCT IN	DSCFM
7	1000

197,4

Total

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

		•	WIT HAGE	IN INLOOV	LIXI			
Project Arce	Jory Hal			Date 3/	28/17			
Project No.				Operators	BALV			
Source Stac	KC SU	216		Sample Lo	cation			
тест 3			IMPIN	GER VOLU	MES			DRY
RUN 1	1	2	3	4	5	6	7	COLUMN
	g	g	g	g	g	g	g	g
START.	751.0	752.8	7535	759,3	761.9	755.0	751,0	949,2
END	869,3	809,6	768,3	764.8	763,0	752,3	747,6	970,4
CHANGE								
				MA	SS OF MOI	STURE COI	LECTED, g	
			18.45518.1	0=5.401.11				1
TEST _ S			1	GER VOLUI	1		ĩ -	DRY
RUN 2	1	2	3	4	5	6	7	COLUMN
START.	7(0.0	158.5	755,3	732,5	725,0	762,1	g V V	964,8
END	889,7	800.1	764.5	739 1	726,7	764,1	755.4	983,4
CHANGE	281, 1	800,1	16713	137,1	120,1	167/	753.5	103,7
CHANGE	1			MA	SS OF MOI	STUDE COL	LECTED a	
				1917	100 01 1001	JIONE COL	LLCTLD, 9	
TEST_3			IMPIN	GER VOLUI	MES			DRY
RUN 3	1	2	3	4	5	6	7	COLUMN
NON 5	g	g	g	g	g	g	g	g
START.	755,6	749.9	761,2	761,0	758.6	761.8	755,1	922,2
END	887.8	789.1	770.0	765,6	760,6	762.3	9752.3	943,3
CHANGE								
				MA	SS OF MOIS	STURE COL	LECTED, g	
	1			0=0.10111	150			<u> </u>
TEST				GER VOLUI	()	0	1 -	DRY
RUN 4	1	2	3	4	5	6	7	COLUMN
START.	9	g	g	g	9	g	g	g
END								-
CHANGE								
OTIVITOL								
COMMENTS								
COMMENTS								

Method 5/Ontario Hydro FIELD DATA SHEET

Sample Train Leak Rate (cfm) Posttest(), W Imp TCTOin H₂O in Hg 20.85 Bar. Pres 28.47
Stat. Pres -0.85 0.84 Probe Lgth Liner Type: GGlass G.S. Lother_ 5-5 Probe ID Pitot No. Pitot Cp 17371 Orifice H@ Meter ID Meter Y Operators MSW/RAMP BARZ ArcelorMittal Minorca Mine Smpl Loc Furnace Stack C SV016 Run Test No. Project

Pretest O.OO at |O in Hg o in Hg X Pitot (3 in.) Pos. Neg.

Г		Т	_	T	Т	Т	_	T	_	T	_	1	T	T-	1	_	1	T	T	I	T	1	T	T	1		
Oxvoen	Content,																										
	Meter		25	49	2	2,2		77	5	2 2	277	,	138	11	22	2	2	C	25	5	47	1	2	7	5	7	Tm=51,60
tures, °F	Meter		49	77	22	7.5	E C	20	77	2	P	17	2	F	7	5	5	5	20	22	Se	1	6,0	09	10)	200	
Sample Train Temperatures, °F	Impinger Outlet		53	र	C	3	3	in the	SB	NO	C	200	200	S. C.	5	4	57.	S.	53	C	5	250	573	25	00	-0)	
Sample	Filter		いだ	241	745	745	127	725	125	720	700	シズケ	2770	123	222	225/	745	245	246	544	245	747	22	753	2410	25	
	Probe		244	245	245	25	275	75.	225	744	, ID 6	245	747	2.5	7,46	542	744	747	22	320	246	370	ったっ	745	13	245	
Stack	Temp.	To the second	5	3	2	100	6	2.	Z	0	118	5	111	3	-		2	-1	13	17	7	711	117	<u>-</u>	117		7s=117.6
Sample	Vacuum, in Hg		۲	7.	3	7	2	7-	7-1	7	7	7-	7-1	7	7	1.1.	2,	7	n.n	7	2	71	7-	11	15	5	
ideal	Meter	*	12																						1	3	
Orifice	ΔH, in H ₂ O		1.67	1.63	9	55	1.39	1.38	5	1.67	15:	1/1	27.	30	1.52	١.۶٠	1.42	7	1.29	3	1:55	- 52	346	51.	1.37		ΔH= .47
Velocity	∆P, in H₂O		0,96	0.97	0.96	0.94	6.93	26.0	0.95	76.0	0.90	0.00	0.10	6.77	0,90	16,0	ð.64	0.80	0.16	6.77	0,91	26.0	13.0	0.87	0.80	79	<u> </u>
Meter	Volume Vm, rr	689.30	10.250	C11.0170	100 Cari	26.70	706.11	709.16	72.52	18.50	19.20	12.34 L	725.65	PL 377	752.02	735.36	138.64	141.90	124.97	747.99	151.32	21.450	138. S	0 7 9	764.55	767.69	Vm=78.39
Sample	Time Δ1	080H	5	10	15	20	. 52	30	35	40	45	20	55	09	65	. 02	75	908	85	06	95	100	105	110	115	120	NO! =Ø
Sample	Point		1-1	2	က	4	2	9	2-1	2	ဇ	4	5	9	3-1	2	m	4	ω	ω	4-1	2	m	4	22	9	

	<u>, </u>	nitialization Val	lues	Test Rur	n Times		ORSAT System	H.	Sample Train Components	Components		Tech	Date
	Motor	Commen	B. S. Land					ı					2000
	NG C	Cxygen	Moistare					cc/min *				Nozzle No.	
	Temp	Content	Content	Start Time	End Time	Bag No	Ban Vol	at 15 in Ho	Filter No.	NozzoNo No	Alound Da	,	The state of the s
	-	197 8.4	10-	100				200	· HECK	NOZZIE NO.	NOZZIE DIE		000
	200	0/50	9.5.6	2000	70	1	1 00	3	100001	1-1	0100	c	1
Dirio o							100	,	1000	5	0110	7)
												۳;	*
												,	1

Moisture Recovery Data and impinger content information:

			H2SO4/KMNO4		HN03/H202		- N KO		
1	7	1	100						
711 6	0.17	ナット	-27	-	5.5	25	76.0	1.60	Difference
	419.7	751.0	765.0	761.9	759.3	753.5	3:450	51.0	Initial wt., g
	4204	コイント	151.3	202	3.40	C8.3	9	^	Final W. g
Tota	Desiccant	7	9	c)	4	ო	7		Impinger

	SCFM	050	
SWOLL IS)SO	156.0	
Ŧ.	ACFM	25,690	

Method 5/Ontario Hydro FIELD DATA SHEET

Pretest 0 . CO at | C in Hg Posttest 6 - 00 at Co in Hg Sample Train Leak Rate (cfm) Pitot (3 in.) Pos. MNeg. Imp TC TTO - in H₂O in Hg 78.47 70.85 0.84 Probe Lgth Bar. Pres Stat. Pres 5-5 Liner Type: MGlass CB.S. IOther Probe ID____ Pitot No. Pitot Cp 1.0044 19371 Orifice H@ 3/14/17 Operators MJN / RAND/TARZ Meter ID Meter Y ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack C SV016 က Project Test No. Date

Oxygen	Content,														Γ				T								
ó			6	1									-													\	523
	Meter		0	2	V	200	V	25	22	12	150	2	9	(0)	9	62	29,	63	3	20	S	150	19	65	1,2	65	Tm= 63.25
tures, °F	Meter		53	E	(00)	64	63	10)	09	Cou	est	(00)	2	27	75	3	000	10	70	F	70	0	603	9	Co	e	
Sample Train Temperatures, °F	Impinger Outlet		p 0)	20	607	\	3	ē	107	000	5	5	200	23	The state of the s	57	2	2	25	5	56	r	20	- '')	29	63	H. I.
Sample 1	Filter		737	152	7010	220	226	247	245	245	245	245	22	727	77	22	2460	777	245	272	245	245	25	245/	226	77	
	Probe		5172	245	240	らず	25.5	1 E	247	745	245	220	220	245	77.4	777	223	246	577	244	577	725	277	245	223	245	
Stack	Temp.		2			116	2	20	Ī	117	30	1		4(7)	1117	117	117	-	<u></u>	1	117	111	3	811	3/1	116	Ts=117.0
Sample	Vacuum, in Hg	LA AA	かられ	NATION N	\ \ -	1/2	5	-5	-5	15		4	7-	ות	25	5-	14	5-	~	1	la I	5	1.7	1	-5	15	
Ideal	Meter		PO	_																					7	,	
Orifice	ΔH, in H ₂ O		1.67	0,9	1-64	1.54	1.30	1.23	1.55	. 3	1.42	1.39	1.17	1.17.	1.54	ج.	1.5%	1.58	1.35	1.32	- 20	00)	- 500	67	1,41	1.37	√H=1, 47
Velocity	ΔP, in H ₂ O		0.96	0.95	76.0	0.93	81.0	6.11	56.0	55.0	6.65	0.93	0.70	OL.0	26.0	らびら	0.93	0.94	080	27.0	0,94		0.94	9	58.0	0.81	7
Meter	Volume Vm, π	768.05	171.51	74.90	178.77	391.66	185.15	196.10	791.75	10.58	3.22	601.29	Boy 1.1			M3.80	817.18	7	823.75	2	030,30	623.7		$\overline{}$	843.90	_	Vm= 9.10
Sample	Time Δ1	1043	2	10	15	20	25	30	35	40	45	909	55	909	65	70	7.5	80	85	06	96	100	105	110	115		N 851=0
Sample	Point		1-1	2	က	4	2	9	2-1	2	က	4	c)	9	3-1	2	က	4	2	9	4-1	2	m	4	2	9	Q.

		Initialization Valu	Jes	Test Ru	Jun Times		OBSAT System		Comple Train	400000000000000000000000000000000000000			NOTES CANOLAGO
				20.00	Sall Hilles		CINCAL System		Sample Italia Components	Components		ecn.	Date
	Meter	Oxygen	Moisture	į				cc/min *				Nozzle No.	
	eule	Content	Content	Start time	End Time	Bag No.	Bag Vol	at 15 in Hg	Filter No. Nozzle No. Nozzle Dn	Nozzle No.	Nozzle Dn	_	
un 1	55	929	%0.0	1043	150	1.1	10101	COU	40000	1-2	0.00	C	1000
Run 2									1)		10	2
												o	
												Area in	

Moisture Recovery Data and impinger content information:

nt Total			2077	
Desiccant	4634	200	50.00	
7	253.5	7554	0	
9	100	767	7	H2SO4/KMNO
5	726.7	725.0	ニ	
4	- 37	72.5	3	HNO3/H2O2
က	513	755.3	7.7	
2	3	756.5	41.3	1 N KCI
-	2001	0,00	129.7	
Impinger	Final wt., g	Initial wt., g	Difference	

SWS	DSCFM	150028
Air Flows	ACFM	703119

Method 5/Ontario Hydro FIELD DATA SHEET

Pretest 0 - 00 at /O in Hg in Hg Sample Train Leak Rate (cfm) Þ ₩ T Pitot (3 in.) Pos. IXNeg. Posttest 6.00 Imp TCTTO in H₂O 28,47 in Hg 10.8 0.84 Probe Lgth Bar. Pres Stat. Pres Operators MTM/RMP/37AR-2 Liner Type: WGlass CS.S. Cother Probe ID Pitot Cp Pitot No. アナス 1.9371 S Orifice H@ Meter ID Meter Y ArcelorMittal Minorca Mine Smpl Loc Furnace Stack C SV016 Run 3/20/17 Project Test No. Date

Oxygen	Content,																										67.08 M	Nozzle Calibration	Date		1000	1001
	Meter		102	12	10	100	59	25	100	E	504	V.S	6.7	NS S	100	ک	2	200	99	Colo	200	200	67	73	107	67	Tm69.50	N	Tech.	Nozzle No.	- 0	1 6
ures, °F	Meter		63	150	وا	20	200	000	989	30	00	90	20	70	3	00	2	16	-	70	2,5	000	P	12	7	25	E SUPERIOR E			1	Mozzie Un	
Sample Train Temperatures, °F	Impinger Outlet		(9)	(20)	27	20	c	3	67	05	-	67	20	20)	20	20	(57	09	09	63	63	20	63	3	100	(05)			components	N Oirrold	NOZZIE NO.	
Sample 1	Filter		ンろ	220	226	245	77	277	74.9	249	245	9/17:	747	ろろ	228	747	スプ	245	241.	245	246	244	246	225	Zz	147			Sample Train Components	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 (3006.72	7
	Probe		なり	245	2415	なか	22	727	727	245	246	247	242	24%	127	247	572	245	242	777	n	24.50	245	246	817	245				cc/min *	6.0	
Stack	Temp.		117	25	- - - -	و	9	7	2	3	= 2)	_ 20	8	20	61	<u>ن</u>	5	20	611	51	<u>a</u>	122	521	121	511	121	E-18.€		ORSAT System	Roa Vol	Coo Coo	3
Sample	Vacuum, in Hg		77	7-1	7	1	5-	7-	7-	カー	7	7-	7-	1	b-	7	7	1	F	1,	7	7,	7:	7.	西	7-				Ban	(-3	
ldeal	Meter Volume		A.A																							7			un Times	Fnd Time	1576	
Orifice	ΔH, in H ₂ O	100	1.55	1,60	55.	ا.و-	\$ 36	1.34	1.39	1.59	1.49	74.1	124	1.25	77	1.47	1.30	1,31	. o.g	01.1	1.37	1.43	1.36	77	1.27	1.21	ΔH= 18 63	2	Test Rur	Start Time	13.19	
Velocity	$^{\Delta P}_{i}$ in 4 O		0.92	6.95	0.94	0.95	0.80	0.79	28.0	0.94	ତ,ଷ୍ଠ	0.84	51.0	0.74	6.84	78.0	177.0	77.0	0.64	0,65	0.91	0.85	0.85	2.21	0,75	75	HOLL PARKE		es	Moisture	11.00%	
Meter	Volume vm, π	S47.75	951.15	85455	35.39	861.35	264.60	867.80	871.0º4	874.45	877.39	281.17		887.17	990.39	993.61	896,70	899.79	40277	905.68	908.90	915.10	915.30	18.57	Š	7	S.C =mv		Initialization Values	Oxygen	19.5%	
Sample	Time Δ1	1319		10	15	20	25	30	35	40	45	20	99	09	65	20	75	80	85	06	96	100	105	110	115		275			Meter	20)	
Sample	Point		1-1	7	က	4	2	9	2-1	2	m	4	S	9	3-1	2	က	4	ιΩ	9	4-1	2	ന	4	9	9					Run 1	Run 2

	Moisture Re	covery Data at	nd impinger co	Moisture Recovery Data and impinger content information.	on:		
Impinger	۲	2	ო	4	S.	9	7
Final wt., g	55	1.000	3,37	LAC	7005	7853	757.3
Initial wt., g	755 6	6. PHC	2017	761.0	7000	300	1350
Difference	132.2	39.2	20.00	٦	2	0.5	27.63
		1 N KCI		HNO3/H2O2		H2SO4/KMN04	

DSCFM	14
SO	1503
ACFM	96. 479

Avg. in.

ONTARIO HYRDO D-6784-16 MERCURY TESTING IMPINGER RECOVERY

Project Acal	00114.1			Data 2	29/17				
Project No.	MITTA				BAN				
	1 75	100:							
Source Stac	Sample Location IMPINGER VOLUMES DRY								
TEST		۱ ۵	1	1	1		1 -	DRY	
RUN 1	1	2	3	4	5	6	7	COLUMN	
START.	759.3	761/3	g 762,8	750,7	725.1	765.8	9 758.5	971,7	
END	925,3	781.1	765.0		725.0	765.7	758,0	981.0	
CHANGE	(~)()	1011	160.0	[] et /]	743	160.31	13010	1000	
011/11/02			1	MA	SS OF MOD	STURF COI	LECTED a		
MASS OF MOISTURE COLLECTED, g									
TEST 4	T L) IMPINGER VOLUMES								
RUN 2	11	2	3	4	5	6	7	COLUMN	
	g	g	g	g	g	g	g	g	
START.	753,3	757.4	759.7	764,8	763, 6	767.0	754.3	944,2	
END	907.3	780,7	762,6	767.5	764.4	767,6	754, 2	958.8	
CHANGE									
MASS OF MOISTURE COLLECTED, g									
1.6			IN APPLIA	GER VOLUI	MEC				
TEST	1	2	3	GER VOLUI	VIES 5	6	7	DRY COLUMN	
RUN 3	g	g	9	g		g		g	
START.	759,0	755.1	761,0	734,3	725,D	764.8	758.7	949,0	
END	912,6	777.7	764,5	736.9	725.1	765,2	758,4	963,7	
CHANGE	11010		1611	,501		100,00	130/1	1	
MASS OF MOISTURE COLLECTED, g									
WINCO OF MOIOTOILE COLLECTED, 9									
TEST	IMPINGER VOLUMES							DRY	
RUN 4	1	2	3	4	5	6	7	COLUMN	
	g	g	g	g	g	g	g	g	
START.									
END									
CHANGE									
COMMENTS									

BARR

Project

Test No. Date

2363 Method 5/Ontario Hydro FIELD DATA SHEET

Bar. Pres Stat. Pres Pitot No. Probe ID

in H₂O 28.44 in Hg -0.95

in Hg GH G Sample Train Leak Rate (cfm) Pretest ©.00 at Posttest O, u J

Pitot (3 in.) Pos. Neg. Imp TC TZO-1 0.84 Probe Lgth AND TAK AMONDAGE Liner Type: Glass G.S. Other Pitot Cp בייםי. 1,93 Orifice H@ Meter ID Meter Y ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack D SV017 129/17 Operators

_		_		_	_	_	_			_						_											
Oxygen	Content,																										
	Meter		55	2 3	60	12	16/1	PS	0 6	14	9	, P	16	10	25	16	i	1	2	72	N	23	21/2	25	2	100	Tm= \$ 2.54
ures, °F	Meter		25	2	5	5 2	2 7	54	53	42	11/2	24	50	7.5	1	U	25	7.	5	29	55	575	5.7	113	57	1	
Sample Train Temperatures, °F	Impinger Outlet		32	32	15	1 1	in	32	3.2	12	33	33	3.3	24	34	3.4	37	7.5	2	9	36	35	3 6	3.5	360		
Sample	Filter		132	380	5 7 2	245	277	147	8 6 2	222	27.2	245	7 75	276	1.62	275	276	245	3	727	142	275	275	245	276	542	
	Probe		247	245	244	442	542	243	2 77	543	245	244	371	243	243	245	245	276	245	275	242	247	276	662	162	657	
Stack	Temp.		127	3~1	128	821	123	123	126	321	125	125	1.52	021	150	120	021	121	02!	021	021	121	127	121	120	120	Ts=/23.33
Sample	Vacuum, in Hg		3.0	350	30	1	3,18	J.	3,5	3.5	3.5	3.5	3,5	3:5	الم	3.5	3.5	3.5	3.5	3.5	70	300	3.5	300	2 . 5	3.8	
Ideal	Meter Volume		77.4															_								4	
Orifice	ΔH, in H ₂ O		06 0	160	0 00	360	060	0,90	1.18	611	1,70	9 -	150.1	1.63	1,26	1121	1:19	121	80')	1.07	30	1:25	1.77	1,79	1.16	811	ΔH= / . /
Velocity	ΔP, in H ₂ O		0.53	0,50	0.62	0.62	45.0	45.0	- 10	6.7	0.3	50.0	0.65	0,64	2000	10.79	40.04	0.75	40,0	0.66	0.73	0.0	C. 79	080	0.72	0,73	0000
Meter	Volume vm, tr	925,15	927.30	930.40	933	935.76	938.20	940.73	943.56	946.70	949.30	451.43	95513	957.75	260.65	963.77	966.70	969.75	_	4	978,13	286.12	967,17	41.17	9.50,10	992.95	na (+) = mn
Sample	Time Δ1	2460	ഗ	10	10	20	25	30	35	40	45	20	55	09	65	70	75	80	85	06	95		105	110	115		N 02 =Ø
Sample	Point	À	<u>+</u> -	2	т	4	2	9	2-1	2	63	4	2	9	3-1	2	'n	4	5	9	4-1	2	ო	4	c)	9	

Nozzle Calibration	C C	Dale	ON.		1	_	1	(()			
	Tool		Nozzla No	1000	~		C	7	•	n	AVO. III.
					Mozzlo Da	110777	100	5.7.5			
	Components	Si islandinos			Filter No Nozzie No Nozzle Da	HOLLING.	-	-			
	Sample Train Components				Filter No		1000	7 0/ 0/			
		1	cc/min *	9	at 15 in Ho	0	€ E				
	ORSAT System				Bag Vol		500				
					Bag No.		-				
	Test Run Times			į	End lime		7 50				
	lest Ru			i i i i i i	Start Time	1	0 1 7 5				
	nes	B. A	Moisture	- tootage	Content	10.01	2/2				
1 1 1 1 1 1 1 1 1	manization vait	Occurrence	Oxygen	Contont	COLIECT	5000	000				
		Mator	מנו	Lower	dillo	1	^				
						Bio 1	1000	0 20	7 1101		

OWS	DSCFM	137630
Air Flows	ACFM	181379
		3

7.961

97.5.3 78.1 18.5 757.3 18.5 757.3 18.5 757.3	10.8	752.3	725	7657	2851	Desiccant	
00	500	2	1.0-	1.0.1	10 ×	00	ь.
T	.07114					111	

BARR

Method 5/Ontario Hydro FIELD DATA SHEET

Posttest 0 00 in Hg in H₂O 500 0.84 Probe Lgth Liner Type: MGlass CS.S. Lother Probe ID S -5 Pitot No. 5-5 Pitot Cp 1,0044 1,9371 81 Orifice H@ 3/24/17 Operators TAH/RMP/JARZ Meter ID Meter Y ArcelorMittal Minorca Mine Run Smpl Loc Furnace Stack D SV017 4 Test No. Project Date

in Hg Pretest O. c.O at / Z. in Hg Sample Train Leak Rate (cfm) Pitot (3 in.) Pos. X Neg.

Oxygen	Content,						
	Meter		C	20	100	9 3	1
ures, °F	Meter		100	10	1	9	9
Sample Train Temperatures, °F	Impinger Outlet	TO LONG	>0	22	100	.5.6	1
Sample	Filter		236	242	246	12.5	1
	Probe		785	200	020	2778	
Stack	Temp.		120	123	123	121	
Sample	Vacuum, in Hg		Ŋ	3.0	200	3,0	
Ideal	Meter Volume		AVV	,			
Orifice	ΔH, in H ₂ O		121	1, 20	11.24	(125	1.17
Velocity	$^{\Delta P}$, in $^{H}_{2}$ O		200	40.0	92.0	0.75	0.5X
Meter	Volume Vm, π ⁻	993,50	25.366	999.50	1002.45	1035.45	1006.27
Sample	Time Δ1	1020	22	10	15	20	25
Sample	Point		1-1	2	က	4	Ŋ

				_		T	_	7	_	_			_		_	_	_	_	_					_	_		_
Oxygen	Content,	2																									
	Meter		S. S	50	0 7		1	53	39	67	35	70	11	77	1	12	75	75	74	1/A	75	118	760	9	2	20	Tm=7/10
ires, °F	Meter		600	100	3	200	(,)	39	70	1	93	24	700	7	77	-hr	100	760	36	260	1	1,5	200	76	1-1-	77	
Sample Train Temperatures, °F	Impinger Outlet	Na Park	20	22	2	.50	33	W 24	34	lh:	200	디디	5,7	J	77	72	25	77	77	77	חת	2	73	47	7	43	
Sample T	Filter		236	342	246	775	246	27.2	255	255	283	253	200	255	121	252	186	754	252	187	182	784	52	254	23	250	
	Probe		235	225	247	248	248	h h 2	449	542	246	745	226	1 247	しれる	244	24.7	557	542.	27.0	248	246	218	245	270	542	
Stack	Temp.		120	123	122	121	121	120	120	120	120	27	120	021.	122	125	1.25	125	124	120	121	371	127	121	121	126	Ts=122.9
Samble	Vacuum, in Hg		3,5	3.5	300	3,0	2.0	3,0	3.0	3	3	M	r	h	ev	~	^	2	n	r E	Μ	8	3	2	5	2	
Ideal	Meter Volume		AV																							_,	
Orifice	ΔH, in H ₂ O		121	1, 20	1,24	(12)	1.12	1114	1.24	1.24	1.23	1.23	5	1.07	1.24	1.25	1.2.1	1,22	5.7	500	103	ာ ၁ <u>၁</u> : ု	103	107	0.0%	0.97	<u>VH=</u> 14
Velocity	ΔP, in H ₂ O		カしつ	400	2.76	0.75	6. 6X	0,69	0.75	0.75	D. 0	6.74	6.63	po.0	6.74	51.0	0.73	8°L'8	0.64	6.62	20.00	0.60	20.0	9.0	0.59	0,58	A
Meter	Volume Vm, π ⁻	993,50	1		1002.45	24.5001	10007	411101	1014.10	11710	02016	1023.28	(क्राह्म (क्राह्म	1029.06		1035.17	2	1041-23	-	ヹぷ	30.40.	1052. The	0	1058.41	7		Vm=10,45
Sample	Time Δ1	1025	22	10	15	20	25	30	35	40	45	50	55	09	65	70	75	80	85	06	95	100	105	110	115		0=1234 \
oarrible	Point		7-	2	က	4	5	9	2-1	2	က	4	Ω.	ဖ	3-1	2	ო	4	2	g	4-1	2	က	4	2	9	

		14.00 - 10 - 27										ž	NOZIE Calibration
-		Initialization Val	nes	lest Ru	lest Run Times		ORSAT System		Sample Train Components	Components		Tach	450
	B. Garden									Carried Inc.			ממני
	Meler	Cxygen	Moisture					cc/min *				Nozzfe No.	
	Temp	Content	Content	Ctort Timo	End Time	Den Ala	0		i				
	1	The state of	COLICE	Statt Hille		Dan No.	Bad Vol	at 15 In Ha	Fifter No.	NOZZZIO NO	Nozzie Da	-	2
0.00	2	1001	*	1	-	6		9	-		100000000000000000000000000000000000000		,
1000	10	2	10.0	(07)	12.57	1-0	1000	400	400000	,	C1	c	1
0 010					-			2.0	70000		111	7	0
7 1101									,			·	
												ז	
												v	
												AVC	

Moisture Recovery Data and impinger content information:

196,8	2.5	-0.1	C), C H2SO4/KMNO4	و ئ	7.7 HN03/H202	57.	N KC	5	154 23
-	2	-0.1	300	0,5	2.7	-	5.7	Н	Н
	914,	754.3	1670	1.63.0	3	_	156	1567	-
	0000	154.7	167.6	1,201.	5	-	4.101.	4.791.	
Total	Desiccant	7	ဖ	2	4	4	0	+	7

SWS	DSCFM	136827
Air Flows	ACFM	130197

BARR

Method 5/Ontario Hydro FIELD DATA SHEET

in Hg in H₂O TC TT dml Bar. Pres 28, 63 Stat. Pres -0.95 0.84 Probe Lgth RM P/34 Muiner Type: AGlass S.S. Dither Probe ID 5-3 Pitot No. 5-5 Pitot Cp 16251 1. 00 yy Orifice H@ Meter ID Meter Y 3/19/13 Operators MSN ArcelorMittal Minorca Mine Run Project ArcelorMittal Minorca Min Smpl Loc Furnace Stack D SV017 4 Test No. Date

	Sample Train Leak Rate (cfm)	R	te (cf	m)
	Pretest 0,00	क्र	0	in Hg
	Posttest 0 .00	ä	5	in Hg
3-1	Pitot (3 in.) Pos Nea	0	Į,	

_			_	_	_				_	T	_	T	_		_	_	_		_	Т	_	1	T		_	_	
Oxygen	Content,																										
	Meter		35	20	77	77	76	9	76	2/2	1	1	24	75	70	70	0	0	69	000	25	22	5	100	107	وا	702 CEMT
itures, °F	Meter		300	رًا	26	712	76	97	20	17	11	13	1-	60)	ē	100	70	69	20	80	3	5	(°0)	0	20	20	
Sample Train Temperatures, °F	Impinger Outlet		14	43	7	7	1	77	707	Ī	7	17	127	17	45	T.	77	25	45	20	1 2)	7.5	37	97	49	49	
Sample	Filter		285	158	255	255	184	255	254	152	251	254	45%	750	255	250	754	hon	384	254	255	132	152	727	250	253	
	Probe		240	245	トロト	247	246	245	747	577	2412	アデル	245	245	245	243	243	245	245	246	242	146	245	24/2	245	245	
Stack	Temp.		176	125	126	126	125	126	17	121,	125	121	127	121	021	20	121	121	12.1	120	121	124	126	124	30	120	Ts423.2
Sample	Vacuum, in Hg		S	W	V	8	4	8	9	و	e	e	3	9	و	2	و	e	9	و	Co	0	و	ی	ی	9	
Ideal	Meter Volume	100	42		/	/	/																			>	
Orifice	ΔH, in H ₂ O		Pp.0-	80.0	1.04	101	0.94	0,94	1.11	و	1.13	1.12	10 0 d	1.03	1.17	1.22	1.17	1.15	3.5	10.1		7	ニュ	20	00.	5	AH=1.08
Velocity	ΔP, in H ₂ O		0.57	0.59	0.63	0.61	6.57	15:0	0.70	000	0.08	ල. රංගී	0.60	20.0	11.0	0.74	11.0	0.70	0.6	9.0	0.70	000	たいな	27.0	₹ •	60	7
Meter	Volume vm, tr	64.25	67.00	69,75	258	75.38		DO. 83	277.58	36.59	27.77	25.27	95.14		25	103.73	106.70	19.49	12.36			0	123.20	1		135,49	Vm=68,74
Samble	Time Δ1	1304	2	10	15	50	25	30	35	40	45	20	92	09	65	7.0	75	80	82	7	95	100	105	110		120	の当りに Vm もおい
Samble	Point		1-1	2	m	4	2	9	2-1	2	ю	4	ro.	9	3-1	2	3	4	2	9	4-1	2	n	4	2	ဖ	

		Children 1/01										ואכ	NOZZIE CAIIDI ALION
		IIIIII MARIA	nes	lest Kut	lest Kun Times		ORSAT System		Sample Train Components	Components		Tech	Date
	Adobas	00000	A.A. Sankara										Date
	<u> </u>	Oxygen	Moisture					cc/min *				Nozzie No.	
	Lemp	Content	Content	Start Time	ime End Time	Bac No.	Bao Vol	24 15 in Ha	Filter No	Filter No Nozzie No Nozzie De	Alogado Do	,	
7 910	-		100 001			0		_	111001	INDEED IND.	MOZZIE DIL		
100	5	0	200	700	ハファ	1	1000	2	40000	0-1	22 4 67	c	1
0 10	0					1	1		3		0.00	7	7
7 110												ď	
												,	
												Ave in	

Air Flows	DSCFM	大力で	133,399
Air	ACFM	+10/04	176330 M

e recovery Data and impiriger content imprination	2
MOISINICINE	,
Ì	ē

Impinger		MOISINIE	covery Data a	na kripinger co	moising recovery para and implifible content morniallon				
Ce 155.	=	-	- 2	က	4	5	9	7	Desircant
155.0 22.0 743 725.0 1648 71 155.0 22.5 3.5 1.50 0.1 1.850 1.8KGI 1.8KGI HINOSH202	Final wt., g	96.0	レニー	7645	73.9	153	77567	750 1	1000
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Initial wt., g	1590	155	0 9 7	1341	0.26	3	C 350	0,600
HN03/H202	Difference	153,60	25.5	3.5	2.6	0,1	0.4	200	127
			1 N KCI		HNO3/H2O2		H2SO4/KMN04	1	

	4))	
Project	HILLERM	
Sample Location	Stack A	SUDIH
Date	4/11/17	
Operators	BAN	
Duct Dimensions	101.75	inches
Port Length	4.0	inches
Pitot Tube No.	37	Cp 0.84
Manometer ID	M-13 B	ar. ID BA-19
Digital Therm ID	0-14 T.	C. ID 30B

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28,40			
Stat. Press (In H ₂ O)	-0.90			
Temp - Dry Bulb °F			1	
Temp - Wet Bulb °F	(0	PN	14 5	heet
Moist Content - %				
O ₂ %	Se	2 M	3 sh	et
Time of Meas.				

Negative: Pitot Leak Check Positive: V Traverse Point Information Cyclonic Velocity Head - Inches H₂O Stack Temperature - °F Point Inches From: Flow Run 1 Run 2 Run 3 Run 4 Run 1 Run 2 Run 3 Run 4 Number Wall ΔΡ ΔΡ ΔΡ ΔΡ Temp. Temp Temp. Temp. 0.80 30B Sheet 0.39 0,36 0,98 0,48 1,02 0.70 0,90

1		
I d		
l .		
l		
l .		
l		
Schom	atic of Duct Cross-Section	_
	and or Duck Cross-Section	110

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg, Temp °F				
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

Project	Ar celer M	ttal
Sample Location	Stack 8	
Date	4/112/17	
Operators	BAW	
Duct Dimensions	W1.75	inches
Port Length	4.0	inches
Pitot Tube No.	_37 Cp	0.84
Manometer ID	M~13 Bar. I	D BA-19
Digital Therm ID	D-14 T.C. 1	D 308
Operators Duct Dimensions Port Length Pitot Tube No. Manometer ID	10 10 10 37 Cp 13 Bar. 1	inches 0.84 D.6A-19

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	33173			
Stat. Press (In H ₂ O)	-0.75			
Temp - Dry Bulb °F				
Temp - Wet Bulb °F	_ <	08.	114	Welt
Moist Content - %	-3			
O ₂ %	5.0	e M	3 She	et
Time of Meas.				

Pitot Leak Check Positive: _______Negative: _______

Traverse Po			Cyclonic	Ve	locity Hea	d - Inches I	I₂O		Stack Tem	oerature - °	F
Point		From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔΡ	ΔΡ	ΔΡ	Temp.	Temp.	Temp	Temp.
1-				1.02	1.00	1.01					
2				186	1.01	1.07		5	ee 3	0B S	neet
3				112	0,98	0.96					1000
2-1				0.73	0.95	0.99					
2				5.93	0,95	0.94					
_3				090	0196	1.00					
3-1				0.73	0.90	0.75					
2				1102	0.98	1.00					
3				100	102	0.98					
4-1				0,73	1.03	0,97					
2				293	0.99	1.00					
3				081	1.00	1.01					
					1.00	1.01					
						· .					
			*								
					-						
			-								

Scher	matic of Duct Cross-Section	

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg. Temp °F				
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

Arcelor Mi	HN
Stuck C	
4/11/17	
BAW	
104,0	inches
12,0	inches
37 Cp	2.34
M-13 Bar. ID	BA-19
<u>19-14</u> T.C. ID	308
	Stuck C 4/11/17 67W 104.0 12,0 37 Cp M-13 Bar. ID

	Run 1	Run 2	Run 3	Run 4
Bar Press (In Hg)	28,40			
Stat. Press (In H ₂ O)	-0.30			
Temp - Dry Bulb °F	_		44	
Temp - Wet Bulb °F		el.	M4 5	heet
Moist Content - %	0			
O ₂ %	Su	M	3 32	eet
Time of Meas.				

Pitot Leak Check	Positive:		_Negative:	/
------------------	-----------	--	------------	---

Traverse P			Cyclonic	Ve	locity Hea	S	tack Temp	erature - º	F		
Point	Inches	s From:	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠°	ΔΡ	ΔΡ	ΔΡ	ΔΡ	Temp.	Temp.	Temp.	Temp
1-1				0.32	17.75	0,70					
				5,34	0.34	0.79		See	201	3 06	ot
3				0.55	0.38	0.34		000	0	2 21	64
2-1				1.03	0.89	0,94	(6)				
2				0.96	0,97	0.96	27				
3				0.87	0,94	1.00					
3-1				0.35	0.74	0.79				11	
2				0.97	0.89	0,36					
3				0.37	0,90	0.99				. 92	
- 1				0,78	0,88	0.89					
λ				2,86	0,92	0.96					
3				0.35	0.84	0.90					
										ALC: N	
									-		

1	
0.00	- 4
	436
/	200
_	-
and the	
-	
•	100000000000000000000000000000000000000
Schematic of	Duct Cross Station
2 Shematic Of	Duct Cipss-addion
	All the second second

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
vg. Temp °F				
verage √∆P				
Gas Vel - Ft/Sec				
ACFM	- 0			9
SCFM				
DSCFM				

Project	Arvelor	Wh	ral
Sample Location	Stack	LD	
Date	4/12/	17	
Operators	BAW		=//
Duct Dimensions	104.0		inches
Port Length	12.0		inches
Pitot Tube No.	37	Ср	0.434
Manometer ID	M-13	Bar. ID	BA-19
Digital Therm ID	D-14	T.C. ID	30 B

Run 1	Run 2	Run 3	Run 4	
28.43				
-0.90				
		2		
Se	e M	9 84	ex	
-		1 0.		
Se	2 M	3 SIN	eet	
	Run 1 28.43 -0.90 Se	Sel M Sel M	See M3 Sh	

Traverse Point Information		Information Cyclonic		Ve	Velocity Head - Inches		1.0		Stack Temp	erature - º	F
Point	Inches From:		Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
Number	Wall	Port	∠′°	ΔΡ	ΔΡ	ΔΡ	ΔΡ	Temp.	Temp.	Temp.	Temp.
1-1				0.73	0.71	0.68			1		
2				0.7)	0.68	0.13		(0)	301	S Che	Pt
3				0,64	0.65	0.14		30	904	-319	<u></u>
2-1				0.63	0,70	0.65					
2				0.57	0,71	0.68					
3				0.08	0.64	0.65					
3 - 1				0.15	0.65	0,70					
2				0.63	0,64	0.68					
3				0.64	0.68	0.70					
4-1				0.72	0,64	0.11					
2				208	0.72	0.68					
3				3,07	0.71	0.65					
				44 170							
			45.7	V							
			- PHE C	1	No.						
			2.111								
			.47								

 Schematic of Duct Cross-Section	

	Run 1	Run 2	Run 3	Run 4
Stack Pres In Hg				
Duct Area - Sq Ft.				
Mole Weight - Md				
Mole Weight - Ms				
Avg. Temp °F				
Average √∆P				
Gas Vel - Ft/Sec				
ACFM				
SCFM				
DSCFM				

Project ArcelorMittal Minorca Mine Sample Location Furnace Stack Date 1/11/17 Test Run Operators 5/10/17 Eff. Probe Length				Length6	Meter ID Meter Y Orifice H@	1014 Stat	. Pres		in H ₂ O	Pretes	rain Leak Rate t 0,000 at 10 t 0,000 at 5	(cfm) in Hg in Hg
,						RUN 1						
- 1	Sample	Sample	Meter	Orifice	Sample Sample Train Temperatures, °						Owagon	
- 1	Point	Time	Reading	Pressure.	Vacuum.		tack	Impinger	Motor	Matan	Oxygen	

Sample	Sample	Meter	Orifice	Sample	Sample	Train Temper	atures, °F		Oxygen
Point	Time ΔT	Reading Vm, Cu.Ft	Pressure, ΔH in H ₂ O	Vacuum, in Hg	Stack	Impinger Outlet	Meter Inlet	Meter Outlet	Content %
	(830)	(132.54				100		Gallot	70
1	5	135.30	0-751.0	, 4	110	44	45	74	
2	10	1331 05	110	H	110	40	45	44	
3	15	141.00	1.0	Ц	110	45	46	44	
4	207	144.15	1,0	ы	110	45	40		
5	25			7	110	75	7 /	44	
6	30					+		-	
7	35					+		-	
8	40							-	
9	45				WINE			+	
10	50					+		_	
11	55			100				-	
12	60					+-+		+	
	8510								_
	1300								
	0= 60 21	Vm=11.61	ΩH= I, O					Tm= 44, 88	

Integrated Gas Sampl	ing Data:	
Bag No.	_	
Bag Vol.		
Leak Rate, cc/min	0.0	at 15 in Ho

Impinger	1120	2	3	4	Desiccant	Total
Final wt., g	-64	100	- 0		1422	
Initial wt., g	100	100	0		147G	
Difference	20	0	0		1 '9'	22

Comple	[Cl-			N 2				Posttest	0.000 at	in h
Sample Point	Sample	Meter	Orifice	Sample		Sample	Train Temper	atures, °F		Oxyger
Point	Time ∆T	Reading Vm, Cu.Ft	Pressure, ΔH in H ₂ O	Vacuum, in Hg		Stack	Impinger Outlet	Meter Inlet	Meter Outlet	Content %
	(103E)	(163103		0.00						70
1	5	170.35	10	4		110	44	55	53	
2	10	173.80	1.0	E		110	45		54	
3	15	176,50	1.0	14		111	HI H	2 600		
4	20 21	179.80	1.0	1	ATT TO THE	111	41	7-1	54	
5	25			-		111	71	5/	24	
6	30				2014					
7	35									
8	40									
9	45									
10	50									
11	55									
12	60									
	(1057)									

Integrated Gas Sampling Data:

Bag No.
Bag Vol.
Leak Rate, cc/min
Difference

Moisture Recovery Data:

Moisture Recovery Data:

Impinger
1 2 3 4 Desiccant Total

Final wt., g
100 100 0
Difference

ArcelorMi cation	Furnace S		-4	Meter ID	<u>L-8</u>	Bar. Pres	s. 18,40	in Hg		le Train Lea
IIII Ta	rumace s	Run 👔 💳		Meter Y	1,0044	Stat. Pres	ss0.9	_in H₂O	Pretes	st 6,000
Both	est	Eff. Probe	Length C	Orifice F	1@1.937	Olas- 1			Posttes	st 6 . Up 0
- DN V			Length	rt	Liner Type	: 🔲 Glass (X į 5.5. ∐ C	ther		
Sample	Sample	Meter	Orifice	Sample	RUN 3	Sample	Train Tempe	roturoo °E		1 0
Point	Time	Reading	Pressure,	Vacuum		Stack	Impinger		1	Oxygen
	ΔΤ	Vm, Cu.Ft	ΔH in H ₂ O	in Hg	,	Stack	Outlet	Meter Inlet	Meter Outlet	Content,
4	(1200)	(18) (3)								
1 2	5 10	183.86		4		110	47	55	55	
3	15	188,70	1,0	4		110		56	55	
4	20.2	191.81	10	4		111	44	5 /	56	1
5	25	1-11-31	1.0		-	110	43	59	56	
6	30						 	-	_	-
7	35							+	+	
8	40									
9	45									t
10	50									
11	55									
12	60									
	(1221)									
	Ø= 21	Vm=11.78	AH= I O							
	0	1711-11, 10	31.1						Tm=56.13	
					Initial wt., g Difference	100	100	0		1424
									ain Leak Ra	te (cfm)
			RUI	N 4				Pretes	t at	in Hg
Sample	Sample	Meter	RUI			Sample 1	Frain Temper	Pretes Posttes	t at	in Hg in Hg
Sample Point	Time	Meter Reading	Orifice Pressure,	N 4 Sample Vacuum,			Frain Temper	Pretes Posttes atures, °F	t at	in Hg in Hg Oxygen
			Orifice	Sample		Sample 1 Stack	Frain Temper Impinger Outlet	Pretes Posttes	t at at Meter	in Hg in Hg Oxygen Content,
Point	Time ΔT	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at	in Hg in Hg Oxygen
Point 1	Time ΔT	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2	Time ΔT () 5	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1	Time ΔT () 5 10 15	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
1 2 3	Time ΔT () 5	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
1 2 3 4	Time ΔT () 5 10 15 20	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
1 2 3 4 5 6 7	Time AT () 5 10 15 20 25 30 35	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
1 2 3 4 5 6 7 8	Time ΔT () 5 10 15 20 25 30 35 40	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
1 2 3 4 5 6 7 8 9	Time ΔT () 5 10 15 20 25 30 35 40 45	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10	Time ΔT () 5 10 15 20 25 30 35 40 45 50	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11	Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10	Time ΔT () 5 10 15 20 25 30 35 40 45 50	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11	Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Reading	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11 12	Time AT () 5 10 15 20 25 30 35 40 45 50 60	Reading Vm, Cu.Ft	Orifice Pressure,	Sample Vacuum,			Impinger	Pretes Posttes atures, °F Meter	Meter Outlet	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11 12	Time ΔT () 5 10 15 20 25 30 35 40 45 50 60	Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,		Stack	Impinger	Pretes Posttes atures, °F Meter	t at at Meter	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11 12	Time ΔT () 5 10 15 20 25 30 35 40 45 50 60	Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Moisture Reco	Stack	Impinger Outlet	Pretes Posttes atures, °F Meter Inlet	Meter Outlet	in Hg in Hg Oxygen Content, %
Point 1 2 3 4 5 6 7 8 9 10 11 12	Time ΔT () 5 10 15 20 25 30 35 40 45 50 60	Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Impinger	Stack	Impinger	Pretes Posttes atures, °F Meter	Meter Outlet	in Hg in Hg Oxygen Content,
Point 1 2 3 4 5 6 7 8 9 10 11 12 as Samplin	Time ΔT (Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Impinger Final wt., g	Stack Stack overy Data:	Impinger Outlet	Pretes Posttes atures, °F Meter Inlet	Meter Outlet	in Hg in Hg Oxygen Content, %
Point 1 2 3 4 5 6 7 8 9 10 11 12	Time ΔT (Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Impinger	Stack	Impinger Outlet	Pretes Posttes atures, °F Meter Inlet	Meter Outlet	in Hg in Hg Oxygen Content, %

-1-1-1	orMittal Mind	rca wille		Meter ID		_Bar. Pres	s. 28 - 3	in Hg	Sample 7	Train Leak F	≺ate (c
nple Location	n Furna	ce Stack 🙎		_Meter Y	1.0044	Stat. Pres	ss0,75	in H₂O		st 🐧 💸 at	
erators NA	rest	Run_		Orifice I	101,-13)			=	Postte	st 6 Of at	6
elatois	V	Eff. Prob	e Length	<u></u> ft	Liner Type	e:□ GlassI	S.S.□ (Other			
_					RUN 1						
	nple Samp		Orifice	Sample		Sample	Train Tempe	ratures, °F		Oxygen	7
10	int Tim ΔΤ			Vacuum, in Hg		Stack	Impinger	Meter	Meter	Content,	
0000	173	vini, odil		iii ng			Outlet	Inlet	Outlet	%	4
1		306.30	10	-		110	70	46	111		-
2		207. 5.	10	5		111	37	46	46		1
3		212.3		5		112	37	47			1
5		31 315.01	1.0	- 5		113	3.7	भग	47		
6							-				-
7										-	-
8									 		1
9		_	-								1
11]
12										-	-
										_	1
-	(75	7)								-	1
	Ø= 1	Vm= 1.67	(H=) o								1
	2	AIII-	1.0		ALIE SALE				Tm=46.88	5	
rated Gas Sa	ampling Data	r:			Moisture Re	covery Data:			Λ.		
No.					Impinger				Bn		-
					Implifier 1	1	1 2 1	- 3	1 4	Lipercont	
Vol.					Final wt., g	124	100	3	4	Desiccant	10
Vol.	0 (C	at 15 in Hg			Final wt., g Initial wt., g	100	100		1428	14 73	10
Vol.	0.0	at 15 in Hg			Final wt., g	124	100	0			
Vol.	0.0	at 15 in Hg			Final wt., g Initial wt., g	100	100	0	120	1478	
Vol.	0.0)at 15 in Hg			Final wt., g Initial wt., g	100	100	0 O Sample Tr	ain Leak Ra	19 25 19 25 ate (cfm)	H
Vol. 10 Rate, cc/mir			RUI	N 2	Final wt., g Initial wt., g	100	100	0 Sample Tr	ain Leak Ra	ate (cfm)	
Vol. Rate, cc/mir	ole Sample	e Meter	RUN Orifice	Sample	Final wt., g Initial wt., g	100	100	0 Sample Tr. Pretest Posttest	ain Leak Ra	ate (cfm) in Hg in Hg	H
Vol. 10 Rate, cc/mir	ole Sample	e Meter Reading	RUN Orifice Pressure,	Sample Vacuum,	Final wt., g Initial wt., g	100	100 b	0 Sample Tr. Pretest Posttest	ain Leak Ra	ate (cfm)	H
Vol. Rate, cc/mir	ole Sample tt Time ΔT	e Meter Reading Vm, Cu.Ft	RUN Orifice Pressure,	Sample	Final wt., g Initial wt., g	100 24 Sample T	100 b	O O Sample Tr Pretest Posttest tures, °F	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen	
Vol. Rate, cc/mir	ole Sample	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample T	100 0 rain Tempera Impinger Outlet	O O Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin	ole Sample Time AT 6 34 5 10	e Meter Reading Vm, Cu.Ft	RUN Orifice Pressure,	Sample Vacuum,	Final wt., g Initial wt., g	100 24 Sample T	100 0 rain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin	ble Sample Time ΔT 5 10 15	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample T	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin	ble Sample Time AT	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 0 rain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin	Die Sample Time AT	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin	Die Sample Time ΔT (9 3 6 5 10 15 20 25 30	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin	Die Sample Time AT	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8	ble Sample Time ΔT 5 10 15 20-3 25 30 35 40 45	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8 9	Die Sample Time AT 5 10 15 20 35 30 35 40 45 50	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin 1 2 3 4 5 6 7 8 9 10	Die Sample Time AT	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8 9	Die Sample Time AT 5 10 15 20 35 30 35 40 45 50	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8 9 10	Die Sample Time AT	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8 9 10	ble Sample Time ΔT 5 10 15 20 30 35 40 45 50 60	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr. Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin 1 2 3 4 5 6 7 8 9 10 11 12	Die Sample Time ΔT (936 5 10 15 20 35 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	100 24 Sample Ti Stack	100 100 prain Tempera Impinger Outlet	Sample Tr. Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	
Samp Poin 1 2 3 4 5 6 7 8 9 10 11 12	ble Sample Time ΔT 5 10 15 20 30 35 40 45 50 60	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g Difference	Sample T. Stack	100 100 prain Tempera Impinger Outlet	Sample Tr. Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content,	H
Samp Poin 1 2 3 4 5 6 7 8 9 10 11 12	Die Sample Time ΔT (936 5 10 15 20 35 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g	Sample T. Stack	100 100 prain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra	ate (cfm) in Hg in Hg Oxygen Content, %	2
Samp Point 1 2 3 4 4 5 6 7 8 9 10 11 12 12 12 11	ble Sample Time ΔT (936 5 10 15 20 35 40 45 50 55 60 (937	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g Difference Moisture Recompinger Final wt., g	Sample T. Stack	rain Tempera Impinger Outlet	Sample Tr. Pretest Posttest tures, °F Meter Inlet	ain Leak Ra A part Meter Outlet	ate (cfm) in Hg in Hg Oxygen Content,	2
Samp Poin 1 2 3 4 5 6 7 8 9 10 11 12	Die Sample Time ΔT (936 5 10 15 20 35 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	RUN Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Final wt., g Initial wt., g Difference Moisture Recompinger	Sample T. Stack	rain Tempera Impinger Outlet	Sample Tr Pretest Posttest tures, °F Meter Inlet	ain Leak Ra A part Meter Outlet	ate (cfm) in Hg in Hg Oxygen Content, %	Total

Project Sample Lo	5.75%	ittal Minorca Furnace		_	Meter ID	C-8 1.0044	Bar. Press	s. 28,43	in Hg	Sam	ple Train Lea	k Rate (cfm
Date 4/1	1/17 T	eet 🔞	Pun -	e Length	Orifice	1.00-(7	Stat. Pres	s0,19	in H ₂ O		st 6 10 00 a	
Operators	RAIN	est <u>et</u>	Eff Drob	al anoth	Office F	@1.937	<u> </u>			Postte	st 6 , 090 a	at 💪 in F
Operators	13/100			e cengus <u> </u>	2 ((Liner Type	e: ☐ Glass [x S.S. □ 0	Other			
	Sample	Sample	Meter	Orifice	Sample	RUN 3	C===-1-	T				,
	Point	Time	Reading		Vacuum			Train Tempe			Oxygen	1
	I Olivi	ΔΤ	Vm, Cu.F		in Hg	'	Stack	Impinger	Meter	Meter	Content,	l
		(1030			m rig			Outlet	Inlet	Outlet	%	l
	1	5	354.00	10			1 10		-			
	2	10	256. 25	10	3		11/2	54	59	57		
	3	15	259.64	10	1		113	58	61	58	-	
	4	20 21	263.0	10	7		114	50	63	58		
	5	25		100			120	51	65	59		
	6	30				THE RES		 			-	
	7	35									-	
	8	40							1		_	
	9	45							1		_	
	10	50									-	
	11	55								-		
	12	60										
		(1051)									
1		0=21	Vm=[], 79	ΔH= 1,0						Tm=60,00		
Integrated (Gas Sampl	ing Data:				Moisture Re	covery Data:					
Bag No.		_				Impinger	11	2	3	4	Desiccant	Total
Bag Vol.	VO	_				Final wt., g	126	100	0		1432	1 Otal
Leak Rate,	cc/min	0.0	_at 15 in Hg			Initial wt., g	100	100	0		1430	
						Difference	BX26	Ø	0		2	28
												500
									Sample Tr	rain Leak Ra	te (cfm)	
									Pretes		in Hg	
r	Sample	Comple	Matau		N 4	-			Posttes	t at	in Hg	
- 1	Point	Sample Time	Meter Reading	Orifice	Sample			rain Temper			Oxygen	
- 1	1 OIII	ΔT	Vm, Cu.Ft	Pressure, ΔH in H ₂ O	Vacuum,		Stack	Impinger	Meter	Meter	Content,	
- h		7	VIII, CU.I I	MIT 11/11/20	in Hg			Outlet	inlet	Outlet	%	
- F	1	5	1									
- 1	2	10										
ŀ	3	15										
- 1	4	20		-		-						
	5	25								-		
	6	30										
	7	35										
	8	40								-		
	9	45										
	10	50										
	11	55										
1	12	60										
H		()										
		~		-								
L			Vm=	ΔH=						Tm=		
itegrated G	as Samplir	ng Data:			6	Moisture Reco	overy Data:					
ag No. ag Vol.								-				
						Impinger	1	2	3	4	Desiccant	Total I
ag voi.	n/main					Final wt., g	1	2	3	4	Desiccant	Total
eak Rate, c	c/min		at 15 in Hg			Final wt., g Initial wt., g	100	100	0	4	Desiccant	Total
eak Rate, co	c/min		at 15 in Hg			Final wt., g				4	Desiccant	Total

Project	ArcelorM	ittal Minorc			Meter ID	C-8	Bar. Press	s. 28,40	in Ha	Sample	Train Leak	Rate (cfm)
Sample Lo	cation	Furnace	Stack (Meter Y	1.0044	Stat. Pres	s0, 80	in H ₂ O		esto una al	
Date 411	<i>411</i> T	est 3	Run Eff. Probe	/	Orifice 1	1@1,937	T		_		esto, poo al	
Operators	SMW		_ Eff. Probe	Elength	ft	Liner Typ	e:□ Glass 🗓	ĭ S.S.□	Other			
						RUN 1						
	Sample	Sample	Meter	Orifice	Sample		Sample 1	Train Tempe	eratures °F		Oxygen	7
	Point	Time	Reading	Pressure,	Vacuum	,	Stack	Impinger		Meter	Content,	1
		ΔΤ		t ΔH in H ₂ O	in Hg			Outlet	Inlet	Outlet	%	
	150 [-	(905) (144, 27	gu gu			THE SECTION	J. 17 3		V61 877		
	1 2	5 10	14 10	11.0 X	10	5	122	38	43	46		
	3	15	152.53	105	10	5	123	38	48	46		1
	4	20 1	155.39	100	NO	>	122	33	99	47		
- 1	5	25	30.37	IIV P	120	3	140	3/	5)	47	-	-
[6	30								_	_	-
- 1	7	35								1	1	1
1	8	40										1
1	9	45 50										1
ŀ	11	55										1
İ	12	60									-	-
[+	-
		1726)									1
1		05-71	V	07-10								1
1		Ø= 21	Vm= 1.62	ΔH= 1, 0						Tm= 47,7	\$	1
Integrated (Gas, Samp	ling Data:				Moisturo Po	covery Data:					=0
Bag No.						Impinger	1	2	2	1	T	
Bag Vol.	17					Final wt., g	V120	102	3	4	Desiccant	Total
Leak Rate,	cc/min	610	at 15 in Hg			Initial wt., g		100	0	_	1423	27702
						Difference	20	2	0		113	25
									Sample Tr	ain Leak R	late (cfm)	
				RUN	12				Pretest	0,000 at		
Г	Sample	Sample	Meter	Orifice	Sample	T	Sample Tr	ain Tempera	POSITIEST POSITIEST	0 . 300 at	9	
	Point	Time	Reading	Pressure,	Vacuum,		Stack	Impinger	Meter	Meter	Oxygen Content,	
		ΔΤ	Vm, Çu.Ft	ΔH in H ₂ O	in Hg	1		Outlet	inlet	Outlet	%	
100		(1004)	(15,6,10)								70	
-	1	5	153,39	10	5		121	40	53	51		
-	2	10 15	161:10	1.0	-5		131	37	53	5		
F	4	-20 21	67.32	1.0	->-		122	36	54	17		
	5	25	10 17 3 CK	1.0			123	36	22	52		
	6	30										
	7	35										
_	8	40										
-	9	45										
-	11	50 55										
	12	60										
		(1035)										
-												
		0= 31	Vm= 11,73	ZH= 1, 0						Tm={2.63		
tegrated Ga	as Samnlii	na Data:										
ag No.	2 2	ng Data.				Moisture Rec						
ag Vol.	10					Impinger Final value	1	100	3	4	Desiccant	Total
eak Rate, co	c/min	0,0	at 15 in Hg		1	Final wt., g	100	100	0		14 38	
	-					Difference	30	0	0		1436	32
											9/2	700

roject ample Lo ate 4/11	ArcelorM cation	ittal Minorca Furnace :	Mine Stack C Run	_	Meter ID Meter Y	<u>C-8</u> 1.0044	_Bar. Pres _Stat. Pres	s. 28,40 ss0,30	_in Hg _in H₂O	Prete	st O COO	
perators	BAN		_Eff. Probe	L ength	ft	@ 1,937	. Closs	Ė , s.s. □ o	AL	Postte	st 0,000	at 💪 in F
				Longer	······································	Line: Type	. LI Glass	□(3.3. <u> </u> 0	iner			
		_				RUN 3						
	Sample		Meter	Orifice	Sample		Sample	Train Tempe	ratures, °F		Oxygen	7
	Point	Time ΔΤ	Reading Vm, Cu.F		Vacuum, in Hg		Stack	Impinger Outlet	Meter Inlet	Meter Outlet	Content,	
		(1333					SIL, Ele			100.00	1003030	1
	1 2	5 10	194 36	110	5		121	4.8	59	57		1
	3	15	200,80		3	THE PARTY	122	45	61	57		1
	4	20 1	205.3E	1.8	-		123	72	63	58		1
	5	25	37.5E	DV	-		127	41	62	58		4
	6	30										1
	7	35									+	1
	8	40				ENTITIES						f
1	9	45 50										1
1	11	55	-	-								1
ı	12	60										
-		(1153)										
L		0= 21	Vm=11.83	ΔH= , O		والراقا				Tm=59.20	OR SHEET STATE	
g No. g Vol.	Sas Sampl	- 0				Moisture Red Impinger Final wt., g	1	2	3	4	Designant	Total
g No. g Vol.	3	ing Data:	_at 15 in Hg			Impinger		100	0		1428	Total 37
g No. g Vol.	3	- 0	_at 15 in Hg	RIII	NI A	Impinger Final wt., g Initial wt., g	1 135	100	0 0 Sample Tra	ain Leak Rat	1930 1939 2 te (cfm) in Hg	
g No. g Vol.	3	- 0	at 15 in Hg Meter	RUI Orifice		Impinger Final wt., g Initial wt., g	100	2 100 100 0	0 0 Sample Tra Pretest Posttest	ain Leak Rat	te (cfm)	
g No. g Vol.	S cc/min	Sample Time		RUI Orifice Pressure,	N 4 Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	0 0 Sample Tra Pretest Posttest tures, °F	ain Leak Rai at at	te (cfm) in Hg in Hg Oxygen	
g No. g Vol.	Sample	0,0	Meter	Orifice	Sample	Impinger Final wt., g Initial wt., g	100	2 100 100 0	0 0 Sample Tra Pretest Posttest	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at	te (cfm) in Hg in Hg Oxygen	
g No. g Vol.	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5	Sample Time ΔT () 5 10 15 20 25	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6	Sample Time ΔT () 5 10 15 20 25 30	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7	Sample Time ΔT () 5 10 15 20 25 30 35	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8	Sample Time ΔT () 5 10 15 20 25 30 35 40	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9	Sample Time ΔT () 5 10 15 20 25 30 35 40 45	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 7 8 9 10	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9	Sample Time ΔT () 5 10 15 20 25 30 35 40 45	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Meter Reading	Orifice Pressure,	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Impinger Final wt., g Initial wt., g	1 100 35 Sample 1	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol.	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	Orifice Pressure,	Sample Vacuum, in Hg	Impinger Final wt., g Initial wt., g Difference	Sample 7 Stack	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter Inlet	ain Leak Rai at at Meter	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol. ak Rate, o	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Impinger Final wt., g Initial wt., g Difference Moisture Reco	Sample 7 Stack	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter Inlet	ain Leak Rat at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol. gk Rate, o	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55 60	Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Impinger Final wt., g Initial wt., g Difference Moisture Recompinger	Sample 7 Stack	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter Inlet	ain Leak Rat at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content,	
g No. g Vol. ak Rate, o	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12 as Samplin	Sample Time ΔT (Meter Reading Vm, Cu.Ft ()	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Impinger Final wt., g Initial wt., g Difference Moisture Recompinger Final wt., g	Sample 7 Stack	2 100 100 0 100 0 100 100 100 100 100 10	Sample Tra Pretest Posttest tures, °F Meter Inlet	ain Leak Rar at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content, %	37
g No. g Vol. ak Rate, o	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12 as Samplin	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum, in Hg	Impinger Final wt., g Initial wt., g Difference Moisture Recompinger	Sample 7 Stack	2 100 100 0	Sample Tra Pretest Posttest tures, °F Meter Inlet	ain Leak Rar at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content, %	37

		ittal Minorc			Meter ID	C-8	Bar. Press	s. 28,43	in Ha	Sample T	rain Leak R	ate (cfm)
Sample L	ocation	Furnace	Stack 👂		Meter Y	1.0044	Stat. Pres	s0,90	in H ₂ O		t A,O eo at	
Date 4/1	1/// T	est 4	Run		Orifice H	@ 1,917	Ī		•		t 0,000 at	
Operators	BAW		Eff. Probe	Length	ft ft	Liner Type	e:□ Glass[_ S.S . ₩ (Other			
						RUN 1						
	Sample	Sample	Meter	Orifice	Sample		Sample	Train Temper	atures, °F		Oxygen	1
	Point	Time ΔT	Reading Vm, Cu.Ft	Pressure, ΔH in H ₂ O	Vacuum,		Stack	Impinger	Meter	Meter	Content,	
	To the second	(308) (35.78)		in Hg		-	Outlet	Inlet	Outlet	%	1
	1	5	318.55	110	The same of		126	37	48	48		
	2	10	24 31	1.0	3		126		51	48		
	3 4	15	224.05		- 5		126	37	52	48		
	5	25	227.39	110	2		136	33	54	49		
	6	30										
	7	35										
	8 9	40 45										
	10	50										
	11	55										
	12	60				50 3 0						
		(824	1									
		DAT	4			-						
		0=21	Vm=11,61	1H= 10	I FERRIT					Tm= 49.88		
Integrated	Gas Sama	lina Data										
Bag No.		ning Data:					covery Data:					
Bag Vol.	10	÷				Impinger Final wt., g	130	100	3	4	Desiccant	Total
Leak Rate,	cc/min	010	_at 15 in Hg			Initial wt., g	100	100	0		1430	
						Difference	30	0	0		2	32
									3. 1 7			
								- 1	Sample II	ain Leak Ra	ite (cfm) in Hg	
				RUI					Posttest	0,000 at	6 in Hg	
- 1	Sample Point	Sample Time	Meter Reading	Orifice	Sample			rain Tempera			Oxygen	
- 1	1 OIN	ΔT	Vm, Cu.Ft	Pressure, ΔH in H ₂ O	Vacuum, in Hg		Stack	Impinger Outlet	Meter	Meter	Content,	
1		(900)	(227,51)		iiriig			Outlet	Inlet	Outlet	%	
Ţ	11	5	230.33	1.0	5		125	41	52	52		
	2	10	233.13	10	5		126	40	52	5.3		
ł	3 4	15 20-21	235,93	1.0	-5		126	39	53	52		
İ	5	25	W211 23	1.0	2		127	39	54	52		
	6	30										
-	7 8	35										
-	9	40 45										
İ	10	50										
	11	55										
-	12	60										
- 1		(927)		-								
							-					
		Ø=21	Vm=11,742	TH=),()				William III		Tm=52,38		
ntegrated G	as Sampli	ng Data:				Moisture Rec	oveny Data:					
Bag No.	a	5 - 2				Impinger	1	2	3	4	Desiccant	Total
Bag Vol.	10					Final wt., g	132	100	Ö	-	434	Total
Leak Rate, o	cc/min	0,0	at 15 in Hg			Initial wt., g	100	100	0		1434	

Initial wt., g Difference

B-5-407

Project		ttal Minorca		-	Meter ID	C-8	_Bar. Pres	s. 28,43	_in Hg	Samp	le Train Lea	k Rate (cfm)
Sample Lo	ocation	Furnace S	Stack D		Meter Y	1.0044	Stat. Pres	s 0, 90	in H ₂ O		st 0.000 8	
ate 7/13	YII TO	est -4	Run Eff. Probe	- /	Orifice H	@ 1,9371	_			Posttes	st 0,000 a	at 💪 in F
Operators	BAW		Eff. Probe	Length	ft	Liner Type	e: 🔲 Glass [₹ 5.S. 🗖 C	other			
						RUN 3						
	Sample	Sample	Meter	Orifice	Sample	KON 3	Sample	Train Tempe	roturoo °E		0	1
	Point	Time	Reading	Pressure,	Vacuum.		Stack			Mater	Oxygen	l
		ΔΤ	Vm, Cu.Ft		in Hg		Stack	Impinger Outlet	Meter Inlet	Meter Outlet	Content, %	1
		(1100	(262,13)		102			Juliot	IIIIOC	Guiot	70	1
	1	5	205.98	1.0	3		125	57	65	62		ł
	2	10	268.77		3		126	56	63		 	1
	3	15	271:59	10	3		126	57	70	62		1
	4	20-21	274.98	1.0	- 3		127	56	71	65		1
	5	25	1									1
	<u>6</u> 7	30	-									ľ
	8	40		-								
	9	45					-					
	10	50							-			
	11	55								-		
	12	60		ľ						+		
		(112))								1	
	TIC Y	0= 1	Vm=11, 35	AH= 1,0			124 2		III PART IN	Tm=65.75		
eak Rate,	cc/min	0,0	at 15 in Hg			Final wt., g Initial wt., g	100	100	0		1436	
eak Rate,	cc/min		at 15 in Hg						0 0 Sample Tr	ain Leak Ra	te (cfm)	34
eak Rate,	cc/min	0,0	_at 15 in Hg	RUI	N 4	Initial wt., g	100	100	0 0 Sample Tr	at	te (cfm)	24
eak Rate,	cc/min	O, O	at 15 in Hg Meter	RUI Orifice		Initial wt., g	100	100	O O O O O O O O O O O O O O O O O O O	at	te (cfm) in Hg in Hg	34
eak Rate,		Sample Time		RUI Orifice Pressure,	N 4 Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest	at at	te (cfm) in Hg in Hg Oxygen	34
eak Rate,	Sample	Sample	Meter	Orifice	Sample	Initial wt., g	100	100	O O O O O O O O O O O O O O O O O O O	at	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen	34
eak Rate,	Sample Point	Sample Time ΔT	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point	Sample Time ΔT () 5	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3	Sample Time ΔT () 5 10 15	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4	Sample Time ΔT () 5 10 15 20	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5	Sample Time ΔT () 5 10 15 20 25	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6	Sample Time ΔT () 5 10 15 20 25 30	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5	Sample Time ΔT () 5 10 15 20 25	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7	Sample Time ΔT () 5 10 15 20 25 30 35	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT () 5 10 15 20 25 30 35 40 45 50 55	Meter Reading	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	Sample Tr. Pretesi Posttest atures, °F Meter	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Initial wt., g	100 Sample	100	O O O O O O O O O O O O O O O O O O O	Meter Outlet	te (cfm) in Hg in Hg Oxygen Content,	34
eak Rate,	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure,	Sample Vacuum,	Initial wt., g	100 Sample	100	O O O O O O O O O O O O O O O O O O O	at at at Meter	te (cfm) in Hg in Hg Oxygen Content,	32
	Sample Point 1 2 3 4 5 6 7 8 9 10 11	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Initial wt., g Difference	Sample Stack	100	O O O O O O O O O O O O O O O O O O O	Meter Outlet	te (cfm) in Hg in Hg Oxygen Content,	32
tegrated G	Sample Point 1 2 3 4 4 5 6 7 8 9 10 11 12	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Initial wt., g Difference	Sample Stack	Train Temper Impinger Outlet	Sample Tr. Pretest Posttest atures, °F Meter Inlet	At at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content, %	
tegrated G	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Initial wt., g Difference Moisture Rec	Sample Stack	100	O O O O O O O O O O O O O O O O O O O	Meter Outlet	te (cfm) in Hg in Hg Oxygen Content,	₹ L
	Sample Point 1 2 3 4 5 6 7 8 9 10 11 12	Sample Time ΔT (Meter Reading Vm, Cu.Ft	Orifice Pressure, ΔH in H ₂ O	Sample Vacuum,	Initial wt., g Difference	Sample Stack	Train Temper Impinger Outlet	Sample Tr. Pretest Posttest atures, °F Meter Inlet	At at at Meter Outlet	te (cfm) in Hg in Hg Oxygen Content, %	

ArcelorMittal Minorca Mine Furnace Stack A SV014 4-11-13

Sample Location

Project

Operators

Date

THR/BAW

DVA-1. 1.0176 0.98 Meter A y Meter ID

Test Run in. Hg md. 28.60 Sample Rate Bar. Press. Meter B y

Volume Volume Volume Volume Vma, liters Vmb, liters Vmb, liters Vmb, liters Vmb, liters Vmb, liters Vma-liters Vmb, liters Vma-liters Vmb, liters Vma-liters	Samble	Meter A	Meter B	Stack	Sample A	Sample B					
### Outlet Temp ### Ou	Time	Volume	Volume	Temp	Vacuum,	Vacuum,	Sorbent	Probe	Meter A	Meter B	Notes
16 5.082 2.583 100 3.5 7.0 301 3.04 16 6.084 5.389 110 3.5 7.0 301 20 12.063 12.444 111 3.5 7.5 301 20 12.063 12.444 111 3.5 7.5 301 30 18.093 12.144 110 3.5 7.5 301 40 24.173 18.384 110 3.5 7.5 301 50 10.2.7 72.116 110 3.5 7.5 301 50 10	02 20	Vma, liters	Vmb, liters	_	in Hg	in Hg	18, °F	7p, %F	Outlet Temp	Outlet Temp	
10 65.104 5.383 110 3.5 7.0 301 304 11 67.104 5.314 110 3.5 7.0 301 304 120 12.063 12.034 111 3.5 7.0 301 303 120 12.063 12.044 111 3.5 7.0 301 303 120 12.063 12.044 111 3.5 7.0 301 303 120 12.063 12.044 111 3.5 7.0 301 303 120 120 120 120 120 120 120 120 120 120		7	0.000								
16 6. 104 5.319 110 3.5 7.0 3eq 3cut 15 4.185 8.087 111 3.5 7.0 3eq 3cut 15 4.185 8.087 111 3.5 7.5 3eq 3cut 15 4.185 8.087 111 3.5 7.5 3eq 3eq 3eq 3eq 3eq 3eq 3eq 3eq 3eq 3eq	-/	<u></u>	2583	10	35	0.7	30)	304	30	197	
15 4, 175 8, 087 111 3.5 2.5 30 30 30 30 30 30 30 30 30 30 30 30 30	¥		5.319	0//	3.5	2.0	30	304	77	90)	
25 2, 063 12, 174 11 3, 5 2, 5 3 3 3 3 3 3 3 3 3	#		8.087	1111	35	2.5	301	202	6.1.	6.60	
25 5,053 13,474	20		16 787	//1	3.5	12	5	20.5	16	610	
30 (3), 0973 (6), 1672 (1) 3.15 2.5 301 302 35 21, 173 (8, 324, 110 3.5 2.5 301 303 46 24, (23 21,573 111 2.15 2.5 301 3.03 50 30, 21, 7 24, 116 110 3.5 2.5 301 3.02 50 32, 028 24, 712 110 3.5 2.5 301 3.02 50 32, 028 24, 712 110 3.5 2.5 301 3.02 50 32, 028 24, 712 110 3.5 2.5 301 3.02 30 36, 084 32, 380 11 3.5 2.5 3.01 3.02 30 36, 084 32, 380 11 3.5 2.5 3.01 3.02 30 30, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21	25		13.67	111	3,5	55	20)	203	177	1.7	
35 24, 173 18, 84, 110 3.5 7.5 32, 40 24, 723 22, 21, 23, 23, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	30	18,073	-	1//	3,5	12/2	301	207	11	4	
40 24, (28 21,573 (111 2,5 2,5 301 303 45 24 (67 24 28; 110 3,5 7,5 301 302 303 3,5 7,5 30 302 303 303 303 303 303 303 303 303	35	21.13	18. 876	110	W	5.2	301	303	2/	7	
45 77 167 24 281 110 3.5 7.5 701 302 50 10.21 7 27.16 110 3.5 7.5 301 3.02 60 36.084 32.380 111 3.5 7.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	40	W.	21,533	113	2,5	5.2	301	202	4	X	
305 105 7.5 201 31.45 480.05 66 35.05 80.25 80.05 66 35.08 75.75 105 7.5 7.5 7.5 7.5 7.5 105 7	46	£9 £2		011	3.5	5'2	701	202	37)×	
3.55 3.5.08 24.72. 110 3.5 7.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	50	- 1	911.72	011	~	7.5	20	202	2	202	
3.5 7.5 7.6 7.5 3.0 1/1 3.5 7.5 7.6 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	55	33.088	24.77	011	20	7 8	105	2017	6	50%	
350 St. Car Vinna=36 Cold Vin	99		32.380	111	W	1	192	702	0/	27	
200 Vma=3C0XV Vmb=27.287 T== 1/8).C	02 50					1			5	2	
200 Vma=3C0XV Vmb=27.287 T== 1/8).C											
200 Vma=3C0XV Vmb=27.287 T== 1/8).C											
200 Vma=3C0XV Vmb=27.287 T== 1/8 t C											
0.0 Vma=36.0% Vmb=27.28.7 T== 1/8 t C											
0.0 Vma=36.0% Vmb=27.2% Ts= 1/8).C											
0.0 Vma=36.054 Vmb=27.28.7 Ts= 1/81.6											
0.0 Vma=36.0% Vmb=27.2% Tr= 1/01.6											
0.0 Vma=36084 Vmb=27.180.7= 1/80.5											
0.0 Vma=36.0% Vmb=27.3% Tr= 1/01.6											
CO Vma=3COS4 Vmb=72 720 Tr= 1/0 L											
	09	Vma-36cox	5	TS= [40 tC					Trace Com	Tooks (make	

04004308 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest O at 10 in Hg Spike Y/N Posttest O at 5 in Hg Spike Vin Posttest O at 5 in Hg Spike Level

Trap B ID Spike Y/N Spike Level

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine
Furnace Stack A SV014
イーハード

Sample Location

Project

Operators

Date

 Meter ID
 DVA-1
 Test

 Meter Ay
 1.0176
 Run

 Meter By
 0.987
 Ipm

 Sample Rate
 0,5
 Ipm

 Bar. Press.
 78,60
 in. Hg

N

Г			Τ	Т	Τ		Т	Γ	Γ	Γ		Τ	Γ	Τ	Τ	T					Т	T
	Notes																					
	Meter B	Outlet Temp		14	14	-14	75	75	77	24	17	H2	12	27	70	1.1						Tmb=73,3
	Meter A	Outlet Temp		4	-4	1	rt	26	25	24	25	12	in the	6	けたけ	1						Tma= 73,0
	Probe	Тр, °F		302	302	302	208	205	302	302	302	702	305	202	307	3						
	Sorbent	Ts, °F		102	102	100	301	301	301	301	101	102	Joh	102	500							
Sample B	Vacuum,	in Hg		2,5	5'2	2.5	2.5	5.5	2.5	7.5	5 2	75	252	2	2.5							
Sample A	Vacuum,	in Hg		7	2.5	3.5	3,5	3,5	3,5	30	3.5	35	315	2,5	N.							
Stack	Temp	ļ.		107	103	2113	1111	011	011	111	ij	717	011	[1]	711							Ts=110, 2
Meter B	Volume	Vmb, liters	0,000	2.646	5.233	7.839	10,345	12,292	15497	18,049	70,841	23.199	25.60	28,223	30.808							Vmb-30,205
Meter A	Volume	Vma, liters	0,000	2.857	13	8,99)	10	14,884	bht 't!	20,643	23 73	26.534	29392	32.343	25316							Vma=35,316 Vmb30,208
Sample	Time	١٥	(1000)	5	10	15	20	25	30	32	40	45	20	52	09	00						00 =0

Trap B ID Spike Y/N Spike Level OLCOH3452 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest $\frac{O}{O}$ at $\frac{10}{2}$ in Hg Pretest $\frac{O}{O}$ at $\frac{10}{2}$ in Hg Posttest $\frac{O}{O}$ at $\frac{10}{2}$ in Hg Spike Level

B-5-410

ArcelorMittal Minorca Mine 4-11-17 Furnace Stack A SV014

Sample Location

Project

Operators

Date

TMR/844

E L F28P.0 D 76101 DVA-1 Sample Rate Meter A y Meter B γ Meter ID

in. Hg 28.60

Bar. Press.

Test Run

_	-	_	-	_	_	-	-	-	-	_	-	-	-	,	_	+	_	_	_	-	_	_	-	-	-	_	_	_
	Notes																											
	Meter B	Outlet Temp		75	34	14	75	14	76	76	4.17	15	24	49	bt		8											Tmb=76,4
	Meter A	Outlet Temp		25	75	74	75	25	54	3/6	94,	te	1.1.	78	86													Tma= 76.0
	Probe	Tp, °F		303	203	302	202	302	20%	202	303	202	202	302	283	1												
	Sorbent	Ts, °F		(%)	30)	30	701	301	301	25	301	002	200	102	300													
Sample B	Vacuum,	in Hg		2.5	5.2	2:5	5.2	2.5	52	5 12	2,5	7.5	52	2.5	5.2													
Sample A	Vacuum,	in Hg		3.5	2,5	2,5	2,5	2,5	35	3.5	3,5	3.7	315	3.5	3,5													
Stack	Тетр	۲.		011	8	111		011	111	/11	///	110	011	011	110	- //												Ts=110,3
Meter B	Volume	Vmb, liters	0,000	2,850	5,335	7,830	10,371	12 845	SF5 . 21	17.767	20,725	22677	25,128	919:42	646, 62													
Meter A	Volume	Vma, liters	0,000	3	Vi	00	11.452	14.493	17.336	10 185	23.130	724,52	50 Z8,729	31.610	21.367													Vma=34,362 Vmb=8,999
Sample	Time	ΔT	(200)	5	10	15	20	25	30	35	40	45	90	55 3	09	1000	200											09 =0

01C043076

0-411192 Trap B ID Spike Y/N Spike Level

Furnace Stack B SV015

Sample Location

Project

Operators

Date

TM2/341 ArcelorMittal Minorca Mine £1-21-1

Meter ID	ジオ	Tes
Meter A y	76191	Run
Meter B _Y	10,9857	(C. 1)
Sample Rate	8,0	mdl
Bar. Press.	28,65	in. Hg

Γ	Τ	_	Т	Τ		Τ	Т	Τ	Τ		1	Τ		Т	T	T	1		Г	T	T	Τ	T	Т	TI	
	Notes																									
	Meter B	Outlet Temp		1/2	100	15	2/1	75	44	tt	th	278	7×	1X	100	-										Tmb= 77.t0
	Meter A	Outlet Temp		7	1/2	1/1	24	4	100	77	27	55	77	24	24	0										Tma='76.7
	Probe	Тр, °F		302	305	202	30	105	707	202	205	202	307	202	707											
	Sorbent	Ts, °F		201	102	301	301	300	100	30	200	300	301	200	301											
Sample B	Vacuum,	in Hg		5 2	15.5	5 2	100	7	2.5	V 12	25	2.5	5-2	7.5	\ \ \	1										
Sample A	Vacuum,	in Hg		3.0	3.0	2	3.0	3,5	3,0	0.0	2,0	2,0	3,0	30	3,6											
Stack	Тетр	,F		110	0''	111	211	2/1	7, 2	211	211	,1,3	113	11.2	711							4				8:111 =SI
Meter B	Volume	Vmb, liters	000	2.593	251 3	7.713	10,728	12,660	15.100	13,310	20,165	ZZ, 608	25 090	27.569	79.9 88											Vmc4,986
Meter A	Volume	Vma, liters	0,000	7 789		3,034	10,926	3	7	18.15	40 21 343	45 23 967	50 26,530	55 24, 25	241.75 09											8:111 st 1869 Vmc9 W. Ts=111.8
Sample	Time	ΔT	0.136	5	10	15	20	25	30	35	40	45	90	52	09	087										07 =0

Trap B ID Spike Y/N Spike Level Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID OLC 0 43 | 53 Pretest 0 at 10 in Hg Pretest 0 at 5 in Hg Posttest 0 at 5 in Hg Posttest 0 at 5 in Hg Posttest 0

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine Furnace Stack B SV015 サール・フィア

Sample Location

Project

Operators

Date

 Meter ID
 DVA
 Test

 Meter Aγ
 0.9857
 Run

 Sample Rate
 0.5
 Ipm

 Bar. Press.
 28.65
 in. Hg

Ч

		_	Τ	I						П	Г	Г		_		Г	Τ	Т	Т	T	_	Т		_	
	Notes																								
	Meter B	Outlet Temp		08	0	0%	80	18	X	100	Ñ	82	28	N N	X										Tmb= 81.0
	Meter A	Outlet Temp		80	80	80	80	Xo	800	90	-X	S S	(8	94	à	3									Tma= \$0,5
	Probe	Tp, °F		M	38.11	302	707	302	302	205	302	302	302	302	302										
	Sorbent	Ts, °F		740	105	301	300	300	300	700	300	301	102	30)	700										
Sample B	Vacuum,	in Hg		2.5	7	2,5	7.5	2,5	7.2	2.5	7	2.5	25	25	7										
Sample A	Vacuum,	in Hg		GZ	310	3.0	2,0	2,0	20	3,0	3,0	2,0	3,0	30	3,0										
Stack	Temp	¥,		110	111	111	7.1	111	112	112	113	511,	113	113	5.11,										TS=111,9
Meter B	Volume	Vmb, liters	0.00	2,580	5,093	7.567	100.00	12.97	15.018	13.462	19,923	22428	24, 902	74,36	454.62										Vmb29.717 Ts=
Meter A	Volume	Vma, liters	00000	01.030	125.5	8,0%	110,332	13,363	18941	18 60	21.230	296.22	16.634	55 29, 277	016:15										Vma31.97
Sample	Time	ΔT	1000	5	10	15	20	25	30	35	40	45	20	55	09	100									09 =0

00411166 Trap B ID Spike Y/N Spike Level Sample Train A Leak Rate (Ipm) Sample Train B Leak Rate (Ipm) Trap A ID OLCO434|S Pretest O at S in Hg Posttest O at S in Hg Posttest O at S in Hg Spike Level

Project

FIELD DATA SHEET **EPA Method 30B**

TMR 1842 41-11-11 ArcelorMittal Minorca Mine Furnace Stack B SV015 Sample Location

Operators

Test Run in. Hg Eg. 2865 0,985 10136 Sample Rate Bar. Press. Meter A γ Meter B y Meter ID

M

	Notes																				
	Meter B	onner leuf	27	500	da	X	Ø	i Q	200	00	- P	Ø	X	X	0						
	Meter A	Outer Terrip	à	2×	14	30	200	000		80			28	0	0						
	Probe Tn °F		205	307	207	707	707	702	302	202	302	202	205	2007	1						
	Sorbent Ts. °F	5	102	301	100	102	102	301	301	301	301	301	1221	3001							
Sample B	Vacuum,	20	512	\ \	N.	1	1/2	52	2 >	512	2.4	2 5	5 2	V'C	1						
Sample A	Vacuum, in Ha	20	3.0	3.0	W	3	3,0	3,0	3,0	202	2,0	30	3,0	3,0							
Stack	Temp °F		111	111	20	111	112	7 !!	111	77	111	17/1	1101	111					Ŋ		
Meter B	Volume Vmb, liters	0.000	615.2	020.0	7.534	10, 052	545 7	15.002	17,528	70.00H	NOS 27	616 152	4117	29903							1
Meter A	Volume Vma, liters	0.000		4.0	7.578	P.277	12,825	N	17	9	23, 156	50 25,803	28, 280	36.935							
Sample	Time ΔT	1030)	5	10	15	20	25	30	35	40	45	90	55	09	130						1

Trap B ID OLU | 193

13AW ArcelorMittal Minorca Mine Furnace Stack C SV016 H-11-17 TMZ

Sample Location

Project

Operators

Date

Test Run in. Hg md. 28.60 2 1.0063 DV8-1 10141 Sample Rate Bar. Press. Meter B γ Meter A y Meter ID

F	C DIAM	ואוכוכו ח	Stack	Sample A	Samble B					
ıme ∆T	Volume Vma, liters	Volume Vmb, liters	Temp °F	Vacuum, in Ha	Vacuum, in Ha	Sorbent Ts. °F	Probe To °F	Meter A	Meter B	Notes
(CX.30)	0,000	0.000						dup Land	Contect terrip	
2		166	122	2.0	2·C	302	303	> '	>7	
10	ev	4. 139	121	2.0	Z. O.	202	302	16	177	
15	,	1.2.14	122	2.0	2.0	302	20.5	1	11	
20	4.5	8.403	72/	0.2	2.0	201	N 0	1.7	17	
25	9 585	10.569	122	7.0	0	302	363	× ×	X	
30	1 505	- 7	122	20	0:2	208	303	500	60	
35	13 456	14 842	121	4,0	2,0	30	202	2	2,0	
40	15	18 94	121	2:0	2,0	301	302	L.	St	
45	17 509	19,241	127	20	0/2	301	302	ħ	7.	
20	5	21.627	22	2,0	0.2	205	363	77	7	
55	24.360	23 82	721	2,0	20	30	302	4	77	
09	23.893	26,083	221	20	7.0	301	200	1	1,1	
0560						1		1	7.	
09	Vma=23,813 Vmb= 26,033 T	Vmb= 26033	TS= 13/143					Tms. Cq 3	Tab- [9 0	

Trap B ID Spike Y/N Spike Level OLC O43459 at ic in Hg Prefest O at in Hg Spike Y/N at in Hg Posttest D at in Hg Spike Pin Hg Spike Level Sample Train A Leak Rate (Ipm) Pretest Posttest

DE-4111 23

ArcelorMittal Minorca Mine Furnace Stack C SV016

Sample Location

Project

Operators

Date

TMR/BAW 4-11-17

<u>ma</u> 0/2 1,0063 1019 DVB -Sample Rate Meter A y Meter ID Meter B y

in. Hg

28,60

Bar. Press.

N

Test Run

		_																				
	Motor	200																				
	Meter R	Outlet Temp		7	7	22	17.5	74	14	17.	75	26	pre	7	10	2						Tmb= 73. 2
	Meter A	Outlet Temp		14	26	7	14	727	75	177	4	1/2	i,	25	12	7 10						Tma=79, %
	Probe	Tp, %		307	70%	307	707	200	202	30	302	302	307	207	2.2	300						
	Sorbent	Ts, °F		202	301	301	10%	202	302	202	20%	301	10%	201	202	1						
Sample B	Vacuum,	in Hg		2.5	5.2	1	7	7	2	2.5	2:5	7.5	25	7.5	1.7							
Sample A	Vacuum,	in Hg		25	7.5	7.5	7.5	2.5	2.5	2 >	2.5	25	2,5	2.5	> 1							
Stack	Тетр	4,		116	121	121	121	12	121	127	221	120	119	12	122							130,67
Meter B	Volume	Vmb, liters	0,000	2,438	5.063	7.63)	10,079	12 482	16 61	17372	19.743	22,198	24.572	25 943	£12.62							Vmaz8:733 Vmb=29,317 Ts= 120,67
Meter A	Volume	Vma, liters	0,000	722 2	-	,	9. 289	11.30 t	14,163	16.587	(9.05)	21456	23, 914	55 76, 300	28,733							/ma28/333
Sample	Time	ΔT	10001	Q	10	15	20 0	25	30	35	40	45	50 23	55	09	200						Q9 =0

Trap B ID Spike Y/N Spike Level 02413031 Sample Train A Leak Rate (Ipm)
Pretest
O at 10
Posttest
O at 5

1611171

ArcelorMittal Minorca Mine

13AW Furnace Stack C SV016 4-11-1 TMIZ

Sample Location

Project

Operators

Date

i.		r i	m <u>a</u>
1-200	10141	1,0063	0,5
Meter ID	Meter A y	Meter B y	Sample Rate

Test Run in. Hg 09.82 Bar, Press.

Sample	Meter A	Meter B	Stack	Sample A	Sample B					
a	Volume	Volume	Temp	Vacuum,	Vacuum,	Sorbent	Probe	Meter A	Meter B	Notes
+	Vma, liters	Vmb, liters	ļ۲	in Hg	in Hg	Ts, °F	Tp, °F	Outlet Temp	Õ	200
1200 1	0.000	0000							ـــ	
5	2.276	2. 776	021	2.5	N C	72	202	77	77	
10	10 4.834	2 351	(2)	52	3.0	208	202	7	7.5	
15	15 7, 400	7.631	123	2.5	202	707	202	17	75	
20 16	20 10, 0 20	4.97	221	52	3.0	206	NON	1	1/1	
25 //	12,640	tr2 21	127	7	5	ور	1 0	2	7 2	
30	5. 25.	14.545	173	7.5	2,3	کم	1000	1	17.	
35	17 78	16.818	123	15	2.2	12	100	30	100	
40 %	40 20, 346	19,130	123	25	200	100	1000	00	40	
45 2	45 Z3 OOO	21.38	121	75	2.0	14	17	200	00	
2 09	50 25.54°	COD MZ	121	1	2,2	34	1000	200	00	
55 2	55 28, loy	16 561	122	1	7,5	3	1000	200) , 0	
2 09	60 20, 650	12. 27	121	1/1	20	12	1001	200	000	
200					7	2	200	200	2×	
V. O.	2010	1/m = 1010 1 mh 19 14 1 0 101 0 2	10100							
- 1	20100	17 (-011)A	10.18 =s					Tma= 78, 9	Tmb= 7%, <	

07C043H33 Sample Train A Leak Rate (Ipm)

Pretest

O at 10 in Hg Pretest

Posttest

At 5 in Hg Posttest

Trap B ID Spike Y/N Spike Level

ArcelorMittal Minorca Mine 1M2/34W Furnace Stack D SV017 F1-21-1

Sample Location

Project

Operators

Date

1,0063 410% DVB Sample Rate Meter A γ Meter B y Meter ID

Test Run in. Hg md 28.65 Bar. Press.

Sample	Meter A	Meter B	Stack	Sample A	Sample B					
lime ∆T	Volume Vma, liters	Volume Vmb, liters	Temp °F	Vacuum, in Ho	Vacuum, in Ho	Sorbent Ts. °F	Probe Tn °F	Meter A	_	Notes
1726)	00000	0,000		0	n -		i	Onier Leino	dular jaino	
5	2.4	PS 5	3	2.0	0	302	30%	K	4	
10	4	290 5	121	2,0	O M	305	202	r.	76	
15		3.567	521	0.2	J.	302	205	46	75	
20	6	20101	126	2.0	3,0	702	202	197	nt th	
25	11.903	12.587	126	20	3,0	302	Non	77	11	
30	14	15, 19	126	25	3.0	105	302	×th	X	
35	7	17.589	120	2.5	310	301	30%	100	7	
40	709 161 05	20.0%	721	25	210	192	302	i	101	
45	45 22, 163	72, GE	126	5.5	O.	361	307	2	4	
20	- 10	25.160	126	2.5	3.0	12	202	200	80	
52	245.52 342	22,738	121	2.5	2.	30.1	307	X	200	
09	60 28 236	8,189	127	2.5	0.1	702	300	X	NX.	
2836					1		3		0	
3										
	1000	-								
60	Vmary Vmb N	Vmb 20 18	Ts=1.65.0					000	0	

Spike Y/N Spike Level Trap B 1D 01C043473 Sample Train A Leak Rate (lpm) Sample Train B Leak Rate (lpm) Trap A ID Pretest O at O in Hg Pretest O at O in Hg Posttest O at O in Hg Posttest O at O in Hg Spike Level

OLMII 12

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine

ArcelorMittal Minorca Mine Furnace Stack D SV017 H - 12 - 17

Sample Location

Project

Operators

Date

Mine Meter ID Meter B

Meter $A\gamma$ / Old IMeter $B\gamma$ / Oob 3Sample Rate O.S Ipm

in. Hg

59.82

Bar, Press.

Test Run

Γ		T	T	I		Τ	Τ	Τ		Τ	T	Τ	Τ	T	Τ	1	1					1	1
	Notes																						
	Meter B	Outlet remp	80	80	80	8/	X	28	200	25	82	200	2	×	3								Tmb= % [. 8
	Meter A	Outlet Temp	0	No	80	200	200	87	iv.	200 100 100	200	20	3	28	5								Tma=81,9
	Probe	Ž.	303	202	207	2021	202	307	202	302	302	302	302	202	1								
	Sorbent Te °F	- 0	20%	20%	202	305	(05	301	301	, S	105	30)	701	(02.									
Sample B	Vacuum,	BL 13	0.20	NO	20.0	OM	3.0	25	100	200	7	2.5	7	1	1								
Sample A	Vacuum,	Si : 10	9,5	7,0	2,0	2,0	2,0	7	25	< 2	2.5	2.5	2.5	2 5									
Stack	Temp		121	125	126	126	126	126	126	721	£21	127	421	121									[s=135.83]
Meter B	Volume Vmh liters	0,000	£99,2	304 5	050.8	147 01	13,273	5 652	18,063	20.251	854.22	24635	26 853	162.82								4	169671
Meter A	Volume Vma liters	0.000	27		2433	10.587	12.070	15, 258	3/hr E	19.645	2).837	50 24.003	55 26. 142	F(5.8.3)7									60 VME8317 VME9
Sample	Time ^\T	1040	5	10	15	20	25	30	35	40	45	50	55	09	1000	1							0= 20

Trap B ID Spike Y/N Spike Level olcoy3364 Sample Train A Leak Rate (lpm)

Pretest

O at 10 in Hg Pretest

O at 5 in Hg Spike Y/N

Posttest

O at 5 in Hg Spike Prince

O at 5 in Hg Spike Prince

O at 5 in Hg Spike Level

Trap B ID OL 411103 Spike Y/N Spike Level

EPA Method 30B FIELD DATA SHEET

ArcelorMittal Minorca Mine
Furnace Stack D SV017

9-12-17

TM2/34W

Sample Location

Project

Operators

Date

 Meter ID
 DVB
 Test

 Meter A γ
 1.014/1
 Run

 Meter B γ
 1.0063
 Ipm

 Sample Rate
 0.5
 Ipm

 Bar. Press.
 28.65
 in. Ha

Barometr BA-04 (TMR) in. Hg 28.65 Bar. Press.

Sample	Meter A	Meter B	Stack	Sample A	Sample B					
Time	Volume	Volume	Temp	Vacuum,	Vacuum,	Sorbent	Probe	Meter A	Meter B	Notes
ΔŢ	Vma, liters	Vmb, liters	¥,	in Hg	in Hg	Ts, °F	Tp, °F	Outlet Temp	Outlet Temp	
030)	0000	0000								
2	2.276	5 499	(2)	2.5	2,5	105	20%	4	07	
0,	4.717	5.016	123	5.2	5.2	102	302	79	7.0	
15	15 7.106	7.453	127	2.5	5.2	701	307	20	29	
20	20 9.635	the o	126	2.5	2:5	102	307	00	0	
25	12.603	12344	126	52	2,5	116	302	× 0	57	
30	-	14.047	175	2.5	2:2	ام ا	302	200	01	
35	JES 41	14.807	121	5:2	2,5	701	202	08	200	
40	0'6/	Zha.02	127	2.5	2.3	301	707	X	80	
45	45 22. 578	25,550	921	2.5	7.5	R	307	8	0×	
20	50 25.062	280,52	126	2,5	52	301	302		SO	
55	529.62	24,653	126	7.7	2.5	ß	202	0)	S S S	
09	00 30 146	70,196	17.7	75	7	100	2002	2	C 9	
1130								3	3	
1										
0= 60	Vma 30.1 46 Vmb 30,196		Ts=135.5					Tma='79 9	Tmb= 79.5	

at 1/2 in Hg | Spike Y/N N N at 10 in Hg Pretest D at 10 at 10 at 10 at 10 at 10 at 10 at 10 at 10 at 10 at 5 in Hg Posttest D at 5 Sample Train A Leak Rate (Ipm) 0 Pretest Posttest

Appendix C

Laboratory Reports and Sample Chain of Custody

trap id	s1 area	s2 area	s1 ng	s2 ng	ccv, %
Stack A R1 TA	38900	1100	42.53	1.17	
Stack A R2 TA	65100	2130	71.18	2.26	
Stack A R3 TA	46300	2190	50.62	2.32	
Stack A R1 TB	201000	2560	219.77	2.71	
Stack A R2 TB	155000	1580	169.47	1.67	
Stack A R3 TB	194000	3050	212.11	3.23	
ccv	64500		70.52	0.00	94.03
Stack B R1 TA	51000	2090	54.94	2.21	
Stack B R2 TA	72300	1640	77.89	1.74	
Stack B R3 TA	60700	1930	65.39	2.04	
Stack B R1 TB	184000	1940	198.22	2.06	
Stack B R2 TB	212000	1240	228.39	1.31	
Stack B R3 TB	171000	818	184.22	0.87	
ccv	64500		69.49	0.00	92.65
Stack C R1 TA	85800	4440	91.57	4.70	
Stack C R2 TA	85000	4550	90.72	4.82	
Stack C R3 TA	98300	1980	104.91	2.10	
Stack C R1 TB	211600	2160	225.83	2.29	
Stack C R2 TB	256000	3170	273.21	3.36	
Stack C R3 TB	247000	2970	263.61	3.15	
ccv	87400		93.28		93.28
Stack D R1 TA	123000	1290	131.27	1.37	
Stack D R2 TA	130000	1070	138.74	1.13	
Stack D R3 TA	125000	1320	133.40	1.40	
Stack D R1 TB	206000	939	219.85	0.99	
Stack D R2 TB	263000	795	280.68	0.84	
Stack D R3 TB	253000	728	270.01	0.77	
CCV	94300		100.64		100.64

	ВІ	PAC Screenii	ng		
trap id	s1 area	s2 area	s1 ng	s2 ng	ccv, %
C, R1B	41300	2350	104.40	5.62	
C, R1A	21900	1840	55.36	4.40	
D, R1A	32000	1310	80.89	3.13	
D, R1B	51800	911	130.94	2.18	
CCV	29500		74.57	0.00	99.43
C, R2B	42300	1930	106.93	4.62	
C, R2A	23200	2070	58.65	4.95	
D, R2A	30400	891	76.85	2.13	
D, R2B	46300	732	117.04	1.75	
CCV	28400		71.79	0.00	95.72
C, R3A	22200	2020	56.12	4.83	
C, R3B	41700	2040	105.41	4.88	
D, R3A	29600	915	74.82	2.19	
D, R3B	46500	928	117.54	2.22	
CCV	28300		71.54	0.00	95.38
		PAC Screenii	_	. 0	0/
trap id	s1 area	s2 area	s1 ng	s2 ng	ccv, %
C, R1B	22900	2090	54.45	5.23	
C, R1A	41600	1820	98.91	4.55	
D, R1A	28200	642	67.05	1.61	
D, R1B	48800	292	116.02	0.73	
CCV	29300	4=00	69.66	0.00	92.88
C, R2B	19800	1720	47.08	4.30	
C, R2A	38300	1970	91.06	4.93	
D, R2A	25800	807	61.34	2.02	
D, R2B	44800	596	106.51	1.49	
CCV	28400		67.52	0.00	90.03
CCV	29900		71.09	0.00	94.79
:					
C, R3A	19900	1790	47.31	4.48	
C, R3B	40400	1830	96.05	4.58	
C, R3B D, R3A	40400 26300	1830 639	96.05 62.53	4.58 1.60	
C, R3B	40400	1830	96.05	4.58	90.35

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-200

TEST T1

TEST DATE 2/8/2017

SOURCE ID Stack A SV014 - Longterm 1

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY

BAW ROB

AIR FILTERS: 4" Quartz 2/14 ANALYZED ON: ANALYSIS PERFORMED BY

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)
			0.6908	2/15/2017 13:50	0.6705	6/17/2016 12:40	
R1	4Q0588	Red particulate	0.6911	2/16/2017 18:33	0.6708	6/26/2016 16:22	0.02036
			0.6676	2/15/2017 13:51	0.6456	6/17/2016 12:52	
R2	4Q0599	Red particulate	0.6678	2/16/2017 18:32	0.6457	6/26/2016 15:54	0.02208
			0.6769	2/15/2017 13:54	0.6570	6/17/2016 12:44	
R3	4Q0592	Red particulate	0.6771	2/16/2017 18:30	0.6572	6/26/2016 16:08	0.01984
R0 Filter			0.6773	2/15/2017 13:44	0.6783	6/17/2016 12:50	
Blank	4Q0597	Blank	0.6776	2/16/2017 18:34	0.6786	6/26/2016 15:57	-0.00071
DIAIIK			0.6779	2/17/2017 13:37			

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
			122.5630	2/16/2017 19:01	122.55890	2/13/2017 18:03			
R1	1001	Dark particulate	122.5632	2/21/2017 12:02	122.55872	2/14/2017 9:39	0.00430	135	No
			125.3048	2/16/2017 19:08	125.29965	2/13/2017 18:04			
R2	1002	Dark particulate	125.3047	2/21/2017 12:01	125.29951	2/14/2017 9:38	0.00517	135	No
				0//0/2017 / 0 00		2/12/22/2			
			127.3613	2/16/2017 19:09	127.35699	2/13/2017 18:05			
R3	1003	Dark particulate	127.3611	2/21/2017 12:00	127.35664	2/14/2017 9:37	0.00437	115	No
							-		
							-		
R0			103.9175	2/16/2017 19:22	103.91681	2/13/2017 18:17			
Reagent	1013	Blank	103.9173	2/21/2017 11:38	103.91664	2/14/2017 9:16	0.00066	200	No
Blank									

PAGE 1 OF 2 8/2/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack A (SV014) Test Date: February 8, 2017 Longterm 1

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.02036	0.02208	0.01984	-0.00071
Probe Wash - Net Residue Mass	M_{pw}	g	0.00430	0.00517	0.00437	0.00066
Probe Wash Volume	V_{pw}	ml	135	135	115	200
Calculations Probe Wash Blank Correction Amount	C _{pw}	g	0.00045	0.00045	0.00038	
$C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)}$	·					
Probe Wash Final Mass	M_{pwf}	g	0.00385	0.00472	0.00400	
$M_{pwf} = M_{pw} - C_{pw}$						
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02421	0.02680	0.02383	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-201

TEST T2

TEST DATE 2/9/2017

SOURCE ID Stack B SV015 - Longterm 1

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY BAW

AIR FILTERS: 4" Quartz

ANALYZED ON: 2/14 **ANALYSIS PERFORMED BY** ROB

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)
		Grey-red	0.7510	2/15/2017 14:01	0.7303	8/21/2014 11:32	
R1	4Q0427	particulate	0.7511	2/16/2017 18:23	0.7300	8/22/2014 10:15	0.02115
		particulate			0.7298	8/25/2014 14:45	
		Grey-red	0.6954	2/15/2017 14:02	0.6713	4/28/2016 10:49	
R2	4Q0574	particulate	0.6954	2/16/2017 18:21	0.6709	4/29/2016 11:06	0.02436
		particulate					1
		Crov rod	0.7025	2/15/2017 14:03	0.6800	6/17/2016 12:45	
R3	4Q0593	Grey-red	0.7025	2/16/2017 18:21	0.6802	6/26/2016 16:06	0.02238
		particulate					
R0 Filter			0.6773	2/15/2017 13:44	0.6783	6/17/2016 12:50	
	4Q0597	Blank	0.6776	2/16/2017 18:34	0.6786	6/26/2016 15:57	-0.00071
Blank			0.6779	2/17/2017 13:37			Ī

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
R1	1004	Dark particulate	104.6714 104.6710	2/16/2017 19:11 2/21/2017 11:59	104.66774 104.66733	2/13/2017 18:06 2/14/2017 9:36	0.00365	145	No
R2	1005	Dark particulate, filter media	126.6502 126.6500	2/16/2017 19:12 2/21/2017 11:58	126.64273 126.64254	2/13/2017 18:07 2/14/2017 9:36	0.00747	150	No
R3	1006	Dark particulate, filter media	127.4315 127.4318	2/16/2017 19:17 2/21/2017 11:57	127.42757 127.42783	2/13/2017 18:10 2/14/2017 9:33	0.00395	135	No
R0 Reagent Blank	1013	Blank	103.9175 103.9173	2/16/2017 19:22 2/21/2017 11:38	103.91681 103.91664	2/13/2017 18:17 2/14/2017 9:16	0.00066	200	No

Results of Gravimetric Particulate Analysis Indurating Furnace Stack B (SV015) Test Date: February 9, 2017 Longterm 1

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.02115	0.02436	0.02238	-0.00071
Probe Wash - Net Residue Mass	M_{pw}	g	0.00365	0.00747	0.00395	0.00066
Probe Wash Volume	V_{pw}	ml	145	150	135	200
Calculations Probe Wash Blank Correction Amount	C _{pw}	g	0.00048	0.00049	0.00045	
$\begin{aligned} &C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)} \\ &\text{Probe Wash Final Mass} \\ &M_{pwf} = M_{pw} - C_{pw} \end{aligned}$	M _{pwf}	g	0.00317	0.00698	0.00350	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02432	0.03134	0.02588	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-202

TEST T3

TEST DATE 2/8/2017

SOURCE ID Stack C SV016 - Longterm 1

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY

BAW

AIR FILTERS: 4" Quartz ANALYZED ON: 2/14 ANALYSIS PERFORMED BY ROB

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)
			0.6979	2/15/2017 14:05	0.6743	6/17/2016 12:46	
R1	4Q0594	Gray particulate	0.6979	2/16/2017 18:29	0.6745	6/26/2016 16:04	0.02352
			0.7054	2/15/2017 14:09	0.6785	6/17/2016 12:47	
R2	4Q0595	Gray particulate	0.7054	2/16/2017 18:28	0.6787	6/26/2016 16:01	0.02680
			0.6847	2/15/2017 14:10	0.6601	6/17/2016 12:49	
R3	4Q0596	Gray particulate	0.6846	2/16/2017 18:27	0.6604	6/26/2016 15:59	0.02437
R0 Filter			0.6773	2/15/2017 13:44	0.6783	6/17/2016 12:50	
Blank	4Q0597	Blank	0.6776	2/16/2017 18:34	0.6786	6/26/2016 15:57	-0.00071
DIANK			0.6779	2/17/2017 13:37			

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
R1	1007	Dark particulate	126.6395 126.6393	2/16/2017 19:19 2/21/2017 11:56	126.63369 126.63397	2/13/2017 18:11 2/14/2017 9:31	0.00557	140	No
IX I	1007	Dark particulate	120.0393	2/21/2017 11.50	120.03397	2/14/2017 9.51	0.00337	140	INO
		Dark particulate,	125.0269	2/16/2017 19:16	125.01904	2/13/2017 18:13			
R2	1008	filter media	125.0265	2/21/2017 11:56	125.01932	2/14/2017 9:30	0.00751	150	No
		Dark particulate,	125.9055	2/16/2017 19:13	125.89818	2/13/2017 18:14			
R3	1009	filter media	125.9053	2/21/2017 11:55	125.89808	2/14/2017 9:30	0.00727	145	No
							_		
R0			103.9175	2/16/2017 19:22	103.91681	2/13/2017 18:17			
Reagent	1013	Blank	103.9173	2/21/2017 11:38	103.91664	2/14/2017 9:16	0.00066	200	No
Blank									

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack C (SV016) Test Date: February 8, 2017 Longterm 1

Method 5 Particulate Mass Determination

			5 .	5 0		5
Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M_{af}	g	0.02352	0.02680	0.02437	-0.00071
Probe Wash - Net Residue Mass	M_pw	g	0.00557	0.00751	0.00727	0.00066
Probe Wash Volume	V_{pw}	ml	140	150	145	200
Calculations Probe Wash Blank Correction Amount	C _{pw}	g	0.00046	0.00049	0.00048	
$C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)}$	Эрм	9	3.30010	3.30010	2.300 10	
Probe Wash Final Mass M _{pwf} =M _{pw} -C _{pw}	M_{pwf}	g	0.00511	0.00702	0.00679	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02863	0.03382	0.03116	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-203

TEST T4

TEST DATE 2/9/2017

SOURCE ID Stack D SV017 - Longterm 1

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY BAW

AIR FILTERS: 4" Quartz ANALYZED ON: 2/14 ANALYSIS PERFORMED BY ROB

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)				
			0.8078	2/15/2017 14:11	0.7822	9/24/2016 15:17					
R1	4Q0648	Gray particulate	0.8078	2/16/2017 18:26	0.7822	9/28/2016 22:13	0.02559				
			0.6720	2/15/2017 14:14	0.6448	6/17/2015 15:03					
R2	4Q0544	Gray particulate	0.6720	2/16/2017 18:25	0.6449	6/18/2015 8:39	0.02717				
			0.8004	2/15/2017 14:17	0.7743	9/24/2016 15:16					
R3	4Q0649	Gray particulate	0.8004	2/16/2017 18:24	0.7741	9/28/2016 22:14	0.02622				
R0 Filter			0.6773	2/15/2017 13:44	0.6783	6/17/2016 12:50					
Blank	4Q0597		7 Blank	Blank	Blank	7 Blank 0.677		2/16/2017 18:34	0.6786	6786 6/26/2016 15:57 -0.000	
DIANK				0.6779	2/17/2017 13:37						

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
D4	4040	Davis mantiavilata	128.4139	2/16/2017 19:20	128.40853	2/13/2017 18:15	0.00540	400	Nie
R1	1010	Dark particulate	128.4140	2/21/2017 11:54	128.40848	2/14/2017 9:24	0.00543	190	No
			125.4605	2/16/2017 19:21	125.45469	2/13/2017 18:16			
R2	1011	Dark particulate	125.4605	2/21/2017 11:53	125.45506	2/14/2017 9:22	0.00563	190	No
		Dark particulate,	127.8997	2/16/2017 19:23	127.89476	2/13/2017 18:16			
R3	1012	filter media	127.8997	2/21/2017 11:52	127.89439	2/14/2017 9:19	0.00516	195	No
R0			103.9175	2/16/2017 19:22	103.91681	2/13/2017 18:17			
Reagent	1013	Blank	103.9173	2/21/2017 11:38	103.91664	2/14/2017 9:16	0.00066	200	No
Blank									

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack D (SV017) Test Date: February 9, 2017 Longterm 1

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.02559	0.02717	0.02622	-0.00071
Probe Wash - Net Residue Mass	M _{pw}	g	0.00543	0.00563	0.00516	0.00066
Probe Wash Volume	V_{pw}	ml	190	190	195	200
Calculations Probe Wash Blank Correction Amount	C _{pw}	g	0.00063	0.00063	0.00064	
$C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)}$	F.,					
Probe Wash Final Mass	M_{pwf}	g	0.00480	0.00500	0.00451	
$M_{pwf} = M_{pw} - C_{pw}$						
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.03039	0.03217	0.03073	
$M_{PM} = M_{af} + M_{pwf}$						

Request for Laboratory Analytical Services

Nº 12729

500

8 of Containers Remarks 0 Date/Time 2/13/17 0 Other (explain) N 2 N Date/Time 7 N 2 Date/Time 7 00 Ph. (952) 832-2600 Fax (952) 832-2601 TAN 226, 0, (Print Name) ☐ Acceptable 5 Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 Sample Condition upon Receipt: Project Number 2 LABORATORY Received at Lab by: EQE POUNTA Edit Attention: Received by: Received ээіоли puas Barr Engineering Company 7390 Ohms Lane Edina, Mr 55439-2330 (952) 832-2600 SC 20/1 Comp Grab (Direct Phone No.) Date/Time 2/13/17 Media I.D. # 400588 400599 400542 400595 724984 400574 400593 492594 490596 5150 to clement one after analysis Date/Time Date: Other: 1430 Shil 1700 語 1500 1515 QELI LI/8 0/20 CE81 L1/80/20 Date/Time Collected 32) DILTSE Method of Shipment: Sampler K FedEx UPS Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.) 11/20/20 1/60/20 02/08/1 1/90/20 11/20/20 11/60/20 1 18070 Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 (952) 832-2600 BEN Relinquished by: Ren WIKE Collected by (Print Name): BAN Sample Identification 83 26 23 2 92 8 なん 2 OC Collectors Signature: 3 U Relinquished Check One: Attention: しもス STACK Ser STACK S Custody Results To ∞ 6 Report

B-2-435 WIBusiness Units/EM/Subunit Admin/Technical & Support Services/Air Sampling/Datasheets/Other/Chain of Custody. CDR RLG 07-30-08

2 XXX A Add

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy

Rev. 03/01

¥ 5 of 5

Request for Laboratory Analytical Services

500

0,0

43,1

9

Project Number 2

5150

Check One:

BARR

110 Remarks Date/Time 713/17 N ~ Date/Time Ph. (952) 832-2600 Fax (952) 832-2601 (Print Name) TAW SUY, LO Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 ad LABORATORY Attention: Received by: Received oT əsioval × puos Barr Engineering Company 7390 Ohms Lane Edina, MA 55439-2330 Comp × × Grab Date/Time 2/13/17 (Direct Phone No.) 400049 4,00597 Media I.D. # 400544 (952) 832-2600 400048 Date/Time 05/04/17 1830 COL1 11/60/20 1400 to element one after analysis 3 Date/Time Collected Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.) 11/60/20 WILTSE 4/80/20 Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 (952) 832-2600 Der Witze BEN BA? Collected by (Print Name): Sample Identification B2 83 2 Relinquished by: Relinquished by 0 Attention: _ とちス Ser Custody Results To 00 6 Report B-2-433 W:/Business Units/EM/Subunit Admin/Technical & Support Services/Air Sampling/Datasheets/Other/Chain of Custody.CDR RLG 07-30-08

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy

Rev. 03/01

Other (explain)

☐ Acceptable

Sample Condition upon Receipt:

Date: 21

Other:

Method of Shipment: Sampler X FedEx UPS

Collectors Signature:

Received at Lab by:

Date/Time

Barr Engineering

5150 W. 76th Street Edina, MN 55439-2330

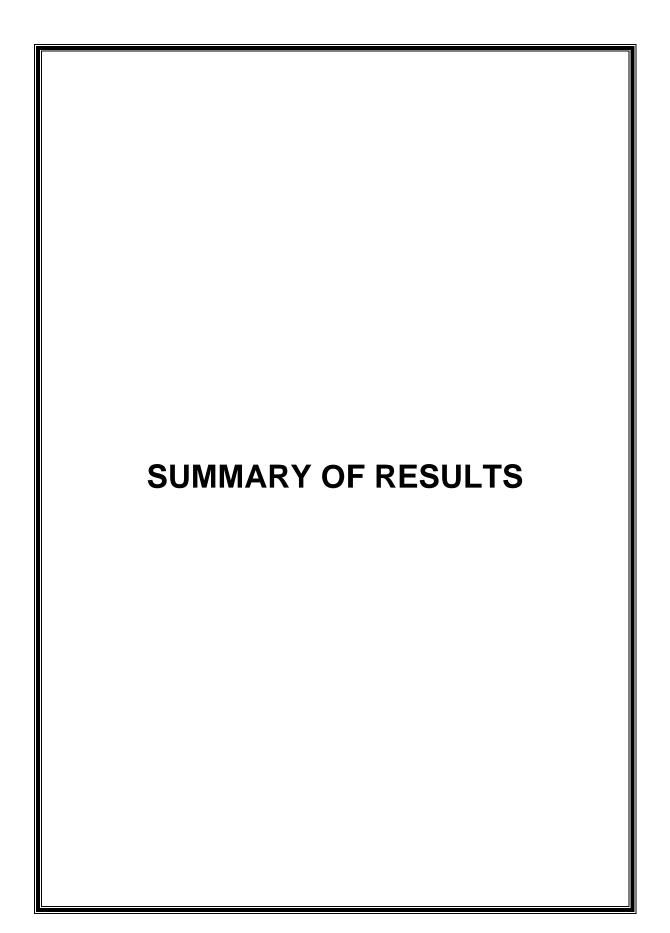
Project Number: 23/69-1843.00 LONG 002

Mercury

Ontario Hydro Method Analysis

Analytical Report 28937

Element One, Inc. 6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX:910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 28937 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

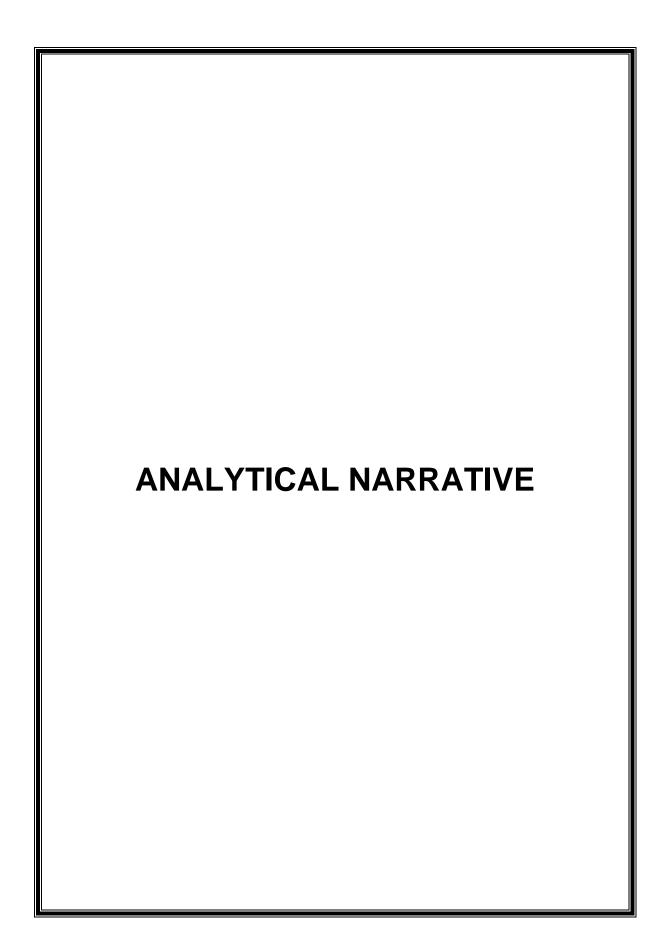
Review by:

Katie Strickland, B.S. Chemist March 7, 2017

Report Reviewed and Finalized By:

Ken Smith, Laboratory Director March 7, 2017

Summary of Analysis


Summary of OHM Mercury Analysis

Run Number		Average Total Catch, µg	Filter µg	FH Rinse µg	KCI µg	H ₂ O ₂ /HNO ₃ μg	KMnO ₄ μg
Stack A-OHM-R1	# 1	4.84	1.09	0.018	1.24	0.002	2.54
	# 2		1.07	0.017	1.23	0.001	2.49
Stack A-OHM-R2	# 1	4.98	1.29	0.030	0.924	0.015	2.70
	# 2		1.29	0.027	0.931	0.014	2.76
Stack A-OHM-R3	# 1	4.55	0.656	0.016	1.16	< 0.013	2.74
	# 2		0.644	0.017	1.18	< 0.013	2.69
Stack B-OHM-R1	# 1	4.81	1.65	0.031	0.632	0.021	2.50
	# 2		1.69	0.029	0.619	0.021	2.42
Stack B-OHM-R2	# 1	5.73	1.74	0.029	0.944	< 0.013	3.05
	# 2		1.71	0.030	0.919	< 0.013	3.04
Stack B-OHM-R3	# 1	5.35	1.67	0.042	0.657	< 0.013	2.99
	# 2		1.68	0.041	0.656	< 0.013	2.96
Stack C-OHM-R1	# 1	5.54	2.09	0.074	0.249	< 0.013	3.13
	# 2		2.05	0.069	0.240	< 0.013	3.17
Stack C-OHM-R2	# 1	7.08	2.24	0.114	0.472	< 0.013	4.24
	# 2		2.19	0.113	0.472	< 0.013	4.31
Stack C-OHM-R3	# 1	6.19	1.82	0.091	0.515	< 0.013	3.74
	# 2		1.83	0.089	0.508	< 0.013	3.79
Stack D-OHM-R1	# 1	7.18	3.13	0.108	0.337	< 0.013	3.63
	# 2		3.14	0.108	0.342	< 0.013	3.57
Stack D-OHM-R2	# 1	7.59	3.32	0.126	0.292	< 0.013	3.80
	# 2		3.36	0.127	0.293	< 0.013	3.86
Stack D-OHM-R3	# 1	7.56	2.69	0.094	0.496	0.016	4.27
	# 2		2.71	0.093	0.490	0.015	4.25

Summary of Analysis

Reagent Blank - Summary of OHM Mercury Analysis

		Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	KMnO ₄	Hydroxylamine Hydrochloride
Run Number		μg	μg	μg	μg	μg	μg
Reagent Blank	#1 #2	< 0.005 < 0.005	< 0.03 < 0.03	< 0.06 < 0.06	< 0.013 < 0.013	< 0.025 < 0.025	< 0.025 < 0.025

Element One Analytical Narrative

Client:	Barr Engineering	Element One #:	28937
Client ID:	23/69-1843.00 LONG 002	Analyst:	LAW
Method:	ОНМ	Dates Received:	02/14 & 22/17
Analytes:	Hg	Dates Analyzed:	02/27-03/06/17

Summary of Analysis

The Ontario Hydro Method (OHM) samples were prepared and analyzed according to method protocol. Samples were analyzed for mercury on a PS Analytical Millennium Galahad CVAF analyzer mercury analyzer.

Ontario Hydro Mercury Catch Summary

The Ontario Hydro Method employs five different fractions to collect mercury in its various states in a flue gas stream. Particle-bound mercury is collected in the filter and front-half rinse. Oxidized mercury (Hg₂²⁺ and Hg²⁺) is collected in the potassium chloride (KCI) fraction. The acidified hydrogen peroxide (H₂O₂/HNO₃) and potassium permanganate (KMnO₄) fractions are utilized to collect elemental mercury (Hg⁰). Total mercury refers to all mercury, however generated or entrained, in the flue gas stream.

Detection Limits

The Ontario Hydro Method Millennium Galahad CVAF instrument reporting limit for mercury was 0.001 µg per aliquot analyzed, which is 0.05 µg/L for a 20 ml aliquot.

Analysis QA/QC

Duplicate analyses relative percent difference (RPD), triplicate analysis relative standard deviation (RSD), and spike sample recovery are summarized in the Quality Control Section. All QA/QC data was within the criteria of the method.

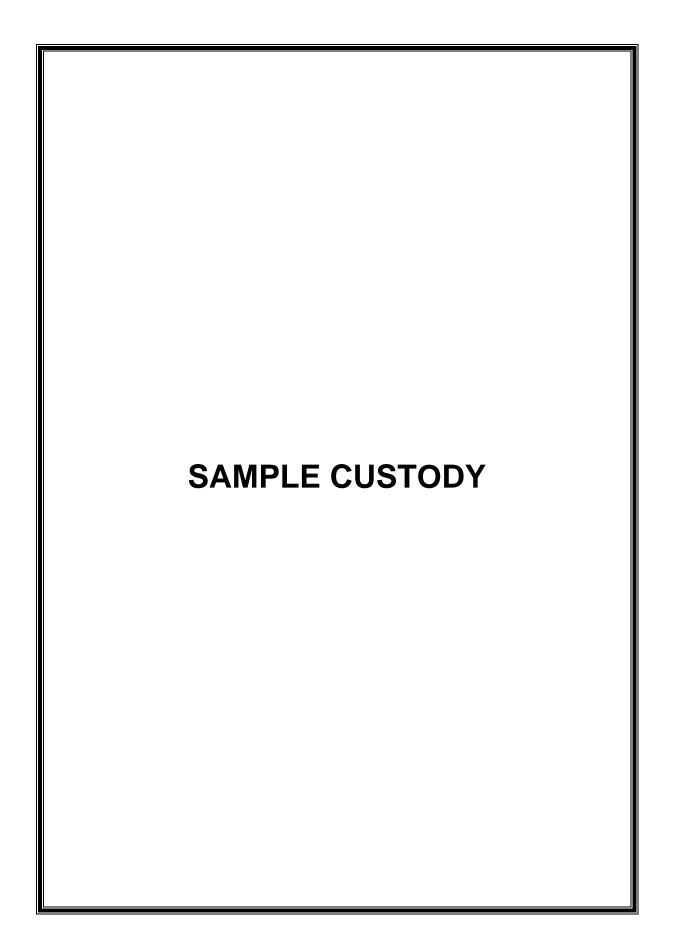
Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. The reported results relate only to the items tested or calibrated.

Summary of Quality Control Data

Mercury Duplicate Analysis RPD

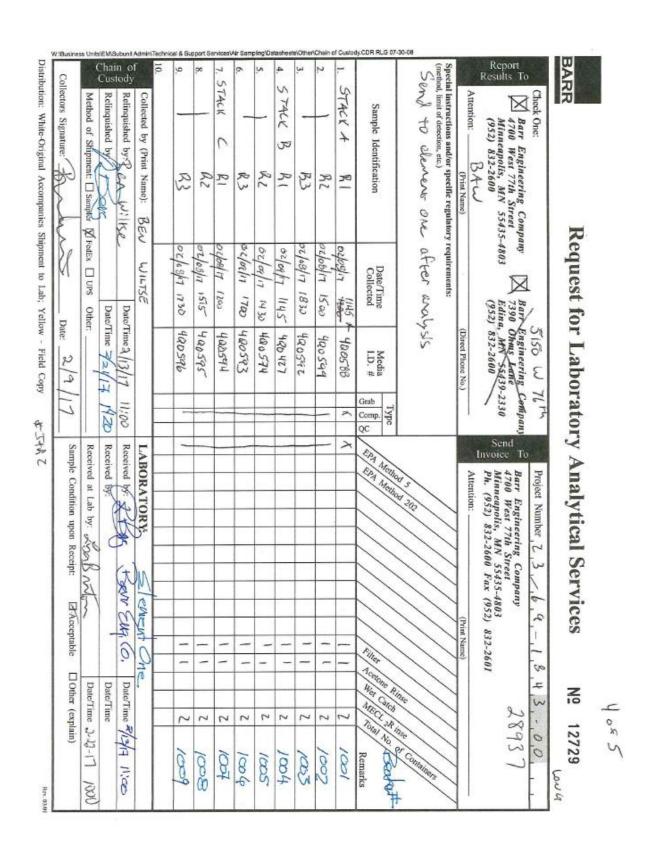
(OHM QC limits: ±10% for RPD)


Run Number	Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	KMnO ₄	Hydroxylamine Hydrochloride
Stack A-OHM-R1	1.8%	8.1%	0.3%	13.3%	1.9%	
Stack A-OHM-R2	0.2%	8.5%	0.5%	8.5%	2.3%	
Stack A-OHM-R3	1.8%	4.2%	1.9%	NA	1.7%	
Stack B-OHM-R1	2.5%	3.7%	2.0%	0.5%	3.1%	
Stack B-OHM-R2	2.0%	1.4%	2.7%	NA	0.4%	
Stack B-OHM-R3	0.2%	4.1%	0.2%	NA	1.0%	
Stack C-OHM-R1	2.2%	6.8%	3.5%	NA	1.0%	
Stack C-OHM-R2	2.1%	1.6%	0.1%	NA	1.7%	
Stack C-OHM-R3	1.0%	2.1%	1.3%	NA	1.5%	
Stack D-OHM-R1	0.1%	0.3%	1.4%	NA	1.7%	
Stack D-OHM-R2	1.3%	0.6%	0.4%	NA	1.6%	
Stack D-OHM-R3	0.4%	0.5%	1.2%	1.3%	0.6%	
Reagent Blank	NA	NA	NA	NA	NA	NA

Mercury Triplicate Analysis RSD (OHM QC limits: ±10% for RSD)

Run Number	Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	KMnO ₄
Stack A-OHM-R2	0.5%	6.3%	0.4%	4.9%	1.2%
Stack B-OHM-R2	1.9%	0.7%	1.3%	NA	0.8%
Stack C-OHM-R2	1.6%	0.9%	0.3%	NA	0.9%
Stack D-OHM-R2	0.8%	0.6%	0.5%	NA	0.8%

Mercury Spike Recoveries (QC limits: 85%-115% for Spike Recoveries)


Run Number	·	Filter	FH Rinse	KCI	H2O2/HNO3	KMnO4
Stack A-OHM-R3	# 1	93%	114%	100%	90%	87%
	# 2	95%	114%	97%	89%	92%
Stack B-OHM-R3	# 1	91%	108%	102%	111%	103%
	# 2	92%	112%	108%	111%	102%
Stack C-OHM-R3	# 1	98%	107%	105%	108%	92%
	# 2	100%	110%	106%	108%	92%
Stack D-OHM-R3	# 1	103%	112%	110%	113%	95%
	# 2	102%	113%	112%	111%	92%

T. C. C. C. C. C. C. C. C. C. C. C. C. C.	Ch	ain isto	of	rom	10.	9	ços ppom s	7.	on .	ÇU1	4.	ω	is N	۲	RLG 05-18-16	O Spec	Report Results To	BARR
Sample Condition upon Receipt	Method of Shipment: ☐ Sampler	Laboratory: ELEMENT	Collector's Signature:			, R3	A2	STACK C AI	R3	RZ	STACK B RI	/ R3	25	STACK A RI	Sample Identification	Special instructions and/or specific regulatory requirements. (method, limit of detection, etc.) CNTARIO HYDRO in Superate Shipment Office gravimentics	Check One: Barr Engineering Company 3128 14th Avenue East Hibbing, MN 55435-4803 (218) 262-8600 Project Contact: (Print Name)	Request for Laboratory Analytical Services
Condition, No	X FedEx □ UPS	OUE	()	BEN WILTSE		02/08/17 173D	orpalin isis	02/04/12 1200	orlastu uso	02/04/17 1430	oc/08/17 1145	02/08/17 1830	aps/17 1500	02/08/17 1145	Date/Time Collected	equiatory requirements. Films for ill arrive. In Suparate shipment of the gravimetrics	pany ■ Barr Engine 5150 West 603 Edina, MN (952) 832- → BALA	ory Analytical
Other (explain)	Other		Date/Time: 2/9			-								NA	Media I.D. #	Requested Due Date: Assandard Turn Around Time Rush mm/dd/pyy/	Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 BAWD BARR, COM	Services
The state of the s			17 2000											×	Grab Type Comp. Pe		seet Send	
Received at Lab by:		Patalander	0 4 4 1	Relinquished by:		1 1		1 1			11	11		1 1	() () () () () () () () () ()	МЕТНОО	Project Number 2.3 / 69 - 16 Barr Engineering Company Attn: Accounts Payable A300 Marketpointe Drive Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952)	MI OSD Other:
But	5.5		Petchana	Received by:		-	-	1	-	-	1 1	-	-	-	12.00	CAN SIL	ny 4803 (952) 832-2	0 0
2-14-17		a see formus	- a/18/17 1	Date/Time:		-	£	E	2	ج	4	4	th	Ч	Total No. o	SAMPLE FRACTION	28437	oc Number: 10121
1052)			12:30	ime											Remarks	"Talines;	7	ļ

Sample Condition upon Receipt: [X] Acceptable Other (ex	Ch	ain Isto	of		10.	,o	OC	7	on.	ÇT	4,	ω	NC00	P P	RLG 05-18-16	T	(me	Report	S. A.	HARR	Bar
Sample Condition upon Receipt (Method of Shipment: Sampler	Laboratory: ELEMENT	Collector's Signature:	Collected by (Print Name): BEN								1 R3	l hz	STACK D By	Sample Identification	ONTARIO HYDRO	Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.)	2 3128 14th Avenue East Hibbing, MN 55435-4803 Project Contact DEN WILTSE (Print Name)	Check One:	Request for Laboratory Analytical Services	Barr Engineering Co. Chain of Custody
XAcceptable □ 0	□ UPS	one	7	J WILTSE								04/09/11/830	02/09/17 1700	or/01/11 1400	Date/Time Collected		requirements:	8 Edina, (952) 8 (952) 8		y Analytical	Custody
Other (explain)	Other:		Date/Time: 2/9/									-	-	46	Media I.D. #	Around Time	Requested Due Date:	5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 B444@BARA.com (email)		Services	
			117 2000									-		×	Grab Type Comp. QC	7999)		Send			
Received at Lab by:		Pitchana	O Brive V	Relinquished by:								1 1	-	_	COPIE I		МЕТНОВ	Attn: Accounts Payable 4300 Marketpointe Drive Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952)		N S S	Sample Origination State
Bal not			hit have	Received by:								-	-	-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	STRING OF STRING		Company rable Drive 55435-4803 Fax (952) 832-2601	169-1843,00	Other: COC	
2-14-17 1052			2/2	Date/Time:								4	٤.	4	168 Remarks	Containers	SAMPLE FRACTION	28957	0 60 0 6 0 0 2	2 of 5	COC Number: 10122

	Ch	ain Isto	of		10.	9.	00	7.	6.	'n	4,	μ	2	r	RLG 05-18-16		Spec (meth	Report Results To
Sample Condition upon Receipt: X Acceptable Oother (ex	Method of Shipment: Sampler A FedEx	Laboratory: ELEMENT 0	Signature &	ame):										BLANKS	Sample Identification	ONTARIO HYDRO	Special instructions and/or specific regulatory requirements: [method, limit of detection, etc.]	Request for Laboratory Analytical Services Check One: Barr Engineering Company S128 14th Avenue East Hibbing, MN 55435-4803 (218) 262-8600 Project Contact BEN WITSE BALL @ BAPA. (enall)
X Acceptable □	□ UPS	ONE	9	BEN WILTSE										04/08/17 1500	Date/Time Collected		y requirements:	ory Analytica pany Barr E t 5150 803 Edina, (952) wrise 5
□Other (explain)	Other:		Date/Time: 2/9												Media LD. #	Around Time Rush transdat	Requested Due Date	ytical Services Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 BAW @ BAPA.COM (email)
			117 20	-										×	Grab Type Comp. QC	Time (mm/dd/yyyy)	e Date:	
T.		-	Soar											X	C. S. TAQUE			Send Invoice To
Received at Lab by:		etalanh-	N. Z. L.	Relinquished by:										1 1		10%	МЕТНОВ	Project Number 2 3 / 6 9 - 1 8 Barr Engineering Company Attn: Accounts Payable 4300 Marketpointe Drive Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952)
Log Brite			Michandre	Received by:										- - +	3 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ny 4803 (952
7-14-17		7 7 7	- 2/13/17	Date/										_	//	S. S. S. S. S. S. S. S. S. S. S. S. S. S	시원	coc 3 of 5 84300 600 6 28937
1050			12:30	Date/Time:											Remarks	Containers		2000

		Cha	in o stody	f	10.	9.	90	7.	6.	S	4	<u>.</u> .	2.		dy.CDR RLG 07		100000	Report Results To		BARR	
Collectors Signature	Method o	Relinquished by:	Relinquished by: Sea	Collected by						BLANKS				STACK	Sampl	Special instructions and/or (method, limit of detection, etc.) Send to the me		Ba 470 Mi (95	Check One:	쏬	à
1	f Shipm	ned by:	ned by:	by (Pri						5				D	e Identi	ection, etc		oo We nneapo 52) 83	ė.		
A. de	Method of Shipment: Sampler	大大大	Sor Wilks	(Print Name): BEル								R3	RZ.	20	Sample Identification	Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.) Send to element one after analysis	(Print Name)	Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 (952) 832-2600			
Ň	XI FodEx ☐ UPS		Se	N WILTSE						02/08/17		02/09/17 1830	02/09/17	02/09/17	Date/Time Collected	ory requirements After AM		15any X		Reques	
D	Other:	Date/	Date/							1500		1830	1700	14ao	ime	5/54		7390 7390 Edino (952)	S	t fo	
Date: 2/9		Date/Time =/21/	13/							41gos97		400649	400544	840004	Media I.D. #		(Direct Phone No.)	Bur Engineering Company 7390 Ohms Lane Edina, BN 55439-2330 (952) 832-2000	5150 m 7	r Labo	
17		OFH EI	17 11:00		E					~		=		×	Grab Type		ľ	Comp. 2-2330	76 12	rate	
Sa	Re			F				-	-	*			_	×	QC	l		Send	100	ory	
Sample Condition upon Receipt:	Received at Lab by: From Six	Received by:	Received by: Aug Troy	LABORATORY:											TOPA SAGERA	24 5 1 24 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952)	Project Number 2,3	Request for Laboratory Analytical Services	
Acceptable	199		BAN Eug, Co.							_		-	_	_	Files		(Print Name)	pany 15-4803 1x (952) 832-2601	169-1	vices	
000	Da	Da	Da							-			_	_	300			103	4 8	-	
Other (explain)	ite/Time	Date/Time	ite/Time							2		2	2	2	Sign River Color R	ase		ع	w	No.	1
olain)	Date/Time 2-22-17 (0W)		Date/Time 713/17 11/00	, ,						103		1012	1011	1010	Remarks	ins or Cannines		28937	0.0	12730	1

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-200

TEST A

TEST DATE 3/28/2017

SOURCE ID Stack A SV014 - Longterm 2

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY JAR2

AIR FILTERS: 4" Quartz

ANALYZED ON:

3/30

ANALYSIS PERFORMED BY ROB

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	
			0.7989	4/1/2017 18:54	0.7800	3/2/2017 10:17		
R1	4Q0650	Gray particulate	0.7989	4/2/2017 15:36	0.7799	3/3/2017 10:49	0.01900	
			0.7980	4/1/2017 18:55	0.7785	3/2/2017 10:24		
R2	4Q0654	Gray particulate	0.7981	4/2/2017 15:35	0.7785	3/3/2017 10:54	0.01958	
			0.8016	4/1/2017 18:57	0.7792	3/3/2017 11:32	0.02249	
R3	4Q0690	Gray particulate	0.8017	4/2/2017 15:34	0.7792	3/5/2017 21:08		
R0 Filter			0.7829	4/1/2017 19:12	0.7827	3/3/2017 11:40		
Blank	4Q0697	Gray particulate	0.7828	4/2/2017 15:12	0.7827	3/5/2017 21:17	0.00014	
Dialik								

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
			120.9470	4/1/2017 18:35	120.94252	2/13/2017 18:19			
R1	1014	Black particulte	120.9470	4/2/2017 14:01	120.94233	3/5/2017 22:00	0.00465	120	No
					120.94234	3/30/2017 15:52			
			127.3580	4/1/2017 18:36	127.35412	2/15/2017 14:49			
R2	1015	Black particulte	127.3580	4/2/2017 14:06	127.35427	3/5/2017 21:58	0.00377	125	No
		·			127.35419	3/30/2017 15:53			
			125.4527	4/1/2017 18:37	125.44854	2/15/2017 14:48		140	
R3	1016	Black particulte	125.4528	4/2/2017 14:07	125.44887	3/5/2017 21:58	0.00395		No
		·			125.44879	3/30/2017 15:56			
R0			96.7174	4/1/2017 18:51	96.71624	2/15/2017 15:09			
Reagent	1026	Black particulte	96.7173	4/2/2017 14:19	96.71690	3/5/2017 21:49	0.00044	100	No
Blank					96.71690	3/30/2017 17:05			

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack A (SV014) Test Date: March 28, 2017 Longterm 2

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.01900	0.01958	0.02249	0.00014
Probe Wash - Net Residue Mass	M _{pw}	g	0.00465	0.00377	0.00395	0.00044
Probe Wash Volume	V_{pw}	ml	120	125	140	100
	C _{pw}	g	0.00053	0.00056	0.00062	
Probe Wash Final Mass M _{pwf} =M _{pw} -C _{pw}	M_{pwf}	g	0.00412	0.00321	0.00332	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02311	0.02279	0.02581	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-200

TEST B

TEST DATE 3/29/2017

SOURCE ID Stack B SV015 - Longterm 2

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY JAR2

AIR FILTERS: 4" Quartz ANALYZED ON: 3/30 ANALYSIS PERFORMED BY ROB

Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	
			0.7998	4/1/2017 18:58	0.7819	3/3/2017 11:34		
R1	4Q0691	Gray particulate	0.7998	4/2/2017 15:32	0.7819	3/5/2017 21:09	0.01795	
			0.7978	4/1/2017 19:01	0.7763	3/3/2017 11:37		
R2	4Q0694	Gray particulate	0.7978	4/2/2017 15:31	0.7762	3/5/2017 11:37	0.02151	
		Gray particulate						
			0.7976	4/1/2017 19:02	0.7769	3/3/2017 11:37		
R3	4Q0695	Gray particulate	0.7976	4/2/2017 15:28	0.7769	3/5/2017 21:13	0.02072	
R0 Filter			0.7829	4/1/2017 19:12	0.7827	3/3/2017 11:40		
Blank	4Q0697	Gray particulate	0.7828	4/2/2017 15:12	0.7827	3/5/2017 21:17	0.00014	
Dialik								

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
			128.9371	4/1/2017 18:38	128.93127	2/15/2017 14:46			
R1	1017	Black particulte	128.9371	4/2/2017 14:08	128.93130	3/5/2017 21:57	0.00581	120	No
					128.93133	3/30/2017 16:01			
			123.0330	4/1/2017 18:39	123.02777	2/15/2017 14:46			
R2	1018	Black particulte	123.0330	4/2/2017 14:09	123.02776	3/5/2017 21:56		135	No
		·			123.02794	3/30/2017 16:07			
			122.4033	4/1/2017 18:39	122.39649	2/15/2017 15:28		120	
R3	1019	Black particulte	122.4033	4/2/2017 14:10	122.39695	3/5/2017 21:55	0.00651		No
					122.39671	3/30/2017 16:10			
							-		
R0			96.7174	4/1/2017 18:51	96.71624	2/15/2017 15:09			
Reagent	1026	Black particulte	96.7173	4/2/2017 14:19	96.71690	3/5/2017 21:49	0.00044	100	No
Blank					96.71690	3/30/2017 17:05			

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack B (SV015) Test Date: March 29, 2017 Longterm 2

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M_{af}	g	0.01795	0.02151	0.02072	0.00014
Probe Wash - Net Residue Mass	M _{pw}	g	0.00581	0.00515	0.00651	0.00044
Probe Wash Volume	V_{pw}	ml	120	135	120	100
Calculations Probe Wash Blank Correction Amount	C_pw	g	0.00053	0.00060	0.00053	
$\begin{aligned} & C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)} \\ & \text{Probe Wash Final Mass} \\ & M_{pwf} = M_{pw} - C_{pw} \end{aligned}$	M _{pwf}	g	0.00527	0.00455	0.00597	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02322	0.02605	0.02669	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-200

TEST C

TEST DATE 3/28/2017

SOURCE ID Stack C SV016 - Longterm 2

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY JAR2

AIR FILTERS: 4" Quartz ANALYZED ON: 3/30 ANALYSIS PERFORMED BY ROB

· ·					0, 0 0			
Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	
			0.7961	4/1/2017 19:03	0.7750	3/2/2017 10:21		
R1	4Q0651	Gray particulate	0.7962	4/2/2017 15:25	0.7750	3/3/2017 10:52	0.02112	
			0.8029	4/1/2017 19:06	0.7806	3/2/2017 10:23		
R2	4Q0653	Gray particulate	0.8029	4/2/2017 15:24	0.7807	3/3/2017 10:53	0.02225	
			0.7989	4/1/2017 19:08	0.7773	3/2/2017 10:21		
R3	4Q0652	Gray particulate	ulate 0.7989 4/2/2017 15		0.7775	3/3/2017 10:52	0.02145	
R0 Filter			0.7829	4/1/2017 19:12	0.7827	3/3/2017 11:40		
Blank	4Q0697	Gray particulate	0.7828	4/2/2017 15:12	0.7827	3/5/2017 21:17	0.00014	
Dialik								

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
			120.5493	4/1/2017 18:47	120.54066	2/15/2017 15:27			
R1	1020	Black particulte	120.5494	4/2/2017 14:12	120.54076	3/5/2017 21:54	0.00865	115	No
					120.54066	3/30/2017 16:51			
			127.3719	4/1/2017 18:41	127.36339	2/15/2017 15:25			
R2	1021	Black particulte	127.3719	4/2/2017 14:13	127.36441	3/5/2017 21:53		145	No
		·			127.36431	3/30/2017 16:54			
			127.0840	4/1/2017 18:48	127.08086	2/15/2017 15:17		95	
R3	1022	Black particulte	127.0841	4/2/2017 14:13	127.08106	3/5/2017 21:52	0.00300		No
		-			127.08107	3/30/2017 16:57			
							-		
R0			96.7174	4/1/2017 18:51	96.71624	2/15/2017 15:09			
Reagent	1026	Black particulte	96.7173	4/2/2017 14:19	96.71690	3/5/2017 21:49	0.00044	100	No
Blank		,			96.71690	3/30/2017 17:05			

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack C (SV016) Test Date: March 28, 2017 Longterm 2

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.02112	0.02225	0.02145	0.00014
Probe Wash - Net Residue Mass	M _{pw}	g	0.00865	0.00750	0.00300	0.00044
Probe Wash Volume	V_{pw}	ml	115	145	95	100
Calculations Probe Wash Blank Correction Amount $C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)}$	C_pw	g	0.00051	0.00065	0.00042	
Probe Wash Final Mass $M_{pwf} = M_{pw} - C_{pw}$	M_{pwf}	g	0.00814	0.00686	0.00258	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02926	0.02911	0.02403	
$M_{PM} = M_{af} + M_{pwf}$						

LABORATORY REPORT FILTERABLE PARTICULATE MATTER RESULTS

CLIENT ArcelorMittal

PROJECT NO. 23/69-1843.00 LONG-200

TEST D

TEST DATE 3/29/2017

SOURCE ID Stack D SV017 - Longterm 2

SAMPLING LOCATION Stack

SAMPLES COLLECTED BY JAR2

AIR FILTERS: 4" Quartz ANALYZED ON: 3/30 ANALYSIS PERFORMED BY ROB

AIR FILTERO. 4		Quui t2		WALIZED ON.	0,00	, , , , , , , , , , , , , , , , , , , ,	JO I EIGI OIG	
Run	Filter ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	
			0.80642	4/1/2017 19:09	0.78331	3/3/2017 11:35		
R1	4Q0692	Gray particulate	0.80652	4/2/2017 15:21	0.78328	3/5/2017 21:10	0.02318	
			0.80315	4/1/2017 19:10	0.78125	3/3/2017 11:36		
R2	4Q0693	Gray particulate	0.80328	4/2/2017 15:19	0.78124	3/5/2017 21:11	0.02197	
		, ,						
			0.79406	4/1/2017 19:11	0.77181	3/3/2017 11:38		
R3	4Q0696	Gray particulate	0.79402	4/2/2017 15:15	0.77180	3/5/2017 21:15	0.02223	
R0 Filter			0.78290	4/1/2017 19:12	0.78274	3/3/2017 11:40		
	4Q0697	Gray particulate	0.78280	4/2/2017 15:12	0.78268	3/5/2017 21:17	0.00014	
Blank								

PROBE RINSE: ACETONE

Run	Beaker ID	Description	Gross Weight	Date/Time	Tare Weight	Date/Time	Uncorrected Net Mass (g)	Solvent Volume (ml)	Evidence of Sample Loss?
			126.12877	4/1/2017 18:42	126.12175	2/15/2017 15:16			
R1	1023	Black particulte	126.12868	4/2/2017 14:14	126.12254	3/5/2017 21:51	0.00616	115	No
					126.12259	3/30/2017 17:01			
			106.97100	4/1/2017 18:49	106.96593	2/15/2017 15:14			
R2	1024	Black particulte	106.97088	4/2/2017 14:17	106.96608	3/5/2017 21:51	0.00486	165	No
		·			106.96607	3/30/2017 17:02			
			127.20378	4/1/2017 18:50	127.19754	2/15/2017 15:12		135	
R3	1025	Black particulte	127.20378	4/2/2017 14:18	127.19764	3/5/2017 21:50	0.00621		No
		·			127.19750	3/30/2017 17:03			
							-		
R0			96.71743	4/1/2017 18:51	96.71624	2/15/2017 15:09			
Reagent	1026	Black particulte	96.71726	4/2/2017 14:19	96.71690	3/5/2017 21:49	0.00044	100	No
Blank					96.71690	3/30/2017 17:05			

PAGE 1 OF 2 8/1/2017

Results of Gravimetric Particulate Analysis Indurating Furnace Stack D (SV017) Test Date: March 29, 2017 Longterm 2

Method 5 Particulate Mass Determination

Inputs	Symbol	Units	Run 1	Run 2	Run 3	Blanks
Air Filter - Net Particulate Mass	M _{af}	g	0.02318	0.02197	0.02223	0.00014
Probe Wash - Net Residue Mass	M_{pw}	g	0.00616	0.00486	0.00621	0.00044
Probe Wash Volume	V_{pw}	ml	115	165	135	100
Calculations Probe Wash Blank Correction Amount	C _{pw}	g	0.00051	0.00073	0.00060	
$C_{pw} = V_{pw} \times M_{pw(blank)} \div V_{pw(blank)}$	- pw	9		0.0001.0	0.0000	
Probe Wash Final Mass M _{pwf} =M _{pw} -C _{pw}	M_{pwf}	g	0.00565	0.00413	0.00561	
Filterable Particulate Matter (PM) Mass	M _{PM}	g	0.02882	0.02610	0.02784	
$M_{PM} = M_{af} + M_{pwf}$						

40 41 67 67 84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cichody			Sample Oric	Origination State:		
3	custous				ND DWI	COC Number: 20174	20174
Request for Laboratory Analytical Services	Analytical Ser		Particulate Testing	MI SD	SD Other:	COC	_ of _ 2_
Checl				Project Number	23/69-	843.00	LONG 002
Barr Engineering Company 3128 14th Avenue East Hibbing, MN 55435-4803 (218) 262-8600	\boxtimes	eering 76th 5 55439	Send Toolice To	Barr Engineering Attn: Accounts Po 4300 Marketpoint	P. 0		
Projec		(email)		Minneapolis, MN Ph. (952) 832-26	is, MN 55435-4803 832-2600 Fax (952)	03 (2) 832-2601	
ecific	y requirements:	Requested Due Date:	Date:		МЕТНОБ		SAMPLE FRACTION
(method, limit of detection, etc.) Send to element one after analysis	-cr analysis	Standard Turn Around Time Rush (mm/dd	***************************************	17 100 100 100 100 100 100 100 100 100 1	1	ACELOD.	1
Sample Identification	Date/Time Collected	Media I.D. #	Type Comp. C	boiliew AGI boiliew AGI	SEW SOOR ROOM	A) I* NO)	A KAP CAN OF ASO. ASO. ASO. ASO. ASO. ASO. ASO. ASO.
1 Stack A RI	5111 1/23/12	490650	×				_
2. R3	03/18/17 1400	HOOPER	× -				K
3. R3	03/28/17 1600	400690	+				CE
4. Stack B RI	03/29/17 1100	400691	X				K
5. 1 82	03/29/17 1330	490644	X				CS
6. R3	03/24/17 1600	400695	\times				d
7. Stack C RI	03/18/17 1115	4 40651	\times				R
8.) RZ	03/29/17 1400	490653	X				ત્ક
9. R3	03/18/12 1600	4a0652	\(\times_{-}\)				R
10.							
Collected by (Print Name):	JOHN ROONEY			Relinquished	by:	Received by:	Date/Time:
	Contraction of the contraction o	Date/Time: 3/24	117 1700	A STATE OF THE STA	1	209 BARK	72417/A12
ELEMENT	ENT ONE			,			, ,
☑ Method of Shipment: 🌣 Sampler	S	Other:					
Sample Condition upon Receipt:	☐ Acceptable ☐ (□ Other (explain)		Received at Lab by:	by:		

Version 3 - Created 06/01/16

Barr Engineering Co. Chain of Custody	Custody		Sample Origination State:	COC Number: 20173	
Request for Laboratory Analytical Services	Analytical Serv	ices Particulate Testing	MI OSD	Other: COC 2 of 2	
Check One:			Project Number $\frac{A}{3}/\frac{6}{6}$	19-18 43.00 LONG	003
Barr Engineering Company 3128 14th Avenue East Hibbing, MN 55435-4803	X	Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330	Barr Engineering Attn: Accounts Pa	Company Iyable P. Drive	
7. 20 (218) 262-8600 Project Contact: ⊖ Project (Print Name)	(952)	832-2600 (email)	Minneapolis, MN Ph. (952) 832-260	55435-4803 0 Fax (952) 832-2601	
Special instructions and/or specific regulatory requirements:	ry requirements:	Requested Due Date:	METHOD	SA	
(method, limit of detection, etc.) SUN +0 PlemeN+ Ove	after analysis		(10x 10x 01x) 20x	(Sind of	stanierno Stanierno
Sample Identification	Date/Time Collected	Grab Comp. QC OQC	Selv adota of other selv adota of the selv adota	10 ON 18101 (18 NO) (1	/ Remarks
1. Stock D RI	3/29/17 1100	48069+ x481			
2.	03/4/17 1330	400693		c6 	H H H H H H H H H H H H H H H H H H H
	03/29/17 1600	× 90900 h		d 	Control de la co
4. Filter Blank	03/18/17 1300	400697 X X			
5. Hetore Blank	03/28/17 1300	X X 			
Air Samp					
C /					
≥ hoqqq ∞					
Q.					
Technic 10.					
Collected by (Print Name):	JOHN ROONEY		Relinquished by:	Received by: Date/Time	Time:
ło	My D	Date/Time: \$/29/17 1700	of the same	(X) Day Breek 3/30/1	71412
E SARA /	ELEMENT ONE			7	
हें टें Method of Shipment: 🛚 Sampler	X FedEx □ UPS C	Other:			
Sample Condition upon Receipt:	☐ Acceptable ☐ (□ Other (explain)	Received at Lab by:		
Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Held Shipment to Lab; Yellow - Field Shipment to Lab;	ment to Lab; Yellow - F	ield Copy		Versio	Version 3 - Created 06/01/16

Barr Engineering

5150 W. 76th Street Edina, MN 55439-2330

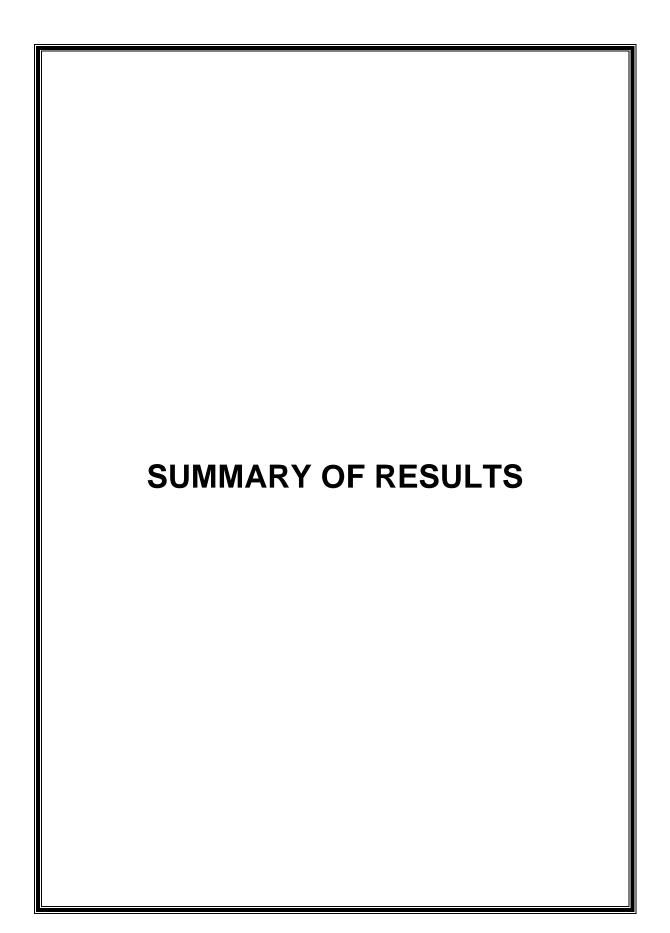
Project Number: 23/69-1843.00 LONG 002

Mercury

Ontario Hydro Method Analysis

Analytical Report 29227

Element One, Inc. 6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX:910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 29227 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

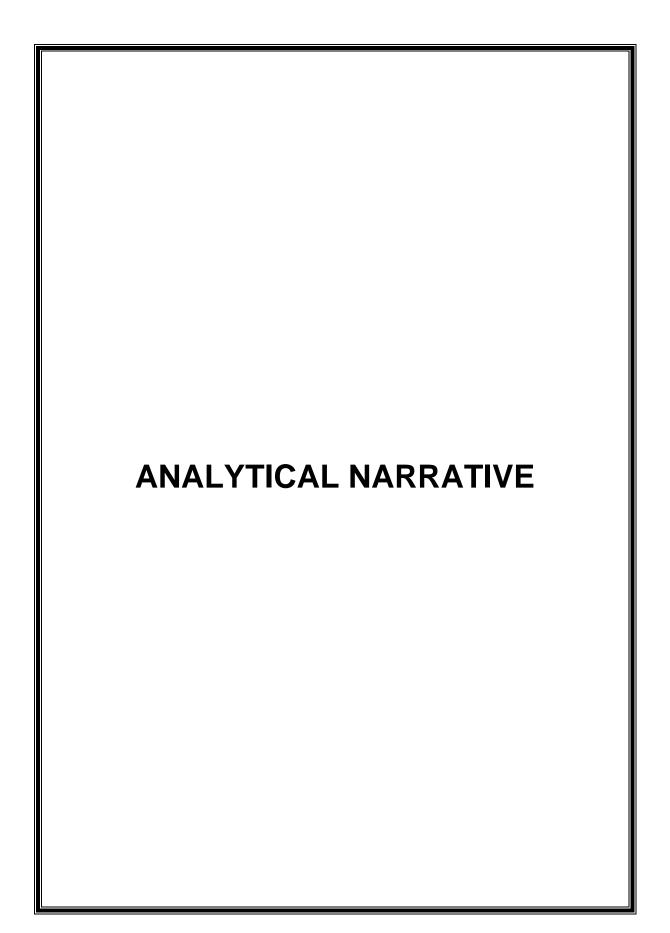
Review by:

Katie Strickland, B.S. Chemist April 18, 2017

Report Reviewed and Finalized By:

Ken Smith, Laboratory Director April 18, 2017

Summary of Analysis


Summary of OHM Mercury Analysis

Run Number		Average Total Catch, µg	Filter µg	FH Rinse µg	KCI µg	H ₂ O ₂ /HNO ₃ μg	KMnO ₄ μg
Stack A-OHM–R1	# 1	3.41	0.722	0.038	0.853	0.013	1.78
	# 2		0.724	0.035	0.857	0.014	1.78
Stack A-OHM–R2	# 1	3.10	0.412	< 0.01	0.883	0.013	1.79
	# 2		0.411	< 0.01	0.874	0.013	1.80
Stack A-OHM–R3	# 1	3.39	0.511	< 0.01	0.990	0.017	1.85
	# 2		0.511	< 0.01	1.00	0.017	1.87
Stack B-OHM–R1	# 1	3.63	1.10	< 0.01	0.550	0.021	1.96
	# 2		1.10	< 0.01	0.544	0.020	1.95
Stack B-OHM–R2	# 1	3.32	0.739	< 0.01	0.603	0.018	1.95
	# 2		0.749	< 0.01	0.597	0.018	1.97
Stack B-OHM–R3	# 1	3.33	0.895	0.015	0.579	0.022	1.82
	# 2		0.899	0.014	0.579	0.023	1.82
Stack C-OHM-R1	# 1	4.39	2.10	0.013	0.175	< 0.013	2.10
	# 2		2.10	0.012	0.171	< 0.013	2.11
Stack C-OHM-R2	# 1	4.34	1.82	0.049	0.283	0.014	2.18
	# 2		1.83	0.048	0.281	0.014	2.17
Stack C-OHM-R3	# 1	4.13	1.26	< 0.1	0.379	0.023	2.45
	# 2		1.27	< 0.1	0.375	0.023	2.49
Stack D-OHM-R1	# 1	4.12	1.52	0.038	0.157	0.021	2.38
	# 2		1.52	0.037	0.163	0.020	2.39
Stack D-OHM–R2	# 1	3.79	1.59	< 0.01	0.142	0.024	2.02
	# 2		1.59	< 0.01	0.142	0.026	2.04
Stack D-OHM-R3	# 1	3.90	1.62	0.01	0.149	0.019	2.10
	# 2		1.61	0.01	0.147	0.019	2.12
Field Blank	# 1	0.014			< 0.05	0.013	< 0.035
	# 2				< 0.05	0.014	< 0.035

Summary of Analysis

Reagent Blank Summary of OHM Mercury Analysis

Run Number		Filter µg	FH Rinse μg	KCI µg	H ₂ O ₂ /HNO ₃ μg	KMnO ₄ μg	Hydroxylamine Hydrochloride µg
Reagent Blank	#1	< 0.005	< 0.01	< 0.05	0.016	0.052	< 0.025
	#2	< 0.005	< 0.01	< 0.05	0.016	0.050	< 0.025

Element One Analytical Narrative

Client:	Barr Engineering	Element One #:	29227
Client ID:	23/69-1843.00 LONG 002	Analyst:	LAW & JBP
Method:	ОНМ	Dates Received:	04/04/17
Analytes:	Hg	Dates Analyzed:	04/07-13/17

Summary of Analysis

The Ontario Hydro Method (OHM) samples were prepared and analyzed according to method protocol. Samples were analyzed for mercury on a PS Analytical Millennium Galahad CVAF and PerkinElmer FIMS-100 CVAA analyzer mercury analyzer.

Ontario Hydro Mercury Catch Summary

The Ontario Hydro Method employs five different fractions to collect mercury in its various states in a flue gas stream. Particle-bound mercury is collected in the filter and front-half rinse. Oxidized mercury (Hg₂²⁺ and Hg²⁺) is collected in the potassium chloride (KCI) fraction. The acidified hydrogen peroxide (H₂O₂/HNO₃) and potassium permanganate (KMnO₄) fractions are utilized to collect elemental mercury (Hg⁰). Total mercury refers to all mercury, however generated or entrained, in the flue gas stream.

Detection Limits

The Ontario Hydro Method Millennium Galahad CVAF instrument reporting limit for mercury was 0.001 μ g per aliquot analyzed, which is 0.05 μ g/L for a 20 ml aliquot. The FIMS-100 CVAA instrument reporting limit for mercury was 0.004 μ g per aliquot analyzed.

Analysis QA/QC

Duplicate analyses relative percent difference (RPD), triplicate analysis relative standard deviation (RSD), and spike sample recovery are summarized in the Quality Control Section.

*Ref. page 10; the sample spike recovery for Stack B-OHM-R3 H2O2/HNO3 fraction was slightly outside of laboratory guidelines of 85-115% with 84%. Sample was reanalyzed at a two-fold dilution resulting in 96% recovery.

All other QA/QC data was within the criteria of the method.

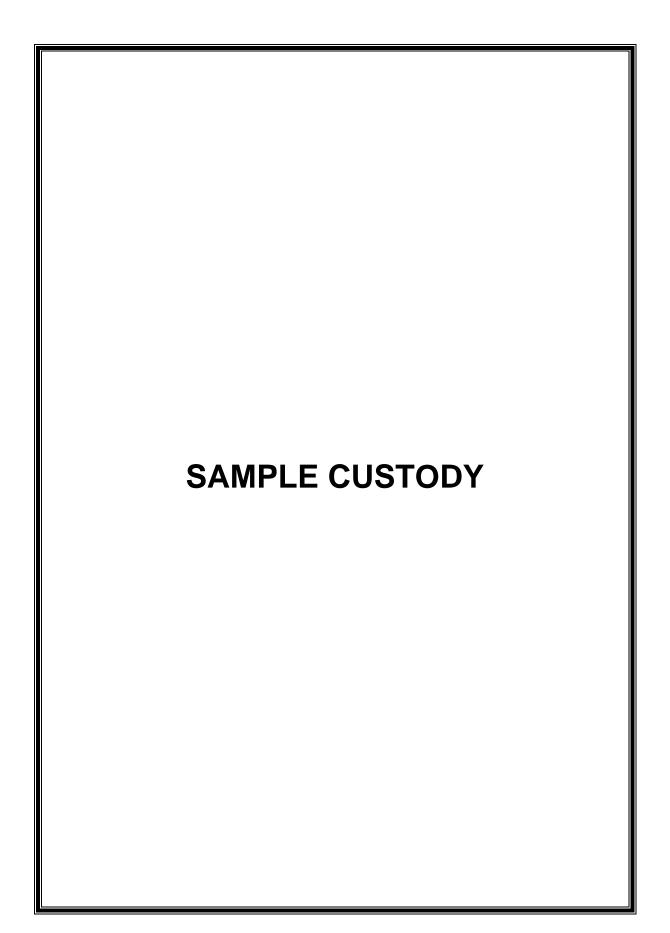
Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. The reported results relate only to the items tested or calibrated.

Summary of Quality Control Data

Mercury Duplicate Analysis RPD (OHM QC limits: ≤ 10% for RPD)

		(OHM Q	C limits: ≤ 10%	for RPD)		
Run Number	Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	KMnO ₄	Hydroxylamine Hydrochloride
Stack A-R1	0.3%	7.7%	0.5%	7.7%	0.0%	
Stack A-R2	0.4%	NA	1.1%	4.6%	0.1%	
Stack A-R3	0.0%	NA	1.0%	1.2%	1.2%	
Stack B-R1	0.6%	NA	1.2%	5.8%	0.4%	
Stack B-R2	1.4%	NA	0.9%	2.8%	0.8%	
Stack B-R3	0.4%	6.1%	0.1%	5.7%	0.1%	
Stack C-R1	0.4%	9.0%	2.7%	NA	0.2%	
Stack C-R2	0.6%	2.9%	0.6%	1.5%	0.4%	
Stack C-R3	0.4%	NA	1.2%	0.4%	1.4%	
Stack D-R1	0.0%	1.1%	4.3%	7.9%	0.3%	
Stack D-R2	0.3%	NA	0.1%	7.9%	1.2%	
Stack D-R3	0.3%	0.7%	1.4%	1.1%	0.6%	
Field Blank			NA	8.8%	NA	
Reagent Blank	NA	NA	NA	2.5%	3.0%	NA


Mercury Triplicate Analysis RSD (OHM QC limits: ≤ 10% for RSD)

Run Number	Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	KMnO ₄
Stack A-R2	0.6%	NA	1.1%	2.3%	0.3%
Stack B-R2	1.3%	NA	0.5%	2.0%	0.4%
Stack C-R2	0.4%	1.7%	0.4%	0.7%	1.2%
Stack D-R2	3.3%	NA	0.6%	4.9%	0.7%

Summary of Quality Control Data

Mercury Spike Recoveries (QC limits: 85%-115% for Spike Recoveries)

Run Number		Filter	FH Rinse	KCI	H ₂ O ₂ /HNO ₃	$KMnO_4$
Stack A-R3	# 1	90%	109%	106%	89%	95%
	# 2	90%	111%	107%	91%	96%
Stack B-R3	# 1	90%	105%	111%	84%*	95%
	# 2	90%	105%	112%	86%	95%
Stack C-R3	# 1	88%	93%	115%	90%	91%
	# 2	91%	93%	115%	91%	91%
Stack D-R3	# 1	99%	91%	112%	88%	95%
	# 2	101%	93%	113%	88%	97%
		*See An:	alvtical Narrativ	e nage 7		

Check One: Check One: Chec	8 Barr En 5150 W Edina, 1 (952) 8	Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 (email) ts: Requested Due Date:	Company Street 9-2330 9-230d Due Date:	roject Number 2 3 Barr Engineering Rattn: Accounts F Rattn: Accounts F Ritneapolis, MN Minneapolis, MN Minneapolis, MN MEN MEN MEN	832-2601 SAMPLE FR
Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.) Send to element one after analysis	analysis	Requested Due 2 Standard Turn Around Time Rush Imm/d	- 22	METHOD METHOD	SAMPLE FR.
Sample Identification	Date/Time Collected	Media I.D. #	Grab Type Comp. QC	557 16 (15 5) 15 (15 5)	Code West
I STACK A RI OSH	-5111 H8480	490650	×		دو
2.	03/18/17 1400	hosborn hosborn	_		
R3	03/28/17 1600	400690			1 2 1016
Stack B R1	03/29/17 1100	400691		_	
22	03/29/17 1330	400694		1	
R3	03/29/17 1600	400695			2 1019
	03/10/17 1115	120051			2 1020
	03/15/17 1400	400653			
g. R3 e3/	e3/18/17 1600	Hacksz	-		2 2022
Collected by (Print Name): ユットル	ROONEY			Relinquished by: Receiv	.eived by: Date/Time:
dy	1	Date/Time: 3/24	17	700 Brader Sch	JAS BARR FESTITION
Laboratory: BARA / ELEMENT	2000		38	CARWA /	4/2/17
	□ ups	Other:		1	

elementOne

al Services Particulate Testing Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 (email) Requested Due Date: QStandard Turn Around Time Around Time 25 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Sample Origination S IA	Chain o Custody	in ody Laboratory: BARM / ELEMENT	dy	f	Collected by (Print Name): JOHN ROWEY	10.	Si Co	o o	7.	gh.	5. Acetore Blank 03/28/17 1300	4 Filter Blank Oskelin Boo	03/2a/17 1600	2.	1. Stack D R1 3/20/17 1100	Sample Identification Date/Time Collected	Special instructions and/or specific regulatory requirements: (method, limit of detection, etc.) Sorry to flement of the after analysis	(Print Name)	Results Hibbing, MN 55435-4803 Edina, (952)	Check One:	Request for Laboratory Analytical Services Particulate Testing	Barr Engineering Co. Chain of Custody	
Recognition of the last of the	Sample Origination S IA	Other (explain)	Other:	10	Date/Time: \$/29/17	4									-	1365	Grab	Requested Due Date bgStandard Turn Around Time Rush mm/dd/myy)	(email)	Barr Engineering Compan 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600	200 Sept. 100 Se	rvices Particulat		
	Sample Origination S I IA	Recei		*	1700 3	-						X	X	×	X	×	COX Atellion	(C)	Pn. (3	Send Invoice To			7	
COC Numbe COC SAMPLE SAMPLE Received by:		4-4-17 1050		4/2/17 13/5%	3/30/17	Date/Time:						1 1026		2007016105	20151024	در	S S Remarks	SAMPLE FRACTION SCHOOL STREET			F0 NO 003	2 of 2	20173	29227

elementOne

	Ch	ain sto	of		10.	9	ço	7.	6.	'n	4	μ	2	۲	RLG 05-18-16	Special (method)	Report Results To	BARR
Sample Condition upon Receipt:	Method of Shipment: ☐ Sampler	Laboratory: Ł	Collector's Signature:	Collected by (Print Name):		-	_	しを表		-	STACK B		_	STACK A	Sample Identification	Special instructions and/or (method, limit of detection, etc.) Fith Samples will Shipmant.	Check One: Barr Engineering 3128 14th Aven Hibbing, MN 5: (218) 262-8600 Project Contact: Sea	Request for L
n upon Receipt:		ELEMENT OF	Jul	000		23	رد کا	2	R3	20	70	R	RA	R	tification	ONTHING)	Cone: Barr Engineering Company 3128 14th Avenue East Hibbing, MN 55435-4803 (218) 262-8600 (CT Contact: Rea Will Avenue)	r Laboratory Analy
Acceptable [Ø FedEx □ UPS	1 300		EN WILTSE		03/28/17 1600	03/18/17 1400	03/28/17 1115	03/29/17 Iboo	03/24/17 1330	03/29/17 1100	03/28/17 1600	03/18/17 14W	SIII 11/82/60	Date/Time Collected	tory requirements: Hyllo Separate	my Sarr 5150 13 Edina (952)	Request for Laboratory Analytical Services
Other (explain)	Other:		Date/Time: 03/14/17			-							_	NA	Media ID. #	Requested Due Date: **RStandard Turn Around Time Rush	Barr Engineering Company 5150 West 76th Street Edina, MN 55439-2330 (952) 832-2600 bw. + Se	al Services
			1000			-	~				-			×	Grab Comp.		200	
20		1	8			×	×	7	^	*	*	+	*	×	Construction of the second	<u> </u>	Send Invoice To Project Attn:	
Received at Lab by:		tila	July 1	Religquished												3		MW. WI
8		anke-	1	hed by:		_	1 -	_	1	<u>-</u>	_ _	_	<i>-</i>	=	END	NETHOO BOHTSM	Number 2 3 / 6 9 Engineering Comp Accounts Payable Marketpointe Driv sapolis, MN 5543: 952) 832-2600 Fay	MI DND DWI
50			Ita	Re		_	_	_	-	_	=	_	_	-	200	Hogg Greek	69-1 ompany oble Drive 5435-480 Fax (95	Other
4			ande	Received by:				+							13 3 S	135	8 4 3.0 c 2) 832-2601	COC Number
4-4-1		04/03/19	04/03/17,	Date/	_	工	×	エ		工	_E	エ	_E	L	1500 750	SAMPLE FRACTION SAMPLE FRACTION SAMPLE FRACTION	5 FON 6	OC Number: 10125
7000		1445	laco	Date/Time:											Remarks	Containers	2003	

elementOne

2777	Sample Condition upon Receipt Acceptable Other (explain)
METHOD METHOD SAMPLE FRACTION METHOD SAMPLE FRACTION SAMPLE FRACTION SAMPLE FRACTION A A A A A A A A A A A A A	Charter Laboratory: ŁLEMENT DNE (Method of Shipment Sampler ☑ FedEx ☐ UPS
Minneapolis, MN 55435-4803 Ph. (952) 832-2601 METHOD METHOD SAMPLE FRACTION METHOD SAMPLE FRACTION AX Relinquished by: Received by: Received by: Date/Time	in the Laboratory: ELEMENT!
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTIC W. S. S. S. S. S. S. S. S. S. S. S. S. S.	
## A300 Marketpointe Drive ## Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD SAMPLE FRACTIC METHOD SAMPLE FRACTI	of dy
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTION METHOD SAMPLE FRACTION SAMPLE FRACTION AX AX AX AX AX AX AX AX AX A	Collected by (Print Name): BEN WILTSE
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTIC A A A A A A A A A A A A A	10.
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD SAMPLE FRACTION	9. Blank Hydroxylamine
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTIC A A A A A A A A A A A A A	8. Blank 4% KM NOH / W ZHASAH
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD SAMPLE FRACTION SAMPLE FRACTION SAMPLE FRACTION SAMPLE FRACTION A STATE OF THE STA	7. Blank 5%HAD /10%H2D2
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTION METHOD SAMPLE FRACTION A STATE OF THE PROPERTY OF THE PR	6. BIMAK KCI
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTIC WETHOD SAMPLE FRACTIC SAMPLE FRACTIC A A A A A A A A A A A A A	5. DILLAKE DI NHOWS
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832-2601 METHOD METHOD SAMPLE FRACTION METHOD SAMPLE FRACTION SAMPLE FRACTION A STATE OF THE STAT	4. F.ELD BLANK 03/28/17 13:00
### A300 Marketpointe Drive #### Minneapolls, MN 55435-4803 Ph. (952) 832-2601 METHOD SAMPLE FRA METH	-
#Inneapolls, MN 55435-4803 Ph. (952) 832-2601 METHOD METHOD SAMPLE FRA METHOD SAMPLE FRA METHOD SAMPLE FRA METHOD SAMPLE FRA SA	2. 1 R. 2 03/10/17 1330
### A300 Marketpointe Drive Minneapolls, MN 55435-4803 Ph. (952) 832-2601 METHOD SAMPLE FRA METHOD S	1 Stack D RI BYRGT 1100 NA X
### A300 Marketpointe Drive Minneapolls, MN 55435-4803 Ph. (952) 832-2601 METHOD SAMPLE FRAME METHOD SAM	Sample Identification Collected Date/Time Media Collected I.D. #
Minneapolis, MN 55435-4803 Ph. (952) 832-2600 Fax (952) 832	Shipm cont. Shipm cont.
	Project Contact Sen Wiltse 500 152) 831
nd	×
SD Other:	Request for Laboratory Analytical Services
Sample Origination State: COC Number: 10126	Barr Engineering Co. Chain of Custody

Sorbent Trap Analysis Report

Project Number: 2010076 Contac

Turn-around: Expedited Compliance

Plant: Barr Engineering
Contact: Ben Wiltse
Phone: 651.278.2196
Email: bwiltse@gmail.com

4/21/2017	Alejandra Ng-Feng	EPA 7473	± 10%
Date:	Analyst(s):	Method:	Method Uncertainty:

Notes																				
Source		Stack A R1	Stack A R1	Stack A R2	Stack A R2	Stack A R3	Stack A R3	Stack B R1	Stack B R1	Stack B R2	Stack B R2	Stack B R3	Stack B R3	Stack C R1	Stack C R1	Stack C R2	Stack C R2	Stack C R3	Stack C R3	
Spike	(%),																			
Breakthrough	<u>-</u> (%)	11.17%	2.39%	9.82%	3.26%	11.11%	2.30%	7.53%	3.56%	%88.9	4.22%	6.81%	3.81%	1.88%	%76.0	1.85%	1.37%	1.89%	%92'0	
Spike Level (ng)			20		20		20		20		09		20		20		20		20	
Total Mass (ng) ¹ Section 3 Mass	(gu)																			
Total Mass (ng) ¹	5	43.8	88.0	36.9	82.4	47.0	87.4	47.1	93.0	46.7	0.68	43.9	89.9	54.4	108.7	64.1	117.2	73.0	113.6	
Section 1 Mass Section 2 Mass	(gu)	4.4	4.5	3.3	2.6	4.7	4.4	3.3	3.2	2.8	3.6	2.8	3.3	1.0	1.0	1.2	1.6	1.4	6.0	
Section 1 Mass	(gu)	39.4	83.5	33.6	79.8	42.3	83.0	43.8	89.8	43.9	85.4	41.1	9.98	53.4	107.7	62.9	115.6	71.6	112.7	
AGS Mass (ng)																				
Trap ID		OLC043081	OL411154	OLC043452	OL411134	OLC043076	OL411192	OLC043153	OL411174	OLC043415	OL411166	OLC043121	OL411193	OLC043459	OL411122	OL413031	OL411171	OLC043422	OL411153	

 $MDL = 0.24 \text{ ng} \qquad LOQ = 2 \text{ ng}$

¹ Total Mass = PF+AGS+S1+S2

² Breakthrough = S2 / (PF+AGS+S1)

³ Spike Recovery = S3 / Spike Level For PS-12B Only

R = Data invalidation qualifier. Refer to notes

Sorbent Trap Analysis Report

Project Number: 2010076 p2 Contact:

Turn-around: Expedited Compliance

Plant: Barr Engineering
Contact: Ben Wiltse
Phone: 651.278.2196
Email: bwiltse@gmail.com

4/21/2017	Alejandra Ng-Feng	EPA 7473	± 10%
Date:	Analyst(s):	Method:	Method Uncertainty:

Notes			tip of trap broken										
Source	Stack D R1	Stack D R1	Stack D R2	Stack D R2	Stack D R3	Stack D R3							
Spike Recovery (%) ³													
Breakthrough (%) ²	0.91%	0.79%	1.31%	1.16%	1.29%	0.80%							
Spike Level (ng)		20		20		50							
Section 3 Mass (ng)													
AGS Mass (ng) Section 1 Mass Section 2 Mass Total Mass (ng) (ng) Spike Level (ng)	82.0	135.2	74.6	128.2	81.2	131.5							
Section 2 Mass (ng)	0.7	1.1	1.0	1.5	1.0	1.0							
Section 1 Mass (ng)	81.3	134.1	73.6	126.7	80.2	130.5							
AGS Mass (ng)													
Trap ID	OLC043472	OL411172	OLC043364	OL411102	01413042	OL411132							

MDL = 0.24 ng LOQ = 2 ng

¹ Total Mass = PF+AGS+S1+S2

² Breakthrough = S2 / (PF+AGS+S1)
³ Spike Recovery = S3 / Spike Level

ppike kecovery = 33 / Spike Leve For PS-12B Only

R = Data invalidation qualifier. Refer to notes

Barr EngineeringDate: April 21, 2017Analyst: Alejandra Ng-FengTemperature (°C): 680File Name: 170421_ANF_BarrEngineeringFlow Rate (L/min): 1.00Analyzer: 140MDL (ng): 0.24Cell type: MediumSD: 2.0

	ID#	PF Mass (ng)	AGS Mass (ng)	Section 1 Mass (ng)	Section 2 Mass (ng)	Section 3 Mass (ng)	Section 4 Mass (ng)	Spike Level (ng)	Source:	Notes:
1	OLC043081			39.4	4.4				Stack A R1	
2	OL411154			83.5	4.5			50	Stack A R1	
3	OLC043452			33.6	3.3			111	Stack A R2	
4	OL411134			79.8	2.6			50	Stack A R2	
5	OLC043076			42.3	4.7		8-9-2-3-4-1		Stack A R3	
6	OL411192			83.0	4.4			50	Stack A R3	
7	OLC043153			43.8	3.3				Stack B R1	
8	OL411174			89.8	3.2			50	Stack B R1	
9	OLC043415			43.9	2.8				Stack B R2	
0	OL411166			85.4	3.6			50	Stack B R2	
1	OLC043121			41.1	2.8				Stack B R3	
2	OL411193			86.6	3.3			50	Stack B R3	
3	OLC043459		Na .	53.4	1.0				Stack C R1	
4	OL411122		15	107.7	1.0		MALL TO	50	Stack C R1	
5	OL413031			62.9	1.2				Stack C R2	
6	OL411171			115.6	1.6			50	Stack C R2	
7	OLC043422		Part 1	71.6	1.4				Stack C R3	
8	OL411153			112.7	0.9			50	Stack C R3	
9								10		
0										

Additional Notes:	all front plugs slightly pink	

	Daily Calibration	n*
Lot # Std.	Std. (ng)	Calculated (ng)
K2-MEB603126 B	2.0	see cal. report
K2-MEB603126 B	5.0	see cal. report
K2-MEB631041 B	50.0	see cal. report
K2-MEB631041 B	100.0	see cal. report
K2-HG650192 B	500.0	see cal. report
K2-HG650192 B	1000.0	see cal. report
		see cal. report

Lot # Std.	Std. (ng)	Calculated (ng	
	Sear (iiB)	carearated fire	
K2-HG02144	50.0	51.6	

Response I	Factor (Method 3	108 Only)***
Lot # Std.	Std. (ng)	(area count/mass)
K2-MEB603126 B	1.0	390
RF Pipette ID (if diffe	rent from cal):	L3

Immediately report any QA/QC failures or anything suspicious to the QA/QC Manager

Continuing Calibration Verifications****			
Lot # Std.	Std. (ng)	Calculated (ng	
K2-MEB631041 B	100.0	98.1	
OL407281	75.0	74.1	
OL407176	50.0	49.9	
K2-MEB631041 B	100.0	97.6	
OL387128	100.0	99.9	

^{*}Performed daily prior to analysis of sorbent traps, Refer to SOP for Instrument Calibration for acceptance criteria

- Committee of the Comm	Active Hg Standard Bank**	
Concentration (µg/mL)	Lot #/Bottle ID	Exp. Date
0.1	K2-MEB603126 B	10/31/2017
1	K2-MEB631041 B	4/17/2018
10	K2-HG650192 B	11/10/2017
100	K2-MEB631040 B	4/17/2018
1000	J2-HG02133	5/24/2017
0.1	K2-MEB603126 A	10/31/2017
1	K2-MEB631041 A	4/17/2018
10	K2-HG650192 A	4/17/2018
100	K2-MEB631040 A	7/6/2017
1 (Independent)	K2-HG02144	4/17/2018
10 (Independent)	J2-MEB600156	10/31/2017
100 (Independent)	K2-MEB631050	4/17/2018

Pipette Identification	
AB	

Analyst Signature:

By signing this report I confirm that the above data are true to the best of my knowledge.

Date: 04.21.17

 $[\]ref{eq:performed}$ immediately after calibration curve is verified, must come within 10% of expected value

^{***}Response factor value must fall between the LOQ and MDL

^{****}Performed between every 10 samples and every analytical batch

^{*****}Subject to change, for analyst convenience only

	Barr Engineering	Date: April 21, 2017
Analyst: Alejandra Ng-Feng	是於特別的學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學	Temperature (°C): 680
File Name: 170421_ANF_BarrEngineering_2		Flow Rate (L/min): 1.00
Analyzer: 140		MDL (ng): 0.24
Cell type: Medium		SD: 2.0

	ID#	PF Mass (ng)	AGS Mass (ng)	Section 1 Mass (ng)	Section 2 Mass (ng)	Section 3 Mass (ng)	Section 4 Mass (ng)	Spike Level (ng)	Source:	Notes:
1	OLC043472			81.3	0.7				Stack D R1	
2	OL411172			134.1	1.1			50	Stack D R1	
3	OLC043364			73.6	1.0				Stack D R2	tip of trap broken
4	OL411102			126.7	1.5			50	Stack D R2	
5	OL413042			80.2	1.0				Stack D R3	
6	OL411132			130.5	1.0			50	Stack D R3	
7										
8										
9										*
10										
11										1
12										
13			George							
14									用数字字用数数字	
15					Keep 1					
16										
17					Name (Section)					
18										
18 19										
20										

Additional Notes:	all front plugs slightly pink

	Daily Calibration	
Lot # Std.	Std. (ng)	Calculated (ng
K2-MEB603126 B	2.0	see cal. report
K2-MEB603126 B	5.0	see cal. report
K2-MEB631041 B	50.0	see cal. report
K2-MEB631041 B	100.0	see cal. report
K2-HG650192 B	500.0	see cal. report
K2-HG650192 B	1000.0	see cal. report
		see cal. report

Lot # Std.	Std. (ng)	Calculated (ng)	
K2-HG02144	50.0	51.6	

Response I	Factor (Method 3	IOB Only)***
Lot # Std.	Std. (ng)	(area count/mass)
K2-MEB603126 B	1.0	390
RF Pipette ID (if diffe	rent from cal):	L3

Immediately report any QA/QC failures or anything suspicious to the QA/QC Manager

Continuing Calibration Verifications****										
Std. (ng)	Calculated (ng									
25.0	23.9									
25.0	24.1									
	Miles de l'Alberta									
	NO GO GO									
_	1000000									
-										
+										
	Std. (ng) 25.0									

*Performed daily prior to analysis of sorbent traps, Refer to SOP for Instrument Calibration for acceptance criteria

 $\ref{eq:performed}$ immediately after calibration curve is verified, must come within 10% of expected value

***Response factor value must fall between the LOQ and MDL

****Performed between every 10 samples and every analytical batch

*****Subject to change, for analyst convenience only

	Active Hg Standard Bank**	
Concentration (µg/ml)	Lot #/Bottle ID	Exp. Date
0.1	K2-MEB603126 B	10/31/2017
1	K2-MEB631041 B	4/17/2018
10	K2-HG650192 B	11/10/2017
100	K2-MEB631040 B	4/17/2018
1000	J2-HG02133	5/24/2017
0.1	K2-MEB603126 A	10/31/2017
1	K2-MEB631041 A	4/17/2018
10	K2-HG650192 A	4/17/2018
100	K2-MEB631040 A	7/6/2017
1 (independent)	K2-HG02144	4/17/2018
10 (Independent)	J2-MEB600156	10/31/2017
100 (Independent)	K2-MEB631050	4/17/2018

Pipette Identification

AB

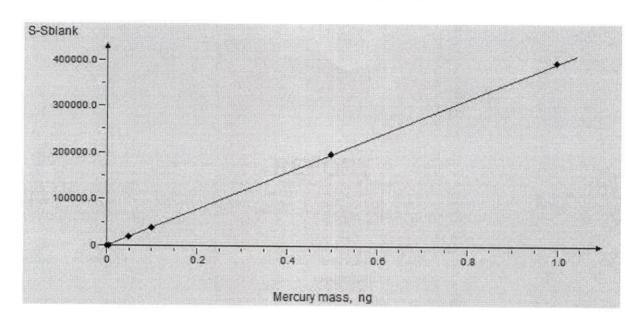
ve data are true to the best of my knowledge.

Date: 04.21.17

Analyst Signature:

By signing this report I confirm that the

REPORT


Report created 21.04.2017 12:51:08

Instrument RA915+ Serial 140

number

Calibration created 21.04.2017 10:18:00

Calibration name 170421_ANS 2-1000

Results

N	Mercury mass, ng	S-Sblank	Ref.data, ng/g	Calculated, ng/g	d, %
1	1.00	397800	1000.0	1008.4	0.8
2	0.50	198500	500.0	503.2	0.6
3	0.10	39060	100.0	99.0	-1.0
4	0.05	19650	50.0	49.8	-0.4
5	0.01	1952	5.0	4.9	-1.1
6	0.00	796	2.0	2.0	0.9

Calibration S - Sblank = a·m

Algorithm WLSM

Correlation coefficient 0.999998

Residual standard deviation 2.848819

Appendix D

Calibration Data

Control Module: C-7 Leak checks Barometric Press. --29.61 12/09/16 Negative >5 W.C. Previous Y --Date: 1.0135 pass Technician: JAR2 Positive pass > in.Hg Previous Delta H --1.8250

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Flan	sed	Meter	Orifice
Diff	Volume,	Temp		Meter	Volume	1	e of	Coefficient	Coefficient
Pressure H	Ft ³	Inlet	Outlet	Temp, F	Ft ³		Point	Y	dH@
Nominal	Initial	Initial	Initial	Initial	Initial	- Cai.	ı Ollık	1	urre
0.500	2445.00	75.0	68.0	70.0	765.400				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
Actual	2452.00	75.0	70.0	70.0	772.290	17	3.25		
0.50	Total	Average	Average	Average	Total	Minutes	3.23		
0.50	7.00	75.0	69.0	70.0	6.890	17.05		1.0185	1.6871
	7.00	72.0	03.0	70.0	0.090	17.00		1.0103	1.0071
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000		76.0		70.0					
Actual	2453.00 Final	Final	70.0 Final	Final	773.260 Final	Minutes	SEC		
Actual									
4.00	2458.00	77.0	71.0	70.0	778.160	8.0	52.81		
1.00	Total 5.00	Average	Average	Average	Total 4.900	0.00		1.0046	4 7004
	5.00	76.5	70.5	70.0	4.900	8.88		1.0246	1.7881
<u> </u>	1 22 1	73.5	Tm	1 1/1 1	1 22 1			<u> </u>	
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	2438.00	72.0	67.0	70.0	758.570				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2443.00	75.0	68.0	70.0	763.460	6	22.29		
2.00	Total	Average	Average	Average	Total	0.07		4 0404	4 0545
	5.00	73.5	67.5	70.0	4.890	6.37		1.0184	1.8515
		70.5	Tm					T	<u> </u>
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	2560.00	79.0	71.0	70.0	780.100	1			
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2565.00	81.0	72.0	70.0	785.020	5.0	19.71		
3.00	Total	Average	Average	Average	Total				
	5.00	80.0	71.5	70.0	4.920	5.33		1.0197	1.9278
	T	75.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	2470.00	83.0	73.0	70.0	789.980	,			
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2480.00	84.0	74.0	70.0	799.990	9.0	10.31		
4.00	Total	Average	Average	Average	Total				
	10.00	83.5	73.5	70.0	10.010	9.17		1.0050	1.8968
78.5 Tm			Tm			Average		1.0173	1.8303

Control Module: C-8 29.22 Leak checks Barometric Press. --03/23/17 Negative Date: Pass >5 W.C. Previous Y --1.0040 Technician: RMPPositive -Pass > in.Hg Previous Delta H --1.9144

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elar	sed	Meter	Orifice
Diff	Volume,	Temp		Meter	Volume	-	e of	Coefficient	Coefficient
Pressure H	Ft ³	Inlet	Outlet	Temp, F	Ft ³		Point	Y	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				<u> </u>
0.500	3702.00	79.0	74.0	71.5	682.850				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
7 1010.01	3708.00	77.0	74.0	71.5	688.850	15	17.79		
0.50	Total	Average	Average	Average	Total	Minutes			
0.00	6.00	78.0	74.0	71.5	6.000	15.30		1.0072	1.8651
		76.0	1			1			
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	3695.00	84.0	74.0	72.0	675.820				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3701.00	80.0	74.0	72.0	681.840	10.0	47.43		
1.00	Total	Average	Average	Average	Total				
	6.00	82.0	74.0	72.0	6.020	10.79		1.0054	1.8597
		78.0	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	3668.00	80.0	71.0	72.0	648.820				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3676.00	81.0	72.0	72.0	656.800	10	34.31		
2.00	Total	Average	Average	Average	Total				
	8.00	80.5	71.5	72.0	7.980	10.57		1.0050	2.0177
		76.0	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	3677.00	82.0	72.0	72.0	657.800				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3683.00	83.0	73.0	72.0	663.800	6.0	24.78		
3.00	Total	Average	Average	Average	Total				
	6.00	82.5	72.5	72.0	6.000	6.41		1.0028	1.9762
		77.5	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	3684.00	83.0	73.0	72.0	664.810				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3694.00	85.0	74.0	72.0	674.820	9.0	14.59		
4.00	Total	Average	Average	Average	Total				
	10.00	84.0	73.5	72.0	10.010	9.24		1.0016	1.9668
78.8 Tm			Tm			Average		1.0044	1.9371

Control Module: C-9 29.64 Leak checks Barometric Press. --03/22/17 Negative Date: Pass >5 W.C. Previous Y --1.0054 Technician: RMPPositive -Pass > in.Hg Previous Delta H --1.9374

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Flar	sed	Meter	Orifice
Diff	Volume,	Temp		Meter	Volume	-	e of	Coefficient	Coefficient
Pressure H	volume, Ft₃	Inlet	Outlet	Temp, F	Ft ³		Point	Y	dH@
Nominal	Initial	Initial	Initial	Initial	Initial	Cai.	ı onı	<u> </u>	urie
0.500	3612.00	76.0	70.0	71.5	833.910				
	Final					Minutes	SEC	-	
Actual		Final	Final	Final	Final	Minutes			
0.50	3618.00	77.0	72.0	72.0	839.880	15	28.06	-	
0.50	Total	Average	Average	Average	Total	Minutes		4 0070	4 0004
	6.00	76.5	71.0	71.8	5.970	15.47		1.0076	1.8924
		73.8	1			1		ī	1
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	3603.00	80.0	71.0	71.5	824.970				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3611.00	77.0	71.0	71.5	832.910	14.0	39.09		
1.00	Total	Average	Average	Average	Total				
	8.00	78.5	71.0	71.5	7.940	14.65		1.0112	1.9084
		74.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	3576.00	75.0	65.0	72.0	798.450				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3584.00	78.0	67.0	72.0	806.320	10	28.09		
2.00	Total	Average	Average	Average	Total				
	8.00	76.5	66.0	72.0	7.870	10.47		1.0101	1.9707
		71.3	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	3585.00	79.0	68.0	72.0	807.300				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3590.00	79.0	68.0	72.0	812.220	5.0	24.91		
3.00	Total	Average	Average	Average	Total				
	5.00	79.0	68.0	72.0	4.920	5.42		1.0116	2.0173
		73.5	Tm			•		•	
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	3591.00	79.0	68.0	72.0	813.200				
Actual	Final	Final	Final	Final	Final	Minutes	SEC	1	
	3601.00	82.0	70.0	71.5	823.000	9.0	21.53		
4.00	Total	Average	Average	Average	Total	0.0	21.00	1	
	10.00	80.5	69.0	71.8	9.800	9.36		1.0161	2.0028
		74.8				Average		1.0113	1.9583

Control Module: C-10 29.35 Leak checks Barometric Press. --12/02/16 Negative Date: 0.0 >5 W.C. Previous Y --0.9893 Technician: DAH Positive -0.0 > in.Hg Previous Delta H --1.8944

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elap	osed	Meter	Orifice
Diff	Volume,	Temp	, F	Meter	Volume	Tim	ne of	Coefficient	Coefficient
Pressure H	Ft₃	Inlet	Outlet	Temp, F	Ft ³	Cal.	Point	Υ	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				
0.500	2329.50	81.0	76.0	74.0	415.160				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2334.50	79.0	76.0	74.0	420.220	12	42.5		
0.50	Total	Average	Average	Average	Total	Minutes			
	5.00	80.0	76.0	74.0	5.060	12.71		0.9943	1.8560
		78.0							•
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	2324.00	84.0	76.0	74.0	409.610				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2329.00	82.0	76.0	74.0	414.650	8.0	59.88		
1.00	Total	Average	Average	Average	Total				
	5.00	83.0	76.0	74.0	5.040	9.00		0.9998	1.8609
		79.5	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	2297.00	81.0	74.0	75.0	382.490				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2302.00	82.0	74.0	75.0	387.500	6	23.06		
2.00	Total	Average	Average	Average	Total				
	5.00	81.5	74.0	75.0	5.010	6.38		0.9981	1.8877
		77.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	2303.00	82.0	74.0	74.0	388.510				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2309.00	83.0	74.0	74.0	394.520	6.0	18.18		
3.00	Total	Average	Average	Average	Total				
	6.00	82.5	74.0	74.0	6.010	6.30		0.9988	1.9094
		78.3	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	2310.00	83.0	74.0	74.0	395.530]	
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2323.00	85.0	76.0	74.0	408.590	11.0	48.59]	
4.00	Total	Average	Average	Average	Total				
	13.00	84.0	75.0	74.0	13.060	11.81		0.9957	1.9004
		79.5	Tm		-	Average		0.9973	1.8829

Control Module: C-10 28.90 Leak checks Barometric Press. --01/20/17 Negative Date: 0.0 >5 W.C. Previous Y --0.9973 Technician: BAW Positive -0.0 > in.Hg Previous Delta H --1.8829

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elap	osed	Meter	Orifice
Diff	Volume,	Temp	, F	Meter	Volume	Tim	e of	Coefficient	Coefficient
Pressure H	Ft³	Inlet	Outlet	Temp, F	Ft ³	Cal.	Point	Υ	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				
0.500	2675.00	79.0	77.0	73.0	902.860				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2680.00	80.0	77.0	73.0	907.900	12	40.2		
0.50	Total	Average	Average	Average	Total	Minutes			
	5.00	79.5	77.0	73.0	5.040	12.67		1.0006	1.8631
		78.3							
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	2681.00	80.0	77.0	73.0	908.500				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2686.00	80.0	78.0	73.0	913.480	8.0	58.15		
1.00	Total	Average	Average	Average	Total				
	5.00	80.0	77.5	73.0	4.980	8.97		1.0123	1.8655
		78.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	2687.00	79.0	78.0	73.0	914.230				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2692.00	80.0	78.0	73.0	919.270	6	19.8		
2.00	Total	Average	Average	Average	Total				
	5.00	79.5	78.0	73.0	5.040	6.33		0.9977	1.8567
		78.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	2695.00	80.0	78.0	73.0	921.800				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2705.00	81.0	79.0	73.0	931.830	10.0	31.2		
3.00		Average	Average	Average	Total				
	10.00	80.5	78.5	73.0	10.030	10.52		1.0015	1.9212
		79.5	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	2707.00	81.0	79.0	73.0	933.750				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2717.00	81.0	79.0	73.0	943.710	9.0	5.23		
4.00	Total	Average	Average	Average	Total				
	10.00	81.0	79.0	73.0	9.960	9.09		1.0070	1.9096
		80.0	Tm			Average		1.0038	1.8832

Control Module: C-12 Leak checks Barometric Press. --28.22 01/31/17 Negative Date: 0.0 >5 W.C. Previous Y --0.9961 Technician: DJK Positive -0.0 > in.Hg Previous Delta H --1.9139

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elap	osed	Meter	Orifice
Diff	Volume,	Temp		Meter	Volume	-	e of	Coefficient	Coefficient
Pressure H	Ft³	Inlet	Outlet	Temp, F	Ft ³		Point	Υ	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				
0.500	4218.00	74.0	70.0	71.0	126.260				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4225.00	74.0	71.0	71.0	133.240	17	53		
0.50	Total	Average	Average	Average	Total	Minutes			
	7.00	74.0	70.5	71.0	6.980	17.88		1.0039	1.9484
		72.3							•
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	4226.00	74.0	71.0	71.0	134.250				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4235.00	75.0	72.0	70.5	143.220	16.0	11		
1.00	Total	Average	Average	Average	Total				
	9.00	74.5	71.5	70.8	8.970	16.18		1.0050	1.9250
		73.0	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	4195.00	71.0	69.0	71.0	103.270				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4217.00	74.0	70.0	71.0	125.270	28	57		
2.00	Total	Average	Average	Average	Total				
	22.00	72.5	69.5	71.0	22.000	28.95		0.9948	2.0716
		71.0	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	4236.00	75.0	72.0	70.5	144.220				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4248.00	76.0	72.0	70.0	156.330	12.0	42		
3.00	Total	Average	Average	Average	Total				
	12.00	75.5	72.0	70.3	12.110	12.70		0.9897	1.9949
		73.8	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	4249.00	76.0	72.0	70.0	157.350				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4262.00	78.0	72.0	70.0	170.570	11.0	56		
4.00	Total	Average	Average	Average	Total				
	13.00	77.0	72.0	70.0	13.220	11.93		0.9815	1.9991
		74.5	Tm			Average		0.9950	1.9878

Control Module: AS-01 Leak checks Barometric Press. -- 28.39

Date: 12/12/16 Negative -- >5 W.C. Previous Y -- 0.9946

Technician: MTP Positive -- > in.Hg Previous Delta H -- 1.83

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elar	sed	Meter	Orifice
Diff	Volume,	Temp		Meter	Volume	-	e of	Coefficient	Coefficient
Pressure H	Ft³	Inlet	Outlet	Temp, F	Ft ³		Point	Y	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				
0.500	3997.00	81.5	81.5	73.0	1.069				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4002.00	82.2	82.2	73.0	6.196	12	40.02		
0.50	Total	Average	Average	Average	Total	Minutes			
	5.00	81.9	81.9	73.0	5.127	12.67		0.9901	1.8787
		81.9	•						
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	4005.01	82.8	82.8	73.0	9.297				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	4010.01	84.0	84.0	73.0	14.445	9.0	2.49		
1.00	Total	Average	Average	Average	Total				
	5.00	83.4	83.4	73.0	5.148	9.04		0.9876	1.9088
		83.4	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	3961.10	72.7	72.7	73.0	35.347				
Actual	Final	Final	Final	70	Final	Minutes	SEC		
	3966.30	75.0	75.0	73.0	40.546	6	33.63		
2.00	Total	Average	Average	Average	Total				
	5.20	73.9	73.9	73.0	5.199	6.56		0.9966	1.8916
		73.9	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	3969.00	76.8	76.8	73.0	2.245				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3974.00	78.1	78.1	73.0	7.284	5.0	6.76		
3.00	Total	Average	Average	Average	Total				
	5.00	77.5	77.5	73.0	5.039	5.11		0.9928	1.8513
		77.5	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
4.000	3976.00	78.6	78.6	73.0	9.298				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	3981.00	78.6	78.6	73.0	14.338	4.0	24.03		
4.00	Total	Average	Average	Average	Total				
	5.00	78.6	78.6	73.0	5.040	4.40		0.9922	1.8248
		78.6	Tm			Average		0.9919	1.87

Control Module: AS-01 Leak checks Barometric Press. --29.38 01/06/17 Negative Date: 0.0 >5 W.C. Previous Y --0.9919 Technician: MTP Positive -0.0 > in.Hg Previous Delta H --1.8700

Orifice	Wet Test	Dry Gas	Meter	Wet Test	Dry Gas	Elar	osed	Meter	Orifice
Diff	Volume,	Temp	, F	Meter	Volume	Tim	e of	Coefficient	Coefficient
Pressure H	Ft₃	Inlet	Outlet	Temp, F	Ft ³	Cal.	Point	Υ	dH@
Nominal	Initial	Initial	Initial	Initial	Initial				
0.500	2629.00	81.9	81.9	72.0	27.734				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2634.00	82.9	82.9	71.5	32.879	13	8.9		
0.50	Total	Average	Average	Average	Total	Minutes			
	5.00	82.4	82.4	71.8	5.145	13.15		0.9900	1.9448
		82.4	T						
Nominal	Initial	Initial	Initial	Initial	Initial				
1.000	2623.00	80.1	80.1	72.0	21.560				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2628.00	81.9	81.9	72.0	26.702	9.0	7.79		
1.00	Total	Average	Average	Average	Total				
	5.00	81.0	81.0	72.0	5.142	9.13		0.9864	1.8820
		81.0	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
2.000	2613.00	77.5	77.5	72.0	11.328				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2619.00	78.8	78.8	72.0	17.463	7	37.18		
2.00	Total	Average	Average	Average	Total				
	6.00	78.2	78.2	72.0	6.135	7.62		0.9844	1.8303
		78.2	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
3.000	2637.00	82.9	82.9	71.5	2.464				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2642.00	84.2	84.2	71.5	7.629	5.0	10.14		
3.00	Total	Average	Average	Average	Total				
	5.00	83.6	83.6	71.5	5.165	5.17		0.9826	1.7979
		83.6	Tm						
Nominal	Initial	Initial	Initial	Initial	Initial				
1.500	2644.00	84.2	84.2	71.5	9.704				
Actual	Final	Final	Final	Final	Final	Minutes	SEC		
	2649.00	84.2	84.2	71.0	14.898	7.0	26.78		
1.50	Total	Average	Average	Average	Total				
	5.00	84.2	84.2	71.3	5.194	7.45		0.9824	1.8616
		84.2	Tm			Average		0.9852	1.86

VOST ModuleDual Vost A - 1Leak checks:Barometric Pressure:29.22Date:12/7/2016Negative --PassPrevious Y:0.9905Technician:DAH@8 inHg.Previous Rate, I/min:0.400

Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.50	2334.950	67.0	73.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	2335.950	71.0	73.0	28.36	54.0 47.0		
		Average	Average		Total		
	1.000	69.0	73.0		54.783	0.9914	0.52
Nominal	Initial	Initial	Initial	Total			
0.50	2335.960	71.0	73.0	Final			
	Final	Final	Final	Volume	Min Sec		
	2337.590	74.0	73.0	46.63	91.0 30.0		
	Total	Average	Average		Total		
	1.630	72.5	73.0		91.500	0.9893	0.51
					Average	0.9904	0.51

VOST ModuleDual Vost A - 1Leak checks:Barometric Pressure:29.62Date:3/3/2017Negative --PassPrevious Y:0.9904Technician:MTP@10 inHg.Previous Rate, I/min:0.510

Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.40	3342.750	54.0	71.5	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3344.230	68.0	71.0	40.286	82.0 58.0		
		Average	Average		Total		
	1.480	61.0	71.3		82.967	1.0206	0.49
Nominal	Initial	Initial	Initial	Total			
0.40	3344.250	68.0	71.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3345.250	73.0	71.5	27.88	60.0 27.0		
	Total	Average	Average		Total		
	1.000	70.5	71.3		60.450	1.0147	0.46
					Average	1.0176	0.47

VOST ModuleDual Vost A - 2Leak checks:Barometric Pressure:29.22Date:12/7/2016Negative --PassPrevious Y:0.9801Technician:DAH@8 inHg.Previous Rate, I/min:0.400

Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.50	2341.550	76.0	73.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	2342.650	76.0	73.0	31.75	61.0 34.0		
		Average	Average		Total		
	1.100	76.0	73.0		61.567	0.9870	0.52
					,		
Nominal	Initial	Initial	Initial	Total			
0.50	2340.230	77.0	73.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	2341.530	76.0	73.0	37.74	74.0 30.0		
	Total	Average	Average		Total		
	1.300	76.5	73.0		74.500	0.9822	0.51
					Average	0.9846	0.51

VOST ModuleDual Vost A - 2Leak checks:Barometric Pressure:29.62Date:3/3/2017Negative --PassPrevious Y:0.9735Technician:rmp@8 inHg.Previous Rate, I/min:0.400

Rotometer Setting, LPM	Wet Test Volume, Cubic Feet	Dry Gas Meter Temp, °F	Wet Test Meter Temp, °F	Dry Gas Volume, Liters	Elapsed Time, Minutes	Meter Coefficient, Y	Sample Rate, LPM
Nominal 0.40	Initial 3345.500	Initial 73.0	Initial 71.5	Total Final		a	
	Final 3346.500	Final 74.0	Final 71.5	Volume 28.79	Min Sec 76.0 28.0		
	1.000	Average 73.5	Average 71.5		Total 76.467	0.9877	0.38
					7		
Nominal 0.40	Initial 3346.700	Initial 74.0	Initial 71.5	Total Final		_	
	Final	Final	Final	Volume	Min Sec		
	3347.700	74.0	71.5	28.93	74.0 34.0		
	Total	Average	Average		Total		
	1.000	74.0	71.5		74.567	0.9838	0.39
Nominal 0.40	Initial	Initial	Initial	Total Final		_	
	Final	Final	Final	Volume	Min Sec		
	Total	Average	Average		Total		
	0.000	#DIV/0!	#DIV/0!		0.000	#DIV/0!	#DIV/0!
					Average	0.9857	0.38

VOST ModuleDual Vost B - 1Leak checks:Barometric Pressure:29.33Date:12/8/2016Negative --PassPrevious Y:1.0073Technician:DAH@8 inHg.Previous Rate, I/min:2.000

Rotometer Setting,	Wet Test Volume,	Dry Gas Meter	Wet Test Meter	Dry Gas Volume,	Elapsed Time,	Meter Coefficient,	Sample Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Y	LPM
Nominal	Initial	Initial	Initial	Total			
0.50	2342.680	51.0	73.0	Final			
	Final	Final	Final	Volume	Min Sec		
	2343.880	63.0	73.0	32.73	62.0 33.0		
		Average	Average		Total		
	1.200	57.0	73.0		62.550	1.0075	0.52
					,		
Nominal	Initial	Initial	Initial	Total			
0.50	2343.920	64.0	73.0	Final			
	Final	Final	Final	Volume	Min Sec		
	2345.570	72.0	73.0	46.01	87.0 57.0		
	Total	Average	Average		Total		
	1.650	68.0	73.0		87.950	1.0064	0.52
					Average	1.0069	0.52

VOST ModuleDual Vost B - 1Leak checks:Barometric Pressure:28.80Date:3/2/2017Negative --PassPrevious Y:0.9970Technician:DAH@10 inHg.Previous Rate, I/min:0.400

Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.40	3323.200	59.0	72.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3324.200	71.0	72.0	27.552	66.0 58.0		
		Average	Average		Total		
	1.000	65.0	72.0		66.967	1.0147	0.41
Nominal	Initial	Initial	Initial	Total			
0.40	3324.250	71.0	72.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3325.320	72.0	72.0	29.88	69.0 4.0		
	Total	Average	Average		Total		
	1.070	71.5	72.0		69.067	1.0135	0.43
					Average	1.0141	0.42

VOST ModuleDual Vost B - 2Leak checks:Barometric Pressure:29.50Date:12/8/2016Negative --PassPrevious Y:1.0096Technician:DAH@8 inHg.Previous Rate, I/min:2.000

)		T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.50	2345.650	72.0	73.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	2346.740	74.0	73.0	30.92	61.0 2.0		
		Average	Average		Total		
	1.090	73.0	73.0		61.033	0.9986	0.51
					•		
Nominal	Initial	Initial	Initial	Total			
0.50	2346.800	74.0	73.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	2347.920	74.0	73.0	31.730	60.0 31.0		
	Total	Average	Average		Total		
	1.120	74.0	73.0		60.517	1.0018	0.52
					Average	1.0002	0.52

VOST ModuleDual Vost B - 2Leak checks:Barometric Pressure:29.00Date:3/2/2017Negative --PassPrevious Y:1.0002Technician:DAH@8 inHg.Previous Rate, I/min:0.500

Rotometer	Wet Test	Dry Gas	Wet Test	Dry Gas	Elapsed	Meter	Sample
Setting,	Volume,	Meter	Meter	Volume,	Time,	Coefficient,	Rate,
LPM	Cubic Feet	Temp, °F	Temp, °F	Liters	Minutes	Υ	LPM
Nominal	Initial	Initial	Initial	Total			
0.40	3325.390	70.0	72.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3326.460	70.0	72.0	30	74.0 3.0		
		Average	Average		Total		
	1.070	70.0	72.0		74.050	1.0066	0.41
Nominal	Initial	Initial	Initial	Total			
0.40	3326.490	70.0	72.0	Final		_	
	Final	Final	Final	Volume	Min Sec		
	3342.450	73.0	71.5	449.168	1046.0 6.0		
	Total	Average	Average		Total		
	15.960	71.5	71.8		1046.100	1.0061	0.43
					Average	1.0063	0.42

	Meter I.D.			C-8		
Temperature	CL-300-100F	Χ	Х	Χ	Χ	Х
Calibrator Used	CL-3512-A					
	DATE		3/3/2017	3/3/2017	3/3/2017	3/3/2017
	TECHNICIAN		RMP	RMP	RMP	RMP
<u>Ther</u>	mocouple I.D.	T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5
	Acceptable	** If not withi	n Acceptable	Range,		
Reference °F	Range	unit not to b	e used within	range at which	ch failure occ	urred.
1950	1932 to 1968	1958				1956
1800	1784 to 1816	1805				1804
1600	1585 to 1615	1605				1605
1400	1387 to 1413	1404				1402
1200	1188 to 1212	1205				1205
1000	990 to 1010	1005				1004
900	890 to 910	904				903
800	791 to 809	804				803
700	692 to 708	704				703
600	593 to 607	601				601
500	493 to 507	499	500	499		498
400	394 to 406	400	400	399		399
300	295 to 305	301	300	300		299
200	196 to 204	200	200	199		198
150	146 to 154	149	149	148	147	147
100	96 to 104	98	98	97	97	97
50	47 to 53	48	48	47	47	47
0	-3 to 3	0			-1	0
-50	-53 to -47	-51			-53	-52

Pass/Fail based on +/- 0.75% of Rankine value

	Meter I.D.			C-9		
	meter Used, I.D.					
Temperature	CL-300-100F					
Calibrator Used	CL-3512-A	X				
	DATE TECHNICIAN	1/5/2017 LDP2	-			
Th	ermocouple I.D.	T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5
			n Acceptable		1.0. 1	1.0.0
Reference °F	Acceptable Range		•	•	ch failure occ	urred.
1950	1932 to 1968	1959				1957
1800	1784 to 1816	1806				1805
1600	1585 to 1615	1606				1605
1400	1387 to 1413	1401				1400
1200	1188 to 1212	1204				1202
1000	990 to 1010	1004				1003
900	890 to 910	902				901
800	791 to 809	800				800
700	692 to 708	700				699
600	593 to 607	598				597
500	493 to 507	495	495	493		493
400	394 to 406	397	396	397		397
300	295 to 305	298	298	298		298
200	196 to 204	197	197	197		197
150	146 to 154	146	146	146	146	146
100	96 to 104	96	96	96	96	96
50	47 to 53	47	47	47	47	47
0	-3 to 3	-2			-2	-2
-50	-53 to -47	-53			-53	-53

Pass/Fail based on +/- 0.75% of Rankine value

Fail indicated by cell highliting

Reviewd by:

A har

	Meter I.D.			C-10		
<u>Py</u>	rometer Used, I.D.	D-15				
Temperature	CL-300-100F					
Calibrator Used	CL-3512-A	X				
	DATE					
	TECHNICIAN	DAH T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5
	Thermocouple I.D.		n Acceptable		1.0.4	1.0.5
Reference °F	Acceptable Range		•	•	ch failure occ	urred.
1950	1932 to 1968	1960				1959
1800	1784 to 1816	1807				1806
1600	1585 to 1615	1607				1606
1400	1387 to 1413	1404				1403
1200	1188 to 1212	1204				1202
1000	990 to 1010	1004				1003
900	890 to 910	903				902
800	791 to 809	802				802
700	692 to 708	702				699
600	593 to 607	601				598
500	493 to 507	498	496	493		494
400	394 to 406	398	397	397		397
300	295 to 305	297	298	298		298
200	196 to 204	197	197	197		197
150	146 to 154	147	146	146	146	147
100	96 to 104	97	97	96	96	96
50	47 to 53	47	47	47	47	47
0	-3 to 3	-2			-2	-2
-50	-53 to -47	-52			-53	-53

Pass/Fail based on +/- 0.73,3
Fail indicated by cell highlighting
Reviewed by:

	Meter I.D.			C-12		
Temperature	CL-300-100F	Х	Х	Х	Х	Х
Calibrator Used	CL-3512-A					
	DATE	1/23/2017	1/23/2017	1/23/2017	1/23/2017	1/23/2017
	TECHNICIAN		LTR	LTR	LTR	LTR
Ther	mocouple I.D.	T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5
	Acceptable	** If not withi	n Acceptable	Range,		
Reference °F	Range	unit not to b	urred.			
1000	990 to 1010	999				998
900	890 to 910	899				898
800	791 to 809	799				798
700	692 to 708	700				699
600	593 to 607	599				598
500	493 to 507	497	498	499		496
400	394 to 406	399	399	401		397
300	295 to 305	300	301	301		299
200	196 to 204	200	200	200		199
150	146 to 154	150	151	150	149	149
100	96 to 104	99	99	100	97	98
50	47 to 53	49	50	49	48	48
0	-3 to 3	1			0	0
-50	-53 to -47	-49			-51	-50

Pass/Fail based on +/- 0.75% of Rankine value

Fail indicated by cell highliting

Reviewd By:

		DV-A					
Pyrometer Used, I.D.		D-15					
Temperature	CL-300-100F						
Calibrator Used	CL-3512-A	X					
	DATE	1/5/2017					
TECHNICIAN <u>Thermocouple I.D.</u>		LDP2 T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5	
		** If not within Acceptable Range,					
Reference °F	Acceptable Range	plable					
1950	1932 to 1968	1950		J		1950	
1800	1784 to 1816	1797				1798	
1600	1585 to 1615	1600				1600	
1400	1387 to 1413	1397				1397	
1200	1188 to 1212	1200				1200	
1000	990 to 1010	999				999	
900	890 to 910	899				898	
800	791 to 809	799				799	
700	692 to 708	700				700	
600	593 to 607	597				598	
500	493 to 507	496	496	495		496	
400	394 to 406	395	396	396		396	
300	295 to 305	297	296	296		297	
200	196 to 204	196	196	196		196	
150	146 to 154	146	146	146	146	146	
100	96 to 104	96	96	96	96	96	
50	47 to 53	47	47	47	47	47	
0	-3 to 3	-3			-3	-3	
-50	-53 to -47	-53			-54	-54	

Pass/Fail based on +/- 0.75% of Rankine value

Fail indicated by cell highliting

Reviewd by:

	Meter I.D.	DV-B					
Pyrometer Used, I.D.		D-15					
Temperature	CL-300-100F						
Calibrator Used	CL-3512-A	X					
	DATE	1/10/2017					
Th	TECHNICIAN	LDP2 T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5	
<u>Thermocouple I.D.</u>			n Acceptable		1.0. 4	1.0.5	
Reference °F	Acceptable Range	unit not to be	urred				
			o dood within	rango at wiii	orr railare eee		
1950	1932 to 1968	1953				1953	
1800	1784 to 1816	1802				1802	
1600	1585 to 1615	1604				1603	
1400	1387 to 1413	1401				1401	
1200	1188 to 1212	1204				1204	
1000	990 to 1010	1003				1004	
900	890 to 910	903				903	
800	791 to 809	802				803	
700	692 to 708	702				702	
600	593 to 607	600				600	
500	493 to 507	498	498	498		498	
400	394 to 406	398	398	398		398	
300	295 to 305	299	299	299		299	
200	196 to 204	198	199	198		198	
150	146 to 154	148	147	147	147	147	
100	96 to 104	96	96	96	96	97	
50	47 to 53	47	47	47	47	47	
0	-3 to 3	-1			-1	0	
-50	-53 to -47	-52			-52	-52	

Pass/Fail based on +/- 0.75% of Rankine value

Fail indicated by cell highlighting

Reviewed by:

Meter Pyrometer Calibration

Meter I.D. AS-01							
	meter Used, I.D.	D-15					D-15
Temperature	CL-300-100F						
Calibrator Used	CL-3512-A	Χ					
	DATE	1/6/2017					1/6/2017
Th	TECHNICIAN ermocouple I.D.	LDP2 T.C. 1	T.C. 2	T.C. 3	T.C. 4	T.C. 5	MTP T.C. 6
<u> </u>		** If not within Acceptable Range,				1.0.6	
	Acceptable	unit not to be used within range at which failure occurred.					
Reference °F	Range	unit not to b	e usea within	range at which	ch failure occ	urrea.	
1750	1734 to 1766	1750				1751	1751
1600	1585 to 1615	1603				1602	1602
1400	1387 to 1413	1401				1401	1401
1200	1188 to 1212	1200				1200	1201
1000	990 to 1010	1000				1000	1000
900	890 to 910	900				900	900
800	791 to 809	800				800	800
700	692 to 708	699				699	700
600	593 to 607	599				599	598
500	493 to 507	499	498	499		498	498
400	394 to 406	400	400	400		400	400
300	295 to 305	302	302	301		301	302
200	196 to 204	200	200	200		200	200
150	146 to 154	150	150	150	149	150	150
100	96 to 104	100	100	100	99	99	100
50	47 to 53	51	51	49	49	50	50
0	-2 to 3	0			-2	-1	-1
-30	-33 to -26	-30			-31	-31	-30

Pass/Fail based on +/- 0.75% of Rankine value

Fail indicated by cell highliting

PYROMETER CALIBRATION

Pyrometer Number: D-14 Date: 12/27/2016

Temperature Calibrator: CL-3512-A Technician: HLP

		Pyrometer ^o F		
Reference (°F)	Rankine	Reading	Pass/Fail	
1950	2410	1952	Pass	
1800	2260	1802	Pass	
1700	2160	1701	Pass	
1600	2060	1601	Pass	
1500	1960	1502	Pass	
1400	1860	1401	Pass	
1300	1760	1302	Pass	
1200	1660	1201	Pass	
1100	1560	1101	Pass	
1000	1460	1001	Pass	
950	1410	951	Pass	
900	1360	902	Pass	
850	1310	851	Pass	
800	1260	802	Pass	
750	1210	751	Pass	
700	1160	701	Pass	
650	1110	651	Pass	
600	1060	601	Pass	
550	1010	551	Pass	
500	960	500	Pass	
450	910	450	Pass	
400	860	400	Pass	
350	810	350	Pass	
300	760	300	Pass	
250	710	250	Pass	
200	660	200	Pass	
150	610	149	Pass	
100	560	100	Pass	
50	510	50	Pass	
0	460	-0.3	Pass	
-50	410	-51	Pass	

Pass/Fail based on +/- 0.75% of Rankine value

ght show

Pitot Tube Number:	Inspection Date:	1/4/16
Length: 8 ft	Technician:	BAW
Function: M-5 Probe / Free		
1. Are face openings perpendicular to tube axis?	1a. If NO, is angle less than 10°?	
YES (go to 2) NO (go to 1a)	YES (go to 2)	☐ NO (discontinue use)
Transverse Tube Axis A B Face Opening Planes	Transverse Tube Axis	(b)
Are face openings parallel to longitudinal axis?	2a. If NO, is angle less than 5°?	
YES (go to 3) NO (go to 2a)	☐ YES (go to 3)	☐ NO (discontinue use)
Longitudinal Tube Axis D t A A-Side Plane Note: 1.05 D t < P < 1.50 PA = PB B-Side Plane	Longitudinal Tube Axis DD t (c)	(d)
3. Are legs of equal length? YES (go to 4) NO (go to 3a)	3a. If NO, is difference less than 1/8	inch? NO (discontinue use)
Are center-lines of legs coincident?	4a. If NO, are center-lines of face op	popings loss than 1/32 inch2
YES (go to 5) NO (go to 4a)	YES (go to 5)	NO (discontinue use)
A or B	(9)	
5. Does this pitot tube pass all of the above criteria?	□ NO	
I certify that the pitot tube meets or exceeds all specifications and criteria listed in and is assigned a pitot tube certification factor of 0.84. Technician Signature:	n 40 CFR Part 60, Appendix A, EPA Method 2	
No ale		
Reviewed by:		

Number: 5-2	Inspection Date:	1-3-17 RMP
Length: 5'	Technician:	RMP
Function: M-5 Probe / Free		
Are face openings perpendicular to tube axis?	1a. If NO, is angle less than 10°?	
YES (go to 2) NO (go to 1a)	YES (go to 2)	NO (discontinue use)
Transverse Tube Axis A B Face Opening Planes	Transverse Tube Axis B	(b)
2. Are face openings parallel to longitudinal axis?	2a. If NO, is angle less than 5°?	
YES (go to 3) NO (go to 2a)	☐ YES (go to 3)	NO (discontinue use)
Longitudinal Tube Axis D ₁ A-Side Plane P_A P_B Note: 1.05 D ₁ < P < 1.60 $P_A = P_B$	Longitudinal Tube Axis A Flow Dt (c)	β Flow β (d)
B-Side Plane	S B	β _{1(* αr -)} β _{1(* αr -)}
3. Are legs of equal length?	3a. If NO, is difference less than 1/8 i	
☐ YES (go to 4) ☐ NO (go to 3a)	☐ YES (go to 4)	□ NO (discontinue use) □ ■ NO (discontinue use) NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discontinue use) ■ NO (discon
	-82	
A or B	(1)	В
Are center-lines of legs coincident?	4a. If NO, are center-lines of face ope	
YES (go to 5) NO (go to 4a)	☐ YES (go to 5)	☐ NO (discontinue use)
		(w_
A or B	(g)	
5. Does this pitot tube pass all of the above criteria?	□ NO	
I certify that the pitot tube meets or exceeds all specifications and criteria listed in and is assigned a pitot tube certification factor of 0.84.	40 CFR Part 60, Appendix A, EPA Method 2,	
Technician Signature:		
Reviewed by:		

Pitot Tube	Geometry	Officer		
Number: $5-3$			Inspection Date:	1-3-17
Length: 5'			Technician:	RMP
Function: M-5 Probe / Free				
Are face openings perpendicular to t	tube axis?	1a. If N	O, is angle less than 10°?	
YES (go to 2)	NO (go to 1a)		☐ YES (go to 2)	☐ NO (discontinue use)
Transverse Tube Axis A Face Opening Planes		Transverse Tube Axis	α ₁	(b)
2. Are face openings parallel to longitude	dinal axis?	2a. If N	O, is angle less than 5°?	
YES (go to 3)	NO (go to 2a)		YES (go to 3)	☐ NO (discontinue use)
Longitudinal Tube Axis	Note: Pa	Longitudinal — \(\frac{1}{2} \)	β Flow 1 A (c)	(d)
3. Are legs of equal length? YES (go to 4)	NO (go to 3a)	3a. If No	O, is difference less than 1/8 YES (go to 4)	inch? NO (discontinue use)
A or B		- 27-	(0)	ъ
4. Are center-lines of legs coincident?		4a. If No	O, are center-lines of face op	enings less than 1/32 inch?
YES (go to 5)	NO (go to 4a)		☐ YES (go to 5)	☐ NO (discontinue use)
8		- {x ==		(w)
A or B	·		(g)	
5. Does this pitot tube pass all of the ab	ove criteria?	□ NO		
I certify that the pitot tube meets or exceeds and is assigned a pitot tube certification fac	s all specifications and criteria listed in 40 tor of 0.84.) CFR Part 60,	Appendix A, EPA Method 2,	
Technician Signature:				
Reviewed by:	fat			

Number: 5-5		7/1/17
Length: 5	Inspection Date:	1-0
Function: M-5 Probe / Free	Technician:	LIK
Are face openings perpendicular to tube axis? YES (go to 2) NO (go to 1a)	1a. If NO, is angle less than 10°?	
YES (go to 2) NO (go to 1a)	☐ YES (go to 2)	NO (discontinue use)
Face Opening Planes	Transverse Tube Axis A B	α ₁ α ₂ α ₃ α ₄ α ₄ α ₅ α ₆ α ₇ α ₈
2. Are face openings parallel to longitudinal axis?	2a. If NO, is angle less than 5°?	
YES (go to 3)	YES (go to 3)	NO (discontinue use)
Longitudinal Tube Axis D t A A-Side Plane Note: 1.05 D t < P < 1.60 t PA = PB B-Side Plane	Longitudinal Tube Axis	(d)
3. Are legs of equal length? YES (go to 4) NO (go to 3a)	3a. If NO, is difference less than 1/8 inc	ch? NO (discontinue use)
AorB		official states
4. Are center-lines of legs coincident?	(f) B	
YES (go to 5)	4a. If NO, are center-lines of face openi YES (go to 5)	
· · · · · · · · · · · · · · · · · · ·	120 (go to 9)	NO (discontinue use)
The same of the sa	-4	(W)
AorB	(g)	
5. Does this pitot tube pass all of the above criteria?	□ NO	
I certify that the pitot tube meets or exceeds all specifications and criteria listed in 4 and is assigned a pitot tube certification factor of 0.84.	0 CFR Part 60, Appendix A, EPA Method 2,	
Technician Signature:		
Reviewed by:		

Pitot Tube				500
Number: 37			Inspection Date:	12-28-16
Length: 10'			Technician:	RMP
Function: M-5 Probe / Free				
Are face openings perpendicular	to tube axis?	1a. I	If NO, is angle less than 10°?	
YES (go to 2)	☐ NO (go to 1a)		YES (go to 2)	NO (discontinue use)
Transverse Tube Axis A Face Open Planes	B	Transverse Tube Axis	(a)	(b)
2. Are face openings parallel to lon	gitudinal axis?	2a. I	If NO, is angle less than 5°?	
YES (go to 3)	☐ NO (go to 2a)		YES (go to 3)	NO (discontinue use)
D ₊ A Longitudinal Tube Axis	A-Side Plane PA Note 1.05 P8 PA	Longitudinal Tube Axis D 1 < P < 1.50 D 1) B From 1	4 6 From 1
В	8-Side Plane		A B	β _{1(* ∞ -)}
3. Are legs of equal length?		3a, I	If NO, is difference less than 1/6	8 inch?
YES (go to 4)	☐ NO (go to 3a)		☐ YES (go to 4)	NO (discontinue use)
		- 5		, z
A or B			(1)	В
4. Are center-lines of legs coincide	nt?	4a.	If NO, are center-lines of face of	ppenings less than 1/32 inch?
YES (go to 5)	☐ NO (go to 4a)		YES (go to 5)	NO (discontinue use)
* E		\[\]	8	(w
A or B			(g)	
5. Does this pitot tube pass all of the	ne above criteria?	TYES NO		
I certify that the pitot tube meets or exc and is assigned a pitot tube certification		criteria listed in 40 CFR Part	60, Appendix A, EPA Method 2	2,
Technician Signature:	and a	at .		
Reviewed by:	11			

Manometer Calibration Sheet

Manometer Number Alnor M-11 Leak Check:

Date of Calibration 1/21/2016 Negative 0.0 @3" Technician JAR2 Positive 0.0 @3"

	Oil Manometer	Digital Manometer	Pass/Fail
	0.06	0.06	Pass
	0.2	0.20	Pass
	0.5	0.50	Pass
	0.8	0.80	Pass
ive	1	1.00	Pass
Positive	1.5	1.45	Pass
_	2	1.95	Pass
	2.5	2.50	Pass
	3	2.99	Pass
	3.5	3.49	Pass
	0.06	0.06	Pass
	0.2	0.20	Pass
	0.5	0.51	Pass
	0.8	0.80	Pass
ative	1	1.00	Pass
Negative	1.5	1.46	Pass
	2	1.95	Pass
	2.5	2.49	Pass
	3	2.99	Pass
	3.5	3.48	Pass

Pass/Fail based on +/- 5% of set value

Technician signature: Jalu R

Manometer Calibration Sheet

Manometer Number

Alnor M-13 Leak Check:

Date of Calibration

1/4/2017

Negative 0.0 @3"

Technician DAH

Positive

0.0 @3"

	Oil Manometer	Digital Manometer	Pass/Fail
	0.06	0.06	Pass
	0.2	0.19	Pass
	0.5	0.48	Pass
	0.8	0.78	Pass
Positive	1	0.98	Pass
Pos	1.5	1.49	Pass
	2	1.95	Pass
	2.5	2.42	Pass
	3	2.95	Pass
	3.5	3.46	Pass
	0.06	0.06	Pass
	0.2	0.19	Pass
	0.5	0.48	Pass
d)	0.8	0.79	Pass
Negative	1	0.98	Pass
Neg	1.5	1.47	Pass
	2	1.96	Pass
	2.5	2.50	Pass
	3	3.00	Pass
	3.5	3.47	Pass

Pass/Fail based on +/- 5% of set value

Meter Out THERMOCOUPLE ID AS-01

Cal Date: 1/5/2017

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	21.0	70.0	151.0	
Difference (degrees)	1.0	0.0	1.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter THERMOCOUPLE ID DVA-1

Cal Date: 1/6/2017

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	20.0	70.0	150.0	
Difference (degrees)	0.0	0.0	0.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter THERMOCOUPLE ID DVA-2

Cal Date: 1/6/2017

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	20.0	71.0	150.0	
Difference (degrees)	0.0	1.0	0.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter THERMOCOUPLE ID DVB-1

Cal Date: 1/10/2017

CALIBRATION TECHNICIAN: LDP2

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	s 20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	21.0	69.0	150.0	
Difference (degrees)	1.0	1.0	0.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter THERMOCOUPLE ID DVB-2

Cal Date: 1/10/2017

CALIBRATION TECHNICIAN: LDP2

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	20.0	70.0	149.0	
Difference (degrees)	0.0	0.0	1.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter In THERMOCOUPLE ID C8-I

Cal Date: 2/27/2017

CALIBRATION TECHNICIAN: RMP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Reviewed by: Make Patro

Meter Out THERMOCOUPLE ID C8-O

Cal Date: 2/27/2017

CALIBRATION TECHNICIAN: RMP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter In THERMOCOUPLE ID C9-I

Cal Date: 1/6/2017

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter Out THERMOCOUPLE ID C9-O

Cal Date: 1/5/2017

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	71.0	148.0	
Difference (degrees)	2.0	1.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

THERMOCOUPLE ID	C10-I
	THERMOCOUPLE ID

Cal Date: 4/10/2017

CALIBRATION TECHNICIAN: DAH

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	71.0	149.0	
Difference (degrees)	2.0	1.0	1.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Reviewed by: John R

Meter In THERMOCOUPLE ID C10-O

Cal Date: 4/10/2017

CALIBRATION TECHNICIAN: DAH

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Reviewed by: John Range

Meter In THERMOCOUPLE ID C12-I

Cal Date: 1/31/2017 DGM Inlet TC

CALIBRATION TECHNICIAN: LTR

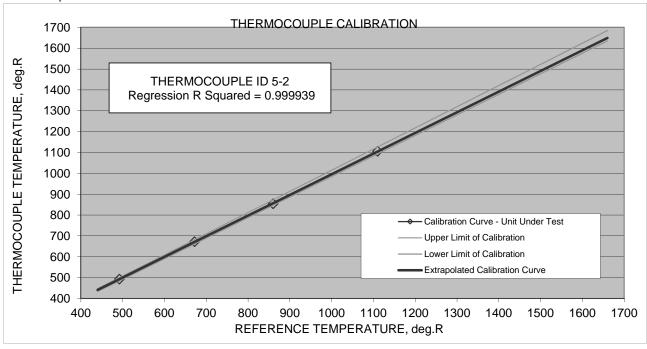
REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Meter Out THERMOCOUPLE ID C12-O

Cal Date: 1/31/2017 DGM Outlet TC

CALIBRATION TECHNICIAN: LTR

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	



THERMOCOUPLE ID 5-2

Cal Date: 12/30/2016 **Probe**

CALIBRATION TECHNICIAN: HLP

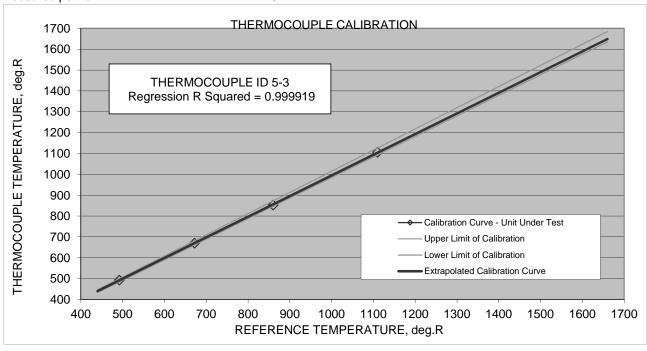
REFERENCE STANDARDS	TRACEABILITY		DATE	LABO	RATORY		
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		•		11/16/2015 1/20/2016		alibrations t Systems
Temperature Calibration Points	32	212	400	650	Ambient		
Reference Deg F (To)	32	212	400	650	70		
Probe Temp (deg F)	33	212	394	646	70		
Reference Temp (deg R) deg F + 460	492	672	860	1110	530		
Probe Temp (deg R), deg F + 460	493	672	854	1106	530		
Difference (degrees)	-1	0	6	4	0		
% Diff Abs. T	0.2%	0.0%	0.7%	0.4%	0.0%		
Is difference less than 1.5% at all							
measured points?	YES						

Are extrapolated limits less than 1.5%?

YES

FAHRENHEIT CALIBRATION RANGE -20 1200

If not acceptable, describe corrective action:



THERMOCOUPLE ID 5-3

Cal Date: 1/2/2017 Probe

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABO	LABORATORY	
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016		alibrations t Systems	
Temperature Calibration Points	32	212	400	650	Ambient	
Reference Deg F (To)	32	212	400	650	70	
Probe Temp (deg F)	33	210	393	646	70	
Reference Temp (deg R) deg F + 460	492	672	860	1110	530	
Probe Temp (deg R), deg F + 460	493	670	853	1106	530	
Difference (degrees)	-1	2	7	4	0	
% Diff Abs. T	0.2%	0.3%	0.8%	0.4%	0.0%	
Is difference less than 1.5% at all						
measured points?	YES					

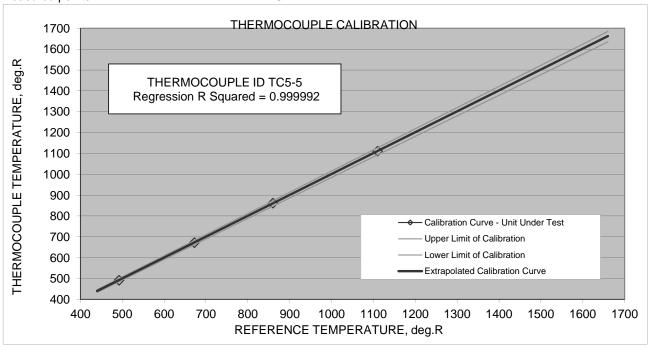
Are extrapolated limits less than 1.5%?

YES

of his

FAHRENHEIT CALIBRATION RANGE -20 1200

If not acceptable, describe corrective action:



THERMOCOUPLE ID TC5-5

Cal Date: 1/30/2017 Method 5 Probe

CALIBRATION TECHNICIAN: LTR

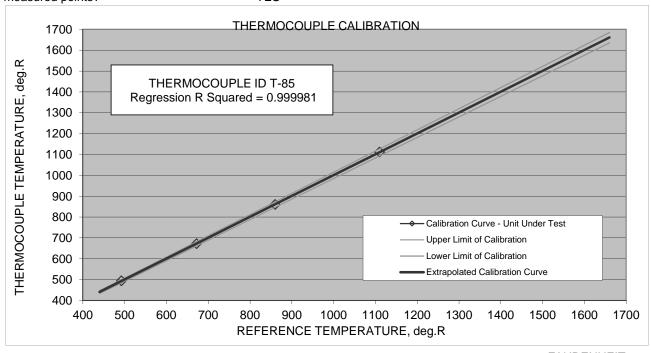
REFERENCE STANDARDS	TRACEABILITY		DATE	LABO	RATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016		alibrations t Systems
Temperature Calibration Points	32	212	400	650	Ambient
Reference Deg F (To)	32	212	400	650	70
Probe Temp (deg F)	32	212	402	651	70
Reference Temp (deg R) deg F + 460	492	672	860	1110	530
Probe Temp (deg R), deg F + 460	492	672	862	1111	530
Difference (degrees)	0	0	-2	-1	0
% Diff Abs. T	0.0%	0.0%	0.2%	0.1%	0.0%
Is difference less than 1.5% at all					
measured points?	YES				

Are extrapolated limits less than 1.5%?

YES

FAHRENHEIT CALIBRATION RANGE -20 1200

If not acceptable, describe corrective action:



THERMOCOUPLE ID T-85

Cal Date: 12/28/2016 Handheld

CALIBRATION TECHNICIAN: HLP

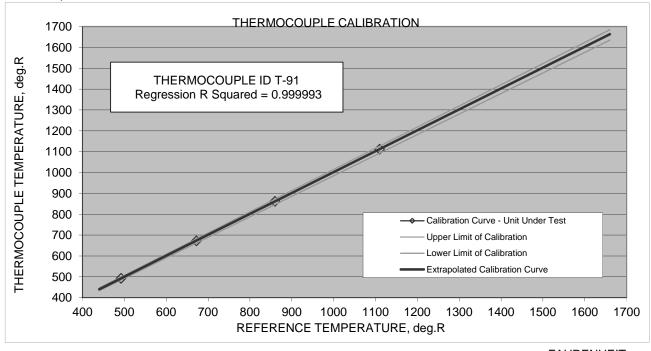
REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY	
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016		alibrations t Systems
Temperature Calibration Points	32	212	400	650	Ambient
Reference Deg F (To)	32	212	400	650	70
Probe Temp (deg F)	34	212	400	652	70
Reference Temp (deg R) deg F + 460	492	672	860	1110	530
Probe Temp (deg R), deg F + 460	494	672	860	1112	530
Difference (degrees)	-2	0	0	-2	0
% Diff Abs. T	0.4%	0.0%	0.0%	0.2%	0.0%
Is difference less than 1.5% at all					
measured points?	YES				

Are extrapolated limits less than 1.5%?

YES

FAHRENHEIT CALIBRATION RANGE -20 1200

If not acceptable, describe corrective action:



THERMOCOUPLE ID T-91

Cal Date: 12/28/2016 Handheld

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	ATE LABORATO	
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077 Pyrometer Reference	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001 D-18		11/16/2015 1/20/2016		alibrations It Systems
Temperature Calibration Points	32	212	400	650	Ambient
Reference Deg F (To)	32	212	400	650	70
Probe Temp (deg F)	33	212	402	652	70
Reference Temp (deg R) deg F + 460	492	672	860	1110	530
Probe Temp (deg R), deg F + 460	493	672	862	1112	530
Difference (degrees)	-1	0	-2	-2	0
% Diff Abs. T	0.2%	0.0%	0.2%	0.2%	0.0%
Is difference less than 1.5% at all measured points?	YES				

Are extrapolated limits less than 1.5%?

YES

FAHRENHEIT CALIBRATION RANGE -20 1200

If not acceptable, describe corrective action:

TC Meets Method 5 Specifications: (± 2.0 °F)

THERMOCOUPLE CALIBRATION

Impinger Outlet	THERMOCOUPLE ID TIO-6000
-----------------	--------------------------

Cal Date: 4/10/2017 Umbilical 200-4

CALIBRATION TECHNICIAN: DAH

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	s 20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	149.0	
Difference (degrees)	2.0	0.0	1.0	

YES

Reviewed by: Jalun R_____

Impinger Outlet TC THERMOCOUPLE ID TIO-6268

CALIBRATION TECHNICIAN:

LTR

Cal Date: 1/25/2017 Umbilical 200-2

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Probe Temp (deg F)

Difference (degrees)

TC Meets Method 5 Specifications: (± 2.0 °F)

THERMOCOUPLE CALIBRATION

Impinger Outlet THERMOCOUPLE ID TIO-1
Cal Date: 1/5/2017 Umbilical 300-1

149.0

1.0

YES

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS		TRACEABILITY		DATE	LABORATORY		
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077		Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems		
Temp	erature Calibration Points	20	70	150			
Reference Dea F (To)		21	70	150			

71.0

1.0

YES

21.0

0.0

YES

of har

Impinger Outlet THERMOCOUPLE ID TIO-1253
Cal Date: 1/5/2017 Umbilical 200-5

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	21.0	71.0	150.0	
Difference (degrees)	1.0	1.0	0.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Impinger Outlet THERMOCOUPLE ID TIO-2162
Cal Date: 1/5/2017 Umbilical 200-1

CALIBRATION TECHNICIAN: HLP

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY		
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems		
Temperature Calibration Points	20	70	150			
Reference Deg F (To)	20	70	150			
Probe Temp (deg F)	21.0	71.0	148.0			
Difference (degrees)	1.0	1.0	2.0			
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES			

Impinger Outlet THERMOCOUPLE ID TIO-5843

Cal Date: 1/5/2017 Umbilical 200-3

CALIBRATION TECHNICIAN:

REFERENCE STANDARDS	TRACEABILITY		DATE	LABORATORY
Hart Scientific 9103-A s/n A1B289 Fluke 9144 s/n B5A077	Report No. T15-1116-JC-2 Report No. 7060.00-205700-001		11/16/2015 1/20/2016	NBS Calibrations JM Test Systems
Temperature Calibration Points	20	70	150	
Reference Deg F (To)	20	70	150	
Probe Temp (deg F)	22.0	70.0	148.0	
Difference (degrees)	2.0	0.0	2.0	
TC Meets Method 5 Specifications: (± 2.0 °F)	YES	YES	YES	

Nozzle Calibration Indurating Furnace Stack C (SV016)

BPAC/HPAC Screening

Nozz	le Calibration		_	
Nozzle No.	2-7	Used for Runs: 1] -	3

Point Measurement, inches

1	0.213
2	0.214
3	0.215
Average	0.214

Test Date 1/17-18/2017

Date Measured: 1/17/2017

Technician: Mark Petersen

Nozzle Calibration Indurating Furnace Stack D (SV017)

BPAC/HPAC Screening

Nozzl	e Calibration					
Nozzle No.	5-7	Used for Runs:	1	-	3	
_						

Point Measurement, inches

1	0.217
2	0.217
3	0.217
Average	0.217

Test Date 1/17-18/2017

Date Measured: 1/17/2017

Technician: Mark Petersen

Nozzle Calibration Indurating Furnace Stack A (SV014)

Longterm 1

Nozz Nozzle No.	le Calibration A-1	Used for Runs: 1 -	3
Point	Measuremen	t, inches	
1	0.215		
2	0.214		
3	0.215		

Test Date 2/8/2017

Date Measured: 2/7/2017

Technician: RMP

Average

0.215

Nozzle Calibration Indurating Furnace Stack B (SV015)

Longterm 1

Nozz <u>le Cal</u>	<u>ibration</u>					
Nozzle No.	3-1	Used for Runs:	1	-	3	
Point Meas	surement, inches					

1 0.214 2 0.215 3 0.215 Average 0.215

Test Date 2/9/2017

Date Measured: 2/9/2017

Technician: MJN

Nozzle Calibration Indurating Furnace Stack C (SV016)

Longterm 1

Nozz	le Calibration			_		_
Nozzle No.	C-1	Used for Runs:	1	_	3	l

Point Measurement, inches

1	0.214
2	0.215
3	0.214
Average	0.214

Test Date 2/8/2017

Date Measured: 2/7/2017

Technician: RMP

Nozzle Calibration Indurating Furnace Stack D (SV017)

Longterm 1

Nozz	le Calibration		
Nozzle No.	D-1	Used for Runs: 1 -	3
Point	Measuremen	nt, inches	
1	0.215		
2	0 214		

Test Date 2/9/2017

Date Measured: 2/9/2017

3

Average

0.214

0.214

Technician: MJN

Nozzle Calibration Indurating Furnace Stack A (SV014)

Longterm 2

Nozzle Nozzle No.	e Calibration A-1	Used for Runs: 1 - 3	
Point I	Measuremen	t, inches	
1	0.213		
2	0.212		
3	0.213		
Average	0.213		

Test Date 3/28/2017

Date Measured: 3/27/2017

Technician: R. Pantzke

Nozzle Calibration Indurating Furnace Stack B (SV015)

Longterm 2

Nozz Nozzle No.	le Calibration B-1	Used for Runs: 1 - 3
Point	Measuremen	t, inches
1	0.213	
2	0.214	
3	0.213	
Average	0.213	

Test Date 3/29/2017

Date Measured: 3/28/2017

Technician: R. Pantzke

Nozzle Calibration Indurating Furnace Stack C (SV016)

Longterm 2

Nozzle No.	e Calibration C-1	Used for Runs: 1 -	3
Point	Measuremen	t, inches	
1	0.210		
2	0.209		
3	0.210		
Average	0.210		

Test Date 3/28/2017

Date Measured: 3/27/2017

Technician: R. Pantzke

Nozzle Calibration Indurating Furnace Stack D (SV017)

Longterm 2

Nozz Nozzle No.	e Calibration D-1	Used for Runs: 1 -	3
Point	Measuremen	t, inches	
1	0.209		
2	0.210		
3	0.210		
Average	0.210		

Test Date 3/29/2027

Date Measured: 3/28/2017

Technician: R. Pantzke

Field Barometer Calibration

Calibration to PRINCO Mercury Barometer Barr Engineering Company Edina Field Office

		Reference	PRINCO	ı	Field Baromet	ter			
									Offset
		Observation	Station			Barometric			tolerance +/-
Date	Technician	Time	Pressure	ID	Time	Pressure	Condition	Remarks	0.10
2/3/2017	BAW	1000	29.34	BA-19	1000	29.34	In Calibration	As Found	0.00
5/1/17	BAW	1000	29.15	BA-19	1000	29.20	In Calibration	As Found	0.05

Appendix E

Cylinder Gas Certifications

Praxair Distribution, Inc. 6055 Brent Drive Toledo, OH 43611 Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411

10/26/2016

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE, MN 55113

Work Order No.

70134884

Customer Reference No.

78130854

Product Lot/Batch No. 0920VC16

Product Part No.

NI 5.5CE-AS

CERTIFICATE OF ANALYSIS

Nitrogen, 5.5 Continuous Emission Monitoring Zero

Analytes Nitrogen Oxygen Water Carbon Dioxide Carbon Monoxide Total Hydrocarbons Oxides of Nitrogen	Specification 99.9995% < 0.5 ppm < 2 ppm < 1 ppm < 0.5 ppm < 0.1 ppm < 0.1 ppm	Analytical Results 99.9995% < 0.1 ppm < 0.5 ppm ND ND ND ND < 0.1 ppm	Analytical Principle N W P L L L	Analytical Accuracy N/A ± 15% ± 10% ± 15% ± 15% ± 15% ± 15% ± 15%
Oxides of Nitrogen Sulfur Dioxide	< 0.1 ppm	ND	L	± 15%

Analytical Instruments:

Delta F~SF30555S~~

Panametrics~MISPE~~

MKS~2031 FTIR~~

Cylinder Style:

2000 psig

Cylinder Pressure @70F: Cylinder Volume:

142 ft3

Valve Outlet Connection:

Cylinder No(s).

EB0013783

Batch, CC167620, CC402300, CC101995, EB0025782, CC155530, CC218156,

CC7/464, SA22291, CC254034, SA9939, EB0022486

QA Reviewer:

Rolonda Kaywood

Approved

Tera Thomas

Filling Method:

Date of Fill:

Signer

This analysis of the product described herein was prepared by Praxair Distribution. Inc. using instruments whose calibration is certified using Praxair Distribution. Inc. Reference Materials. Praxair Distribution, Inc. Reference Materials are prepared either by weights traceable to the National Institute of Standards and Technology (NIST). Measurement Canada or by using NIST Standard Reference Materials where available

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted Key to Analytical Techniques

to Analytical Techniques Flame ionization with Methanizer

- Gas Chromatography with Flame Photometric Detector Gas Chromatography with Reduction Gas Analyzer
- Mass Spectrometry MS or GC/MS
- Total Hydrocarbon Analyzer Chemiluminescence Vendor Analysis
- Gas Chromatography with Discharge Ionization
- Detector
 Gas Chromatography with Helium Ionization
 Detector
- Gas Chromatography with Thermal Conductivity Detector
- By Difference of Typical Impunties Wet Chemical Gravimetric

- Gas Chromatography with Electrolytic Conductivity
- Detector
 Gas Chromatography with Methanizer Carbonizer
- Binary Gas Analyzer with Thermal Conductivity

Electrolytic Cell/Electrochemical

Gas Chromatography with Photoionization Detector

Temperature/Pressure

09/20/2016

- Infrared FTIR or NDIR
- Specific Water Analyzer
- Odor UV Spectrometry

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, inc. arising out of the use of the

Specialty Gases of America, Inc. 6055 Brent Drive Toledo, OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411

12/08/2016

TOLL GAS & WELDING SUPPLY 3005 NIAGARA LANE NORTH PLYMOUTH, MN 55447

Work Order No. 86510011

Customer Reference No.

78159132

Product Lot/Batch No. N70001633603

Product Part No. NI 5.5CE-AS

CERTIFICATE OF ANALYSIS

Nitrogen, 5.5 Continuous Emission Monitoring Zero

		Analytical	Analytical	Analytical
<u>Analytes</u>	<u>Specification</u>	<u>Results</u>	<u>Principle</u>	<u>Accuracy</u>
Nitrogen	99.9995%	99.9995%	N	N/A
Oxygen	< 0.5 ppm	< 0.2 ppm	W	± 15%
Water	< 2 ppm	< 0.4 ppm	P	± 10%
Carbon Dioxide	< 1 ppm	ND	L	± 10%
Carbon Monoxide	< 0.5 ppm	ND	L	± 15%
Total Hydrocarbons	< 0.1 ppm	ND	L	± 15%
Oxides of Nitrogen	< 0.1 ppm	ND	L	± 15%
Sulfur Dioxide	< 0.1 ppm	< 0.1 ppm	L.	± 15%

Analytical Instruments:

Delta F~SF30555S~~

Panametrics~MISPE~~

MKS~2031 FTIR~~

Cylinder Style:

AS

Cylinder Pressure @70F:

2000 psig

Cylinder Volume:

142 ft3

Valve Outlet Connection:

580

Cylinder/No(s)/

CC276219

Comments

Batch: CC244717, CC240978, CC249664, CC263620

QA Reviewer:

Rolonda Kaywood

Approved Tera Thomas

Filling Method:

Date of Fill:

Signer:

This analysis of the product described herein was prepared by Specialty Gases of America, Inc. using instruments whose calibration is certified using Specialty Gases of America, Inc. Reference Materials. Specialty Gases of America, Inc. Reference Materials are prepared either by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted.

Key to Analytical Techniques: A Flame Ionization with Methanizer

Gas Chromatography with Flame Photometric

Defector
Gas Chromatography with Reduction Gas Analyzer

Mass Spectrometry - MS or GC/MS

Total Hydrocarbon Analyzer Chemiluminescence Vendor Analysis

Gas Chromatography with Discharge tonization

Gas Chromatography with Helium Ionization Detector

Gas Chromatography with Thermal Conductivity By Difference of Typical Impurities

Gravimetric

Gas Chromatography with Electrolytic Conductivity

Gas Chromatography with Mathanizer Carbonizer

Binary Gas Analyzer with Thermal Conductivity

Paramagnetic Efectrolytic Cell/Electrochemical Gas Chromatography with Flame ionization

Gas Chromatography with Photolonization Detector

Infrared - FTIR or NDIR Specific Water Analyzer UV Spectrometry

Temperature/Pressure

12/01/2016

The information contained herein has been prepared at your request by personnel within Specialty Gases of America, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Specialty Gases of America, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

PGVP Vendor ID: H12015

6531 Box Springs Blvd • Riverside, CA 92507-0725

Phone: +1(951)653-6780 • Fax: +1(951)653-2430 • www.scottmarrin.com

Report Of Analysis EPA Protocol Gas Mixtures

BARR01

TO: Barr Engineering Co Attn: Benjamin Wiltse 5150 West 76th Street Edina, MN 55439-2900 (952) 832-2885 **REPORT NO:** 67349-01

REPORT DATE: December 15, 2015

CUSTOMER PO NO: BAW11102015

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER NUMBER: CC116801

CYLINDER PRESSURE: 2000 psig

COMPONENT	MOLAR CONCENTRA ± EXPANDED UNCERT	DEFEDENC	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA
Carbon dioxide	9.51 ± 0.1 %	GMIS	SRM 1674b Samp#: 7-H-39	Varian Model 3400 Serial # 10680	<u>12/7/2015</u> 9.51 %
		Cyl#: CC116770	Cyl#: FF10598	Thermal Conductivity	9.51 %
		$7.99 \pm 0.08 \%$	6.944 ± 0.013 %	Gas Chromotography	9.50 %
		Exp: 3/18/2022	Exp: 6/17/2019	LAST CAL DATE : 12/7/2015	x: 9.51 %
Oxygen	9.46 ± 0.05 %	GMIS	SRM 2658a	Varian Model 3800	<u>12/4/2015</u>
			Samp#: 72-D-37	Serial # None	9.46 %
		Cyl#: CC51181	Cyl#: CAL016820	Thermal Conductivity	9.46 %
		10.06 ± 0.05 %	9.918 ± 0.022 %	Gas Chromotography	9.46 %
		Exp: 5/6/2021	Exp: 6/1/2017	LAST CAL DATE : 12/4/2015	x : 9.46 %
Nitrogen	Balance				

Nitrogen Balance

CERTIFICATION DATE: December 4, 2015 **EPA EXPIRATION DATE:** December 5, 2023

ppm = μ mole/mole % = mole-% \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

ANALYST: _____

M.S.Calhoun

APPROVED

J. T. Marrir

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

PGVP Vendor ID: H12013

6531 Box Springs Blvd • Riverside, CA 92507-0725

Phone: +1(951)653-6780 • Fax: +1(951)653-2430 • www.scottmarrin.com

Report Of Analysis **EPA Protocol Gas Mixtures**

BARR01

TO: Barr Engineering Co Attn: Benjamin Wiltse 5150 West 76th Street Edina, MN 55439-2900 (952) 832-2885

CYLINDER NUMBER: CC115022

REPORT NO: 64614-01

REPORT DATE: March 24, 2014

CUSTOMER PO NO: BAW02142014

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER PRESSURE: 2000 psig

COMPONENT	CONCENTRATION (v/v ± EPA UNCERTAINTY	PEFFERI	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA
Carbon dioxide	18.94 ± 0.03 %	GMIS	SRM 1675b	Varian Model 3400	<u>3/18/2014</u>
			Samp#: 6-34-E	Serial # 10680	18.94 %
		Cyl#: CC51172	Cyl#: CLM006499	Thermal Conductivity	18.93 %
		$18.00 \pm 0.03 \%$	14.01 ± 0.02 %	Gas Chromotography	18.94 %
		Exp: 8/2/2020	Exp: 6/16/2012	LAST CAL DATE : 3/17/2014	x̄: 18.94 %
Oxygen	5.02 ± 0.04 %	GMIS	SRM 2658a	Varian Model 3800	3/19/2014
, ,			Samp#: 72-D-37	Serial # None	5.01 %
		Cyl#: ALM026741	Cyl#: CAL016820	Thermal Conductivity	5.01 %
		$5.05 \pm 0.03 \%$	9.918 ± 0.022 %	Gas Chromotography	5.03 %
		Exp: 5/6/2021	Exp: 6/1/2017	LAST CAL DATE : 3/19/2014	x̄: 5.02 %
Nitraga	Dalamas				

Nitrogen Balance

CERTIFICATION DATE: March 18, 2014 EPA EXPIRATION DATE: March 19, 2022

ppm = µmole/mole

% = mole-%

 \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

ANALYST:

M.S.Calhoun

J. T. Marrin

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

PGVP Vendor ID: H12015

6531 Box Springs Blvd • Riverside, CA 92507-0725

Phone: +1(951)653-6780 • Fax: +1(951)653-2430 • www.scottmarrin.com

Report Of Analysis **EPA Protocol Gas Mixtures**

BARR01

TO: Barr Engineering Co Attn: Benjamin Wiltse 5150 West 76th Street Edina, MN 55439-2900 (952) 832-2885

REPORT NO: 67349-02

REPORT DATE: December 15, 2015

CUSTOMER PO NO: BAW11102015

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER NUMBER: CA06643

CYLINDER PRESSURE: 2000 psig

COMPONENT	MOLAR CONCENTRA ± EXPANDED UNCERT	DECEDENC	E STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	REPLICATE ANALYSIS DATA
Oxygen	21.16 ± 0.05 %	GMIS	SRM 2659a	Varian Model 3800	12/4/2015
			Samp#: 71-D-23	Serial # None	21.20 %
		Cyl#: CC106787	Cyl#: CAL015788	Thermal Conductivity	21.15 %
		24.04 ± 0.05 %	20.72 ± 0.043 %	Gas Chromotography	21.14 %
		Exp: 9/3/2023	Exp: 1/1/2016	LAST CAL DATE : 12/4/2015	x: 21.16 %
Nitrogen	Balance				

CERTIFICATION DATE: December 4, 2015 EPA EXPIRATION DATE: December 5, 2023

 \bar{x} = EPA weighted mean $ppm = \mu mole/mole$ % = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

ANALYST:

M.S.Calhoun

CA03203

PGVP Vendor ID: H12014

6531 Box Springs Blvd • Riverside, CA 92507-0725

Phone: +1(951)653-6780 • Fax: +1(951)653-2430 • www.scottmarrin.com

Report Of Analysis EPA Protocol Gas Mixtures

BARR01

CYLINDER NUMBER:

To: Barr Engineering Co Attn: Benjamin Wiltse 5150 West 76th Street Edina, MN 55439-2900 (952) 832-2885 **REPORT NO:** 66125-03

REPORT DATE: March 2, 2015

CUSTOMER PO NO: BAW01272015

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER PRESSURE: 2000 psig

CONCENTRATION (v/v) ANALYZER REPLICATE COMPONENT REFERENCE STANDARD ± EPA UNCERTAINTY MAKE, MODEL, S/N, DETECTION **ANALYSIS DATA** Oxygen 21.57 ± 0.25 % **GMIS** SRM 2659a Varian Model 3800 2/17/2015 Samp#: 71-D-23 Serial # None 21.54 % Cyl#: CC88824 Cyl#: CAL015788 Thermal Conductivity 21.60 % 24.92 ± 0.25 % 20.72 ± 0.043 % Gas Chromotography 21.58 % Exp: 2/25/2021 Exp: 1/1/2016 **LAST CAL DATE**: 2/16/2015 \bar{x} :

Nitrogen Balance

CERTIFICATION DATE: February 17, 2015 EPA EXPIRATION DATE: February 18, 2023

ppm = μ mole/mole % = mole-% \bar{x} = EPA weighted mean

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA600/R-12/531, dated May 2012.

The above analyses should not be used if the cylinder pressure is less than 100 psig.

....

ANALYST:

M.S.Calhoun

/ J. T. Marrin

The only liability of this company for gas which fails to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

Appendix F

Project Participants

ArcelorMittal Minorca Mine, Inc.

Jaime Johnson – Manager - Environmental Nate Holmes – Process Engineer

Barr Engineering Company

Tim Russell – Vice President/Chemical Engineer

Tom Kuchinski – Stack Test Group Supervisor

Ben Wiltse – Project Manager

Dan Koschak – Senior Air Quality Technician

Mark Petersen – Senior Air Quality Technician

Tom Leier – Senior Air Quality Technician

Mike Norstrem – Air Quality Technician

John Rooney – Air Quality Technician

Ryan Pantzke – Air Quality Technician

Attachment N

Post ACI Testing Process Equipment Inspection Summary

Technical Memorandum

To: ArcelorMittal Minorca Mine

From: Barr Engineering Co.

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Project: ArcelorMittal Minorca Mine - 23691905.00

1.0 Introduction

ArcelorMittal Minorca Mine (Minorca) completed a long-term activated carbon injection (ACI) test to determine the feasibility of ACI for control of Hg emissions from the facility's furnace exhaust stacks. The carbon injected into the system is known as brominated powdered activated carbon (BPAC). The long-term ACI testing was started on January 20, 2017 and ended on April 7, 2017 (77 days). The BPAC was injected at an average rate of 1 lb BPAC / MMACF using ports at the inlet to the multiclones. The locations of the activated carbon injection ports are identified in Attachment A. Following the long-term ACI testing, Barr Engineering Co. (Barr) and Minorca performed a visual inspection of the equipment in contact with the injected carbon to identify any abnormal erosion, corrosion, material buildup or equipment issues resulting from the ACI. The inspection was performed April 25 – May 1, 2017 following a plan developed by Barr and provided to Minorca on April 24, 2017. The plan outlined the inspection points, documentation of the inspections, sample collection and the proposed sample analysis to be performed. A copy of the plan is attached to this memo (Attachment B). There are five figures attached to the plan which are referenced as Figures 1 – 5 of the plan within this document.

2.0 Inspection and Laboratory Results

The results of the inspections are summarized in the following sections based on inspection point location. Photos were taken to document any material buildup at each of the inspection points and notes were taken that included a description of each inspection point. The photos are attached to this memo (Attachment C). Each inspection point was visually inspected for any unusual signs of wear or corrosion following the ACI testing. The phrase 'good condition' is used to describe several inspection points and indicates the inspection point did not show any signs of wear or corrosion different than what is typically seen per the facility representative that escorted the inspectors. The amount of material buildup in the inspected area is described using the terms light, moderate and heavy. Light buildup is defined as areas with up to $\frac{1}{2}$ inch of material; moderate buildup is $\frac{1}{2}$ - 2 inches of material; heavy is $\frac{2}{4}$ inch of material with the exception of the continuous emissions monitoring system (CEMS) probes. Light buildup on the CEMS probes is defined as a visible dusting of material; moderate buildup is up to $\frac{1}{8}$ inch of material; heavy is $\frac{1}{8}$ - $\frac{1}{4}$ inch of material. A single composite sample was collected at each sampling point by combining multiple samples spaced appropriately across the plant equipment being inspected. The samples were analyzed for carbon content using the Walkley-Black method and for bromide content

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Page: 2

using ion chromatography. The inspection plan originally called for the samples to be analyzed for bromine using a bomb calorimeter; however, most samples were unable to be combusted in the bomb calorimeter. A complete summary of the results and inspection notes is attached as Table 1.

2.1 Furnace Stacks A-D

Four inspection points were identified that were associated with the furnace stacks: at the base of the stack, at the transition area from the scrubbers to stacks, on the CEMS probe, and the CEMS particulate matter filter. The inspection points (A1, B1, C1, and D1) are identified in Figure 4 of the attached inspection plan. Buildup of material was noted in all four stacks at each inspection point and the amount of buildup is detailed in Table 1.

The areas of the stacks inspected were noted as being in good condition. The maximum percent by mass of organic carbon was 0.87% by weight for all stack inspection point samples. The organic carbon content in the material increased generally from Stack A to Stack D; however, the bromide content was quite variable from 25 mg Br / Kg of material to 1,900 mg Br / Kg of material.

The CEMS probes were in good condition upon inspection. The probes were noted as having light to moderate buildup of material in Stack A increasing to heavy buildup (1/4 inch) on the probe in Stack D. The CEMS probes in Stacks B and C had slightly less organic carbon content than those in Stacks A and D, but all results were on the same order of magnitude. The bromide content in the material on the probes in Stacks C and D were 10-15% of what was analyzed in the material on the probes in Stacks A and B. The highest bromide content analyzed was in the material on the CEMS probe in Stack B at 4,300 mg Br / Kg of material. The four CEMS particulate matter filters were analyzed using the bomb calorimeter ion analysis and all results for bromine and organic carbon were non-detect.

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Page: 3

Table 2-1 Furnace Stack Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
	Base of stack (1 point)	25	0.052
Stack A	Transition area from scrubbers to stacks (1 point)	ND	0.091
Stack A	CEMS Probe	2900	1
	CEMS Filter	ND	ND
	Base of stack (1 point)	1900	0.66
Stack P	Transition area from scrubbers to stacks (1 point)	ND	0.12
Stack B	CEMS Probe	4300	0.85
	CEMS Filter	ND	ND
	Base of stack (1 point)	570	0.62
Stack C	Transition area from scrubbers to stacks (1 point)	ND	0.13
Stack C	CEMS Probe	450	0.74
	CEMS Filter	ND	ND
	Base of stack (1 point)	160	0.87
Stack D	Transition area from scrubbers to stacks (1 point)	ND	0.14
	CEMS Probe	390	1.2
	CEMS Filter	ND	ND

2.2 Furnace Stacks A-D Scrubbers

The mid-body and the lower-body of each of the four scrubbers were identified as the inspection points within the scrubbers. The inspection points (A2-A3, B2-B3, C2-C3, and D2-D3) are identified in Figure 4 of the attached inspection plan. The inspection points were in good condition upon inspection. The mid-body on the scrubbers exhausting through Stacks A-C had a light buildup of material and the Stack D scrubber was noted as having moderate buildup. The lower-body of all scrubbers had moderate buildup. A single composite sample from two sample points, one at both the front and back access doors, was collected to represent the lower-body of each scrubber. The bromide content of the material in the mid-body of the scrubber increased from 29 mg Br / Kg material in the Stack A scrubber to 2,300 mg Br / Kg material in the Stack D scrubber. The bromide content of the material in the lower-body of the scrubber ranged variably from 7 mg Br / Kg material to 200 mg Br / Kg material. The organic carbon content in the material at any scrubber inspection point did not exceed 0.5%.

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Page: 4

Table 2-2 Furnace Stack Scrubber Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
Scrubber A	Mid-body (1 point)	29	0.035
Scrubber A	Lower-body (2 points) ¹	130	0.25
Scrubber B	Mid-body (1 point)	75	0.14
Scrubber b	Lower-body (2 points) ¹	200	0.21
Scrubber C	Mid-body (1 point)	490	0.24
Scrubber C	Lower-body (2 points) ¹	7.3	0.041
Scrubber D	Mid-body (1 point)	2300	0.5
Scrubber D	Lower-body (2 points) ¹	160	0.34

^{1 -} A single composite sample from two sample points, one at both the front and back access doors, was collected to represent the lower-body of each scrubber.

2.3 Scrubber Recirculating Tank

The scrubber recirculating tank does not have access to inspect the interior of the tank, though a sample was collected from the tank drain pipe. The location of the scrubber recirculating tank (E1) is shown in Figure 2 of the attached inspection plan. The bromide analysis results were non-detect and the organic carbon content was less than 0.1%.

Table 2-3 Scrubber Recirculating Tank Material Analysis Results

Equipment	Inspection Point		Organic Carbon, % by weight
Scrubber recirculating tank	Scrubber recirculating tank (1 point)	ND	0.063

2.4 Windbox Exhaust Fan

The inspection points at the inlet and outlet side of the windbox exhaust fan and the windbox belly were found to be in good condition with normal wear according to Minorca staff. The duct to fan transition at the inlet and outlet were the inspection points; the ductwork around the fan was not inspected. The locations of the inspection points (G1-G3) are identified in Figures 2 and 3 of the attached inspection plan. The windbox exhaust fan was found to have zero buildup of material for sample collection. A sample was not collected from the belly of the windbox exhaust fan because there was no buildup of material. The inlet and outlet sides of the windbox exhaust fan were inspected and found to be clean; however, samples were collected from material found on the ground outside the access doors to the windbox fan believed to represent material from the fan compartments.

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Page: 5

Table 2-4 Windbox Exhaust Fan Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
	Wind box belly (1 point) ¹	N/A	N/A
Windbox Exhaust Fan	Outlet side (1 point) ²	450	0.14
	Inlet side (2 points) ²	290	0.78

^{1 -} A sample was not collected from the belly of the windbox exhaust fan because there was no buildup of material.

2.5 Multiclones

The multiclones included four inspection points: the sump, the cones discharge at ground level, the cones at the second level, and the top of the multiclone. The locations of the inspection points (H1-H4) are identified in Figures 2-4 of the attached inspection plan. All areas inspected were noted to be in good condition with a light buildup of material. Composite samples were collected at both the cones discharge at ground level and the cones at the second level. Each of these were comprised of material collected from three separate sampling points at the inspection point. The samples collected from cones at the ground level and the top of the multiclone had a bromide content more than an order of magnitude higher than in the material collected from the sump and the cones at the second level. The organic carbon varied between the samples collected, but was highest in the material collected from the inspection point at the top at 0.7% carbon by weight.

Table 2-5 Multiclones Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
	Sump (1 point)	18	0.17
Multiplese	Cones discharge at ground level (3 points) ¹	2400	0.092
Multiclone	Cones at second level (3 points) ¹	150	0.077
	Top (1 point)	3300	0.68

^{1 -} Each of these were comprised of material collected from three separate sampling points at the inspection point.

2.6 Denver Sump

The Denver Sump was inspected and found to be in good condition. The location of the Denver Sump (I1) is shown in Figure 1 of the attached inspection plan. It was noted that there was water and mud / sludge in the sump. A sample was collected and the bromide content was non-detect. The organic carbon was analyzed at 0.1% by weight.

Table 2-6 Denver Sump Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
Denver Sump	Denver Sump (1 point)	ND	0.098

^{2 -} Samples were collected from material found outside the access door to the windbox fan believed to represent material from the fan compartments.

Subject: Post ACI Testing Process Equipment Inspection Summary

Date: 11/9/2017

Page: 6

2.7 Ducting Prior to Scrubbers

The ducting prior to the scrubbers and the access of the process gas header were inspected. The inspection points (J1 and J2) are shown in Figure 5 of the attached inspection plan. The ducting had a light buildup of material which consisted of mostly pellets with a light amount of carbon mixed in. The duct header access area had moderate to heavy buildup consisting of mostly pellets with a light amount of carbon mixed in. All areas inspected in the ducting were noted to be in good condition. There are three ducts off the process gas header. A composite sample was collected from the three ducts and a single sample was collected at the access to the process gas header. The bromide content of the sample collected from the duct work was non-detect and the sample collected from the duct header was 5.3 mg Br / Kg. The organic carbon content of both samples was less than 0.1% by weight.

Table 2-7 Scrubber Ducting Material Analysis Results

Equipment	Inspection Point	Bromide, mg/Kg – dry	Organic Carbon, % by weight
Ducting prior to scrubber	Ducting off process gas header (3 points per duct) ¹	ND	0.074
	Access of process gas header (1 point)	5.3	0.057

^{1 –} This sample was comprised of material collected from each of the three ducts off the process gas header.

3.0 Conclusions

The post ACI injection testing inspection shows that the areas inspected were overall in good condition. There was light to moderate wear indicated on the windbox exhaust fan; however, this is not specifically due to the ACI or the bromide in the BPAC as plant personnel noted the wear was normal compared to conditions seen during previous plant outages. There is no indication that any additional wear occurred due to the ACI. The results of the bromide and organic carbon content analyses of the material samples are summarized in Table 1 attached to this memo. The maximum organic carbon content in a sample was 1.2% by weight and the bromide content of the samples varied from 0 to 4,300 mg Br / Kg material. There were no consistent elevated bromide contents with regard to specific locations in the process or equipment type. Any corrosion specifically due to the addition of bromine to the stack gases may not be evident by visual inspection after such a short test period¹.

¹ Investigations on bromine corrosion associated with mercury control technologies in coal flue gasYe Zhuang, Chuanmin Chen, Ron Timpe, John Pavlish; Energy and Environmental Research Center, University of North Dakota, 15 North 23rd Street, Grand Forks, ND 58203, USA and School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, Hebei Province, PR China

 $[[]http://www.academia.edu/19899131/Investigations_on_bromine_corrosion_associated_with_mercury_control_technologies_in_coal_flue_gas]$

Table 1

Post ACI Inspection Results Summary

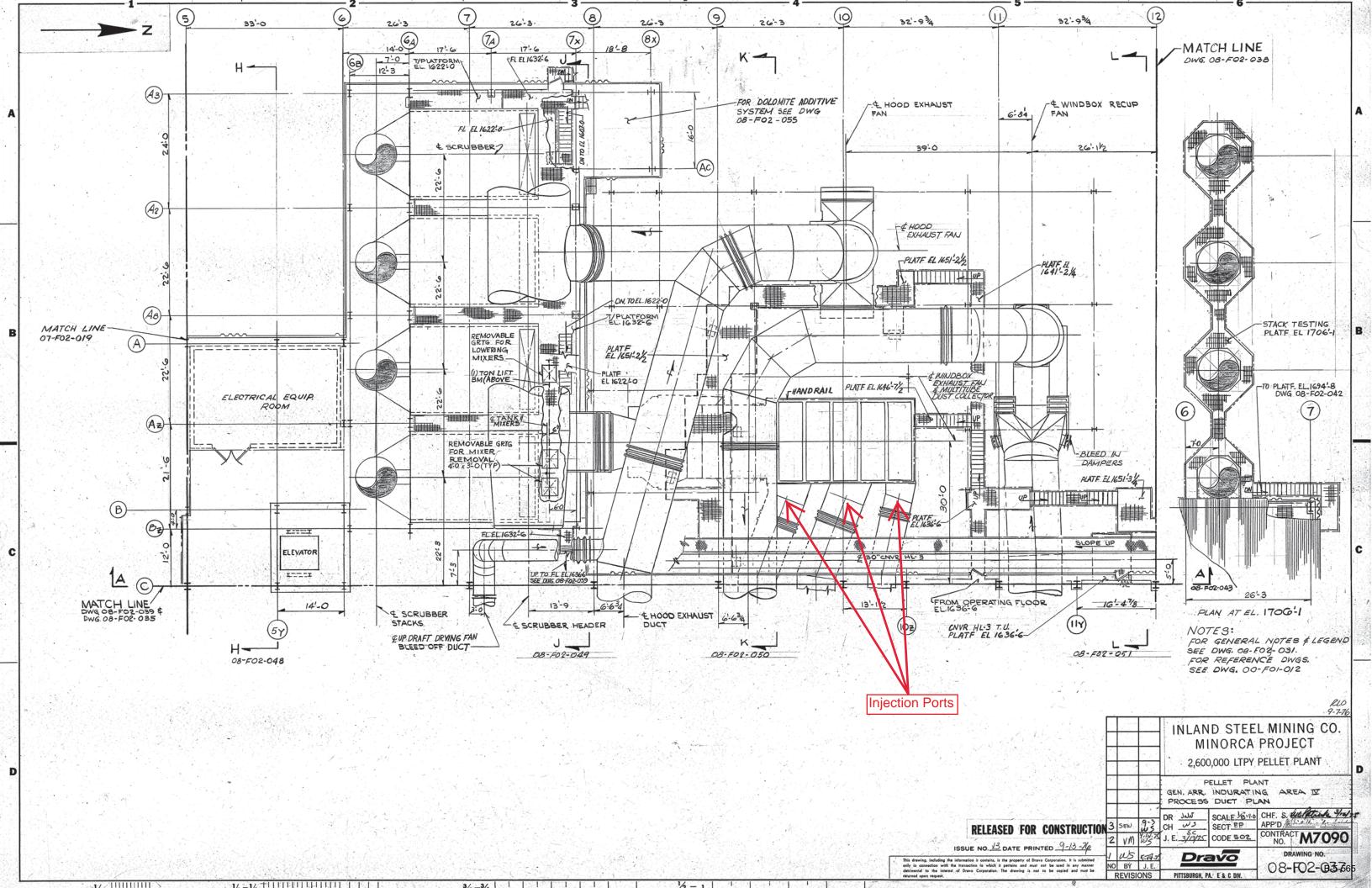
Post ACI Testing Inspection Results Summary

Equipment	Inspection Point ID	Inspection Point Description	Collection Date	Collection Time	Bromide, mg/Kg - dry	Organic Carbon, % by weight	Moisture, % of sample	Amount of Material Buildup	Inspection Notes
Stack "A"	A1-1	1 point - base of the stack	4/25/2017	6:05	25	0.052	18	Light to moderate	4/25/17 - 6:05 pm - Area good condition / Area not cleaned
Stack A	A1-2	1 point - transition area from the scrubbers to stacks	4/25/2017	6:03	ND ND	0.091	17	Light to moderate	4/25/17 - 6:03 pm - Area good condition / Area not cleaned
	A1-3	CEMS Probe	5/1/2017	11:40	2900	1	7.4	Light build-up on bottom of probe to	
						_		moderate build-up on top of probe Amount of material buildup not	5/1/17 - 11:40 am - Probe in good condition / Probe not cleaned
	A1-4	CEMS Filter	5/1/2017	11:50	ND	ND	ND	documented	5/1/17 11:50 am - Filter was given as a sample
Scrubber "A"	A2	1 point at mid-body	4/25/2017	18:15	29	0.035	8.6	Light	4/25/17 - 6:15 pm - Area good condition / Area not cleaned
	A3	2 points at lower-body ¹	4/25/2017	17:59	130	0.25	26	Light to moderate	4/25/17 - 5:59 pm - Area good condition / Area not cleaned
Stack "B"	B1-1	1 point - base of the stack	4/25/2017	17:50	1900	0.66	20	Light to moderate	4/25/17 - 5:50 pm - Area good condition / Area not cleaned
	B1-2	1 point - transition area from the scrubbers to stacks	4/25/2017	17:46	ND	0.12	17	Moderate	4/25/17 - 5:46 pm - Area good condition / Area not cleaned
	B1-3	CEMS Probe	5/1/2017	11:21	4300	0.85	8.5	Light build-up on bottom of probe to moderate build-up on top of probe	5/1/17 - 11:21 am - Probe in good condition / Probe not cleaned
	B1-4	CEMS Filter	5/1/2017	11:50	ND	ND	ND	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Scrubber "B"	B2	1 point at mid-body	4/25/2017	18:13	75	0.14	12	Light	4/25/17 - 6:13 pm - Area good condition / Area not cleaned
	В3	2 points at lower-body ¹	4/25/2017	17:40	200	0.21	18	Moderate	4/25/17 - 5:40 pm - Area good condition / Area not cleaned
Stack "C"	C1-1	1 point - base of the stack	4/25/2017	17:35	570	0.62	29	Moderate to Heavy	4/25/17 - 5:35 pm - Area good condition / Area not cleaned
	C1-2	1 point - transition area from the scrubbers to stacks	4/25/2017	17:30	ND	0.13	16	Light	4/25/17 - 5:30 pm - Area good condition / Area not cleaned
								Moderate to Heavy	
	C1-3	CEMS Probe	5/1/2017	11:02	450	0.74	7.7	Amount of material buildup not	5/1/17 - 11:02 am - Probe in good condition / Probe not cleaned
	C1-4	CEMS Filter	5/1/2017	11:50	ND	ND	ND	documented	5/1/17 11:50 am - Filter was given as a sample
Scrubber "C"	C2	1 point at mid-body	4/25/2017	18:10	490	0.24	11	Light	4/25/17 - 6:10 pm - Area good condition / Area not cleaned
	C3	2 points at lower-body ¹	4/25/2017	17:25	7.3	0.041	16	Moderate	4/25/17 - 5:25 pm - Area good condition / Area not cleaned
Stack "D"	D1-1	1 point - base of the stack	4/25/2017	17:20	160	0.87	37	Moderate to Heavy	4/25/17 - 5:20 pm - Area good condition / Area not cleaned
	D1-2	1 point - transition area from the scrubbers to stacks	4/25/2017	17:15	ND	0.14	18	Light	4/25/17 - 5:15 pm - Area good condition / Area not cleaned
	D1-3	CEMS Probe	5/1/2017	10:00	390	1.2	2.5	Heavy	5/1/17 - 10:00 am - Probe in good condition / Probe not cleaned Note: Photo taken after probe was cleaned
	D1-4	CEMS Filter	5/1/2017	11:50	ND	ND	ND	Amount of material buildup not documented	5/1/17 11:50 am - Filter was given as a sample
Scrubber "D"	D2	1 point at mid-body	4/25/2017	16:30	2300	0.5	17	Moderate	4/25/17 - 4:30 pm - Area good condition / Area not cleaned
	D3	2 points at lower-body ¹	4/25/2017	17:03	160	0.34	21	Moderate	4/25/17 - 5:03 pm - Area good condition / Area not cleaned
Carriebana a la contra del la contra del la contra del la contra de la contra de la contra de la contra de la contra de la contra de la contra del la c	E1	1 point	4/26/2017	9:25	ND	0.063	17	Amount of material buildup not documented	4/26/17 - 9:25 am - No access to tank interior / Sample from drain pipe
Scrubber recirculating tank			4/26/2017	9:25	ND	0.063	1/		4/26/17 - 9:30 am - Area in good condition/ Light to moderate wear / Area
Windbox Exhaust Fan	G1	1 point at wind box belly ²						None	not cleaned 4/26/17 - 9:40 am - Area in good condition/ Light to moderate wear / Area
	G2	1 point at outlet side ³	4/26/2017	9:40	450	0.14	1.2	None	not cleaned 4/26/17 - 9:38 am - Area in good condition/ Light to moderate wear / Area
	G3	2 points at inlet side ³	4/26/2017	9:38	290	0.78	0.94	None	not cleaned
Multi Clone (3 lower discharge cones)	H1	1 point at sump	4/26/2017	9:55	18	0.17	21	Light Amount of material buildup not	4/26/17 - 9:55 am - Area good condition / Area not cleaned 4/26/17 - 9:50 am - Area good condition / Area not cleaned / Water and
	H2	3 points at cones discharge at ground level ⁴	4/26/2017	9:50	2400	0.092	0.92	documented	product in sump
	Н3	3 points on cones at second level ⁴	4/26/2017	9:58	150	0.077	0.58	Light	4/26/17 - 9:58 am - Area good condition / Area not cleaned
	H4	1 point at top	4/25/2017	18:25	3300	0.68	6.1	Light	4/25/17 - 6:25 pm - Area good condition / Area not cleaned
Denver sump	11	1 point in the sump	4/26/2017	10:20	ND	0.098	23	Amount of material buildup not documented	4/26/17 - 10:20 am - Area good condition / Area not cleaned / Water and product in sump
Ducting Prior to Scrubber (3 injection points per duct)	J1	3 points in ducting off process gas header 5	4/26/2017	10:09	ND	0.074	0.18	Light (mostly pellets)	4/26/17 - 10:09 am - Area good condition / Area not cleaned
	J2	1 point at access of process gas header	4/26/2017	10:04	5.3	0.057	ND	Moderate to Heavy (mostly pellets)	4/26/17 - 10:04 am - Area good condition / Area not cleaned

- Notes:

 1 A single composite sample from two sample points, one at both the front and back access doors, was collected to represent the lower-body of each scrubber.

 2 A sample was not collected from the belly of the windbox exhaust fan because there was no buildup of material.


 3 Samples were collected from material found outside the access door to the windbox fan believed to represent material from the fan compartments.

 4 Each of these were comprised of material collected from three separate sampling points at the inspection point.

 5 This sample was comprised of material collected from these ducts off the process gas header.

Attachment A

Injection Port Locations

Attachment B

Post ACI Inspection Plan

To: ArcelorMittal Minorca Mine

From: Barr Engineering Co.

Subject: Inspection Plan for Post-Extended Testing of Activated Carbon Injection

Date: April 24, 2017 **Project**: 23691881.00

This document provides the inspection plan for inspecting plant equipment following the extended testing of activated carbon injection (ACI). This inspection plan has been developed specifically for ArcelorMittal Minorca Mine (Minorca).

1.0 Introduction

The purpose of this inspection plan is to document the possible effects on plant equipment resulting from extended ACI testing (approximately 76 days, from January 20th through April 6th, 2017) in which an activated carbon was injected at a rate of approximately 1 lb/MMacf. This testing was conducted to gather the necessary information to inform Minorca towards complying with state regulations. Minnesota regulations (Minn. R. 7007.0502) require Minorca to reduce mercury emissions by January 1, 2025 to no more than 28% of the mercury emitted in 2008 or 2010, whichever is greater. The state regulations also require Minorca to submit a mercury emissions reduction plan by December 30, 2018 to show how Minorca will achieve the 72% reduction, or propose an alternate plan if Minorca concludes that a 72% reduction is not technically or economically feasible, impairs pellet quality, and/or causes excessive corrosion to plant equipment.

Previous ACI testing in 2013 showed potential buildup of activated carbon in the multiclones, process gas scrubbers, and associated stacks. Therefore, this inspection plan is intended to identify:

- 1) locations in the plant process for physical inspection of any erosion/corrosion or activated carbon buildup due to the extended ACI testing,
- 2) procedures for safe inspection of the identified locations,
- 3) schedule for conducting inspections at each location,
- 4) procedures for documentation and sampling during the inspection, and
- 5) primary contacts for inspection locations.

2.0 Determine Potential Erosion/Corrosion Issues Associated with ACI

The activated carbon used during the extended ACI testing was a high temperature brominated powdered activated carbon (HPAC) supplied by Albemarle. This type of activated carbon was chosen based on screening tests conducted on January 17th and 18th, 2017, in which HPAC was found to provide greater mercury reduction compared to brominated powdered activated carbon (BPAC). However, previous testing of powdered activated carbon in 2013 lead to buildup of activated carbon on plant equipment. Therefore, this inspection plan is intended to document any erosion/corrosion or activated carbon buildup on plant equipment, which will then inform if ACI is a feasible potential technology for Minorca to implement in order to comply with the state regulations for mercury reduction.

Subject: Inspection Plan for Post-Extended Testing of Activated Carbon Injection

Date: April 24, 2017

Page: 2

3.0 Inspection Locations

Representatives from Barr Engineering Company (Barr) and Minorca met on Tuesday, March 14th, 2017, and identified the following list of inspection locations of plant equipment for erosion/corrosion or activated carbon buildup:

Stack "A"
Scrubber "A"
Stack "B"
Scrubber "B"
Stack "C"
Scrubber "C"
Stack "D"
Scrubber "D"
Scrubber Recirculating Tank
Exhaust Header
Windbox Exhaust Fan
Multiclones
Denver Sump
Duct Injection Point

This list is included in Attachment A to this document, with each location identified on the accompanying process flow diagrams. These locations were identified based on the ACI location with respect to the plant equipment and the potential for any erosion/corrosion or activated carbon buildup.

4.0 Safe Inspection

Given the main objectives and the overall activities to be accomplished during the inspection of the identified locations, the following protocol is set forth as a guide to the inspectors to perform safe inspection.

A. All inspectors shall:

- 1. Be aware of the equipment and materials being used and the associated hazards of the materials and work areas.
- 2. Be current on and have documentation available for their Mine Safety and Health Administration (MSHA) training, fall protection certification, and required site-specific training.
- 3. Wear the appropriate personal protective equipment, including:

Subject: Inspection Plan for Post-Extended Testing of Activated Carbon Injection

Date: April 24, 2017

Page: 3

- a. hardhat,
- b. safety boots (metatarsals),
- c. long sleeves and long pants,
- d. hearing protection, and
- e. safety glasses with side shields.

B. Confined space entry:

- 1. Inspectors are responsible for completing a confined space entry permit prior to conducting any confined space inspection.
- 2. Inspectors are responsible for performing their own gas monitoring.
- 3. Inspectors will follow Minorca's lockout/tagout procedures.

C. Emergency Procedures:

- 1. Inspectors shall immediately report all accidents, injuries, or equipment damaged to the Minorca project manager (or the onsite shift manager during nights and weekends).
- 2. When alarm sounds or an emergency is announced, inspectors shall follow announced directions
- 3. To report an emergency, inspectors shall contact the Plant Control Room via:
 - a. Gai-tronics,
 - b. Phone at 218-305-3407
 - c. Radio Channel 1 Plant
- 4. Inspectors shall provide emergency information to Control Room or Minorca contact.
- 5. Inspectors shall secure the scene and respond as appropriate.
- 6. Inspectors shall complete necessary forms with Minorca contact.

5.0 Inspection Schedule

To provide safe access to the inspection locations, adequate time must be allowed for proper cooling of plant equipment following the commencement of the plant outage. Therefore, inspections are to be carried out on Tuesday, April 25th, through Thursday, April 27th. Each inspection location has been assigned a tentative date and time to be inspected, subject to change, included in Attachment A.

6.0 Primary Contacts

The respective Minorca project contacts for the general plant locations are:

- A. Multiclones Willard Ario
- B. Windbox Exhaust Fan Adam Thompson
- C. Scrubbers Jason Craven

Subject: Inspection Plan for Post-Extended Testing of Activated Carbon Injection

Date: April 24, 2017

Page: 4

7.0 Inspection documentation and sampling

Each inspection location will be inspected initially by the inspection team and the designated Minorca project contact for the respective inspection location. The Minorca project contact will provide the inspection team with the knowledge of the inspection location's common condition as viewed during past plant outages. The inspection team will then:

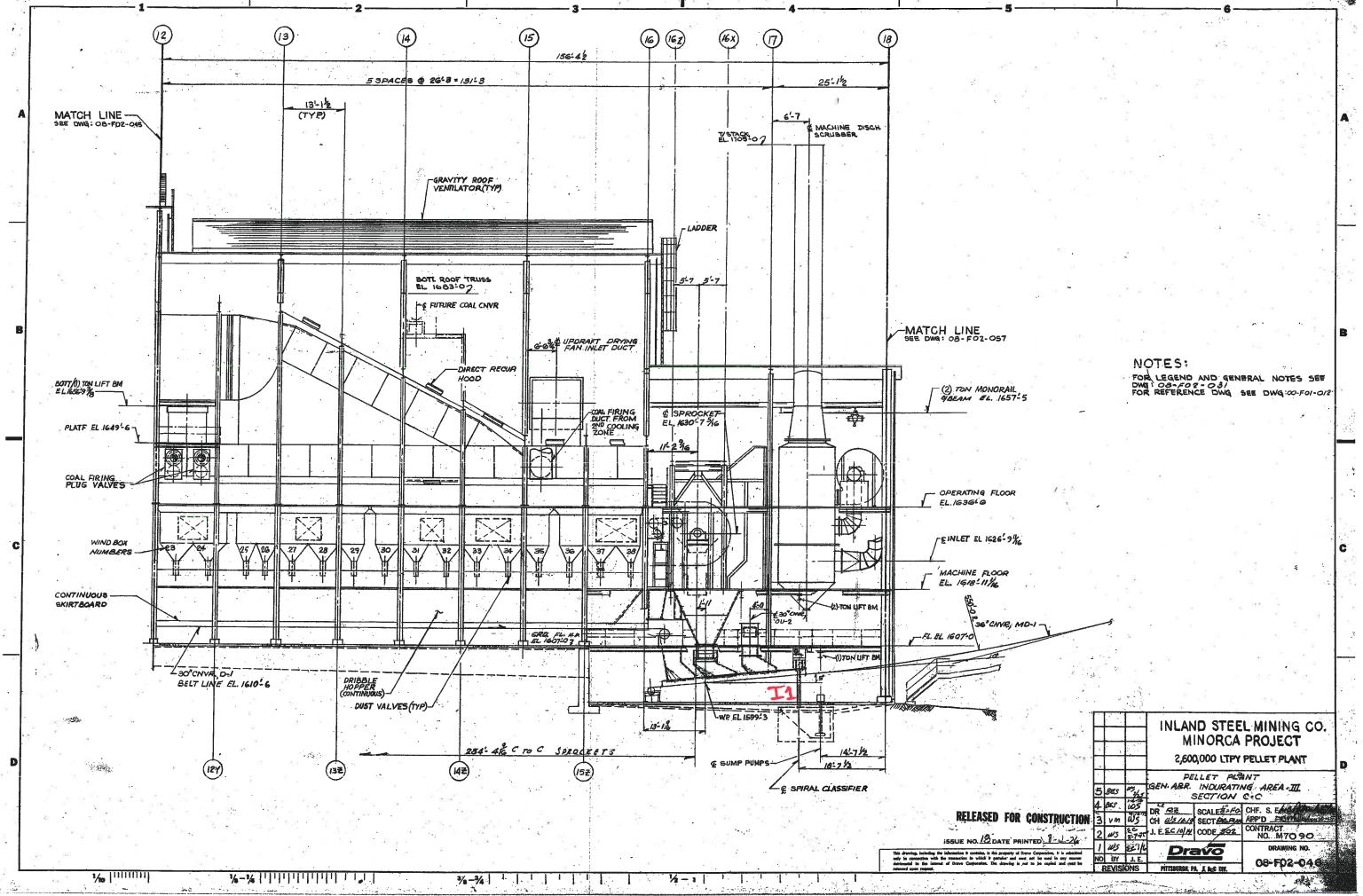
- 1. Fill out the written documentation for the inspection location, including:
 - a. Date and time of inspection
 - b. Inspection location
 - c. Condition of inspection location
 - d. If the inspection location has been recently cleaned or not
 - e. If material buildup is visible, and if so,
 - f. If sampling of material is conducted,
- 2. Take photos of the inspection location with a digital camera (reviewing photos for clarity), and
- 3. Acquire samples of any material believed to be powdered activated carbon.

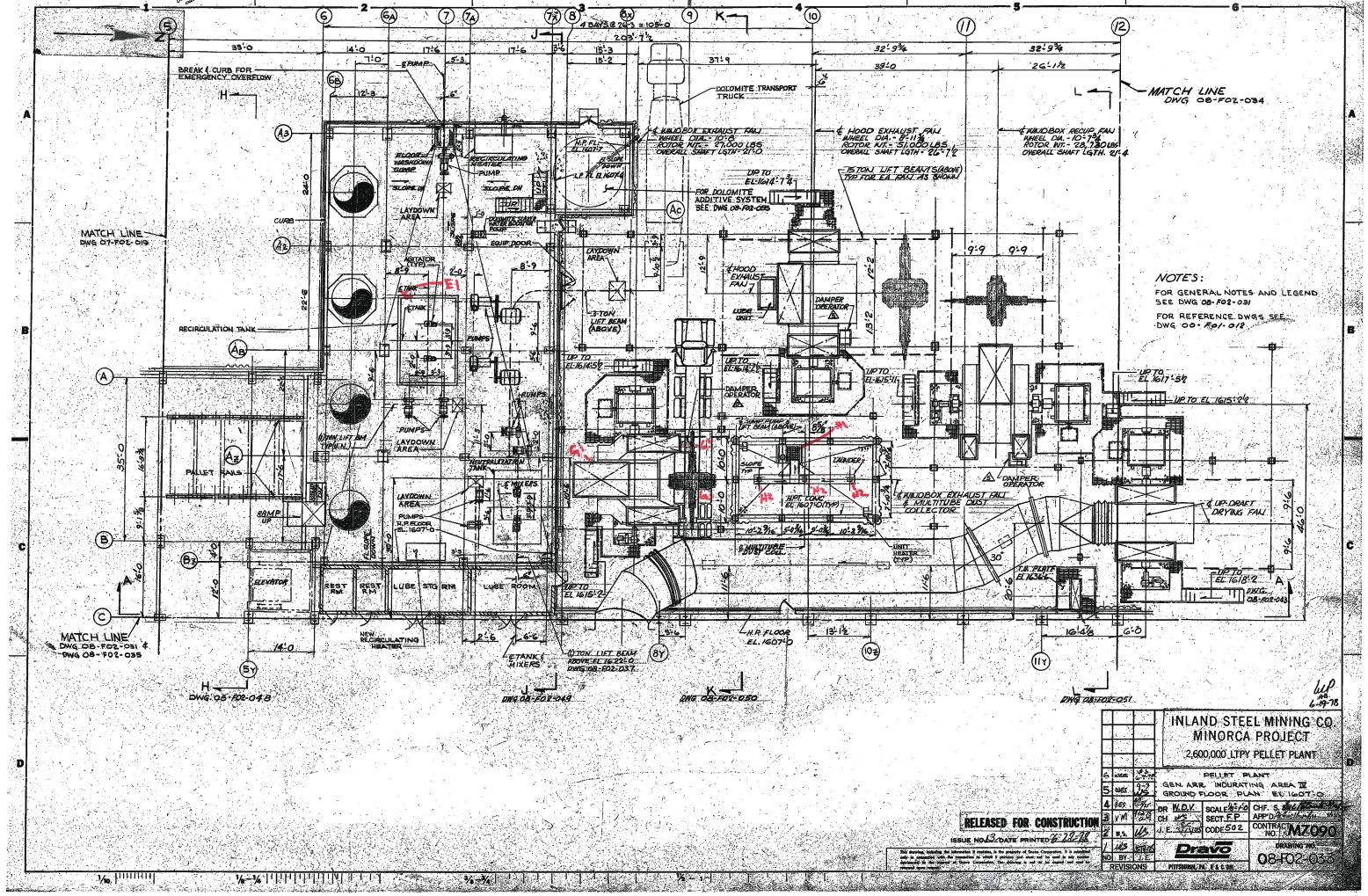
The recommended sample points for lab analysis are identified in Attachment A. Samples are to be collected and analyzed to determine carbon and bromine concentrations. Coordination of sampling will be completed by the inspection team with approval from the Minorca project contact. Minorca will be responsible for collection of the samples identified at the locations in Attachment A Inspection staff will be responsible for providing sample containers, coordination and scheduling of analytical analysis for these samples.

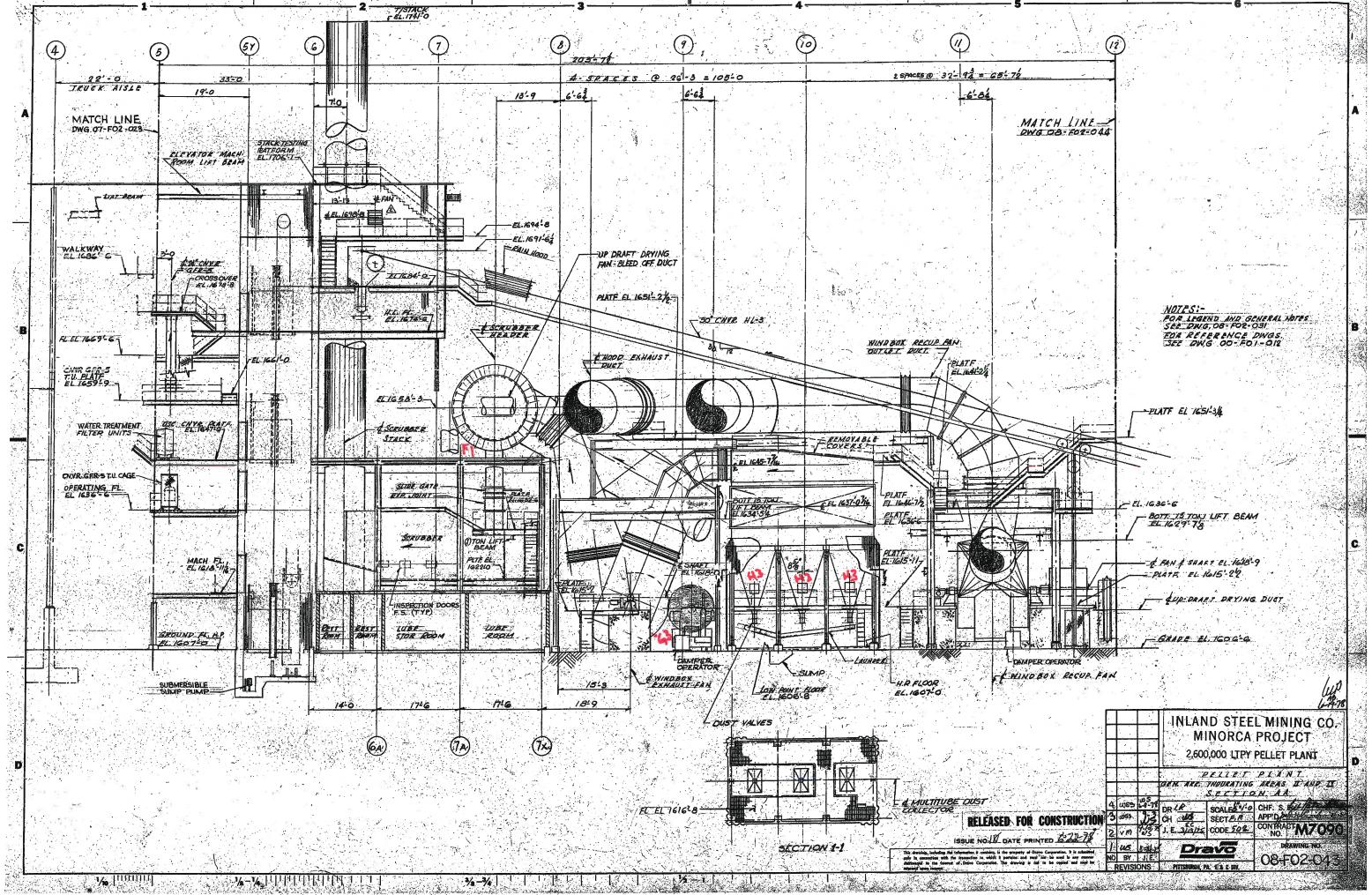
7.1 Sample collection method

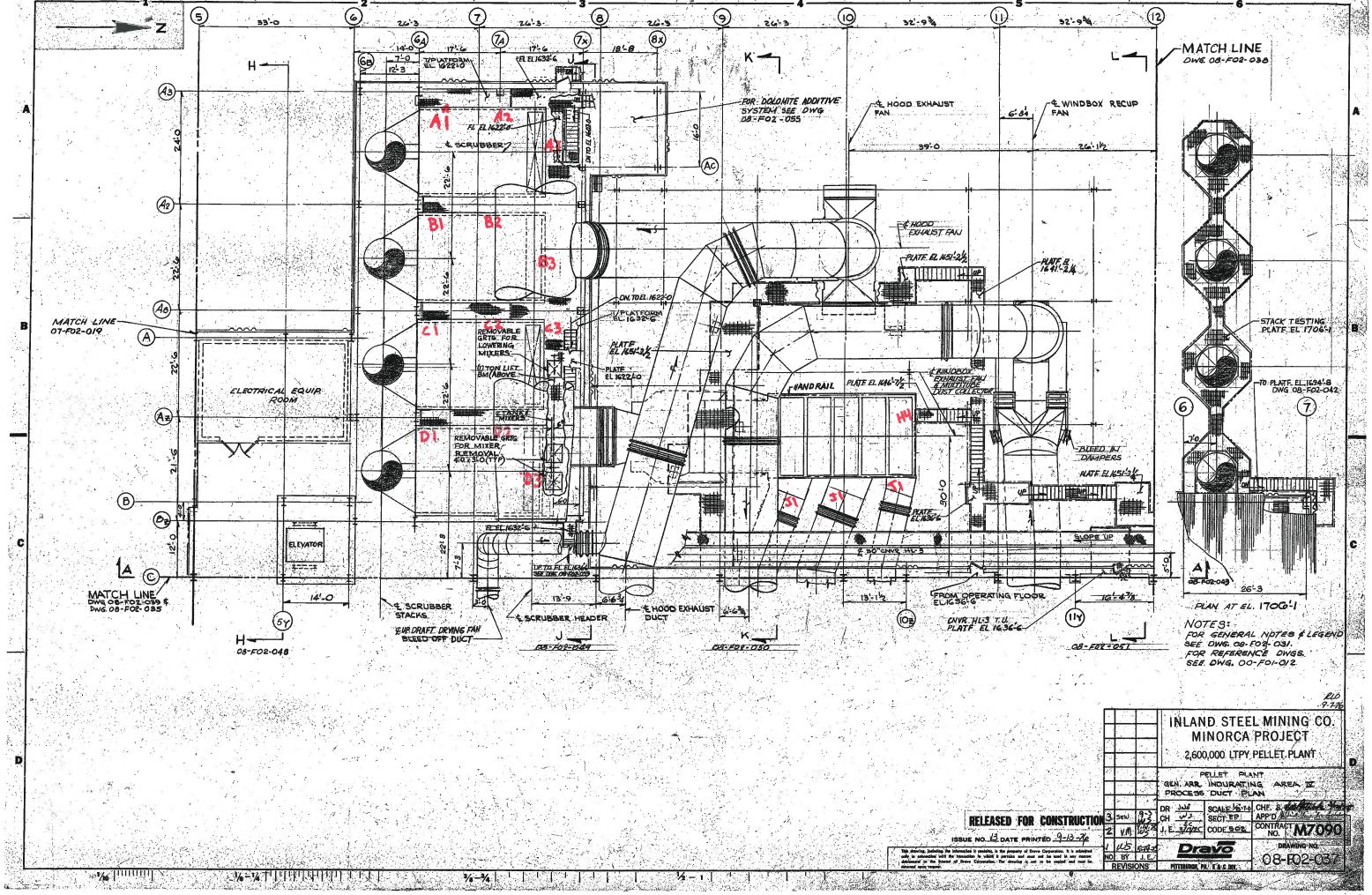
The sampling method will consist of collecting multiple cross-cut samples, composited into one sample for that specific location. The multiple cross-cut samples should be spaced appropriately across the plant equipment being inspected, collecting a single sample at each location and then repeating this process to form the final composite sample for analysis. If an inspection location does not have enough buildup material to create a composite sample then the amount available will be placed in the sample container. The composite sample to be sent to the lab should fill a 4 oz. glass jar clearly labeled to show the inspection location. Samples should be capped and stored in sealed containers, not paper envelopes or paper boxes.

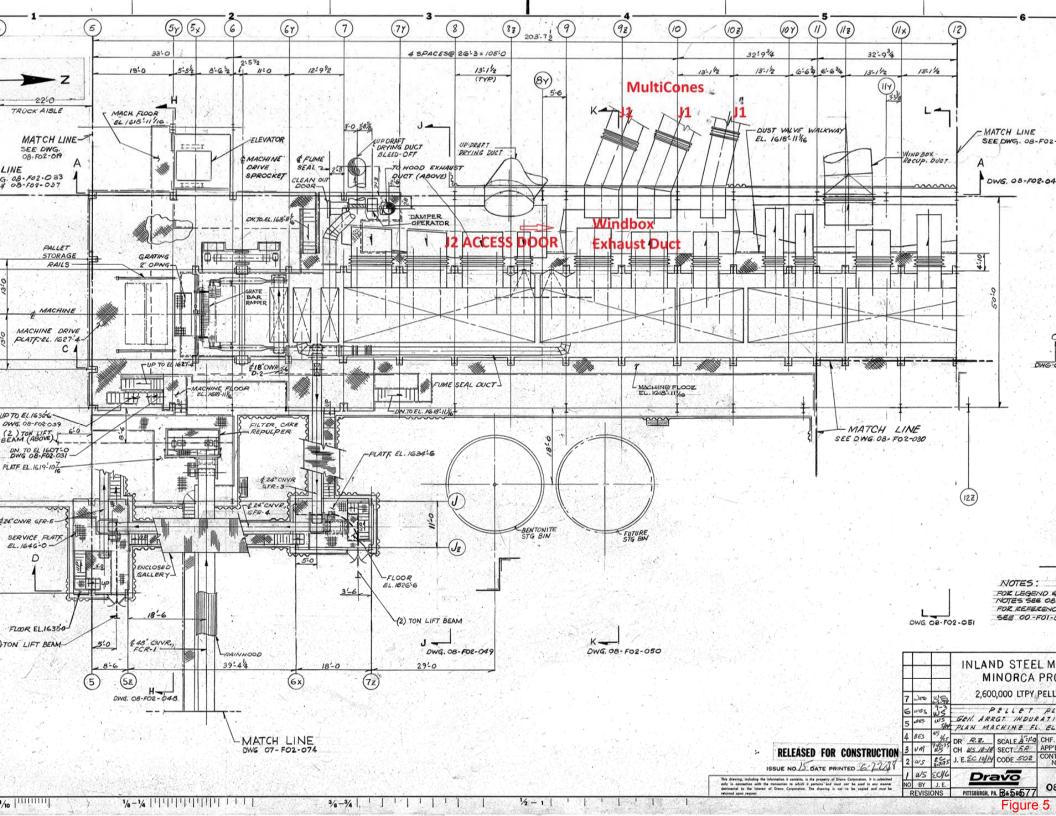
7.2 Sample analysis


Samples are to be analyzed under the Walkley-Black method for carbon content, and EPA Method SW-846 5050/9056 (bomb/ion chromatography method) for bromine content. Barr will use ALS in Holland, Michigan for completing both analysis.


Attachment A


Inspection Locations and Schedule


ArcelorMittal Minorca Mine Inspection Plan Following Testing of Activated Carbon Injection Attachment A - Inspection Locations


Equipment	Number of Inspection Points	Drawing ID	Schedule For Inspection	Inspection Notes	Pictures Taken?	Samples Acquired?
tack "A"	1 point	A1	April 25th, 2017 @ 4:00pm			
riack A	CEMS	A1	April 25th, 2017 @ 4:00pm			
crubber "A"	1 point at mid-body	A2	April 25th, 2017 @ 4:00pm			
CIUDEI A	2 points at lower-body	A3	April 25th, 2017 @ 4:00pm			
Stack "B"	1 point	B1	April 25th, 2017 @ 4:00pm			
	CEMS	B1	April 25th, 2017 @ 4:00pm			
crubber "B"	1 point at mid-body	B2	April 25th, 2017 @ 4:00pm			
crubber b	2 points at lower-body	B3	April 25th, 2017 @ 4:00pm			
tack "C"	1 point	C1	April 25th, 2017 @ 4:00pm			•
tack C	CEMS	C1	April 25th, 2017 @ 4:00pm			•
crubber "C"	1 point at mid-body	C2	April 25th, 2017 @ 4:00pm	·		
crubber C	2 points at lower-body	C3	April 25th, 2017 @ 4:00pm			
Stack "D"	1 point	D1	April 25th, 2017 @ 4:00pm			
	CEMS	D1	April 25th, 2017 @ 4:00pm			
Scrubber "D"	1 point at mid-body	D2	April 25th, 2017 @ 4:00pm			
crubber D	2 points at lower-body	D3	April 25th, 2017 @ 4:00pm			
crubber recirculating tank	1 point	E1	April 25th, 2017 @ 5:00-6:00pm			
leader	1 point (bad roof at ladder- may have to forego inspection)	F1	NOT AVAILABLE FOR INSPECTION			
	1 point at wind box belly	G1	April 26th, 2017 @ 7:00am			
Vindbox Exhaust Fan	1 point at outlet side	G2	April 26th, 2017 @ 7:00am			
	2 points at inlet side	G3	April 26th, 2017 @ 7:00am			
	1 point at sump	H1	April 26th, 2017 @ 7:00am			
Aulti Clone (3 lower discharge cones)	3 points at cones discharge at ground level	H2	April 26th, 2017 @ 7:00am			
multi Cione (3 lower discharge cones)	3 points on cones at second level	H3	April 26th, 2017 @ 7:00am			-
	1 point at top	H4	April 26th, 2017 @ 7:00am			
.	4	14	April 25th, 2017 5:00-6:00pm or April			
Denver sump	1 point	11	26, 2017 @ 7:00am			
Ouctwork (3 injection points per duct)	3 points	J1	April 27th, 2017 @ 7:00am			
	1 point at access of duct header	J2	April 27th, 2017 @ 7:00am			

Attachment C

Photo Documentation of Inspection Points

Photo 1 Base of Stack A (1)

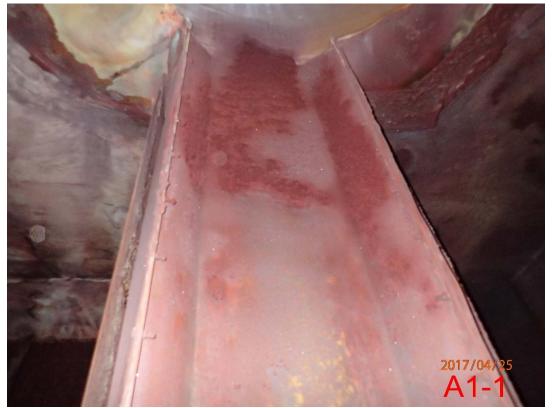


Photo 2 Base of Stack A (2)

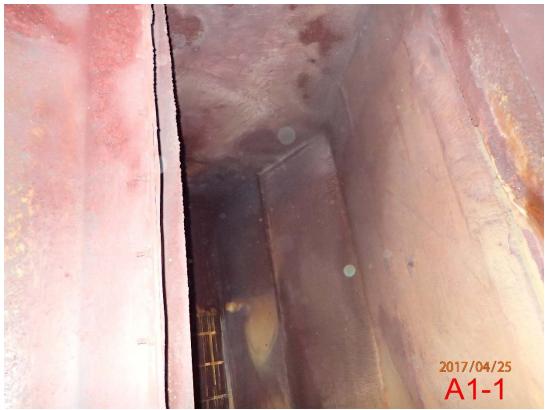


Photo 3 Base of Stack A (3)

Photo 4 Base of Stack A (4)

Photo 5 Base of Stack A (5)

Photo 6 Base of Stack A (6)

Photo 7 Base of Stack A (7)

Photo 8 Transition Area from Scrubbers to Stack A (1)

Photo 9 Transition Area from Scrubbers to Stack A (2)

Photo 10 Stack A CEMS Probe (1)

Photo 11 Stack A CEMS Probe (2)

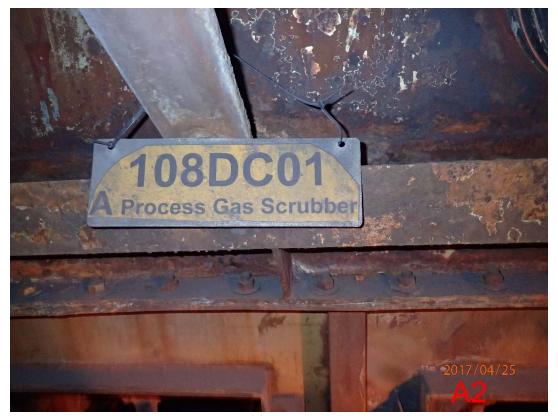


Photo 12 Scrubber A Mid-body (1)

Photo 13 Scrubber A Mid-body (2)

Photo 14 Scrubber A Mid-body (3)

Photo 15 Scrubber A Mid-body (4)

Photo 16 Scrubber A Mid-body (5)

Photo 17 Scrubber A Mid-body (6)

Photo 18 Scrubber A Mid-body (7)

Photo 19 Scrubber A Mid-body (8)

Photo 20 Scrubber A Lower-body (1)

Photo 21 Scrubber A Lower-body (2)

Photo 22 Scrubber A Lower-body (3)

Photo 23 Scrubber A Lower-body (4)

Photo 24 Scrubber A Lower-body (5)

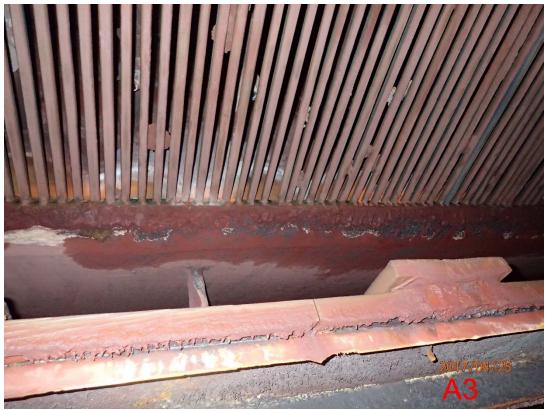


Photo 25 Scrubber A Lower-body (6)

Photo 26 Base of Stack B (1)

Photo 27 Base of Stack B (2)

Photo 28 Base of Stack B (3)

Photo 29 Base of Stack B (4)

Photo 30 Base of Stack B (5)

Photo 31 Base of Stack B (6)

Photo 32 Base of Stack B (7)

Photo 33 Base of Stack B (8)

Photo 34 Transition Area from Scrubbers to Stack B (1)

Photo 35 Transition Area from Scrubbers to Stack B (2)

Photo 36 Transition Area from Scrubbers to Stack B (3)

Photo 37 Transition Area from Scrubbers to Stack B (4)

Photo 38 Transition Area from Scrubbers to Stack B (5)

Photo 39 Transition Area from Scrubbers to Stack B (6)

Photo 40 Stack B CEMS Probe (1)

Photo 41 Stack B CEMS Probe (2)

Photo 42 Scrubber B Mid-body (1)

Photo 43 Scrubber B Mid-body (2)

Photo 44 Scrubber B Mid-body (3)

Photo 45 Scrubber B Mid-body (4)

Photo 46 Scrubber B Lower-body (1)

Photo 47 Scrubber B Lower-body (2)

Photo 48 Scrubber B Lower-body (3)

Photo 49 Scrubber B Lower-body (4)

Photo 50 Scrubber B Lower-body (5)

Photo 51 Base of Stack C (1)

Photo 52 Base of Stack C (2)

Photo 53 Base of Stack C (3)

Photo 54 Base of Stack C (4)

Photo 55 Base of Stack C (5)

Photo 56 Base of Stack C (6)

Photo 57 Base of Stack C (7)

Photo 58 Base of Stack C (8)

Photo 59 Base of Stack C (9)

Photo 60 Base of Stack C (10)

Photo 61 Base of Stack C (11)

Photo 62 Base of Stack C (12)

Photo 63 Transition Area from Scrubbers to Stack C (1)

Photo 64 Transition Area from Scrubbers to Stack C (2)

Photo 65 Transition Area from Scrubbers to Stack C (3)

Photo 66 Transition Area from Scrubbers to Stack C (4)

Photo 67 Transition Area from Scrubbers to Stack C (5)

Photo 68 Stack C CEMS Probe (1)

Photo 69 Stack C CEMS Probe (2)

Photo 70 Scrubber C Mid-body (1)

Photo 71 Scrubber C Mid-body (2)

Photo 72 Scrubber C Mid-body (3)

Photo 73 Scrubber C Mid-body (4)

Photo 74 Scrubber C Mid-body (5)

Photo 75 Scrubber C Mid-body (6)

Photo 76 Scrubber C Lower-body (1)

Photo 77 Scrubber C Lower-body (2)

Photo 78 Scrubber C Lower-body (3)

Photo 79 Scrubber C Lower-body (4)

Photo 80 Scrubber C Lower-body (5)

Photo 81 Base of Stack D (1)

Photo 82 Base of Stack D (2)

Photo 83 Base of Stack D (3)

Photo 84 Base of Stack D (4)

Photo 85 Base of Stack D (5)

Photo 86 Base of Stack D (6)

Photo 87 Base of Stack D (7)

Photo 88 Base of Stack D (8)

Photo 89 Transition Area from Scrubbers to Stack D (1)

Photo 90 Transition Area from Scrubbers to Stack D (2)

Photo 91 Transition Area from Scrubbers to Stack D (3)

Photo 92 Stack D CEMS Probe (1)

Photo 93 Stack D CEMS Probe (2)

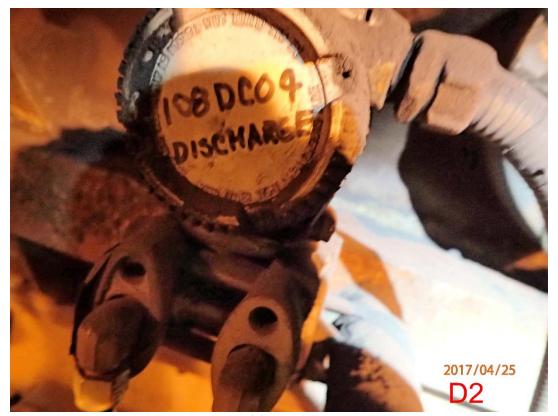


Photo 94 Scrubber D Mid-body (1)

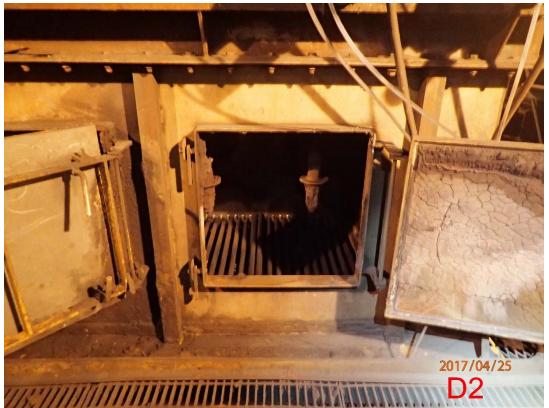


Photo 95 Scrubber D Mid-body (2)

Photo 96 Scrubber D Mid-body (3)

Photo 97 Scrubber D Mid-body (4)

Photo 98 Scrubber D Mid-body (5)

Photo 99 Scrubber D Mid-body (6)

Photo 100 Scrubber D Mid-body (7)

Scrubber D Mid-body (8) Photo 101

Scrubber D Mid-body (9)

Photo 103 Scrubber D Mid-body (10)

Photo 104 Scrubber D Lower-body (1)

Photo 105 Scrubber D Lower-body (2)

Photo 106 Scrubber D Lower-body (3)

Photo 107 Scrubber D Lower-body (4)

Photo 108

Photo 109 Scrubber D Lower-body (6)

Photo 110 Filters

Photo 111 Scrubber Recirculating Tank

Photo 112 Windbox Belly (1)

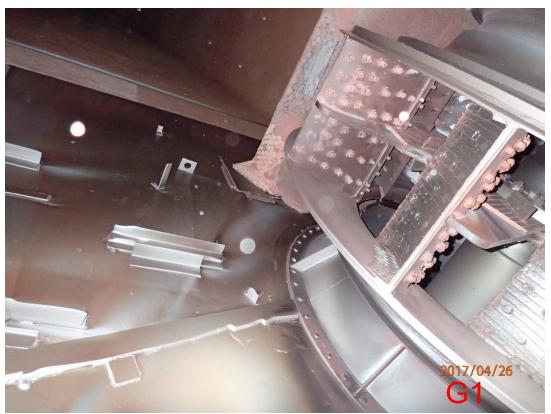


Photo 113 Windbox Belly (2)

Photo 114 Windbox Belly (3)

Photo 115 Windbox Outlet Side (1)

Photo 116 Windbox Outlet Side (2)

Photo 117 Windbox Inlet Side (1)

Photo 118 Windbox Inlet Side (2)

Photo 119 Multiclone Sump

Photo 120 Multiclone Cones Discharge at Ground Level (1)

Photo 121 Multiclone Cones Discharge at Ground Level (2)

Photo 122 Multiclone Cones Discharge at Ground Level (3)

Photo 123 Multiclone Cones Discharge at Ground Level (4)

Photo 124 Multiclone Cones Discharge at Ground Level (5)

Photo 125 Multiclone Cones Discharge at Ground Level (6)

Photo 126 Multiclone Cones Discharge at Ground Level (7)

Photo 127 Multiclone Cones Discharge at Ground Level (8)

Photo 128 Multiclone Cones at Second Level (1)

Photo 129 Multiclone Cones at Second Level (2)

Photo 130 Multiclone Cones at Second Level (3)

Photo 131 Multiclone Cones at Second Level (4)

Photo 132 Multiclone Cones at Second Level (5)

Photo 133 Multiclone Cones at Second Level (6)

Photo134 Multiclone Cones at Second Level (7)

Photo 135 Multiclone Cones at Second Level (8)

Photo 136 Multiclone Cones at Second Level (9)

Photo 137 Multiclone Cones at Second Level (10)

Photo 138 Multiclone Cones at Second Level (11)

Photo 139 Multiclone Cones at Second Level (12)

Photo 140 Multiclone Cones at Second Level (13)

Photo 141 Multiclone Cones at Second Level (14)

Photo 142 Multiclone Cones at Second Level (15)

Photo 143 Multiclone Cones at Second Level (16)

Photo 144 Multiclone Cones at Second Level (17)

Photo 145 Multiclone Cones at Second Level (18)

Photo 146 Multiclone Top (1)

Photo 147 Multiclone Top (2)

Photo 148 Multiclone Top (3)

Photo 149 Multiclone Top (4)

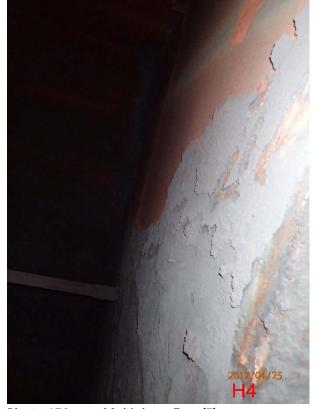


Photo 150 Multiclone Top (5)

Photo 151 Multiclone Top (6)

Photo 152 Multiclone Top (7)

Photo 153 Denver Sump

Photo 154 Ducting off Process Gas Header (1)

Photo 155 Ducting off Process Gas Header (2)

Photo 156 Ducting off Process Gas Header (3)

Photo 157 Ducting off Process Gas Header (4)

Photo 158 Ducting off Process Gas Header (5)

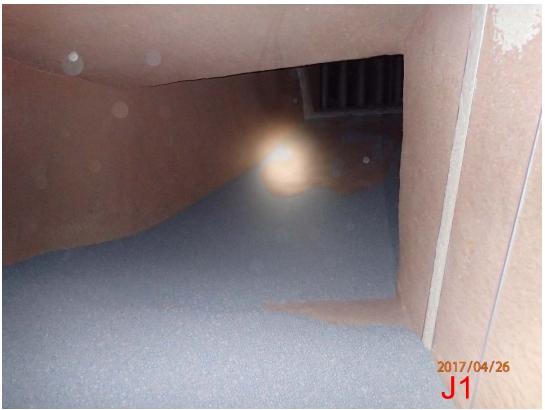


Photo 159 Ducting off Process Gas Header (6)

Photo 160 Ducting off Process Gas Header (7)

Photo 161 Ducting off Process Gas Header (8)

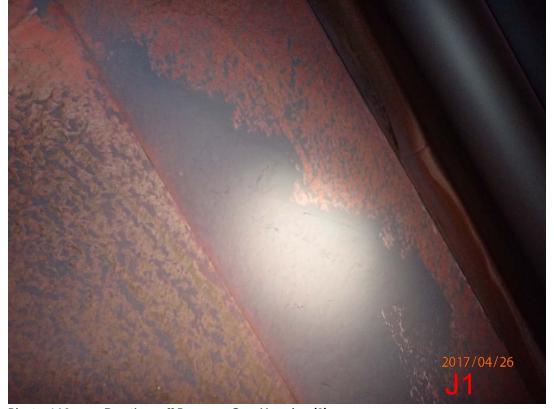


Photo 162 Ducting off Process Gas Header (9)

Photo 163 Ducting off Process Gas Header (10)

Photo 164 Access of Process Gas Header (1)

Photo 165 Access of Process Gas Header (2)

Appendix B-5-2

Hibbing Taconite Company. 2017 Mercury Reduction Test Report.

Phase III - Gap Analysis: Halide Injection on Furnace Line 2

April 13, 2018

Hibbing Taconite Company 2017 Mercury Reduction Test Report Phase III - Gap Analysis: Halide Injection on Furnace Line 2

By: Corie Ekholm

April 13, 2018

Contents

Background	3
Halide Injection Background	4
Test Setup	4
Screening Test	4
Testing	5
Halide Injection Results	6
Plant Samples	6
Corrosion Testing	6
Stack Testing	7
Other Observations	8
Conclusion	9
Appendix A: Furnace Diagram	10
Appendix B: Halide Test Plan	11
Appendix C: Chemical Feed Skid	34
Appendix D: Sampling Diagram	36
Appendix E: Plant Samples	37
Appendix F: Corrosion Report	42
Appendix G: Stack Test Screening Results	50
Appendix H: Stack Test Results (baseline and long-term)	51
Appendix I: Pictures	55

Background

Minnesota mercury reduction initiatives began in 1999 focusing on the areas of municipal, household, and medical waste combustion. With reductions in those areas, Minnesota moved onto other industries including taconite production. In March 2007, the Environmental Protection Agency (EPA) approved the Minnesota Pollution Control's (MPCA) statewide mercury Total Maximum Daily Load (TMDL). The TMDL specifies that, in order to meet the water quality standards, a 93% reduction from 1990 human caused, air deposited mercury levels is required.

In accordance with the TMDL, the Minnesota taconite processing sector committed to a goal of 75% reduction from estimated 2010 taconite plant mercury emissions by 2025. In 2009, The Minnesota Taconite Mercury Control Agency Advisory Committee (MTMCAC) was formed to meet these goals. The committee consisted of academic experts, taconite company representatives, and members of government agencies, including the Minnesota Department of Natural Resources (DNR), MPCA, and the US Environmental Protection Agency, Great Lakes Restoration Initiative (EPA-GLRI). The committee was tasked with conducting research and running trials with the requirements that the control technology chosen must be technically and economically feasible, must not impair pellet quality, and must not cause excessive corrosion to the pellet furnaces or emission control equipment. MTMCAC performed numerous studies on mercury reduction from 2010 through 2014. Reports for these projects can be found on the DNR website.

The studies were performed in two phases and included the evaluation various activated and brominated carbon applications (scrubber additives, bag houses, fixed bed reactors), the corrosive effects of halides, long term gas brominated carbon injection, and Gore[™] Mercury Control System pilot test.

In September 2014, the State of Minnesota amended the air quality rules related to mercury emissions reporting and reductions (Minnesota Rules, part 7007.0502). These new rules require taconite processing facilities to reduce mercury air emissions by 72% of baseline emissions (defined as the maximum of either 2008 or 2010 emissions) by 2025.

Hibbing Taconite Company (Hibtac) had previously run short-term (less than one day) halide injection tests, however no long-term testing had been completed. In an effort to gain more information, Hibtac chose to run a halide injection test on its indurating furnace line 2 (herein referred to as line 2) with the following goals:

- Determine total mercury reduction rate using halide injection
- Determine final destination of mercury following halide oxidation and removal
- Evaluate scrubber performance via particulate stack testing
- Determine mercury concentration in the stack emissions with and without halide injection
- Evaluate all forms of mercury stack emissions such as vapor and particulate as well as elemental/oxidized mercury (both before and during halide injection)
- Identify safety/hygiene issues with halides
- Gather operating and maintenance cost information to be used if halide injection reaches the economic assessment step of the BAMRT analysis.
- Measure and analyze impact on pellet quality
- Determine if corrosion of plant equipment is increased using corrosion coupon analysis
- Determine halide concentration in scrubber water and waste water system
- Evaluate stack emissions of other compounds via stack testing

Hibtac has three Straight-Grate type indurating furnaces. Each furnace has four separate scrubbers and exhaust stacks for particulate matter emissions control. A diagram of the furnace can be found in Appendix A. The test plan is attached in Appendix B.

Halide Injection Background

There are three forms of mercury present in the stacks at Hibtac: elemental, oxidized, and particulate bound. The most common is elemental (85%-95% of the total mercury). Elemental mercury (Hg⁰) is a non-soluble gas that passes through wet scrubbers without being captured. Gaseous halogens such as bromine and chloride are strong oxidants that react with the elemental mercury (Hg⁰), forming mercury-halogen salts (HgBr₂). The mercury-halogen salts are soluble and can be captured in the wet scrubbers. By injecting a bromide compound (HBr or CaBr₂) into the heated furnace, it will form a halogen gas (Br⁻) that can then react with the elemental mercury. The mercury-halogen salt formed (HgBr₂) can then be captured by the wet scrubber reducing mercury emissions. Excess gas halogens are also soluble and captured by the wet scrubber.

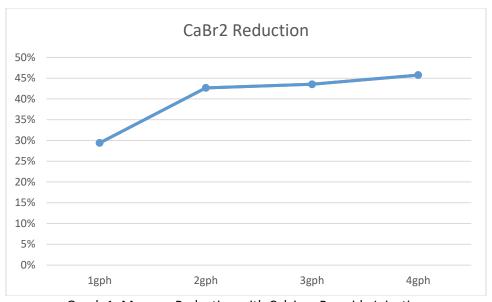
Test Setup

The test equipment for injecting the halide chemicals was purchased and installed by Hibtac personnel. The system consisted of chemical totes, tote containment, a chemical feed skid, tubing, and injection lances.

The lances and nozzles were provided by BETE Fog Nozzle Inc. The initial nozzles were low flow air atomizing designed for the low flow chemical (<2gph). With the low flow rate and furnace environment, the nozzles plugged quickly. A larger air atomizing nozzle was installed during screening and the first half of the long-term trial. When that nozzle also plugged (see Appendix I for pictures), it was replaced with a flat fan nozzle with no atomizing air. It was initially thought that the chemical could be injected without dilution, however that plan was abandoned due to the consistent nozzle plugging. The chemical feed system allowed the chemical to be diluted down, increasing the flow to approximately 0.5gpm.

US Water Services provided the chemical feed skid (dilution system) as seen in Appendix C. The feed system was made up of two parts: the water control system and the chemical control system. The water control system consisted of a strainer, pressure gauge, manual control valve, 0.2-2.0gpm flow meter, and a check valve. The chemical system consisted of a strainer, metered chemical feed pump (0.5-4.5gph), flow calibration column, pressure relief valve and return line, and a check valve. Flow from the two systems came together after the check valves, then went through an inline mixer before going through the tubing to the lances. Flexible 3/8"ID (1/2"OD) HDPE tubing was run between the feed skid and the nozzles. Lanxess Solutions Inc. provided the test chemical in totes.

Screening Test


The chemical screening tests began on September 13, 2017. As described in the halide test plan, initial research guided Hibtac to test calcium bromide (CaBr₂) and hydrogen bromide (HBr or bromic acid). Calculations showed it would take less than 0.1gph of each chemical to react with the mercury released from the ore in the furnace.

The anticipated destination for the halides was the Hibtac tailings basin, therefore, the chosen chemicals had to be approved by the Minnesota Pollution Control Agency (MPCA) for HTC's National Pollutant

Discharge Elimination System (NPDES) Permit. The chemical approval forms were submitted and approval up to set chemical flow rates was acquired prior to chemical injection.

The chemical injection rate for testing was set at 0.5 to 2.0gph of chemical after considering the very low calculated flow and the higher flow rates of previous tests. The chemical was injected in two locations: the windbox exhaust ducts prior to the multiclones and the preheat zone of the furnace. The ideal scenario was for a substantial reduction in mercury by injecting into the windbox exhaust ducts. The windbox exhaust ducts would reduce the furnace chemical exposure and potential for corrosion but it was uncertain whether there was enough heat for the reaction to occur.

During the first week of screening, the following tests were conducted: 1) CaBr₂ into windbox exhaust ducts, 2) HBr into windbox exhaust ducts, and 3) CaBr₂ into the preheat zone (before the nozzles plugged). From the data collected, it became apparent that a greater reduction in mercury could be achieved by injecting the chemical into the preheat zone of the furnace. The second set of screening tests occurred October 3 and 4, 2017. Both chemicals were injected independently into the preheat zone at 2.0gph. The hydrogen bromide had a slightly lower mercury reduction. The lower reduction combined with the additional safety concerns associated with handling the hydrogen bromide led Hibtac to choose calcium bromide for long-term testing. The calcium bromide was injected at 1, 2, 3, and 4gph to see if additional reductions could be achieved at greater flow rates. After 2gph, the reduction of mercury leveled off (see Graph 1 below) leading to the decision to run the long-term test at 2gph.

Graph 1: Mercury Reduction with Calcium Bromide Injection

The screening stack tests consisted of the following tests: EPA Method 30B for mercury, EPA Method 5 for particulate, FTIR (Fourier Transform Infrared Spectroscopy) for halides, EPA Method 8A for sulfuric acid mist, and gas chromatography for hydrogen sulfide. The screening results can be found in Appendix G.

Testing

The long-term test involved injecting calcium bromide at 2.0gph into the preheat zone from October 5, 2017 to November 26, 2017 (52 days). The planned 60-day trial was reduced by the time required to

redesign the system after the plugging issues were discovered during the initial screening test. The calcium bromide was injected whenever the furnace was running with a feed rate greater than 200tph. If the feed rate dropped below 200tph, the chemical pump would shut off but the water would continue to flow through the system in an effort to prevent nozzle plugging. In total, calcium bromide was injected into line 2 for 1128 hours.

Halide Injection Results

Plant Samples

Samples were collected from various locations around the plant prior to and during halide chemical injection in an effort to trace and quantify the changes in mercury concentrations during injection. The samples were collected by Hibtac employees and analyzed by Pace Analytical. The samples listed below were taken and analyzed for mercury. The multiclone dust and scrubber water/solids were also analyzed for calcium and bromide to track/quantify any increase observed during testing. Appendix D has a diagram showing the sample locations as part of the plant flow sheet.

- Rougher Tails*
- Finisher Tails*
- Concentrate*
- Thickener Overflow*
- Greenballs
- Pellets
- Multiclone Dust
- Scrubber Water/Solids*

As anticipated, there was an increase in mercury in the scrubber solids as mercury was removed from the stack gases. The mercury present in the scrubber water seemed unaffected by the testing as it bounced around with some samples containing more mercury than the baseline and others containing less. This may indicate that the mercury captured in the water bonds with the solids present in the scrubber sump. An increase in the thickener overflow sample mercury was seen 2 weeks into the halide testing. An increase in the amount of bromide in the scrubber solids and multiclones was seen during the testing. There was almost no bromide found in the baseline samples. Calcium remained about the same throughout testing indicating that the additional amount of calcium from the calcium bromide was small compared to the calcium already present in the system. The sample results can be found in Appendix E.

Corrosion Testing

Corrosion coupons and test grate bars were installed during the long-term halide test to determine if there was significant halide corrosion. Due to the injection of the halide on line 2, furnace line 1 was used as a control. Mild steel coupons were installed in the windbox exhaust duct after the multiclone house and before the windbox exhaust fan. Three test grate bars were installed on the east side of a pallet car on each line. The coupons and grate bars were in both furnace lines for a total 52 days, simultaneously. Corrosion Testing Laboratories, Inc. provided the coupon, coupon holders, and corrosion analysis and performed the initial and final analysis on the grate bars provided by Hibtac (new grate bars were from those in stock).

^{*} Samples were filtered with the water and the solids analyzed separately for mercury

The results from the Corrosion Testing Laboratories show significantly more corrosion of the coupons and grate bars that were installed in line 2 during testing. The coupons from line 2 had a corrosion rate 2-3 times greater than line 1 coupons (see Table 1 below). The grate bars from line 2 also showed a corrosion rate 3-4 times greater than line 1 grate bars (see Table 2 below). The higher rates of corrosion are an operational concern with long-term halide injection. The full corrosion report can be found in Appendix F. Pictures can be seen in Appendix I.

Table 1: Mild Steel Coupon Corrosion Rates

1020 Carbon Steel Exposed in Furnace Ducting

Line	Specimen ID	Corrosion Rate (mpy ¹)	Comments
	AYP-26	0.15	General Corrosion with small areas of more
1	AYP-27	0.10	active corrosion underneath tightly adherent
	AYP-28	0.16	deposits.
	AYP-29	0.30	General Corrosion with small areas of more
2	AYP-30	0.45	active corrosion underneath tightly adherent
	AYP-31	0.24	deposits.

 $[\]frac{1}{1}$ mpy = mils per year, 1 mil = 0.001-inch.

Table 2: Grate Bar Corrosion Rates

Cast Stainless Steel Alloy HI Grates Exposed in Furnace

Line	Grate ID	Corrosion Rate (mpy)	Comments
1	34347-4	0.18	General Corrosion
	34347-5	0.18	
	34347-6	0.14	
2	34347-1	0.52	General Corrosion
	34347-2	0.66	
	34347-3	0.70	

Stack Testing

Barr Engineering performed the baseline, screening, and long-term stack testing. During the baseline and long-term test, the following stack tests were run: Ontario Hydro method for speciated mercury, EPA Method 5 for particulate, EPA Method 26A for hydrogen halides and halogens, EPA Method 8A for sulfuric acid mist, and gas chromatography for hydrogen sulfide. These tests allow Hibtac to quantify the mercury reduction and verify that there are no unwanted side effects or increases in the emissions of other substances.

The calcium bromide injection was found to reduce the total amount of mercury from the stacks by 33%. This reduction was determined by taking the difference between the baseline and long-term stack emissions and dividing by the baseline stack emissions. When comparing plant operating conditions and plant sample mercury content, it is estimated that there was approximately a 15%-20% increase in mercury in the furnace feed from the baseline to the long-term stack test. This increase from baseline

due to changes in the ore implies that the total reduction in mercury air emissions was greater than 33%.

The mercury exiting the stacks is primarily elemental under standard operating conditions. During the calcium bromide injection, the amount of elemental mercury decreased by 84% while the oxidized mercury increased by 314% and the particulate bound mercury increased by 920% (see Tables 3 and 4 below). The decrease in elemental mercury and increase in oxidized mercury indicates the chemical was reacting with the mercury as designed but the scrubbers were not able to remove the oxidized mercury entirely. The increases in particulate and oxidized mercury is a concern as these forms of mercury tend to deposit closer to the source.

Table 3: Mercury Speciation

	Particulate	Elemental	Oxidized	
Baseline	0.5%	87.5%	11.6%	
Long-term	7.1%	20.6%	71.9%	

Table 4: Mercury Emissions in lbs/hr

	Total Hg Particulate		Elemental	Oxidized	
Baseline	0.0102	0.00005	0.0089	0.0012	
Long-term	0.0068	0.00048	0.0014	0.0049	

The EPA Method 26A testing did show a minimal increase in hydrogen bromide in the stack emissions. This increase did not trigger any regulations or government limits but may be a point of concern for long-term implementation.

The other stack tests identified no other negative side effects associated with calcium bromide injection. The EPA Method 5 test showed a decrease in particulate during the long-term test. This may have been due to a lower feed rate, stronger greenballs, or normal variation. The baseline and long-term bromine, as tested by EPA Method 26A, were both below the detection limits. The EPA Method 8A test for sulfuric acid mist also showed a decrease from baseline to long-term. There was no hydrogen sulfide (H_2S) detected in either the baseline or long-term test with gas chromatography. The stack test summaries can be found in Appendix H. Full stack testing reports are maintained within Hibtac files.

Other Observations

Line 2 went down for repair immediately after the halide testing concluded. The furnace was examined for signs of additional buildup, wear, and corrosion. No additional buildup or visible corrosion was observed. While corrosion was not visible, the coupons demonstrated it was presented (see Corrosion Testing section). There was abnormal wear to the refractory and refractory curbs under the injection lance in the preheat zone. The injection spray removed or prevented normal slag buildup and damaged the outside layer of refractory. The damage was minimal and no refractory replacement was needed but the area will be monitored during future repairs. The damage was attributed to several factors including: the end of the lance narrowly clearing the inside wall of the furnace (not the curbs below), the strong downward pull of air, and the running of water during furnace cool down. This problem can be minimized or prevented in the future with a longer lance to ensure the spray clears the refractory wall

and curb. Water injection would also be shut off below a certain temperature as an additional preventative measure.

The pellet quality remained consistent throughout the test period. There were no negative effects on quality or furnace operation noted.

Conclusion

Hibbing Taconite completed a 52 day halide injection test for mercury reduction on furnace line 2 during fall 2017. Screening tests were run to determine the chemical, the injection location, and the injection rate. The screening tests showed injection into the preheat zone had greater mercury reduction than injection into the windbox exhaust ducts. Calcium bromide proved to have slightly better mercury reduction and to be safer to handle than hydrogen bromide. Calcium bromide is a relatively safe chemical to use but still involves the use of proper chemical handling protocol and a response plan in case of a spill. The screening tests also demonstrated how easily the injection nozzles plugged leading to the decision to dilute the chemical and increase the flow rate through the nozzle.

During the testing period, 2.0 gallons per hour of calcium bromide was diluted down with approximately 0.5 gallons per minute of water and injected into the furnace preheat zone. The injection resulted in a 33% reduction in total mercury air emissions (not taking into account the increase in mercury in the furnace feed). The amount of elemental mercury was reduced by 84% indicating a good reaction with the chemical, however the existing scrubbers do not efficiently remove the oxidized mercury from the exhaust stream. The increase in both oxidized and particulate bound mercury is a concern due to potential local deposition. There was also an increase in hydrogen bromide stack emissions (no hydrogen bromide was detected in the baseline samples). Particulate matter and sulfuric acid mist both showed a decrease from baseline to the long-term test. Hydrogen sulfide and bromine were both below the detection limits in the baseline and long-term tests. The plant samples indicate the mercury reports to the multiclones and scrubber sump and returns to the concentrator. The mercury is expected to leave the concentrator in the tails. With the amount of mercury from halide injection being relatively small compared to the mercury present in the tails samples, the final path of the mercury could not be verified.

There were several furnace observations made during the halide injection test. A negative impact discovered was the 2-3 times greater corrosion rates of the steel coupons in the windbox exhaust ducts and the 3-4 times greater corrosion rate of furnace grate bars when compared to the control furnace. A small area of refractory damage was observed but may be prevented in the future with a different injection lance. There were no other areas of excess buildup observed. Pellet quality was not impacted by the test.

Appendix A: Furnace Diagram

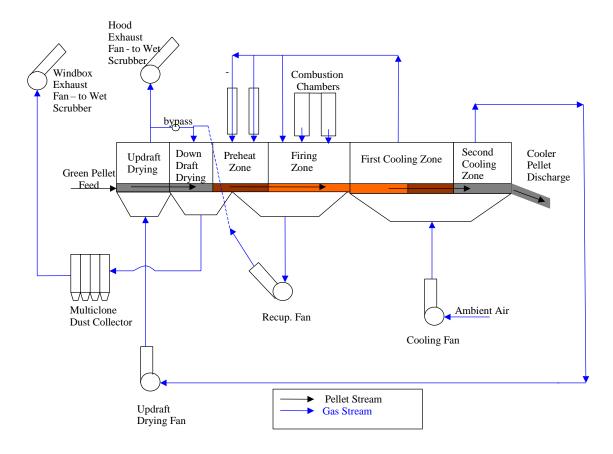


Diagram from "Mercury Transport in Taconite Processing Facilities: (III) Control Method Test Results" by Michael E. Berndt and John Engesser

Bernt, M. E. and Engesser, J. (2007) Mercury Transport in Taconite Processing Facilities: (III) Control Method Test Results. Iron Ore Cooperative Research Final Report. Minnesota Department of Natural Resources. 38 pages plus appendices.

Appendix B: Halide Test Plan

Halide Injection Test Plan – Final Revision

Prepared for Hibbing Taconite Company

August 2017

Halide Injection Test Plan July 2017

Contents

1.0	Intro	oduction	1			
2.0	Goa	ls of Test	1			
3.0	Hali	de Selectic	on2			
3.1	Hali	de Evaluat	ion Crite	eria	2	
3.2	Hali	des Consid	lered	2		
3.2	2.1	Proprieta	ry Chen	nicals	2	
3.2	2.2	Non-Prop	rietary	Chemic	als 3	
4.0	Hali	de Injectio	n Consi	deration	ns 4	
4.1	Inje	ction Rate	4			
4.2	Inje	ction Equip	oment	5		
4.3	Corr	rosion Cou	pon Tes	ting	5	
4.4	Add	itional Cor	nsiderati	ions	6	
5.0	Stac	k Test Met	thods	6		
6.0	Test	: Plan Outli	ine	7		
7.0	Prop	oosed Sche	edule	9		
8.0	Mer	cury Fate I	Determi	nation	9	
9.0	Corr	rosion Pote	ential De	etermin	ation	10
10.0	Tecl	nnical Feas	ibility D	etermir	ation	10
11.0	Ecoi	nomic Feas	sibility D	etermir	nation	10
12.0	Imp	act on Pell	et Quali	ty11		
13.0	Rep	ort 12				

List of Tables

Table 1 – Estimated Test Schedule	<u>S</u>
Table 2 - Pellet Quality Parameters	. 11

List of Appendices

Appendix A List of Evaluated Halides and Selection Criteria Summary

Appendix B Injection Rate Calculations

Acronyms

Acronym Description

BAMRT Best Available Mercury Reduction Technology

CaBr₂ Calcium Bromide

CMM Continuous Mercury Monitor

HBr Hydrogen Bromide

Hg Mercury

HTC Hibbing Taconite Company

MPCA Minnesota Pollution Control Agency

OH Ontario Hydro

SEA Sorbent Enhancement Additive TMDL Total Maximum Daily Load

1.0 Introduction

This document provides the test plan for halide injection to analyze mercury emissions reduction from the pellet induration process. This test plan has been developed specifically for Hibbing Taconite Company (HTC). The purpose of this test plan is to define the strategy and protocol for halide injection testing.

This document outlines the next phase of testing potential mercury reduction technologies at HTC. HTC had previously completed halide injection testing on Furnace Line 3 as part of an overall Minnesota taconite industry research effort. The previous test was conducted to determine if halide injection could meet the 75% reduction Total Maximum Daily Load (TMDL) goal set by the Minnesota Pollution Control Agency's 2009 Implementation Plan. Since the testing, Minnesota has implemented state regulations (Minn. R. 7007.0502) that require HTC to reduce mercury emissions by January 1, 2025 to no more than 28% of the mercury emitted in 2008 or 2010, whichever is greater. The State regulations also require HTC to submit a mercury emissions reduction plan by December 30, 2018 to show how HTC will achieve the 72% reduction, or propose an alternate plan if HTC concludes that 72% reduction is not technically achievable. HTC has conducted a thorough review of potential mercury reduction technologies and has determined that halide injection should be further explored as an option for Best Available Mercury Reduction Technology (BAMRT).

The purpose of this test plan is to define the strategy and protocol for additional testing to determine what amount of mercury capture is possible with halide injection. The testing will be performed over an extended period while injecting the halide. This test will explore whether or not halide injection is technically feasible, economically feasible, impairs pellet quality or causes excessive corrosion to plant equipment if HTC were to permanently implement and utilize this technology for mercury control.

2.0 Goals of Test

HTC and Barr Engineering Co. (Barr) have identified the following goals for conducting the halide injection test:

- Determine total mercury reduction rate using halides at pre-determined injection rates for all three forms of mercury (elemental, oxidized, and particulate)
- Determine final destination of mercury following halide oxidation and removal
- Evaluate scrubber performance via particulate stack testing
- Determine mercury concentration in the stack emissions with and without halide injection
- Identify safety/hygiene issues with halides
- Gather operating and maintenance cost information to be used if halide injection reaches the economic assessment step of the BAMRT analysis.
- Determine if halide injection is technically feasible to reduce mercury emissions by MPCA rule
- Measure and analyze impact on pellet quality
- Determine if corrosion of plant equipment is increased using corrosion coupon analysis
- Determine halide concentration in scrubber water and waste water system.
- Evaluate stack emissions of other compounds via stack testing.

3.0 Halide Selection

HTC and Barr have evaluated commercially available halide chemicals for possible injection according to the criteria outlined within this section. HTC has selected hydrogen bromide (HBr) and calcium bromide (CaBr₂) to test. HBr and CaBr₂will be injected into the windbox exhaust ducts. If there is insufficient reductions, the chemicals will be injected above the grate within the preheat zone. Appendix A contains the table which lists the commercially available halide chemicals and the reasoning why each chemical was chosen for study or not.

3.1 Halide Evaluation Criteria

- The halide must oxidize mercury at flue gas temperatures and perform within a low residence time. There is concern that use of halides to oxidize elemental mercury could cause equipment corrosion. Injection of halides after the grate rather than above reduces opportunities for corrosion; however, this also reduces the temperature and amount of time available for halides to oxidize elemental mercury, thereby restricting the choice of halides to those that will react spontaneously at the lower temperatures present in the flue. During the screening, HTC will inject the halide into the windbox exhaust ductwork, prior to the scrubber. If the chemicals shows minimal results, they will be tested at a location within the preheat zone.
- The halide cannot contain sulfur. HTC and Barr agreed that halides containing sulfur would not be injected due to environmental concerns that this would increase the concentration of sulfur in scrubber water that is discharged to the tailings basin.
- Use of chloride is not preferred for purposes of this study. Chloride is not preferred as it has shown a smaller mercury reduction than bromide in previous test work.
- Use of iodide is not preferred for purposes of this study. Previous studies have shown that iodide reacts with mercury less readily than bromide, so iodide injected into the flue may not have enough time to react with mercury.
- Halides cannot contain an additive that would need collection in a baghouse. Use of halides
 that contain an additive that would require collection through use of a baghouse were not
 considered since the facility does not currently utilize baghouses on the furnace exhaust stacks.
 The addition of supplementary pollution control equipment would not be economically feasible.

3.2 Halides Considered

Approximately 17 chemicals and vendors were evaluated for use in this study, as shown in Appendix A. Once all halide additives were eliminated that did not fit the criteria discussed above, three non-proprietary chemicals (sodium bromide, calcium bromide, and hydrogen bromide) and one proprietary chemical (SF12 from Midwest Energy Emissions) remained.

3.2.1 Proprietary Chemicals

Midwest Energy Emissions (Midwest) provides a proprietary chemical called SF12, with a reported mercury reduction of 60-90%. The SF12 is considered a sorbent enhancer. Midwest proposed using SF12 in conjunction with one of their two sorbent technologies, SB31 and SB33. HTC is not interested in using sorbent technologies due to particulate matter emission concerns. Midwest stated that SF12 would work better at the 500-600°F range but may work at temperatures within the windbox exhaust. They also stated that it may only achieve around 60% without using the

sorbent additives. SF12 was ruled out because of concerns with scrubber particulate capture and the fact that it is not typically used as a stand-alone product.

3.2.2 Non-Proprietary Chemicals

The ability of bromide to oxidize mercury has been extensively studied by the coal industry, so the majority of bromide testing has occurred at much higher temperatures than those seen in HTC's flue gas. However, one study comparing the effectiveness of HBr and $CaBr_2$ injected into flue gas at 330°F +/- 25°F resulted in mercury oxidation efficiencies of 71% and 61%, respectively.

The vendor has indicated that CaBr₂ and HBr have shown more success in the coal industry than sodium bromide (NaBr). This is supported by the results seen during previous activated carbon tests containing NaBr. Therefore, testing of NaBr is not suggested for purposes of this study.

In order to determine the best chemical for HTC's injection location parameters, the change in Gibbs Free Energy (ΔG) of each reaction was calculated to determine if it is favorable or unfavorable at a given temperature. If $\Delta G < 0$, that means that the reaction is favorable (or in other words spontaneous); if $\Delta G > 0$, the reaction is unfavorable.

 ΔG was calculated at a range of temperatures for the following reactions:

- 2CaBr₂ + O₂ → 2CaO + 2Br₂ step 1 in the Hg reduction process where the CaBr2 is oxidized to create Br2
- 4HBr + $O_2 \rightarrow 2Br_2$ step 1 in the Hg reduction process where the HBr is oxidized to create Br2
- Br₂ + Hg(0) \rightarrow HgBr₂ step 2 in the Hg reduction process where there free Br2 reacts with Hg to form HgBr2 that can be captured in the scrubber.
- SO₂ + Br₂ + 2H₂O → H₂SO₄ + 2HBr potential side reaction that can create sulfuric acid (a PSD pollutant which could cause air permitting issues)

Figure 1 is a plot of the change in Gibbs Free Energy vs. temperature for the $CaBr_2$ and HBr reaction chain. The graph shows that the $CaBr_2$ reaction has a minimum temp requirement to be a spontaneous reaction of 475°F (blue triangles on the plot) and it becomes more favorable with increasing temperature. For the chemical reaction for the HBr solution (orange squares of the plot), the change in Gibbs Free Energy is negative over the entire temp range, which means that the reaction is spontaneous at these conditions. At about 300°F (and above) the sulfuric acid side reaction is not spontaneous, in other words not favorable (yellow diamonds on the plot). Finally, the secondary mercury reaction ($Br2 + Hg(0) \rightarrow HgBr2$) is favorable across the entire temp range (green circles on the plot).

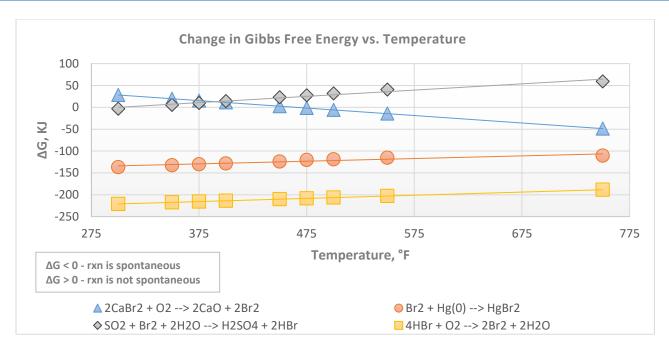


Figure 1 - Gibbs Free Energy Evaluation for CaBr2 and HBr Reactions

The results of the Gibbs Free Energy evaluation show that the $CaBr_2$ solution needs to reach a temperature of 475°F to work effectively and that H_2SO_4 will be a greater issue at temperatures less than 300°F. Therefore, the $CaBr_2$ solutions are theoretically not ideal for injection within the scrubber ducting, which is around 350°F, but the HBr solution should successfully reduce elemental mercury at the given parameters. This also suggests that HTC will need to evaluate the air permitting effects from the potential increase in sulfuric acid generation if excess halide is injected and encounters cooler temperatures downstream of the injection location.

4.0 Halide Injection Considerations

One company, Lanxess, supplies HBr solution (48% w/w) called GeoBrom HG480. Two companies, Lanxess and Nalco, supply $CaBr_2$ solution (52% w/w) called GeoBrom HG520 and MERCONTROL 7895, respectively. Considerations including cost, injection rate, and equipment setup are discussed within this section.

4.1 Injection Rate

The following parameters were used in order to determine the minimum injection rates:

Airflow	645,000 dscfm
Mercury Concentration	16.7 ug Hg/dscm
SO ₂ Concentration	12.4 ppmv SO ₂
Temperature	350 °F

Details on the calculations used to determine the injection rates are included in Appendix B.

The minimum injection rate for both the HBr and CaBr₂ solution is 0.01 gal/hr.

This rate assumes all of the halide solution reacts with the mercury present. In reality, some of the solution will be used in side reactions, so the rate should be scaled up. Therefore, HTC could consider starting at a rate of 0.3 gph. The injection rate will be varied from 0.3gph to 2.0gph to optimize the mercury reduction during the initial screening emissions testing.

At a rate of 0.3 gph to 2.0gph, a total of 432 to 2880 gallons would be used over a 60-day trial. The products are sold in drums or totes. Therefore, the total order of totes or drums will depend on the chemical injection rate chosen from the screening results.

4.2 Injection Equipment

The injection equipment consists of a stainless steel air atomizing nozzle attached to a stainless steel lance. A flexible hose runs from a lance to a chemical metering pump that is used to control the flow of solution to the nozzle. The pump is then connected to the liquid container.

The total footprint needed for the system is approximately $10' \times 10'$. Access to power and plant air will also be required.

Nalco quoted \$5,000/mo. to rent the injection equipment. This included the Nalco's time to aid in set-up and service visits. However, Nalco's equipment cannot be used to test HBr (supplied by Lanxess). Therefore, HTC has decided to purchase the pumping equipment and perform the setup and maintenance.

4.3 Corrosion Coupon Testing

The secondary effects of halide injection are currently an unknown factor. One concern is that using halides could result in an increased risk of acid generation that creates a corrosive atmosphere for equipment. Corrosion coupons testing will take place downstream of the injection location to measure the corrosion rate during the halide injection testing. Corrosion coupon will be located in the windbox exhaust duct between the multiclone house and windbox exhaust fan. Concurrent with halide injection testing, a set of corrosion coupons will be placed in the same locations on line 1 furnace for the same duration of time to compare the corrosion rates with and without halide injection.

Corrosion Testing Laboratories, Inc. is supplying the coupon and coupon holders. The lab will supply HTC with clean, dry mild steel coupons that have been weighed and measured. HTC will send grate bars to the lab for cleaning and weighing, prior to the test, which will then be prepared according to the ASTM standard and sent back to HTC for testing. The lab will supply directions on the insertion, removal, and appropriate handling of the coupon samples.

4.4 Additional Considerations

Additional considerations such as safety concerns, handling considerations, and material storage options should be considered further. Please refer to the Safety Data Sheets are on file at HTC.

5.0 Stack Test Methods

This section provides a brief summary of the stack-test methods that will be used during the halide injection trial and Barr's recommendation.

- Ontario Hydro method (ASTM International Method D6784-16 Standard Test Method for Elemental, Oxidized, Particle-Bound, and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources).
 - a. The Ontario Hydro (OH) method has the ability to accurately measure total and particulate-bound speciated mercury emissions.
 - b. The Ontario Hydro method will be used during baseline and long term stack testing.
- EPA Method 30B (Determination of Total Vapor Phase Mercury Emissions From Coal-Fired Combustion Sources Using Carbon Sorbent Traps)
 - a. Method 30B is a procedure for measuring total vapor phase mercury emissions from coal-fired combustion sources using sorbent trap sampling and an extractive or thermal analytical technique. This method is only intended for use under relatively low particulate conditions and cannot measure particulate-bound mercury.
 - b. Method 30B will be used during the screening tests due to its quick results and the low amount of particulate bound mercury expected.
- EPA Method 5 (Determination of Particulate Matter Emissions from Stationary Sources)
 - a. When using halides, elemental mercury reacts to form oxidized mercury, which can be captured by the wet scrubber. This increase in oxidized mercury can overload the scrubber slurry to the point of 'particulate slip.'
 - b. EPA Method 5 can be tested concurrently with the Ontario Hydro and EPA Method 29. If EPA Method 30B is chosen instead of Ontario Hydro and EPA Method 29, additional EPA Method 5 tests will need to be performed.
 - c. EPA Method 5 will be used during baseline and long term stack testing. It will be run once at the end of the screening week under the conditions chosen for the long term test.
- EPA Method 26A (Determination of Hydrogen Halide and Halogen Emissions from Stationary Source Isokinetic Method)
 - a. Method 26A is used to quantify emissions of hydrogen halides (HX) [HCI, HBr, and HF] and halogens (X2) [CI2 and Br2]. The dissociated halogen gas should react with elemental mercury to create oxidized mercury, which can be captured by the scrubber. If unreacted halides are exiting the stack, then the reaction is likely at its saturation point. Therefore, this method can be used to determine the optimum injection rate and avoid using excess halides.

- b. Method 26A will be run during the baseline and long term stack testing.
- Fourier Transform Infrared Spectroscopy (FTIR)
 - a. Fourier transform infrared spectroscopy (FTIR) is a technique which is used to obtain an infrared spectrum of absorption or emission of a solid, liquid or gas. An FTIR spectrometer simultaneously collects high spectral resolution data over a wide spectral range. FTIR could be used to collect real-time halide and sulfuric acid emission data.
 - b. The FTIR will be run during the screening tests.
- EPA Method 8A (Determination of Sulfuric Acid vapor or mist and Sulfur Dioxide Emissions from Kraft recovery furnaces)
 - a. Method 8A is used for the determination of H₂SO₄ (including H₂SO₄ mist and SO₃) from stationary sources. There is potential for H₂SO₄ formation from a side-reaction between the halide chemical and the SO₂ present in the flue gas. H₂SO₄ is a PSD pollutant with potential air permitting impacts and therefore should be included in the stack testing regime.
 - b. Method 8A will be run during the baseline, screening, and long term stack tests.
- Gas Chromatography
 - a. Gas Chromatography is a technique which is used to measure gaseous organics. It separates the major organic components of a gas mixture and quantifies them by flame ionization, photoionization, electron capture, or other appropriate detection principles. Gas chromatography will be used to measure hydrogen sulfide (H₂S).
 - b. Gas Chromatography will be used during baseline, screening, and long term stack testing.

6.0 Test Plan Outline

Given the main objectives and the overall activities to be accomplished during this testing campaign, the following test protocol is set forth as a guide to the operations once all equipment has been set up and commissioned.

- Team members
 - a. HTC site Manager will be Corie Ekholm, 218-262-6866
 - i. Alternate: Dan Aagenes, 218-262-5965
 - b. Stack Testing Project Manager will be Thomas Leier, 218-929-7070
 - Alternate: Tom Kuchinski, 763-548-4954
- Safety
 - a. All staff working with the testing system:
 - i. Shall be aware of the equipment and materials being used and the associated hazards of the materials and work areas
 - ii. Shall be current on their MSHA training, fall protection certified, and required sitespecific training

iii. Shall wear the appropriate personal protective equipment, including safety shoes, hard hat, hearing protection, and safety glasses

Emissions Test Planning

- a. During emissions testing, a safety briefing will occur each morning.
- b. In addition, a daily planning discussion will be held among the testing group and client operation representatives identifying the test plan and conditions with responsibilities of each team member. Communication is important to the success of the emissions test.
- c. This daily plan will guide the work for that day and the previous day testing results will be reviewed to identify good and poor performance parameters and recommend adjustments or process changes if required.

Data Recording

- a. In order to maximize the value of this test, data must be recorded as clearly and completely as possible. The DCS historian database will be used to collect real-time process and lab data which will be critical in determining process operation and product quality during testing.
- b. HTC operations staff will develop a list of key process and lab data points to monitor during the testing. This list will include data from reports and the data historians from the process.
- Testing and Project Assistance from Barr
 - a. HTC will manage testing coordination and schedules with vendors
 - b. HTC will manage collection of process and test data
 - c. HTC will manage plant sample collection and laboratory analytical results
- Initial Halide Dose Rate of 0.3 gph
 - a. Change of dose rate will be determined by HTC
 - b. Liquid halide will be injected into the windbox exhaust fan duct prior to the multiclone house using a pneumatic pumping system operated by HTC

Stack Testing

- a. Stack testing will be completed at selected times during the test. The testing will occur during steady-state operation, determined by HTC plant management and operations.
- b. Baseline testing (no halide injection)
 - i. Mercury: OH Method
 - ii. Halides/Halogens: EPA Method 26A
 - iii. Particulate Matter: EPA Method 5
 - iv. H₂SO₄: EPA Method 8A
 - v. H₂S: Gas chromatography
- c. Initial screening performance testing to determine optimized injection rate
 - i. Mercury: EPA Method 30B with on-site analysis

- ii. Halides and H₂SO₄: real-time FTIR
- iii. Particulate Matter: EPA Method 5 only on chosen test scenario
- iv. H₂S: Gas Chromatography
- d. Long-Term Performance Testing
 - i. Mercury: OH Method
 - ii. Halides/Halogens: EPA Method 26Aiii. Particulate Matter: EPA Method 5
 - iv. H₂SO₄: EPA Method 8A v. H₂S: Gas chromatography
- Stack emissions reduction evaluation—Long-term testing
 - a. Evaluate emission testing results
 - b. Compare emissions during halide injection trial to baseline
- Determine final destination of mercury from scrubber (Section 8.0)
- Determine whether halide injection causes increased corrosion (Section 9.0)
- Quantify operating and maintenance cost to determine economic feasibility (Section 10.0)
- Determine technical feasibility of halide injection (Section 12.0)
- Determine impact on pellet quality (Section 12.0)
- Complete test report (Section 13.0)

7.0 Proposed Schedule

Table 1 shows the preferred schedule for conducting the halide injection study.

Table 1 - Estimated Test Schedule

Date	Milestone
09/05/2017	Conduct baseline emissions testing
09/11/2017	Begin halide injection and initial screening emissions test
9/18/17	Begin long term chemical injection. Install coupon holders; make sure pallets with test grate bars are installed.
10/23/2017	Conduct long-term emissions test
11/19/2017	Finish halide injection, remove coupons and grate bars

These schedules are subject to change and will be finalized upon further review.

8.0 Mercury Fate Determination

Selected process samples are to be collected and analyzed to determine mercury concentrations throughout the system during the trial. Coordination of sample collection will be completed by Corie Ekholm of HTC working with PACE or a similar analytical lab for the specified samples. HTC staff will be responsible for coordination of analytical mercury analysis of the samples. HTC will sample the following locations for mercury analysis before and 1-2 times per week during halide injection testing:

- Scrubber water sump*
- Green ball
- Rougher tails
- Finisher Tails
- Concentrate thickener overflow
- Final Pellet
- Multi-tube house solids*
- Final Concentrate NOLA

It is recommended that at least four baseline composite samples be analyzed for mercury 2 weeks prior to halide testing. Each sample should be a composite of three grab samples, taken during steady-state operation of the process. During stack testing, these process samples should be collected while stack testing is in progress.

9.0 Corrosion Potential Determination

The baseline corrosion rate will be compared to the corrosion rate determined during the halide injection trial to determine if there is potential for excessive corrosion within the system due to halide injection. The rate of corrosion will also help inform the technical and economic feasibility determinations discussed in Sections 10.0 and 11.0 of this test plan.

10.0 Technical Feasibility Determination

Determining if halide is technically feasible can be accomplished during the test by determining the mercury reduction at each rate of halide injection without affecting normal operations. Part of the technical feasibility evaluation is to investigate the condition of the process equipment, ducting and equipment degradation. Barr recommends post-testing inspection of the multiclone house, venturi scrubber system, windbox exhaust fan, hood exhaust fan (green ball drying), all fan housing and blades, associated ducting, and duct inlets and outlets. This includes corrosion, deposits on equipment, abnormal wear at the point of injection and associated ductwork. Inspect for any unusual non-common events or equipment issues including excess wear and corrosion. Pressure checks, liquid/air flows, vibration monitors, equipment operating temperatures and motor health indicators should also be evaluated. This will also involve completing a visual inspection before and after the testing, as well as evaluation and documentation of operating parameter limits to determine real-time operating conditions and concerns.

11.0 Economic Feasibility Determination

HTC will gather information on the operating costs associated with the testing if halide injection reaches the economic assessment step of the BAMRT analysis. The costs would be documented for the

^{*} Samples will also be analyzed for bromide and calcium in addition to mercury

estimation of operating and maintenance costs if a full-scale system were to be implemented. Operating costs would be determined by recording the total amount of halide injected and operator manpower required during the testing. Maintenance costs could vary depending on the condition of the equipment and the operating duration, however any costs associated with maintaining the testing equipment may be considered for a full-scale system.

If the results allow the selected chemical to reach the economic evaluation stage of the BAMRT, the cost information gathered will be extrapolated to determine annual site-specific full-scale implementation costs associated with halide injection. Corrosion coupons analysis will help determine what potential equipment cost implications could occur.

12.0 Impact on Pellet Quality

Pellet physical and chemical quality parameters have been defined in Table 2. Concentrate parameters will be evaluated when pellet quality parameters are out of specification. These parameters will be monitored during the testing by the HTC lab to determine impact from the halide injection testing. The pellet quality parameters during testing will be compared to historical pellet variability and quality parameter limits set by HTC. If any pellet physical or chemical qualities exceed set parameters, the change will be identified and a root cause analysis will be performed to determine the potential cause.

The quality parameters include:

- Concentrate review and inspect when pellet properties become out of spec
- Greenball moisture only
- Pellet physical and chemical properties (normal)

Table 2 - Pellet Quality Parameters

Greenballs	Lower Spec	Target	Upper Spec	Frequency
Moisture	9.2%	9.4%	9.6%	3 hours
Pellets	Lower Spec	Target	Upper Spec	Frequency
% +1/4" AT	95.2%	96%	96.8%	3 hours
% -28 Mesh AT	3.1%	3.6%	4.1%	3 hours
Compression	430	470	510	3 hours
%-300 Compression		<15.3%		3 hours
% Iron	65.95%	66.15%	66.35%	Daily
% Silica	4.3%	4.5%	4.7%	Daily
Sizing +1/2"		<5		3 hours
Sizing -1/2" +3/8"	91%	93%	95%	3 hours

13.0 Report

A report will be prepared detailing the results and conclusions of the testing based on the information received from the stack testing team and process data described throughout this document. This report can be used to finalize a site-specific BAMRT analysis of halide injection at HTC.

Appendix A	
List of Evaluated Halides and Selection Criteria Summary	
13	

/Product Name	Company	Contact	Primary chemical makeup (e.g. HBr, CaBr ₂ , HCl, etc.)	Are proprietary chemicals added?	Concentration	Liquid, Solid, or Gas	Temperature Requirements (°F)	Necessary Residence Time (seconds)	Chosen for Study?	Reason not Chosen
GeoBrom HG400/ 430 /460	LanXess (formerly Chemtura and Great Lakes Solutions)	Jon Lehmkuhler Glen Bowden	NaBr	No	40%, 43%, and 46% available (w/w)	liquid	-15 - 40 min depending on concentration -	Fast Reaction times Depends on configuration of system.	no	CaBr2 was proven to work better in previous studies
GeoBrom HG520	LanXess (formerly Chemtura and Great Lakes Solutions)	Jon Lehmkuhler Glen Bowden	CaBr2	No	52% (w/w)	liquid	10 min	Fast Reaction times Depends on configuration of system.	yes	
GeoBrom HG480	LanXess (formerly Chemtura and Great Lakes Solutions)	Jon Lehmkuhler Glen Bowden	HBr	No	48% (w/w)	liquid	ambient -	Fast Reaction times Depends on configuration of system.	yes	
EMO	CB&I	Randall Moore	HBr, or HI	No	6 ppmv in flue gas	liquid	150 min	1	no	CB&I eliminated their mercury control division
Novinda	CB&I	Randall Moore	proprietary sulfite in silicate base material	Yes	1 to 2 lb./mmcf	solid	300 min	1	no	Contains Sulfides

SF12	Midwest	Marc	Proprietary	Yes	Proprietary	solid	600 min	1-3	no	Sorbent
	Energy Emissions	Sylvester John Pavlish								enhancer that is not typically used as a standalone product
SB31	Midwest Energy Emissions	Marc Sylvester John Pavlish	Proprietary	Yes	Proprietary	solid	650 max	1-3	no	Sorbent - concerns of particulate emissions
SB33	Midwest Energy Emissions	Marc Sylvester John Pavlish	Proprietary	Yes	Proprietary	solid	650 max	1-3	no	Sorbent - concerns of particulate emissions
AS- ULTRA	Novida	Mark Pettibone	Clay + Metal sulfides	No	NA	solid	800 max	0.5	no	Contains Sulfides
SF14	Midwest Energy Emissions	Marc Sylvester John Pavlish	Proprietary	Yes	Proprietary	solid	1,200 min	1-3	no	Sorbent enhancer that is not typically used as a standalone product
MERCON TROL 7895	Nalco	Dave Leingang	CaBr2	No	52% w/w	liquid	1,490 min	1	yes	purchased from Lanxess
Nalco and others -	CB&I	Randall Moore	CaBr2	No	200 to 400 ppm	liquid	1,500 min	n/a	no	Requires too high of temperature
SF10	Midwest Energy Emissions	Marc Sylvester John Pavlish	Proprietary	Yes	Proprietary	solid	1,800 min	1-3	no	Requires too high of temperature
M- Prove™	ADA	Scott Terhune	KI	No	47% - 53% w/w	liquid	1,800 min	n/a	no	Requires too high of temperature
CaBr2	Albemarle	Tim Frost	CaBr2	No	54% w/w	liquid	2,000 min	>10	no	Requires too high of temperature

Redox	CB&I	Randall	proprietary	Vac	50 nnmw	liquid	none	unknown	no	Requires too high	
Nedox	CDQI	Moore	sulfite	163	эо рртти	nquiu	Horic	diminoviii	110	of temperature	

Injection Rate Calculations

Information Provided	fo	rn	na	tio	n l	P	ro۱	лic	ed	L
----------------------	----	----	----	-----	-----	---	-----	-----	----	---

645000 dscfm

16.7 ug Hg/dscm

12.4 ppmv SO₂

350 °F

Constants

200.59 lb/lbmol Molecular Weight of Hg

80.9 lb/lbmol

Molecular Weight of HBr

235.98 lb/lbmol

Molecular Weight of CaBr₂

93.0 lb/ft3 109.87 lb/ft³ Density of HBr solution

Density of CaBr₂ solution

 $7.4805 \text{ gal} = 1 \text{ ft}^3$

453.59 g = 1 lb

645000	dscf	х	16.7 ug Hg	х	1 scm	x	1 g Hg	х	60	min	X	1 lb	=	0.040 lb Hg	х	1 Ibmol Hg	=	0.0002 Ibmol Hg
	min		dscm		35.315 scf		1000000 ug Hg			hr		453.6 g		hr		200.6 lb Hg		hr

4HBr + O₂ --> 2Br₂ + 2H₂O Br₂ + Hg⁰ --> HgBr₂

Minimum HBr (aq) Required

0.0002 lbmol Hg	х	1 Ibmol Br ₂ (reacted)	х	4 Ibmol HBr (reacted)	Х	80.9 lb HBr	Х	1 lb HBr (aq)	=	0.068	lb HBr (aq)
hr		1 Ibmol Hg (reacted)		2 Ibmol Br ₂ (produced)		Ibmol	•	0.48 lb HBr			hr

x 7.4805 gal 0.01 <u>gal</u> hr 93.0 lb HBr (aq)

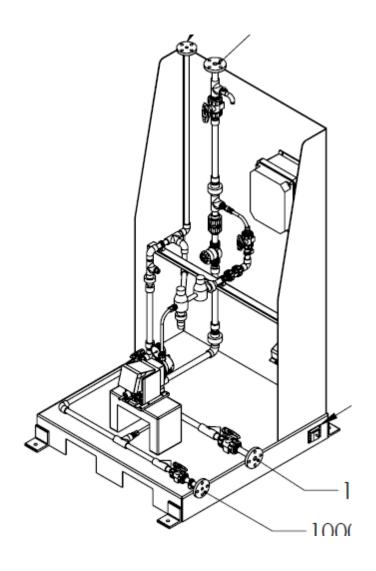
HBr solution required to react the Hg *this assumes all of the Br2 produced reacts with the Hg to form HgBr2

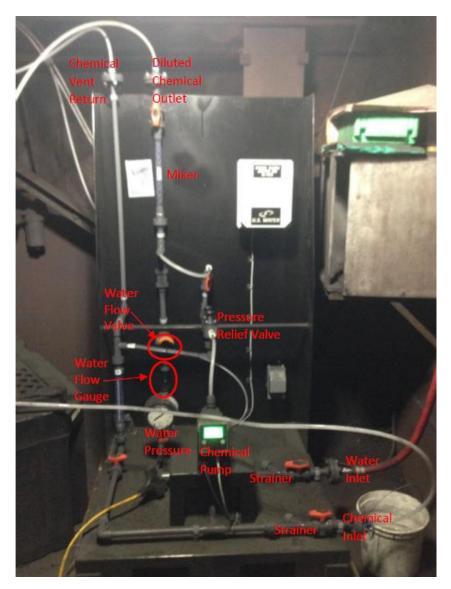
**should consider scaling up HBr injection rate to account for some Br₂ reacting with SO₂ in side reactions

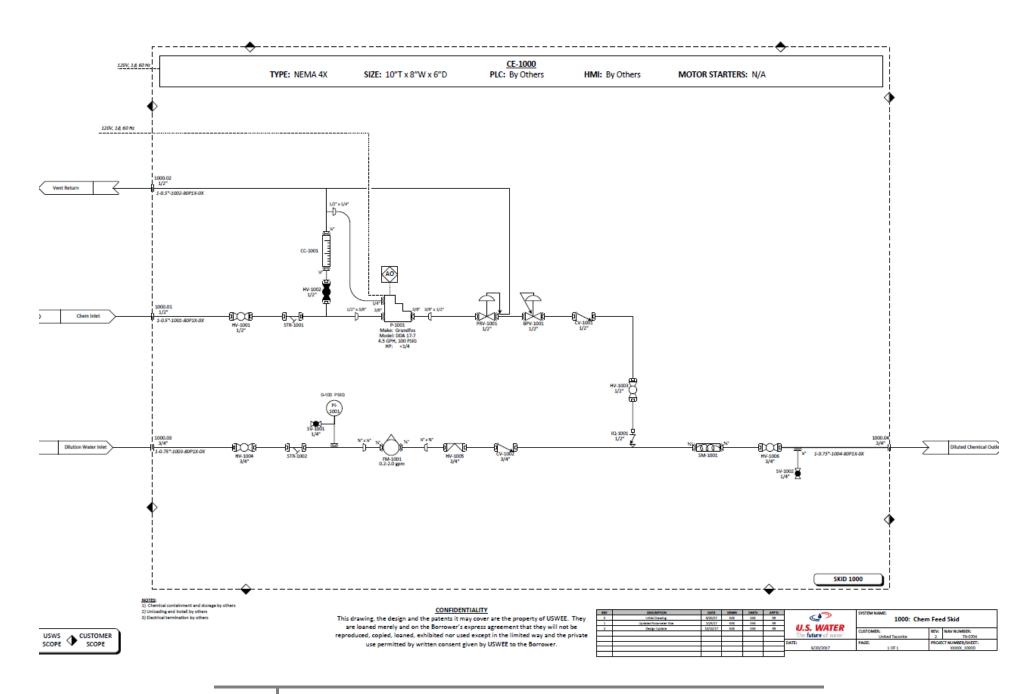
2CaBr₂ + O₂ --> 2Br₂ + 2H₂O $Br_2 + Hg^0 --> HgBr_2$

Minimum CaBr₂ (aq) Required

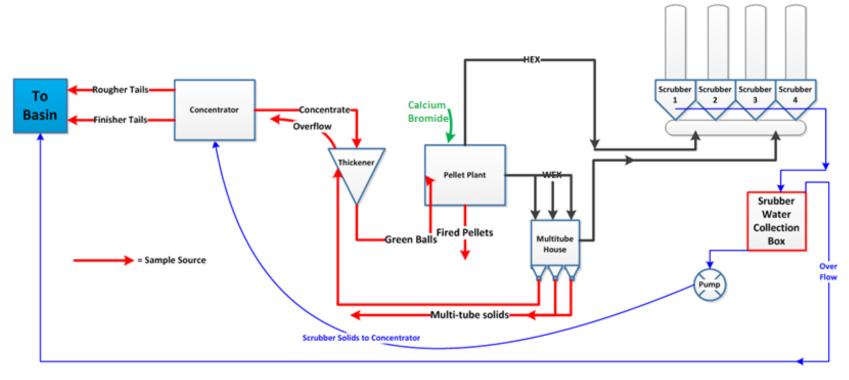
0.0002 lbmol Hg x	1 Ibmol Br ₂ (reacted)	Х	2 Ibmol CaBr ₂ (reacted)	х	236.0 lb CaBr ₂	Х	1 lb CaBr ₂ (aq)	=	0.091	lb CaBr ₂ (aq)
hr	1 Ibmol Hg (reacted)		2 Ibmol Br ₂ (produced)		Ibmol		0.52 lb CaBr ₂			hr


0.091 lb CaBr ₂ (aq)	_ x1 ft³	x 7.4805_gal	= 0	.01 gal	C
hr	109.9 lb CaBr ₂ (aq)	ft³		hr	*


CaBr₂ solution required to react the Hg


*this assumes all of the Br2 produced reacts with the Hg to form HgBr2

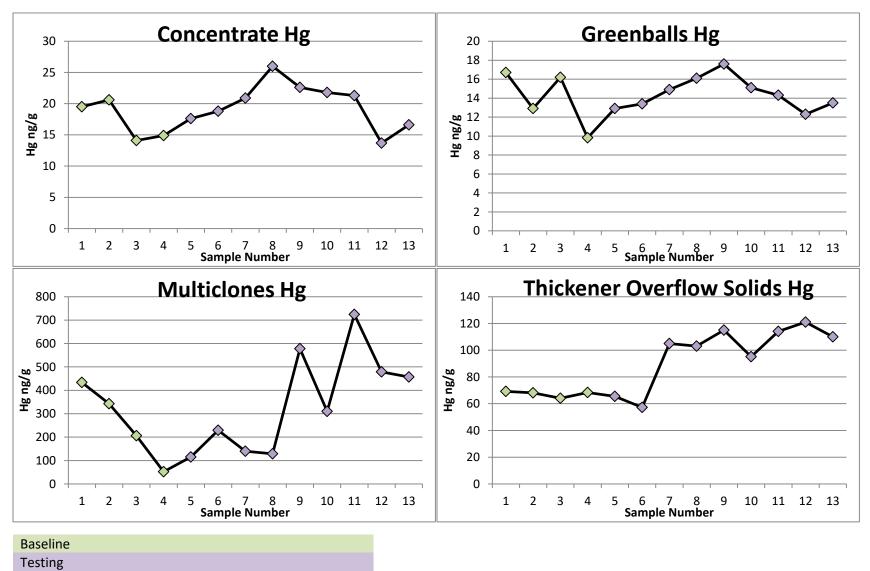
**should consider scaling up CaBr₂ injection rate to account for some Br₂ reacting with SO₂ in side reactions


Appendix C: Chemical Feed Skid

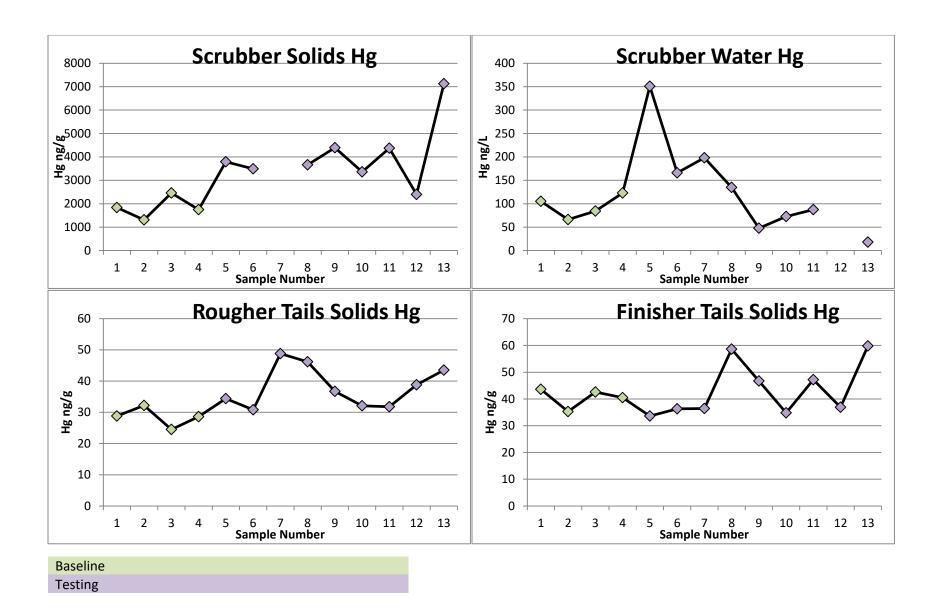
Appendix D: Sampling Diagram

Samples: 3 samples were collected from each location and combined into one daily sample that was analyzed for mercury Scrubber Water (scrubber sump) and multi-tube (multiclones) samples were also analyzed for calcium and bromide

Appendix E: Plant Samples

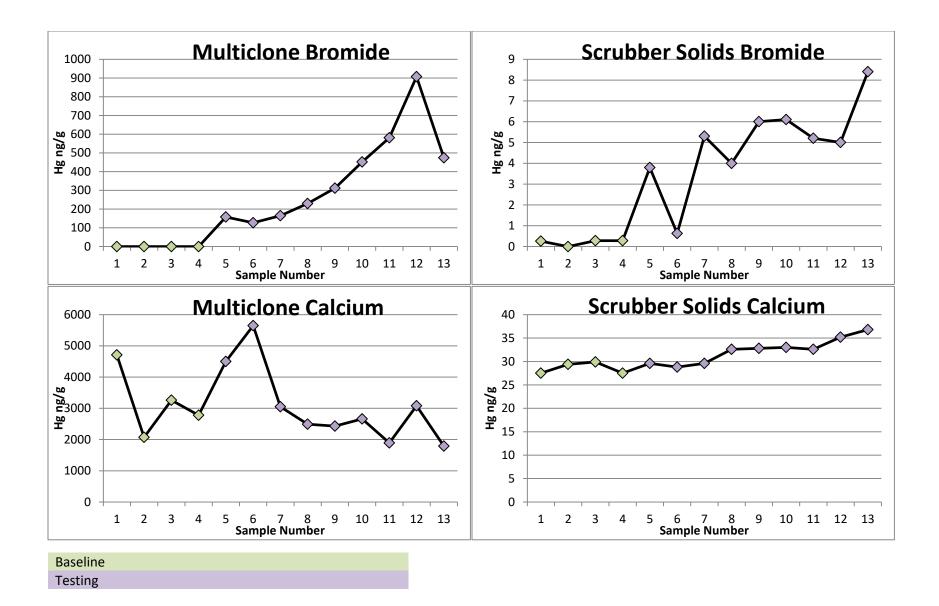

						Scru	bber						Conc	Thck
Sample	Date	Conce	ntrate	Greenballs	Pellets	Sol	ids	Multiclones	Finish	er Tails	Rough	er Tails	O'f	low
Number		Solid	Water	Solid	Solid	Solid	Water	Solid	Solid	Water	Solid	Water	Solid	Water
1	8/23/2017	19.5	ND	16.7	ND	1840	105	434	43.6	ND	28.8	ND	69.2	ND
2	8/28/2017	20.6	ND	12.9	ND	1310	66.1	343	35.3	ND	32.2	ND	68.1	0.665
3	9/6/2017	14.1	ND	16.2	ND	2460	84.3	206	42.6	ND	24.5	ND	64.1	1.6
4	9/7/2017	14.9	ND	9.82	ND	1750	123	52.1	40.5	ND	28.6	ND	68.4	ND
5	10/5/2017	17.6	ND	12.9	ND	3790	351	115	33.6	ND	34.4	ND	65.5	ND
6	10/10/2017	18.8	ND	13.4	ND	3490	166	229	36.3	ND	30.8	ND	57.2	ND
7	10/18/2017	20.9	ND	14.9	ND	67100	198	140	36.4	ND	48.8	ND	105	ND
8	10/25/2017	26	ND	16.1	ND	3660	135	129	58.6	ND	46.2	ND	103	ND
9	10/31/2017	22.6	ND	17.6	ND	4390	47.9	578	46.7	ND	36.7	ND	115	ND
10	11/1/2017	21.8	ND	15.1	ND	3360	72.8	310	34.8	ND	32.1	ND	95.2	ND
11	11/7/2017	21.3	ND	14.3	ND	4370	87.5	724	47.2	ND	31.8	ND	114	ND
12	11/14/2017	13.7	ND	12.3	ND	2400	867	479	36.9	ND	38.8	ND	121	ND
13	11/21/2017	16.6	ND	13.5	ND	7130	18	457	59.8	ND	43.5	ND	110	ND

Baseline Testing Outliers


Outliers are not plotted on graphs

ND = non detect

Sample Graphs



38

	Calciu	m	Bromi	de
	Scrubber Solids	Multiclones	Scrubber Solids	Multiclones
8/23/2017	27.5	4710	0.26	ND
8/28/2017	29.4	2070	ND	ND
9/6/2017	29.9	3260	0.28	ND
9/7/2017	27.5	2780	0.28	ND
10/5/2017	29.6	4500	3.8	158
10/10/2017	28.8	5650	0.63	127
10/18/2017	29.6	3050	5.3	165
10/25/2017	32.6	2490	4	230
10/31/2017	32.8	2430	6	312
11/1/2017	33	2660	6.1	452
11/7/2017	32.6	1890	5.2	581
11/14/2017	35.2	3080	5	907
11/21/2017	36.8	1790	8.4	474

Baseline Testing

Appendix F: Corrosion Report

The corrosion report appendices are on file with HTC.

Corrosion Testing Laboratories, Inc.

January 23, 2018 CTL REF #34347-1

Corie Ekholm Hibbing Taconite Company 4950 Hibbing Taconite Co Access Road Central Warehouse Hibbing, MN 55746

Re: Onsite Exposure of Test Racks and Furnace Grates

Dear Ms. Ekholm:

Presented herein are the results of the above referenced testing. This work was authorized per Hibbing Taconite Company Purchase Orders L52827 and L53832.

Hibbing Taconite requested assistance in a corrosion study being performed onsite at Hibbing Taconite. CTL provided two test racks fitted with 1020 carbon steel specimens ready for exposure. Hibbing Taconite submitted six (6) new furnace grates for initial evaluation. The Test Racks and furnace grates were sent to Hibbing Taconite for exposure and then returned to CTL for evaluation.

Test Racks

Six test specimens measuring approximately 1.5-inches by 2-inches x 0.080-inch thick were prepared form 1020 carbon steel stock. A 3/8-inch mounting hole was drilled in the center of each specimen and each specimen was stamped with a unique alpha numeric code, **Figure 1**. Each specimen was cleaned, measured to the nearest 0.1 mm, and weighed to the nearest 0.0001 gram.

Two Test racks were fabricated from 316L stainless steel and consisted of a flat plate sized to fit a 4-inch standard pipe flange with a 4-foot long length of threaded rod for attachment of the test specimens.

The test racks were assembled with three test specimens on each rack. The test specimens were isolated from the rack and each other with zirconia ceramic washers, **Figure 2**. A tab on the mounting plate for each rack was stamped with a "1" or "2".

Furnace Grates

Six identical furnace grates were received form Hibbing Taconite. The grates were reported to be cast stainless steel alloy HI (28% Cr - 15% Ni). The furnace grates were cleaned and inspected at CTL. A small area on the side of each grate was ground smooth and finished with 240 grit abrasive paper to obtain a uniform finish. The grates possessed a somewhat uniformly rough surface finish typical of castings. A small area was ground smooth to obtain a better indication of any surface corrosion that may occur during exposure. A numerical identification was stamped into each grate to the right of the polished area, Figure 3. The ID consisted of our Job number (34347) and a

Corrosion Testing Laboratories, Inc.

Hibbing Taconite Company January 23, 2018

sequential number (1 to 6). Each grate was weighed to the nearest 0.01 gram and photographed for future reference.

Exposure

The test racks and furnace grates were shipped to Hibbing Taconite and exposed onsite. The details of the exposure provided by Hibbing Taconite are tabulated below.

Test Racks				
	Line 1	Line 2		
Total Tons	572,612	521,021		
Total Hrs	1,212	1,156		
Chem Hrs	0	1096		
	AYP-26	AYP-29		
Test Serial #s	AYP-27	AYP-30		
	AYP-28	AYP-31		

Grate Bars					
	Line 1	Line 2			
Total Tons	691,602	629,751			
Total Hrs	1,466	1,396			
Chem Hrs	0	1128			
	34347 4	34347 1			
Test Serial #s	34347 5	34347 2			
	34347 6	34347 3			

It is our understanding that the test racks were exposed in ductwork exiting the furnace and the grates were exposed in the furnace. Line 1 was operated using the current processing procedures and Line 2 was operated with the addition of calcium bromide to the process.

RESULTS

Test Racks

The end of the tongue containing the test specimens was removed from each test rack and returned to CTL. The assemblies were coated with a reddish orange deposit, Figure 4. Deposits from each rack were sampled and set aside for analysis of elemental composition using energy dispersive spectroscopy (EDS).

The test rack was disassembled and the specimens cleaned, reweighed, examined at up to 40X magnification, and photographed. Corrosion rates were calculated based on mass loss assuming that there was uniform mass lost over the entire surface of the test specimens. Stereoscopic examination of the cleaned specimens revealed small areas of more active corrosion associated

Corrosion Testing Laboratories, Inc.

Hibbing Taconite Company January 23, 2018

with traces of tightly adherent deposits. The depth of attack was minimal, <0.1 mils). The results are summarized in Table 1.

TABLE 1 1020 Carbon Steel Exposed in Furnace Ducting

Line	Specimen ID	Corrosion Rate (mpy ¹)	Comments
	AYP-26	0.15	General Corrosion with small areas of more
1	AYP-27	0.10	active corrosion underneath tightly adherent
	AYP-28	0.16	deposits.
	AYP-29	0.30	General Corrosion with small areas of more
2	AYP-30	0.45	active corrosion underneath tightly adherent
	AYP-31	0.24	deposits.

 $^{^{1}}$ mpy = mils per year, 1 mil = 0.001-inch.

Photographs of the test specimens are attached in Appendix A.

EDS Analysis. Deposits were collected from each set of test specimens and mounted on a carbon stub that was inserted into a SciXr scanning electron microscope (SEM) equipped with a SciXr EDS light element detector (carbon and above) and software. A standardless semi-quantitative analysis was performed on the collected spectra. Note that the primary peaks for aluminum and bromine overlap and differentiation at low concentrations is not possible. The results are summarized in Table 2. The individual spectra are presented in Appendix A.

TABLE 2
Elemental Composition (Wt%) of Deposits on Test Specimens

Sample	0	Na	A1/Br	Si	S	K	Cr	Ca	Fe	As
Rack 1	47.6	1.9	<0.1	1.8	0.2	1.3	< 0.1	<0.1	33.8	13.4
Rack 2	46.5	-	0.5	2.2	0.2	-	-	0.3	49.9	0.4

Furnace Grates

The exposed furnace grates were covered with reddish orange deposits that were tightly adherent. Standard cleaning with mild brushing was unable to effectively remove the deposits. Removal of the deposits required light blasting with glass beads. After cleaning some discoloration remained near the top of the furnace grates. Otherwise, the grates appeared relatively unaffected by the exposure. There were no obvious areas of corrosion or metal wastage. The cleaned grates were reweighed and corrosion rates calculated based on mass loss assuming that there was uniform mass lost over the entire surface of the grates. The results are summarized in Table 3.

Hibbing Taconite Company January 23, 2018

TABLE 3
Cast Stainless Steel Alloy HI Grates Exposed in Furnace

Line	Grate ID	Corrosion Rate (mpy)	Comments
1	34347-4	0.18	General Corrosion
	34347-5	0.18	
	34347-6	0.14	
2	34347-1	0.52	General Corrosion
	34347-2	0.66	
	34347-3	0.70	

Photographs of the furnace grates are attached in Appendix B.

Metallographic cross-sections. A section from the top of each grate was removed and a metallographic mount prepared to determine if the surface microstructure had been affected by the exposure. The cross-sections were viewed in the as polished condition and hen etched to reveal the general microstructure. No unusual features were observed on the surface of the exposed grates. No intergranular or other localized forms of attack were observed. Photomicrographs are presented in Appendix B.

DISCUSSION

The corrosion rates were calculated assuming that there was uniform lass loss over the entire surface of the test specimens. When localized corrosion occurs, these calculate rates may not be an accurate representation of the metal penetration rate.

Carbon Steel Specimens Exposed in the Ductwork

Corrosion rates were low in both duct lines with corrosion rates <0.5 mpy. Both sets showed scattered areas where more active corrosion had occurred underneath tightly adherent deposits. The depth of attack in these areas was less than what could be accurately measured (<0.1 mils) It is notable that the average corrosion rate for the carbon steel specimens (0.33 mpy) exposed in Line 2 were approximately twice those of Line 1 (0.14 mpy). The deposit analysis suggests that calcium bromide is present on the deposits in Line 2 which may be the cause for the higher corrosion rates observed.

Cast Stainless Steel Grates Exposed in Furnace

The corrosion rates were also low for the furnace grates, <1 mpy. General corrosion was present on both sets with no indications of localized corrosion such as pitting or intergranular corrosion. The average corrosion rates for the grates exposed in Line 2 (0.63 mpy) were approximately 3.5 times higher than those exposed in Line 1 (0.18 mpy). Again, the data suggests that the addition of calcium bromide to the process will increase the general corrosion rates on the grates.

CTL REF #34347-1

Hibbing Taconite Company January 23, 2018

We trust the above will be beneficial in your study. We remain available should you want to discuss these results further.

Very truly yours,

Corrosion Testing Laboratories, Inc.

Bradley D. Krantz

VP of Laboratory Services

Fred M. 5 herman
Fred M. Sherman
Sr. Materials Analyst

Policy Statement

This study was performed and this report was prepared based upon specific samples and/or information provided to Corrosion Testing Laboratories, Inc. (CTL) by Hibbing Taconite Company. The information contained in this report represents only the materials tested or evaluated. Such work was performed in accordance with CTL's Quality Assurance Manual, Revision 13, issued 22 June 2009. The conclusions and opinions provided were developed within a reasonable degree of scientific certainty and are based upon materials and information provided to date. Should additional information become available (e.g., on further continued review of the material received or submission of additional samples for examination), we reserve the right to adjust our professional opinions.

CTL assumes no responsibility for variations in sample or data quality (composition, appearance, performance, etc.) or any other feature of similar subject matter produced (measured, manufactured, fabricated, etc.) by persons or under conditions over which we have no control. This report may not be altered, added to or subtracted from and, if this does occur, CTL does not accept responsibility for such alterations, additions, or deletions. This report shall not be reproduced, except in full, without the written approval of CTL. All material that was received by CTL will be discarded six (6) months after this report has been issued, unless other arrangements have been agreed upon.

Hibbing Taconite Company January 23, 2018

Figure 1. Prepared test specimens.

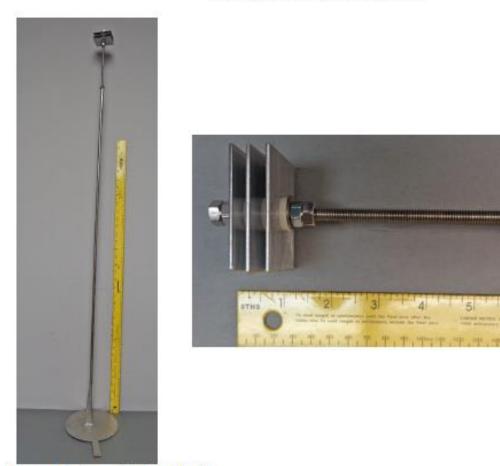


Figure 2. Assembled Test Rack

Page 6 of 7

Hibbing Taconite Company January 23, 2018

Figure 3. Furnace grate showing area that was ground and stamped ID.

Appendix G: Stack Test Screening Results

Full stack testing reports are on file at HTC.

Week 1:

September 14 & 15, 2017

Location	PH	PH	PH	WBE	WBE	Baseline
Chemical	CaBr2	CaBr2	CaBr2	HBr	CaBr2	
Dosage (gph)	2.0	2.0	2.0	2.0	2.0	
μg/dscm	3.29	3.48	4.22	6.06	6.46	7.57
% Reduction	55.9%	53.3%	43.5%	20.0%	14.0%	

Week 2

October 3 & 4, 2017

Location	PH	PH	Baseline
Chemical	HBr	CaBr2	
Dosage (gph)	2.0	2.0	
μg/dscm	3.97	3.78	6.67
% Reduction	39.9%	42.7%	

Location	PH	PH	PH	PH	Baseline
Chemical	CaBr2	CaBr2	CaBr2	CaBr2	
Dosage (gph)	1.0	2.0	3.0	4.0	
μg/dscm	4.68	3.78	3.70	3.57	6.67
% Reduction	29.4%	42.7%	43.5%	45.8%	

WBE = Windbox exhaust

PH = Preheat

Appendix H: Stack Test Results (baseline and long-term)

Full stack testing reports are on file at HTC.

Executive Summary

Barr Engineering Company performed mercury emissions tests on September 6-7, 2017 at the Hibbing Taconite Company's taconite facility located in Hibbing, Minnesota. Emissions tests were performed on the Pellet Indurating Furnace Line 2 (EU021) stacks (SV025-SV028) to measure speciated and total mercury emissions from each stack. The results will be used to establish baseline mercury emissions data.

Stack vent identification numbers, emission unit identification numbers and test results are presented in Tables ES-1.

Table ES-1 Executive Summary Table

Average Test Results – Baseline Testing					
Test Parameter ASTM D6784-16 Ontario Hydro	Pellet Indurating Furnace Line 2				
Air Emissions Permit Group		GPC	003		
Stack Vent Number	SV025	SV026	SV027	SV028	
Emission Unit		EUC)21		
Test Date	9/7/2017	9/7/2017	9/6/2017	9/6/2017	
Mercury Concentrations, µg/dscm					
Particulate Hg	0.029	0.022	0.016	0.013	
Oxidized Hg	0.71	0.61	0.40	0.28	
Elemental Hg	6.3	5.0	2.6	1.3	
Total Mercury	7.1	5.6	3.0	1.5	
Mercury Emission Rate, Ib/hr					
Particulate Hg	1.6 x 10 ⁻⁵	1.3 x 10 ⁻⁵	9.8 x 10 ⁻⁶	8.3 x 10 ⁻⁶	
Oxidized Hg	3.9 x 10 ⁻⁴	3.6 x 10 ⁻⁴	2.5 x 10 ⁻⁴	1.8 x 10 ⁻⁴	
Elemental Hg	3.5 x 10 ⁻³	3.0 x 10 ⁻³	1.6 x 10 ⁻³	8.3 x 10 ⁻⁴	
Total Mercury	3.9 x 10 ⁻³	3.4 x 10 ⁻³	1.9 x 10 ⁻³	1.0 x 10 ⁻³	
Estimated Annual Mercury Emissions, Ib/yr ¹	34.2	29.4	16.6	8.9	

¹ Annual emissions calculated assuming 8760 operating hours per year

Executive Summary

Barr Engineering Co. performed emissions tests September 6-8, 2017 at the Hibbing Taconite Company's taconite facility located in Hibbing, Minnesota. Emissions tests were performed on the Pellet Indurating Furnace Line 2 (EU021) stacks (SV025-SV028) to establish baseline particulate matter, sulfuric acid mist, and hydrogen bromide emissions. Determinations were made using EPA Method 5, NCASI Method 8A, and EPA Method 26A.

Stack vent identification numbers, emission unit identification numbers, and test results are presented in Tables ES-1.

Table ES-1 Executive Summary Table

	Average Test Results – Baseline Testing						
Test Parameter EPA Method 5, NCASI Method 8A, EPA Method 26A	Pellet Indurating Furnace Line 2						
Air Emissions Permit Group		GP0	003				
Stack Vent Number	SV025	SV026	SV027	SV028			
Emission Unit		EUO	021				
Test Date	9/6, 9/8/2017	9/6, 9/8/2017	9/7-8/2017	9/7-8/2017			
Particulate Matter Concentration, gr/d	dscf	•					
PM – Filterable	0.007	0.007	0.006	0.005			
Particulate Matter Emission Rate, lb/hr							
PM – Filterable	9.0	9.4	8.4	7.3			
Sulfuric Acid Mist Concentration							
SO3/SO4, lb/dscf	5.2 x 10 ⁻⁹	1.5 x 10 ⁻⁸	4.3 x 10 ⁻⁸	6.3 x 10 ⁻⁸			
SO3/SO4, ppm dry	0.02	0.06	0.17	0.25			
Sulfuric Acid Mist Emission Rate, lb/h	r	•	•	•			
SO3/SO4	0.046	0.15	0.43	0.67			
Halide Concentration, ppm dry							
Hydrogen Bromide	< 0.009	< 0.009	< 0.008	< 0.007			
Bromine	< 0.004	< 0.004	< 0.003	< 0.003			
Halide Emission Rate, lb/hr	Halide Emission Rate, Ib/hr						
Hydrogen Bromide	< 0.017	<0.018	< 0.016	<0.016			
Bromine	< 0.014	< 0.014	< 0.013	<0.014			

Executive Summary

Barr Engineering Company performed mercury emissions tests on October 31-November 2, 2017 at the Hibbing Taconite Company's taconite processing facility located in Hibbing, Minnesota. Emissions tests were performed on the Pellet Indurating Furnace Line 2 (EU021) stacks (SV025-SV028) during extended halide injection to evaluate the mercury emissions control. Determinations were also made for filterable particulate matter, sulfuric acid mist, halide and halogen, hydrogen sulfide (H₂S) and speciated-total mercury using ASTM D6784-16 Ontario Hydro test method.

Stack vent identification numbers, emission unit identification numbers, and mercury test results are presented in Table ES-1. Particulate matter, halide and halogen, and sulfuric acid mist results are presented in Table ES-2.

The results for H₂S are not included in the Executive Summary Table and Results section since the result for all stacks equaled zero parts per million (ppm). Gas chromatographs can be furnished upon request.

Table ES-1 Executive Summary Table - Mercury

Average Test Results – Long Term Mercury Testing							
Test Parameter ASTM D6784-16 Ontario Hydro	Pellet Indurating Furnace Line 2						
Air Emissions Permit Group		GPO	003				
Stack Vent Number	SV025	SV026	SV027	SV028			
Emission Unit	EU021						
Test Date	11/1/17	11/1/17	10/31/2017	10/31/2017			
Mercury Concentrations, µg/dscm	Mercury Concentrations, µg/dscm						
Particulate Hg	0.34	0.23	0.12	0.10			
Oxidized Hg	2.3	2.4	1.9	1.5			
Elemental Hg	0.68	0.78	0.48	0.36			
Total Mercury	3.3	3.4	2.5	1.9			
Mercury Emission Rate, lb/hr							
Particulate Hg	2.0 x 10 ⁻⁴	1.4 x 10 ⁻⁴	7.4 x 10 ⁻⁵	6.6 x 10 ⁻⁵			
Oxidized Hg	1.3 x 10 ⁻³	1.4 x 10 ⁻³	1.2 x 10 ⁻³	9.9 x 10 ⁻⁴			
Elemental Hg	3.9 x 10 ⁻⁴	4.7 x 10 ⁻⁴	3.0 x 10 ⁻⁴	2.4 x 10 ⁻⁴			
Total Mercury	1.9 x 10 ⁻³	2.0 x 10 ⁻³	1.6 x 10 ⁻³	1.3 x 10 ⁻³			
Estimated Annual Mercury Emissions, lb/yr ¹	16.5	17.8	13.6	11.3			

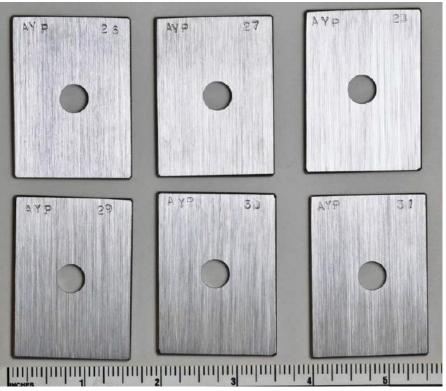
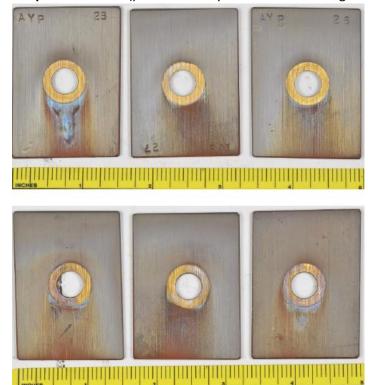

^{1.} Annual emissions calculated assuming 8760 operating hours per year.

Table ES-2 Executive Summary Table - PM, Halide/Halogen, and SAM


Average Test Results – Long Term Mercury Testing				
Test Parameter U.S. EPA Method 5 and 26A	Pellet Indurating Furnace Line 2			
Air Emissions Permit Group	GP003			
Stack Vent Number	SV025	SV026	SV027	SV028
Emission Unit	EU021			
Test Date	11/2/17	11/2/17	11/2/17	11/2/17
Pollutant Concentration, ppm				
Hydrogen Bromide	0.241	0.267	0.100	0.180
Bromine	<0.004	<0.003	<0.004	< 0.003
Pollutant Emission Rate, Ib/hr				
Hydrogen Bromide	0.45	0.53	0.23	0.40
Bromine	<0.013	<0.013	<0.015	<0.012
Particulate Concentration, gr/dscf	'			
PM - Filterable	0.005	0.005	0.004	0.004
Particulate Emissions Rate, Ib/hr				
PM - Filterable	6.8	6.5	5.7	5.9
Test Parameter NCASI Method 8A				
Stack Vent Number	SV025	SV026	SV027	SV028
Test Date	10/31/17	10/31/17	11/1/17	11/1/17
Pollutant Concentration				
SO ₃ /SO ₄ lb/dscf	1.0 x 10 ⁻⁹	2.6 x 10 ⁻⁹	2.9 x 10 ⁻⁸	4.8 x 10 ⁻⁸
SO₃SO₄ ppm-dry	0.0041	0.010	0.11	0.19
Pollutant Emissions Rate, Ib/hr				
SO₃/SO₄	0.0095	0.025	0.29	0.51

Appendix I: Pictures

Coupons before test (photo courtesy of Corrosion Testing Laboratories, Inc.)

Coupons after test (photo courtesy of Corrosion Testing Laboratories, Inc.)

Grate Bars before test (photo courtesy of Corrosion Testing Laboratories, Inc.)

Grate Bars after test (photo courtesy of Corrosion Testing Laboratories, Inc.)

Additional photos are on file at HTC

Injection lance before test

Injection lance after test

Injection nozzle before test

after test

Appendix B-5-3

Minorca Mine - Scrubber Solids Mass Balance

December 5, 2018

Technical Memorandum

To: Jaime Johnson, Nate Holmes (ArcelorMittal Minorca Mine)

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Project: Minorca Scrubber Solids Mass Balance (23691981)

c: Ryan Siats, Paul Taylor

Project Background

Barr Engineering Co. (Barr) has been assisting ArcelorMittal Minorca Mine Inc. (Minorca) with the development of a mercury mass balance for the mine and process facility. During 2016 and 2017, Minorca (with the assistance of Barr) completed sampling campaigns in the concentrator and pellet plant to quantify mercury levels throughout the process. The goal of the sampling campaigns was to provide analytical data to understand the movement of mercury through the process. This includes the mercury in the final pellet and the rejection of mercury to the tailings basin. One area identified from previous research, initial mass balance campaigns, and industry application was to conduct additional sampling to quantify the mercury reduction capabilities by removing the scrubber solids waste stream to tailings instead of recycling the scrubber solids through the process.

In Minorca's current operations, waste gases from the pellet plant furnace are directed to the scrubber system before reporting to the atmosphere. The scrubbers at Minorca utilize a moisture curtain that the waste gases must pass through before exiting the stack. The water currently used in the moisture curtain is a combination of recycled water from the scrubber recirculation tank and process water. The scrubber effluent, containing a combination of liquid and solids, flows to the scrubber recirculation tank. Minorca has indicated that approximately 75% of the scrubber effluent flow is recycled as makeup water back to the scrubber recirculation pumps while the remaining 25% is removed from the scrubber recirculation tank by the scrubber blowdown pump system and sent to the concentrate thickener lower splitter box, where is still can be recycled through the concentrate system..

The scrubber blowdown stream that is removed from the scrubber recirculation tank is replaced with water from the plant process system. Under normal operating conditions, this scrubber blowdown stream is sent to the concentrate lower splitter box which divides the flow between two concentrate thickeners to recover water and the potential iron units captured by the scrubber.

The mercury that is captured in the scrubber effluent stream is recycled back into the current process in two ways, the concentrate thickener system and the scrubber recirculation tank, with no potential opportunity for mercury to leave the process other than being volatilized in the furnace.

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 2

Minorca has indicated that it is necessary to remove the solids from the scrubber effluent through the scrubber recirculation tank in order to maintain the performance of the scrubbers. The scrubber recirculation tank has an internal baffle to help segregate the solids from the liquid. The scrubber effluent (scrubber blowdown stream) contains approximately 18-23 lb of mercury per year based on the two mercury mass balance sampling campaigns completed in 2016.

Previous testing conducted by Coleraine Research and reported by Michael Berndt in 2003 "Mercury and Mining in Minnesota" indicated that there is also potential for reducing mercury from the process by redirecting the scrubber blowdown stream to the tailings thickener system, and ultimately to the tailings basin. Therefore, Minorca determined that additional sampling and analysis of the process was necessary to identify the potential mercury reduction associated with diverting the scrubber blowdown stream to the tailings thickener instead of to the concentrate thickeners.

1.0 Sample Campaign Description

The test plan, located in Attachment A, was intended to identify the potential mercury reduction associated with redirecting the scrubber blowdown stream to the tailings thickener and ultimately to the tailings basin, versus the current process of pumping to the concentrate thickener.

The sampling campaign started the week of January 22nd, 2018 and extended through April 11th, 2018. Initial baseline sampling, corresponding to the current process in which the scrubber blowdown stream goes to the concentrate thickener, was conducted during the first two weeks of the test. The scrubber blowdown stream was redirected to the tailings thickener on Wednesday February 7th, 2018. There was a two week pause in sampling between the baseline samples and the first sample taken once the scrubber solids were redirected to allow the scrubber solids and recycle streams to adjust to their new process outputs. The sample schedule dates are identified in Table 1 below.

The process sample locations for this study are identified in Table 2 below and listed on the process flow diagram provided in Attachment B. The 10 sample locations were selected based on historical testing that identified them as the most representative streams to evaluate the mercury levels throughout the process once the scrubber solids were redirected to the tailings thickener.

After preliminary evaluation of the test data within the original sampling dates, additional sampling was warranted, and the final sampling event occurred on April 11^{th} , prior to the annual maintenance shutdown. The additional sampling event was selected due to the continuous increase in mercury noted in the tailings underflow sample, along with elevated mercury noted in the tailings thickener overflow stream.

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 3

Table 1 Sampling Schedule

Sampling Date	Process Condition
Tuesday January 23, 2018	Baseline
Tuesday January 30, 2018	Baseline
No Sample - Wednesday February 7, 2018	Redirect scrubber solids
No Sample, Week of February 11-17	Process stabilization
Monday February 19, 2018	Redirected scrubber solids
Thursday March 1, 2018	Redirected scrubber solids
Tuesday March 6, 2018	Redirected scrubber solids
Tuesday March 13, 2018	Redirected scrubber solids
Wednesday April 11, 2018	Redirected scrubber solids

Table 2 Process Sampling Locations

Location ID	Location	Input/Internal/Output
1	Tails Thickener Underflow (Fine Tails)	Output
2	Tails Thickener Overflow (Process Water)	Internal
3	Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump	Internal
4	Concentrate Thickener Feed (Float Plant Discharge)	Internal
5	Concentrate Thickener (Underflow)	Internal
6	Concentrate Thickener (Overflow)	Internal
7	Repulper Feed Belt ¹	Internal
8	Greenball (After Roll Screen – Furnace Feed to the Grate)	Internal
9a	Scrubber Blowdown (Sampling for mercury)	Output
9b	Scrubber Blowdown (Sampling for iron)	Output
10	Make-up Water Sample from Plant Head Tank/Raw Water Feed to Plant	Input

¹Sampled only if operating

2.0 Discussion

The results from the sampling events are summarized in Table 3.

Bill Hefner, Environmental Law Group, Ltd.

Boyd Eisenbraun, Chad Haugen, Nick Sosalla Minorca Mine – Scrubber Solids Mass Balance December 5, 2018 From: Subject:

Date:

Page:

Table 3 Results Summary

			Sampling Event/Date									
Sample Location	Parameter Pattern	1 1/23/2018 48B15 LR : 47B7 EP1	2 1/30/2018 48B15 LR : 11B17 LR	Baseline Average	3 2/19/2018 12B9 EP1 : 49B7 EP1	4 3/1/2018 12B9 EP1 : 12B17 LR	5 3/6/2018 12B9 EP1 : 13B17 LR	6 3/13/2018 12B9 EP1 : 13B17 LR	7 4/11/2018 15B17 LR : 19B6 EP2	Average Post Redirection		
	Ore Type Blend % Average Mag, Fe Average D.T. Silica Float Feed Silica	LC4: LC5 30%: 70% 22.76: 19.00 = 20.13 2.21: 3.50 = 3.11 5.03	LC5 : LC4 30% : 70% 22.76 : 27.09 = 25.79 2.21 : 4.60 = 3.88 5.83		LC4:LC5 40%:60% 25.58:19.71 = 22.06 2.51:3.24 = 2.95 4.8	LC4 : LC5 60% : 40% 25.58 : 22.82 = 24.48 2.51 : 5.28 = 3.62 5.68	LC4 : LC5 25% : 75% 25.58 : 22.82 = 23.51 2.51 : 4.15 = 3.74 5.99	LC4 : LC5 25% : 75% 25.58 : 22.82 = 23.51 2.51 : 4.15 = 3.74 5.99	LC5 : LC4 50% : 50% 23.92 : 20 = 21.96 4.5 : 2 = 3.25 5.34			
	Conc. % Dry Weight Recovery	26.85	36.82		30.25	34.5	32.8	32.8	30.07			
Inputs, lb Hg/yr	10 - Dissolved: Make-up Water Sample	0.02	0.02	0.02	0.02	0.07	0.04	0.04	0.02	0.03		
	2 - Tails Thickener Overflow	46	0.44	23	0.56	1.3	1.5	1.7	0.64	1.1		
	3 - Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump	69	74	72	320	160	81	130	140	170		
	4 - Concentrate Thickener Feed (Flot Plant Discharge)	45	52	48	290	120	65	94	61	130		
Internal Streams,	4 - Concentrate Thickener Feed (Flot Plant Discharge) wastewater	1.1	0.44	0.79	0.86	0.39	0.34	0.72	0.78	0.62		
lb Hg/yr	5 - Concentrate Thickener (Underflow)	79	35	57	400	130	70	180	92	170		
	6 - Concentrate Thickener (Overflow)	0.00	1.5	0.74	0.69	0.90	0.19	1.1	0.59	0.69		
	7 - Repulper Tank (Concentrate Reclaim Feed to Acid Conc - Slurry)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	8 - Greenball (After Roll Screen – Furnace Feed to the Grate)	57	23	40	52	89	62	50	56	62		
Outputs,	1 - Tails Thickener Underflow (Fine Tails)	270	240	260	460	620	580	940	280	580		
Ib Hg/yr	9 - Scrubber Blowdown solids	1.9	10.6	6.2	0.8	4.7	1.8	2.6	5.5	3.1		
15 11g/yl	9 - Scrubber Blowdown (Dissolved)	0.63	0.24	0.43	0.40	0.47	0.26	0.26	1.47	0.57		
	Total Sample Inputs, lb Hg/yr	0.02	0.02	0	0.02	0.07	0.04	0.04	0.02	0.04		
	Total Sample Outputs, lb Hg/yr	270	250	260	470	630	580	950	290	580		

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 5

Minorca was responsible for staffing and directing the sampling activities for each of the seven sampling events. Barr coordinated the scheduling of lab analysis which included providing sampling containers to Minorca and coordinating the sample analysis with Legend Technical Services (Legend) in St. Paul, and North Shore Analytical (NSA) in Duluth. The samples collected during each sampling event were shipped the same day to the respective labs based on analytical methods. The sampling was conducted according to the sampling test plan, provided in Attachment A. Solid samples were analyzed using ASTM E 1915-07a and liquid samples were analyzed using EPA 6010C. A summary of the results is included in Attachment C and the individual sampling event results are included in Attachment D.

2.1 General Observations

The following are general observations from the analysis of the scrubber solids redirection and mass balance:

- 1. The mercury data from this sampling campaign did provide information that redirecting the scrubber blowdown stream from the concentrate thickener will increase the mercury concentration in the tailings thickener and will reduce the mercury in the greenball.
- 2. The mercury levels in the final concentrate reporting to the thickener underflow increased when compared to the baseline samples average. An increase of approximately three times the level was noted between the baseline sampling events and after redirecting the scrubber blowdown stream (57 lb/yr baseline average; 170 lb/yr average after redirecting the blowdown). However, the sampling efforts during this campaign were focused on the mercury recycle associated with the scrubber blowdown process stream.
- 3. The mercury in the tailings thickener underflow stream increased once the scrubber blowdown stream was redirected to the tailings thickener. The mercury levels were at 260 lb/yr on average during baseline sampling prior to redirection of the scrubber blowdown stream. Once the scrubber blowdown stream was redirected to the tailings thickener the mercury increase in the underflow stream to an average of 580 lb/yr.
- 4. The tailings thickener underflow mercury levels continually increased as the process scrubber waste stream was sent to the tailings thickener until the last sample which indicated similar results as the baseline samples.
- 5. The tailings thickener overflow did not see a significant increase in mercury once the scrubber blowdown stream was redirected to the tailings thickener. Although sampling did not show an increase, the tailings thickener overflow stream is recycled back to the process water tank and could be a major contributor to recycle of mercury back into the process. The mercury level in the tailings thickener overflow increased slightly from 0.44 lb/yr to 1.34 lb/yr once the scrubber solids were redirected to the tailings thickener.
- 6. The mercury levels in the scrubber solids saw a reduction once the scrubber solids blowdown stream was redirected away from the concentrate thickener. This indicates that purging the solids from the scrubber recirculation tank does reduce the mercury recycle..

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 6

- 7. The mercury levels in the final concentrate from previous sampling campaigns completed in 2016 provided analytical results of 37.1 lb/yr and 57.5 lb/yr of mercury. This sample campaign noted a much higher average mercury analysis in the final concentrate at 170 lb/yr.
- 8. The mercury in the greenball was similar and stable during all sampling events. The analytical data indicated that the mercury levels measured in the greenball did not increase with increases noted in the final concentrate. Based on historical sampling, it is assumed that the mercury levels in the greenball would correlate to the mercury levels measured in the final concentrate.
- 9. Sampling event 3 indicated a much higher level of mercury in all concentrate streams at 396 lb/yr compared to the average of 170 lb/yr. However, this high level of mercury in the final concentrate did not increase the mercury in the greenball during the same sampling event. The greenball average after redirecting the solids was 62 lb/yr. Sampling event 3 was 52 lb/yr.
- 10. Across the sampling events, varying amounts of mercury were seen throughout the process. This variation appears to occur both with and without changes in ore blends. Throughout the sampling events, six different ore blends were seen in the plant feed, varying from 25% LC4/75% LC5 to 70% LC4/30% LC5. Using the concentrate thickener feed as a basis of the mercury in the concentrate, the mercury varied from 45 lb/yr (Sampling event 1) to 290 lb/yr (Sampling event 3) in the concentrate with no noticeable correlation to the specific ore blends. The analytical results indicated that during sampling event 3 a significant increase in the mercury can be directly attributed to the ore. We know that the mercury in the ore blends vary, based on blending ratios, locations from the mine and liberation characteristics. However, the recycling of mercury within the process also adds variability, but not at the increases noted from the ore.
- 11. The process mass balance associated with this sampling campaign indicates a reduction in mercury in the concentrate after the flotation plant. However, the mercury levels in the final concentrate increased and is similar to the mercury from the finisher concentrate before flotation. This indicates that the majority of mercury discharging from the finishers concentrate discharge ends up in the finished concentrate thickener underflow.
- 12. The mercury level in the concentrate thickener overflow decreased from 1.47lb/yr to 0.69 lb/yr once the scrubber solids were redirected to the tailings thickener.
- 13. The iron losses and tonnage associated with the process scrubber solids being sent to the tailings thickener averaged about 0.15 Ltph with an iron concentration similar to the final concentrate. This equates to approximately 1,260 Ltpy of concentrate that would be lost to tailings.
- 14. During the sampling campaign it was noted that the concentrate repulper was not utilized to supplement concentrate requirements.

2.2 Evaluation of Wasting Scrubber Solids

To further investigate the effects of the scrubber solids removal independent of the varying levels of mercury elsewhere in the process, Figure 1 and Figure 2 were created to compare the relative mercury present in the concentrate and the greenballs. Under normal operation, the mercury present in the scrubber solids is recycled back to the concentrate thickener. Figures 1 and 2 therefore compare stream "4 – Concentrate Thickener Feed (Flot Plant Discharge)" and stream "8 – Greenball (After Roll Screen –

Bill Hefner, Environmental Law Group, Ltd. Boyd Eisenbraun, Chad Haugen, Nick Sosalla Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 7

From:

Subject:

Furnace Feed to the Grate)". To accurately represent the mercury in the concentrate prior to the scrubber solid recycle stream, stream 4 (Concentrate Thickener Feed) is used for comparison instead of stream 5 (Concentrate Thickener Underflow), and can be compared to the mercury present in the greenballs. There is currently no process step that would remove mercury from the final concentrate once it is filtered and sent to the pellet plant to make greenballs. The only opportunity at this time to remove mercury in the pellet plant is to redirect the process scrubber blowdown stream to the tailings thickener. Therefore, it is expected that while removing the scrubber solids recycle stream, the mercury in the greenball should decrease relative to a decrease shown in the concentrate.

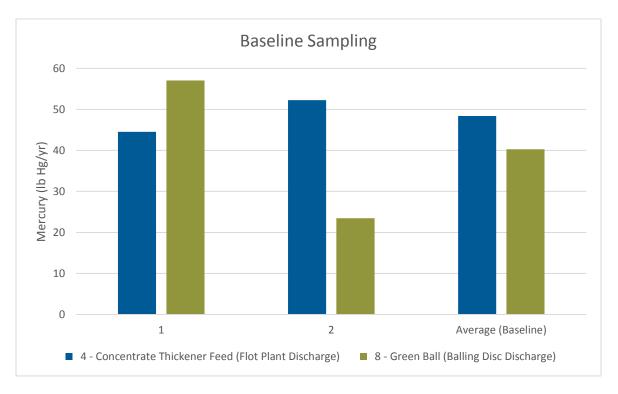


Figure 1 Calculated Mercury (lb/yr) for Concentrate and Greenballs (Baseline Sampling)

Bill Hefner, Environmental Law Group, Ltd. Boyd Eisenbraun, Chad Haugen, Nick Sosalla Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 8

From: Subject:

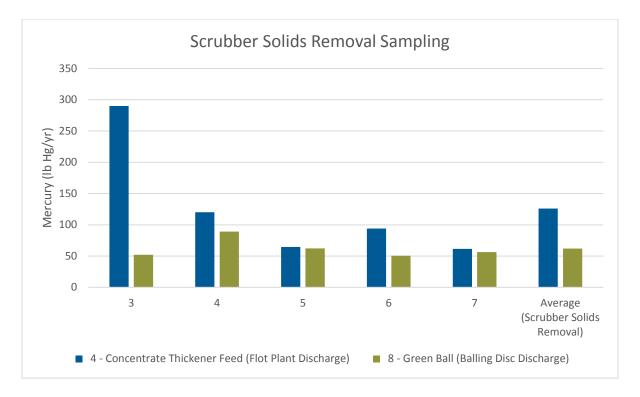


Figure 2 Calculated Mercury (lb/yr) for Concentrate and Greenballs (Scrubber Solids Removal Sampling)

Figure 1 and Figure 2 show that, on average, the relative mercury concentration in the greenballs compared to the concentrate did decrease once the scrubber solids stream was removed from the process instead of being recycled. During the two baseline samples, the mercury in the greenballs were on average 83% of the mercury contained in the concentrate. During the scrubber solids removal sampling events, the mercury in the greenballs averaged 49% of the mercury present in the concentrate. In general, it was expected that the mercury in the greenballs would be higher than the mercury in the concentrate during normal operation and equal to or less than the mercury in the greenballs during scrubber solid removal periods. From the data in Figure 1 and Figure 2, it can be seen that this expected trend was accurate for all but the baseline sampling event 2.

Based on the comparison between the average of the two baseline samples and the average of the five scrubber solid removal samples, the preliminary analysis shows that the scrubber solids discharge could provide up to a 41% mercury reduction in the greenballs. This reduction may be based on the specific ore characteristics and plant operation at the time of the sampling campaign. This 41% reduction was calculated as the difference between the greenball mercury contents relative to the flotation concentrate (83% and 49% for the baseline and removal samples, respectively) divided by the 83% baseline average to normalize the potential reduction to a common basis of mercury present in the concentrate.

Mercury baseline sampling conducted in 2016 at Minorca, and a mercury mass balance report from January of 2018, provided data that indicated the mercury concentration within the fired pellets is nearly

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 9

negligible. It can be assumed therefore that the majority of the mercury present in the greenballs reports to the scrubber system via the furnace off gas. Assuming constant scrubber mercury capture performance, the 41% reduction in the greenball mercury could correlate to a similar reduction in stack mercury.

One thing to note in this analysis, using the raw results as the basis of the overall average can unfairly skew the results in the presence of an extreme outlier such as the mercury lb/yr for the Concentrate Thickener Feed sample in sampling event 3 as seen in Figure 2. To remove this bias, an average can be calculated using the individual averages of each sampling event. This approach will produce an average that treats each sampling event equally instead of weighted based on the results of that sampling event. Data using this calculation method can be seen below in Table 4.

Table 4 Calculated Mercury Reduction for Each Sampling Event

	Sampling event	Mercury (lb Hg/yr) 4 – Concentrate Thickener Feed (Flot Plant Discharge)	Mercury (lb Hg/yr) 8 – Greenball (Balling Disc Discharge)	Mercury Ratio (Sample 8 / Sample 4)	Estimated Reduction
Baseline	1	45	57	127%	-
	2	52	23	44%	-
			Average	85%	-
Scrubber Solids	3	290	52	18%	79%
Removal	4	120	89	74%	13%
	5	65	62	95%	-12%
	6	94	50	53%	38%
	7	61	56	92%	-7%
			Average	66%	22%

Using this method, the mercury in the greenballs was on average 85% of the mercury contained in the concentrate during the baseline samples. During the scrubber solids removal sampling events, the mercury in the greenballs averaged 66% of the mercury present in the concentrate. Based on these two averages, up to a 22% mercury reduction in the greenballs can be calculated. This is a more conservative value than the previously calculated 41% reduction, and therefore should be used as the expected reduction going forward based on the specific ore characteristics and plant operation at the time of the sampling campaign.

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 10

3.0 Conclusion

The mercury mass balance sampling campaign associated with removing scrubber solids from the process was successful in providing additional data for mercury levels in the concentrator and pellet plant. Removing the scrubber blowdown and solids from the concentrate thickener did provide data that the mercury levels in the greenball were held constant and minimized during higher levels of mercury noted in upstream concentrate process streams. Removal of the scrubber solids from the concentrate thickener did remove the mercury recycle. The average mercury level in the concentrate thickener underflow during baseline sampling was 57 lb/yr, and once the scrubber blowdown stream was redirected the average mercury level increased to 170 lb/yr.

The increase in mercury in the concentrate is likely a direct correlation with mercury from the ore during the 3rd sampling campaign, which was not sampled. The liberation for each type of ore is complex and not always similar. This liberation of the ore can affect the mercury rejection to tailings early on in the process and does affect the mercury levels moving forward in the magnetic concentrate. Once the redirection of the scrubber blowdown stream to the tailings thickener was completed, the mercury level in the concentrate thickener underflow was higher than baseline sampling and more variable. The removal of the scrubber blowdown stream was expected to reduce the mercury in the concentrate underflow, and not increase. However, the increased mercury levels in the final concentrate noted during the removal of the scrubber blowdown did not carry over to the greenball. There is currently no process step that would remove mercury from the final concentrate once it is filtered and sent to the pellet plant to make greenballs to feed the pellet furnace. The only opportunity at this time to remove mercury in the pellet plant is to redirect the process scrubber blowdown stream, which has mercury, to the tailings thickener.

Removing the scrubber blowdown from the concentrate thickener and redirecting it to the tailings thickener did result in an increase in the mercury to the tailings thickener underflow stream. The levels of mercury in the tailings thickener underflow averaged 580 lb/hr during the redirection of scrubber blowdown. The mercury level in the tailings thickener underflow stream averaged approximately 260 lb/hrs for the two samples taken prior to redirection of the scrubber blowdown. This increase in mercury in the tailings thickener is likely the result of redirection of the scrubber blowdown stream. The mercury level in the tailings thickener solids could also be an indication of increased mercury in the ore based on similar increases noted in the concentrate. However, the mercury level in thickener tails underflow continued to increase during the sampling events, as the mercury level in the final concentrates was reduced.

The mercury level in the largest source of recycle water, the tailings thickener overflow, did not increase significantly. This recycle stream increased from baseline testing but was not enough to impact the overall mercury balance. A second recycle stream identified as the concentrate thickener overflow water saw a reduction in mercury after redirection. This data indicates that the mercury in the scrubber blowdown once redirected to the tailings thickener appears to leave in the tailings thickener underflow to the tailings basin, as represented by the increase in mercury concentration in the analytical data.

The mercury level in the greenball increased from 40 lb/yr to 62 lb/yr at the same time as scrubber blowdown from the concentrate thickener was redirected to the tailings thickener. This data indicates that

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 11

redirecting the scrubber solids during this sample period did not have an impact on reducing the mercury in the greenball on a total basis. However, data shown earlier in this memorandum in Table 4 shows that on a comparing mercury in the concentrate to that in the greenball indicates a possibility of up to a 22% mercury reduction on a relative basis.

The redirection of the scrubber solids to the tailings thickener did not provide evidence to indicate a major iron loss to the tailings. The average loss of 0.15 Ltph in the scrubber solids would be approximately 3.6 Ltpd of iron. This equates to approximately 1,260 Ltpy of concentrate that would be lost to tailings.

The overall tests and analytical results from this sampling campaign provides information that redirecting the scrubber blowdown to the tailings thickener does remove additional mercury from the process. This mercury level from the scrubber blowdown stream, if not redirected to the tailings thickener, does impact the mercury recycle in the process. The impact of the redirection of the scrubber blowdown with associated mercury level is based on the seven samples during a three month period. The data from this sampling campaign indicates that once the scrubber blowdown was redirected to the tailings thickener, the mercury levels in the tailings thickener underflow increased and was not recycled to the concentrate. The water from the scrubber blowdown stream will eventually report to the tailings thickener whether the scrubber solids are being recycled or not. Due to this, the removal of scrubber solids should not change the overall water balance in the plant. There may be relatively small changes in the overall energy balance due to the flow path of the warm scrubber water, but this was not considered or quantified as a part of this sampling campaign.

Bill Hefner, Environmental Law Group, Ltd.

From: Boyd Eisenbraun, Chad Haugen, Nick Sosalla Subject: Minorca Mine – Scrubber Solids Mass Balance

Date: December 5, 2018

Page: 12

4.0 Recommendations

Based on the findings of this sampling campaign, Barr recommends that Minorca evaluate the data from the test report and determine the potential long term impact of the redirection of scrubber blowdown to the tailings thickener. The evaluation would include understanding the process implications and costs associated with removing the scrubber solids from the process. Barr also recommends that Minorca evaluate the potential reduction of air mercury emissions associated with redirection of the scrubber blowdown.

Attachment A

Mercury Mass Balance Sampling Test Plan

Bill Hefner, Environmental Law Group, Ltd.

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Project: 23691981

c: Ryan Siats, Paul Taylor

Purpose: The purpose of this memorandum is to provide details on a sampling plan for the ArcelorMittal Minorca Mine to generate additional data and information on continued mercury reduction efforts.

This document provides a test plan for scrubber solids removal from the pellet plant induration process scrubber system. This plan also includes procedures for plant sampling and analysis associated with the evaluation of the effect removing scrubber solids has on mercury concentrations within the induration process. This test plan has been developed specifically for the ArcelorMittal Minorca Mine facility (Minorca) located in Virginia, Minnesota.

1.0 Introduction

The purpose of this document is to provide the background for developing a test plan to further evaluate the removal of scrubber solids from the pellet induration process at Minorca. It defines the goals of the test plan, the test plan procedures and sampling requirements, and a mercury mass balance to determine the effect of removing scrubber solids, and its impact on mercury concentration levels in the process. As a result of the test plan and sampling, Minorca wishes to obtain a quantitative analysis of the benefit in mercury reduction associated with removing the scrubber solids from the process.

This document outlines the next phase of testing at Minorca. State regulations (Minn. R. 7007.0502) require Minorca to reduce mercury emissions by January 1, 2025 to no more than 28% of the mercury emitted in 2008 or 2010, whichever is greater. The rule also requires Minorca to submit a mercury emissions reduction plan by December 30, 2018 to define which technology will achieve a 72% reduction, or propose an alternate plan if Minorca concludes that a 72% reduction is not technically or economically feasible, impairs pellet quality, and/or causes excessive corrosion to plant equipment. Minorca has conducted a thorough review of potential mercury reduction technologies and has determined that removal of scrubber solids from the process as one potential option for Best Available Mercury Reduction Technology (BAMRT). The removal of the scrubber solids was chosen for further review.

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 2

During 2016 and 2017, Minorca (with the assistance of Barr Engineering Co. (Barr)) completed a mercury mass balance sampling campaign in the concentrator and pellet plant to quantify mercury concentrations throughout the process. This mercury analysis also identified possible operational changes that could aid in reducing overall mercury air emissions from the induration process. One recommendation resulting from the mass balance was to perform additional sampling to quantify the mercury reduction capabilities of removing scrubber solids instead of recycling them through the process.

During current operation at Minorca, process waste gases from the pellet plant furnace are directed to the waste gas scrubber system before reporting to the atmosphere. The waste gas scrubber at Minorca utilizes a wet scrubber system including a moisture curtain that the process gas must pass through before exiting the stack. This scrubber utilizes water and the current source is a combination of recycled water from the process scrubber recirculation tank and fresh water. The scrubber effluent from the scrubber contains a combination of liquid and solids. This scrubber effluent is returned to the process scrubber recirculation tank. A large portion of this scrubber effluent that reports to the process scrubber recirculation tank is recycled back to the process waste gas scrubber. Discussions with Minorca has indicated that approximately 75% of the scrubber effluent flow returned from the waste gas scrubber to the process scrubber recirculation tank is recycled as makeup back to the process scrubber feed pumps. The remaining 25% of the scrubber effluent flow is assumed to be purged from the process scrubber recirculation tank by the scrubber blowdown pump system.

The scrubber blowdown stream flow that is removed from the process scrubber recirculation tank is replaced with water from the plant process system. Under normal operating conditions, this purged scrubber blowdown stream is sent to the concentrate lower splitter box which divides the flow between two concentrate thickeners. The water is sent to these concentrate thickeners to recover potential iron units captured by the waste gas scrubber. The mercury that is captured in the scrubber effluent stream and scrubber solids is recycled back into the current process through two ways, the concentrate thickener system and the process scrubber recirculation tank, with no potential opportunity for purging the mercury.

Minorca operations has indicated that without the purge stream from the process scrubber recirculation tank, the solids in the scrubber effluent will build up in the system and effect the performance of the waste gas scrubber. The process scrubber recirculation tank has a baffle in the tank to help segregate the solids from the liquid. The scrubber effluent and solids from the waste gas scrubber contained levels of mercury of approximately 18-23 lbs per year. Previous testing also indicated that there is potential for reducing mercury in the recycle by removing the scrubber solids via the scrubber blowdown stream and sending this process stream to the tailing thickener system, with this process stream sent to the tailings basin.

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 3

2.0 Test Plan

The following test plan is intended to identify and quantify the mercury reduction associated with eliminating scrubber solids from the process versus recycling them to the concentrate thickener. This process stream be redirected to the tailings system for removal of this mercury recycle stream. Minorca will be responsible for collection of the process samples identified within Table 2. Barr staff will be responsible for providing sample containers and coordinating and scheduling the analysis for these samples. Process samples should be taken during steady state operation, which will be determined by Minorca staff.

2.1 Goals

- Obtain balanced mercury concentrations throughout the pellet plant process and recycle streams.
 This includes the balling area and induration furnace.
- Measure mercury concentration of final concentrates, green ball, water recycle streams, and scrubber solids streams.
- Estimate the amount of mercury reduced in the process by removing scrubber solids.
- Estimate the associated iron losses corresponding to removal of scrubber solids.
- Identify the rate at which the system responds to removing scrubber solids by comparing finisher concentrate, flotation concentrate, concentrate thickener underflow and overflow, and green ball mercury concentrations.
- Measure the process water mercury levels during the test to determine the effects of removal of the scrubber solids.

2.2 Plant Performance Data

Plant performance data will be collected during the test periods to determine recovery and chemical analysis. During the testing duration it is important to collect the process flow measurements of solids, slurry, and water. This will inform a mass balance when combining the chemical analysis of the solids and liquids. Flow data requested is listed in Table 2.

2.3 Proposed Schedule

The 60 day test for Minorca is scheduled to start with baseline sampling, with current path of the scrubber solids. Once the baseline sampling is complete, the scrubber solids system will be redirected to the tailings system. The testing will commence the week of January 22nd, 2018 and extend through March 12th, 2018. However, if additional sampling is warranted, sampling may occur the up until April 16th.

The proposed sampling schedule is provided in Table 1.

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 4

Table 1 Sampling Schedule

Sample Date	Process Condition	Sample NTS Time Personnel		Minorca Personnel	
Tuesday January 23, 2018	Baseline	8:00am	2	1-2 Lab, Dave Vidmar	
Tuesday January 30, 2018	Baseline	8:00am	2	1-2 Lab, Dave Vidmar	
No Sample	No Sample Redirect scrubber solids No Sampling No Sampling		No Sampling	No Sampling	
No Sample	Process stabilization	tion No Sampling No Sampling		No Sampling	
Monday February 19, 2018	Redirected scrubber solids	8:00am	2	1-2 Lab, Dave Vidmar	
Thursday March 1, 2018	Redirected scrubber solids	8:00am	2	1-2 Lab, Nate or Jaime	
Tuesday March 6, 2018	018 Redirected scrubber solids		2	1-2 Lab, Dave Vidmar	
Tuesday March 13, 2018	Redirected scrubber solids	8:00am	2	1-2 Lab, Dave Vidmar	

- Collect one composite sample at each location.
 - For each location the composite sample will consist of three sample cuts during each event.
- Use lab results and process data to complete the mercury mass balance.
- Compare the analyzed results to the results of the historical mercury mass balance completed in late 2016 and early 2017.

2.4 Sample Protocol and Sample Locations

The mercury sampling campaigns over the last two years provide good baseline data for the mercury concentrations in the process around the concentrate and pellet plant operations. Two sampling events of the process prior to scrubber solids removal testing will be completed to compare to previous baseline data. To fully sample the process streams the slurry or solids samples at each of the following locations will be included. The sample locations were chosen specific to process input streams, where the process splits to two different locations and recycle streams.

Sample points have been identified within the concentrator and pellet plant process to evaluate the effect of removing the waste gas scrubber solids and the effect of the mercury concentration levels in the process. A reference process flow diagram of the process is included to identify the sample locations (see Appendix A). The following is a list of the sampling locations:

- 1. Tails thickener underflow (fine tails)
- 2. Tails thickener overflow (process water)
- 3. Finishers concentrate discharge to concentrate thickener/FMS sump
- 4. Concentrate thickener feed (float plant discharge)

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 5

- 5. Concentrate thickener (underflow)
- 6. Concentrate thickener (overflow)
- 7. Repulper feed belt
 - Only applicable if reclaiming during sampling; no sample required if not reclaiming
- 8. Green ball (balling disc discharge) after over/under size roll deck
- 9. Scrubber blowdown sample slurry from scrubber blowdown and separate liquid and solids by filtering after sample collection. A separate sampling campaign may be considered during mercury reduction technology testing to analyze the effect residence time may play on the form of mercury.
- Make-up water (plant head tank/raw water feed to plant) Multiple feed sources including make-up water from upland tailings basin, plant site settling basin, Minorca In-Pit, or freshwater from Enterprise pit.

Each sample location will require evaluation to determine if there is safe accessibility for sampling. Existing sample locations may be suitable to meet the needs of a mercury mass balance, and should be evaluated on a case-by-case basis. A review will be completed of any past analytical results for possible inclusion in the statistical analysis of the mercury mass balance.

To complete an accurate mass balance, flow measurements will be needed at each sample location. If real-time process flow rate measurements are not available it is important to review pump data (including performance curves) based on electrical measurements and equipment design flow rates. Additionally, flows can be determined by performing a chemical and material balance. Each sampling location will be reviewed to determine the best option for flow rate measurement. A detailed sample matrix is provided in Appendix B.

The sample locations have been marked on the PFD included with this memo. The attached sampling matrix may be used as reference for understanding the associated sample volume and metric with additional process information when sampling each of the sample locations.

2.5 Scrubber Solids Removal

To remove the scrubber solids from the system, the following process changes will be made (depending on process feasibility):

- Scrubber solids will not be rerouted until two sample events or base line samples have been collect prior to solids removal.
- Reroute the scrubber discharge to remove the scrubber solids from the system. This exact route
 of removal will be determined by Minorca staff. The scrubber solids will be transferred/pumped
 with the scrubber blowdown stream to the tailings feed launder then to the tailings thickener. This

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 6

effort will direct all tailings thickener underflow with the mercury solids and liquids to the tailings basin, thus reducing the potential for mercury recycle back into in the process water. Previous research has shown that mercury attenuates to tailings and does not leaving the tailings basin. Minorca currently recycles the scrubber blowdown stream with solids back to the process through the concentrate thickener and a portion of this process flow is recycled to the process scrubber recirculation tank.

The proposed schedule duration is eight weeks of sampling with one set of samples per week. This will allow for the system to adequately re-equilibrate after removing the recycle of material through the system.

These samples will be collected and filtered at Minorca. The slurry samples will be processed to separate the solids portion from the liquid portion of the slurry. The solid portion of the slurry should be analyzed using EPA method 7473 (or its accepted equivalent). The liquid portion of the slurry should be analyzed using EPA method 200.8 (or its accepted equivalent). Table 2 provides a summary of the sample locations and methods for analysis.

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine – Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 7

Table 2 Sample Locations Summary

Sample Point	Location	Туре	Matrix	Frequency	Amount Collected	Lab Analysis Method															
1. Tails Thickener Underflow (Fine Tails)	Tailings Thickener	Grab	Slurry	1/Week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids), EPA 200.8 (Liquid)															
2. Tails Thickener Overflow (Fine Tails)	Tailings Thickener	Grab	Liquid	1/Week	1 Gallon Container/Bucket with lid	EPA 1631E (Liquid)															
3. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump	Finisher Magnetic Separator	Grab	Slurry	1/week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids), EPA 200.8 (Liquid)															
4. Concentrate Thickener Feed (Float Plant Discharge)	Concentrate Thickener Feed	Grab Slurry 1/Week 1 Gallon Container/Bucket with lid	Container/Bucket	Container/Bucket	Container/Bucket			Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Container/Bucket	Slurry 1/Week	Container/Buc		EPA 7473 (Solids), EPA 200.8 (Liquid)
5. Concentrate Thickener (Underflow)	Concentrate Thickener	Grab	Slurry	1/Week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids), EPA 200.8 (Liquid)															
6. Concentrate Thickener (Overflow)	Concentrate Thickener	Grab	Liquid	1/Week	1 Gallon Container/Bucket with lid	EPA 1631E (Liquid)															
7. Repulper Feed Belt ¹	Repulper Feed Belt	Grab	Solid	1/week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids)															
8. Green Ball (Balling Disc Discharge)	Balling Drum Floor	Grab	Solid	1/Week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids)															
9. Scrubber Blowdown (Sampling for iron	Scrubber Sump	Grab	Slurry	1/Week	1 Gallon Container/Bucket with lid	EPA 7473 (Solids), EPA 200.8 (Liquid)															
and mercury)	Scrubber Sump	Grab, 5 gallon bucket	Slurry	1/Week	5 Gallon Container/Bucket with lid	Iron analysis completed by Minorca															
10. Make-up Water Sample from Plant Head Tank/Raw Water Feed to Plant	Makeup Tank	Grab	Liquid	1/Week	1 Gallon Container/Bucket with lid	EPA 1631E (Liquid)															

¹ Only collect if repulping during sampling event

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 8

2.6 Sample Collection Method

The sampling method will consist of collecting three cross-cut samples for each location, composited into one sample for that specific location. This technique will apply to all of the sample locations. The multiple cross-cut samples should be spaced appropriately to cover the sampling window selected by the sample collection team, collecting a single sample at each location and then repeating this process two times to form the final composite sample for analysis.

In collecting samples of water for mercury analysis, EPA Method 1631E calls for the use of the "clean hands—dirty hands" protocol identified in EPA Method 1669. This method requires that two people collect samples to prevent contamination. Quoting EPA Method 1669, "upon arrival at the sampling site, one member of the two-person sampling team is designated as "dirty hands"; the second member is designated as "clean hands." All operations involving contact with the sample bottle and transfer of the sample from the sample collection device to the sample bottle are handled by the individual designated as "clean hands." "Dirty hands" is responsible for preparation of the sampler (except the sample container itself), operation of any machinery, and for all other activities that do not involve direct contact with the sample.

As outlined by EPA Method 1669, the following rules should be followed by personnel conducting the sampling:

- Whenever possible, samples are collected facing upstream and upwind to minimize introduction of contamination.
- Surface samples are collected using a grab sampling technique. The principle of the grab technique is to fill a sample bottle by rapid immersion in water and capping to minimize exposure to airborne particulate matter.
- Subsurface samples are collected by suction of the sample into an immersed sample bottle or by pumping the sample to the surface.

For slurry streams whose liquid portions are anticipated to have high levels of dissolved mercury (for instance, scrubber blowdown), it is recommended that after collecting a sample, the technician separate or filter the solid from the liquid. A clean filter press would likely provide the easiest dewatering, but would not allow for capture of the filtrate needed for analysis. Therefore, collection via vacuum filtration with a vacuum flask is to be used (Nalgene™ Rapid-Flow™ Sterile Disposable Filter Units with PES Membrane and 0.45 micron cloth; conducted in the on-site laboratory if possible). For example, when samples are collected from the scrubber blowdown/recycle, the solids and liquid will need to be filtered at the facility location, preferable in the laboratory location at the site. Both resulting samples must then be stored in separate containers. The Previous Minnesota Department of Natural Resource studies (Berndt,

From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 9

Michael E. "Mercury and Mining in Minnesota." 15 Oct. 2003) indicate that the concentration of dissolved mercury in scrubber-water blowdown liquid will decrease with time if the liquid is stored in the same container as the solids because the mercury in the water will eventually be absorbed by the solids.

The following outlines the procedure for using a Nalgene™ Rapid-Flow™ Sterile Disposable Filter Units with PES Membrane for the mercury samples (1000 mL filter unit will be used; using "clean hands-dirty hands" method):

- After collecting one liter of the slurry sample the solids will be filtered from the liquid using the disposable filter unit described above.
 - o The solids portion of the slurry in the sample container will usually settle to the bottom of the container and the liquid portion of the sample can be used for the filtration.
 - o A new filter must be used for each slurry sample to avoid contamination.
- In the field filtering will require a hand vacuum pump connected to the filter hose connection. Filter the sample until all the liquid is collected in the bottom portion while the solids are retained in the filter. Put the separated samples in separate designated containers for lab analysis.
 - Scrape off solids left on the filter membrane using a clean spatula or other appropriate tool.
 - o The solids and filtered slurry solid samples will be stored in a 4 oz. glass container and placed in ice for shipment.
 - The filtered liquid portions of the slurry samples will be stored in a 250 mL or 500 mL plastic sample bottle containing HNO₃ and also kept on ice during shipping.
- Use the same procedure for filtering if completed in the lab using an electric vacuum pump.

2.7 Sample Collection, Preparation, Analysis, and Storage

Samples undergoing mercury analysis must be processed and stored in an environment that prevents contamination from outside sources. Mercury from the atmosphere can be absorbed by liquid and solid samples if the containers are not properly sealed. Samples should be capped and stored in sealed containers (not paper envelopes or paper boxes). The sample containers for sampling collection and shipment must be clean and not previously used. The sample containers for shipment will be provided by Barr.

The sample collection method, filtering, and analysis for the iron sample from the scrubber solids should be completed utilizing existing pressure filtration and equipment at the Minorca lab. This will be a secondary sample separate from the sample collected for mercury analysis. The sample volume required to determine the amount of iron is a minimum of 20 grams of solids once filtered. The filtering procedure

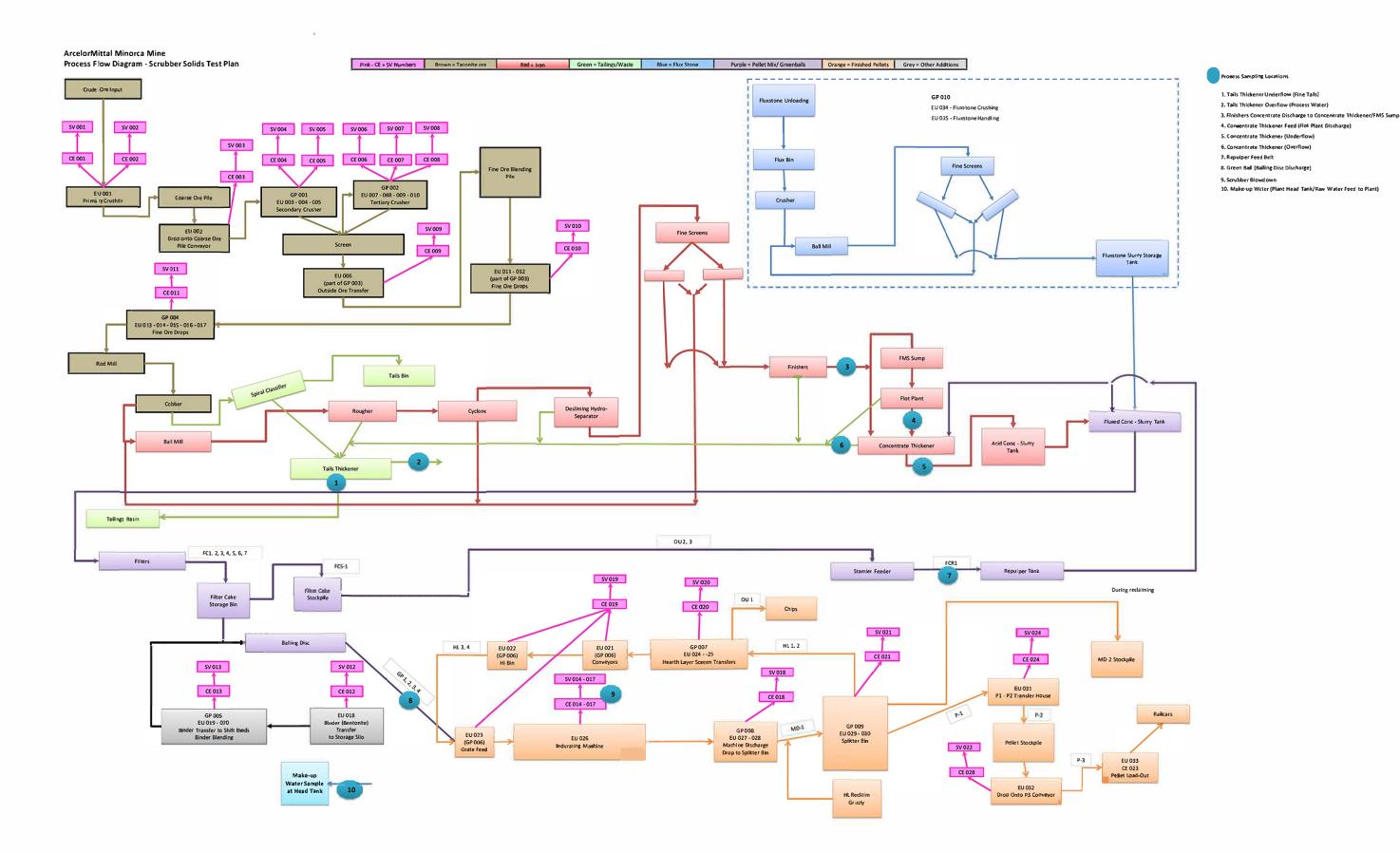
From: Chad Haugen, Boyd Eisenbraun

Subject: Minorca Mine - Test Plan for Scrubber Solids Removal

Date: February 1, 2018

Page: 10

for this sample should follow existing Minorca QA/QC for filtering of slurry samples. This sample will only be utilized for iron analysis.


2.8 Analytical Methods

Solid (green ball) and filtered solid (scrubber solids and final concentrate) will be measured using EPA Method 7473 (Mercury in Solid or Semisolid Waste – Manual Cold-Vapor Technique), while the filtered liquid portion of samples is to be measured using EPA Method 200.8 (Mercury in Liquid Wastes – Manual Cold-Vapor Technique). The water samples (tails thickener overflow, concentrate thickener overflow, and make-up water) are to be measured using EPA Method 1631E. Barr recommends Legend Technical in St. Paul or an alternate approved lab for analyzing solid and liquid samples according to EPA Method 7473 and 200.8, and North Shore Analytical in Duluth for analyzing water samples according to EPA Method 1631E.

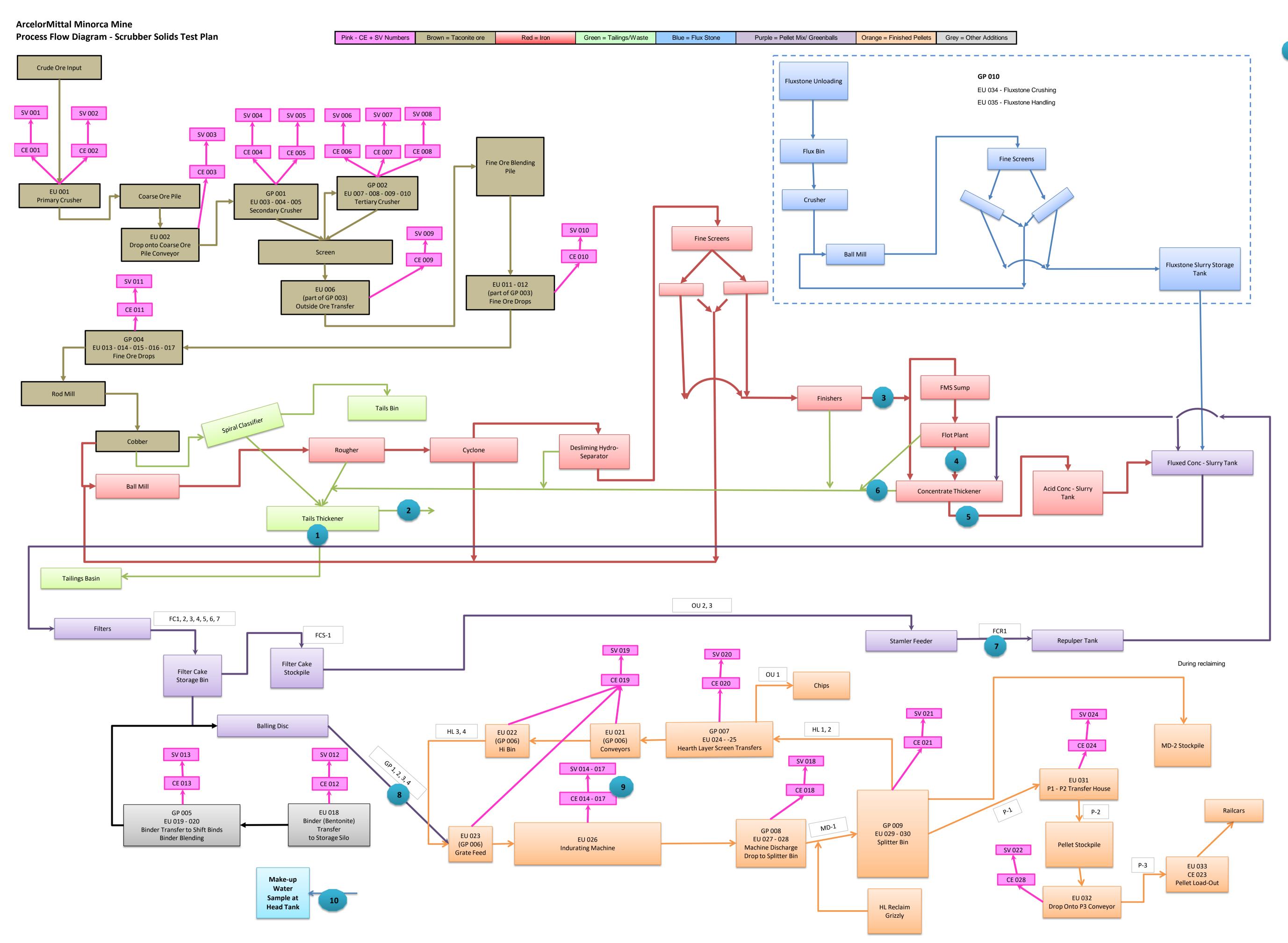
3.0 Results Analysis

The weekly samples for analysis should be paired with the plant production records from the plant historian. A mercury mass balance similar to past balances will be created to determine if removal of the scrubber solids from the induration process is effective at reducing the mercury in the process. A technical memo will be prepared to document the results and provide additional recommendations as part of the overall mercury reduction plan.

Appendix A - Sample Locations

Appendix B - Sampling Matrix

Project: 23691981 Scrubber Solids Test Plan Subject: Scrubber Solids Test Sample Matrix Date: 2/1/18


Sample Point	Phase (Liquid, Slu Solid)	irry, or	Current Sample Collection Metrics	Current Sample Volume	Flow Measurement (TPH,%sollds, GPM) **	Use Exisiting Sample	Proposed Mercury Sample Collection Metrics	Proposed Sample Volume	Additional Process Information Needed				
1. Tails Thickener Underflow (Fine Tails)	Slurry		Slurry				sample duration, 3 sample cuts		ТРН	Yes/No		1 L initial sample, filter Solids • 4 oz. glass jar Liquid - 250 or 500 mL plastic bottle	
2. Talls Thickener Overflow (Process Water)	Liquid		sample duration, 3 sample cuts		GPM	Yes/No		1 L initial sample, 3 cuts, composite placed in a 500 mL glass bottle					
3. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump	Slurry		sample duration, 3 sample cuts		ТРН	Yes/No		1 L initial sample, filter Solids - 4 oz. glass jar Liquid - 250 or 500 mL plastic bottle					
4. Concentrate Thickener Feed (Flot Plant Discharge)	Slurry		sample duration, 3 sample cuts		ТРН	Yes/No		1 L initial sample, filter Solids - 4 oz. glass jar Liquid - 250 or 500 mL plastic bottle					
5. Concentrate Thickener (Underflow)	Slurry		Slurry sample duration, 3 sample cuts TPH Yes/No			1 L initial sample, filter Solids - 4 oz. glass jar Liquid - 250 or 500 mL plastic bottle							
5. Concentrate Thickener (Overflow)	Liquid		sample duration, 3 sample cuts		GPM	Yes/No		1 L initial sample, 3 cuts, composite placed in a 500 mL glass bottle					
7. Repulper Feed Belt	Solid		sample duration, 3 sample cuts		ТРН	Yes/No		1 kg initial sample, 3 cuts composite placed in a 4oz bottle					
3. Green Ball (Balling Disc Discharge)	Solid	Solid sample 3 sam			ТРН	Yes/No		1 kg initial sample, 3 cuts composite placed in a 4oz bottle					
3. Scrubber Blowdown	mercury sample	Slurry	sample duration, 3 sample cuts		GPM/TPH	Yes/No		1 L initial sample, filter Solids - 4 oz. glass jar Liquid - 250 or 500 mL plastic bottle					
3. SCIUDDET BIOWGOWII	iron sample Slurry		sample duration, 3 sample cuts		GPM/TPH	Yes/No		1 Linitial sample placed in a 500ml bottle, 3 cuts					
10. Make-up Water (Plant Head Fank/Raw Water Feed to Plant)			sample duration, 3 sample cuts		GPM	Yes/No		1 L initial sample, 3 cuts, composite placed in a 500 mL glass bottle					

Mine data required to determine ore blends and tonnage

^{**} The mass flow measurement could come from DCS realtime measurement, database, production reports, or process design if not currently measured

Attachment B

Mass Balance Sampling Locations

Process Sampling Locations

1. Tails Thickener Underflow (Fine Tails)

2. Tails Thickener Overflow (Process Water)

3. Finishers Concentrate Discharge to Concentrate Thickener/FMS Sump

4. Concentrate Thickener Feed (Flot Plant Discharge)

5. Concentrate Thickener (Underflow)

6. Concentrate Thickener (Overflow)

7. Repulper Feed Belt

8. Greenball (After Roll Screen - Furnace Feed to Grate)

9. Scrubber Blowdown

10. Make-up Water (Plant Head Tank/Raw Water Feed to Plant)

Attachment C

Mass Balance Results Summary

DRAFT SCRUBBER SOLIDS MERCURY MASS BALANCE RESULTS SUMMARY

	Sample Event								
Parameter	1	2		3	4	5	6	7	
Test Date	1/23/2018	1/30/2018		2/19/2018	3/1/2018	3/6/2018	3/13/2018	4/11/2018	
Test Period									
Pattern	48B15 LR : 47B7 EP1	48B15 LR : 11B17 LR		12B9 EP1 : 49B7 EP1	12B9 EP1 : 12B17 LR	12B9 EP1 : 13B17 LR	39 EP1 : 13B17	317 LR : 19B6 E	
Ore Type	LC4: LC5	LC5: LC4		LC4: LC5	LC4: LC5	LC4 : LC5	LC4 : LC5	LC5 : LC4	
Blend %	30% : 70%	30% : 70%		40% : 60%	60% : 40%	25% : 75%	25% : 75%	50% : 50%	-
Average Mag, Fe	22.76 : 19.00 = 20.13	22.76 : 27.09 = 25.79		25.58 : 19.71 = 22.06	25.58 : 22.82 = 24.48	25.58 : 22.82 = 23.51	.58 : 22.82 = 23	3.92 : 20 = 21.9	
Average D.T. Silica	2.21 : 3.50 = 3.11	2.21 : 4.60 = 3.88		2.51 : 3.24 = 2.95	2.51 : 5.28 = 3.62	2.51 : 4.15 = 3.74	2.51 : 4.15 = 3.74	4.5 : 2 = 3.25	
Float Feed Silica	5.03	5.83		4.8	5.68	5.99	5.99	5.34	
Conc. % Dry Weight Recovery	26.85	36.82		30.25	34.5	32.8	32.8	30.07	
Consider to the land of			D 1: A						Average Post
Sample Location - Inputs, lb Hg/yr 10 - Dissolved: Make-up Water Sample	0.02	0.02	Baseline Average 0.02	0.02	0.07	0.04	0.04	0.02	Redirection 0.03
10 Biocorred. Make up Water earnpie	0.02	0.02	0.02	0.02	0.01	0.04	0.04	0.02	0.03
Sample Location - Internal Streams, lb Hg/yr									
2 - Tails Thickener Overflow (Process Water)* 3 - Finishers Concentrate Discharge to Concentrate	46	0.44	23	0.56	1.3	1.5	1.7	0.64	1.1
Thickener/FMS Sump	69	74	72	325	156	81	130	141	167
4 - Concentrate Thickener Feed (Flot Plant Discharge)	45	52	48	287	121	65	94	61	126
4 - Concentrate Thickener Feed (Flot Plant Discharge)	1.1	0.44	0.79	0.86	0.39	0.34	0.72	0.78	0.62
wastewater									
5 - Concentrate Thickener (Underflow)	79	35	57	396	128	70	181	92	173
6 - Concentrate Thickener (Overflow)	0.00	1.5	0.74	0.69	0.90	0.19	1.1	0.59	0.69
7 - Repulper Tank (Concentrate Reclaim Feed to Acid Concentrate)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8 - Greenball (After Roll Screen - Furnace Feed to Grate)	57	23	40	52	89	62	50	56	62
Sample Location - Outputs, lb Hg/yr	T	242		100				000	
1 - Tails Thickener Underflow (Fine Tails)	270	240	260	460	620	580	940	280	580
9 - Scrubber Blowdown solids	1.9	11	6	0.80	4.7	1.8	2.6	5.5	3
9 - Scrubber Blowdown (Dissolved)	0.63	0.24	0	0.40	0.47	0.26	0.26	1.5	1
	T				T	T	I		0.5.
Total Sample Inputs, lb Hg/yr	0.02	0.02	0	0.02	0.07	0.04	0.04	0.02	0.04
Total Counts O. to to P. Ustra	070	050	200	470	000	500	050	000	F00
Total Sample Outputs, lb Hg/yr	270	250	260	470	630	580	950	290	580

Total Sample Outputs, lb Hg/yr 270 250 260 470 630 580 950 * The first event had larger concentration than others. However, Legend provided the concentration (ug/L) for this event while NSA provided the process water concentration thereafter and had much lower results presented as ng/L.

Attachment D

Mass Balance Sampling Results

Sampling event 1 – 01/23/18 Sampling event 2 – 01/30/18 Sampling event 3 – 02/19/18 Sampling event 4 – 03/01/18 Sampling event 5 – 03/06/18 Sampling event 6 – 03/13/18 Sampling event 7 – 04/11/18

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

January 31, 2018

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800322

RE: 23691845

Enclosed are the results of analyses for samples received by the laboratory on 01/24/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAP) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800322 Duluth, MN 55802 Date Reported: 01/31/18 Project Manager: Mr. James E. Taraldsen

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Tails Thickener Underflow	1800322-01	Other	01/23/18 09:11	01/24/18 09:50
Finishers Concentrate Discharge	1800322-02	Other	01/23/18 08:22	01/24/18 09:50
Concentrate Thickener Feed	1800322-03	Other	01/23/18 08:54	01/24/18 09:50
Concentrate Thickener Underflow	1800322-04	Other	01/23/18 08:30	01/24/18 09:50
Green Balls	1800322-05	Other	01/23/18 08:21	01/24/18 09:50
Scrubber Blowdown	1800322-06	Other	01/23/18 08:33	01/24/18 09:50
Tails Thickener Underflow	1800322-07	Wastewater	01/23/18 09:11	01/24/18 09:50
Tails Thickener Overflow	1800322-08	Wastewater	01/23/18 09:03	01/24/18 09:50
Finishers Concentrate Discharge	1800322-09	Wastewater	01/23/18 08:22	01/24/18 09:50
Concentrate Thickener Feed	1800322-10	Wastewater	01/23/18 08:54	01/24/18 09:50
Concentrate Thickener Underflow	1800322-11	Wastewater	01/23/18 08:30	01/24/18 09:50
Concentrate Thickener Overflow	1800322-12	Wastewater	01/23/18 08:37	01/24/18 09:50
Scrubber Blowdown	1800322-13	Wastewater	01/23/18 08:33	01/24/18 09:50
Make Up Water Sample	1800322-14	Wastewater	01/23/18 08:45	01/24/18 09:50

Shipping Container Information

Default Cooler Temperature (°C):

Received on ice: Yes

Received on melt water: Yes

Custody seals: No

Temperature blank was not present

Ambient: No

Received on ice pack: No

Acceptable (IH/ISO only): No

Case Narrative:

Mercury was detected between the MDL and RL in the 200.8 batch B8A3106 method blank.

The results are reported on an 'as received' basis for samples Concentrate Thickener Feed and Scrubber Blowdown due to limited sample.

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800322

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 01/31/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800322-01)	Other	Sample	d: 01/23/18 (09:11 Rece	eived: 01/2	24/18 9:50)			
Mercury	0.029	0.050	0.0044	mg/kg dry	1	B8A3004	01/30/18	01/31/18	EPA 7473	J
Finishers Concentrate Discharge (1800	322-02)	Other S	ampled: 01	/23/18 08:22	Receiv	ed: 01/24/	18 9:50			
Mercury	0.0093	0.050	0.0044	mg/kg dry	1	B8A3004	01/30/18	01/31/18	EPA 7473	J
Concentrate Thickener Feed (1800322-	03) Othe	r Samp	led: 01/23/1	8 08:54 Re	ceived: 0	1/24/18 9:	:50			
Mercury	0.0062	0.050	0.0044	mg/kg wet	1	B8A3004	01/30/18	01/31/18	EPA 7473	J
Concentrate Thickener Underflow (180	0322-04)	Other :	Sampled: 0°	1/23/18 08:30) Recei	ved: 01/24/	/18 9:50			
Mercury	0.011	0.050	0.0044	mg/kg dry	1	B8A3004	01/30/18	01/31/18	EPA 7473	J
Green Balls (1800322-05) Other Samp	ed: 01/2	3/18 08:2	21 Receive	ed: 01/24/18	9:50					
Mercury	0.0090	0.050	0.0044	mg/kg dry	1	B8A3004	01/30/18	01/31/18	EPA 7473	J
Scrubber Blowdown (1800322-06) Other	r Samp	led: 01/2	23/18 08:33	Received:	01/24/18	9:50				
Mercury	0.48	0.050	0.0044	mg/kg wet	1	B8A3004	01/30/18	01/31/18	EPA 7473	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800322 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 01/31/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800322-0	7) Wastew	ater S	ampled: 01/	23/18 09:11	Receive	ed: 01/24/1	8 9:50			
Mercury	0.31	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01
Tails Thickener Overflow (1800322-08) Wastewa	ter Sa	mpled: 01/2	3/18 09:03	Received	d: 0 1/24/18	9:50			
Mercury	0.15	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01, J
Finishers Concentrate Discharge (180	0322-09) \	Nastew	ater Sampl	ed: 01/23/1	8 08:22	Received:	01/24/18 9:	50		
Mercury	0.13	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01, J
Concentrate Thickener Feed (1800322	-10) Wast	ewater	Sampled: 0	1/23/18 08:	54 Rece	eived: 01/24	1/18 9:50			
Mercury	0.10	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01, J
Concentrate Thickener Underflow (18	00322-11)	Wastew	ater Samp	led: 01/23/1	18 08:30	Received:	01/24/18 9:	50		
Mercury	0.26	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01
Concentrate Thickener Overflow (180	0322-12) V	Vastewa	iter Sample	ed: 01/23/18	3 08:37 F	Received: (01/24/18 9:5	0		
Mercury	0.20	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01
Scrubber Blowdown (1800322-13) Wa	stewater	Sample	ed: 01/23/18	08:33 Re	ceived: 01	/24/18 9:5	0			
Mercury	0.14	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01, J
Make Up Water Sample (1800322-14) \	Nastewate	r Sam	pled: 01/23/	18 08:45	Received:	01/24/18	9:50			
Mercury	0.098	0.20	0.035	ug/L	1	B8A3106	01/31/18	01/31/18	EPA 200.8	B-01, J

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800322

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 01/31/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800322	2-01) Other Sa	ampled:	01/23/18 0	9:11 Rece	ived: 01/2	24/18 9:50)			
% Solids	80			%	1	B8A3112	01/31/18	01/31/18	% calculation	
Finishers Concentrate Discharge (1	1800322-02) Ot	her Sa	mpled: 01/	23/18 08:22	Receiv	ed: 01/24/	18 9:50			
% Solids	87			%	1	B8A3112	01/31/18	01/31/18	% calculation	
Concentrate Thickener Underflow ((1800322-04) O	ther Sa	ampled: 01	/23/18 08:30	Receiv	ved: 01/24/	18 9:50			
% Solids	87			%	1	B8A3112	01/31/18	01/31/18	% calculation	
Green Balls (1800322-05) Other Sa	ampled: 01/23/	18 08:21	Receive	ed: 01/24/18	9:50					
% Solids	91			%	1	B8A3112	01/31/18	01/31/18	% calculation	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800322

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 01/31/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8A3004 - EPA 7473											
Blank (B8A3004-BLK1)					Prepared	I: 01/30/18	Analyzed	I: 01/31/18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8A3004-BS1)					Prepared	l: 01/30/18	Analyzed	l: 01/31/18			
Mercury	0.991	0.050	0.0044	mg/kg wet	1.00	<0.050	99.1	80-120			
LCS Dup (B8A3004-BSD1)					Prepared	l: 01/30/18	Analyzed	l: 01/31/18			
Mercury	0.986	0.050	0.0044	mg/kg wet	1.00	<0.050	98.6	80-120	0.513	20	
Matrix Spike (B8A3004-MS1)	5	ource:	1800322-	01	Prepared	l: 01/30/18	Analyzed	l: 01/31/18			
Mercury	0.390	0.050	0.0044	mg/kg dry	0.362	< 0.050	99.8	80-120			
Matrix Spike Dup (B8A3004-MSD1)	5	ource:	1800322-	01	Prepared	l: 01/30/18	Analyzed	l: 01/31/18			
Mercury	0.344	0.050	0.0044	mg/kg dry	0.356	<0.050	88.5	80-120	12.7	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800322 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 01/31/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8A3106 - General Prep											
Blank (B8A3106-BLK1)					Prepared	l & Analyze	ed: 01/31/	18			
Mercury	0.0955	0.20	0.035	ug/L							B-02, J
LCS (B8A3106-BS1)					Prepared	l & Analyze	ed: 01/31/	18			
Mercury	26.3	0.20	0.035	ug/L	25.0	<0.20	105	85-115			
LCS Dup (B8A3106-BSD1)					Prepared	l & Analyze	ed: 01/31/	18			
Mercury	26.1	0.20	0.035	ug/L	25.0	<0.20	104	85-115	0.923	20	
Matrix Spike (B8A3106-MS1)	S	ource:	1800322-0	8	Prepared	l & Analyze	ed: 01/31/	18			
Mercury	24.1	0.20	0.035	ug/L	25.0	<0.20	95.7	75-125			
Matrix Spike Dup (B8A3106-MSD1)	S	ource:	1800322-0	8	Prepared	l & Analyze	ed: 01/31/	18			
Mercury	25.3	0.20	0.035	ug/L	25.0	<0.20	101	75-125	4.92	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800322

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 01/31/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes

Batch B8A3112 - General Preparation

Duplicate (B8A3112-DUP1) Source: 1800322-05 Prepared & Analyzed: 01/31/18

% Solids 91.0 % 91.0 0.00 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Work Order #: 1800322 Project Number: 23691845.00 001 001 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 01/31/18

Notes and Definitions

Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.

Less than value listed

dry Sample results reported on a dry weight basis

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

Method Detection Limit; Equivalent to the method LOD (Limit of Detection) MDL

RL Reporting Limit

RPD Relative Percent Difference

Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB) LCS

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Fax: 651-642-1239

Legend Technical 88 d Barr Engineering Co. C	E	Lieffen	ion City	DM	CI ND	CI WI.		Wate		Soil	7	COC Numbe		100			
Dismarck Khibbing	-	Minne	apolis	SOM						lar		Matrix Co			rative Code:		
REPORT TO		a-23	1000	INVOICE 1	10		1.				ı	GW = Groun SW = Surfac	dwater	A . B .	None		
Company Borr Engineering		Com	100000	Som		_	(2)	1		2/6		WW# Waste	Water	C=	HNO ₂		
Name: 0 5 SONE AN	White	Arido Nami				_	V /(N)	Post		Sunple	b	DW = Drinki S = Soliza	ng Water olid		H ₇ SΩ _€ NaOH		
EYON JIAIS		email					1 1 2			1 1 1 1 1 1 1 1		SD = Sedim O = Other			MeDH NaHSO		
copy to: data-ngt@barcom / 14	10000	5.755011111		5'M1' F		-	dsb of	Ohn mi	3	20		0 - VIII		H =	Na ₂ S ₂ O ₄		
Project Name PA	haldS	10	Diri	Can. 10 7369151	1- m n	01 +01	15/1/	9		3				1 =	Ascorbic Aci		
Project Name Minneres of TES	7741) -San	ple D	enth	7 367/37	0.000	01 001	Mumber Number				Spiles				Zn Acetate Other		
Location	Shirt	Step	Unit	Collection Date	Collection	Matrix Code	5 -	-	H	# # T	-	Freservative	Code	12	. H PV/III		
	200	South	(m./ft. or in.)	(mm/dd/yyyy)	(hitzmin)	Cone	Perfo	T y		Ý		Field Filtered	Y/II				
Toils Thekener underflow	-			1/23/18	0911	7/m	N					Solid. Anal-	in the		tg method		
Tails Thekener	-		7		0903	1						7473	(t) 1	S			
Finishers Conuntrate					0822				Ш		L				viction		
Concentrate Thickener			>		0854						L	Decon	ntiol	Light	d		
Consenhale Thickener					0830		Ш					19 mi	ns/15/ //x/d	700	8		
Concenhate Thickener	1				0637	Ш	Ш		Ш	Ш				0	- N		-
Green Bolls	-			_	0821	¥	¥					Ripi 5di	ut to	m	22!		
CORNEBER BLOW-	-				0833	V	٧				1	5 de	ay 71	47			
make up water Sa	mpl	<u>L</u>	(y-1	24/12 px	clant									-			
BARR USE ONLY		Relina	unili i	8 S. O.	0	loef //	Date 23/19	/Time /033	Rece	lived by:				Date	Time		
Barr Proj. Manager 140n 510/3			uished b		0		pate	Time		ived by:	N	N		Date 24 12	OSD.		
Burr DQ Manager J. TayaldSkri		Samples Shipped VIA: 12 Courier TyTederal Express						Sampler	Air B	III Number:			Requ	ested D	ue Date:		
Lub Location: St Rout	4/	Lab WO: Temperature on Receipt (*C					(*O:	Custo	dy Soni	Intact/X3Y	LIN	□None	□ Rush	erd Tuern /	(Sdoy)		

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

February 08, 2018

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800411

RE: 23691845

Enclosed are the results of analyses for samples received by the laboratory on 01/31/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAP) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800411

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 02/08/18

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Matrix	Date Sampled	Date Received
1800411-01	Other	01/30/18 09:16	01/31/18 09:40
1800411-02	Other	01/30/18 08:27	01/31/18 09:40
1800411-03	Other	01/30/18 09:00	01/31/18 09:40
1800411-04	Other	01/30/18 08:35	01/31/18 09:40
1800411-05	Other	01/30/18 08:43	01/31/18 09:40
1800411-06	Other	01/30/18 08:30	01/31/18 09:40
1800411-07	Other	01/30/18 08:40	01/31/18 09:40
1800411-08	Wastewater	01/30/18 09:16	01/31/18 09:40
1800411-09	Wastewater	01/30/18 08:27	01/31/18 09:40
1800411-10	Wastewater	01/30/18 09:00	01/31/18 09:40
1800411-11	Wastewater	01/30/18 08:35	01/31/18 09:40
1800411-12	Wastewater	01/30/18 08:43	01/31/18 09:40
1800411-13	Wastewater	01/30/18 08:40	01/31/18 09:40
	1800411-01 1800411-02 1800411-03 1800411-04 1800411-05 1800411-06 1800411-07 1800411-09 1800411-10 1800411-11 1800411-11	1800411-01 Other 1800411-02 Other 1800411-03 Other 1800411-04 Other 1800411-05 Other 1800411-06 Other 1800411-07 Other 1800411-08 Wastewater 1800411-09 Wastewater 1800411-10 Wastewater 1800411-11 Wastewater	1800411-01 Other 01/30/18 09:16 1800411-02 Other 01/30/18 08:27 1800411-03 Other 01/30/18 09:00 1800411-04 Other 01/30/18 08:35 1800411-05 Other 01/30/18 08:43 1800411-06 Other 01/30/18 08:30 1800411-07 Other 01/30/18 08:40 1800411-08 Wastewater 01/30/18 09:16 1800411-09 Wastewater 01/30/18 08:27 1800411-10 Wastewater 01/30/18 09:00 1800411-11 Wastewater 01/30/18 08:35 1800411-12 Wastewater 01/30/18 08:43

Shipping Container Information

Default Cooler Temperature (°C): 3.2

Received on ice: Yes

Received on melt water: Yes

Custody seals: No

Temperature blank was not present

Ambient: No

Received on ice pack: No

Acceptable (IH/ISO only): No

Case Narrative:

Mercury was detected between the MDL and RL in the 200.8 batch B8B0106 method blank.

The results are reported on an 'as received' basis for samples Concentrate Thickener Feed, Concentrate Thickener Overflow, and Scrubber Blowdown due to limited sample.

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800411

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/08/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800411-	01) Other	Sampled	l: 01/30/18	09:16 Rece	eived: 01/3	31/18 9:40)			
Mercury	0.037	0.050	0.0044	mg/kg dry	1	B8B0611	02/06/18	02/07/18	EPA 7473	J
Finishers Concentrate Discharge (18	00411-02)	Other S	ampled: 01	/30/18 08:27	Receiv	ed: 01/31/	18 9:40			
Mercury	0.015	0.050	0.0044	mg/kg dry	1	B8B0611	02/06/18	02/07/18	EPA 7473	J
Concentrate Thickener Feed (180041	1-03) Other	Samp	ed: 01/30/1	8 09:00 Re	eceived: 0	1/31/18 9:	40			
Mercury	0.011	0.050	0.0044	mg/kg wet	1	B8B0611	02/06/18	02/07/18	EPA 7473	J
Concentrate Thickener Underflow (1	800411-04)	Other S	Sampled: 0	1/30/18 08:3	5 Receiv	/ed: 01/31	18 9:40			
Mercury	0.0074	0.050	0.0044	mg/kg dry	1	B8B0611	02/06/18	02/07/18	EPA 7473	J
Concentrate Thickener Overflow (18	00411-05) C	ther Sa	ampled: 01/	30/18 08:43	Receive	ed: 01/31/1	8 9:40			
Mercury	0.075	0.050	0.0044	mg/kg wet	1	B8B0611	02/06/18	02/07/18	EPA 7473	
Green Balls (1800411-06) Other San	npled: 01/3	0/18 08:3	0 Receiv	ed: 01/31/18	9:40					
Mercury	<0.0044	0.050	0.0044	mg/kg dry	1	B8B0611	02/06/18	02/07/18	EPA 7473	
Scrubber Blowdown (1800411-07) Ot	her Samp	led: 01/3	0/18 08:40	Received:	01/31/18	9:40				
Mercury	2.7	0.050	0.0044	mg/kg wet	1	B8B0611	02/06/18	02/07/18	EPA 7473	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800411 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 02/08/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800411-08) Wastev	vater S	ampled: 01/3	30/18 09:16	Receive	ed: 01/31/1	8 9:40			
Mercury	0.21	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01
Finishers Concentrate Discharge (180	0411-09)	Wastewa	ater Sample	ed: 01/30/18	08:27	Received: (01/31/18 9:4	10		
Mercury	0.11	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01, J
Concentrate Thickener Feed (1800411-	10) Wast	ewater	Sampled: 0	1/30/18 09:0	0 Rece	ived: 01/31	/18 9:40			
Mercury	0.070	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01, J
Concentrate Thickener Underflow (180	0411-11)	Wastew	ater Samp	led: 01/30/1	8 08:35	Received:	01/31/18 9:	40		
Mercury	0.061	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01, J
Concentrate Thickener Overflow (1800	411-12) V	Vastewa	iter Sample	ed: 01/30/18	08:43 F	Received: 0	1/31/18 9:4	0		
Mercury	0.088	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01, J
Scrubber Blowdown (1800411-13) Was	tewater	Sample	ed: 01/30/18	08:40 Rec	eived: 01	/31/18 9:40	0			
Mercury	0.053	0.20	0.035	ug/L	1	B8B0106	02/01/18	02/06/18	EPA 200.8	B-01, J

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800411 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 02/08/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800411-0	01) Other S	Sampled	: 01/30/18 0	9:16 Rece	ived: 01/3	31/18 9:40)			
% Solids	76			%	1	B8B0707	02/07/18	02/07/18	% calculation	
Finishers Concentrate Discharge (18	00411-02) O	ther Sa	ampled: 01/	30/18 08:27	Receiv	ed: 01/31/1	18 9:40			
% Solids	86			%	1	B8B0707	02/07/18	02/07/18	% calculation	
Concentrate Thickener Underflow (18	300411-04) (Other S	ampled: 01	/30/18 08:35	Receiv	/ed: 01/31/	18 9:40			
% Solids	87			%	1	B8B0707	02/07/18	02/07/18	% calculation	
Green Balls (1800411-06) Other Sam	npled: 01/30	/18 08:3	0 Receive	ed: 01/31/18	9:40					
% Solids	91			%	1	B8B0707	02/07/18	02/07/18	% calculation	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800411 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 02/08/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8B0611 - EPA 7473											
Blank (B8B0611-BLK1)					Prepared	I: 02/06/18	Analyzed	l: 02/07/18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8B0611-BS1)					Prepared	l: 02/06/18	Analyzed	l: 02/07/18			
Mercury	0.975	0.050	0.0044	mg/kg wet	1.00	<0.050	97.5	80-120			
LCS Dup (B8B0611-BSD1)					Prepared	I: 02/06/18	Analyzed	l: 02/07/18			
Mercury	0.964	0.050	0.0044	mg/kg wet	1.00	<0.050	96.4	80-120	1.09	20	
Matrix Spike (B8B0611-MS1)	5	Source:	1800411-0	01	Prepared	l: 02/06/18	Analyzed	l: 02/07/18			
Mercury	0.374	0.050	0.0044	mg/kg dry	0.401	< 0.050	84.1	80-120			
Matrix Spike Dup (B8B0611-MSD1)		Source:	1800411-0	01	Prepared	l: 02/06/18	Analyzed	l: 02/07/18			
Mercury	0.379	0.050	0.0044	mg/kg dry	0.361	<0.050	94.6	80-120	1.11	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800411

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/08/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8B0106 - General Prep											
Blank (B8B0106-BLK1)					Prepared	l: 02/01/18	Analyzed	l: 02/06/18	}		
Mercury	0.0681	0.20	0.035	ug/L	·						B-02, J
LCS (B8B0106-BS1)					Prepared	l: 02/01/18	Analyzed	l: 02/06/18	3		
Mercury	25.5	0.20	0.035	ug/L	25.0	<0.20	102	85-115			
LCS Dup (B8B0106-BSD1)					Prepared	l: 02/01/18	Analyzed	l: 02/06/18	3		
Mercury	25.7	0.20	0.035	ug/L	25.0	<0.20	103	85-115	1.02	20	
Matrix Spike (B8B0106-MS1)	S	ource:	1800411-0	9	Prepared	l: 02/01/18	Analyzed	l: 02/06/18	3		
Mercury	25.1	0.20	0.035	ug/L	25.0	<0.20	99.9	75-125			
Matrix Spike Dup (B8B0106-MSD1)	S	ource:	1800411-0	9	Prepared	l: 02/01/18	Analyzed	l: 02/06/18	3		
Mercury	24.8	0.20	0.035	ug/L	25.0	<0.20	98.7	75-125	1.13	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800411

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/08/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	KL	IVIDL	Units	Level	Resuit	70KEC	LIIIIIIS	%RPD	LIIIIII	Notes
Analyte	Dogult	RL	MDL	Units	Spike	Source Result	%REC	%REC Limits	0/ BDD	%RPD Limit	Notos

Batch B8B0707 - General Preparation

Duplicate (B8B0707-DUP1) Source: 1800459-05 Prepared & Analyzed: 02/07/18

% Solids 82.0 % 84.0 2.41 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Work Order #: 1800411 Project Number: 23691845.00 001 001 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 02/08/18

Notes and Definitions

Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.

Less than value listed

dry Sample results reported on a dry weight basis

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

Method Detection Limit; Equivalent to the method LOD (Limit of Detection) MDL

RL Reporting Limit

RPD Relative Percent Difference

Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB) LCS

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

88 Empire Drive

St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co.		T THIS	rson City respolis	174	(2011 - V2229) (1-5) (1-1	Ct/mr	П		Vater	Sol			of _	547
REPORT TO			- 100	INVOICE			-		Ш		Ш	Matrix		
Company Borr Engineering Address: 345 5 Lake Be	Delo	Sp ^A dd		-50m					Postri Cottle	Somple Jo		GW = Gm SW = Sur WW = WA	Sundwater face Water ste Water oking Water	A = None B = HCI C = HNO;
Mame Kyan Siats	-	Nan					V V		M	3		3 = 50	/Solid	D = H ₂ SO ₂ L = NaOH
copy to datamptimber.com		ema					100		125	N	Ш	50 = Sec 0 = Oth	liment iör	F = MeDN G = NaHSO ₄
Project Name Minores pla TE	nolds	业	Din	Con	15.00 oo		OSW/	ê	3	10				H = Na.5.0.
LUMOVE MA TE	230	onle P	Project (No. 236915	\$5.00 00	1001	Number		7		Sollids			I = Accorble / I = NH ₄ Cl
Location	Start	18.70	Unit	Collection Date	conection	Matrix	N.				が			K = Zn Acetati O = Other
The state of the s	SHILL	Stop	(m./ft. or in.)	manufacture in the second	Time (hh.mm)	Code				À		Preservativ	e Code	Castana
Toils Thickener	-			Hanle	60.1	57	1		Y	Y	4	Field Filtare	Annual Contraction of the Contra	
2 Jack Jack	1			1/30/18	0916	1/w	M				Ш	Sold	moter	ial Hg
2 Tails Thickens	=					1	/				=11	Ana	1515 6	+ Method
3 Finishers Conuntrate				115		11	\mathbb{A}	-						Solids
1 Dixhingt				1/30/18	0827	11	Ш	111	111			fer	moistu	e Comotion
Concentrate Thickener	-				0900		Ш	771	7		+	Λ		41
Consentiate Thusanor			_		-	-	444	+					ntrol 1	
6 A Underflas	5		8		0835						Π	H9 1	mal-15is	by
" Conceptate Thickener	-				-	1	1	+++	+++	++++	++	-m	etteld	200.8
A				_	0843							0		
Cren Balls a scrubber blowdown	7		-		0830	1	11					1	1 1	/
a SCRUBBER BLOWDOWN		15			Name of	J	\mathbb{H}	+++	+++	+++	4	Kepe	YF 70	MOL!
9.	-				0840	V	4				П	50	av TA	T
						6					Ħ		/	
10							4	1						
BARR USE ONLY				Test of					Ш					
Sampled by:	-	Relinqu	shed by	W.tx	On k	e? , D	ute	1030	Receive	M for			1 2	
lare Proj. Manager: 40n Siots	-	Relinqu	ished by	JUNION	On le		1/6 HE	1030 Time					Dat	ž time
an DQ Manager J.Tayaldsen	-	en en en		S.	(v)			0	Receive	d by:		W	J Dan	
ab Name Legard Technica	7	Sample	Shipper	SAME TO STREET		tral Expre	n []	Sampler	Air fill	Number:		TU-	Decourse.	X 940 ed Due Date:
St thul		ab Wo	·	□ott	And the latest and th	. O . W . O							Standard)	furn Around Time
stribution - White-Original: Accompanies	Shiamer	of to 1	ufsziristen.	Velton Co.	emperature on I	tecept (Q:	Cutto	dy Seal In	tacti XV E	IN D	None	C) Rush	(45 day)

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

February 27, 2018

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800671

RE: 23691845

Enclosed are the results of analyses for samples received by the laboratory on 02/20/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAP) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800671

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 02/27/18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Tails Thickener Underflow	1800671-01	Other	02/19/18 09:16	02/20/18 10:45
Finishers Concentrate Discharge	1800671-02	Other	02/19/18 08:27	02/20/18 10:45
Concentrate Thickener Feed	1800671-03	Other	02/19/18 08:59	02/20/18 10:45
Concentrate Thickener Underflow	1800671-04	Other	02/19/18 08:35	02/20/18 10:45
Concentrate Thickener Overflow	1800671-05	Other	02/19/18 08:44	02/20/18 10:45
Green Balls	1800671-06	Other	02/19/18 08:25	02/20/18 10:45
Scrubber Blowdown	1800671-07	Other	02/19/18 08:34	02/20/18 10:45
Tails Thickener Underflow	1800671-08	Wastewater	02/19/18 09:16	02/20/18 10:45
Finishers Concentrate Discharge	1800671-09	Wastewater	02/19/18 08:27	02/20/18 10:45
Concentrate Thickener Feed	1800671-10	Wastewater	02/19/18 08:59	02/20/18 10:45
Concentrate Thickener Underflow	1800671-11	Wastewater	02/19/18 08:35	02/20/18 10:45
Concentrate Thickener Overflow	1800671-12	Wastewater	02/19/18 08:44	02/20/18 10:45
Scrubber Blowdown	1800671-13	Wastewater	02/19/18 08:34	02/20/18 10:45

Shipping Container Information

Default Cooler Temperature (°C): 2.7

Received on ice: Yes

Received on melt water: Yes

Custody seals: No

Temperature blank was present

Ambient: No

Received on ice pack: No Acceptable (IH/ISO only): No

Case Narrative:

The results are reported on an 'as received' basis for samples Finishers Concentrate Discharge and Concentrate Thickener Overflow due to limited sample.

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800671

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/27/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800671-01) Other	Sampled	l: 02/19/18	09:16 Rec	eived: 02/	20/18 10:4	5			
Mercury	0.053	0.050	0.0044	mg/kg dry	1	B8B2116	02/21/18	02/22/18	EPA 7473	
Finishers Concentrate Discharge (1800	0671-02)	Other S	ampled: 02	/19/18 08:27	' Receiv	ed: 02/20/	18 10:45			
Mercury	0.050	0.050	0.0044	mg/kg wet	1	B8B2116	02/21/18	02/22/18	EPA 7473	
Concentrate Thickener Feed (1800671-	03) Othe	r Sampl	ed: 02/19/1	8 08:59 Re	eceived: 0	2/20/18 10	:45			
Mercury	0.044	0.050	0.0044	mg/kg dry	1	B8B2116	02/21/18	02/22/18	EPA 7473	J
Concentrate Thickener Underflow (180	0671-04)	Other S	Sampled: 02	2/19/18 08:3	5 Receiv	ved: 02/20/	/18 10:45			
Mercury	0.014	0.050	0.0044	mg/kg dry	1	B8B2116	02/21/18	02/22/18	EPA 7473	J
Concentrate Thickener Overflow (1800	671-05) (Other Sa	ampled: 02/	19/18 08:44	Receive	ed: 02/20/1	8 10:45			
Mercury	0.035	0.050	0.0044	mg/kg wet	1	B8B2116	02/21/18	02/22/18	EPA 7473	J
Green Balls (1800671-06) Other Samp	led: 02/1	9/18 08:2	5 Receive	ed: 02/20/18	10:45					
Mercury	0.0083	0.050	0.0044	mg/kg dry	1	B8B2116	02/21/18	02/22/18	EPA 7473	J
Scrubber Blowdown (1800671-07) Other	er Samp	led: 02/1	9/18 08:34	Received:	02/20/18	10:45				
Mercury	0.41	0.050	0.0044	mg/kg dry	1	B8B2116	02/21/18	02/22/18	EPA 7473	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800671 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 02/27/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800671-08) Wastev	vater S	ampled: 02/	19/18 09:16	Receive	ed: 02/20/1	8 10:45			
Mercury	0.30	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	
Finishers Concentrate Discharge (180	0671-09)	Wastew	ater Sample	ed: 02/19/18	08:27	Received:	02/20/18 10:	45		
Mercury	0.13	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	J
Concentrate Thickener Feed (1800671-	10) Wast	ewater	Sampled: 0	2/19/18 08:5	9 Rece	ived: 02/20	/18 10:45			
Mercury	0.083	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	J
Concentrate Thickener Underflow (180	0671-11)	Wastew	ater Samp	led: 02/19/1	8 08:35	Received:	02/20/18 10	:45		
Mercury	0.061	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	J
Concentrate Thickener Overflow (1800	671-12) \	Vastewa	ater Sample	ed: 02/19/18	08:44 F	Received: 0	2/20/18 10:4	15		
Mercury	0.051	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	J
Scrubber Blowdown (1800671-13) Was	tewater	Sample	ed: 02/19/18	08:34 Rec	eived: 02	/20/18 10:4	5			
Mercury	1.6	0.20	0.035	ug/L	1	B8B2609	02/26/18	02/26/18	EPA 200.8	

Fax: 651-642-1139

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800671

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 02/27/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (18006	71-01) Other 3	Sampled:	02/19/18	09:16 Rec	eived: 02/	20/18 10:4				
% Solids	, 89			%	1	B8B2703	02/27/18	02/27/18	% calculation	
Concentrate Thickener Feed (180	0671-03) Other	Sample	d: 02/19/1	8 08:59 R	eceived: 0	2/20/18 10	:45			
% Solids	89			%	1	B8B2703	02/27/18	02/27/18	% calculation	
Concentrate Thickener Underflow	/ (1800671 - 04)	Other Sa	mpled: 0	2/19/18 08:3	5 Recei	ved: 02/20/	18 10:45			
% Solids	87			%	1	B8B2703	02/27/18	02/27/18	% calculation	
Green Balls (1800671-06) Other 3	Sampled: 02/19	/18 08:25	Receiv	ed: 02/20/18	10:45					
% Solids	91			%	1	B8B2703	02/27/18	02/27/18	% calculation	
Scrubber Blowdown (1800671-07)	Other Sampl	ed: 02/19/	/18 08:34	Received:	02/20/18	10:45				
% Solids	87			%	1	B8B2703	02/27/18	02/27/18	% calculation	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800671

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 02/27/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8B2116 - EPA 7473											
Blank (B8B2116-BLK1)					Prepared	I: 02/21/18	Analyzed	l: 02/22/18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8B2116-BS1)					Prepared	l: 02/21/18	Analyzed	l: 02/22/18			
Mercury	0.956	0.050	0.0044	mg/kg wet	1.00	<0.050	95.6	80-120			
LCS Dup (B8B2116-BSD1)					Prepared	l: 02/21/18	Analyzed	l: 02/22/18			
Mercury	0.941	0.050	0.0044	mg/kg wet	1.00	<0.050	94.1	80-120	1.58	20	
Matrix Spike (B8B2116-MS1)	5	Source:	1800671-	01	Prepared	l: 02/21/18	Analyzed	l: 02/22/18			
Mercury	0.284	0.050	0.0044	mg/kg dry	0.235	0.0526	98.3	80-120			
Matrix Spike Dup (B8B2116-MSD1)		Source:	1800671-	01	Prepared	l: 02/21/18	Analyzed	l: 02/22/18			
Mercury	0.269	0.050	0.0044	mg/kg dry	0.219	0.0526	98.6	80-120	5.41	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800671

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 02/27/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8B2609 - EPA 200.8 Digestion											
Blank (B8B2609-BLK1)					Prepared	l & Analyze	ed: 02/26/	18			
Mercury	< 0.035	0.20	0.035	ug/L							
LCS (B8B2609-BS1)					Prepared	l & Analyze	ed: 02/26/	18			
Mercury	24.7	0.20	0.035	ug/L	25.0	<0.20	98.8	85-115			
LCS Dup (B8B2609-BSD1)					Prepared	l & Analyze	ed: 02/26/	18			
Mercury	24.4	0.20	0.035	ug/L	25.0	<0.20	97.6	85-115	1.26	20	
Matrix Spike (B8B2609-MS1)	S	ource:	1800671-0	8	Prepared	l & Analyze	ed: 02/26/	18			
Mercury	23.1	0.20	0.035	ug/L	25.0	0.299	91.2	75-125			
Matrix Spike (B8B2609-MS2)	S	ource:	1800671-0	9	Prepared	l & Analyze	ed: 02/26/	18			
Mercury	22.9	0.20	0.035	ug/L	25.0	<0.20	91.2	75-125			

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800671

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/27/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes

Batch B8B2703 - General Preparation

Duplicate (B8B2703-DUP1) Source: 1800671-06 Prepared & Analyzed: 02/27/18

% Solids 91.0 % 91.0 0.00 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800671

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 02/27/18

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

< Less than value listed

dry Sample results reported on a dry weight basis

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Fax: 651-642-1239

Legand Tellman and & Barr Engineering Co. C		Jeffen	_	ouy	E KS	II MO	JWI.	П		Water		equested Sol				4027	
D Bigmarck D Hibbing		Minne			□ MA		lther.	П						COC _			
REPORT TO				IN	VOICE 1	ro		11				3	Н		Code: oundwater	COMPANIES.	ervative Code: = None
Company BALLY SMAINEL	rina	Comp	cany:					1	Ħ	1		3	Н	SW = Sc	oface Wate	er B	= HCl
Company BALYT ENGINEL Address 325 3. LAKE AVE	NIII	Addw	255	- 5	um	1-		Z	ine	Bott		770	88		aste Water inking Wa		= HNO ₁ = H ₂ SO ₄
Name RYAN SIATZ	(JUL)	Name	Y.	U	14/1-15			`^	Containers	a	1	any		S = 50	il/Solid	E	 NuOH
unall PSTOUS & BRUT LOTA		email										a a	Ш	50 = 50 0 = 0		G	 MeOH NaHSO₄
Copy to: datamgt@barr.com//+Co		, eo,c	ba	w ce	110			WSE	ŏ	1			Н			1 1	» Na ₁ S ₁ O ₁ ≈ Ascorbic Acii
Project Name: Minaria Ha To	STATE OF	Barr	Project 1	No 72	Lia	ulic no	nni m	MS/MSD	agu	Plustin		402	College	180	F010	1 6	= NH ₄ CI
minures my re	5art	ple Di	epth		ection	Collection	00100	-	Non	2		3	1			- K	= Zn Acetate = Other
Location	Start	Stop	Unit	100000000000000000000000000000000000000	ute	Time	Matrix	Perform	Total			A	- 1	Preservat	ve Code	1.70	- MANGEAU
	aum	aiup	(m/ft, or in.)	(mm/c	ld/yyyyi	(hh:mm)	code	Per	10	y		Y		Field Filte	red Y/N		
1. TAILS THICKENER				2/10	la	001	5/	Į,						50L1	O Ma	lten.	altig
UNDERFLOW				110	1/18	0916	*/ww	90					4	ANA	LYSI	SBY	
2 FINISHERS CONCENT- PATE DISCHARGE			_	i		0827	1	Ш	Т			111		ME	THOL	714	73(+)
3. CONCENTRATE							+	₩	+	++		₩	₩	1/1	SOLI	05	FOR
THICKENER FEED	-		-			0954		W					Ш	MO	ISTU	LEE	CORR.
4 CONCENTRATE THICK-	_					0835		Ш	T				П	100000000000000000000000000000000000000	ION		
ENER UNERFLOW						いりつつ	4	Ш	4	44	Ш		H				
SCONCENTRATE	_		_	1 1		0844	П	Ш				111	Ш	DEC	OMI	E1	LIGHIO
THICKENER OVERFLON						PACKET NUMBER	+	₩	+	-		+++	+	Ha	A	done	42/
GREEN BALLS			-			0825	11	Ш				111	П	110	MNAL	Y519	BY
7. SCHUBBER						0834	J	W		-				ME	THO	0 2	00·B
BLOWDOWN						0004	136	1	4	Щ				1162949	10.000	(S)	5070 Mei
8.								П						REP	ORT	TO 1	MDL!
9	-	-	-	_			-	Н	+		+	+++	++	_			
														5	da	4 T	AT
10.								Ħ	+	\top		111				1	
		1						Ш									
BARR USE ONLY		Religio	analy .	by D	On	3	ice? 2/ n SE	13	8	1030	Receiv	ed by:				Date	Time
Sampled by:		Reling	uished I	by:	UV-			Date	e-t/	Time	-	ed by:	-		-+	Date	Time
Barr Proj. Manager: KYAN SIA1		0		3	1/100	, X	#	_	\perp								
	1	Sampl	os Shipi	ped VIA			deral Exp	DI CES	133	Sampler	AIT TH	l Number	9				Due Date: r Around Time
Lab Name <u>LEGEND TECH</u> N Lab Location: ST. PAUL	(A)	Lab V	irini				2 NG12 175 4	10 H		20.540	. N=4	CALLEY FO	w may	OLITONIZACI	- Rus	th	S(day)
istribution - White-Original: Accompanie	100000		_	11775 E E E E E		Temperature or		_			_			□None	(1/eds.17))	Y.	10007

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

March 19, 2018

REVISION

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800806

RE: 23691845

This is a revised report. The details of the revision are listed in the case narrative on the following page.

Enclosed are the results of analyses for samples received by the laboratory on 03/02/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAC) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Date Reported: 03/19/18 Project Manager: Mr. James E. Taraldsen

ANALYTICAL REPORT FOR SAMPLES

02/18 09:10 02/18 09:10 02/18 09:10
02/19 00:10
02/10 09.10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
02/18 09:10
3/0 3/0 3/0 3/0 3/0

Shipping Container Information

Default Cooler Temperature (°C): 2.8

Received on ice: Yes

Received on melt water: Yes

Custody seals: No

Temperature blank was not present

Ambient: No

Received on ice pack: No

Acceptable (IH/ISO only): No

Case Narrative:

The results are reported on an 'as received' basis for sample Concentrate Thickener Overflow due to limited sample.

This report was revised on March 19, 2018 to include missing LCS data for 200.8 batch B8C0519. This report supersedes the report dated March 9, 2018.

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/19/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Tails Thickener Underflow (1800806-0	l) Soil Sa	ampled: (3/01/18 0	9:49 Recei	ved: 03/02	2/18 9:10							
Mercury	0.062	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473				
Finisher Concentrate Discharge (1800806-02) Soil Sampled: 03/01/18 08:56 Received: 03/02/18 9:10													
Mercury	0.023	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473	J			
Concentrate Thickener Feed (1800806-03) Soil Sampled: 03/01/18 09:34 Received: 03/02/18 9:10													
Mercury	0.018	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473	J			
Concentrate Thickener Underflow (180	00806-04)	Soil Sar	npled: 03	/01/18 09:06	Receive	d: 03/02/1	8 9:10						
Mercury	0.019	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473	J			
Concentrate Thickener Overflow (1800	806-05) S	oil Sam	pled: 03/	01/18 09:15	Received	: 03/02/18	9:10						
Mercury	0.046	0.050	0.0044	mg/kg wet	1	B8C0508	03/05/18	03/05/18	EPA 7473	J			
Green Balls (1800806-06) Soil Sample	ed: 03/01/	18 08:17	Receive	ed: 03/02/18	9:10								
Mercury	0.014	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473	J			
Scrubber Blowdown (1800806-07) Soil	Sample	d: 03/01/	18 08:36	Received: 0	03/02/18 9	:10	_		_	<u> </u>			
Mercury	1.2	0.050	0.0044	mg/kg dry	1	B8C0508	03/05/18	03/05/18	EPA 7473				

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/19/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800806-08) Wastew	ater S	ampled: 03/	01/18 09:49	Receive	ed: 03/02/1				
Mercury	0.067	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	J
Finisher Concentrate Discharge (1800)	d: 03/01/18	08:56 Received: 03/02/18 9:10								
Mercury	0.055	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	J
Concentrate Thickener Feed (1800806-	10) Wast	ewater	Sampled: 0	3/01/18 09:3	34 Rece	ived: 03/02	2/18 9:10			
Mercury	0.036	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	J
Concentrate Thickener Underflow (180	0806-11)	Wastew	vater Samp	led: 03/01/1	8 09:06	Received:	03/02/18 9:	:10		
Mercury	0.045	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	J
Concentrate Thickener Overflow (1800	806-12) V	Vastewa	ater Sample	ed: 03/01/18	09:15 F	Received: 0	3/02/18 9:1	0		
Mercury	< 0.035	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	
Scrubber Blowdown (1800806-13) Was	tewater	Sample	ed: 03/01/18	08:36 Rec	eived: 03	/02/18 9:10	0			
Mercury	0.083	0.20	0.035	ug/L	1	B8C0519	03/05/18	03/06/18	EPA 200.8	J

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/19/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (180	0806-01) Soil Sa	mpled:	03/01/18 09	9:49 Recei	ived: 03/02	/18 9:10				
% Solids	78			%	1	B8C0907	03/09/18	03/09/18	% calculation	
Finisher Concentrate Discharge	e (1800806-02) So	il Sam	pled: 03/01	1/18 08:56	Received:	03/02/18	9:10			
% Solids	84			%	1	B8C0907	03/09/18	03/09/18	% calculation	
Concentrate Thickener Feed (1	800806-03) Soil 3	Sample	d: 03/01/18	09:34 Red	ceived: 03/	02/18 9:10	0			
% Solids	82			%	1	B8C0907	03/09/18	03/09/18	% calculation	
Concentrate Thickener Underfl	ow (1800806-04) S	oil Sa	mpled: 03/	01/18 09:06	Receive	d: 03/02/1	8 9:10			
% Solids	85			%	1	B8C0907	03/09/18	03/09/18	% calculation	
Green Balls (1800806-06) Soil	Sampled: 03/01/1	8 08:17	Receive	d: 03/02/18	9:10					
% Solids	84			%	1	B8C0907	03/09/18	03/09/18	% calculation	
Scrubber Blowdown (1800806-	07) Soil Sampled	: 03/01/	18 08:36	Received: (03/02/18 9	:10				
% Solids	81			%	1	B8C0907	03/09/18	03/09/18	% calculation	
-	· · · · · · · · · · · · · · · · · · ·			· ·				· ·	,	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/19/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8C0508 - EPA 7473											
Blank (B8C0508-BLK1)					Prepared	d & Analyze	ed: 03/05/	18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8C0508-BS1)					Prepared	d & Analyze	ed: 03/05/	18			
Mercury	0.910	0.050	0.0044	mg/kg wet	1.00	<0.050	91.0	80-120			
LCS Dup (B8C0508-BSD1)					Prepared	d & Analyze	ed: 03/05/	18			
Mercury	0.976	0.050	0.0044	mg/kg wet	1.00	<0.050	97.6	80-120	7.03	20	
Matrix Spike (B8C0508-MS1)	5	Source: 1	1800806-	01	Prepared	d & Analyze	ed: 03/05/	18			
Mercury	0.419	0.050	0.0044	mg/kg dry	0.407	0.0623	87.5	80-120			
Matrix Spike Dup (B8C0508-MSD1)	5	Source: 1	1800806-	01	Prepared	d & Analyze	ed: 03/05/	18			
Mercury	0.353	0.050	0.0044	mg/kg dry	0.328	0.0623	88.6	80-120	17.1	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800806

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 03/19/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8C0519 - EPA 200.8 Digestion Blank (B8C0519-BLK1)					Prepared	l: 03/05/18	Analyzed	d: 03/06/18	3		
Mercury	< 0.035	0.20	0.035	ug/L							
LCS (B8C0519-BS1)					Prepared	I: 03/05/18	Analyzed	d: 03/06/18	3		
Mercury	25.9	0.20	0.035	ug/L	25.0	<0.20	104	85-115			
LCS Dup (B8C0519-BSD1)					Prepared	I: 03/05/18	Analyzed	d: 03/06/18	3		
Mercury	25.1	0.20	0.035	ug/L	25.0	<0.20	100	85-115	3.01	20	
Matrix Spike (B8C0519-MS1)	S	ource:	1800779-0	1	Prepared	I: 03/05/18	Analyzed	d: 03/06/18	3		
Mercury	23.7	0.20	0.035	ug/L	25.0	<0.20	94.2	75-125			
Matrix Spike Dup (B8C0519-MSD1)	Source: 1800779-01 Prepared: 03/05/18 Analyzed: 03/06/18										
Mercury	23.6	0.20	0.035	ug/L	25.0	<0.20	93.8	75-125	0.462	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number: 23691845.00 001 001
 Work Order #: 1800806

 Duluth, MN 55802
 Project Manager: Mr. James E. Taraldsen
 Date Reported: 03/19/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes

Batch B8C0907 - General Preparation

Duplicate (B8C0907-DUP1) Source: 1800806-06 Prepared & Analyzed: 03/09/18

% Solids 86.0 % 84.0 2.35 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800806 Duluth, MN 55802 Date Reported: 03/19/18 Project Manager: Mr. James E. Taraldsen

Notes and Definitions

Parameter was present between the MDL and RL and should be considered an estimated value J

Less than value listed

dry Sample results reported on a dry weight basis

Not applicable. The %RPD is not calculated from values less than the reporting limit. NA

MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Fax: 651-642-1239

Barr Engineering Co.	_	_	24357	D.	A CONTRACTOR	OWI		Anaiysis	Requested	1 BOLH Pharm (p.51-721)
BANT D Blamerck D Hilbbing		□ Jeffe □ Minn	cson City mapolis		I I NO	Other:	IF	Water	5ail	COC of _/
REPORT TO		H		INVOICE	TO	-	4 1	1111		Matrix Code Prespositive Code
Company BARK ENGINEER	NG	Corr	pany:				10		dan	GW = Groundwater A = None
Audies 325 S. LAKE ALK	DUI	Add	tes			z	ner	13	10	SW = Surface Water B = HCI
EVAN SIATZ		Nam	e: -	- October			Containers	DOTT	3	DW = Drinking Water D = H ₂ SO ₄
email YSIQTO 10 langu In	4.1	emai		Same	-	>	CO	00	3	S = Soil/Solid E + NaOH SD = Sediment F - MeOH
Copy to: datamgt@barr.com / Ufra	nain	+80	01				5		ancpu	O = Other G = NaHSO.
Project Name MINDRIA HOTES	June 1	PEN-	Donas	DOFF CO	רמ	1 001 M		21ESTIC	9	H = Na ₂ S ₂ O ₃ I = Ascorbic A
THOUSEN THE IES	Cir	nple D	riojeci	134918	45.00.00	1001 2	Number	5	20	J = NH ₂ CI
Location		pin ti	Unit	Collection	Collection	Matrix 5		Z	77	K = Zn Acetate O = Other
	Start	Stop	(m./ft. ar.in.)	Date (mm/dd/yyyy)	Time	Code 2	ato		A	Preservative Code
1 TAILS THICKENER			Sec. Heaty	CE-CONTROL	123 1			7	I V	Field Filtered Y/N
UNDERFLOW 2 FINISHER CONCENTRATE			-	03/01/2018	0949	S/www				GOLD MATERIAL
DISCHAUGE	_		-	1	0850					HIS ANALYSIS BY METHOD 747
CONCENTRATE THICKENER FEED	-				0934		11			% SOUDS FOR
4 CONCENTRATE					-				++++	MAN TOWN
If ICKENER UNDERFORE CONCENTRATE					09016					MOISTURE WERECTI
THICKENER OVERETOW					0915					DECONTAMINATUR
"GREN BALLS	-		21		0817					Liquid HO
SCRUBELL BLOWDON N					(SOLE 10.10)		+			ANALYSIG BY
TSTO MIZOLIA	-9	-			0836	ᆚ				METHOD 200.8
	_									PEPORT TO MUL
							Ш			
0.				V			H			5 DAY TAT
BARR USE ONLY		Relingui	shed by	1.	7 Qp to	e? Date				
ampled by Kathing DY-SCOTT S			stay by	111260	Jan (1)	3/1/12		6 Receive		Date Time
arr Proj. Manager: EVAN, STATZ arr DQ Manager: 1 TAYATDG-CA					(Ta lo	e? Date	Tie	ne Arcena	d by	C 3/2/18 Gro
V 1 1 1 1 1 1 1 2 2 2 1 1		Samples	Shippe			nd Express	□ \$ampi	er: Air Bill	Number:	The second secon
ST PAUL	160	ab WO	_	[7] Othe	r		_	-		Requested Due Date: MStandard Turn Argund Time
tribution - White-Original: Accompanies	- 1	rap MO		- in	mperature on R	eceipt ("Cl:	C	ustady Seal In	ad? DY DN	(None Trush Gdw)

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

March 14, 2018

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800870

RE: 23691845

Enclosed are the results of analyses for samples received by the laboratory on 03/07/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAP) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Tails Thickener Underflow	1800870-01	Other	03/06/18 09:14	03/07/18 16:25
Finishers Concentrate Discharge	1800870-02	Other	03/06/18 08:19	03/07/18 16:25
Concentrate Thickener Feed	1800870-03	Other	03/06/18 08:53	03/07/18 16:25
Concentrate Thickener Underflow	1800870-04	Other	03/06/18 08:28	03/07/18 16:25
Concentrate Thickener Overflow	1800870-05	Other	03/06/18 08:36	03/07/18 16:25
Green Balls	1800870-06	Other	03/06/18 08:16	03/07/18 16:25
Scrubber Blowdown	1800870-07	Other	03/06/18 08:25	03/07/18 16:25
Tails Thickener Underflow	1800870-08	Wastewater	03/06/18 09:14	03/07/18 16:25
Finishers Concentrate Discharge	1800870-09	Wastewater	03/06/18 08:19	03/07/18 16:25
Concentrate Thickener Feed	1800870-10	Wastewater	03/06/18 08:53	03/07/18 16:25
Concentrate Thickener Underflow	1800870-11	Wastewater	03/06/18 08:28	03/07/18 16:25
Concentrate Thickener Overflow	1800870-12	Wastewater	03/06/18 08:36	03/07/18 16:25
Scrubber Blowdown	1800870-13	Wastewater	03/06/18 08:25	03/07/18 16:25

Shipping Container Information

Default Cooler Temperature (°C): 1.2

Received on ice: Yes

Received on melt water: Yes

Custody seals: No

Temperature blank was not present

Ambient: No

Received on ice pack: No Acceptable (IH/ISO only): No

Case Narrative:

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 100 001
 Work Order #:
 1800870

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 03/14/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800870-01) Other	Sample	d: 03/06/18	09:14 Rec	eived: 03/	07/18 16:2	5			
Mercury	0.058	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	
Finishers Concentrate Discharge (1800	0870-02)	Other S	ampled: 03	/06/18 08:19	Receiv	ed: 03/07/	18 16:25			
Mercury	0.013	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	J
Concentrate Thickener Feed (1800870-	03) Othe	r Samp	led: 03/06/1	8 08:53 R	eceived: 0	3/07/18 16	:25			
Mercury	0.011	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	J
Concentrate Thickener Underflow (180	0870-04)	Other \$	Sampled: 0	3/06/18 08:2	8 Recei	ved: 03/07/	/18 16:25			
Mercury	0.012	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	J
Concentrate Thickener Overflow (1800	870-05) (Other Sa	ampled: 03/	06/18 08:36	Receive	ed: 03/07/1	8 16:25			
Mercury	0.0097	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	J
Green Balls (1800870-06) Other Samp	led: 03/0	6/18 08:1	16 Receive	ed: 03/07/18	16:25					
Mercury	0.010	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	J
Scrubber Blowdown (1800870-07) Other	er Samp	oled: 03/0	06/18 08:25	Received:	03/07/18	16:25				
Mercury	0.92	0.050	0.0044	mg/kg dry	1	B8C0803	03/08/18	03/08/18	EPA 7473	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800870-0	3) Wastew	ater S	ampled: 03/0	06/18 09:14	Receiv	ed: 03/07/1	8 16:25			
Mercury	0.17	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	J
Finishers Concentrate Discharge (180	0870-09) \	Nastew	ater Sample	ed: 03/06/18	3 08:19	Received:	03/07/18 16:	25		
Mercury	0.11	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	J
Concentrate Thickener Feed (1800870	-10) Wast	ewater	Sampled: 0	3/06/18 08:	3 Rece	eived: 03/07	7/18 16:25			
Mercury	0.082	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	J
Concentrate Thickener Underflow (18	00870-11)	Wastew	ater Sampl	ed: 03/06/1	8 08:28	Received:	03/07/18 16	:25		
Mercury	0.058	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	J
Concentrate Thickener Overflow (1800)870-12) V	Vastewa	ater Sample	d: 03/06/18	08:36 F	Received: 0	3/07/18 16:2	25		
Mercury	0.089	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	J
Scrubber Blowdown (1800870-13) Was	stewater	Sample	ed: 03/06/18 (08:25 Rec	eived: 03	3/07/18 16:2	! 5			<u> </u>
Mercury	1.7	0.20	0.035	ug/L	1	B8C0909	03/09/18	03/09/18	EPA 200.8	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (18008	870-01) Other	Sample	d: 03/06/18	09:14 Rec	eived: 03/	07/18 16:2	5			
% Solids	77			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Finishers Concentrate Discharge	e (1800870-02) C	Other S	ampled: 03	/06/18 08:19	9 Receiv	ed: 03/07/1	18 16:25			
% Solids	88			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Concentrate Thickener Feed (180	00870-03) Other	Samp	led: 03/06/1	8 08:53 R	eceived: 0	3/07/18 16	:25			
% Solids	87			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Concentrate Thickener Underflow	w (1800870-04)	Other :	Sampled: 0	3/06/18 08:2	8 Receiv	ved: 03/07/	18 16:25			
% Solids	87			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Concentrate Thickener Overflow	(1800870-05) O	ther S	ampled: 03	/06/18 08:36	Receive	ed: 03/07/1	8 16:25			
% Solids	80			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Green Balls (1800870-06) Other	Sampled: 03/06	6/18 08:1	16 Receiv	ed: 03/07/18	3 16:25					
% Solids	91			%	1	B8C1409	03/14/18	03/14/18	% calculation	
Scrubber Blowdown (1800870-07	7) Other Sampl	ed: 03/0	06/18 08:25	Received	03/07/18	16:25				
% Solids	94			%	1	B8C1409	03/14/18	03/14/18	% calculation	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

						_					
					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8C0803 - EPA 7473											
Blank (B8C0803-BLK1)				1	Prepared	ł & Analyze	ed: 03/08/	18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8C0803-BS1)				I	Prepared	l & Analyze	ed: 03/08/	18			
Mercury	0.920	0.050	0.0044	mg/kg wet	1.00	<0.050	92.0	80-120			
LCS Dup (B8C0803-BSD1)				I	Prepared	l & Analyze	ed: 03/08/	18			
Mercury	0.958	0.050	0.0044	mg/kg wet	1.00	<0.050	95.8	80-120	4.04	20	
Matrix Spike (B8C0803-MS1)		Source:	1800870-	01	Prepared	l & Analyze	ed: 03/08/	18			
Mercury	0.339	0.050	0.0044	mg/kg dry	0.269	0.0578	104	80-120			
Matrix Spike Dup (B8C0803-MSD1)		Source:	1800870-	01	Prepared	l & Analyze	ed: 03/08/	18			
Mercury	0.290	0.050	0.0044	mg/kg dry	0.288	0.0578	80.7	80-120	15.4	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8C0909 - EPA 200.8 Digestion											
Blank (B8C0909-BLK1)					Prepared	l & Analyze	ed: 03/09/	18			
Mercury	< 0.035	0.20	0.035	ug/L							
LCS (B8C0909-BS1)					Prepared	l & Analyze	ed: 03/09/	18			
Mercury	26.0	0.20	0.035	ug/L	25.0	<0.20	104	85-115			
LCS Dup (B8C0909-BSD1)					Prepared	l & Analyze	ed: 03/09/	18			
Mercury	26.7	0.20	0.035	ug/L	25.0	<0.20	107	85-115	2.66	20	
Matrix Spike (B8C0909-MS1)	S	ource:	1800870-1	3	Prepared	l & Analyze	ed: 03/09/	18			
Mercury	26.4	0.20	0.035	ug/L	25.0	1.71	99.0	75-125			
Matrix Spike (B8C0909-MS2)	S	ource:	1800870-0	9	Prepared	l & Analyze	ed: 03/09/	18			
Mercury	25.5	0.20	0.035	ug/L	25.0	<0.20	102	75-125			

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 100 001
 Work Order #:
 1800870

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 03/14/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes

Batch B8C1409 - General Preparation

Duplicate (B8C1409-DUP1) Source: 1800948-06 Prepared & Analyzed: 03/14/18

% Solids 85.0 % 86.0 1.17 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 100 001 Work Order #: 1800870 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/14/18

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

< Less than value listed

dry Sample results reported on a dry weight basis

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

88 Empire Drive St Paul, MN 55103

Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co. C	Hain	01	Cusi	Ouy	ple Origination	E] WI			Analy	ysis Requested		COC Number: 54031
Arm C Bismorck C Hibbing] Jeffers] Minne		O M	LIND	Other:			Water	Soil	T	coc er
REPORT TO				INVOICE		_	11			3		Matrix Code: Preservative Code:
COMPANY BAFF ENGINEER	114	Comp	LAMY:				1 /2		140	1		GW = Groundwater A = None SW = Surface Water B = HCl
Andress 325 G LAKE AVE D	Mel	/ Addre	1000	- 50 .		-	Z out		E	3	Т	WW= Waste Water C = HNO ₃
Name RYAN SIATZ	terra	Name	M.	14100			V / N		BOTTI	sampter	Т	OW = Drinking Water D = H ₂ SO ₄ S = Soil/Solid E = NaOH
email rsiatzebarr	I since	email					LE			2		SD = Sediment F = MeOH O = Other G = NaHSO ₄
Copy to: datamgt@barr.com /Jtar	a lete	206	he o	/low			GSW		Ιĕ	1 -		1 = Na-5-0,
Project Name: MINOY (A HA TES	TANA)	Barr	Project	1000 No. 2369 1	MS//		ASTOC	201	Solids	1800870 / = Atcorbic Ad		
municia, Fg 113	Salt	ple De		Collection	Collection	CGH	4 13		12	d'e	200	K = Zn Acetate
Location	Start	Stop	Unit	Date	Time	Matrix	1.00		-3-	A	180	Preservative Code
	- Asset 4	siob	(m./ft. or in.)	(mm/dd/yyyy)	(hhomm)	Code	Perfo		4	7		Field Filtered N/N
LINDERFLOW				03/06/2019	0914	1/11	N					SOLID Material Hg
FINISHERS CONCENTED SCHOOL CONCENTED SCH	H-				0819						Ī	METHOD 7473(+
HIGKENER FEED					0853							% SOLIDS FOR
CONCENTRATE					0828				77		T	MOISTURE CORK
HICKENED- UNDERFLOW			_		UULU	+	!!!				4	ECTION
HICKENTRATE HICKENER (VERFLOW					0836							DECORNTET 11940
GREEN BALLS					0814							Hy ANALYSIS BY
SCRUBBER					0825				11		T	METHOD 200. 8
BLOWDOWN		_			0022	-	1		1		L	
												PEPORT TO MOL
							П				Ī	5 DAY TAT
0.											t	- VAY IAI
BARR USE ONLY		Rojirja		W & D.	/ 90	Ice?	Date Cr/19	a In	30	eceived by:	1	Date Time
ampled by:			uished I				Oate			eceived by:	11/	7 Dates L. J. Time
arr Proj. Manager;	-	- 1		100	V)n					U	2 3/3/18 1625
arr DQ Manager: ab Name:		Sample	es Shipp			ederal Exp	ress I	Samp	ilet A	ir Bill Number:		Requested Due Date:
EN D. MATERIA	-	1-4-76	IPA:	O		Test-value	14301		in the same	erd with the	ILLY CA	XIStandard Turn Around Time
ab Location: tribution - White-Original: Accompanies		Lab W	_		Temperature or	A STATE OF THE STA				eal Intact? XV		Vorman 1 (months to the 1)

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

March 28, 2018

REVISION

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1800976

RE: 23691845

This is a revised report. The details of the revision are listed in the case narrative on the following page.

Enclosed are the results of analyses for samples received by the laboratory on 03/14/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAC) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800976

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Tails Thickener Underflow	1800976-01	Other	03/13/18 09:27	03/14/18 09:30
Finishers Concentrate Discharge	1800976-02	Other	03/13/18 08:26	03/14/18 09:30
Concentrate Thickener Feed	1800976-03	Other	03/13/18 09:07	03/14/18 09:30
Concentrate Thickener Underflow	1800976-04	Other	03/13/18 08:35	03/14/18 09:30
Concentrate Thickener Overflow	1800976-05	Other	03/13/18 08:45	03/14/18 09:30
Green Balls	1800976-06	Other	03/13/18 08:27	03/14/18 09:30
Scrubber Blowdown	1800976-07	Other	03/13/18 08:36	03/14/18 09:30
Tails Thickener Underflow	1800976-08	Wastewater	03/13/18 09:27	03/14/18 09:30
Finishers Concentrate Discharge	1800976-09	Wastewater	03/13/18 08:26	03/14/18 09:30
Concentrate Thickener Feed	1800976-10	Wastewater	03/13/18 09:07	03/14/18 09:30
Concentrate Thickener Underflow	1800976-11	Wastewater	03/13/18 08:35	03/14/18 09:30
Concentrate Thickener Overflow	1800976-12	Wastewater	03/13/18 08:45	03/14/18 09:30
Scrubber Blowdown	1800976-13	Wastewater	03/13/18 08:36	03/14/18 09:30

Shipping Container Information

Default Cooler Temperature (°C): 2.4

Received on ice: Yes Temperature blank was not present Received on ice pack: No Ambient: No Ambient: No Acceptable (IH/ISO only): No

Custody seals: No

Case Narrative:

The results are reported on an 'as received' basis for sample Concentrate Thickener Overflow due to limited sample.

The spike recoveries for mercury were below laboratory acceptance limits in the 7473 batch B8C1509 MS/MSD. All remaining spike recoveries were within acceptance limits in the batch LCS/LCSD. The MS/MSD source sample was Tails Thickener Underflow.

At the client's request, this report was revised on March 28, 2018 to change the project number. This report supersedes the report dated March 22, 2018.

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800976

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 03/28/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800976-0	1) Other	Sampled	I: 03/13/18	09:27 Rec	eived: 03/	14/18 9:30)			
Mercury	0.094	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	M2
Finishers Concentrate Discharge (180	0976-02)	Other S	ampled: 03	/13/18 08:26	Receiv	ed: 03/14/1	8 9:30			
Mercury	0.021	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	J
Concentrate Thickener Feed (1800976	-03) Othe	r Sampl	ed: 03/13/1	8 09:07 Re	eceived: 0	3/14/18 9:	30			
Mercury	0.016	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	J
Concentrate Thickener Underflow (18	00976-04)	Other S	Sampled: 0	3/13/18 08:3	5 Recei	ved: 03/14/	18 9:30			
Mercury	0.031	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	J
Concentrate Thickener Overflow (1800)976-05) C	Other Sa	mpled: 03/	13/18 08:45	Receive	ed: 03/14/1	8 9:30			
Mercury	0.054	0.050	0.0044	mg/kg wet	1	B8C1509	03/15/18	03/16/18	EPA 7473	
Green Balls (1800976-06) Other Sam	oled: 03/1	3/18 08:2	7 Receive	ed: 03/14/18	9:30					
Mercury	0.0081	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	J
Scrubber Blowdown (1800976-07) Oth	er Samp	led: 03/1	3/18 08:36	Received:	03/14/18	9:30	•			
Mercury	1.3	0.050	0.0044	mg/kg dry	1	B8C1509	03/15/18	03/16/18	EPA 7473	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800976 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1800976-08) Wastew	ater S	ampled: 03/	13/18 09:27	Receive	ed: 03/14/1	8 9:30			
Mercury	0.083	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	J
Finishers Concentrate Discharge (1800	976-09) \	Nastew	ater Sample	ed: 03/13/18	8 08:26	Received:	03/14/18 9:3	30		
Mercury	0.078	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	J
Concentrate Thickener Feed (1800976-	10) Wast	ewater	Sampled: 0	3/13/18 09:0	7 Rece	eived: 03/14	l/18 9:30			
Mercury	0.077	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	J
Concentrate Thickener Underflow (180	0976-11)	Wastew	ater Samp	led: 03/13/1	8 08:35	Received:	03/14/18 9:	30		
Mercury	0.053	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	J
Concentrate Thickener Overflow (1800	976-12) V	Vastewa	ater Sample	ed: 03/13/18	08:45 F	Received: 0	3/14/18 9:3	0		
Mercury	0.047	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	J
Scrubber Blowdown (1800976-13) Was	tewater	Sample	ed: 03/13/18	08:36 Rec	eived: 03	3/14/18 9:3	0			
Mercury	0.21	0.20	0.035	ug/L	1	B8C1411	03/14/18	03/15/18	EPA 200.8	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800976 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (180	0976-01) Other	Sample	d: 03/13/18	09:27 Rec	eived: 03/	14/18 9:30				
% Solids	77			%	1	B8C2203	03/22/18	03/22/18	% calculation	
Finishers Concentrate Discharg	ge (1800976-02) (Other S	Sampled: 03	3/13/18 08:26	Receiv	ed: 03/14/1	8 9:30			
% Solids	87			%	1	B8C2203	03/22/18	03/22/18	% calculation	
Concentrate Thickener Feed (1	800976-03) Other	Samp	led: 03/13/1	18 09:07 R	eceived: 0	3/14/18 9:	30			
% Solids	88			%	1	B8C2203	03/22/18	03/22/18	% calculation	
Concentrate Thickener Underfl	ow (1800976-04)	Other	Sampled: 0	3/13/18 08:3	5 Recei	ved: 03/14/	18 9:30			
% Solids	88			%	1	B8C2203	03/22/18	03/22/18	% calculation	
Green Balls (1800976-06) Other	Sampled: 03/13	3/18 08:2	27 Receiv	ed: 03/14/18	9:30					
% Solids	91			%	1	B8C2203	03/22/18	03/22/18	% calculation	
Scrubber Blowdown (1800976-	07) Other Samp	led: 03/1	13/18 08:36	Received:	03/14/18	9:30				
% Solids	91			%	1	B8C2203	03/22/18	03/22/18	% calculation	
•	· · · · · · · · · · · · · · · · · · ·		·					·		

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800976 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Analyte	Nesuit	NL	IVIDL	Ullits	Level	Nesuit	/orcc	LIIIIII	/0KFD	LIIIII	Notes
Batch B8C1509 - EPA 7473											
Blank (B8C1509-BLK1)				1	Prepared	l: 03/15/18	Analyzed	I: 03/16/18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8C1509-BS1)				[Prepared	d: 03/15/18	Analyzed	I: 03/16/18			
Mercury	0.888	0.050	0.0044	mg/kg wet	1.00	<0.050	88.8	80-120			
LCS Dup (B8C1509-BSD1)				[Prepared	d: 03/15/18	Analyzed	I: 03/16/18			
Mercury	0.929	0.050	0.0044	mg/kg wet	1.00	<0.050	92.9	80-120	4.56	20	
Matrix Spike (B8C1509-MS1)	5	Source:	1800976-	01	Prepared	d: 03/15/18	Analyzed	I: 03/16/18			
Mercury	0.315	0.050	0.0044	mg/kg dry	0.298	0.0939	74.0	80-120			M2
Matrix Spike Dup (B8C1509-MSD1)		Source:	1800976-	01	Prepared	d: 03/15/18	Analyzed	I: 03/16/18			
Mercury	0.327	0.050	0.0044	mg/kg dry	0.320	0.0939	73.0	80-120	4.01	20	M2

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Project Number: 23691845.00 001 001 Work Order #: 1800976 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8C1411 - EPA 200.8 Digestion											
Blank (B8C1411-BLK1)					Prepared	l: 03/14/18	Analyzed	d: 03/15/18	3		
Mercury	< 0.035	0.20	0.035	ug/L							
LCS (B8C1411-BS1)					Prepared	l: 03/14/18	Analyzed	d: 03/15/18	3		
Mercury	25.4	0.20	0.035	ug/L	25.0	<0.20	102	85-115			
LCS Dup (B8C1411-BSD1)					Prepared	l: 03/14/18	Analyzed	d: 03/15/18	3		
Mercury	25.9	0.20	0.035	ug/L	25.0	<0.20	104	85-115	2.00	20	
Matrix Spike (B8C1411-MS1)	S	ource:	1800974-0	1	Prepared	l: 03/14/18	Analyzed	d: 03/15/18	3		
Mercury	24.6	0.20	0.035	ug/L	25.0	<0.20	97.8	75-125			
Matrix Spike Dup (B8C1411-MSD1)	S	ource:	1800974-0	1	Prepared	l: 03/14/18	Analyzed	d: 03/15/18	3		
Mercury	24.6	0.20	0.035	ug/L	25.0	<0.20	97.8	75-125	0.00786	20	

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

 325 South Lake Avenue, Suite 700
 Project Number:
 23691845.00 001 001
 Work Order #:
 1800976

 Duluth, MN 55802
 Project Manager:
 Mr. James E. Taraldsen
 Date Reported:
 03/28/18

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Analyta	Dogult	DI	MDI	Lloito	Spike	Source	0/ DEC	%REC	0/ DDD	%RPD	Notoo

Batch B8C2203 - General Preparation

Duplicate (B8C2203-DUP1) Source: 1800976-06 Prepared & Analyzed: 03/22/18

% Solids 91.0 % 91.0 0.00 20

Fax: 651-642-1239

Barr Engineering Co. Project: 23691845

325 South Lake Avenue, Suite 700 Work Order #: 1800976 Project Number: 23691845.00 001 001 Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 03/28/18

Notes and Definitions

M2 Matrix spike recovery was low, the associated blank spike recovery was acceptable.

J Parameter was present between the MDL and RL and should be considered an estimated value

Less than value listed <

dry Sample results reported on a dry weight basis

Not applicable. The %RPD is not calculated from values less than the reporting limit. NA

MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)

RLReporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

88 Empire Drive St Paul, MN 55103

Tel: 651-642-1150 Fax: 651-642-1239

arr Engineering Co. (Chain	of	Cust	ody Samp	le Origination	Mate:	Н	A Wate	_	Requested Soil	-	COC Numi	ber: 53	686	
☐ Ann Arbor Soluth ☐ Bismarck ☐ Hibbing] Jeffers] Minne		EI MI	□ND C	ther.			T	101	IT	CDC	at	_	
# □ #ismarck □ Hibbing REPORT TO	-) Minne	пронь:	INVOICE T			11	Bottles			Н	Matrix	7777	Section 19	ative Code:
- 0	100	Comp	anc	avoice !		_	2					GW = Gro SW = Sur	face Water	8 %	
A STATE THE STREET	2	1000					Z	3		3		DW = Drir	ste Water sking Water		HNO. H ₂ SO.
ddress 375.5 Loke Ave	CHILD.	Name	2	Some			V / N Containers	Plostr	Н	Pess		5 = Soil SD = Sed	/Solid	E a	NaOH MeOH
lame Vyon Siats mult 151013@ boxy.com		email							11	13	Ш	0 = Oth	er	G w	NaHSO ₄
opy to: datamgt@barr.com	alde.	6592	11.11	rien			100	1	Н	05					Na ₂ 5 ₂ O ₃ Ascorbic Ack
roject Name Minores Sulfu	Shid	Harr	Project	No. 236918	44.00 00	1001	m MS/M Number	Jan 100		7	Solids			J w	NH ₄ Cl Zn Acetate
Francisco Latina	Şár	nple D	epth	Collection	Callection	Matrix	Ni		Ш		18				Other
Location	Start	Stop	Unit (m/ft.	Date (mm/dd/yyyy)	Time (nhmm)	Code		R	П	1.18	П	Preservative Field Fiftere	4.4777	_	
11.100		-	er in.)	Unity add y y y y	Manufactures.	-	10.11		₩		++	_	11149		_
#1 Tails Thickener				03/13/2018	09:7		Ш	Lt	Ш	1.19		2	4 Hun	/	
#2 Tails Thickener	11.	ζ	1	-101	. Ivi						H	Lau	2 6	-0 -	3
#2 mils in Overflow	No	Jun	11	03/13/2018		-	+		H	++++	H	- AM	10. 0-	- J. 16	Cy.
#3 Finishers Concentral #3 Finishers				03/13/2018	08:26		Ш	1	Ш	1,4		Mi	id 8- Hd 6	0100	>
#3 Discharge				03/13/2018				- 6		4		Set	(C.,	7	3
#5 Concentrate Thicken		-				.00.	+		Н		+	As	207	ME U	7
(underflow)	e.			03/13/2018	0835	1		1				1,1,2	IME	1919	-079
# Concentrate Thickens				03/13/2016			П		П			1.00	40	wiel.	3y 5-079 ire
Parties of the Control of the Contro	-	-	-	03/13/2013	08/73	-	+	+++	Н	Hì	H	7 400	7-1	41,340	re
#8 Green Balls				03/13/2018	08:27					1					
149 Scrubber Blowdow		Г							П						
	h	-	-	03 13 2018	08:36	-	₩		$^{+}$		\vdash			_	-
10.	Н								Ħ						
					la la	-	Date	Time	Ш	ШШ			_	Date	Time
BARR USE ONLY Sampled by: 00-7-2 5657+		Relin	quished	Lotte	م م	N 3-	Date 3-18	Time 103	Rec	eived by				MATRICE.	
Barr Proj Manager Kyon Sigh		Rolin	quished	by:	On	Ice7	Date	Time	Rec	eived by:	10	0	2	MIX	9 Time
Barr DQ Manager: J.T. QVO 1056V		Same	oles Shir	pped VIA: CI Co	ouner X	ederal Ex	press	Sampler	Air	Bill Number.	-		Requ	ested D	ue Date:
tab Name Legend Total	ical			□o	Olivery Control	S STEMP (SEE				and the second			XStand Rush	ard Turn A	mund Time
Lab Location: 1		tab	WO:		Temperature o	n Neterp	(CO:	Custo	dy Sei	ii Intacei Xiv	DN	i None t Administrat	LINGSH	(mm\\dd/yy	W)

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

April 20, 2018

Mr. James E. Taraldsen Barr Engineering Co. 325 South Lake Avenue, Suite 700 Duluth, MN 55802

Work Order Number: 1801391

RE: 23691981

Enclosed are the results of analyses for samples received by the laboratory on 04/12/18. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

All test results and QC meet requirements of the 2003 NELAC standard.

MDH (NELAP) Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II

bpham@legend-group.com

Fax: 651-642-1239

Work Order #: 1801391

Date Reported: 04/20/18

Barr Engineering Co. Project: 23691981 325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Tails Thickener Underflow	1801391-01	Other	04/11/18 09:19	04/12/18 09:10
Concentrate Thickener Feed	1801391-02	Other	04/11/18 09:03	04/12/18 09:10
Concentrate Thickener Underflow	1801391-03	Other	04/11/18 08:35	04/12/18 09:10
Concentrate Thickener Overflow	1801391-04	Other	04/11/18 08:42	04/12/18 09:10
Green Balls	1801391-05	Other	04/11/18 08:27	04/12/18 09:10
Scrubber Blowdown	1801391-06	Other	04/11/18 08:30	04/12/18 09:10
Tails Thickener Underflow	1801391-07	Wastewater	04/11/18 09:19	04/12/18 09:10
Concentrate Thickener Feed	1801391-08	Wastewater	04/11/18 09:03	04/12/18 09:10
Concentrate Thickener Underflow	1801391-09	Wastewater	04/11/18 08:35	04/12/18 09:10
Concentrate Thickener Overflow	1801391-10	Wastewater	04/11/18 08:42	04/12/18 09:10
Scrubber Blowdown	1801391-11	Wastewater	04/11/18 08:30	04/12/18 09:10

Shipping Container Information

Default Cooler Temperature (°C):

Received on ice: Yes

Received on melt water: No

Custody seals: No

Temperature blank was not present

Ambient: No

Received on ice pack: No Acceptable (IH/ISO only): No

Case Narrative:

The spike recovery for mercury was below laboratory acceptance limits in the 7473 batch B8D1810 MSD. All remaining spike recoveries were within acceptance limits in the batch LCS/LCSD/MS. The MS/MSD source sample was Tails Thickener Underflow.

The results are reported on an 'as received' basis for samples Concentrate Thickener Overflow and Scrubber Blowdown due to limited sample.

Fax: 651-642-1239

Work Order #: 1801391

Barr Engineering Co. Project: 23691981
325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 04/20/18

TOTAL MERCURY ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1801391-	01) Other	Sample	d: 04/11/18	09:19 Rece	eived: 04/	12/18 9:10)			
Mercury	0.031	0.050	0.0044	mg/kg dry	1	B8D1810	04/18/18	04/19/18	EPA 7473	M2, QR-04, J
Concentrate Thickener Feed (180139	1-02) Othe	r Samp	led: 04/11/1	8 09:03 Re	eceived: 0	4/12/18 9:	10			
Mercury	0.0093	0.050	0.0044	mg/kg dry	1	B8D1810	04/18/18	04/19/18	EPA 7473	J
Concentrate Thickener Underflow (1	801391-03)	Other	Sampled: 0	4/11/18 08:3	5 Receiv	ved: 04/12/	/18 9:10			
Mercury	0.014	0.050	0.0044	mg/kg dry	1	B8D1810	04/18/18	04/19/18	EPA 7473	J
Concentrate Thickener Overflow (186	01391-04) (Other S	ampled: 04	/11/18 08:42	Receive	ed: 04/12/1	8 9:10			
Mercury	0.030	0.050	0.0044	mg/kg wet	1	B8D1810	04/18/18	04/19/18	EPA 7473	J
Green Balls (1801391-05) Other San	npled: 04/1	1/18 08:2	27 Receiv	ed: 04/12/18	9:10					
Mercury	0.0095	0.050	0.0044	mg/kg dry	1	B8D1810	04/18/18	04/19/18	EPA 7473	J
Scrubber Blowdown (1801391-06) Ot	her Samp	oled: 04/	11/18 08:30	Received:	04/12/18	9:10		_		<u> </u>
Mercury	1.4	0.050	0.0044	mg/kg wet	1	B8D1810	04/18/18	04/19/18	EPA 7473	

Fax: 651-642-1239

Work Order #: 1801391

Barr Engineering Co. Project: 23691981 325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 04/20/18

TOTAL METALS ANALYSIS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1801391-07	') Wastew	ater S	ampled: 04/	11/18 09:19	Receive	ed: 04/12/1	8 9:10			
Mercury	0.11	0.20	0.035	ug/L	1	B8D1303	04/13/18	04/16/18	EPA 200.8	J
Concentrate Thickener Feed (1801391	·08) Wast	ewater	Sampled: 0	4/11/18 09:0	3 Rece	ived: 04/12	/18 9:10			
Mercury	0.074	0.20	0.035	ug/L	1	B8D1303	04/13/18	04/16/18	EPA 200.8	J
Concentrate Thickener Underflow (180	1391-09)	Wastev	vater Samp	led: 04/11/1	8 08:35	Received:	04/12/18 9:	10		
Mercury	0.064	0.20	0.035	ug/L	1	B8D1303	04/13/18	04/16/18	EPA 200.8	J
Concentrate Thickener Overflow (1801	391-10) V	Vastewa	ater Sample	ed: 04/11/18	08:42 R	Received: 0	4/12/18 9:1	0		
Mercury	0.081	0.20	0.035	ug/L	1	B8D1303	04/13/18	04/16/18	EPA 200.8	J
Scrubber Blowdown (1801391-11) Was	tewater	Sample	ed: 04/11/18	08:30 Rec	eived: 04/	/12/18 9:10)			
Mercury	0.26	0.20	0.035	ug/L	1	B8D1303	04/13/18	04/16/18	EPA 200.8	

Fax: 651-642-1239

Work Order #: 1801391

Barr Engineering Co. Project: 23691981 325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 04/20/18

PERCENT SOLIDS Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Tails Thickener Underflow (1801	391-01) Other	Sample	d: 04/11/18 (9:19 Rec	eived: 04/	12/18 9:10)			
% Solids	80			%	1	B8D1903	04/19/18	04/19/18	% calculation	
Concentrate Thickener Feed (18	01391-02) Othe	r Samp	led: 04/11/1	8 09:03 R	eceived: 0	4/12/18 9:	10			
% Solids	86			%	1	B8D1903	04/19/18	04/19/18	% calculation	
Concentrate Thickener Underflo	w (1801391-03)	Other	Sampled: 04	4/11/18 08:3	35 Receiv	ved: 04/12/	18 9:10			
% Solids	86			%	1	B8D1903	04/19/18	04/19/18	% calculation	
Green Balls (1801391-05) Other	Sampled: 04/1	1/18 08:	27 Receive	ed: 04/12/18	3 9:10			_		
% Solids	91			%	1	B8D1903	04/19/18	04/19/18	% calculation	

Fax: 651-642-1239

Barr Engineering Co.

325 South Lake Avenue, Suite 700

Project Number: 23691981

Duluth, MN 55802

Project Manager: Mr. James E. Taraldsen

Work Order #: 1801391
Date Reported: 04/20/18

TOTAL MERCURY ANALYSIS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8D1810 - EPA 7473											
Blank (B8D1810-BLK1)					Prepared	d: 04/18/18	Analyzed	d: 04/19/18			
Mercury	< 0.0044	0.050	0.0044	mg/kg wet							
LCS (B8D1810-BS1)					Prepared	d: 04/18/18	Analyzed	d: 04/19/18	,		
Mercury	0.891	0.050	0.0044	mg/kg wet	1.00	<0.050	89.1	80-120			
LCS Dup (B8D1810-BSD1)					Prepared	d: 04/18/18	Analyzed	d: 04/19/18			
Mercury	0.955	0.050	0.0044	mg/kg wet	1.00	<0.050	95.5	80-120	6.93	20	
Matrix Spike (B8D1810-MS1)	5	Source:	1801391-0	01	Prepared	d: 04/18/18	Analyzed	d: 04/19/18	,		
Mercury	0.349	0.050	0.0044	mg/kg dry	0.357	<0.050	89.0	80-120			
Matrix Spike Dup (B8D1810-MSD1)	5	Source:	1801391-0	01	Prepared	d: 04/18/18	Analyzed	d: 04/19/18	,		
Mercury	0.253	0.050	0.0044	mg/kg dry	0.310	<0.050	71.8	80-120	31.7	20	M2, QR-04

Fax: 651-642-1239

Barr Engineering Co. Project: 23691981
325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen

Date Reported: 04/20/18

Work Order #: 1801391

TOTAL METALS ANALYSIS - Quality Control Legend Technical Services, Inc.

					Spike	Source		%REC		%RPD	
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B8D1303 - EPA 200.8 Digestion											
Blank (B8D1303-BLK1)					Prepared	l: 04/13/18	Analyzed	l: 04/16/18	3		
Mercury	< 0.035	0.20	0.035	ug/L							
LCS (B8D1303-BS1)					Prepared	l: 04/13/18	Analyzed	l: 04/16/18	3		
Mercury	25.2	0.20	0.035	ug/L	25.0	<0.20	101	85-115			
LCS Dup (B8D1303-BSD1)					Prepared	l: 04/13/18	Analyzed	l: 04/16/18	3		
Mercury	24.7	0.20	0.035	ug/L	25.0	<0.20	98.9	85-115	1.75	20	
Matrix Spike (B8D1303-MS1)	S	ource:	1801323-0	1	Prepared	l: 04/13/18	Analyzed	l: 04/16/18	3		
Mercury	24.2	0.20	0.035	ug/L	25.0	<0.20	96.6	75-125			
Matrix Spike Dup (B8D1303-MSD1)	S	ource:	1801323-0	1	Prepared	l: 04/13/18	Analyzed	l: 04/16/18	3		
Mercury	23.7	0.20	0.035	ug/L	25.0	<0.20	94.6	75-125	2.10	20	

Duluth, MN 55802

% Solids

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150

Fax: 651-642-1239

Barr Engineering Co. Project: 23691981
325 South Lake Avenue, Suite 700 Project Number: 23691981

90.0

Project Manager: Mr. James E. Taraldsen

Work Order #: 1801391
Date Reported: 04/20/18

20

1.10

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B8D1903 - General Preparation											
Duplicate (B8D1903-DUP1)	S	ource: 18	301391-0	5	Prepared	& Analyze	ed: 04/19/1	8			

%

91.0

Fax: 651-642-1239

Work Order #:

1801391

Barr Engineering Co. Project: 23691981
325 South Lake Avenue, Suite 700 Project Number: 23691981

Duluth, MN 55802 Project Manager: Mr. James E. Taraldsen Date Reported: 04/20/18

Notes and Definitions

QR-04 The RPD value for the MS/MSD was outside of QC acceptance limits. Data was accepted based on LCS and/or LCSD recovery and/or RPD

values.

M2 Matrix spike recovery was low, the associated blank spike recovery was acceptable.

J Parameter was present between the MDL and RL and should be considered an estimated value

< Less than value listed

dry Sample results reported on a dry weight basis

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Fax: 651-642-1239

GEND TECHNICA Barr Engineering Co. C	hain	of	Cust	ndv samp	le Origination	State	\Box		Anal	yais Requ	ested			COC Number:	541	28	
Ann Arbor Schuluth	E	Jeffers Minne	on City	0 ks 0 ks 0 ks 2 ks	DND 0	ther			Water		1	ail	T.	COC	_ of	Î.	ive Code:
REPORT TO				INVOICE T	0]		4		SR.A		П	GW = Ground	LE	A = N	ann.
Company BALL ENGINEER	1/4	Comp	any:				1 1		Воπс€					SW = Surface WW = Waste		E = H	The state of the s
Address 325 5 LAKE AVE D	XLU	Addre	ts				Z uin		20.		7	П	Н	DW = Drinkin	g Water	D = H E = N	
Name: RYAN SIATZ		Name		-SAME			> Con		3		इ		Н	5 = Soil/Soil SD = Sedimir		F = N	leOH:
emit rsiatz & barr.	com	email		Virgo ore			SD		2		Janapier		Н	O = Other	_	G = N	aHSO ₄ a ₂ S ₂ O ₃
Copy to: datamgt@barr.com/J+121-14	Seno	689	colle						16		100	П	2	11601	n I	I = A	scorbic Aci
Project Name: MINORCA HAT	75TH	€Barr 1	Project 1	Vo:			MS/M		PLASTIC		20	11	Solids	18013	51/	K = Z	n Acetate
J		nple Depth Collection		Collection	Matrix	N. N.	Ž				Ш	×		O ⇒ Other		Nher:	
Location	Start	Shop	Unit (m/ft.	Date	Time (hh.mm)	Code		ota		1 0		1		Preservative C Field Filtered Y	-	-	
TALL THIE WEALTH	_		arin.)	(mm/dd/yyyy)	YOUNGS, WIL	11	+	+	7	++	7	+	Н				
UNDERFLOW				04/11/2018	0919	Twu	M		11			Ш	П	Soud 1	MATE	PIAL	Ha
FINISHERS CONCENTRAL										II	П	W	W	ANALY			
DISCHARGE					0827		Ш		Ш		4	V.	164	7473		01	oud
CONCENTRATE					0903		Ш				1	H	X	for m			
THICKENER FEED					0000	#	###	T		11	H	Ch	۳	Pa	1-11-1	100	4
THICKENER UNDERFLOW					0835		Ш					Ш	Ш	Wrrect	-	- Andrews	
5 CONCENTRATE					0842									mute	W	wo	- HA
THICKENE & OVERFLOW		_					₩	+			+	+	H	Anatu	445	bu	
" GREEN BALLS					0827				Ш						1)	
					6000		IJ		1		П	П	П	Mut	NOX	200	0.0
BLOWINWN					0830					4	1		H	Dano	VI L	- 1 /	D-1
8.							Ш			Ш				Kepo	101	0 1/1	DV
2	-	-					Ħ	t		#	Ħ	Ħ	T	EN	n . /	~	
							Ш				Ш	Ш		50	AY	TA	1
10.																	
BARR USE ONLY				-C () c	lon.	[ce?]	Date	1	ime .	Receive	d by		4			Date	Time
Sampled by:				Elw			Date 18		190		121	- 11	./-			Core	Time
Barr Proj. Manager:		Rylinguished by: On too?					Date	Dule Time			Received by				4 12 18 910		
Bair DQ Managor:		Samp	les Ship	ped VIA: C		ederal Ex	press [San	pler	Air Bil	Num	beri	T				e Date: -
Lab Name:		153714/8	meselW	□ot	1	ATTENDED TO	2000								Requested Due Date: Assandard Turn Around Time Rush Description Common C		
Lab Location:		Lab WO: Temperature on Receipt (*C). Costody Seal Intact? CIY ON X None							□ KUM	(mm/dd/yrs	(DU						

4511 W. 1st St., Suite #1, Duluth, MN 55807

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Testing

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21682

Report Date: 2/5/2018

Sample Receipt Date: 1/25/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89239	Scrubber Blowdown (100X)	1510	1/23/2018	8:33		2/2/2018	LC	10
89240	Make-up-water	0.563	1/23/2018	8:45		2/2/2018	LC	0.10
89241	Field Blank	< 0.500	1/23/2018	8:35		2/2/2018	LC	0.10

Reviewed by:

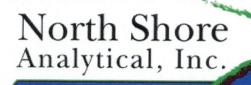
If you have any questions or feedback please call
Chris Gross or Linda Christensen at 218-729-4658.

Page 1 of 1

-Ship to:

North Shore Analytical, Inc.

4511 W. 1st St., Suite #1 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659


Record #:	<u> </u>

STF-COC-001 Revision Number: 6

Revision Date: 06/30/2014

Chain of Custody Client Name Report to: Jim Toraldsen now Engineering Sampled by: Prom Sints Address Phone: Project: 218-529-7138 Avr. Suite 700 Minorca Hg Testing Zip 55802 City Storoldsen@barr.com alum mN rsiats@borr.com Date Sample Type Container/ NSA Lab # Bottle # Client Sample Identification Collected Collected Matrix Grab Composite Preservation **Analysis Requested** 96239 Scrubber Bloudown 1/23/18 0833 WW NA 89240 310.75 MAKE-UP-WATER 89241 1039.4 FIELD BLANK 0845 Wind X NA 0835 ww × NA LL Ha -1631E Transfer # Relinquished By Date Time Accepted By Date Time Condition 1/23/18 1033 950 ice, no temo. F.E. 2 3 1-254B 1045 210 24/18 1430 ADDITIONAL COMMENTS: 1-25-18 LH Low-level mercury bottles supplied by North Shore Analytical? Y N KEY: Matrix: DI = Deionized water Containers: Preservation: SW = Surface Water GW = Ground Water P = Plastic T = Teflon/Fluoropolymer NA = None Added WW = Wastewater DW = Drinking Water G = Glass H = Hydrochloric Acid I = ice P = Precipitation S = Solid/sediment/soil B = Plastic Bag

B = Bromine Monochloride

4511 W. 1st St., Suite #1, Duluth, MN 55807

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Testing

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21703

Report Date: 2/8/2018

Sample Receipt Date: 1/31/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89317	Make-Up-Water	0.615	1/30/2018	8:51		2/7/2018	LC	0.10
89318	Tails Thickener-Over	1.43	1/30/2018	9:08		2/7/2018	LC	0.10
89319	Field Blank	< 0.500	1/30/2018	9:10		2/7/2018	LC	0.10

Reviewed by:

If you have any questions or feedback please call
Chris Gross or Linda Christensen at 218-729-4658.

-ship to:

North Shore Analytical, Inc.

4511 W. 1st St., Suite #1 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659

Record # .	Record #: 2.X	E01
------------	---------------	-----

STF-COC-001 Revision Number: 6

Revision Date: 06/30/2014

Chain of Custody

Client Napre	nr En	gintering				Report to:	Jim Torald. Glon Sia	sen ts	Sampled by:	
	25 S	LOKE AVA Sui	to Too			Phone: 2/	8-529-71	38	Project:	
City Ou	luth		State	Zip 5580	72	Fax: 110	iroldsen@	barr.com	Minor	ca Hg Testing
NSA Lab #	Bottle #	Client Sample Identification	Date Collected	Time Collected	Matrix	Sam Grab	ple Type Composite	Container/ Preservation	Ana	lysis Requested
BAZIT		Scrubber Blowdown			ww	×		NA		1631 E
11600		LIOKY-UD-WATER	11/30/18	0851	Luw	×		NA	LLH9-	11216
10931B		TAILS THICKENER-OVER	. 1	0900	ww	X		NA	ilitg-	11.21 =
B4310		MA FIELD BLANK		0910	ww	X		NA	WHa-	16216
			-						100	14216
									***************************************	And the second section of the second section of the second section sec
								1		
	 		-						- market	

				-					and the same of th	
Transfer #		Paller III IP								
1	W.ta	Relinquished By	Date	Time	_	Accepted B	У	Date	Time	Condition
2	Jan	Callos	1/30/16	1030	Qui	Alen	lal	1-31-18	10:44	and the same of th
3										Ok
4						Patricular		***************************************		
	L COMMEN	VIC.								Restriction of the second
	COMMILI									
		es supplied by North St. A. A.	I	1-21.1	21.10					
ow-level m	ercury bottle	es supplied by North Shore Analy	rtical?	1 31-1	COM	Y				
EI:	Matrix:	DI = Deionized			Containers		THE RESERVE THE PERSON NAMED IN COLUMN 2 I	N		
	SW = Surface V	Vater GW = Ground V	Vater		P = Plastic 7			Preservation:		
	WW = Wastews	Dir Dilliking			G = Glass	201101017100		NA = None Added H = Hydrochloric		
	P = Precipitation	S = Solid/sedime	ent/soil		B = Plastic Bag			B = Bromine Mon		= ice

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Testing

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21754

Report Date: 2/28/2018

Sample Receipt Date: 2/20/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89504	Make Up Water	0.628	2/19/2018	8:50		2/27/2018	LC	0.10
89505	Tails Thickener Over	1.82	2/19/2018	9:08		2/27/2018	LC	0.10
89506	Field Blank	< 0.500	2/19/2018	9:10		2/27/2018	LC	0.10

Reported by:

Reviewed by:

If you have any questions or feedback please call Chris Gross or Linda Christensen at 218-729-4658. North Shore Analytical, Inc.

4511 W. 1st St., Suite #1 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659

21754

STF-COC-001 **Revision Number: 7**

Revision Date: 01/31/2017

Chain of Custody

Client Name	Barr	Engineering S. LAKE AVE				A La Section	JIM TORK RYANS	HOSEN	Sampled by	·
Address 3	25 5	S. LAKE AVE S	wite	700		IDL	18-529	Market State of the State of th	Project:	
	MTH		State MN	7in	802	Email: J T	iatzak	10 barr	Mini	ovea Hy Test
NSA Lab#	Dottle #	Cli-4 C-1, Havier of	Date	Time		Samp	le Type	Container/	Service of	V
C. C. C. C. C. C. C. C. C. C. C. C. C. C	Bottle #	Client Sample Identification	Collected	Collected	Matrix		Composite	Preservation		alysis Requested*
20505	124.15	MOKEUP WATER	2/19/18	0850		X		NA		Hg-1431E
21303	131-11	TAILS THICKENER OFF FIELD BLANK		0908	The second second	×		NA		1g-1631E
Season Lake	5.0	No. of the control of		0910	ww	X		NA	UU	Hg-11031E
Torque Control	JET-BOY					2 20 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-
**ZJ 545	2/2/18								4	
Capta.	C) WH		Spannenike M	to and a sub-						
				66						
									4. 18	
	1 (3) 43 (4)									
	5		er e							
	9.4 9.5 4.5		3.	7			2			
								7 95.4	Sec. 1	
Transfer #	11	Relinquished By	Date	Time	1	Accepted B	v	Date	Time	Condition
1	Katr	WENDED!	2/19/18	1030	The	W	106	22018		VALUE OF THE CONTRACTOR
2)			17 4	e-fit			3-010	11.2-6	OK
3										
		y (Initial): 🗥 📉	2-1-1-1-18	11,110	Filtered by	(Initial):		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Lot#:
ADDITIONA	L COMME							cal	4 0	
HIII I II a II II	· · · · · · · · · · · · · · · · · · ·	* Samples cane	in wi	th no	Bosh	re #15	47322P	-ea - J	in from	- Barr careins
ow-level me	ercury bottle	or "Low-level mercury" = USEP es supplied by North Shore Anal	A Method 1	631E			Ne Ne			
	Matrix:	DI = Deionized		18 22	Containers			The second secon	N	16
	SW = Surface V					: T = Teflon/Fluor	ronolymer	Preservation: NA = None Added		
	WW = Wastew	ater DW = Drinking	Water		G = Glass	- TOHOLD I HOL	opolymor	H = Hydrochloric		I = ice
only	P = Precipitatio	S = Solid/sedim	ent/soil		B = Plastic Ba			B = Bromine Mon		1 100

4511 W. 1st St., Suite #1, Duluth, MN 55807

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Test

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21787

Report Date: 3/13/2018

Sample Receipt Date: 3/2/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89635	Make Up Water	2.13	3/1/2018	9:24	Katrina D/Scott S	3/12/2018	LC	0.10
89636	Tails Thickener Over	4.25	3/1/2018	9:42	Kartina D/Scott S	3/12/2018	LC	0.10
89637	Field Blank	< 0.500	3/1/2018	9:25	Katrina D/Scott S	3/12/2018	LC	0.10

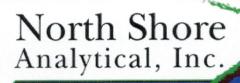
Reported by:

Reviewed by:

If you have any questions or feedback please call

Chris Gross or Linda Christensen at 218-729-4658.

North Shore Analytical, Inc.


4511 W. 1st St., Suite #1 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659

ccoru # .	21101
Record #:	21787

STF-COC-001 Revision Number: 7 Revision Date: 01/31/2017

Chain of Custody

Client Name	BARK	E ENGINEER S. LAKE AVE	ING	7		Report to:	JIM TOP	ALDSON	Sampled by:	MAD har Const
Address 3	25	S. LAKE AVE	SULT	r E 7	00	Phone:	-520-	7126	Project:	
City DW	LUTH	1	State MN	7 in	802	Email: JT	OFALDSO	NO BAPE	MIND	r CA Hg TEST
4		the state of the s	Date	Time		Sam	ple Type	Container/	10 10 10 A	
NSA Lab#	Bottle #	Client Sample Identification	Collected	Collected	Maurix	Grab	Composite	Preservation	Ana	lysis Requested*
07635	134.15	MAKE UP WATER	3/1/18	0924		X		NA	LLHO	1-1031E
25036	13142	TAILS I HICKENER OVER	1	0942	100	X		NA	LLHO	1-1631
39637	138.42	MAKE UP WATER TAILS THICKENER OVER FLELD BLANK		0925	ww	X		NA	WHI	- 1631
1997			- 2 ,,							
Same Section	ing.									
								14 X		
	G. A						4 9 4		5 . 45 . 75	
						1 4-		N. N.	All and the	
								137		
	- 14h					12.				
	(1.5) (1.5)					81				
Transfer #	11	Relinquished By	Date	Time		Accepted E	Ву	Date	Time	Condition
1	Katri	Dealis	3/1/18	1105	Luc	for	Sent	3-218	9:40	OK
2	<u> </u>	, ,	1			9 7				onica
3				2 *		5		12 12		<u> </u>
	Logged in b		3-2-18	10,37	Filtered by	(Initial):		PERMITTE	All the second	Lot#:
DDITIONAL	L COMMEN	NTS:	t				1/2	Park I		
	_	5 8				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			W	
"LLHg," "	mercury,"	or "Low-level mercury" = USEP	A Method 1	631E		14	No. 4 St. Ca.			
		es supplied by North Shore Anal	The second second second second	2 10		W. Jan.		Y	N	# (A)
	Matrix: SW = Surface V	DI = Deionized			Containers			Preservation:		
ACTION AND AND AND AND AND AND AND AND AND AN	WW = Surface v	on ordina			P = Plastic $G = Glass$	$\Gamma = \text{Teflon/Fluc}$	oropolymer	NA = None Adde H = Hydrochloric		
ab use										I = ice

4511 W. 1st St., Suite #1, Duluth, MN 55807

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Test

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21798

Report Date: 3/14/2018

Sample Receipt Date: 3/7/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89683	Make Up Water	1.27	3/6/2018	8:44		3/13/2018	LC	0.10
89684	Tails Thickener Over	4.85	3/6/2018	9:00		3/13/2018	LC	0.10
89685	Field Blank	< 0.500	3/6/2018	9:05		3/13/2018	LC	0.10

Reported by:

If you have any questions or feedback please call
Chris Gross or Linda Christensen at 218-729-4658.

North Shore Analytical, Inc.

4511 W. 1st St., Suite #1 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659 Record #:

21798

STF-COC-001 Revision Number: 7 Revision Date: 01/31/2017

Chain of Custody

Client Name	BAR	PENGINEER	ING			Report to:	VIM TO	RALDSON	Sampled by:	
9	25	LAKE AVE S	SUIT	8 7	000	Phone: 2	18 579	7138	Project:	
ity DUL	UTH		State MN	Zip 55°	002	Email: JT	ORALDSOI	bar	Minora	a Hg test
NSA Lab#	Bottle #	Client Sample Identification	Collected	Collected	Matrix	Samp Grab	ole Type Composite	Container/ Preservation		/sis Requested*
59683	132.75	Make up water	3/4/18	0844	ww	X		NA	BANK STREET, S	-1631 E
POUR	141 42	TAILSTHICKENERN	P /	0906	WW	7		MA		-1631 E
2001	142.42	FIELD BLANK		0905	ww	7		NA		-1631 5
					and the second					
			2 14							
				Appendix						25 Mg Nation
Ly 1971	40 M									
ransfer #	Kath.	Relinquished By	Date	Time	0	Accepted B	у	Date	Time	Condition
2	Kellen	Aulso	3/1/18	1030	Duc	leber	لے	37-18	10,143	Ok.
3 b use	Logged in by	r (Initial); Nex4	きつんき		Piltered by	AL SECULE	Part of the state			
	L COMMEN				leurenen ex	frintist);			ing and the L	ot#:
LLHg," "	mercury," o	or "Low-level mercury" = USEP	A Method 1	631E						
w-level me	ercury bottle	s supplied by North Shore Anal	ytical?	14,022				Y	N	
buse ()	Matrix: SW = Surface W WW = Wastewa P = Precipitation	ter DW = Drinking	Water		Containers P = Plastic G = Glass			Preservation: NA = None Added H = Hydrochloric		· ice

Barr Engineering

Duluth MN 55802

jtaraldsen@barr.com

ATTN: Jim Taraldsen

325 S Lake Ave, Suite 700

4511 W. 1st St., Suite #1, Duluth, MN 5580

WDNR Lab # 399017190

MDH Lab # 027-137-389

Analytical Report

Project: Minorca Scrubber Solid Hg Reduction

Chain of Custody # 21830

Report Date: 3/20/2018

Sample Receipt Date: 3/14/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
89803	#2 Tails Thickner Overflow	5.59	3/13/2018	9:17	CA/SS	3/19/2018	LC	0.10
89804	Field Blank	< 0.500	3/13/2018	8:54	CA/SS	3/19/2018	LC	0.10
89805	#10 Make Up H2O	1.01	3/13/2018	8:56	CA/SS	3/19/2018	LC	0.10

Reported by:

Reviewed by:

If you have any questions or feedback please call

Chris Gross or Linda Christensen at 218-729-4658.

North Shore Analytical, Inc.

Fax (218) 729-4659

4511 W. 1st St., Suite #1
Duluth, MN 55807
Phone (218) 729-4658

Record #: 2A30

STF-COC-001 Revision Number: 7 Revision Date: 01/31/2017

Chain of Custody

Client Name	Barr	Engineering				Report to:	Siats		Sampled by: Q	A/55		
Address	325 5	north Leko Avenue			8	Phoné:			Project:			
City	ath		State Zip			Email:	e barr. c	low	_ Minorea Scribbes Solid Hy Reduction			
NSA Lab#	Bottle #	Client Sample Identification	Date Collected	Time Collected	Matrix	Samp Grab	e Type Composite	Container/ Preservation		is Requested*		
34803	135.42	#2 Tails Thickner	3-13-18	0917	W	X	×	NB	LLHY	1631E		
		OverFlow	4 2 2									
34804	129.42	Rield Blank		0854	W	X			LLHg	163(E		
34 803	100546	#10 Maleys H20		0856	W	A six L	X	-	LLH	1631€		
7.2			1									
- A. A.	5		18 9							And the second		
- 2-0			The second second									
			1 - 25							The same of the sa		
3									20 And And And And And And And And And And			
	9.4											
								Carrier Contract				
	(A) (3.								and the second		
	39		2 3					100				
and a second	hal											
Transfer #	0011	Relinquished By	Date	Time		Accepted By		Date	Time	Condition		
1	Action	Jan-NTS	3-13-18	1030	4	0		3/14/18	1015	ok		
2		0)					1981		
3				100		14-						
ab use	Logged in b	y (Initial): Le			Filtered by	(Initial):			Lo	#: 41 - 31 - 32 - 33		
DDITIONA	L COMME	NTS: Shipped ou	+ By.	TOF								
"I I Ha " "	morouw. II		Al scand	ted C	X	P S		3 3		<u> </u>		
ow-level me	ercury bottl	or "Low-level mercury" = USE es supplied by North Shore Ana	PA Method 1	631E				_				
EY:	Matrix:	DI = Deionize	THE RESERVE AND DESCRIPTION OF THE PERSON.		Containers		7-42		M 10054	•		
	SW = Surface V					Γ = Teflon/Fluoro		Preservation:				
ab use	WW = Wastew			No. of the State o	G = Glass	. Tollow Tuoi	A CARLON AND A COLOR	NA = None Adde H = Hydrochloric				
ily	P = Precipitatio				B = Plastic Ba	2		B = Bromine Mor		uc .		

4511 W. 1st St., Suite #1, Duluth, MN 55807

MDH Lab # 027-137-389 WDNR Lab # 399017190

Analytical Report

Project: Minorca Hg Test

Barr Engineering ATTN: Jim Taraldsen 325 S Lake Ave, Suite 700 Duluth MN 55802

jtaraldsen@barr.com

Chain of Custody # 21929

Report Date: 4/19/2018

Sample Receipt Date: 4/11/2018

EPA Method 1631E

Method Blanks (ng/L): < 0.100, < 0.100, < 0.100

Sample #	Client Sample ID / (dilution factor)	Mercury (ng/L)	Collection Date	Collection Time	Sampled By	Date Analyzed	Analyzed by	MDL (ng/L)
90186	Make Up Water	0.530	4/11/2018	8:50	NTS/Minorca	4/19/2018	LC	0.10
90187	Trails Thickener Over	2.08	4/11/2018	9:11	NTS/Minorca	4/19/2018	LC	0.10
90188	Field Blank	< 0.500	4/11/2018	8:55	NTS/Minorca	4/19/2018	LC	0.10

Reported by:

If you have any questions or feedback please call
Chris Gross or Linda Christensen at 218-729-4658.

North Shore Analytical, Inc. Record #: 21929 Revision Number: 7 A511 W. 1st St., Suite #1 Revision Date: 01/31/2017 Duluth, MN 55807 Phone (218) 729-4658 Fax (218) 729-4659 Chain of Custody Report to: JIM TOPALDSON RYAN SIATZ Nient Name Sampled by: Barr Engineering 25 S Lake Ave Suite 700 NTS/MINORCA Address Phone: 218 529 7138 Zip 55802 Email: MINORCA HOTEST MN Date Time Sample Type Container/ Client Sample Identification NSA Lab # Bottle # Collected Collected Analysis Requested* Matrix Grab Composite Preservation 90186 120.43 MAKEUP WATER 4/11/18 0850 WW × 11 Ha - 16318 NA 90187 119.43 TAILS THICKENER OVER 0911 ww X 90188/122 43 FIELD BLANK 0855 WW Relinquished By Transfer # Date Time Accepted By Date Time Condition 1400001502 4/4/18 1505 oh 2 3 Lab use Logged in by (Initial): 4-12-18 9'.68 Filtered by (Initial): ADDITIONAL COMMENTS: * "LLHg," "mercury," or "Low-level mercury" = USEPA Method 1631E Low-level mercury bottles supplied by North Shore Analytical? Y N KEY: Matrix: DI = Deionized water Containers: Preservation: SW = Surface Water GW = Ground Water P = Plastic T = Teflon/FluoropolymerNA = None Added Lab use WW = Wastewater DW = Drinking Water G = Glass H = Hydrochloric Acid I = ice P = Precipitation S = Solid/sediment/soil B = Plastic Bag B = Bromine Monochloride

Appendix B-5-4

Summary of Emissions Speciation Change on Potential Mercury Loading to Northeast Minnesota

December 14, 2018

Technical Memorandum

To: Minnesota Taconite Industry

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast

Minnesota

Date: December 14, 2018

Project: 23692040.00

c: Ryan Siats, Paul Taylor, Keith Hanson, Todd Fasking

Executive Summary

The effects of long-term application of activated carbon injection and halide injection with existing wet scrubbers on taconite furnaces were evaluated for overall reductions in mercury air emissions and related changes in speciation that could result in more local deposition. Important findings include:

- Both long-term activated carbon injection and halide injection resulted in reductions in the mass
 of mercury emissions, with an average reduction of about 20% and 27%, respectively, from
 existing conditions.
- Long-term application of activated carbon injection resulted in increased particle-bound mercury emissions, on both a percentage and mass basis.
- Long-term application of halide injection resulted in increased emissions of both oxidized and particle-bound mercury. Both species increased on a percentage and mass basis.

Given the propensity for particle-bound and/or oxidized mercury to deposit near an emission point, the increase in mass of oxidized and particle-bound mercury emissions is expected to result in more local deposition (i.e., increased loading of mercury) near an emission source and most certainly within northeast Minnesota. An increase in mercury loading to northeast Minnesota is inconsistent with the Statewide Mercury Total Maximum Daily Load (TMDL) study that requires a reduction in loading in order to reduce fish tissue mercury concentrations. The relatively small reduction in total mercury emissions and the increased local deposition of oxidized and/or particle-bound mercury and the bioavailability of those species indicate that adverse local/regional environmental impacts would be expected. Therefore, neither activated carbon injection nor halide injection with existing wet scrubbers should be considered applicable control technologies for the taconite industry.

Introduction

This memorandum is an evaluation of the potential change in mercury loading to the local environment due to a change in speciation of air emissions when using certain emission reduction control technologies. The information presented below pertains to the injection of 1) activated carbon and 2)

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 2

halides (as dissolved calcium bromide, CaBr₂) into the waste gas stream of an indurating furnace and the resulting change in mercury speciation. The discussion and screening calculations presented in this technical memorandum are generally relevant to other technologies that would shift speciated mercury emissions toward a greater percentage of particle-bound and/or oxidized mercury.

This assessment relies on information from the Statewide Mercury Total Maximum Daily Load (TMDL) study because it provides the Minnesota Pollution Control Agency's (MPCA) rationale regarding the linkage of mercury air emissions and atmospheric loading to Minnesota's water bodies and the potential atmospheric loading of mercury to Minnesota's environment after controls are implemented by various industry sectors (MPCA 2007).

The TMDL-related information (MPCA 2007) is used to evaluate whether use of activated carbon injection (ACI) or halide injection with the existing scrubbers produce results that are consistent with the TMDL's goals with respect to 1) reducing mercury air emissions from in-state sources, and 2) reducing mercury atmospheric loading to Minnesota's environment.

Mercury Speciation and Relationship to Local Deposition

Mercury air emissions generally exist as one of three species: elemental, ionic or oxidized, and particlebound. Understanding which species are present is the key to determining mercury's atmospheric pathway, transport, and fate. As summarized by the Arctic Monitoring and Assessment Program/United Nations Environment Programme (AMAP/UNEP 2013, at P. 38), the majority of anthropogenic mercury emissions and the most common species present in the atmosphere is gaseous elemental mercury. Elemental mercury has an atmospheric lifetime of several months to a year and is transported great distances. Elemental mercury when emitted to the atmosphere can readily travel for hundreds to thousands of miles (Florida DEP 2013, at P. 16). Due to its elemental properties and slow reaction with common atmospheric oxidants, very little if any gaseous elemental mercury is deposited to the earth's surface (AMAP/UNEP 2013, at P. 38). It should be noted that the deposition of elemental mercury is more important in the Arctic regions. Obrist et al. (2017) identified most of the mercury (~70%) in the interior Arctic tundra is derived from the atmospheric deposition of gaseous elemental mercury and has resulted in elevated mercury concentrations in surface soils. However, in the temperate zone, which encompasses Minnesota, studies to date indicate that direct gaseous elemental mercury deposition is not a major contributor to total mercury deposition. However, deposition of elemental mercury to terrestrial forested systems does occur via stomatal uptake by trees (Grigal 2003) with a small portion of that elemental mercury ultimately being sequestered in the soil. The calculations in the MPCA's Mercury Risk Estimation Method (MMREM, MPCA 2006a) indirectly account for local deposition of elemental mercury. Therefore, as shown later in this technical memorandum, a small amount of elemental mercury emissions has been estimated to be locally deposited to reflect the potential uptake of elemental mercury by forest vegetation and deposition via litterfall (Grigal 2003).

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 3

Mercury deposition to land and water is predominantly in the form of oxidized mercury compounds, gaseous oxidized mercury or oxidized mercury attached to particles, both of which are due to the direct deposition of gas phase species, and through wet deposition of oxidized mercury in precipitation (AMAP/UNEP 2013, at P. 38). Ionic mercury, as a large ion, readily binds to other materials from associated emissions and as well as other materials in the atmosphere (Florida DEP 2013, at P. 16). Further, gaseous oxidized mercury is highly reactive with other environmental constituents and is deposited within a few miles of its emission point (Florida DEP 2013, at P. 16). Particle-bound mercury has a short atmospheric life due its physical characteristics (mass, increased wind resistance, interaction with precipitation) and is thought to be deposited in a range of 30-50 miles from the emission point (Florida DEP 2013, at P. 16).

In the Statewide Mercury TMDL study (MPCA 2007) and TMDL Implementation Plan (MPCA 2009), during development of the 2014 Minnesota Mercury Rule (MPCA 2013), and in other mercury-related supporting documents, the MPCA has acknowledged that about 90% of the mercury deposition in the state originates from other international and regional sources. Therefore, only about 10% of the mercury deposition in the state originates from Minnesota sources (MPCA 2007). Because elemental mercury has a long atmospheric lifetime and is transported great distances, it is likely that it constitutes most of the mercury derived from international and regional sources. MPCA (2007) further stated that no "hot-spots" of deposition had been identified based on their review and assessment of available data used to develop the TMDL.

The MPCA (2006b) identified mercury speciation for the Minnesota taconite industry as follows: 93% elemental, 6% oxidized, and 1% particle-bound. The emphasis here is on the small percent of oxidized and particle-bound mercury associated with the current (i.e. existing conditions) taconite industry emissions. Speciation of emissions for the Minnesota taconite industry based on more recent stack testing data is provided in Table 1 and is similar to that estimated by the MPCA (2006b).

Emission Speciation Change with Control Technology Application

During recent, long-term testing at the taconite facilities where ACI or halide injection was applied prior to the furnace exhaust gas entering the existing wet scrubbers, a relatively small reduction in total mercury emissions was found. Average total mercury emissions reductions were approximately 20% for ACI (range of 0% to 40% reduction) (Barr Eng. 2018a, 2018b) and about 27% for halide injection (range of approximately 22% to 33%; UTAC 2018; Barr Eng. 2018a, 2018c). However, for both control technologies, there was a large change in mercury speciation as compared to existing conditions.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 4

Table 1 Comparison of mercury emissions speciation for the taconite industry.

Source of Mercury Emissions Speciation	Elemental	Oxidized	Particle-bound
Existing Conditions: MPCA (2006b) ^[1]	93%	6%	1%
Existing Conditions: Industry Average, MN [2]	87%	11%	2%
Average Conditions: MPCA and Industry	90%	8.5%	1.5%
Application of Control Technology			
Activated carbon injection [3]	60%	7%	33%
Halide injection – long-term testing			
Ontario Hydro Results [4]			
Hibtac	21%	72%	7%
Minntac	83%	16%	1%
Average	52%	44%	4%
Method 29 Results [4]			
UTAC			8%
Halide injection – short-term testing, average [5]		41%	

- [1] Mercury speciation data for the taconite industry was provided to Barr Engineering Company by the MPCA (2006b): 93% elemental, 6% oxidized, and 1% particle-bound.
- [2] For the Minnesota taconite industry, representative mercury speciation for existing conditions is based on Ontario Hydro stack test data for:

Hibtac, Line 2, Ontario Hydro Method, 2016 (September); 89% elemental, 11% oxidized, <1% particle-bound (Barr Eng. 2018a) Hibtac, Line 2, Ontario Hydro Method, 2017 (September); 88% elemental, 12% oxidized, <1% particle-bound (Barr Eng. 2018a) Minntac, Line 6, Ontario Hydro Method, 2018 (April); 85% elemental, 10% oxidized, 5% particle-bound (Barr Eng. 2018b) Stack test results were averaged for the two facilities.

[3] For the Minnesota taconite industry, representative mercury speciation associated with the activated carbon injection control technology was based on stack test data for:

Hibtac, Line 2, ACI rate = 1 lb/mmacf, Ontario Hydro Method, October 2016; 43% elemental, 4% oxidized, 54% particle-bound (Barr Eng. 2018a)

Hibtac, Line 2, ACI Rate = 1 lb/mmacf, Ontario Hydro Method, November 2016; 83% elemental, 7% oxidized, 10% particle-bound (Barr Eng. 2018a)

ArcelorMittal Minorca Mine Inc., Line 1, ACI rate = 1 lb/mm acf, Ontario Hydro Method, 2017 (February); 55% elemental, 11% oxidized, 34% particle-bound (Barr Eng. 2018c)

Stack test results were averaged for the two facilities for application of activated carbon.

[4] For the Minnesota taconite industry, speciation associated with the halide injection control technology (dissolved calcium bromide (CaBr₂)) was based on stack test data for:

Hibtac, Line 2, Ontario Hydro Method, October/November 2017.

Change in emissions speciation with long-term testing:

Test Condition	Injection Rate (gallons/hour)	Injection Location	Elemental	Oxidized	Particle- Bound
Baseline	N/a	N/a	87.5%	11.6%	0.5%
Long-term	2	Preheat zone	20.6%	71.9%	7.1%

Minntac, Line 6, Ontario Hydro Method, Baseline, April 2018; Long-term test, June/July/August 2018.

Change in emissions speciation with long-term testing:

Test Condition	Injection Rate (gallons/hour)	Injection Location	Elemental	Oxidized	Particle- Bound
Baseline	N/a	N/a	85.2%	10.0%	4.8%
Long-term	0.75	Initial down draft drying zone (DDD1)	83.1%	15.5%	1.4%

UTAC, Stack 2A, Method 29, Baseline, November 2017; Long-term test, December 2017/January 2018.

Change in particle-bound mercury emissions speciation with long-term testing of halide injection. Halide injection occurred in the transition zone between the grate and the kiln. This data is to provide additional support that halide injection results in more particle-bound mercury emissions in addition to more oxidized mercury emissions.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 5

Halide Test Date	Pellet Production	Test Condition	Injection rate (gallons/ hour)	Elemental	Oxidized	Particle- Bound
December 2017/ January 2018	Standard,	Baseline	N/a			0.5%
	Recycle Scrubber Solids	Long-term	4.5			7.8%

[5] Change in oxidized mercury (percentage basis) during short-term testing conducted in 2007 to 2009 by the MNDNR (2011). Testing used a continuous emission monitoring system (CEMS). Company names as used in Table 1 of the MDNR (2011) report.

Test Condition	Keewatin Taconite	Hibbing Taconite (Line 3)	Minntac (Line 3)	ArcelorMittal	United Taconite (Line 2, Stack A)	United Taconite (Line 2, Stack B)	Average
Type of Pelletizer	Grate kiln	Straight grate	Grate kiln	Straight grate	Grat	e kiln	
Baseline, Oxidized	20%	19%	12%	14%	13%	22%	17%
Halide injection 1. gallons/hour 2. pounds/hour (dry weight basis)	24	60	3.6	5.4	36-48	36-48	
Location of Injection	Flame end of kiln	Second "down comer" location above preheat zone	Flame end of kiln	Second "down comer" location above preheat zone	Flame end of kiln	Flame end of kiln	
Test, Oxidized	54%	NA	36%	25%	46%	44%	41%

During the long-term ACI testing with a low application rate (one pound per million actual cubic feet of air; 1 lb/mmacf), the percentage of particle-bound mercury emissions increased from ~2% to 33% of the total mercury emitted (Table 1). For Hibbing Taconite Company (Hibtac), ACI resulted in approximately a factor of 90 increase in the mass of particle-bound mercury emissions (Barr Eng. 2018a).

During the long-term halide injection testing, a significant increase in the average oxidized speciation percentage was also observed (from ~11% to 44%) along with a smaller increase in the average particle-bound speciation (from ~2% to 4%) (Table 1). It is noted that both Hibtac and United Taconite (UTAC) found an increase in the percentage of particle-bound mercury emissions from 0.5% to about 7 to 8%, respectively, providing additional evidence that halide injection likely significantly increases particle-bound mercury speciation (Table 1, Footnote 4). For oxidized mercury speciation, United States Steel Corporation, Minnesota Ore Operations - Minntac (Minntac), observed a smaller increase during its long-term halide testing than what was measured during Hibtac's long-term halide test. Minntac also observed a smaller change in oxidized mercury speciation from what had been previously observed during short-term testing conducted from 2007 to 2009 at several taconite facilities (Minntac; Hibtac; ArcelorMittal Minorca Mine (Minorca); UTAC, and United States Steel Corporation, Minnesota Ore Operations – Keetac (Keetac)) as reported by the MDNR (2011). However, as shown in Table 1, the average percentage increase

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 6

in oxidized mercury speciation during halide testing is significant with a smaller but notable increase in particle-bound mercury speciation when including the changes observed during UTAC's testing (Table 1, Footnote 4).

Overall, the mercury emission speciation data for the ACI and halide injection control technologies presented in Table 1 are considered to represent the range of potential values that taconite facilities would expect to experience if they were to use these technologies. The weight-of-evidence in the available literature is that ACI results in significantly more particle-bound mercury speciation and that halide injection results in a significant increase in oxidized mercury speciation from combustion processes (e.g., MDNR 2011; MDNR 2012). The expectation is that taconite facilities would experience a similar significant increase in emissions of particle-bound and/or oxidized mercury (MDNR 2007). The potential increase in particle-bound mercury speciation when applying ACI to the taconite industry is expected to be similar to the average for the long-term testing (Table 1). Similarly, the potential increase in oxidized mercury speciation when applying halide technology to the taconite industry, in general, is expected to be similar to the average for the long-term testing (~44%) shown in Table 1, with a potential increase in oxidized mercury speciation as high as observed at Hibtac (72%). As shown for ACI and for both shortterm (MDNR 2011) and long-term halide injection testing (Table 1), the control technologies result in an increased percentage of particle-bound and/or oxidized mercury emissions. This increase in the percentage of particle-bound and/or oxidized mercury results in an overall increase in the mass of those mercury species emitted to the air (Barr Eng. 2018a, 2018b, 2018c, 2018d). The changes in speciated mercury mass emission rates and deposition from using activated carbon injection and halide injection technologies on taconite furnaces are further discussed below.

Activated Carbon Injection and Potential for Increased Local Mercury Deposition

Data from Albemarle (2018) indicates that for HPAC (high temperature brominated powdered activated carbon) and BPAC (brominated powdered activated carbon), the mean particle size for coconut-based carbon is 17.3 microns (distribution range (in microns): D10 = 2.7, D50 = 14.2, D90 = 35.4). The interpretation is that the carbon particles are "large".

The settling velocity of a particle increases with size, and, therefore, larger (coarse) particles, typically greater than 10 microns, settle out of the air relatively quickly. These coarse particles tend to deposit locally, with the larger particles (greater than 20 microns) depositing relatively close to an emission source (U.S. Environmental Protection Agency, (USEPA) 1995; USEPA 2004; Pederson 2006). The overall conclusion from the literature is that the larger the particle, the higher the settling velocity and the less travel distance, resulting in more particle deposition closer to the emission source. While dry activated carbon particles prior to injection have a lower density (typical particle density of <1 gram per cubic centimeter; g/cm³) than do mineral particles (typical value for silicate minerals = 2.7 g/cm³), the larger size (mean = 17.3 microns) increases the potential for deposition closer to an emission source. The addition of adsorbed moisture and mercury sorbed after injection increases the mass of the carbon particles, thereby

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 7

also increasing the potential for the particles to settle out of the atmosphere faster and therefore, closer to an emission source.

In previous assessments of potential mercury loading to nearby lakes from new or expanding sources (e.g., Essar Steel), the deposition (settling) velocity assigned to particle-bound mercury was 0.05 centimeters per second (cm/sec) (MPCA 2006a), which is indicative of fine particles (2.5 microns and smaller). For Best Available Retrofit Technology (BART) modeling, coarse particles (>2.5 microns, but <10 microns) were assigned a settling velocity of 1.67 cm/sec (VISTAS 2005). Based on the work of Lim et al. (2006), the potential settling velocity for an activated carbon particle can be estimated from a similar sized mineral particle¹. A typical PM₁₀ mineral particle from taconite processing has an estimated settling velocity of 1.67 cm/sec and a density of 2.7 g/cm³. On that basis, the settling velocity of a similar-sized activated carbon particle with a density of ~ 1.0 g/cm³ (potentially accounts for moisture and adsorbed mercury) is estimated to be ~0.6 cm/sec. Larger mineral particles (15 to 20 microns in size) would have a settling velocity greater than 1.67 cm/sec, and likely greater than 2.0 cm/sec (Zhang and He 2014). The potential deposition velocity of larger carbon particles, based on a mineral particle deposition velocity of 2.0 cm/sec, would be approximately 0.7 cm/sec.

When assessing the potential for local deposition, the change in only the settling velocity for particle-bound mercury from 0.05 cm/sec to 0.6 to 0.7 cm/sec (or higher) to account for larger activated carbon particles, could increase loading by a factor of 10 or more. In general, deposition velocity, directly related to loading, increases logarithmically with particle size (Piskunov 2009; Zhang et al. 2001) and suggests a potential increase in particle-bound mercury emissions could increase local deposition by more than a factor of 10. Therefore, when assessing the potential for local mercury deposition (loading), a change in the particle size to greater than 10 microns and the associated increase in settling velocity would be significant with regard to overall mercury loading.

It is also important to recognize that the increase in particle-bound mercury identified in Table 1 (see footnote 3) was associated with a low application rate of ACI, 1 lb/mmacf with existing wet scrubbers. A higher application rate of ACI with the existing wet scrubbers further increased the mass of particulate emissions out of the stack and thus increased the particulate bound mercury emissions as well (Barr Eng. 2018a; 2018b). Therefore, a higher rate of ACI injection with the existing wet scrubbers does not alleviate the problem of increased future particle-bound mercury emissions from taconite furnace and increased deposition to northeast Minnesota.

Halide Injection and Potential for Increased Local Mercury Deposition

As shown in Table 1, halide injection with the existing wet scrubbers resulted in a significant change in emissions speciation for Hibtac, with gas-phase oxidized mercury as the predominant species with a

¹ Estimated settling velocity of a PM₁₀ activated carbon particle = 1.67 cm/sec * 1.0 g/cm³ / 2.7 g/cm³ = 0.6 cm/sec Estimated settling velocity of a PM₁₀ activated carbon particle = 2.0 cm/sec * 1.0 g/cm³ / 2.7 g/cm³ = 0.7 cm/sec

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 8

smaller but notable (and unexpected) increase in particle-bound mercury (from 0.5% to about 7%). Stack testing data from UTAC (2018) also indicates a notable increase in particle-bound mercury (from 0.5% to about 8%) (Table 1, Footnote 4).

Oxidized mercury is water-soluble and is deposited readily through precipitation at the local level (local in this case is within 10, and up to 100 kilometers of, the emission point; USEPA 2006). The local deposition of oxidized mercury and its role in elevated fish tissue mercury concentrations has been documented in several regions of the U.S., for example in the southeast (Florida DEP 2003, Chapter 4) and in New England (Evers et al. 2007; King et al. 2008). In the evaluation by Florida DEP (2003), oxidized mercury accounted for more than 50% of the emissions from the facilities being evaluated. King et al. (2008) found that local mercury deposition due to emissions of oxidized mercury was a factor of 4 to 10 times greater than rural background deposition. Associated with increased local deposition of mercury, fish tissue mercury concentrations were elevated in nearby water bodies (Florida DEP 2003; King et al. 2008). The available literature clearly concludes that an increase in oxidized mercury air emissions will result in increased local mercury deposition.

The discussion of increased particle-bound mercury emissions resulting in increased local/regional deposition related to use of ACI also applies to halide injection. As discussed above, fine sized particles (2.5 micron and smaller) are estimated to have a settling velocity of 0.05 cm/sec (MPCA 2006a) while coarse particles (>2.5 microns, but <10 microns) are estimated to have a settling velocity of 1.67 cm/sec (VISTAS 2005). Both settling velocities, 0.05 cm/sec for fine particles and 1.67 cm/sec for coarse particles, are applicable to the mineral particles emitted from taconite furnaces with halide injection, signaling that some of the fine mineral particles and all of the coarse particles would be likely to settle near the emission source. Therefore, halide injection, with an increase in oxidized and particle-bound mercury emissions, also increases local/regional deposition of both oxidized and particle-bound mercury.

Implications for the Statewide Mercury TMDL Study

An important component of the Statewide Mercury TMDL study (MPCA 2007) was the assumption of proportionality between atmospheric loading (deposition) and fish tissue mercury concentrations. Specifically, the assumption was that an increase in atmospheric mercury loading (deposition) proportionately increases fish tissue mercury concentrations. MPCA's Response to Comments (2014, at P, 16) emphasized that because all forms of mercury cycle in the environment, all forms of mercury, including mercury in its particulate form, represent environmental concerns. Therefore, any increase in mercury loading (deposition) to Minnesota, whether from oxidized or particle-bound mercury, is expected to increase fish tissue mercury concentrations.

The application of ACI with the existing wet scrubbers has been shown to increase the emissions of particle-bound mercury (Barr Eng. 2018a; 2018b). Earlier discussion on the increased settling velocity of large particles and acknowledgement of published literature (e.g., Florida DEP 2003; Evers et al. 2007) that particle-bound mercury is expected to deposit within 30 to 50 miles of the emission source indicates that using ACI technology with existing wet scrubbers on the taconite furnaces will increase local mercury

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 9

deposition and thereby result in an increase in fish tissue mercury concentrations, which contradicts the stated intent of the Statewide Mercury TMDL study (MPCA 2007).

The application of halide injection with the existing wet scrubbers increased oxidized mercury speciation in both short-term (MDNR 2011) and long-term testing (average of 44% in Table 1), with a significant increase in oxidized mercury emissions on a percentage basis (from 12% to 72%, Table 1) and mass basis (300% increase, Barr Eng. 2018a) from the Hibtac pelletizing process. Long-term testing at Hibtac and UTAC also found a notable increase in particle-bound mercury, from 0.5% to about 8% (Table 1). As previously discussed above, the weight-of-evidence in published literature (e.g., Florida DEP 2003; Evers et al. 2007) concurs that particle-bound and oxidized mercury air emissions are expected to be deposited within miles of the emission source. Local mercury deposition will increase, thereby increasing fish tissue mercury concentrations. Therefore, the expected increase in local mercury deposition associated with the use of halide injection with existing wet scrubbers also contradicts the stated intent of the Statewide Mercury TMDL study (MPCA 2007).

Screening Mercury Mass Loading Calculations - Summary

When estimating Minnesota's contribution to mercury loading (deposition) as part of the Statewide Mercury TMDL study, the MPCA (2007) separated the state into a Northeast Region (which includes the Minnesota taconite facilities) and a Southwest Region (Figure 1). The MPCA (2007) further assumed that in-state emissions disperse across both TMDL regions. However, for this assessment, screening calculations were formulated to estimate the potential atmospheric loading of mercury from the taconite industry to only the Northeast Region because it is most likely to experience increased loading due to more particle-bound mercury with the application of ACI and both more oxidized and particle-bound mercury speciation due to halide injection.

Input data and critical assumptions for the screening calculations are as follow for existing conditions:

- 1. 1990 mercury emissions
 - a. Statewide = 11,271 lbs/yr (~5113.9 kilograms per year, kg/yr)
 - Taconite industry = 724 lbs/yr (~328 kg/yr).
 Taconite industry emissions ~6.4% of statewide emissions (MPCA 2007, Figure 13).
- 2. Statewide loading: 1990 atmospheric mercury loading (assumed uniform across the state, MPCA 2007) = 12.5 micrograms per square meter per year ($\mu g/m^2/yr$)
 - a. 10% of the atmospheric loading due to in-state sources = $1.25 \,\mu g/m^2/yr$
 - b. In-state atmospheric source load (area of both TMDL Regions, 219,825 km²) Load In-State = $1.25 \mu g/m^2/yr * 219,825 km² * Conversion Factor (0.001) = 274.8 kg/yr$
- 3. Taconite industry loading, 1990: based on total mercury emissions of 724 lbs/year (328.5 kg/yr), and speciation of those emissions from MPCA (2006b): 93% elemental, 6% oxidized, and 1% particle-bound.
 - a. Emissions: estimate of speciated emissions

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 10

i. Elemental = 328.5 kg/yr * 0.93 = 305.5 kg/yrii. Oxidized = 328.5 kg/yr * 0.06 = 19.7 kg/yriii. Particle-bound = 328.5 kg/yr * 0.01 = 3.3 kg/yr

b. Loading: estimated loading based on emissions speciation

i. Elemental, some deposits = 1.5 kg/yr
 ii. Oxidized, all deposits = 19.7 kg/yr
 iii. Particle-bound, all deposits = 3.3 kg/yr
 Sum = 24.5 kg/yr

- c. Ratio of MN Taconite industry loading to emissions: 24.5 kg/yr / 328 kg/yr = 0.07
- 4. TMDL Northeast Region loading
 - a. In-state atmospheric source load to Northeast Region (90,151 km²) Load = 1.25 μ g/m²/yr * 90,151 km² * Conversion Factor (0.001) = 112.7 kg/yr
 - b. Load from taconite industry to Northeast Region = 24.5 kg/yr
 (0.5% of elemental mercury emissions and all (100%) oxidized and particle-bound mercury emissions deposit locally; i.e., within the TMDL Northeast Region)
 - c. Ratio of MN Taconite industry loading to in-state loading = 24.5 kg/yr / 112.7 kg/yr = 0.2

For this assessment, potential local deposition of elemental mercury has been estimated for existing conditions as well as the future scenarios (Table 2). USEPA (2005) has stated that vapor-phase elemental mercury is deposited from the air very slowly and may be ignored when considering local deposition. However, as previously discussed, elemental mercury can be taken up by trees via stomatal openings in leaves and the mercury incorporated into those leaves can reach the forest floor where a small amount can become sequestered in soil (Grigal 2003). MPCA's local mercury deposition calculations (MMREM, MPCA 2006a) also estimate a small amount of elemental mercury depositing within 20 kilometers of an emission source (~0.03 to 0.05%). Therefore, even though the estimated potential deposition of elemental mercury is "essentially zero" or deminimis compared to oxidized and particle-bound mercury deposition, Table 2 provides conservative estimates of a small amount of elemental mercury depositing to the TMDL Northeast Region (about 0.5% of elemental mercury emissions). Other factors that limit the local deposition of elemental mercury are taconite furnace stack heights and exhaust gas temperatures that provide "lift" to the emissions plume (i.e., a buoyant plume) to elevate it above the vegetated landscape and provide for good dispersion away from the emission point. Therefore, the estimated 0.5% of elemental mercury emissions potentially depositing to the TMDL Northeast Region is a conservative assumption and likely overestimates potential loading.

Application of ACI or halide injection and the use of existing scrubbers to reduce total mercury emissions potentially changes speciated mercury mass loading (deposition) as summarized in Table 2. Estimated speciated mercury loading for four scenarios are shown in Table 2, the existing conditions scenario (previously described) and three potential scenarios: future TMDL scenario based on calculations from the Statewide Mercury TMDL study (MPCA 2007), future with ACI, and future with halide injection.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Table 2 Summary of potential changes in atmospheric loading of mercury to the TMDL Northeast Region as estimated by the MPCA (2007) and if the taconite industry uses activated carbon injection (ACI) or halide injection as a mercury control technology.

Parameter	Existing Conditions	TMDL Future Assumption	Potential Future (ACI)	Potential Future (halide injection)
MN Taconite Industry: Total Mercury	724 lbs/yr	138 lbs/yr	579 lbs/yr	529 lbs/yr
Emissions [1]	(328 kg/yr)	(63 kg/yr)	(263 kg/yr)	(240 kg/yr)
Ratio of MN Taconite Mercury Emissions to Total In-State Emissions ^[1]	0.064	0.17	0.73	0.67
Speciation of Mercury Emissions ^[2]				
Elemental	93%	93%	60%	52%
Oxidized	6%	6%	7%	44%
Particle-bound	1%	1%	33%	4%
Emissions by Species ^[2]				
Elemental	305.5 kg/yr	58.2 kg/yr	157.7 kg/yr	124.7 kg/yr
Oxidized	19.7 kg/yr	3.8 kg/yr	18.4 kg/yr	105.5 kg/yr
Particle-bound	3.3 kg/yr	0.63 kg/yr	86.7 kg/yr	9.6 kg/yr
Total Mercury Loading from MN Taconite Industry to TMDL Northeast Region [3]				
Elemental, 0.5% deposits locally	1.5 kg/yr	0.3 kg/yr	0.8 kg/yr	0.6 kg/yr
Oxidized, 100% deposits locally	19.7 kg/yr	3.8 kg/yr	18.4 kg/yr	105.5 kg/yr
Particle-bound, 100% deposits locally	3.3 kg/yr	0.6 kg/yr	<u>86.7 kg/yr</u>	<u>9.6 kg/yr</u>
SUM	24.5 kg/yr	4.7 kg/yr	105.9 kg/yr	115.7 kg/yr
Change in Total Mercury Load from				
Existing Conditions				
Percentage basis		-81%	332%	372%
Factor change		0.19	4.32	4.72
Ratio of MN Taconite Industry Mercury Loading to Emissions	0.075	0.075	0.40	0.48
Potential "Net Loading" of Mercury, MN Taconite Industry				
(Net loading represents the % of Total Loading that is potentially bioavailable) [4]	21.3 kg/yr	4.1 kg/yr	20.0 kg/yr	106.2 kg/yr
100% elemental; 100% oxidized; 1% of particle-bound bioavailable	21.6 kg/yr	4.1 kg/yr	27.8 kg/yr	107.1 kg/yr
100% elemental; 100% oxidized; 10% of particle-bound bioavailable	22.1 kg/yr	4.2 kg/yr	40.9 kg/yr	108.5 kg/yr
100% elemental; 100% oxidized; 25% of particle-bound bioavailable	22.9 kg/yr	4.4 kg/yr	62.5 kg/yr	110.9 kg/yr
100% elemental; 100% oxidized; 50% of particle-bound bioavailable				
TMDL, Northeast Region Mercury Load				
Allocation (LA) ^[5] Total LA (MPCA 2007, Table ES-1) In-State Contribution		399.1 kg/yr 57.0 kg/yr	399.1 kg/yr 57.0 kg/yr	399.1 kg/yr 57.0 kg/yr
(MPCA 2007, Table ES-1) MN Taconite Industry (estimated)		4,7 kg/yr	4.7 kg/yr	4.7 kg/yr

^[1] Estimate of Minnesota taconite industry emissions (rounded to nearest pound or kilogram):

a. Existing conditions emissions for the MN Taconite Industry, approximately 724 pounds per year (lbs/yr) for 1990, are from the Statewide Mercury TMDL study (MPCA 2007). The ratio of MN Taconite industry emissions to total in-state emissions is based on information from Table 12 of the TMDL study (MPCA 2007). All in-state source emissions in 1990 = 11,272 lbs/yr.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 12

b. Future TMDL Scenario: The future TMDL scenario is based on Table 12 of the TMDL study (MPCA's 2007) that estimates reductions in emissions from approximately 723 lbs/yr (1990) to 138 lbs/yr (Target 3) for the Material Processing sector (i.e., taconite processing). The TMDL scenario assumes there is no change in mercury speciation of air emissions that would change the potential atmospheric loading to the TMDL Northeast Region; ratio of loading to air emissions for the TMDL scenario is the same as for existing conditions and atmospheric loading is primarily from oxidized mercury. For the ratio of MN Taconite Industry emissions to all in-state source emissions (Target #3), in-state source emissions for Target #3 = 789 lbs/yr (MPCA 2007, Table 12).

- c. Future emissions using ACI with the existing wet scrubbers: estimate of potential future emissions based on an average reduction of 20% for all Hg from stack testing conducted at Hibtac, Line 2, 2016 (Sept., Oct., and Nov.; 40% reduction; details in Barr Eng. 2018a) and Minorca, 2017 (February; 0% reduction; details in Barr Eng. 2018b). Speciation is based on the average for the industry as shown in Table 1. For the ratio of MN Taconite Industry emissions to all in-state source emissions, the in-state emissions for Target #3 of the Statewide TMDL study are used: in-state source emissions for Target #3 = 789 lbs/yr (MPCA 2007, Table 12).
- d. Future emissions using halide injection with the existing wet scrubbers: estimate of potential future emissions based on an average total mercury reduction of approximately 27% from testing conducted at Hibtac (Line 2, October/November 2017; ~33% reduction; details in Barr Eng. 2018a), Minntac (July 2018; ~25% reduction; details in Barr Eng. 2018c), and UTAC (2018 testing; 22% reduction; details in UTAC 2018). Speciation is based on the average for the industry as shown in Table 1. For the ratio of MN Taconite Industry emissions to all in-state source emissions, the in-state emissions for Target #3 of the Statewide TMDL study are used: in-state source emissions for Target #3 = 789 lbs/yr (MPCA 2007, Table 12).
- [2] Mercury emissions speciation is from Table 1 of this technical memorandum. For existing conditions (as of 1990) and the TMDL Future Assumption scenarios, the speciation is based on information from the MPCA (2006b). Due to rounding of taconite industry total mercury emissions, speciated emissions may not sum to the total mercury emissions estimate.
- [3] Speciation of loading to watersheds in the TMDL Northeast Region is based on the following: a) a small amount (about 0.5%) of elemental mercury is estimated to deposit locally/regionally due to stomatal uptake by forest vegetation and subsequent litterfall to the forest floor where a small portion of the mercury is sequestered in the soil (Grigal 2003); b) 100% of oxidized mercury deposits locally based on data and conclusions from the Florida DEP (2013) and AMAP/UNEP (2013); and c) 100% of particle-bound mercury emissions are estimated to deposit locally/regionally based on data and conclusions from the Florida DEP (2013) and AMAP/UNEP (2013).
- 4] For this assessment, 100% of the elemental mercury deposited via litterfall has the potential to be bioavailable as leaf/litter decomposition is microbially mediated (Fleck et al. 1999); 100% of the oxidized mercury deposited in the TMDL Northeast Region has the potential to be bioavailable. The estimated percent of particle-bound mercury that has the potential to be bioavailable is based on information from the following literature sources.
 - 1% bioavailable, based on Pavlish et al. (2003).
 - 10% bioavailable due to potentially more acidic environmental conditions and biological activity (Gagnon and Fisher 1997; Psarska et al. 2016).
 - 25% and 50% bioavailability: The assumption that 25% to 50% of the mercury associated with atmospherically deposited activated carbon particles could be bioavailable is based on the potential ingestion of particles by biota (Gagnon and Fisher 1997; Psarska et al. 2016), with 50% being considered a reasonable estimate of potential bioavailability.
- [5] Load Allocation (LA) is the atmospheric load estimated from in-state and out-of-state sources after implementation of the TMDL study (MPCA 2007, Table ES-1). The in-state source LA = 0.143 * 399.1 kg/yr = 57.0 kg/yr. For this assessment, the potential allowable LA from the Minnesota taconite industry is estimated by assuming that the future proportion of mercury deposition from speciated taconite mercury emissions is the same as for existing conditions; a ratio of 0.075. The estimated in-state contribution from the taconite industry in the future = 0.075 * 63 kg/yr = 4.7 kg/yr (after control technology applied).

The TMDL scenario in Table 2 is based on MPCA's (2007) estimate that mercury emissions from taconite processing could be reduced from 723 to about 138 lbs/yr (MPCA 2007, Table 12). Further, the TMDL scenario assumed that the application of control technology would result in the same emissions speciation as existing conditions (~93% elemental, ~6% oxidized, and 1% particle-bound), and that atmospheric loading would be primarily from oxidized and particle-bound mercury. Stack testing data collected from ACI and halide injection testing conducted at taconite facilities since 2007clearly shows that the TMDL reduction goal formulated by MPCA (2007) for this sector did not account for changes in mercury speciation caused by the application of certain control technologies and the associated increase in local deposition.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 13

As shown in Table 2, the estimated potential future emissions scenario using ACI with existing wet scrubbers correlates to an estimated reduction in taconite industry total mercury emissions from about 328 kg/yr (existing conditions) to about 263 kg/yr (~20% reduction). However, there would be an estimated increase in atmospheric loading to the TMDL Northeast Region due to the shift towards more particle-bound mercury emissions with the application of ACI with the existing scrubbers. The potential increase in atmospheric loading (local mercury deposition) with the application of ACI (105.9 kg/yr) is estimated to be 4.3 times greater (i.e., an increase of 332%) than estimated for existing conditions (24.5 kg/yr) (Table 2, Footnote 2), due to the increase in particle-bound mercury that would be deposited closer to the emission source. This shift in mercury speciation due to ACI would significantly increase the ratio of deposition to emissions for taconite furnaces from 0.07 under existing conditions to 0.4 (i.e., approximately 40% of emissions would deposit to the TMDL Northeast Region compared to about 7% under existing conditions).

As shown in Table 2, the estimated potential future emissions scenario using halide injection with existing wet scrubbers correlates to an estimated reduction in taconite industry total mercury emissions from about 328 kg/yr (existing conditions) to 240 kg/yr (~27% reduction). However, there would be an estimated increase in atmospheric loading to the TMDL Northeast Region due to the shift towards more oxidized and particle-bound mercury. The potential increase in atmospheric loading (local mercury deposition) with the application of the halide injection control technology (115.7 kg/yr) is estimated to be 4.7 times greater than estimated for existing conditions (24.5 kg/yr) (Table 2). This shift in mercury speciation due to halide injection would significantly increase the ratio of deposition to emissions from 0.07 under existing conditions to 0.48 (approximately 48% of mercury emissions would deposit to the TMDL Northeast Region in the future scenario compared to about 7% under existing conditions).

Due to the emissions speciation change to more particle-bound mercury with ACI and more oxidized mercury with halide injection, the estimated future atmospheric mercury loading from the taconite industry (105.9 and 115.7 kg/yr, respectively; Table 2) would be greater than the TMDL Load Allocation (LA) for the Northeast Region (57 kg/yr; MPCA 2007). MPCA (2007) estimated a total LA for the TMDL Northeast Region (57 kg/yr), but did not allocate load by industry sector. For this assessment, an estimated LA for the taconite industry of 4.7 kg/yr (after controls) was based on the assumption (future TMDL scenario) that the deposition of mercury emissions from taconite processing to the TMDL Northeast Region would be reduced from current deposition rates in proportion to the reduction in total mercury emissions (Table 2, footnote 5). The estimated LA of 4.7 kg/yr for the taconite industry (after control) provides a relative measure to compare potential atmospheric loading from the application of the activated carbon control technology and the halide injection control technology to existing conditions and to the anticipated reductions estimated for taconite processing in the TMDL study (MPCA 2007; Table 12). As shown in Table 2, the potential atmospheric loading of 105.9 kg/yr from the application of the activated carbon control technology and the 115.7 kg/yr from the application of halide injection would be well above the estimated TMDL future goal LA of 4.7 kg/yr.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 14

For the potential future scenarios with application of ACI or halide injection with the existing scrubbers, when applying the proportionality concept advocated by the MPCA in conducting the TMDL study (MPCA 2007; MPCA 2014), the estimated increased loading associated with the increase in particle-bound and oxidized mercury emissions (Table 2) would result in an increase in fish tissue mercury concentrations.

Bioavailability of Mercury: Oxidized, and Adsorbed to Activated Carbon Particles

As discussed by Evers et al. (2007), once mercury is emitted to the atmosphere and deposited to the landscape, the potential for biological uptake of that mercury depends on several factors, including the rate of deposition, site-specific characteristics such as landscape sensitivity (e.g., presence of methylation sites such as wetlands) and water level fluctuations in waterbodies including wetlands.

In the case of oxidized mercury associated with halide injection, the potential future deposition is higher than estimated for existing conditions by a factor of 4.9 (Table 2). With regard to landscape sensitivity, Evers et al. (2007) states that landscapes with shallow hydrologic flow paths (e.g., shallow soil over bedrock), the presence of wetlands, and unproductive surface waters facilitate the transport, methylation, and bioconcentration of mercury in surface waters. All of these landscape features are present in the TMDL Northeast Region, which makes northern Minnesota a "sensitive landscape" according to the criteria in Evers et al. (2007). When a potential increase in oxidized mercury emissions is coupled with deposition to a sensitive landscape, there is a high probability that increased mercury cycling in the food chain will occur (Florida DEP 2003; Evers et al. 2007). Atmospheric loading of oxidized mercury near emission sources has been documented to directly affect fish tissue mercury concentrations (USEPA 1997; Florida DEP 2003; Evers et al. 2007; King et al. 2008).

While the increase in mercury bioavailability associated with oxidized mercury has been documented, the potential increased bioavailability of mercury bound to activated carbon particles is uncertain. The environment tends to sequester mercury such that mercury associated with particles in general is subject to several loss mechanisms that result in only a small portion of the mercury becoming bioavailable. An important loss mechanism is burial in terrestrial and aquatic systems where Brigham (1992), Engstrom and Swain (1997), Watras et al. (2000), Engstrom et al. (2007) and Watras and Morrison (2008) found that most (~90%) of the atmospheric load of mercury (including particle-bound mercury) deposited to a lake system is sequestered by the sediments. For mercury deposited to watersheds (upland/wetland environments), forest and wetland soils are net accumulators of atmospherically deposited particles (Grigal 2002; Grigal 2003). On a watershed basis, mass balance calculations by Grigal (2002) indicate that about 90% (range of 84% to 97%) of the atmospheric mercury load is not available for cycling due to volatilization loss or sequestering in soil, with only about 10% (range of ~3% to 16%) being potentially available for cycling and methylation in the environment.

In wetlands, an additional post-depositional loss of mercury sometimes occurs due to water level fluctuations that move atmospherically deposited mercury (e.g., particle-bound mercury) downward in the soil profile where anaerobic conditions persist (i.e., oxygen is limited; Haberer et al. 2011) and particle

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 15

weathering is severely limited (Rausch et al. 2005a). However, in some cases, mineral particle weathering can occur relatively quickly, even though the time period is short (Rausch et al. 2005b; Hansson et al. 2014). It is uncertain if activated carbon particles would weather similar to the mineral particles assessed by Rausch et al. (2005a; 2005b).

In upland soils, the forest floor (organic layer overlying the mineral soil) and the upper 12 inches of the mineral soil are considered an oxygenated environment (Pritchett 1979) and any particles atmospherically deposited would have the potential to weather for longer periods of time (months to years).

Pavlish et al. (2003) found that mercury was adsorbed tightly to activated carbon particles and that less than 1% of the mercury was released during leaching tests conducted at pH 5.0. It is uncertain if acidic conditions (pH 3.5 to 4 in coniferous bogs to pH 5.5 in typical surface mineral soils) and the presence of soluble organic compounds with reduced sulfur groups (Xia et al. 1999; Skyllberg et al. 2000) would result in more mercury release from activated carbon particles. Mercury in both upland and wetland soils is mainly bound to reduced sulfur groups in soil humic substances (Xia et al. 1999; Skyllberg et al. 2000). The binding constants for mercury and reduced sulfur groups (log K_{Hg} ranges from 32 to 38, Skyllberg et al. 2000) are many orders of magnitude higher than those for mercury with other organic functional groups. This suggests that organic sulfur groups present in soil organic matter may complex mercury bound to activated carbon particles and simply out-compete the activated carbon-mercury bonds to remove mercury from the activated carbon surface. Mercury originally bound to activated carbon particles may, over time, migrate to reduced sulfur groups in both humic (solid phase) and fulvic (soluble) organic substances, thus enhancing the potential for release of mercury from activated carbon particles and its incorporation into the aquatic mercury cycle.

Biological activity in soil and sediment is also expected to release some of the particle-bound mercury. While the binding of mercury to particles is typically strong (Pavlish et al. 2003; Gagnon and Fisher 1997), Gagnon and Fisher (1997) also found that ingestion of particles by benthic organisms resulted in a higher exposure to mercury and elevated mercury concentrations within the test organisms. Similar to sediments, the biological cycling of mercury in soils is also important. Psarska et al. (2016) estimated that in northern Minnesota soils, earthworms consuming forest floor organic matter had increased exposure to mercury and that an additional 35% to 65% of the forest floor mercury was added to the upper mineral soil. It is possible that biota in the surface soil (organic layer and upper portion of the mineral soil) could ingest activated carbon particles and thereby release some of the bound mercury to participate in the geochemical cycling of mercury in surface soil. Therefore, while mercury may be strongly adsorbed to activated carbon particles or other particles in the environment, there is a potential for that mercury to be released through ingestion of particles by soil or sediment-dwelling organisms and then become part of the aquatic mercury cycle (USEPA 1997).

The available literature does not support an assumption of 100% bioavailability of the mercury bound to activated carbon particles. However, there is likely to be some release of the particle-bound mercury and some portion would become bioavailable. For the current calculations, a range of potential bioavailability

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 16

was used: 1%, 10%, 25%, and 50%. The assumption that 1%, 10%, 25%, and 50% of the mercury associated with atmospherically deposited activated carbon particles could be bioavailable is based on the potential ingestion of particles by biota. In addition to ingestion by biota, mercury bioavailability may increase because of the high affinity of mercury for reduced sulfur and other functional groups on soil organic matter as described above. This affinity could result in mercury being extracted from the activated carbon particles, making it more bioavailable than currently estimated. Therefore, the estimate of 50% of the particle-bound mercury being bioavailable in this assessment is considered reasonable and conservative, but at the same time it may also underestimate potential bioavailability of the particle-bound mercury.

As shown in Table 2 (Potential Future (ACI)), if most of the mercury remains adsorbed to activated carbon particles (only 1% potentially bioavailable), then the potential future "net loading" associated with ACI would remain essentially neutral compared to loading from existing conditions (elemental + oxidized + particle-bound in existing conditions = 21.3 kg/yr versus 20.0 kg/yr for the future condition). However, if only a relatively small percent (~10% to 25%) of the mercury associated with activated carbon particles were to become bioavailable, the potential "net loading" from the taconite industry (~28 to 41 kg/yr, respectively) to the TMDL Northeast Region would increase above existing conditions (Table 2). Under the assumption that 50% of the mercury associated with activated carbon particles becomes bioavailable, then the estimated potential "net loading" from the taconite industry would be a factor of about 3 greater than the loading of existing conditions (a potential future load of ~62.5 kg/yr versus estimated existing conditions loading of ~22.9 kg/yr) (Table 2). Based on the assumption of proportionality (MPCA 2007), this potential change in mercury loading from particle-bound mercury would be expected to increase fish tissue mercury concentrations.

Summary

Screening calculations were conducted to identify if a change in speciation of mercury emissions to more particle-bound or oxidized mercury would increase mercury deposition to aquatic and terrestrial ecosystems. The input data used for the screening calculations are derived from the Statewide Mercury TMDL study (MPCA 2007), the assumption of proportionality between mercury emissions and atmospheric loading (deposition), and industry stack test data (Ontario Hydro method) that demonstrates the change in mercury emissions speciation with the application of ACI or halide injection with existing scrubbers.

Based on the input values, the results of the screening calculations indicate that the long-term application of ACI prior to furnace exhaust gas entering the existing wet scrubbers as a mercury control technology would likely result in increased atmospheric loading of mercury to the TMDL Northeast Region (increased local deposition) (Table 2). Based on the principle of proportionality (MPCA 2007), an increase in mercury loading would thereby increase fish tissue mercury concentrations. The screening calculations also indicate that the long-term application of halide injection prior to furnace exhaust gas entering the existing wet scrubbers would likely result in increased atmospheric loading to the TMDL Northeast Region

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

Page: 17

(increased local deposition) (Table 2). As previously discussed, increased local deposition due to emissions of oxidized mercury has been demonstrated to increase fish tissue mercury concentrations.

Overall, the application of ACI or halide injection reduces total mercury emissions from baseline conditions, with an average reduction of about 20% and 27%, respectively. However, these estimated reductions in total mercury emissions are well below the estimated reductions for the taconite industry emissions used by the MPCA for future conditions in the Statewide Mercury TMDL study (MPCA 2007, Table 12; reduction from 723 lbs/yr (1990) to 138 lbs/yr (Target #3)). Further, and perhaps most significant, the propensity for particle-bound and/or oxidized mercury to deposit near an emission point (AMAP/UNEP 2013; Florida DEP 2013) and the increase in emissions of the particle-bound and/or oxidized mercury fraction will result in an increase in local mercury deposition that is not offset by the expected decrease in total mercury emissions. The expected increase in mercury loading to the TMDL Northeast Region due to changes in speciation caused by the use of either ACI or halide injection (Table 2) is inconsistent with the Statewide Mercury TMDL study (MPCA 2007) that requires a reduction in loading in order to reduce fish tissue mercury concentrations. The relatively small reduction in total mercury emissions and the potential for increased local deposition of oxidized and/or particle-bound mercury indicate that neither ACI nor halide injection with existing wet scrubbers should be considered applicable control technologies for the taconite industry.

Acknowledgements

This technical memorandum was provided to Dr. David Grigal (Professor Emeritus, University of Minnesota) and Dr. Edward Nater (Professor, University of Minnesota) for their critical review. Dr. Nater summed up the overall peer review findings as follows:

While we all agree it would be beneficial to reduce or eliminate mercury emissions, reducing gaseous elemental mercury emissions while simultaneously increasing oxidized mercury (reactive mercury) and/or particulate mercury emissions is not a desirable outcome.

The collective comments and observations by Drs. Grigal and Nater regarding the information presented in this technical memorandum are greatly appreciated by Barr Engineering Company and the taconite industry.

References

Albemarle. 2018. Particle size distribution. Email from Mr. Tim Frost (Albemarle) to Dane Jensen (Barr Engineering Company). April 18, 2018.

AMAP/UNEP. 2013. Technical Background Report for the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/United Nations Environment Programme Chemicals Branch, Geneva, Switzerland. vi + 263 pp.

Barr Engineering Co. 2018a. Best Available Mercury Reduction Technology Analysis and Mercury Emissions Reduction Plan. Prepared for Hibbing Taconite Company. Barr Engineering Company, Duluth, MN.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

- Barr Engineering Co. 2018b. Best Available Mercury Reduction Technology Analysis and Proposed Alternative Mercury Emissions Reduction Plan. Prepared for ArcelorMittal Minorca Mine. Barr Engineering Company, Duluth, MN.
- Barr Engineering Co. 2018c. Best Available Mercury Reduction Technology Analysis and Proposed Alternative Mercury Emissions Reduction Plan. Prepared for United States Steel Corporation, Minnesota Ore Operations Minntac. Barr Engineering Company, Duluth, MN.
- Barr Engineering C. 2018d. Best Available Mercury Reduction Technology Analysis and Mercury Emissions Reduction Plan. Prepared for United Taconite Company. Barr Engineering Company, Duluth, MN.
- Brigham, ME. 1992. Accumulation of Mercury in Minnesota, Alaska, and Wisconsin Lakes. Thesis for MS Degree in Civil Engineering, University of Minnesota. St. Paul.
- Engstrom, D.R. and E.B. Swain. 1997. Recent declines in atmospheric mercury deposition in the Upper Midwest. Environmental Science and Technology, Vol. 31, pp. 960-967
- Engstrom, D.R., S.J. Balogh, and E.B. Swain. 2007. History and mercury inputs to Minnesota lakes: Influences of watershed disturbance and localized atmospheric deposition. Limnology and Oceanography. 2007, 52: 2467-2483.
- Evers, D.C., et al. 2007. Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57 (1): 29 43.
- Fleck, J.A., D.F. Grigal, and E.A. Nater. 1999. Mercury uptake by trees: an observational experiment. Water, Air, and Soil Pollution, 115: 513 523.
- Florida DEP. 2003. Integrating atmospheric mercury deposition with aquatic cycling in South Florida: An approach for conducting a Total Maximum Daily Load analysis for an atmospherically derived pollutant. Florida Department of Environmental Protection. November 2003. 115 pp plus appendices.
- Florida DEP. 2013. Mercury TMDL for the State of Florida. Final Report. Florida Department of Environmental Protection. Division of Environmental Assessment and Restoration. October 24, 2013. 120 pp.
- Gagnon, C. and N. Fisher. 1997. Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve. Environ. Sci. and Technol., 31(4): 993 998.
- Grigal, D.F. 2002. Inputs and outputs of mercury from terrestrial watersheds: a review. Environ. Review, 10: 1-39.
- Grigal, D.F. 2003. Mercury sequestration in forests and peatlands: a review. J. Environ. Quality, 32: 393-405.
- Haberer, C.M, et al. 2011. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. Journal of Contaminant Hydrology. March 25, 2011, Vol. 122, 1–4, pp. 26-39.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

- Hansson, S. V., J.M. Kaste, K. Chen, and R. Bindler. Beryllium-7 as a natural tracer for short-term downwash in peat. Biogeochemistry. June 2014, Vol. 119, 1, pp. 329–339.
- King, S, S. Hochbrunn, P. Miller, J. Graham, T Goldberg, A. Wienert, and M. Wilcox. 2008. Reducing mercury in the northeast United States. J. Air & Waste Management. Pp. 9-13. May 2008.
- Lim, J-H, L.D. Sabin, K.C. Schiff, K.D. Stolzenbach. 2006. Concentration, size distribution, and dry deposition rate of particle-associated metals in the Los Angeles region. Journal of Atmospheric Environment, 40 (40). ISSN 1352-2310.
- MDNR. 2007. Mercury transport in taconite processing facilities: (III) Control method test results. A report submitted to the Iron Ore Cooperative Research. Prepared by M. Berndt and J. Engesser, Minnesota Department of Natural Resources, St. Paul, MN. December 31, 2007. 48 pp.
- MDNR. 2011. A brief summary of Hg control test results for Br injection into taconite induration furnaces.

 Prepared for the Minnesota Taconite Mercury Control Advisory Committee. Prepared by M.

 Berndt, Minnesota Department of Natural Resources, St. Paul, MN. April 10, 2011. 7 pp.
- MDNR. 2012. Minnesota Taconite Mercury Control Advisory Committee: Summary of Phase One Research Results (2010-2012). A final report submitted to the U.S. Environmental Protection Agency, Grant No. GL00E00655-O. Prepared by M. Berndt, Minnesota Department of Natural Resources, St. Paul, MN. November 29, 2012. 25 pp.
- MPCA. 2006a. MPCA Mercury Risk Estimation Method (MMREM) for the Fish Consumption Pathway: Impact assessment of a nearby emission source. Version 1.0. Minnesota Pollution Control Agency. December 2006.
- MPCA. 2006b. Mercury speciation profiles. Email from Ms. Anne Jackson (Minnesota Pollution Control Agency) to Cliff Twaroski (Barr Engineering Company). October 12, 2006.
- MPCA. 2007. Minnesota Statewide Mercury Total Maximum Daily Load. Final. Minnesota Pollution Control Agency, St. Paul. March 27, 2007. 75 pp.
- MPCA. 2009. Implementation Plan for Minnesota's Statewide Mercury Total Maximum Daily Load. Minnesota Pollution Control Agency, St. Paul. October 2009. 116 pp.
- MPCA. 2013. Statement of Need and Reasonableness. Proposed Amendments to Rules Relating to Air Emissions Permits, Minnesota Rules Chapter 7005, 7007, 7011, and 7019. ("Mercury SONAR") Minnesota Pollution Control Agency, St. Paul. AR495; ag-rule-03d. Revisor No.: RD4149.
- MPCA. 2014. MPCA Response to Comments. Response to comments received during the public comment period on the dual notice of intent to adopt rules governing mercury air emissions. Reporting and Reductions, Minnesota Rules, Chapters 7005, 7007, 7011, and 7019. Minnesota Pollution Control Agency, St. Paul, MN. 33 pp.
- Obrist, D. et al. 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Research Letter. Nature, 547: 201-204.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

- Pavlish, J., et al. 2003. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82(2): 89-165 DOI: 10.1016/S0378-3820(03)00059-6
- Pederson, J. 2006. Atmospheric Processes Research Section Research Division, Air Resources Board.

 Essential Concepts in Atmospheric Deposition presentation to State Air Resources Board & State

 Water Quality Control Board California Environmental Protection Agency. February 9, 2006.
- Piskunov, V.N. 2009. Parameterization of aerosol dry deposition velocities onto smooth and rough surfaces. Journal of Aerosol Science 40: 664 679. Pritchett, W. 1979. Properties and management of forest soils. John Wiley and Sons.
- Psarska, S., E. Nater, and R. Kolka. 2016. Impacts of invasive earthworms on soil mercury cycling: two mass balance approaches to an earthworm invasion in a northern Minnesota forest. Water Air Soil Pollut. 227:205.
- Pritchett, W.L. 1979. Properties and management of forest soils. John Wiley and Sons, Inc.
- Rausch, N. et al. 2005a. Porewater Evidence of Metal (Cu, Ni, Co, Zn, Cd) Mobilization in an Acidic,
 Ombrotrophic Bog Impacted by a Smelter, Harjavalta, Finland and Comparison with Reference
 Sites. Environmental Science & Technology. 2005, 39, pp. 8207-8213.
- Rausch, N., et al. 2005b. Comparison of atmospheric deposition of copper, nickel, cobalt, zinc, and cadmium recorded by Finnish peat cores with monitoring data and emission records. Environ. Sci. Technol, 39: 5989 5998.
- Skyllberg, U.L., K. Xia, P.R. Bloom, E.A. Nater and W.F. Bleam. 2000. Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. Journal of Environmental Quality 29(3): 855-865.
- UTAC. 2018. United Taconite Halide Injection Review Report, November 2018.
- USEPA. 1995. U.S. Environmental Protection Agency. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources. Air Emissions Factors and Quantification. [Online] January 1995. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors#5thed.
- USEPA. 1997. Mercury Study Report to Congress. Volume III: Fate and transport of mercury in the environment. EPA-452/R-97-005. December 1997.
- USEPA. 2004. U.S. Environmental Protection Agency. Air Toxics Risk Assessment Reference Library. Volume 1. Technical Resource Manual (EPA-453-K-04-001A). April 2004.
- USEPA. 2005. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Office of Solid Waste and Emergency Response. 530-R-05-006. September 2005.
- USEPA. 2006. *EPA's Roadmap for Mercury*. United States Environmental Protection Agency (USEPA). EPA-HQ-OPPT-2005-013, (July 2006), *available at* http://www.epa.gov/mercury/pdfs/FINAL-Mercury-Roadmap-6-29.pdf.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

- VISTAS. 2005. Protocol for the Application of the CALPUFF Model for Analyses of Best Available Retrofit Technology (BART). Pp. 20-21. Visibility Improvement State and Tribal Association of the Southeast (VISTAS). December 22, 2005.
- Watras, C.J., K.A. Morrison, R.J.M. Hudson, T.M. Frost, and T.K. Kratz. 2000. Decreasing mercury in northern Wisconsin: Temporal patterns in bulk precipitation and a precipitation-dominated lake. Environmental Science and Technology, 34: 4051-4057.
- Watras, C.J. and K.A. Morrison. 2008. The response of two remote, temperate lakes to changes in atmospheric mercury deposition, sulfate, and the water cycle. Can. J. of Fish. Aquatic Science. Vol. 65, pp. 100-116.
- Xia, U.L. Skyllberg, W.F. Bleam, P.R. Bloom, E.A. Nater, and P.A. Helmke. 1999. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances. Environmental Science and Technology 33(2): 257-261
- Zhang, L., S. Gong, J. Padro, and L. Barrie. 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment 35:549-560.
- Zhang, L. and Z. He. 2014. Technical Note: an empirical algorithm estimating dry deposition velocity of fine, course and giant particles. Atmos. Chem. Phys. 14: 3729 3737.

From: Cliff Twaroski

Subject: Summary of emissions speciation change on potential mercury loading to northeast Minnesota

Date: December 14, 2018

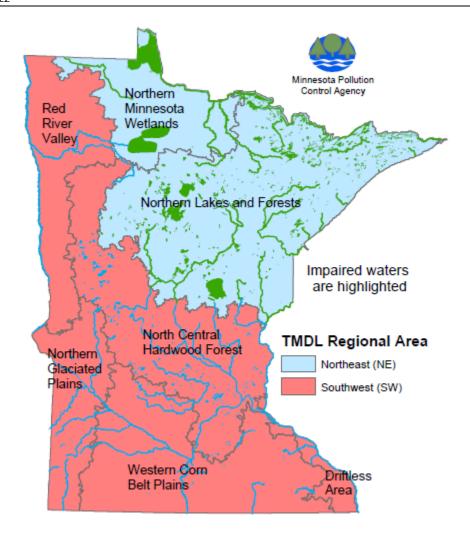


Figure 1 Statewide Mercury Total Maximum Daily Load (TMDL) Regional Areas (from MPCA 2007)