
Elm Creek Watershed (Upper Mississippi River Basin) Watershed Restoration and Protection Strategy

December 2016

elm creek

Minnesota Pollution Control Agency

wq-ws4-27a

Project Partners

The following organizations and agencies contributed to the development of the Elm Creek Watershed Restoration and Protection Strategies document:

Elm Creek Watershed Management Commission:

City of Champlin City of Corcoran City of Dayton City of Maple Grove City of Medina City of Plymouth **City of Rogers** Hennepin County Environment and Energy Department Three Rivers Park District Metropolitan Council Environmental Services Minnesota Department of Agriculture Minnesota Department of Natural Resources Minnesota Department of Transportation Minnesota Pollution Control Agency University of Minnesota Extension Services Wenck Associates, Inc.

*Note Regarding Legislative Charge

The science, analysis and strategy development described in this report began before accountability provisions were added to the Clean Water Legacy Act in 2013 (MS114D); thus, this report may not address all of those provisions. When this watershed is revisited (according to the 10-year cycle), the information will be updated according to the statutorily required elements of a Watershed Restoration and Protection Strategy Report.

Table of Contents

Table of Contents 3
List of Figures
List of Tables
Key Terms
Acronyms
Executive Summary
What is the WRAPS Report?
1. Watershed Background & Description11
Additional Elm Creek Watershed Resources11
2. Watershed Conditions
2.1 Condition Status
Streams13
Lakes13
2.2 Water Quality Trends14
2.3 Stressors and Sources
Stressors of Biologically-Impaired Stream Reaches16
Pollutant sources
2.4 TMDL Summary
2.5 Protection Considerations
Lakes24
Watershed-wide26
Priority A Source Protection Area
3. Prioritizing and Implementing Restoration and Protection
3.1 Targeting of Geographic Areas
State, Basin and Regional Scale28
Elm Creek Watershed29
<i>3.2 Civic Engagement</i>
Accomplishments and Future Plans

	Public Notice for Comments	
3.3	Restoration & Protection Strategies	
	Funding Opportunities	
4. M	onitoring Plan	57
Refere	nces and Further Information	
Appen	dix A-Lake and Watershed Information for Non-TMDL Lakes	
Appen	dix B-Water Quality Data for Non-TMDL Lakes	61
Appen	dix C-Watershed Boundaries for Non-TMDL Lakes	

List of Figures

Figure 1-1. Land cover in the Elm Creek Watershed11
Figure 2-1. Impaired lakes and stream reaches in the Elm Creek Watershed12
Figure 2-2. USGS flow weighted total phosphorus (TP) concentration estimated using FLUX analysis for April through October data from 1988 through 2014 in Elm Creek
Figure 2-3. USGS flow weighted total suspended solid (TSS) concentration estimated using FLUX analysis for April through October data from 1991 through 2014 in Elm Creek
Figure 2-4. Source water protection areas for Minneapolis and St. Paul for the Elm Creek Watershed27
Figure 3-1. Potential TP loading and loading rate by subwatershed (delineated with LiDAR) as modeled for the TMDLs using SWAT
Figure 3-2. The top 5% EBI areas (purple) for the Elm Creek Watershed. A zoomed in portion of the watershed is shown for the Diamond Creek Watershed with an insert of the overview map
Figure 3-3. Met Council percent of land use for 2010 and 2030 for the Elm Creek, Sylvan and Cowley Watersheds
Figure B1. Historical water quality data for Weaver Lake61
Figure B2. Historical water quality data for Mud Lake61
Figure B3. Historical water quality data for Dubay Lake
Figure B4. Historical water quality data for Laura Lake
Figure B5. Historical water quality data for Jubert Lake
Figure B6. Historical water quality data for Prairie Lake
Figure C1. Weaver Lake Watershed boundary64

Figure C2. Mud Lake Watershed boundary	65
Figure C3. Lake Dubay Watershed boundary	66
Figure C4. Laura Lake Watershed boundary	67
Figure C5. Jubert Lake Watershed boundary	68
Figure C6. Prairie Lake Watershed boundary	69

List of Tables

Table 2-1. Assessment status of stream reaches in the Elm Creek Watershed, presented (mostly) west to east	
Table 2-2. Assessment status of lakes in the Elm Creek/Crow River Watershed	14
Table 2-3. Primary stressors to aquatic life in biologically-impaired reaches in the Elm Creek Wat	
Table 2-4. Nonpoint sources in the Elm Creek Watershed project area. Relative magnitudes of contributing sources are indicated	19
Table 2-5. Regulated MS4s and WWTPs in the Elm Creek Watershed project area	20
Table 2-6. Allocations summary for all lake TMDLs in the Elm Creek Watershed	21
Table 2-7. Allocation summary for all stream TMDLs in the Elm Creek Watershed project area	22
Table 2-8. Key Lake/Watershed Characteristics and Protection Elements for "Protect" Lakes	25
Table 2-9. Summary of Lake/Watershed Characteristics and Recommendations for Non-assessed	
Table 3-1. Prioritization tools	
Table 3-2. Diamond Creek Subwatershed Restoration and Protection Strategies	41
Table 3-3. Rush Creek Subwatershed Restoration and Protection Strategies	43
Table 3-4. South Fork Rush Creek Subwatershed Restoration and Protection Strategies	46
Table 3-5. Elm Creek Subwatershed Restoration and Protection Strategies	48
Table 3-6. North Fork Crow and Mississippi Subwatersheds Restoration and Protection Strategie	s51
Table 3-7. Additional restoration and protection strategies to consider, organized by parameter concern	
Table A1. Lake and watershed information for non-TMDL lakes	60

Key Terms

Assessment Unit Identifier (AUID): The unique water body identifier for each river reach comprised of the United States Geological Survey (USGS) eight-digit hydrologic unit code (HUC) plus a three-character code unique within each HUC.

Aquatic life impairment: The presence and vitality of aquatic life is indicative of the overall water quality of a stream. A stream is considered impaired for impacts to aquatic life if the fish Index of Biotic Integrity (IBI), macroinvertebrate IBI, dissolved oxygen, turbidity, or certain chemical standards are not met.

Aquatic recreation impairment: Streams are considered impaired for impacts to aquatic recreation if fecal bacteria standards are not met. Lakes are considered impaired for impacts to aquatic recreation if total phosphorus, chlorophyll-a (Chl-a), or Secchi disc depth standards are not met.

Hydrologic Unit Code (HUC): A Hydrologic Unit Code (HUC) is assigned by the USGS for each watershed. HUCs are organized in a nested hierarchy by size. For example, the Upper Mississippi-Crow-Rum River Basin is assigned a HUC-4 of 070102 and the Twin Cities Watershed is assigned a HUC-8 of 07010206.

Impairment: Water bodies are listed as impaired if water quality standards are not met for designated uses including: aquatic life, aquatic recreation, and aquatic consumption.

Index of Biotic integrity (IBI): A method for describing water quality using characteristics of aquatic communities, such as the types of fish and invertebrates found in the waterbody. It is expressed as a numerical value between 0 (lowest quality) to 100 (highest quality).

Protection: This term is used to characterize actions taken in watersheds of waters not known to be impaired to maintain conditions and beneficial uses of the waterbodies.

Restoration: This term is used to characterize actions taken in watersheds of impaired waters to improve conditions, eventually to meet water quality standards and achieve beneficial uses of the waterbodies.

Source (or Pollutant Source): This term is distinguished from 'stressor' to mean only those actions, places or entities that deliver/discharge pollutants (e.g., sediment, phosphorus, nitrogen, pathogens).

Stressor (or Biological Stressor): This is a broad term that includes both pollutant sources and non-pollutant sources or factors (e.g., altered hydrology, dams preventing fish passage) that adversely impact aquatic life.

Total Maximum Daily Load (TMDL): A calculation of the maximum amount of a pollutant that may be introduced into a surface water and still ensure that applicable water quality standards for that water are met. A TMDL is the sum of the wasteload allocation (WLA) for point sources, a load allocation (LA) for nonpoint sources and natural background, an allocation for future growth (i.e., reserve capacity), and a margin of safety (MOS) as defined in the Code of Federal Regulations.

Acronyms

ac-ft	acre-feet
AUID	Assessment Unit ID
BATHTUB	A model to assess nutrients in lakes
BMP	Best Management Practice
BWSR	Board of Water and Soil Resources
cfu	colony-forming unit
Chl <i>-a</i>	Chlorophyll-a
CMP	Chloride Management Plan
CWLA	Clean Water Legacy Act
DNR	Minnesota Department of Natural Resources
DO	Dissolved oxygen
EBI	Environmental Benefit Index
ECWMC	Elm Creek Watershed Management Commission
EPA	Environmental Protection Agency
FLUX	Model to predict flow weighted nutrients in streams
Ft	feet
HUC	Hydrologic unit code
Lidar	Light Detection and Ranging
IBI	Index of Biotic Integrity
КАР	Knowledge, Attitudes, and Practices
LA	Load Allocation
lb/yr	pounds per year
m	meter
MDA	Minnesota Department of Agriculture
mg/L	milligrams per liter
mg/m2-day	milligram per square meter per day
mL	milliliter
MnDOT	Minnesota Department of Transportation

MOS	Margin of Safety
MPCA	Minnesota Pollution Control Agency
MS4	Municipal Separate Storm Sewer System
NEMO	Nonpoint Education for Municipal Officials
NCHF	North Central Hardwood Forest
NRCS	Natural Resources Conservation Service
PREP	Protection, Restoration, Education, and Prevention
RUSLE	Revised Universal Soil Loss Equation
SW	Stormwater
SSTS	Subsurface Sewage Treatment Systems
SWAG	Surface Water Assessment Grant
SWAT	Soil and Water Assessment Tool
TAC	Technical Advisory Committee
TMDL	Total Maximum Daily Load
ТР	Total Phosphorus
TSS	Total Suspended Solids
UMD	University of Minnesota Duluth
UMN	University of Minnesota
μg/L	microgram per liter
USGS	United States Geological Survey
WHAF	Watershed Health Assessment Framework
WLA	Wasteload Allocation
WMC	Watershed Management Commission
WQ	Water quality
WRAPS	Watershed Restoration and Protection Strategy
WWTP	Wastewater Treatment Plant

Executive Summary

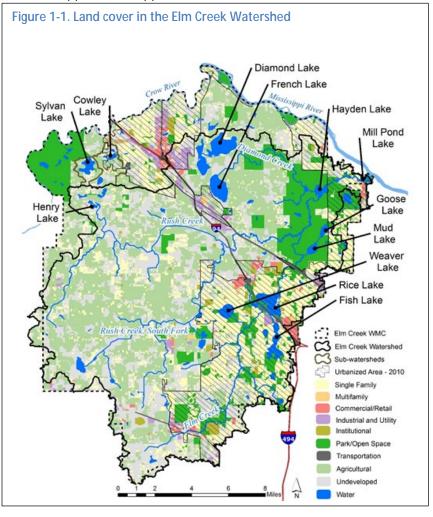
Several streams and lakes within the Elm Creek Watershed are impaired for aquatic life use, aquatic recreation use and have high levels of *E. coli* bacteria. Agricultural runoff, stormwater runoff and stream bank erosion are having negative effects on the watershed's water quality. Agricultural and livestock activities and urban development in the watershed have resulted in runoff that carries excess phosphorus, sediment, and bacteria into bodies of water that degrades water quality and is harmful to aquatic life.

The intent of this Watershed Restoration and Protection Strategy (WRAPS) report was to develop a scientifically-based restoration and protection strategy for the Elm Creek Watershed. This WRAPS summarizes past efforts to monitor water quality, identifies impaired water bodies and those in need of protection, and identifies strategies for restoring and protecting water quality in the watershed. The strategies included in this report target point and non-point sources of pollution and include installing buffers, stabilizing stream banks, reducing in-lake nutrients, improving stormwater management and livestock management to help improve water quality in the watershed.

What is the WRAPS Report?

The state of Minnesota has adopted a "watershed approach" to address the state's 80 "major" watersheds (denoted by 8-digit hydrologic unit code or HUC). This watershed approach incorporates water quality assessment, watershed analysis, civic engagement, planning, implementation, and measurement of results into a 10-year cycle that addresses both restoration and protection.

As part of the watershed approach, waters not meeting state standards are still listed as impaired and Total Maximum Daily Load (TMDL) studies are performed, as they have been in the past, but in addition the watershed approach process facilitates a more cost-effective and comprehensive characterization of multiple water bodies and overall watershed health. A key aspect of this effort is to develop and utilize watershed-scale models and

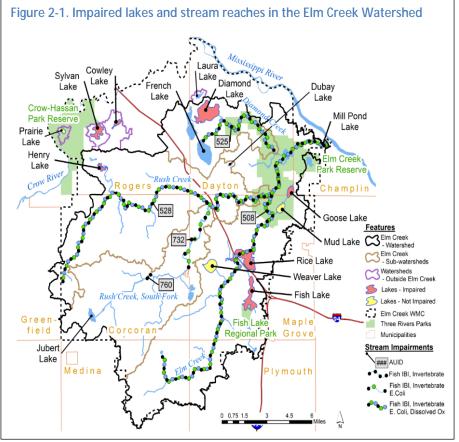

other tools to help state agencies, local governments and other watershed stakeholders determine how to best proceed with restoring and protecting lakes and streams. This WRAPS report summarizes past assessment and diagnostic work and outlines ways to prioritize actions and strategies for continued implementation.

Purpose	 Support local working groups and jointly develop scientifically-supported restoration and protection strategies to be used for subsequent implementation planning Summarize Watershed Approach work done to date including the following reports: Mississippi River-Twin Cities Monitoring and Assessment Report - 2013 Elm Creek Watershed Management Commission - 2015 Elm Creek Watershed Stressor Identification Report - 2015 Elm Creek Watershed Total Maximum Daily Load Study - 2016
Scope	 Impacts to aquatic recreation and impacts to aquatic life in streams Impacts to aquatic recreation in lakes
Audience	 Local working groups (local governments, SWCDs, watershed management groups, etc.) State agencies (MPCA, DNR, BWSR, etc.)

1. Watershed Background & Description

The Elm Creek Watershed is located in the upper Mississippi River Basin. The watershed is

approximately 104 square miles, or about 66,400 acres, in extent and lies in northwestern Hennepin County. The watershed includes parts of seven Twin **Cities Metro Area** municipalities - Medina, Plymouth, Corcoran, Maple Grove, Rogers, Dayton, and Champlin. The entire watershed is within the North **Central Hardwood Forest** (NCHF) ecoregion. Surface water flows in the watershed are from south and west to north and east. Based on 2010 land use data, only about 25% of the watershed is developed, and the development is clustered in the eastern part of the watershed and along the Interstate 94 corridor (Figure 1-1). The remainder of the watershed is predominantly


agricultural (32.1%) and undeveloped (27.2%). Most of the rural and agricultural (non-developed) land uses are in the upper reaches of the major stream systems draining the area.

Additional Elm Creek Watershed Resources

Elm Creek Watershed Management Commission Elm Creek TMDL, Protection and Implementation Plan Elm Creek Watershed Stressor Identification Report Elm Creek USDA Natural Resources Conservation Service (NRCS) Rapid Watershed Assessment Elm Creek Stream Health Evaluation (2010) - Hennepin County Mississippi River-Twin Cities Monitoring and Assessment Report Mississippi River Watershed DNR Assessment Mapbook Twin Cities Metro Area Chloride TMDL

2. Watershed Conditions

The Elm Creek Watershed has a rural and agricultural land use-dominated headwater region that transitions to more suburban/urban land uses in the lower portions of the watershed. Impairments are common throughout the watershed, but the severity of those impairments generally decreases - especially in the stream systems - as one moves from upstream to downstream. Fish Lake and Weaver Lake in Maple Grove are the only two deep lakes in the watershed. The remaining open water bodies in the watershed are either

shallow lakes or wetlands. In most cases, these shallow water bodies are moderately to severely degraded. Figure 2-1 shows the impaired and unimpaired lakes in the watershed as well as the stream reaches that are listed as impaired. Note that the eight digit HUC prefix for all stream Assessment Unit IDs (AUIDs) shown in Figure 2-1 is 07010206.

Not all of the lakes and stream segments in the watershed were assessed due to insufficient data, limited resource waters, or predominantly channelized stream reaches. What is known about the condition of these streams and lakes including associated pollutant sources is summarized in the following sections.

2.1 Condition Status

Stream conditions throughout the watershed were assessed using a range of parameters including fish and invertebrate indices of biotic integrity, *E. coli*, dissolved oxygen (DO), total suspended solids (TSS), and total phosphorus (TP). Water quality measurements were compared to state water quality standards. Stream conditions and impairment assessment for Elm Creek Watershed AUID's are summarized in Table 2-1. In general, stream quality is lowest in the upper reaches of the watershed that are dominated by rural and agricultural land uses and improves somewhat as one moves downstream into the more developed portion of the watershed. The pattern is similar but less well-defined for lakes, with most of the shallow lakes throughout the watershed severely impaired and the deep lakes (both of

which are within the developed portion of the watershed) meeting or close to meeting standards. All of the streams and lakes in the Elm Creek Watershed that have been placed on the state of Minnesota's <u>303(d) list</u> have received TMDL allocations, which are summarized in Section 2.4 of this report. Some of the waterbodies in the Elm Creek Watershed are impaired by chloride and mercury; however, this report does not cover toxic pollutants. For more information on the chloride impairments see the <u>Twin</u> <u>Cities Metropolitan Area Chloride TMDL</u> and <u>Chloride Management Plan</u> (CMP). For the mercury impairments see the <u>Statewide Mercury TMDL</u>.

Streams

Of the 14 stream AUIDs in the Elm Creek Watershed, five reaches were assessed for biotic integrity and none were found to fully support aquatic life. All five of the assessed reaches were identified as impaired for both fish and macroinvertebrate Index of Biotic Integrity (IBI). The remaining AUIDs were found to be intermittent streams and/or have insufficient data to determine aquatic life impairment.

The Elm Creek Watershed Management Commission (ECWMC), Minnesota Pollution Control Agency (MPCA), U.S. Geological Survey (USGS), Hennepin County, and Three Rivers Park District have conducted periodic and routine sampling for conventional pollutants at various mainstem and tributary monitoring stations throughout the watershed. Through this monitoring, three reaches were found to be impaired for low DO, four for *E. coli* bacteria, and two for high chloride.

	(Last 3 Stream Reach Description			Aquatic Life				Aq Rec
HUC-8 Subwatershed			Fish Index of Biotic Integrity	Macroinvertebrate Index of Biotic Integrity	OQ	Chloride	Bacteria	
Upper Mississippi River (7010206)	-760	Rush Creek, S. Fk. (upper)	Un-named ditch to Co. Ditch 16	Imp	Imp	NA	Sup	NA
	-732	Rush Creek. S. Fk. (lower)	Un-named lake to Rush Creek	Imp	Imp	NA	Imp	Imp
	-528	Rush Creek mainstem	Headwaters to Elm Creek	Imp	Imp	Imp	Sup	Imp
	-525	Diamond Creek	Headwaters (French Lake) to Un- named lake	Imp	Imp	Imp	Sup	Imp
	-058	Elm Creek	Headwaters (Lake Medina) to Mississippi River	Imp	Imp	Imp	Imp	Imp

Table 2-1. Assessment status of stream reaches in the Elm Creek Watershed, presented (mostly) from west to east

Sup = found to meet the water quality standard, Imp = does not meet the water quality standard and therefore, is impaired,

IF = the data collected was insufficient to make a finding, NA = not assessed

Lakes

All 13 lakes addressed in this report (9 lakes in the Elm Creek hydrologic watershed plus Sylvan, Cowley, Prairie, and Laura, which lie in the North Fork Crow River hydrologic watershed) are classified as 2B

waters for which aquatic life and recreation are the protected beneficial uses. Minnesota standards for all <u>Class 2</u> waters states "... there shall be no material increase in undesirable slime growths or aquatic plant including algae." To evaluate whether a lake is in an impaired condition, the MPCA developed "numeric translators" for the narrative standard for purposes of determining which lakes should be included in the section 303(d) list as being impaired for nutrients. The translators established for TP, chlorophyll-a (Chl-*a*), and water clarity as measured by Secchi depth. Of the lakes in the Elm Creek Watershed project area that were assessed, seven were identified as being impaired for nutrients (Table 2-2).

HUC-8 Subwatershed	Lake ID Lake		Aquatic Recreation
	27-0125	Diamond Lake	Imp
	27-0118	Fish Lake	Imp
	27-0117	Weaver Lake	Sup
	27-0175	Henry Lake	Imp
Elm Creek	27-0116-01	Rice Lake-Main	Imp
	27-0122	Goose Lake	Imp
	27-0112	Mud	Sup
	27-0165	Jubert	IF
	27-0129	Dubay	IF
	27-0169	Cowley	Imp
	27-0171	Sylvan	Imp
Crow River	27-0177	Prairie	Sup
	27-0123	Laura	IF

Table 2-2. Assessment status of lakes in the Elm Creek/Crow Rive	er Watershed
--	--------------

Imp = impaired for impacts to aquatic recreation, Sup = fully supporting aquatic recreation, IF = insufficient data to make an assessment

Two other water bodies – Rice Lake (West Basin) and French Lake-were at one time listed as impaired lakes on the state's 303(d) list. However, Rice Lake (West Basin) was removed from the draft 2012 list because it did not meet the definition of a lake based on hydraulic residence time, and French Lake was removed from the list because a review of its morphometric and other characteristics indicated it to be a wetland system rather than a shallow lake.

2.2 Water Quality Trends

Stream and lake data have been collected periodically by various entities throughout the Elm Creek Watershed. Intensive lake water quality monitoring was performed in recent years to support the TMDL analysis, but none of the periods of record for any of the lakes is considered sufficient to provide the

basis for reliable trend analysis. Similarly, flow and water quality monitoring at over a dozen sites was conducted to support the TMDL analysis for streams. However, the period of record at all but one of those sites extends only back as far as 2007 and therefore does not provide a sufficient data set for reliable trend analyses. The exception is the data available from the USGS site on lower Elm Creek, located below the junction with Rush Creek but above that with Diamond Creek. This station provides a 36-year period of record for continuous flow and a 27-year period of record for basic water quality data (including TP and TSS).

The flow-weighted mean concentration values during the runoff season (April through October) by year for TP and TSS at the USGS gaging station on Elm Creek are shown in Figure 2-2 and Figure 2-3. The period of record for TP concentration data is 1988 through 2014, while the period of record for TSS data at the site is 1991 through 2014. Non-parametric Mann Whitney U tests were run on each data set to detect significant trends in the data. The results indicate no significant trends in flow-weighted mean concentration values for TP concentration. However, total suspended solid concentrations from 2000 through 2014 were significantly lower (Significance= 0.041) compared to concentrations prior to 2000.

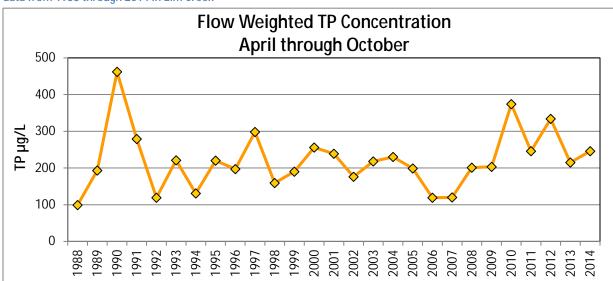
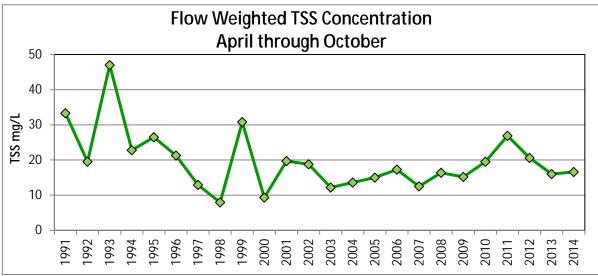



Figure 2-2. USGS flow weighted total phosphorus (TP) concentration estimated using FLUX analysis for April through October data from 1988 through 2014 in Elm Creek

2.3 Stressors and Sources

In order to develop appropriate strategies for restoring or protecting waterbodies the stressors and/or sources impacting or threatening them must be identified and evaluated. Biological stressor identification (SID) is done for streams with either fish or macroinvertebrate biota impairments and encompasses both evaluation of pollutants and non-pollutant-related factors as potential stressors (e.g. altered hydrology, fish passage, habitat). Pollutant source assessments are done where a biological stressor ID process identifies a pollutant as a stressor as well as for the typical pollutant impairment listings. Section 3 provides further detail on stressors and pollutant sources.

Stressors of Biologically-Impaired Stream Reaches

There are five stream reaches in the Elm Creek Watershed impaired for aquatic life as reflected by the poor biological communities within each reach. In order to identify probable stressors causing these impairments, an intensive evaluation of existing data was conducted by the ECWMC. The resulting <u>Elm</u> <u>Creek Watershed SID Report</u> (Lehr 2015) provides the detailed information and weight of evidence to link stressors to the impairments. Potential candidate causes of the impairments that were ruled out based on a review of available data include: pH, water temperature, un-ionized ammonia, organic contaminants, excess nitrate, and heavy metals. Six probable stressors were identified, though the impact of these stressors varies by stream reach. They are: altered hydrology, altered physical habitat, excess sediment, excess phosphorus, low DO, and excess chloride. Table 2-3 summarizes the primary stressors for the Elm Creek Watershed impaired stream reaches identified in the Elm Creek Watershed SID Report.

Table 2-3 Primar	v stressors to aquati	c life in biologically	-impaired reaches	in the Elm Creek Watershed
	y stressors to uquut	c me m biologicany	inipuli cu i cuones	in the Lin of con water shou

		ľ				Pri	mary	Stres	sor	
HUC-8 Subwatershed	AUID (Last 3)	Stream	Reach Description	Biological Impairment	Altered Hydrology	Altered Physical Habitat	Excess Sediment	Excess Phosphorus	Low DO	Excess Chlorides
	508	Elm Creek	Headwaters (Lk Medina 27-	Fish	ο	0	0	0	•	/
	506	EIIII CIEEK	0146-00) to Mississippi River	Macroinvertebrates	0	0	0	•	0	/
	525	Diamond	Headwaters (French Lk 27-	Fish	•	•	•	0	•	/
	525	Creek	0127-00) to Un-named Lake	Macroinvertebrates	0	0	0	•	0	/
7010206 Mississippi River	528	Rush Creek,	Headwaters to Elm Creek	Fish	•	0	•	0	•	/
Twin Cities	520	Main Stem	Theadwater's to Lim Creek	Macroinvertebrates	•	0	•	•	0	/
	732	Rush Creek,	Un-named lake (27-0439-00)	Fish	•	٠	0	٠	٠	/
	132	South Fork	to Rush Creek	Macroinvertebrates	•	•	0	•	0	/
	760	Rush Creek,	Un-named ditch to County	Fish	•	•	•	•	•	/
	700	South Fork	Ditch 16	Macroinvertebrates	0	•	0	0	•	/

• = Primary Stressor **o** = Secondary Stressor / = Inconclusive Stressor

A brief summary of each of the primary stressors identified in Table 2-3 is provided below:

<u>Altered Hydrology.</u> This stressor refers to changes in the volume and rate at which water is delivered to the stream channel and conveyed through the system. It also refers to the amount of flow delivered to the stream through groundwater seepage, which helps sustain baseflows in the stream when there is little or no runoff occurring. The Elm Creek system appears to be impacted to various degrees by agricultural and/or urban development and drainage systems, which deliver a higher volume of water more rapidly to the stream reaches creating more rapid and larger changes in flow. In addition, agricultural drainage practices and urban development often decrease the amount of precipitation percolating into the groundwater system, which often decreases the amount of groundwater discharge to the stream to sustain baseflows.

<u>Altered Physical Habitat</u>. Altered hydrologic inputs can also physically change the stream channel. This results in a more uniform cross-section and sediment type, reducing the diversity of stream structure and sediment types available to support a balanced biotic community.

<u>Excess Sediment</u>. Excess sediment, especially fine grained sediment, can fill the cover or void spaces between coarse sediment particles, gravel, etc. These types of habitat are especially valuable for certain types of macroinvertebrates, and can also be prime spawning habitat for some species of fish.

Excess Phosphorus. High phosphorus levels in streams often cause excessive growths of algae and

other plants. Because plants use oxygen at night when there is no sunlight, they can reduce the level of DO in the water to levels at which macroinvertebrates and fish are negatively affected. In addition, the periodic die-off of algae and other plants also generates organic material in the system that uses up oxygen when it decomposes.

Low DO. The DO is needed by virtually all macroinvertebrates and fish to survive. Further, macroinvertebrates and fish species typical of higher quality aquatic communities need higher concentrations of oxygen to survive than those of degraded communities.

Pollutant sources

Pollutant sources vary by subwatershed and by stream segment depending on permitted point source dischargers, upstream loading/conditions, near-reach land use and other nonpoint sources throughout the watershed. Potential pollutant sources in the impaired stream/lake watersheds were identified and discussed in the <u>Elm Creek Watershed TMDL</u> (ECWMC 2015) and are summarized in Table 2-4. There are currently nine regulated small Municipal Separate Storm Sewer System (MS4) General Permit holders (including the road authorities of Hennepin County and Minnesota Department of Transportation (MnDOT)) in the Elm Creek Watershed (Table 2-5). The Maple Hills Estate Wastewater Treatment Plant (WWTP) is currently the only active WWTP in the Elm Creek Watershed (Table 2-5).

Table 2-4. Nonpoint sources in the Elm Creek Watershed project area. Relative magnitudes of contributing sources are indicated

Indicated							Pollutan	t Sour	ces				
HUC-10 Sub- watershed	Stream/Reach (AUID) or Lake (ID)	Pollutant	Agricultural runoff (from cropland, pasture and/or feedlots)	Livestock overgrazing in riparian	Failing septic systems	Wildlife	Runoff from urban stormwater (SW) and/or near-shore dev.	Wetlands	I Internal Loading (sediments and/or curly leaf pondweed)	Atmosphere	Point Sources (WWTPs)	Upstream lakes	Streambank/channel
	Rush Creek, S. Fork. (upper) (-760)	TP	2	>	TM			?					
		Bacteria	1	>	TM	TM							
	Rush Creek, S. Fork. (lower) (-732)	TP	1	>	TM	~	?	?					
		Chloride			?		~						
	Rush Creek Mainstem	Bacteria	~	>	TM	TM							
	(-528)	TP	~	>	TM			?					
		Bacteria	~	>	TM	TM							
	Diamond Creek (-525)	TP	~	>	TM			?				>	
		TSS	>	>									~
		Bacteria	ł	>	TM	TM	>						
	Elm Creek (-508)	TP	~	>	TM		>	?					
	LIIII CICCK (-500)	TSS	>	>			>						~
Upper		Chloride			?		~						
Mississippi	Fish Lake (27-0118)	TP					>		~	TM		TM	
River	Weaver Lake (27- 0117)	TP					>		>	TM			
	Henry Lake (27-0175)	TP	~		TM				TM	TM			
	Rice Lake – Main (27- 0116-01)	TP	>				~		~	TM		TM	>
	Goose Lake (27-0122)	TP					>		~	TM			
	Diamond Lake (27- 0125)	TP	>				~		>	TM			
	Mud Lake (27-0112)	TP					>		>	TM		>	
	Jubert Lake (27-0165)	TP	TM	?	?				?	TM			TM
	Dubay Lake (27-0129)	TP	~						?	TM			
	Cowley Lake (27-0169)	TP							~	TM			
	Sylvan Lake (27-0171)	TP	~	>	TM				~	TM			
	Prairie Lake (27-0177)	TP							TM	TM			
	Laura Lake (27-0123)	TP	~	?	TM				?	TM			

Key: ~ = High > = Moderate ™ = Low ? = present, but contribution to impairment unknown Blank = not a primary source

		Point Source		Pollutant	
HUC-10 Sub- watershed	Name	Permit #	Туре	reduction needed beyond current permit conditions/limits?	Notes
	Maple Hills Estate	MN0031127	Municipal wastewater	Yes	Private wastewater treatment facility located in Corcoran
	City of Champlin	MS400008	Municipal SW	Yes	Allocations for reach 508 (<i>E. coli</i> , TSS, TP), Goose Lake (TP)
	City of Corcoran	MS400081	Municipal SW	Yes	Allocations for reach 732 (<i>E. coli</i> , TP), 760 (TP), 528 (<i>E. coli</i> , TP), 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP)
	City of Dayton	MS400083	Municipal SW	Yes	Allocations for reach 528 (<i>E. coli</i> , TP), 525 (<i>E. coli</i> , TSS, TP), 508 (<i>E. coli</i> , TSS, TP), Diamond Lake (TP), Goose Lake (TP)
7010206- Upper	Hennepin County	MS400138	Municipal SW	Yes	Allocations for reach 732 (<i>E. coli</i> , TP), 528 (<i>E. coli</i> , TP), 508 (<i>E. coli</i> , TP), 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP), Diamond Lake (TP), Goose Lake (TP), Cowley Lake (TP)
Mississippi River	City of Maple Grove	MS400102	Municipal SW	Yes	Allocations for reach 732 (<i>E. coli</i> , TP), 528 (<i>E. coli</i> , TP), 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP)
	City of Medina	MS400105	Municipal SW	Yes	Allocations for reach 732 (<i>E. coli</i> , TP), 760 (TP), 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP)
	MnDOT	MS400170	Municipal SW	Yes	Allocations for reach 528 (<i>E. coli</i> , TP), 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP), Diamond Lake (TP)
	City of Plymouth	MS400112	Municipal SW	Yes	Allocations for reach 508 (<i>E. coli</i> , TSS, TP), Rice Lake (TP)
	City of Rogers	Future MS4	Municipal SW	Yes	Allocations for reach 528 (<i>E. coli</i> , TP), Diamond Lake (TP), Cowley Lake (TP), Sylvan Lake (TP)

Table 2-5. Regulated MS4s and WWTPs in the Elm Creek Watershed project area

2.4 TMDL Summary

There are seven impaired lakes and five impaired stream reaches that received allocations in the <u>Elm</u> <u>Creek Watershed TMDL</u> study. The TMDL allocations and pollutant load reductions from current conditions for each lake and stream reach are summarized in Table 2-6 and Table 2-7. Section 3 of this report discusses tools to identify and target the high priority pollutant loading areas and recommended restoration strategies to achieve the reductions required for these impaired lakes and/or stream reaches.

							s (lbs/yeai	r)			
		Wasteload Allocation (WLA) Load Allocation (LA))	MOS		
Major Sub- watershed	Lake (ID)	Pollutant	WWTPs	Construction & Industrial SW	MS4s	Non-MS4 Watershed Load	Internal Load	Upstream Lakes	Atmosphere	Margin of Safety (MOS)	Percent Reduction ¹
Diamond Creek	Diamond Lake (27-0125)	TP		8	397	130	155		104	42	73%
Rush Creek	Henry Lake (27-0175)	TP		2	0	122	48	-	13	10	81%
	Fish Lake (27-0118)	TP		21	601	0	1267		64	103	19%
Elm Creek	Rice Lake (27-0116)	TP		23	1147	311	515	107	88	115	83%
	Goose Lake (27-0122)	TP		0.3	7.4	1	0		17	1	81%
North Fork Crow &	Sylvan Lake (27-0171)	TP		2	11	55	86		40	10	84%
Mississippi Direct	Cowley Lake (27-0169)	TP		1	57	24	0		9	5	89%

Table 2-6. Allocations summary for all lake TMDLs in the Elm Creek Watershed

¹ Total percent reduction (all sources) from existing conditions needed to meet TMDL allocations

Table 2.7 Allocation summar	u for all stroam	TMDLs in the Elm	Crock Watershed project area
Table 2-7. Allocation summar	y for all stream	in the elim	Creek Watershed project area

Biamond Creek (525) E. coli Mid 4.81 4.88 0.51 0% Diamond Creek (525) Diamond Creek (525) Fe 0.37 0.38 0.04 0% High 0.20 5.92 3.35 0.67 6438 High 0.07 2.02 1.12 1.15 0.23 71% Mid 0.03 0.79 0.43 0.45 0.09 65% Low 0.01 0.29 0.16 0.16 0.03 66% Very Low 0.00 0.07 0.03 0.03 0.01 81% Fish Mid 8 341 160 27 0% Mid 8 341 160 22.85 66% Mid 8 341 160 17.5 59% Low		ation summary for							ns org./day	1)	
Major Sub- watershed Stream/Reach (AUID) Pollutant Flow Zone No No No No biamond Stream/Reach (AUID) Pollutant Zone 36.07 3.83 0% High 48.11 4.88 0.51 0% 9% 11.15 0.03 0.03 0.01 0.03 0.03 0.01 10% 9% 9% 11.15 0.23 10% 10% 10% 10% 10% 10% </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>Т</th> <th>P & TSS AI</th> <th>locations</th> <th>(lbs/day)</th> <th></th> <th></th>						Т	P & TSS AI	locations	(lbs/day)		
Rush Creek Rush Rush Creek (528) Very High E. coli						WLA	1		LA	MOS	
Biamond Creek (525) F. coli High Mid 12.38 12.58 1.31 0% Uow 4.81 4.88 0.51 0% Low 1.75 1.78 0.19 23% Very High 0.20 5.92 3.26 0.04 0% Very High 0.07 0.20 5.92 3.26 0.07 64% Mid 0.01 0.29 0.43 0.45 0.09 65% Low 0.01 0.29 0.16 0.16 0.03 66% Very Low 0.00 0.07 0.03 0.03 0.01 81% Midi 60 2561 1199 201 0% Very Low 0.60 27 12 2 68% Low 0.61 27	-		Pollutant		WWTPs	Construction & Industrial SW	MS4 Communities	Non-MS4 Watershed Load	Upstream Reach(es)	SOM	Percent Reduction ¹
Biamond Creek (525) E. coli Mid 4.81 4.88 0.51 0% Diamond Creek (525) F 0.37 0.38 0.04 0% Hilp 0.07 2.02 3.26 3.35 0.67 649 Hilp 0.03 0.79 0.43 0.45 0.09 65% Hilp 0.01 0.29 0.16 0.16 0.03 66% Hilp 0.01 0.29 0.16 0.16 0.03 66% Very Low 0.01 0.29 0.16 0.16 0.03 66% Very Low 0.00 0.07 0.03 0.03 0.01 81% Mid 8 341 160 201 6% Very Low 0.66 27 12 22.85 66% Mid				Very High			36.09	36.67		3.83	0%
Diamond Creek Low 1.75 1.78 0.19 23% Diamond Creek Yery Low 0.37 0.38 0.04 0% High 0.07 2.02 3.26 3.35 0.67 64% High 0.07 2.02 1.12 1.15 0.23 71% Mid 0.01 0.29 0.16 0.16 0.03 66% Low 0.01 0.02 0.13 0.43 0.45 0.09 65% Low 0.00 0.07 0.03 0.03 0.01 81% Very Low 0.00 0.07 0.03 0.03 0.01 81% Mid 8 341 160 21 80% Kesh F.coli Mid 3 124 58 10.0 96% Very Low				High			12.38	12.58		1.31	0%
Diamond Creek Very Low ·· ·· 0.37 0.38 ·· 0.04 0% Diamond Creek High ·· 0.07 5.92 3.26 3.35 0.67 64% High ·· 0.07 2.02 1.12 1.15 0.23 71% Mid ·· 0.03 0.79 0.43 0.45 0.09 66% Core ·· 0.00 0.07 0.03 0.04 0.04 66% Core ·· 0.00 0.07 0.03 0.03 0.01 81% Prey File ·· 0.00 0.07 0.03 0.03 0.03 0.03 Prey File ··<			E. coli	Mid			4.81	4.88		0.51	0%
Diamond Creek (525) Very High (525) Very H				Low			1.75	1.78		0.19	23%
Diamond Creek (525)TPHigh High Mid0.072.021.121.150.037.19Mid0.030.790.430.450.0965%Low0.010.290.160.160.0366%Very Low0.000.070.030.030.0181%Very High602561119960930%Mid813411606930%Mid833411606930%Mid833411606930%Mid833411606930%Mid8334116022866%Very Low83312586228566%Mid0.14164.742692522.8566%Mid0.1417.9220.5611.5559%ExcoliMid0.1412.7220.5611.5559%Mid0.250.1012.2720.5611.5559%Mid0.250.100.220.330.010.4464%Mid0.250.100.220.330.100.4464%Mid0.250.100.220.330.100.4464%				Very Low			0.37	0.38		0.04	0%
Diamond Creek (525) TP Mid 0.03 0.79 0.43 0.45 0.09 65% Low 0.01 0.29 0.16 0.16 0.03 0.66% Very Low 0.00 0.07 0.03 0.03 0.01 81% Very Low 600 2561 1199 201 0% High 610 2561 1199 201 0% Midid 81 341 160 201 0% Midid 8 341 160 201 0% Very Low 0.6 27 12 201 0% Very Low 164.74 269.25 22.85 6% Very Low ** 10.33 12.7 4.00 17.7 Midid 0.14 12.97 7.68				, ,							64%
Marrian Marrian <t< td=""><td></td><td></td><td></td><td>High</td><td></td><td>0.07</td><td>2.02</td><td>1.12</td><td>1.15</td><td>0.23</td><td>71%</td></t<>				High		0.07	2.02	1.12	1.15	0.23	71%
Rush Creek Rush Creek $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	Diamond		TP	Mid		0.03	0.79	0.43	0.45	0.09	65%
NumberVery High···6025611199···2010%High···21879411···6930%Mid···8341100···6930%Mid···8341100···6930%Low···312458···1000%Very Low···0.62712···22.8566%High0.14···164.74269.25···22.8566%High0.14···12.7220.56···1.7559%Low0.14···19.92.84···0.02575%Very Low**···10.92.84···0.01598%Low0.14···1.992.84···0.01598%Low0.14···1.992.84···0.01598%Low0.14···1.992.84···0.01598%Low0.14···1.992.84···0.01598%Low0.250.092.153.240.100.3167%Low0.250.092.153.240.100.0464%Very Low********10.9737%High0.14···10.8312.2···1.09737%Low0.14···1.983.152.		(525)		Low		0.01	0.29	0.16	0.16	0.03	66%
Rush Creek Soluth Fork Rush Creek Soluth Fork Kush Creek Very High 0.25 0.35 0.31 124 879 411 69 30% Midi 8 341 160 27 0% Low 3 124 58 100 0% Very Low 0.66 27 12 22.85 66% High 0.14 164.74 269.25 22.85 66% High 0.14 17.97 20.56 0.25 59% Low 0.14 1.99 2.84 0.025 75% Low 0.14 1.99 2.84 0.0015 98% 100 0.25 0.25 0.25 0.23 84.03 1.27 4.00 77% 1100 0.25 0.25 0.25 0.33				Very Low		0.00	0.07	0.03	0.03	0.01	81%
Normal Normal<				Very High		60	2561	1199		201	0%
RushImage: LowImage: LowImage: South Fork Rush Creek (732)Image: LowImage: LowImage: South Fork Rush Creek (732)Image: LowImage: Low				High		21	879	411		69	30%
Rush Creek South Fork Rush Creek Yery Low ··· 0.6 27 12 ··· 2 68% Rush Creek Yery High 0.14 164.74 269.25 22.85 66% High 0.14 47.52 77.68 6.60 40% Mid 0.14 12.72 20.56 1.75 59% Low 0.14 1.99 2.84 0.25 75% Very Low ** 0.03 ** 0.015 98% Very Low ** 0.03 ** 0.016 97% Mid 0.25 0.35 8.37 12.61 0.37 1.15 77% Mid 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** 10.97 37% Mid </td <td></td> <td></td> <td>TSS</td> <td>Mid</td> <td></td> <td>8</td> <td>341</td> <td>160</td> <td></td> <td>27</td> <td>0%</td>			TSS	Mid		8	341	160		27	0%
Rush Rush Creek (528) Very High E. coli 0.14 164.74 269.25 22.85 66% Mid 0.14 47.52 77.68 6.60 40% Mid 0.14 12.72 20.56 1.75 59% Low 0.14 1.99 2.84 0.25 75% Very Low ** 0.03 ** 0.0015 98% Very High 0.25 1.20 29.23 44.03 1.27 4.00 77% High 0.25 0.35 8.37 12.61 0.37 1.15 71% Mid 0.25 0.09 2.15 3.24 0.10 0.31 67% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** 10.93 7.7 0.76 7.7				Low		3	124	58		10	0%
Rush Rush Creek E. coli Very High 0.14 164.74 269.25 22.85 66% High 0.14 47.52 77.68 6.60 40% Mid 0.14 12.72 20.56 1.75 59% Low 0.14 12.72 20.56 0.25 75% Very Low ** 0.03 ** 0.015 98% Very Low ** 0.03 ** 0.0015 98% Very High 0.25 0.25 0.35 8.37 12.61 0.37 1.15 77% Mid 0.25 0.09 2.15 3.24 0.10 0.04 64% Very Low ** ** ** ** 0.005 53% Mid 0.14 109.83 98.5 10.97 37% L				Very Low		0.6	27	12		2	68%
Rush E. coli Mid 0.14 12.72 20.56 1.75 59% Rush Creek Coli Low 0.14 1.99 2.84 0.25 75% Very Low ** 0.03 ** 0.0015 98% (528) Very High 0.25 1.20 29.23 44.03 1.27 4.00 77% High 0.25 0.35 8.37 12.61 0.37 1.15 71% High 0.25 0.09 2.15 3.24 0.10 0.31 67% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** 0.005 53% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** ** ** 0.005				Very High	0.14		164.74	269.25		22.85	66%
Rush Rush Creek (528) Image: Low (528) Image: Low (528)				High	0.14		47.52	77.68		6.60	40%
Rush Creek (528) Rush Creek (528) Very Low ** 0.03 ** 0.0015 98% High 0.25 1.20 29.23 44.03 1.27 4.00 77% High 0.25 0.35 8.37 12.61 0.37 1.15 71% Mid 0.25 0.09 2.15 3.24 0.10 0.31 67% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** ** 0.0015 0.37% Very Low ** ** ** ** ** ** 0.0015 0.37% Very Low ** ** ** ** ** ** 0.0005 53% South Fork F.coli Mid 0.14 109.83 98.5 10.97 37% Low 0.14 13.85 12.42			E. coli	Mid	0.14		12.72	20.56		1.75	59%
Rush Iddation of end Very High 0.25 1.20 29.23 44.03 1.27 4.00 77% High 0.25 0.35 8.37 12.61 0.37 1.15 71% High 0.25 0.09 2.15 3.24 0.10 0.31 67% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** 0.005 53% South Fork Fc. coli Mid 0.14 109.83 98.5 10.97 37% High 0.14 109.83 98.5 10.97 37% Mid 0.14 13.85 12.42 1.39 10% Low 0.14 13.85 12.42 0.47 36% Yery Low 0.14 33.15 2.83 0.32 0%				Low	0.14		1.99	2.84		0.25	75%
South Fork Rush South Fork (732) South Fork (732) Very High (100) 0.25 1.20 29.23 44.03 1.27 4.00 77% High 0.25 0.35 8.37 12.61 0.37 1.15 71% Mid 0.25 0.09 2.15 3.24 0.10 0.31 67% Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** 0.005 53% Very Low ** ** ** ** ** 0.005 53% Mid 0.14 109.83 98.5 10.97 37% High 0.14 13.85 12.42 1.39 10% Fork Rush Creek Mid 0.14 13.85 12.42 0.47 36% Mid 0.25 0.57 16.44 19.22	Duch	Rush Creek		Very Low	**		0.03	**		0.0015	98%
South Fork Rush South Fork (732) South Fork (732) Fer Coli Mid 0.25 0.09 2.15 3.24 0.10 0.31 67% Mid 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** ** ** 0.0005 53% Presenter Very High 0.14 109.83 98.5 10.97 37% Mid 0.14 13.85 12.42 1.39 10% Low 0.14 4.69 4.2 0.47 36% Very Low 0.14 3.15 2.83 0.32 0% Mid 0.25 0.57 16.44 19.22 1.92 61% TP Mid 0.25 0.07 1.98 2.32 0.24 81%	Kush	(528)									77%
South Fork Rush South Fork (732) South Fork (732) E. coli Low 0.25 0.01 0.22 0.33 0.01 0.04 64% Very Low ** ** ** ** ** ** 0.0005 53% Very Low ** ** ** ** ** ** ** 0.0005 53% Very High 0.14 109.83 98.5 10.97 37% Mid 0.14 37.54 33.67 3.76 17% Low 0.14 13.85 12.42 1.39 10% Low 0.14 3.15 2.83 0.47 36% Very Low 0.14 3.15 2.83 0.47 36% TP Mid 0.25 0.20 5.55 6.49 0.66 77%				•							71%
Note Very Low ** 0.0005 53% South Fork Very High 0.14 109.83 98.5 10.97 37% Bouth Fork Mid 0.14 13.85 12.42 1.39 10% Low 0.14 3.15 2.83 0.32 0% (732) TP Wery High 0.25 0.20 5.55 6.49 0.24 81%			TP								67%
South Fork Rush South Fork (732) E. coli Very High Image 0.14 109.83 98.5 10.97 37% Mid 0.14 37.54 33.67 3.76 17% Mid 0.14 13.85 12.42 1.39 10% Very Low 0.14 3.15 2.83 0.32 0% TP Mid 0.25 0.57 16.44 19.22 1.92 61% Mid 0.25 0.20 5.55 6.49 0.24 81%											64%
South Fork Rush South Fork (732) E. coli High 0.14 37.54 33.67 3.76 17% Mid 0.14 13.85 12.42 1.39 10% Low 0.14 4.69 4.2 0.47 36% Very Low 0.14 3.15 2.83 0.32 0% High 0.25 0.57 16.44 19.22 1.92 61% High 0.25 0.20 5.55 6.49 0.24 81%						**			**		53%
South Fork Rush South Fork (732) E. coli Mid 0.14 13.85 12.42 1.39 10% Yery Low 0.14 4.69 4.2 0.47 36% Very Low 0.14 3.15 2.83 0.32 0% High 0.25 0.57 16.44 19.22 1.92 61% TP Mid 0.25 0.07 1.98 2.32 0.24 81%				, ,							37%
South Fork Rush South Fork (732) Low 0.14 4.69 4.2 0.47 36% Yery Low 0.14 3.15 2.83 0.32 0% Yery High 0.25 0.57 16.44 19.22 1.92 61% High 0.25 0.20 5.55 6.49 0.24 81%				-							17%
South Fork Rush South Fork Rush Creek (732) Very Low 0.14 3.15 2.83 0.32 0% TP Very Low 0.14 3.15 2.83 0.32 0% TP Very High 0.25 0.57 16.44 19.22 1.92 61% TP Mid 0.25 0.07 1.98 2.32 0.24 81%			E. coli								10%
South Fork Rush Rush Creek (732) Very Low 0.14 $$ 3.15 2.83 $$ 0.32 0% High 0.25 0.57 16.44 19.22 $$ 1.92 61% High 0.25 0.20 5.55 6.49 $$ 0.66 77% TP Mid 0.25 0.07 1.98 2.32 $$ 0.24 81%	o	South Fork									
(732) High 0.25 0.20 5.55 6.49 0.66 77% TP Mid 0.25 0.07 1.98 2.32 0.24 81%											
TP Mid 0.25 0.07 1.98 2.32 0.24 81%	RUSH	(732)		,							
			тр	-							
Low 0.25 0.03 0.60 0.70 0.08 85%			117		0.25	0.07	0.60	0.70		0.24	81%
											66%
Very High 0.29 3.41 14.50 0.96 61%				Verv Hinh		0.29	3 41	14 50		0.96	61%

					Т	P & TSS AI	locations			
					WLA	\ 		LA	MOS	
Major Sub- watershed	Stream/Reach (AUID)	Pollutant	Flow Zone	WWTPs	Construction & Industrial SW	MS4 Communities	Non-MS4 Watershed Load	Upstream Reach(es)	SOM	Percent Reduction ¹
			High		0.10	1.17	4.97		0.33	77%
South Fork	South Fork	TP	Mid		0.03	0.42	1.82		0.12	81%
Rush	Rush Creek		Low		0.01	0.15	0.63		0.04	85%
	(760)		Very Low		0.01	0.09	0.42		0.03	66%
			Very High	0.14		305.15	71.47		19.83	19%
			High	0.14		95.33	22.33		6.20	0%
		E. coli	Mid	0.14		26.10	6.11		1.70	8%
			Low	0.14		10.07	2.36		0.66	25%
			Very Low	0.14		4.61	1.08		0.31	0%
			Very High		453	9288	7279	11690	1511	49%
	Elm Creek		High		174	4134	3240	3506	582	64%
Elm	(508)	TSS	Mid		81	1691	1325	2004	268	59%
			Low		44	1347	1056	345	147	64%
			Very Low		29	995	780	45	97	48%
			Very High	0.25	1.51	37.82	35.23	20.79	5.04	79%
			High	0.25	0.58	14.49	13.49	8.00	1.94	76%
	TP		Mid	0.25	0.27	6.64	6.16	3.69	0.90	75%
			Low	0.25	0.15	3.60	3.31	2.02	0.49	81%
1 Total noncontina	duation (all assurance)		Very Low	0.25	0.09	2.34	2.16	1.34	0.32	93%

¹Total percent reduction (all sources) from existing conditions needed to meet TMDL allocations ** For *E. coli*, Allocation = flow contribution from a given source x 126 cfu *E. coli*/100 ml For total phosphorus (TP), Allocation = flow contribution from a given source x 100 ug/l

2.5 **Protection Considerations**

Lakes

Of the 13 lakes included in this report, 7 were assessed by the MPCA and determined to be impaired. Of the six remaining lakes, two (Weaver Lake and Mud Lake, both in Maple Grove) were assessed by the MPCA and determined to be unimpaired, and four water bodies (Prairie Lake in Rogers, Jubert Lake in Corcoran, and Laura and Dubay Lakes in Dayton) have not yet been assessed. Figure 2-1 in Section 2 of this report shows the location of these six lakes. In addition, Appendix A presents key lake and watershed information for the six lakes, Appendix B summarizes the historical water quality data available for each lake, and Appendix C show the boundaries of the watershed for each lake. It should be mentioned that two other water bodies, Rice Lake–West Basin (Maple Grove) and French Lake (Dayton), were at one time listed as impaired on the state's list of impaired waters. However, Rice Lake-West Basin was removed from the list because it did not meet the definition of a lake based on hydraulic residence time, and French Lake, though an important influence on the quality of the headwaters of Diamond Creek, was removed from the list because a review of its morphology and other characteristics indicated it to be a wetland system.

In Table 2-8, the key lake and watershed characteristics and protection elements are summarized for Weaver and Mud lakes. Specific protection strategies for these lakes are described in the restoration and protection strategies tables presented in Section 3.3.

As mentioned previously in this section, there are four water bodies (Prairie Lake, Jubert Lake, Laura Lake and Dubay Lake) for which limited information is available but have not yet been assessed for impairment by the MPCA. A summary of what is known about these water bodies and recommendations for their future assessment are outlined in Table 2-9 below. Specific management and protection strategies for these lakes are listed in the restoration and protection strategies tables in Section 3.3.

There are a number of lakes about which little or nothing is known. A partial list of some of these water bodies is included below, including the units of government within which these water bodies are located:

- Scott Lake (city of Corcoran)
- Lehmans Lake (city of Champlin/Elm Creek Park Reserve)
- Hayden Lake (city of Dayton/Elm Creek Park Reserve)
- Meadow Lake (city of Rogers)
- Grass Lake (cities of Dayton and Rogers)

It appears that many of these water bodies are wetlands and/or rapid flow through systems on major streams. None have credible bathymetry or in-basin water quality data, both of which are essential to support the assessment and analysis of those systems. As a starting point, this data should be collected as opportunities and funding priorities allow.

Table 2-8. Key Lake/Watershed Characteristics and Protection Elements for "Protect" Lakes

			Max.		Drainage area	Water Q	uality Stan	dards Met		
WID	Location	Lake Size (acres)	depth (ft)	Classification	(acres)/dominant land use	TP (year)	Chl-a (year)	Clarity (year)	General notes	Key Protection Elements
Weaver Lake	City of Maple Grove	152	57	Deep lake	200/suburban	2005- 2013	2005- 2012	2005- 2013	Mostly meets state water quality standards	Reduce in lake loading (curly leaf pondweed and/or sediment release) as necessary Improve urban SW management Conduct monitoring and public outreach More details in <u>Table 3-5</u>
Mud Lake	City of Maple Grove	79	7	Shallow lake	1,353/park and suburban	2011- 2012	2011- 2012	2011- 2012	22% of watershed drains through Goose Lake	Improve water quality for Goose Lake Improve urban SW management More details in <u>Table 3-5</u>

Year = Water quality did not meet state standard

Table 2-9. Summary of Lake/Watershed Characteristics and Recommendations for Non-assessed Lakes

		Lake Size	Max.		Drainage area	Water C	Quality Star	dards Met		
WID	Location	(acres)	depth (ft)	Classification	(acres)/dominant land use	TP (year)	Chl-a (year)	Clarity (year)	General notes	Key Protection Elements
Lake Dubay	City of Dayton	15	7	No bathymetry; likely shallow lake	About 40/ agriculture	2012- 2013	2012- 2013	2012- 2013	No public access to lake	Improve urban SW management Monitor More details in <u>Table 3-3</u>
Laura Lake	City of Dayton	35	Unknown	No bathymetry; likely shallow lake	140/ agriculture	2013	2013	2013	No public access to lake	Improve urban SW management Monitor More details in <u>Table 3-6</u>
Jubert Lake	City of Corcoran	64	41	Deep lake	1,900/ agriculture	2000	2000	2000	No public access to lake; located at head waters of South Fork Rush Creek	Reduce in lake loading Improve urban SW management Monitor and public outreach More details in <u>Table 3-4</u>
Prairie Lake	City of Rogers	32	8	Shallow lake	150/Native prairie	2003, 2011, 2012	2003, 2011, 2012	2003, 2011, 2012	Exceptional water quality	Minimally impacted reference system Permanently protected; Located within Three Rivers Park District Crow Hassan PR More details in <u>Table 3-6</u>

Year=Water quality did not meet state standard

Watershed-wide

All waters currently supporting aquatic life and recreation in the watershed are also considered waters to protect. Working to protect surface and groundwater resources currently supporting beneficial uses through the implementation of best management practices (BMPs) is vital to the overall health of the Elm Creek Watershed and state of Minnesota.

Significant threats to water resources include:

- Declines in surficial groundwater threaten shallow water ecosystems such as wetlands, lakes, and streams. These ecosystems are vitally important to the watershed, the biological communities that rely on their existence, and for recreation.
- Climate change (or climate instability) poses a complex challenge to current water resource management practices. Recent climatological events such as drought, intense localized precipitation, and flooding have all been observed across the watershed. These changes can increase water quality degradation, flooding, and drought duration.
- Aquatic invasive species (AIS) continue to threaten both the biodiversity and overall ecological health of high value resources within the watershed. The number of infested waterbodies continues to climb across the state of Minnesota.
- Rural and agricultural land uses can have a significant negative impact on flow regimes and water quality if those lands are not well-managed. Management/disposal of manure from livestock operations, improperly managed cropland drainage and inefficient fertilization practices, sediment loss from croplands, and on-site treatment of human waste cause water quality degradation and/or compromise the hydrologic integrity of streams and rivers where proper management practices are not in place.
- Conversion of agricultural and vacant lands to more urbanized use (i.e., single family residential, multi-family residential, etc.) is anticipated to continue in the Elm Creek Watershed for the foreseeable future. Land use conversions such as these will increase the amount of impervious area, reduce infiltration, and potentially exacerbate threats previously mentioned such as declines in surficial groundwater unless proper southwest mitigation practices are used.
- Water quality degradation resulting from sediment, phosphorus, and bacteria introduction to surface waters of the Elm Creek Watershed is another significant threat. With increasing urbanization, these threats could increase in the future along with other potential contaminants such as chloride, heavy metals, etc.
- Groundwater contamination poses a serious threat to some surficial aquifers of the Elm Creek Watershed, especially in the lower portion of the watershed. These groundwater aquifers are susceptible to pollution as a result of their shallow depth and sandy soils that allow water to move quickly through them.

Priority A Source Protection Area

In 1974, the <u>Federal Safe Drinking Water Act</u> was established to protect the quality of drinking water in the U.S. In 1996, in accordance with amendments to the act, the Minnesota Department of Health determined Source Water Assessments and assigned areas of Priority A and B. About 31% of the Elm Creek Watershed lay within the Priority A designation with the remainder in the Priority B designation

(Figure 2-4). A designation of Priority A is used for waters that present an immediate health concern if the waters were to become contaminated while a designation of Priority B is to protect water users from chronic health effects related to low levels of chemical contamination. More information on the Protection of Source Waters can be found at the <u>Minnesota Department of Health Source Water</u> <u>Protection website</u>. While the development of a <u>Source Water Protection Plan</u> is voluntary, developing a plan would help protect source water from contamination.

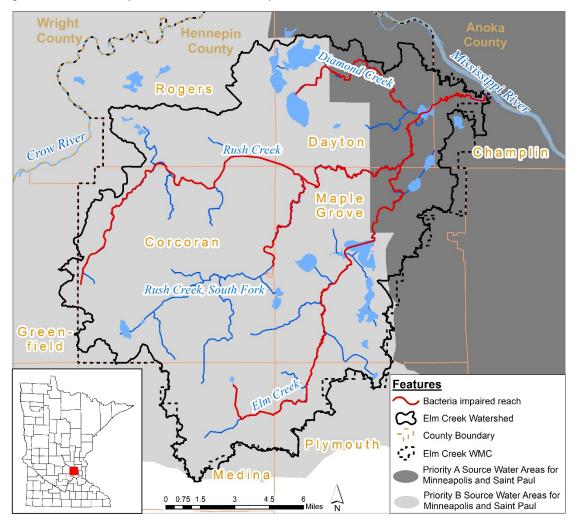


Figure 2-4. Source water protection areas for Minneapolis and St. Paul for the Elm Creek Watershed

3. **Prioritizing and Implementing Restoration and Protection**

The <u>Clean Water Legacy Act</u> (CWLA) requires that WRAPS reports summarize critical areas for targeting actions to improve water quality, identify point sources, and identify nonpoint sources of pollution with sufficient specificity to prioritize and geographically locate watershed restoration and protection actions. In addition, the CWLA requires including an implementation table of strategies and actions that are capable of cumulatively achieving needed pollution load reductions for point and nonpoint sources.

This section of the report provides the results of such strategy development and prioritization. Because much of the nonpoint source strategies outlined in this section rely on voluntary implementation by landowners, land users and residents of the watershed it is imperative to create social capital (trust, networks, and positive relationships) with those who will be needed to voluntarily implement BMPs. Thus, effective ongoing civic engagement is fully a part of the overall plan for moving forward.

There are issues that are not addressed in the strategies tables, such as limited local capacity, funding, and landowner cooperation that can greatly affect the outcomes of this report. If staff and funding resources are limited or nonexistent in the project area, and/or landowner cooperation cannot be secured to implement improvements, it is likely that the strategies and goals laid out in this report will take longer to achieve, or may not be achieved at all. Much of this work relies on reductions from non-regulated actions in the watershed, and in order to achieve those goals local relationships and trust need to be built where they may not currently exist. Therefore, it is important that as these actions are undertaken, all levels (federal, state, and local governments; non-profits; and landowners) continue to find ways to support local entities and individuals to ensure the waterbodies in the Elm Creek Watershed are restored and protected. If this support does not happen, achieving the TMDL reductions and strategies in this report are very unlikely.

3.1 Targeting of Geographic Areas

Targeting has been used at several scales to help identify critical areas in the Elm Creek Watershed project area. The following discussion begins at the state and basin scale and moves to smaller more focused areas based on the specific tools used for this project.

State, Basin and Regional Scale

The <u>Minnesota Nutrient Reduction Strategy</u> was developed in response to concern about excessive nutrient levels that pose a substantial threat to Minnesota's lakes and rivers, as well as downstream waters including the Great Lakes, Lake Winnipeg, the Mississippi River, and the Gulf of Mexico. In recent decades, nutrient issues downstream of Minnesota have reached critical levels, including the effect of nutrients in the Gulf of Mexico which resulted in a dead zone, eutrophication issues in Lake Winnipeg, and algal blooms in the Great Lakes. Several state-level initiatives and actions highlighted the need for a statewide strategy that ties separate but related activities together to further progress in making nutrient reductions. Minnesota conducted both nitrogen and phosphorus assessments to identify nutrient source contributions. The main nutrient sources to the Mississippi River are phosphorus from agricultural cropland runoff, wastewater, and streambank erosion, and nitrogen from agricultural tile drainage and water leaving cropland via groundwater. The associated Phase I milestones for the Mississippi River Basin N and P are 20% and 35% reduction from baseline by 2025 respectively.

Additional milestones call for 30% (N) and 45% (P) by 2035 and 45% reduction from baseline in N by 2045. The primary tools the State will use to achieve these reductions are the 10-year cycle of watershed assessments and WRAPS studies to identify high-loading areas and critical management areas; enhanced phosphorus and nitrogen reduction strategies for wastewater effluent; facilitating implementation of agricultural BMPs targeted at increasing fertilizer use efficiency, reducing field erosion, and treating tile drainage water; and continued implementation of the SW discharge permitting system for MS4s.

The <u>Nitrogen in Minnesota Surface Waters Strategy</u> was developed in response to a concern for human health when elevated nitrogen levels reach drinking water supplies. The 10 mg/l nitrate-N drinking water standard established for surface and groundwater drinking water sources and for cold water streams is exceeded in numerous wells and streams. The purpose of this study was to provide an assessment of the science concerning N in Minnesota waters so that the results could be used for current and future planning efforts, thereby resulting in meaningful goals, priorities, and solutions.

More specifically, the purpose of this project was to characterize N loading to Minnesota's surface waters, and assess conditions, trends, sources, pathways, and potential BMPs to achieve nitrogen reductions in our waters. The nitrogen study contains a spreadsheet tool called the nitrogen best management practice (NBMP) tool (NBMP is described in more detail in the <u>Nitrogen in Minnesota</u> <u>Surface Waters Report Chapter F1</u> (Wall 2013)).

The <u>Twin Cities Metropolitan Area Chloride Management Plan (CMP)</u> was developed to address the increasing concentrations of chloride found in Minnesota's waters in urban areas as well as across the state. The CMP provides the framework to assist local communities in reducing chloride concentrations in both the state's ground and surface waters through protection and restoration efforts. The CMP contains a variety of BMPs that reduce salt use while still maintaining safe conditions for the public. The chloride reduction strategy outlined in the plan uses a performance-based approach that does not have specific numerical requirements but focuses on implementing BMPs and tracking trends in chloride concentrations. The primary recommended strategies for reducing chloride concentrations in the CMP include: 1) a shift to using more liquid deicing chemical products rather the granular ones, 2) improved physical snow and ice removal, 3) use of practices that prevent the formation of a bond between snow/ice and the pavement, 4) strategies that eliminate salt waste, 5) training for winter maintenance professionals, and 6) education for the public and elected officials.

Elm Creek Watershed

Various reports, datasets and GIS tools were developed through the Elm Creek Watershed assessment process and the TMDL studies that can be used to identify degraded waterbodies and potential areas to implement restoration and protection strategies. A summary of these resources is presented in Table 3-1. These resources were developed by various groups and agencies including BSWR, the University of Minnesota Duluth (UMD), Minnesota Department of Natural Resources (DNR), Three Rivers Park District, and several other agencies. More detailed information on each effort/tool can be obtained from the sources cited in Table 3-1. It is important to point out that these tools were developed using a wide range of input datasets with different restoration and protection initiatives in mind, ranging from stream shading to sediment and nutrient loading.

A suite of modeling tools was used to support the TMDL development. The Soil and Water Assessment Tool (SWAT) model was chosen as one of the modeling tools to simulate watershed hydrology and water quality to in the Elm Creek Watershed. The SWAT modeling effort relied on use of light detection and ranging (LiDAR) information to provide subwatershed delineation input information for the model as well as algorithms for the Revised Universal Soil Loss Equation (RUSLE) to estimate landscape soil erosion load (SWAT, RUSLE, and LiDAR are all briefly described in in Table 3-1. The intended use of the SWAT model was primarily to quantify landscape contributions of water, sediment and nutrients in the Elm Creek Watershed where needed. Landscape loads from the SWAT model were then used as an input to other modeling tools (e.g., BATHTUB) to support the simulation of receiving water responses in the Elm Creek Watershed. The SWAT modeling was also used to help identify subwatersheds that had a higher potential for exporting nutrients and sediment to the downstream resources (Figure 3-1). The Commission intends to focus its initial implementation efforts in those areas.

Finally, the Environmental Benefit Index (EBI) tool was applied to the Elm Creek Watershed by staff from the MPCA. The tool is briefly described in in Table 3-1, and Figure 7 shows an example of the output available from the EBI analysis for the Diamond Creek Subwatershed.

Recently, the Minnesota DNR has recently completed development of the <u>Watershed Health</u> <u>Assessment Framework (WHAF)</u>, which provides a comprehensive overview of the ecological health of Minnesota's watersheds. The WHAF is based on a "whole-system" approach that explores how all parts of the system work together to provide a healthy watershed. The WHAF divides the watershed's ecological processes into five components: biology, connectivity, geomorphology, and hydrology and water quality. A suite of watershed health index scores have been calculated that represent many of the ecological relationships within and between the five components. These scores have been built into a statewide GIS database that is compared across Minnesota to provide a baseline health condition report for each of the 80 major watersheds in the state. The DNR has applied the condition report to larger (HUC-8) watersheds, and more recently has applied the framework at smaller (HUC-12) subwatershed levels. The WHAF may be a helpful resource in monitoring and assessing the health of the watershed as restoration and protection practices are implemented.

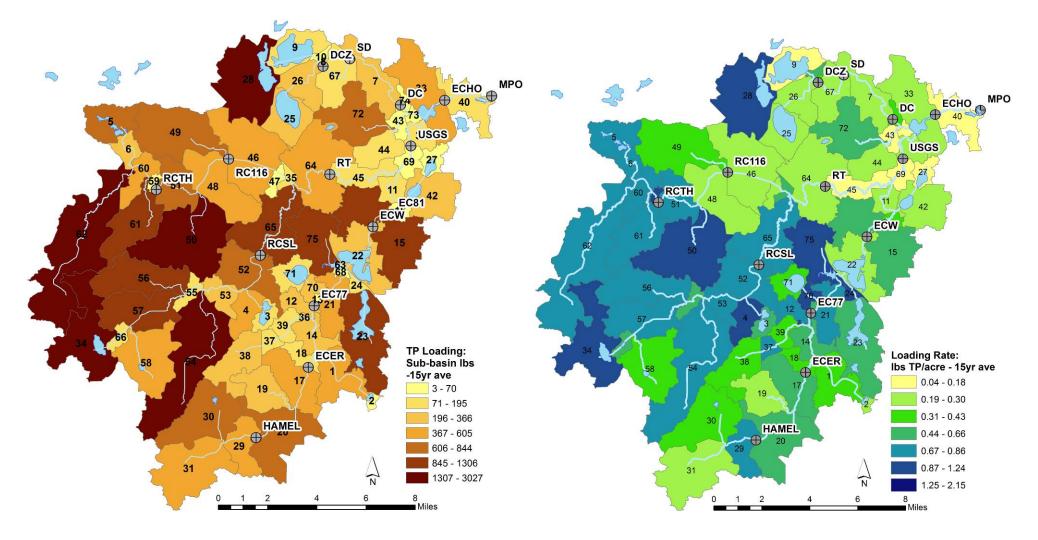


Figure 3-1. Potential TP loading and loading rate by subwatershed (delineated with LiDAR) as modeled for the TMDLs using SWAT

Table 3-1. Prioritization tools

Tool	Description	How can the tool be used?	Notes	Link to Information and data
Elm Creek SWAT Model	Computer model of watershed processes to show where pollutants originate and which mitigation strategies are most effective	The Elm Creek SWAT model is able to display the phosphorus, sediment and other pollutant export throughout the watershed. The Elm Creek SWAT model was calibrated to observed (monitored) data and can be used to identify pollutant loading hot spots and help determine scenarios for pollution reduction on a subwatershed scale.	The Elm Creek SWAT model was developed for the Elm Creek Watershed TMDL study.	Contact the Three Rivers Park District for SWAT model files and output
Ecological Ranking Tool (EBI)	Three GIS layers containing: soil erosion risk, water quality risk, and habitat quality. Locations on each layer are assigned a score from 0-100. The sum of all three layer scores (max of 300) is the EBI score. This higher the score, the higher the value in applying restoration or protection.	Any one of the three layers can be used separately or the sum of the layers (EBI) can be used to identify areas that are in line with local priorities. Raster calculator allows a user to make their own sum of the layers to better reflect local values. (Figure 3-2)	GIS layers are available on the Board of Water and Soil Resources (BWSR) website.	<u>BWSR</u>
Zonation	A framework and software for large-scale spatial conservation prioritization; it is a decision support tool for conservation planning. This values-based model can be used to identify areas important for protection and restoration.	Zonation produces a hierarchical prioritization of the landscape based on the occurrence levels of features in sites (grid cells). It iteratively removes the least valuable remaining cell, accounting for connectivity and generalized complementarity in the process. The output of Zonation can be imported into GIS software for further analysis. Zonation can be run on very large data sets (with up to ~50 million grid cells).	The software allows balancing of alternative land uses, landscape condition and retention, and feature-specific connectivity responses. (Paul Radomski, DNR, has expertise with this tool.)	<u>CBIG</u>
Restorable Wetland Prioritization Tool	A GIS-based tool developed by the UMD and other agencies that uses readily available GIS data consisting of 5 primary layers. The final product is a map showing potential locations for wetland restorations throughout the watershed.	This tool may be used to help identify and prioritize potential wetland restoration areas based on soil type and existing land use.	Hennepin County's Natural Resources Interactive Map also contains "potential" and "probable" wetland locations using similar methods	<u>UMD</u> Hennepin County

Tool	Description	How can the tool be used?	Notes	Link to Information and data
Revised Universal Soil Loss Equation (RUSLE) and Soil Erosion Risk Tool	RUSLE predicts the long term average annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, land use and management practices. A soil erosion risk (similar to RUSLE) tool is available through the Ecological Ranking Tool (EBI) website and uses a subset of RUSLE to determine relative soil erosion risk values on a 0-100 point scale.	The RUSLE model provides an assessment of existing soil loss from upland sources and the potential to assess sediment loading through the application of BMPs. The Soil Erosion Risk Tool provides users with a general sense of the highest potential areas of soil loss in a given watershed/subwatershed.	RUSLE results present maximum amount of soil loss that could be expected under existing conditions and do not represent sediment transport and loading to receiving waters.	<u>RUSLE</u> Soil Erosion Risk Tool
Light Detection and Ranging (LiDAR)	Elevation data in a digital elevation model (DEM) GIS layer. Created from remote sensing technology that uses laser light to detect and measure surface features on the earth.	General mapping and analysis of elevation/terrain. These data have been used for: erosion analysis, water storage and flow analysis, siting and design of BMPs, wetland mapping, and flood control mapping. A specific application of the data set is to delineate small catchments.	The layers are available on the MN Geospatial Information website for most counties.	MGIO

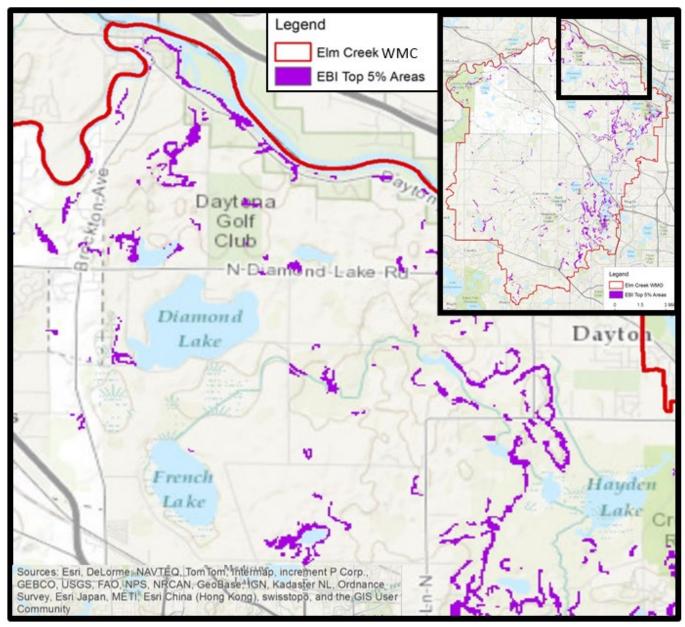


Figure 3-2. The top 5% EBI areas (purple) for the Elm Creek Watershed. A zoomed in portion of the watershed is shown for the Diamond Creek Watershed with an insert of the overview map

3.2 Civic Engagement

A key prerequisite for successful strategy development and on-the-ground implementation is meaningful civic engagement. This is distinguished from the broader term 'public participation' in that civic engagement encompasses a higher, more interactive level of involvement. Specifically, the University of Minnesota (UMN) Extension's definition of civic engagement is "Making 'resourceFULL' decisions and taking collective action on public issues through processes that involve public discussion, reflection, and collaboration." A resourceFULL decision is one based on diverse sources of information and supported with buy-in, resources (including human), and competence. Further information

on civic engagement is available at: www1.extension.umn.edu/community/civic-engagement/.

Accomplishments and Future Plans

A stakeholder participation process was undertaken to obtain input from, review results with, and take comments from the public and interested/affected agencies and local jurisdictions regarding the development and conclusions of the project. The following cities/agencies/interested parties were invited to project meetings and/or received communications regarding the project:

City of Champlin	Hennepin County
City of Corcoran	BWSR
City of Dayton	Met Council Environmental Services
City of Medina	DNR
City of Maple Grove	MnDOT
City of Plymouth	Rice Lake Area Association
City of Rogers	Fish Lake Area Residents Association
Maple Hills Estates	Diamond Lake Association

A Technical Advisory Committee (TAC) comprised of representatives from the cities and agencies listed above was at the core of the public participation process. This group met 14 times between 2011 and December 2014 to review and provide feedback on the technical aspects of the project, including the modeling and technical analysis results, allocation methodologies, and implementation elements. Summaries of each meeting were prepared and distributed to the ECWMC and all participants, as well as posted on the Commission's web site. All Power Point presentations given at the meetings were posted on the Commission's web site.

Project staff also met separately with a number of organizations to explain the purpose of the project, as well as present and discuss project findings, recommendation, and implications. These groups included:

City of Maple Grove Lakes Commission Rice Lake Area Associations (annual meetings) Fish Lake Area Residents Associations (annual meetings) City officials from Dayton and residents around Diamond Lake City of Champlin Environmental Resources Commission City of Plymouth Environmental Quality Committee

Finally, a Knowledge, Attitudes, and Practices (KAP) survey was conducted which focused on three agricultural audiences (crop farmers, livestock operators, and horse owners), since the Commission knew relatively little about these stakeholder groups. The methods and results are summarized in the <u>Elm Creek Watershed Management Commission TMDL</u> Appendix G (Eckman 2013).

As part of its <u>3rd Generation Watershed Management Plan</u>, adopted in 2015, for the period 2015 through 2025, the ECWMC has laid out an expanded education and outreach effort. The over-arching goal for this effort is "to educate and engage everyone in the watershed by increasing awareness of water resources, and to create and support advocates willing to protect and preserve the resources in the watershed." Specific priorities include:

- Collaborating with groups such as the West Metro Water Alliance and Blue Thumb to pool education resources to undertake activities in a cost-effective manner and promote consistency in messaging.
- Use the Commission's, member cities', and educational partners' websites and newsletters, social media, co-ops, local newspapers, and cable TV to share useful information with stakeholders on ways to improve water quality.
- Provide opportunities for the public to learn about and participate in water quality activities.
- Provide education opportunities for elected and appointed officials and other decision makers.
- Enhance education opportunities for youth

Specific critical areas for the period 2015 through 2017 for education and outreach, organized by stakeholder group, include:

- All stakeholders: Use multiple strategies to deliver simple messages such as "where does our runoff go" and "why are we focused on water quality protection/improvement?"
- Homeowners: Disseminate education materials to all stakeholders about actions they can take to protect and improve water quality, including;
 - Re-directing runoff onto pervious surfaces
 - o Cleaning up after pets
 - Keeping organic matter (leaves, grass clippings, seeds, etc.) out of streets, ditches, and storm sewers
 - Lakeshore property owners: Sponsor workshops on the basics of limnology, learning about AIS, and how to undertake lakescaping
 - Elected officials and city staff: Sponsor watershed and water resources training activities such as NEMO (Nonpoint Education for Municipal Officials) for the city councils and planning commissions in the member cities

- Students: Expand the Watershed Protection, Restoration, Education, and Prevention (PREP) fourth-grade program to all elementary schools in the watershed, and begin developing a companion program for older students
- Agricultural producers and hobbyists: Identify and work with influential persons to spread water quality and BMP messages. Undertake a demonstration project with a coop

The Commission intends to budget between \$20,000 and \$25,000 over the next five years to support these and other education and civic engagement initiatives.

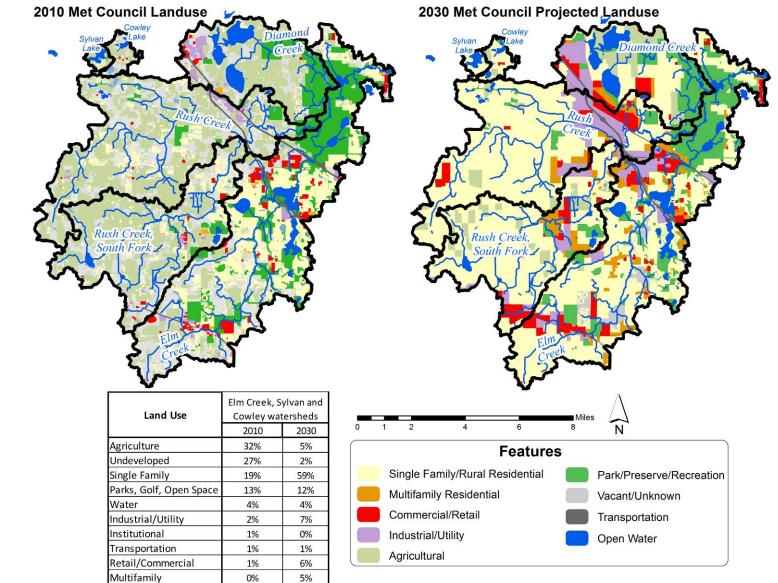
Public Notice for Comments

An opportunity for public comment on the draft WRAPS report was provided via a public notice from July 5, 2016, through August 4, 2016.

3.3 Restoration & Protection Strategies

Specific strategies have been developed and are currently being developed to restore the impaired waters within the Elm Creek Watershed and for protecting waters within the watershed that are not impaired. The subwatershed-based implementation strategy tables that follow (Table 3-2 to Table 3-7) outline the strategies and actions that are capable of cumulatively achieving the needed pollution load reductions for point and non-point sources, as well as watershed and in-stream improvements to decrease stressors on biological communities throughout the watershed. The tables were developed by reviewing the specific conditions affecting each of the waters and collecting input from the TMDL report and watershed stakeholders. Some of the practices in the restoration and protection strategies tables may be credited as progress toward achieving TMDL wasteload allocations (WLAs). The MS4s and other permitted entities may contact the MPCA to discuss which practices may be credited.

Subwatershed Assessments. The watershed modeling and monitoring completed for the TMDL identified subwatersheds where nutrient and sediment loading potentially occurs at higher rates than average. The Commission will undertake more detailed and systematic subwatershed assessments and modeling to focus load reduction efforts in those high-loading areas where actions such as retrofitting existing ponds with iron-enhanced filter benches, mitigating stream erosion, enhancing stream buffers, improving individual site manure management, or adding new bioinfiltration basins are likely to be most cost-effective.


The subwatershed assessments will identify non-point source problem areas and potential upland BMP projects throughout the various subwatersheds. The in-channel walking surveys/assessments will identify areas of streambank erosion and evaluate riparian vegetation and habitat conditions. Below is a list of the types of urban, rural, and in-channel BMP projects these assessments and surveys will help apply appropriately:

- Bioretention/infiltration basins and tree-trenches
- Pervious pavement
- Hydrodynamic separators and SAFL Baffles
- Residential raingardens

- Iron enhanced sand filters
- Other SW pond retrofits and maintenance
- Conservation and reduced tillage BMPs in sensitive cropland areas
- Water and sediment control basins
- Grassed waterways
- · Agricultural nutrient management
- Contour farming
- Stream and edge of field buffers
- Managed livestock access control areas near streams
- · Manure storage/manure management plan development and implementation
- Alternative watering sources for livestock
- Pastureland runoff controls/buffers
- Lakeshore restorations
- Tree thinning (in-channel)
- Bank stabilization/restoration
- · Re-meandering (in-channel)
- Low-flow channel construction
- · Substrate installation (in-channel)
- Fine sediment removal (in-channel)

The Commission will periodically convene an agricultural TAC comprised of federal, state, and local specialists from UMN Extension, Minnesota Department of Agriculture (MDA), BWSR, Hennepin County, and other interested parties to craft partnerships in specialized education and other programs and BMPs such as targeted fertilizer application, erosion and sediment control, and manure management. This TAC will also advise the Commission as it completes subwatershed assessments in the agricultural parts of the watershed. The TAC will help identify appropriate implementation actions, and focus their technical expertise and resources on high-loading locations in subwatersheds of focus.

Regulation. The Elm Creek Watershed is in land use transition (Figure 3-3). It is expected that much of the area now in agricultural uses will over the next 10 to 30 years be converted to suburban and large-lot development. The Commission has enacted more stringent rules and standards for managing runoff rates and volumes and requiring nutrient and sediment load reductions. Developers and redevelopers are now required to infiltrate or abstract 1.1" of runoff from new impervious surface. Where infiltration is not feasible, the new rules require that runoff be filtered before discharge from the site. The rules also establish a performance standard for SW quality to achieve a loading reduction as good as or better than that which would be achieved by abstracting 1.1" of runoff depth from new impervious surfaces, or no-net increase in TP or TSS, whichever is lower.

Figure 3-3. Met Council percent of land use for 2010 and 2030 for the Elm Creek, Sylvan and Cowley Watersheds

Funding Opportunities

There are a variety of funding sources to help cover some of the cost to implement practices that reduce pollutants from entering our surface waters and groundwater. There are several programs listed below that contain web links to the programs and contacts for each entity. The contacts for each grant program can assist in the determination of eligibility for each program as well as funding requirements and amounts available.

On November 4, 2008, Minnesota voters approved the <u>Clean Water, Land & Legacy Amendment</u> to the constitution to:

- protect drinking water sources;
- protect, enhance, and restore wetlands, prairies, forests, and fish, game, and wildlife habitat;
- preserve arts and cultural heritage;
- support parks and trails;
- and protect, enhance, and restore lakes, rivers, streams, and groundwater.

The Clean Water, Land, and Legacy Fund have several grant and loan programs that could potentially be used for implementation of the BMPs and education and outreach activities. The various programs and sponsoring agencies related to clean water funding and others are:

- Agriculture BMP Loan Program (MDA)
- <u>Clean Water Fund Grants (BWSR)</u>
- <u>Clean Water Partnership (MPCA)</u>
- <u>Environment and Natural Resources Trust Fund (Legislative-Citizen Commission on Minnesota</u> <u>Resources)</u>
- Environmental Assistance Grants Program (MPCA)
- Phosphorus Reduction Grant Program (Minnesota Public Facilities Authority)
- Section 319 Grant Program (MPCA)
- Small Community Wastewater Treatment Construction Loans & Grants (Minnesota Public Facilities Authority)
- Source Water Protection Grant Program (Minnesota Department of Health)
- Surface Water Assessment Grants (MPCA)
- Wastewater and storm water financial assistance (MPCA)
- <u>Conservation Partners Legacy Grant Program (DNR)</u>
- Environmental Quality Incentives Program (Natural Resources Conservation Service (NRCS))
- <u>Conservation Reserve Program (USDA)</u>
- <u>Minnesota Agricultural Water Quality Certification Program</u>

There are several grant and loan programs through the federal government that could be used for education and outreach as well as purchasing equipment and implementation of the BMPs. A list of federal grant programs can be found at: <u>water.epa.gov/grants funding/</u>.

Table 3-2. Diamond Creek Subwatershed Restoration and Protection StrategiesKey for shading: Red = Restoration Strategies; Green = Protection Strategies or Elements for Non-Assessed Water bodiesKey for Government Unit Responsibilities: P = Primary/Lead Role; S = Secondary Role; A = Assist as Needed

	Waterboo	dy and Location		Water	Quality						Governme	ntal Un	its with	n Prima	ry Resp	onsibi	lity			
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non-pollutant stressors)	TMDL Baseline Conditions	TMDL Goals/ Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	DNR	MNDOT	MDA	BWSR	NRCS	Three Rivers Park District	City of Dayton	City of Rogers	Estimated Year to Achieve Water Quality Target
						Reduce in-water	Monitor fish population to determine presence of common carp and other rough fish Establish removals/barriers as needed	Monitor once every 3-5 years	S			Р					А	A		
	Diamond Lake	MS4s: Hennepin Co., MnDOT,	Diamond Lake	2,871 lbs/yr	832 lbs/yr 73%	loading (Lake TP: internal load reduction goal is 630 lbs, 30% of total load reduction	Develop vegetation plan to manage curly-leaf pondweed	Develop plan within 5 years, treat as necessary, monitor annually	S			S						Р		
	(27-0125)	Dayton, Rogers	TP	2,671 IDS/ yi	Reduction	goal for lake)	Drawdown and/or internal load (chemical) treatment feasibility studies	Complete studies (5 years), implement findings (10 years)	S			S			S			Ρ		
						Improve urban SW mgt.	Perform urban BMP subwatershed assessment study Implement 5-10 SW retrofit projects	Complete study (5 years), implement BMPs (10 years)	Ρ	S					S		S	S	S	
						(Lake TP)	Implement updated Commission standards for runoff volume and rate control for new development projects throughout watershed	New standards effective January 1, 2015	Ρ									Р	Р	
Diamond			Stream <i>E. coli</i>	89 – 374 cfu/100mL (monthly	0% - 66% reduction depending on	Improve upland/field surface runoff controls (Lake TP, Stream TP/DO, <i>E. coli</i>)	Perform rural subwatershed assessments study Identify and implement 5-10 rural/agricultural BMPs	Implement 1-5 BMPs (5 years), 5-10 BMPs (10 years)	Р	A	A					A	A	S	S	2035
Diamond Creek	Diamond			geomeans)	month	Improve fertilizer and manure application mgt. (Lake TP, Stream	Promote/educate agronomic rates, chemical treatment of manure, and spreading in sensitive areas Provide resources for soil nutrient testing Hold 2-5 workshops to engage farmers and provide educational materials	Hold 2-5 workshops and work with 5-10 willing landowners	Ρ	Р	Р			Р	S	A	A	S	S	
	Creek (525)	MS4s: Dayton	Stream DO	Current	Phosphorus Goal: 100	TP/DO, <i>E. coli</i>)	Implement non-production animal operation siting and management ordinance as per 2015 approved watershed plan	Cities adopt ordinance by August 2017	S					А				Р	Р	
			Stream DO	Phosphorus: 354 µg/L	µg/L 72% Reduction	Address failing septic systems (Lake TP, Stream TP/DO, <i>E. coli</i>)	Identify and upgrade 100% of the ITPHS systems and systems in the shoreland areas	100% of ITPHS systems upgraded within 10 years		Ρ								S	S	
			Stream Fish &			 	Map and inventory stream buffers on all DNR streams and ditches in watershed	Complete inventory (by July 2016)	S	S		P								
			Macro IBI	Hydrology, Al Habitat, Excess	ssors: Altered Itered Physical s Sediment, Low 00	Improve riparian vegetation (Stream TP/DO, Stream Biota)	Increase riparian buffers and enforce DNR buffer rules on 100% of streams and tributaries	Buffers in place on public waters by July 2017, on public ditches by November 2018	S	Ρ					Ρ					
Diamond Creek cont.	Diamond Creek (525) cont.		Stream Fish & Macro IBI cont.			Restore/enhance channel (Stream TP/DO, Stream Biota)	Perform stream channel walking survey to identify and implement in-channel BMPs and/or stream corridor baseflow enhancement projects	Complete survey (within 4 years), Complete 2-5 projects within 10 years	Ρ	A		S			S		A	A	A	2035

	Waterboo	ly and Location		Water	Quality						Govern	mental	l Units \	with Prii	mary Re	sponsib	ility			
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non-pollutant stressors)	TMDL Baseline Conditions	TMDL Goals/ Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target Conduct early morning longitudinal DO surveys	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	MPCA	DNR	MNDOT	BWSR	NRCS	Three Rivers Park District	City of Dayton	City of Rogers	Estimated Year to Achieve Water Quality Target
						Monitor (DO)	to determine specific reaches that may be causing low DO in Diamond Creek Begin developing strategies to restore/improve problem reaches	Conduct surveys within 4 years	Ρ	A							A	S		
	Grass Lake (27-0135)	MS4s: Rogers and Dayton	Not assessed, no water quality (WQ) data	Monitored outflow from lake 302 µg/L (average)		Monitor	Collect bathymetry data and monitor water WQ	Monitor as funding and opportunity arises	Ρ								A	S	S	
						Improve education and	K-12 Watershed Education		Р			А			А					
			Social			outreach	General public outreach and education		Р			А	А		S			S	S	
	Watershed Wide		Infrastructure (to address all			Improve coordination/	Involve citizen networks in water resource related projects	Ongoing	Р			А	А		S			Р	Р	Ongoing
	vvide		pollutants/ stressors)			collaboration	Coordinate planning/improvement projects with stakeholders		Р	S								Р	Р	
						Implement/review policies and rules	Ongoing review of policy and procedures to meet WLA goals		Р	Ρ		А		Р	S			Р	Ρ	

 Table 3-3. Rush Creek Subwatershed Restoration and Protection Strategies

 Key for shading: Red = Restoration Strategies; Green = Protection Strategies or Elements for Non-Assessed Water bodies

 Key for Government Unit Responsibilities: P = Primary/Lead Role; S = Secondary Role; A = Assist as Needed

ey for Goverr	nment Unit Re	esponsibilities:	P = Primary/Lead Role; S	S = Secondary Ro	le; A = Assist as Need	ed															Estimated
	Waterbody	and Location	Parameter (incl. non- pollutant stressors)	Wat	er Quality	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones			Gove	rnmer	ntal Ui	nits w	ith Pri	nary R	espons	sibility			Year to Achieve Water Quality Target
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s		TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction				ECWMC	Hennepin County	UMN Extension	MPCA	DNR		BWSR	NRCS	Three Rivers Park District City of Corroran	City of Dayton	City of Maple Grove	City of Rogers	
						Reduce in-lake loading (internal	Monitor fish population to determine presence of common carp and other rough fish Establish removals/barriers as needed	Monitor once every 3-5 years once public access is established	S				5							А	
						load reduction goal is 221 lbs, 28% of total load	Develop vegetation plan to manage curly-leaf pondweed	Develop plan within 2 years after public access is established, treat as necessary, monitor annually	S				S							Ρ	
	Henry Lake (27-0125)	MS4s: None	Henry Lake TP	972 lbs/yr	183 lbs/yr 81% Reduction	reduction goal for lake)	Drawdown and/or internal load (chemical) treatment feasibility studies	Complete studies within 4 years after public access is established), implement findings within 8 years	S				S		S					Ρ	
						Improve urban	Perform urban BMP subwatershed assessment study Implement SW retrofit projects if appropriate	Complete study (5 years), implement BMPs (10 years)	Р	А					A		S	S	S	S	
						SW mgt. (All impairments)	Implement updated Commission standards for runoff volume and rate control for new development projects throughout watershed	New standards effective January 1, 2015	Р								Р	Р	Ρ	Ρ	
Rush Creek			Stream <i>E. coli</i>	25 – 295 cfu/100mL (monthly	0% - 57% reduction depending on	Improve upland/field surface runoff controls (Lake TP, Stream TP/DO, <i>E.</i> <i>coll</i>)	Perform rural subwatershed assessments study Identify and implement 10-20 rural/agricultural BMPs	Implement 3-5 BMPs (5 years), 10-20 BMPs (10 years)	Р	A	A					A	A			S	2035
	Rush Creek (528)	MS4s: Corcoran, Dayton, Maple Grove,		geomeans)	month	Improve fertilizer and manure application mgt. (Lake TP, Stream	Promote/educate agronomic rates, chemical treatment of manure, and spreading in sensitive areas Provide resources for soil nutrient testing. Hold 2-5 workshops to engage farmers and provide educational materials	Hold 2-5 workshops and work with 5-10 willing landowners	Ρ	Ρ	Ρ			Ρ	S	S	S	S	S	S	
		Rogers, Hennepin County, MnDOT				TP/DO, E. coll)	Implement non-production animal operation siting and management ordinance as per 2015 approved watershed plan	Cities adopt ordinance by August 2017	S								Р	Р	Р	Р	
		WINDOT	Stream DO	Current Phosphorus: 503 µg/L	Phosphorus Goal: 100 µg/L 80% Reduction	Improve livestock mgt. (Lake TP, Stream TP/DO, <i>E.</i> <i>coli</i>)	Perform rural subwatershed assessments study Identify and implement up to 20 livestock/agricultural BMPs	Implement 3-5 BMPs (5 years), 10-20 BMPs (10 years)	Р	A	A					A	A A	A	A	A	
						Address failing septic systems (Lake TP, Stream	Identify and upgrade 100% of the ITPHS systems and systems in the shoreland areas	100% of ITPHS systems upgraded within 10 years		Р							S	S	S	S	
			Stream Fish & Macro IBI		•	TP/DO, <i>E. coli</i>)															

	Waterbody	/ and Location	Parameter (incl. non- pollutant stressors)	Wate	er Quality	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones			Goverr	nmenta	Il Units v	with Pr	imary R	≷espon	ısibility		Estimated Year to Achieve Water Quality Target
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s		TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction				ECWMC	Hennepin County	UMN Extension	DNR	MNDOT	MDA BWSR		Three Rivers Park District	City of Corcoran City of Dayton	City of Maple Grove	urty or kogers
					rs: Altered Hydrology, diment, Low DO	Improve riparian vegetation (Stream TP/DO, Stream Biota)	Map and inventory stream buffers on all DNR streams and ditches in watershed	Complete inventory (by July 2016)	S	S		Р					s s	s s	
						Improve riparian vegetation (Stream TP/DO, Stream Biota)	Increase riparian buffers and enforce DNR buffer rules on 100% of streams and tributaries	Buffers in place on public waters by July 2017, on public ditches by November 2018	S	Р				Р					
						Restore/enhance	Undertake 1,000 linear foot bank stabilization and erosion control project within Rush Creek reach downstream of confluence with South Fork Rush Creek Widen stream along existing alignment, plant native vegetation to prevent erosion	Complete project within 10 years	S					A		Р			
	Rush Creek (528) cont.		Stream Fish & Macro IBI cont.		rs: Altered Hydrology, nent, Low DO cont.	channel (Stream TP/DO, Stream Biota)	Stabilize and restore approximately 11,000 feet of Rush Creek east of I-94 and west of Fernbook Lane Restore native vegetation to provide habitat for wildlife, creating natural area for city demonstration	Complete project within 10 years	S					A				Р	2035
							Perform stream channel walking survey to identify and implement in-channel BMPs	Complete survey (5 years), Complete 1-5 projects within 10 years	Ρ	А						A S	s s	s s	
Rush Creek cont.						Monitor (DO)	Conduct early morning longitudinal DO surveys to determine specific reaches that may be causing low DO in Rush Creek Begin developing strategies to restore/improve problem reaches	Conduct survey within 4 years	Р	А						AS	5 S	s s	
						Monitor	Obtain bathymetric information, conduct early and late summer aquatic plant surveys, and continue water quality monitoring	Monitor as funding and opportunity arises	Р							А	S		
	Lake Dubay (27-0129)	MS4: City of Dayton	None	WQ currently meets state WQ standards			Avoid enlarging the watershed draining to the lake if development occurs in this area of the city of Dayton	Ongoing									Р		- Ongoing
						SW mgt.	Firm application of the Commission's new development standards adopted in 2015 for SW management and buffers	New standards effective January 1, 2015	Р								Р		
	Meadow Lake (27- 0301)	MS4: Rogers	Not assessed, no WQ data			Monitor	Collect bathymetry data and monitor water WQ	Monitor as funding and opportunity arises	Р							A		S	
	Stone's Throw Wetland	Corcoran, Rogers	NA			In-channel restoration (wetland)	Acquire easements and restore 135 acre wetland adjacent to County Ditch #16	Complete project within 5 years	S	S		S		A		F	Р	Р	
		 '					K-12 Watershed Education	Ongoing	Р		Å	4		А					Ongoing

	Waterbody	/ and Location	Parameter (incl. non- pollutant stressors)	Wate	er Quality	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones			Gove	rnme	ental L	Units w	ty		Estimated Year to Achieve Water Quality Target				
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s		TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction				ECWMC	Hennepin County	xte	MPCA	DNR	MNDOT	MIJA BWSR	NRCS	Three Rivers Park District	City of Corcoran City of Davton	City of Dayton City of Maple Grove	city of Rogers	
						Improve education and outreach	General public outreach and education		Р				A		S				S S	s s	
	Watershed		Social Infrastructure (to address all pollutants/			Improvo	Involve citizen networks in water resource related projects		Р			А	А		S			P P	P P	P P	
	Wide		stressors)			collaboration	Coordinate planning/improvement projects with stakeholders		Р	S								P P	P P	P P	
						Implement/ review policies and rules	Ongoing review of policy and procedures to meet WLA goals		Ρ	Р		А		Р	S			P P	P P	P	
												<u> </u>									
	/		1			1	1														

Table 3-4. South Fork Rush Creek Subwatershed Restoration and Protection StrategiesKey for shading: Red = Restoration Strategies; Green = Protection Strategies or Elements for Non-Assessed Water bodiesKey for Government Unit Responsibilities: P = Primary/Lead Role; S = Secondary Role; A = Assist as Needed

3		sponsibilities: P = / and Location			Quality						Govern	mental	Units w	vith Pri	mary R	espons	ibility			
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non- pollutant stressors)	TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	DNR	MnDOT	MDA	BWSR	NRCS Three Rivers Park District	Corcoran	City of Maple Grove	City of Medina	Estimated Year to Achieve Water Quality Target
						Improve urban SW	Perform urban BMP subwatershed assessment study Implement 1-4 SW retrofit projects if appropriate	Complete study (5 years), implement BMPs (10 years)	Р	A					A	A	S	S		
				79 – 342	0% - 63%	mgt. (All impairments)	Implement updated Commission standards for runoff volume and rate control for new development projects throughout watershed	New standards effective January 1, 2015	Р								Р	Р	Р	
	South Fork	MS4s: Corcoran, Maple Grove,	Stream <i>E. coli</i> (732)	cfu/100mL (monthly geomeans)	reduction depending on month	Improve upland/field surface runoff controls (<i>E. coli</i>)	Perform rural subwatershed assessments study Identify and implement 10-20 rural/agricultural BMPs	Implement 3-5 BMPs (5 years), 10-20 BMPs (10 years)	Ρ	A	S				A	A	S	S	S	
	Rush Creek (732)	Medina, Hennepin County				Improve fertilizer and manure application mgt.	Promote/educate agronomic rates, chemical treatment of manure, and spreading in sensitive areas Provide resources for soil nutrient testing Hold 2-5 workshops to engage farmers and provide educational materials	Hold 2-5 workshops and work with 5-10 willing landowners	Р	Р	Р			Р	S	A	S	S	S	
			Stream Fish and Macro IBI	Hydrology, A	ssors: Altered Itered Physical	(E. coli)	Implement non-production animal operation siting and management ordinance as per 2015 approved watershed plan	Cities adopt ordinance by August 2017	S	S				A			Р	Ρ	Ρ	
South Fork Rush Creek			(732)		ess Sediment, horus, Low DO	Address failing septic systems (<i>E.</i> <i>coli</i>)	Identify and upgrade 100% of the ITPHS systems and systems in the shoreland areas	100% of ITPHS systems upgraded within 10 years		Р							S	S	S	2035
						Improve riparian	Map and inventory stream buffers on all DNR streams and ditches in watershed	Complete inventory (by July 2016)	S	S		Р								
		MS4s:				vegetation (Stream Biota)	Increase riparian buffers and enforce DNR buffer rules on 100% of streams and tributaries	Buffers in place on public waters by July 2017, on public ditches by November 2018	S	Р					Р		Р	Р	Ρ	
	South Fork Rush Creek (760)	Corcoran, Medina, Maple Grove, Hennepin	Stream Fish & Macro IBI (760)	Hydrology, A Habitat, Exce	ssors: Altered Itered Physical ess Sediment, horus, Low DO	Restore/ enhance channel (Stream	Stabilize and restore up to 4,500 of Rush Creek north of 101 Avenue, significantly reducing potential for bank erosion and sediment transportation to Elm Creek Restore native vegetation to provide habitat for wildlife	Complete project within 10 years	S	A							Р	Р		
		County				Biota)	Perform stream channel walking survey to identify and implement in-channel BMPs and/or stream corridor baseflow enhancement projects	Complete survey (5 years), Complete 2-5 projects within 10 years	Р	A						A				
						Monitor (DO)	Conduct early morning longitudinal DO surveys to determine specific reaches that may be causing low DO in S. Fork Rush Creek Begin developing strategies to restore/improve problem reaches	Conduct surveys within 4 years	Ρ							A				

	Waterbody	and Location		Water	Quality						Goverr	menta	al Units	with Pri	mary I	lespon	sibility			
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non- pollutant stressors)	TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	MPCA	DNR	MDA	BWSR	NRCS Three Rivers Park District	City of Corcoran	City of Maple Grove	of Medin	Estimated Year to Achieve Water Quality Target
						Monitor	Obtain bathymetric information, conduct early and late summer aquatic plant surveys, and initiate water quality monitoring and assessment	Monitor as funding and opportunity arises	Ρ							A	S			
	Jubert Lake (27-0135)	MS4s: Corcoran	Not assessed, but likely impaired	No recent monitoring data		Reduce in-water loading	Assess internal loading, initially through collection and analysis of hypolimnetic phosphorus concentrations and DO/temperature profile data, and perhaps later through analysis of intact sediment cores to estimate oxic and anoxic phosphorus release rates	Monitor as funding and opportunity arises	Р							A	S			Ongoing
						Improve urban SW mgt.	Avoid enlarging the watershed draining to the lake if development occurs in this area of the city of Corcoran Firm application of the Commission's new development standards adopted in 2015 for SW management and buffers	Ongoing New standards effective January 1, 2015	S P	A							P			
	Scott Lake (27-1102)	MS4s: Corcoran	Not assessed, no WQ data			Monitor	Collect bathymetry data and monitor water WQ	Monitor as funding and opportunity arises	Р							A	s s			
South Fork Rush Creek cont.	Wetland DNR# 27- 0437	Maple Grove, Corcoran	NA			In-channel restoration (wetland)	Develop channel protection volume storage, flood storage and associated water quality improvements within wetland complex at Maple Grove/Corcoran boundary by providing extended detention within the storage basin	Complete project within 5 years	S								Р	Р		
	Watershed wide		Chloride	Variable – based on the year salt reduction BMP's began	<230mg/L	Chloride management	Promote and adopt strategies included in the CMP <u>www.pca.state.mn.us/r0pgb86</u>	Ongoing	S	Ρ		A	Ρ				Ρ	Р	Р	Ongoing
						Improve education	K-12 Watershed Education		Р			A			А					
			Social			and outreach	General public outreach and education		Р			A	А		S		S	S	S	
	Watershed		Infrastructure (to address all			Improve coordination/	Involve citizen networks in water resource related projects	Ongoing	Р			A	А		S		Р	Ρ	Р	Orașei
	wide		pollutants/ stressors)			collaboration	Coordinate planning/improvement projects with stakeholders	3 - 3	Р	S							Р	Р	Р	Ongoing
						Implement/ review policies and rules	Ongoing review of policy and procedures to meet WLA goals		Р	Р		A	Р		S		Р	Р	Р	

Table 3-5. Elm Creek Subwatershed Restoration and Protection StrategiesKey for shading: Red = Restoration Strategies; Green = Protection Strategies or Elements for Non-Assessed Water bodiesKey for Government Unit Responsibilities: P = Primary/Lead Role; S = Secondary Role; A = Assist as Needed

		ody and Location	ind y Loud I		Quality						Go	vernme	ental Ur	nits with	Prima	ry Resp	oonsi	bility				
Major Sub- watershed	Waterbod y (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non- pollutant stressors)	TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction	Strategies See Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	MPCA	MNDOT	MDA	NRCS	Three Rivers Park District	City of Champlin	City of Corcoran City of Davton	of	City of Medina	ty of Plymouth	stimated Year to Achieve Water Quality Target
			· · · · · · · · · · · · · · · · · · ·				Monitor fish population to determine presence of common carp and other rough fish Establish removals/barriers as needed	Monitor once every 3-5 years	S			Р				A			S			
	Fish Lake	MS4s: Maple Grove, Plymouth, Hennepin	Fish Lake	2,262	2,055 lbs/yr 14%	Reduce in-lake	Develop vegetation plan to manage curly-leaf pondweed (Rice Lake)	Develop plan within 2 years, manage as necessary, monitor annually	S										Р			2020 for
	(27-0118)	County, MnDOT	TP	lbs/yr	Reduction	TP loading	Drawdown and/or internal load (chemical) treatment feasibility studies and implementation	Complete studies (1 year for Fish, 3 years for Rice), implement findings (2 years for Fish, 5 years for Rice) Implement alum treatment for Fish Lake within 4 years	S			S				А			Ρ		F	ish Lake
	Rice Lake (27-0116)	MS4s: Maple Grove, Plymouth, Medina, Corcoran, Hennepin County, MnDOT	Rice Lake TP	12,551 Ibs/yr	2,307 lbs/yr 82% reduction		Perform urban BMP subwatershed assessment study Implement 10-20 SW retrofit projects	Complete study (3 years), implement BMPs (10 years)	Р	A							A		A	A	A R	2035 for ice Lake, Im Creek
						Improve urban SW mgt. (All impairments)	Implement updated Commission standards for runoff volume and rate control for new development projects throughout watershed	New standards effective January 1, 2015	S								Р	P P	Ρ	Ρ	Р	
Elm Creek	Goose Lake (27-	MS4s: Champlin, Dayton, Hennepin	Goose Lake TP	133 lbs/yr	27 lbs/yr 81%		Install hydrodynamic separators and SAFL baffles in existing storm sewer circuits in Stonebridge developments (Maple Grove) where construction is not feasible. Will reduce TP loading 50-60%, and TSS loading by 75%-90%	Complete installations within 5 years	S										Ρ			
	0122)	County			reduction	Improve upland/field surface runoff controls (Rice Lake TP, Stream TP/DO, <i>E. coll</i>)	Perform rural subwatershed assessments study. Identify and implement 5-10 rural/agricultural BMPs	Implement 1-5 BMPs (5 years), 5-10 BMPs (10 years)	Ρ	S	A			A		A	S	A A	A	S	S	2035
		MS4s: Corcoran,	Stream E. coli	141 – 263 cfu/100mL (monthly geomeans)	11% - 52% reduction depending on month	Improve fertilizer and manure application mgt. (Rice Lake TP,	Promote/educate agronomic rates, chemical treatment of manure, and spreading in sensitive areas Provide resources for soil nutrient testing Hold 2-4 workshops to engage production and/or hobby farmers and provide educational materials	Hold 2-4 workshops and work with 5-10 willing landowners	Ρ	Р	Ρ			Р		S	S	A A	A	S	S	2033
	Elm Creek (508)	Dayton, Maple Grove, Medina, Plymouth, Hennepin		Current	Phosphorus Goal: 100	Stream TP/DO, <i>E. coli</i>)	Implement non-production animal operation siting and management ordinance as per 2015 approved watershed plan	Cities adopt ordinance by August 2017	S					A			Р	P P	Р	Р	Р	
		County, MnDOT	Stream DO	Phosphoru s: 305 µg/L	µg/L 67% Reduction	Improve livestock mgt. (Rice Lake TP, Stream TP/DO, <i>E. coli</i>)	Perform rural subwatershed assessments study Identify and implement 5-20 livestock/agricultural BMPs	Implement 1-5 BMPs (5 years), 5-20 BMPs (10 years)	Ρ	A	A						S	A A	S	S	A	

						Address failing septic systems (Rice Lake TP, Stream TP/DO, <i>E. coli</i>)	Identify and upgrade 100% of the ITPHS systems and systems in the shoreland areas	100% of ITPHS systems upgraded within 10 years	S	-P					S	S S	S S	s s	
					•	Improve riparian vegetation	Map and inventory stream buffers on all DNR streams and ditches in watershed	Complete inventory (by July 2016) Buffers in place on public	S	S	Р								
						(Stream TP/DO, Stream Biota)	Increase riparian buffers and enforce DNR buffer rules on 100% of streams and tributaries	waters by July 2017, on public ditches by November 2018	S	Р			Р						
						Monitor (DO)	Conduct early morning longitudinal DO surveys to determine specific reaches that may be causing low DO in Elm Creek Begin developing strategies to restore/improve problem reaches	Conduct surveys within 4 years	Р	А					A	s s	S S	S S	
			Stream				Undertake 600 linear foot bank stabilization and erosion control project within Elm Creek Reach K Increase channel area and lower hydraulic shear stress Increase cross sectional area and meander width, plant disturbed areas with native floodplain forest vegetation to prevent erosion and increase habitat value.	Complete project within 10 years	S	Р	S						Р		
	Elm Creek (508) cont.		Fish & Macro IBI			Restore/enhanc	Undertake 1,100 linear foot bank stabilization and erosion control project within Elm Creek Reach O Construct new channel alignment within floodplain, improve habitat in stream corridor	Complete project within 10 years	S	A	S			Ρ			S		2035
Elm Creek cont.						e channel (Stream TP/DO, Stream Biota)	Undertake 2,000 linear foot bank stabilization and erosion control project within Elm Creek Reach R. Remove fallen trees to increase channel capacity and reduce bank scour. Reduce channel bank side slopes at existing toe locations, riprap to protect toe of stream bank and native vegetation.	Complete project within 10 years	S	А	S			Ρ		S			
							Install rip rap to protect toe of stream bank and native vegetation 3,000 feet from 0.5 mile upstream of Cartway Road to Hayden Lake	Complete project within 10 years	S	A	S			Р		S			
							Perform stream channel walking survey to identify and implement other in-channel BMPs and/or stream corridor baseflow enhancement projects	Complete survey (4 years), Complete 1-5 projects within 10 years	Р	A					A	A A	A	AA	
			Str	eam Chloride ((508)	TMDL allo	cations and reduction strategies have been developed for this <u>https://www.</u>	reach through the Twin Cities M oca.state.mn.us/sites/default/file			s doci	ument is a	available th	hrough	the N	MPCA we	ebsite:		
						Reduce in-water	Continue monitoring and management efforts to control curly-leaf pondweed in lake	Continue monitoring and management program	S								Р		
						loading	Periodically assess internal loading and address through suitable control measures as necessary	Re-assess internal load every 2 years	S								Р		
	Weaver Lake (27-0117)	MS4s: Maple Grove	Not impaired	Summer average TP typically 30	Currently meets state standards		Inventory/assess/maintain key detention basins in watershed – especially the two-cell basin west of lake that receives first-flush diversion runoff	Complete inventory and assessment within 2 years									Р		
				µg/Ľ	stallualUS	Improve urban SW mgt.	Initiate intensive street sweeping in the direct drainage of the lake, concentrating first on sweeping every 1-2 weeks of the area in April to remove pollutants that may have accumulated over the winter, in late May and June to remove tree seeds, and in October to remove leaves.	Implement intensive street sweeping program within 5 years	S				S				Р		
Elm Creek cont.	Weaver Lake (27-0117) cont.		Not impaired		Currently meets state standards	Monitoring and public outreach	Continue growing season monitoring efforts annually, including monitoring of hypolimnetic phosphorus concentrations and early and late summer aquatic plant surveys.	Monitor annually	S								Р		

						Implement information, education and outreach effort throughout the watershed to minimize SW pollution inputs	2-5 outreach events within 3 years	S	ļ								Р		
						Work with property owners in the developed portions of the watershed in Maple Grove and Champlin to improve property management practices such as: Re-directing runoff onto pervious surfaces Pet waste management Preventing organic matter (leaves, grass clippings, seeds, etc.) from reaching streets, ditches and storm sewers	Implement 2-5 outreach activities and projects within 3 years	S	ļ					Ρ			Р		
Mud (27-0112)	MS4s: Maple Grove, Champlin	Not impaired	Summer average TP typically 67 µg/L	Currently meets state standards	Improve urban SW mgt.	Initiate an intensive street cleaning program in areas of the watershed where runoff drains directly to Mud Lake from residential neighborhoods served by curb, gutter and storm sewer	Implement intensive street sweeping program within 5 years	S				S		Ρ			Р		
						Maintain SW ponds and help maintain treatment performance	Ongoing maintenance and performance reviews	S						Р			Р		
						Pursue BMP retro-fit opportunities in developed portion of the watershed, particularly as art of re-development and street improvement projects to reduce runoff volumes and pollutant loads	Conduct BMP subwatershed assessment within 5 years, Implement projects within 10 years	S	A				,	A P			Р		
Hayden Lake (27-0128)	MS4s: Dayton, Champlin	Not assessed, no WQ data			Monitor	Collect bathymetry data and monitor water WQ	Monitor as funding and opportunity arises	Ρ						A					
Mill Pond (27-0061)	MS4s: Champlin, Corcoran, Dayton, Maple Grove, Medina, Plymouth, Hennepin County, MnDOT	Not assessed	_	_	In-channel restoration	Implement Elm Creek Dam project to replace the dam and spillway, stabilize streambanks, and provide an emergency Elm Creek bypass, remove accumulated sediment from Mill Pond. It will reduce flood hazards, remove 60 acres from floodplains, improve water quality, provide stabilization for Elm Creek and improve stream/dam access.	Complete project within 3 years	S						Ρ					
Watershed wide		Chloride	Variable	<230mg/L	Chloride management	Promote and adopt strategies included in the CMP www.pca.state.mn.us/r0pgb86		S	р	A	Ρ			Ρ	P P	Р	P P	Ρ	
					Improve	K-12 Watershed Education		Р		A		Α							(
		Social			education and outreach	General public outreach and education		Р		A A		S		S	S S	S	S S	S	
Watershed		Infrastruct ure (to			Improve	Involve citizen networks in water resource related projects	Ongoing	Р		A A		S		Р	P	Р	P P	Р	
wide		address all pollutants/			coordination/ collaboration	Coordinate planning/improvement projects with stakeholders	Chigoling	Р	S					Р	P P	Р	P P	Р	
		stressors)			Implement/ review policies and rules	Ongoing review of policy and procedures to meet WLA goals		Ρ	Р	A	Р	S		Р	P P	Р	P P	Р	

Table 3-6. North Fork Crow and Mississippi Subwatersheds Restoration and Protection StrategiesNote: these subwatersheds flow directly to the North Fork Crow River and Mississippi River, but are within ECWMC's jurisdictional boundary.Key for shading: Red = Restoration Strategies; Green = Protection Strategies or Elements for Non-Assessed Water bodiesKey for Government Unit Responsibilities: P = Primary/Lead Role; S = Secondary Role; A = Assist as Needed

		dy and Location	Timul Ji Loud It	Water						Gover	nmenta	al Unit	ts with	Primar	y Respo	nsibilit	ty		
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non- pollutant stressors)	TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC		MPCA	DNR	MnDoT	BWSR	NRCS Throo Divore Dark Dictrict	City of Davton	City of Rogers	City of Champlin	Estimated Year to Achieve Water Quality Target
						Reduce in-water loading (Sylvan and	Monitor fish population to determine presence of common carp and other rough fish Establish removals/barriers as needed Develop vegetation plan to manage curly-leaf	Monitor once every 3-5 years when/if public access is provided Develop plan within 10 years, treat	S			Р			4	4	S		
						Cowley Lake TP)	pondweed	as necessary, monitor annually	S								Р		
	Sylvan Lake	MS4s: Rogers	Sylvan Lake	1,203 lbs/yr	204 lbs/yr		Drawdown and/or internal load (chemical) treatment feasibility studies	Complete studies (6-8 years), implement findings (10 years)	S						ļ	4	Р		
	(27-0171)		TP	.,	84% Reduction	Improve urban SW mgt. (Cowley Lake TP)	Implement updated Commission standards for runoff volume and rate control for new development projects throughout watershed	New standards effective January 1, 2015	Р								Ρ		
						Improve upland/field surface runoff controls (Sylvan and Cowley TP)	Perform rural subwatershed assessments study Identify and implement 1-5 rural/agricultural BMPs	Implement 1-3 BMPs (5 years), 1-5 BMPs (10 years)	P A	A				A			S		
						Improve fertilizer and manure application mgt. (Sylvan and	Promote/educate agronomic rates, chemical treatment of manure, and spreading in sensitive areas Provide resources for soil nutrient testing Hold 1-2 workshops to engage farmers and provide educational materials	Hold 1-2 workshops and work with 1-5 willing landowners	P A	A			Ρ	A			Ρ		2035
North Fork Crow	Cowley Lake (27- 0169)	MS4s: Rogers, Hennepin County	Cowley Lake TP	846 lbs/yr	95 lbs/yr 89% reduction	Cowley TP)	Implement non-production animal operation siting and management ordinance modeled as per 2015 approved watershed plan	City adopts ordinance by August 2017	S				A				Ρ		
						Improve livestock mgt. (Sylvan and Cowley TP)	Perform rural subwatershed assessments study Identify and implement 1-5 livestock/agricultural BMPs	Implement 1-3 BMPs (5 years), 1-5 BMPs (10 years)	P A					A			S		
						Address failing septic systems (Sylvan and Cowley TP)	Identify and upgrade 100% of the ITPHS systems and systems in the shoreland areas	100% of ITPHS systems upgraded within 10 years	S F								S		
	Prairie Lake (27-0117)	MS4s: None	Not impaired	Summer average TP typically 30 µg/L	Currently meets state standards	Monitor	Conduct early and late summer aquatic plant surveys and continue monitoring WQ	Conduct surveys and monitoring every 2-3 years	Ρ						ļ	A			
				WQ currently		Monitor	Obtain bathymetric information, conduct early and late summer aquatic plant surveys, and continue water quality monitoring	Monitor as funding and opportunity arises	Р						ļ	4			
	Laura Lake (27-0123)	MS4s: Dayton	None	meets state WQ standards			Avoid enlarging the watershed draining to the lake if development occurs in this area of the city of Dayton	Ongoing	S							Р			
						Improve urban SW mgt.	Firm application of the Commission's new development standards adopted in 2015 for SW management and buffers	New standards effective January 1, 2015	P A							Р			
	Lehmans Lake (27-0066)	MS4s: Champlin	Not assessed, no WQ data			Monitor	Collect bathymetry data and monitor water WQ	Monitor as funding and opportunity arises	Р						ļ	Ą			

	Waterboo	dy and Location		Water	Quality					Go	vernme	ental U	nits with	Primar	y Respo	nsibilit	ty		
Major Sub- watershed	Waterbody (IDs)	Location and Upstream Influence Counties; Cities and other MS4s	Parameter (incl. non- pollutant stressors)	TMDL Baseline Conditions	TMDL Goals / Targets and Estimated % Reduction	Strategies (see Table 3-7)	Strategy types and estimated scale of adoption needed to meet final water quality target	Interim 10-yr Milestones	ECWMC	Hennepin County	UMN Extension	DNR	MnDOT	BWSR	NRCS Throo Divors Dark District	Davton	city of Rogers	City of Champlin	Estimated Year to Achieve Water Quality Target
							Map and inventory stream buffers on all DNR streams and ditches in watershed	Complete inventory (by July 2016)	S	S		Р				S			
						Improve riparian vegetation	Increase riparian buffers and enforce DNR buffer rules on 100% of streams and tributaries.	Buffers in place on public waters by July 2017, on public ditches by November 2018	S	S				А			Р	Ρ	
	E-u Ourd						Provide stabilization and protection along several reaches of streambank at Edison Court, Creekview Drive, and I-94/Hyacinth Enhance/expand adjacent wetland, reduce sediment transport and provide habitat enhancement and wooded upland protection	Complete project within 5 years	S			S					Ρ		
	Fox Creek (07010204- 525)	MS4s: Rogers	All Conventional Pollutants	Not Assessed		Restore/enhance	Provide stabilization and protection along 600 feet of streambank tributary to Fox Creek at its headwaters, reducing sediment transport and providing habitat enhancement and wooded upland protection	Complete project within 5 years	S			S					Ρ		
North Fork Crow cont.						channel	Perform walking survey of to evaluate streambank erosion, riparian vegetation, habitat conditions, and other problem areas	Complete survey (4 years)	Р	A					ļ	4	А		
ciów com.							Target 1-5 critical problem areas identified during walking survey for streambank and/or habitat restoration projects such as tree thinning, bank stabilization, re-meanders, low-flow channel construction, substrate installation, fine sediment removal etc.	Complete 1-5 projects within 10 years	S	S				A			Ρ		
						Improve education and	K-12 Watershed Education		Р		A	\		А					
			Social			outreach	General public outreach and education		Ρ		A	A		S		S	S	S	
	Watershed wide		Infrastructure (to address all			Improve coordination/	Involve citizen networks in water resource related projects	Ongoing	Р		A	A		S		Р	Р	Ρ	Ongoing
	wide		pollutants/ stressors)			collaboration	Coordinate planning/improvement projects with stakeholders		Р	S						Р	Р	Ρ	
						Implement/ review policies and rules	Ongoing review of policy and procedures to meet WLA goals		Р	Р	A	1	Р	s		Р	Ρ	Ρ	
Mississippi River	Tributaries	Mississippi Point Park Riverbank Repair in Champlin	NA	NA	NA	Reduce bank/bluff/ravine erosion	Repair and stabilize 500 feet of Mississippi River streambank damaged by recent high waters.	Complete project within 5 years	S	S				A				Ρ	

Parameter	Strategy Key			
(incl. non- pollutant stressors)	Description	Example BMPs/actions		
		Cover crops		
		Water and sediment basins, terraces		
		Rotations including perennials		
		Conservation cover easements		
	Improve upland/field surface runoff	Grassed waterways		
	controls: Soil and water conservation practices that reduce soil erosion and	Strategies to reduce flow- some of flow reduction strategies should be targeted to ravine subwatersheds		
	field runoff, or otherwise minimize sediment from leaving farmland.	Residue management - conservation tillage		
	seament nom leaving farmand.	Forage and biomass planting		
		Open tile inlet controls - riser pipes, French drains		
		Contour farming		
		Wetland restoration		
		Stripcropping		
	Protect/stabilize banks/bluffs: Reduce collapse of bluffs and erosion of	Reduce peak flows		
	streambank by reducing peak river flows and using vegetation to stabilize these	Streambank stabilization		
		Riparian forest buffer		
TCC	areas.	Livestock exclusion - controlled stream crossings		
TSS		Field edge buffers, borders, windbreaks and/or filter		
	<u>Stabilize ravines</u> : Reducing erosion of ravines by dispersing and infiltrating field	strips Contour farming and contour buffer strips		
		Diversions		
	runoff and increasing vegetative cover	Water and sediment control basin		
	near ravines. Also, may include earthwork/regrading and revegetation of ravine.	Terrace		
		Conservation crop rotation		
		Cover crop		
		Residue management - conservation tillage		
		Proper Water Crossings and road construction		
		Forest Roads - Cross-Drainage		
		Maintaining and aligning active Forest Roads		
	Improve forestry management.	Closure of Inactive Roads & Post-Harvest		
		Location & Sizing of Landings		
		Riparian Management Zone Widths and/or filter strips		
	Improve urban SW management [to reduce sediment and flow].	See MPCA SW Manual: http://stormwater.pca.state.mn.us/index.php/Main_Pa		
Nitrogen (TN)	Increase fertilizer and manure efficiency: Adding fertilizer and manure additions at	Nitrogen rates at Maximum Return to Nitrogen (U of MN rec's)		
or Nitrate	rates and ways that maximize crop uptake while minimizing leaching losses	Timing of application closer to crop use (spring or split applications)		

Table 3-7. Additional restoration and protection strategies to consider, organized by parameter of concern

Parameter (incl. non-	Strategy Key				
pollutant stressors)	Description	Example BMPs/actions			
	to waters. See <u>Mn Dept of Agriculture's</u>	Nitrification inhibitors			
	Nitrogen Fertilizer Management Plan	Manure application based on nutrient testing, calibrated equipment, recommended rates, etc.			
	Store and treat tile drainage waters: Managing tile drainage waters so that	Saturated buffers			
		Restored or constructed wetlands			
	nitrate can be denitrified or so that water	Controlled drainage			
	volumes and loads from tile drains are	Woodchip bioreactors			
	reduced.	Two-stage ditch			
	Increase vegetative cover/root duration: Planting crops and vegetation that	Conservation cover (easements/buffers of native grass & trees, pollinator habitat)			
	maximize vegetative cover and capturing	Perennials grown on marginal lands and riparian lands			
	of soil nitrate by roots during the spring,	Cover crops			
	summer and fall.	Rotations that include perennials			
	Improve upland/field surface runoff controls: Soil and water conservation	Strategies to reduce sediment from fields (see above - upland field surface runoff)			
	practices that reduce soil erosion and	Constructed or restored wetlands			
	field runoff, or otherwise minimize sediment from leaving farmland.	Pasture management			
		Restored wetlands			
	Reduce bank/bluff/ravine erosion.	Strategies to reduce TSS from banks/bluffs/ravines above for sediment)			
	Increase vegetative cover/root duration: Planting crops and vegetation that	Conservation cover (easements/buffers of native grass & trees, pollinator habitat)			
	maximize vegetative cover and minimize	Perennials grown on marginal lands and riparian lands			
Phosphorus	erosion and soil losses to waters, especially during the spring and fall.	Cover crops			
(TP)		Rotations that include perennials			
	Preventing feedlot runoff: Using manure	Open lot runoff management to meet 7020 rules			
	storage, water diversions, reduced lot sizes and vegetative filter strips to reduce open lot phosphorus losses.	Manure storage in ways that prevent runoff			
	Improve fertilizer and manure application management: Applying	Soil P testing and applying nutrients on fields needing phosphorus based on soil P testing results			
	phosphorus fertilizer and manure onto soils where it is most needed using	Incorporating/injecting nutrients below the soil			
	techniques which limit exposure of phosphorus to rainfall and runoff.	Manure application meeting all <u>7020 rule</u> setback requirements			
	Address failing septic systems: Fixing	Sewering around lakes			
Phosphorus (TP) cont.	septic systems so that on-site sewage is not released to surface waters. Includes straight pipes.	Eliminating straight pipes, surface seepages			
	o	Rough fish management			
	Reduce in-lake loading: Minimizing the internal release of phosphorus within	Curly-leaf pondweed management			
	lakes.	Alum treatment			

Parameter	Stratomy Koy				
(incl. non- pollutant stressors)	Description	Strategy Key Example BMPs/actions			
		Lake drawdown			
		Hypolimnetic withdrawal			
	Improve forestry management.	See forest strategies for sediment control			
	Reduce Industrial/Municipal wastewater TP.	Municipal and industrial treatment of wastewater P			
		Upgrades/expansion. Address inflow/infiltration.			
	<u>Treat tile drainage waters</u> : Treating tile drainage waters to reduce phosphorus entering water by running water through a medium which captures phosphorus.	Bioreactor			
	Improve urban SW management.	See MPCA SW Manual: http://stormwater.pca.state.mn.us/index.php/Main_Page			
	Reducing livestock bacteria in surface runoff: Preventing manure from entering streams by keeping it in storage or below the soil surface and by limiting access of animals to waters.	Strategies to reduce field TSS (applied to manured fields, see above)			
		Improved field manure (nutrient) management			
		Adhere/increase application setbacks			
		Improve feedlot runoff control			
		Animal mortality facility			
		Manure spreading setbacks and incorporation near wells and sinkholes			
- "		Rotational grazing and livestock exclusion (pasture management)			
E. coli	Reduce urban bacteria: Limiting exposure of pet or waterfowl waste to rainfall.	Pet waste management			
		Filter strips and buffers			
		See MPCA SW Manual: http://stormwater.pca.state.mn.us/index.php/Main_Page			
	Address failing septic systems: Fixing septic systems so that on-site sewage is	Replace failing septic (Subsurface Sewage Treatment Systems (SSTS)) systems			
	not released to surface waters. Includes	Maintain septic (SSTS) systems			
	straight pipes. Reduce Industrial/Municipal wastewater	Reduce straight pipe (untreated) residential discharges			
	bacteria.	Reduce WWTP untreated (emergency) releases			
	Reduce phosphorus.	See strategies above for reducing phosphorus			
DO	Increase river flow during low flow years.	See strategies below for altered hydrology			
DO	In-channel restoration: Actions to address altered portions of streams.				
Chloride	Manage and minimize road salt use.	Promote and adopt the strategies laid out in the CMP. https://stormwater.pca.state.mn.us/index.php/Road_salt ,_smart_salting_and_winter_maintenance			

Parameter	Strategy Key		
(incl. non- pollutant stressors)	Description	Example BMPs/actions	
Altered Hydrology	Improve baseflow, reduce rate and volume of runoff reaching channel.	Require/promote infiltration practices Require/promote rate control to achieve channel protection	
	Increase ability of stream channel to handle high flows.	Re-connect incised channels to floodplain	
	Restore more natural hydrology.	See strategies to address Altered Hydrology	
Altered Physical Habitat	Create favorable in-stream habitat.	Enhance large woody debris recruitment Maximize diversity of flow regimes	
		Minimize streambank erosion	

4. Monitoring Plan

Progress on the implementation of the Elm Creek TMDL and WRAPS will be measured through regular periodic monitoring of water quality and tracking of the BMP's completed. This will be accomplished through the combined efforts of the organizations receiving allocations as well as the cooperating agencies (notably the ECWMC and MPCA). The Intensive Watershed Monitoring program conducted by the MPCA is expected to provide a large-scale, longer term picture of the degree to which conditions are changing in the Elm Creek Watershed. Monitoring by the MPCA under this program was last conducted in 2010 and is expected to be undertaken again in 2020 as part of the 10-year monitoring cycle. The Commission adopted a detailed routine monitoring plan as part of its

<u>3rd Generation Watershed Management Plan</u> that includes both routine and as-need monitoring to monitor trends in water quality and to assess progress toward achieving TMDLs.

Lake Monitoring

The Commission's <u>3rd Generation Watershed Management Plan</u> monitoring plan establishes Sentinel Lakes (Diamond, Fish, Rice, and Weaver Lakes) for annual monitoring due to their visibility and priority as public resources and to represent both deep and shallow lakes, urban and semi-urban. The other impaired lakes (Henry, Goose, Cowley, and Sylvan) and the protection lakes discussed in this report will be monitored at least once every two to three years as access is made available and resources – either through volunteers or under contract with professional staff - are allocated. Lakes are generally monitored for Chl-*a*, TP, and Secchi disk transparency. Aquatic plant surveys should also be conducted on each lake at approximately five year intervals.

In-lake monitoring will continue as implementation activities are undertaken across the respective watersheds. These monitoring activities will continue until water quality goals are met. Some inflow monitoring has been completed on the inlets to some of the lakes (notably on Elm Creek above Rice Lake) and may be important to continue as implementation activities take place in those subwatersheds.

The DNR will continue to conduct fish surveys on lakes with developed public access (currently Fish Lake and Diamond Lake) as allowed by their regular schedule. Currently, fish surveys are conducted every five years.

Stream Monitoring

Stream monitoring in the Elm Creek Watershed, which includes Elm Creek, Rush Creek, and Diamond Creek, has been coordinated by the Commission, which partners with the USGS to operate a flow and water quality monitoring station on Elm Creek (station ID: 05287890). The station has a long-term period of record (35+ years) and gauges discharge from about 70% of Elm Creek Watershed. Other efforts have included those funded by the MPCA through a Surface Water Assessment Grant (SWAG) and the TMDL itself to carry out flow and/or water quality monitoring at various sites.

The Commission will continue to partner with the USGS to obtain routine flow and water quality data at the site on Elm Creek. The Commission's <u>3rd Generation Watershed Management Plan</u> monitoring plan also calls for two additional stream sites per year to be monitored for flow and water quality, rotating among several sites across all four major stream systems so that each site is monitored every two to three years. The Commission will periodically perform longitudinal DO surveys on each DO-impaired

stream to better understand DO dynamics in the streams and sub-reaches and to assess progress toward meeting the state water quality standard of 5 mg/L DO as a daily minimum. In addition, the Commission may from time to time undertake special stream monitoring on other tributaries where necessary, for example to calibrate models or refine subwatershed assessments or to gauge the effectiveness of BMP practices in the watershed.

Stream Biological Monitoring

Biotic communities will continue to be monitored throughout the watershed so that composite metrics can be developed that will help determine the need for/effectiveness of stream habitat restoration measures in bringing the watershed into compliance with standards for biota. Fish and macroinvertebrate sampling will be completed every five to ten years during the summer season at each established location until compliance is observed for two consecutive assessments.

Tracking of Best Management Practices

The ECWMC will work with its member communities to track the number, type, location, load reduction benefits, and costs of BMPs (with an emphasis on structural BMPs) that are implemented in the watershed to address the TMDL and restoration and protection strategies presented in this report. The Commission expects to summarize this information annually and have it available for agencies and interested members of the public.

References and Further Information

- Eckman, K. 2013. Elm Creek Watershed Management Commission Knowledge, Attitudes, and Practices (KAP) Study Report in the Elm Creek TMDL (Report no. wq-iw11-o4b). Minnesota Pollution Control Agency
- Elm Creek Watershed Management Commission (Report no. wq-iw11-04b). 2015. Elm Creek Watershed TMDL (March 4, 2015 draft report, revised June 5, 2015)
- Lehr, R. 2015. Elm Creek Watershed Stressor Identification Report (Report no. wq-iw11-04w). Minnesota Pollution Control Agency
- Wall, D... 2013. Nitrogen in Minnesota Surface Waters: F1 Reducing Cropland Nitrogen Losses to Surface Waters (Report no. wq-s6-26f1). Minnesota Pollution Control Agency

Additional Elm Creek Watershed Monitoring Efforts and Information

<u>Elm Creek WMC Annual Reports</u> -Includes links to lake, stream, and wetland monitoring along with volunteer monitoring programs

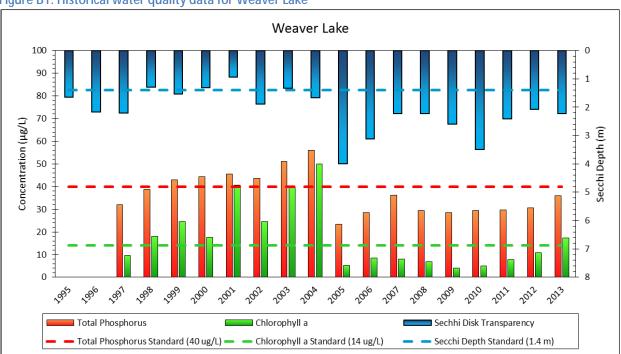
Elm Creek Inventory and Condition Assessment

Elm Creek USGS Monitoring station at Champlin, Minnesota (05287890)

MPCA monitoring data search

Elm Creek Watershed Reports

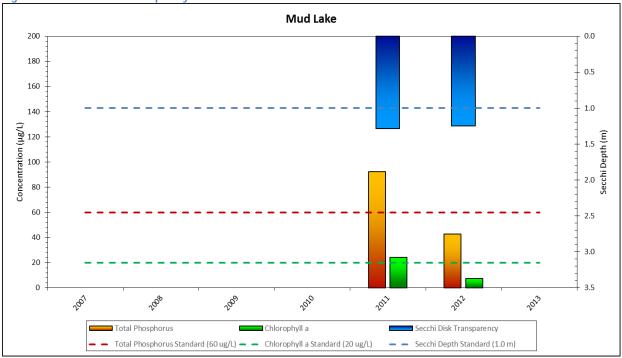
All reports referenced in this watershed report are available at:

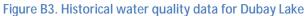

MPCA Elm Creek Watershed

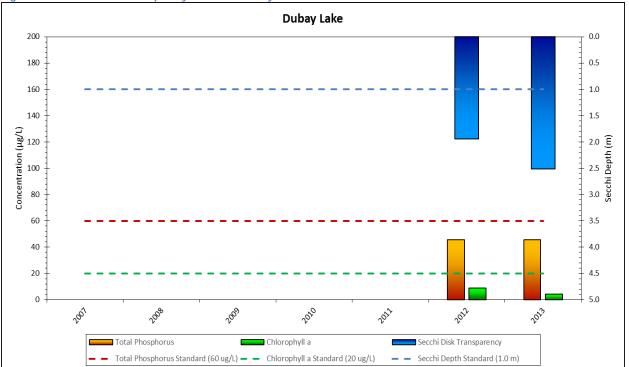
Elm Creek WMC reports

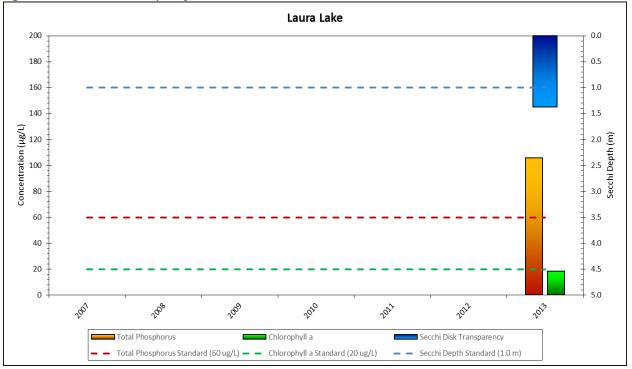
Appendix A-Lake and Watershed Information for Non-TMDL Lakes

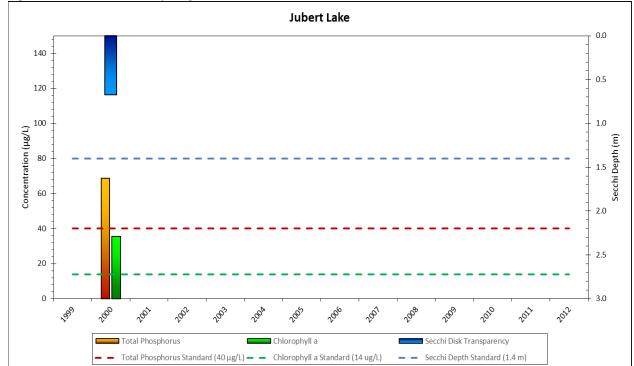
	Weaver	Mud	Dubay	Laura	Jubert	Prairie
DNR ID	27-0117	27-0112	27-0129	27-0123	27-0165	27-0177
Surface Area (ac)	152	79	15	35	92	32
Max Depth (ft)	57	7.1	7 (approx.)	Unknown	41	8
Mean depth (ft)	21	4.1	Unknown	Unknown	8.4	4.4
Volume (ac-ft)	3152	325	Unknown	Unknown	777	139
Residence Time (yrs)	~ 13	0.51	Unknown	Unknown	Unknown	Unknown
Littoral area (ac)	76	79	15	Unknown	17	32
Littoral area (%)	50%	100%	100%	Unknown	19%	100%
Watershed area (ac)	187	1,353	37	140	1,880	150
Watershed area : lake area ratio	1.2 : 1	17 : 1	2.5 : 1	4 : 1	19 : 1	5 : 1
Municipalities in watershed	Maple Grove	Dayton, Maple Grove, Champlin	Dayton	Dayton	Corcoran	Rogers, Hanover (Entire watershed w/in Crow Hassan Park)
Dominant Watershed Land Use (Existing)	Suburban, park	Suburban, park	Agricultural row crop	Agricultural row crop	Agricultural row crop, livestock	Native prairie

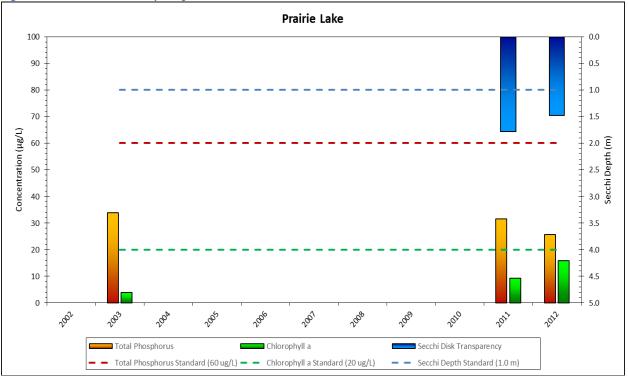

Table A1. Lake and watershed information for non-TMDL lakes




Appendix B-Water Quality Data for Non-TMDL Lakes


Figure B2. Historical water quality data for Mud Lake







Appendix C-Watershed Boundaries for Non-TMDL Lakes

Figure C1. Weaver Lake Watershed boundary

Figure C2. Mud Lake Watershed boundary

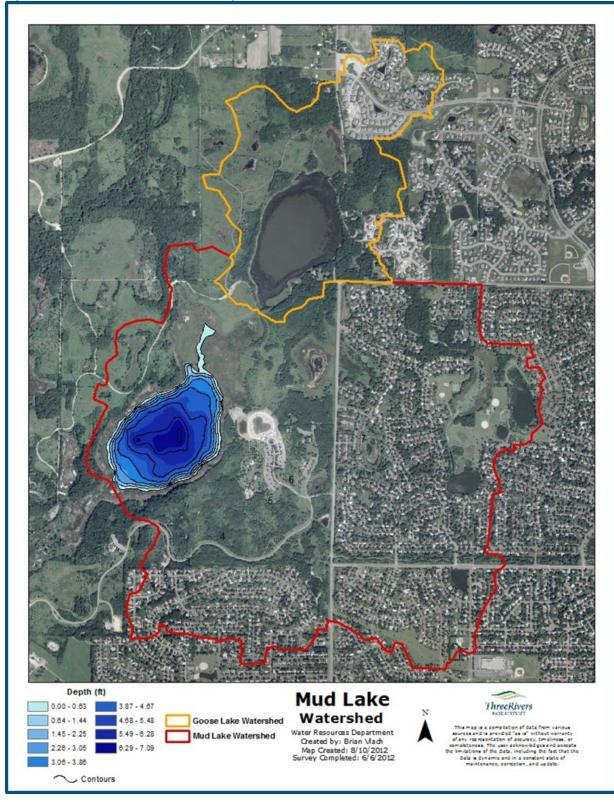


Figure C3. Lake Dubay Watershed boundary

Figure C4. Laura Lake Watershed boundary

Figure C5. Jubert Lake Watershed boundary

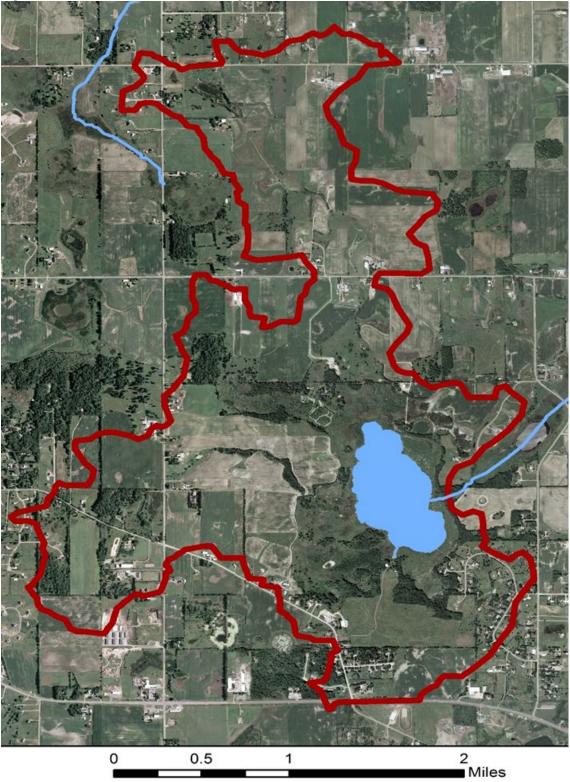
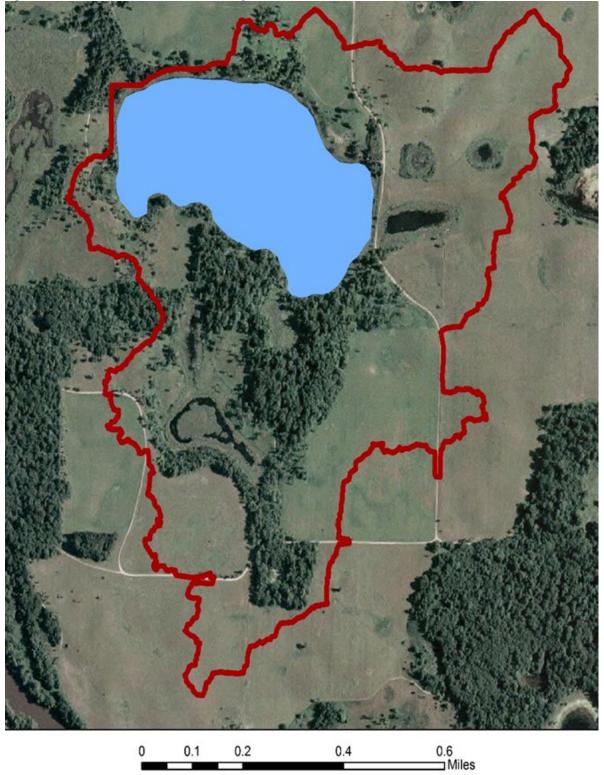



Figure C6. Prairie Lake Watershed boundary

