November 2020

National Lakes Assessment 2017

A synopsis of water chemistry data collected in Minnesota lakes as part of the U.S. Environmental Protection Agency's 2017 National Lakes Assessment

Author

Jesse Anderson, MPCA Allison Gamble, MPCA Lee Engel, MPCA

Report review

Pam Anderson, MPCA

Acknowledgments

Minnesota's 2017 National Lakes Assessment was led by the MPCA's Water Quality Monitoring Unit. Team leads for the survey were Jesse Anderson, Jordan Donatell, Lindsay Egge, Lee Engel, Joe Hadash, Isaac Martin and Dereck Richter. Other MPCA field staff contributing to the effort included Josh Stock, Quinn Sahulka, Abbie Lee, Becky Smith, Angus Vaughn, Craig Weingart and Mike Kennedy.

In addition to MPCA staff, Minnesota DNR (Andy Levar), U.S. Forest Service / Superior National Forest (Darren Lilja and Jason Butcher), Voyageurs National Park (Ryan Maki), Koochiching County Soil and Water Conservation District (Sam Soderman), Red Lake Band of Chippewa (Shane Bowe), Leech Lake Band of Ojibwe, Fond du Lac Band of Lake Superior Chippewa, Mille Lacs Band of Ojibwe, and White Earth Nation staff were instrumental in sampling and other logistical support to make the effort a success.

Minnesota Pollution Control Agency

520 Lafayette Road North | Saint Paul, MN 55155-4194 |

651-296-6300 | 800-657-3864 | Or use your preferred relay service. | Info.pca@state.mn.us

This report is available in alternative formats upon request, and online at <u>www.pca.state.mn.us</u>.

Document number: wq-nlap1-17

Contents

Summary1
Introduction1
National Lakes Assessment overview, lake selection, and report focus1
Climate conditions, summer 20172
Methods summary3
Results and discussion
Trophic status indicators
Algal toxins9
Other NLA parameters
Temporal trends and patterns in NLA datasets
Multi-year lakes
Lake color
Summary: Key findings
References cited 17
Appendix 1. Minnesota's 2017 NLA lakes

Summary

Minnesota lakes were sampled in 2017, as part of the larger nation-wide U.S. Environmental Protection Agency (EPA) survey to assess the nation's water quality.

This nation-wide survey has taken place in 2007, 2012, and is planned again for 2022. The Minnesota Pollution Control Agency (MPCA) and partners sampled 155 lakes, equally distributed over the state's three major ecoregions, as part of EPA's 2017 National Lake Assessment (NLA).

Fifty of the sampled lakes were part of the EPA's selection of lakes, but Minnesota was unique in the nation because we added in 100 more lakes to the survey to ensure that we can look for significant water quality differences within our state. Lakes sampled in 2017 ranged in size from small (less than 10 acres) to very large. The largest lake sampled was Flat Lake in Becker County (1,835 acres).

Key water quality take homes:

- The main differences in parameter values were driven by differences in location, as has been documented in past NLA surveys and historical MPCA lake monitoring databases.
- Lakes in the northern-eastern part of the state tended to have the lowest nutrient levels and highest lake clarity, while lakes in the southwest part of the state tended to have the highest nutrient levels and lowest lake clarity.
- Overall, the NLA datasets showed that one-time visits were useful proxies of the trophic state of both lakes statewide and by ecoregion.
- The median phosphorus concentration of MPCA's recently assessed lakes was in the mesotrophic range (~ 30 μg/L), similar to the average trophic state of the Sentinel Lakes. Given the findings from past NLA surveys, this value could be considered the approximate trophic condition of Minnesota lakes.

Introduction

National Lakes Assessment overview, lake selection, and report focus

The EPA is responsible for measuring the health of the nation's water resources. In the early 2000s a number of independent organizations, including the Government Accountability Office and the National Research Council, noted that the EPA and the states did not have a uniform, consistent approach to answer key questions about water quality; in response, the EPA, states, tribes, academics, and other federal agencies began collaborating on a series of statistically-based surveys called the National Aquatic Resource Surveys to provide the public and decision-makers with improved water quality information (see the <u>EPA NLA website</u>). The nation's first National Lakes Survey occurred in 2007, with follow up surveys in 2012 and 2017. The NLA was designed to answer the following questions about U.S. lakes (EPA, 2016):

- 1. What is the current biological, chemical, physical, and recreational condition of lakes?
 - a. What is the extent of degradation among lakes?
 - b. Is degradation widespread (e.g., national) or localized (e.g., regional)?

- 2. Is the proportion of lakes in the most disturbed condition getting better, worse, or staying the same over time?
- 3. Which environmental stressors are most strongly associated with degraded biological condition in lakes?

The EPA used a randomized statistical sampling approach to select lakes for the 2017 assessment, which was intended to reflect the full range in character and variation among lakes across the U.S. (EPA, 2016). To be included in the 2012 and 2017 surveys, a water body had to be either a natural or human-made freshwater lake, pond, or reservoir greater than 2.47 acres (1 hectare), at least 3.3 feet (1 meter) deep, with a minimum quarter acre (0.1 hectare) of open water. In 2007, the minimum lake area was 4 hectares (~ 10 acres, similar to Minnesota's typical minimum definition for the size of a lake basin). The 2012 and 2017 survey design was expanded to be more representative of lakes in the U.S. by including smaller lakes between 1 and 4 hectares of surface area, increasing the number of potential lakes to assess nationwide from approximately 50,000 in 2007 to 111,818 in 2012 and 2017 (EPA, 2016).

In all survey years, Minnesota received 50 lakes to sample statewide from the targeted EPA draw (referred to as "federal lakes" in the rest of this report). In 2012 and again in 2017, Minnesota choose to sample an additional 100 lakes to monitor for condition at an ecoregion scale. (Engel, 2018) (referred to as "state lakes" in the rest of this report). Minnesota worked with the EPA to ensure that the additional lakes were also selected through the EPA's random-stratified selection process. Minnesota was one of only two states who increased their sampling draw, and the only state to increase the draw by such a significant amount. Combining the 150 lakes and five additional lakes sampled by Tribal partners or EPA as part of their Reference Lakes network, yielded 155 lakes sampled within Minnesota for the 2017 NLA. Three lakes were resampled per QA protocols, yielding 158 lake visits in the summer of 2017.

For the 2017 survey, a large range of data were collected and analyzed in partnership with multiple agencies and Tribal staff, including lake samples for nutrients, herbicides, zooplankton, phytoplankton, algal toxins, emerging contaminants, sediment chemistry, and pesticides (Engel, 2018). This report focused on key water quality parameters for MPCA's lake assessment and reporting requirements, such as nutrients, chlorophyll, Secchi transparency, algal toxins, and other basic limnological parameters with longer-term sampling records in Minnesota lakes. In addition, a Tableau workbook will be published online (MPCA NLA Data Viewer) to allow partners and lake practitioners to view all available water quality data collected for the 2017 NLA. Reports on other sampling results can be accessed on the PCA website (MPCA NLA web page). Additionally, nation-wide results for parameters can be seen via the EPA data dashboard, although currently this tool only uses 2007 and 2012 data (EPA NLA Dashboard).

Climate conditions, summer 2017

The summer of 2017 was characterized as close to the 20-year climate normal for both temperature and precipitation. The statewide average temperature was 66.2 degrees; 2017 was the coolest summer since 2009 (<u>MN DNR 2017 Temperature Summary</u>). Precipitation in meteorological summer (June to August) statewide averaged 11.57 inches or .42 inches above normal (<u>MN DNR 2017 Precipitation Summary</u>). On a water year basis, precipitation was slightly above normal in northeast and central Minnesota, and below normal in the northwest / north central (*Figure 1*).

Figure 1. 2017 Water year precipitation departure from normal. Colors indicate the amount of departure from normal precipitation in inches across the state of Minnesota in 2017. Blue areas represent areas with higher than normal precipitation and yellow and orange represent areas with less than normal precipitation.

Methods summary

The lakes selected for the 2017 survey were spread out so that 50 lakes were sampled in each of the state's three aggregated Level III ecoregions (Northern Forests, Eastern Temperate Forests and Great Plains; *Figure 2*). Ecoregions are areas with similar land and water resources (based on ecology, landforms, soils, vegetation, climate, land use, wildlife, and hydrology), and are often used as a spatial framework for looking at bigger-picture patterns (Omernik 1987). Using a combination of desktop and in-person reconnaissance, lakes from the EPA's stratified random population were individually evaluated for meeting depth and open water area criteria, as well as physical access feasibility and permissions for lakes surrounded by private land. If a lake was not accessible, or access was denied, the next lake in the draw was evaluated until 50 federal lakes and a total in 50 in each ecoregion were selected. Staffing resources had to be increased to sample lakes in the most remote parts of Minnesota, such as the Boundary Waters Canoe Area Wilderness, Voyageurs National Park, and the Red Lake Nation; in some of these lakes, it took crews of six people one full day of travel to visit and sample a lake.

Figure 2. 2017 National Lake Survey lakes. 2017 National Lake Survey lakes in Minnesota, showing 50 lakes per each major aggregated Level III Ecoregion (ecological areas with similar land and water resources) in the state.

Lakes were sampled using consistent EPA or MPCA field protocols and standard operating procedures (EPA, 2017; MPCA, 2018). The majority of water samples and the sediment cores were collected from the deepest point of the lake. Federal lakes had more rigorous monitoring, including a physical habitat assessment at 10 randomized locations along the lakeshore, and collection of aquatic macroinvertebrates, lake sediment for contaminants, dissolved gases, bacteria, and zooplankton. State lakes were only sampled at the index location – in the main basin at the approximate location of max depth.

For the state lakes, the MPCA sent water samples to the Minnesota Department of Health laboratory using established protocols. Most lakes were visited once during the summer index period; three federal lakes were visited twice, per quality assurance methods.

This report focused on the 2017 water quality results from within Minnesota; the EPA has not yet publically released their nationwide data analysis.

Results and discussion

The 2017 NLA lakes varied in size from less than 10 acres to the largest lake sampled, Flat Lake in Becker County (1,835 acres, *Table 1*). Of all Minnesota's lakes greater than 10 acres, approximately 50% are located in the Northern Forests ecoregion, 40% in the Eastern Temperate Forest ecoregion, and 10% in the Great Plains ecoregion. Maximum depth for the surveyed lakes ranged from two feet (*i.e.*, slightly

deeper than the cutoff for inclusion) to 259 feet for the Pennington Mine Pit Lake in Crow Wing County. Average lake size did not significantly differ among the three ecoregions. However, depth was greatest in the Northern Forest and lowest in the Great Plains lakes – similar to what has been documented in the MPCA's historical monitoring databases (Heiskary, and Wilson 2005). Land-cover was dominated by forest and wetland in the Northern Forests, agriculture in the Great Plains, with a mix of forest, agriculture, urban and other uses in the Eastern Temperate Forests (*Figure 3*).

Table 1. IVIDI PHOTHELLY DALA TOL LITE 2017 INLA TAKES WILLITT IVITILESULA.

2017 NLA Dataset	Average Area (acres; Range)	Avg. Max. Depth (feet; Range)
Statewide, N= 155	153 (4 – 1835)	17 (2 – 259)
Northern Forest Ecoregion, N= 55	150 (6 – 1835)	29 (3 – 259)
Eastern Temperate Forest ecoregion, N= 50	160 (4 – 1155)	15 (3 – 76)
Great Plains ecoregion, N=50	148 (8 – 1328)	7 (2 – 30)

Figure 3. Landuse in Minnesota's three major ecoregions. Land cover categories across the state of Minnesota, based on the 2016 National Land Cover database.

Trophic status indicators

The term "trophic status" describes nutrient abundance and the amount of biological productivity (i.e., growth) that can be supported by those nutrients. Trophic status is assessed by looking at the concentration of the primary limiting nutrient for growth in water (phosphorus), chlorophyll-a (chl-a) (an indicator of phytoplankton biomass), and transparency (expressed as Secchi depth). The fundamental trophic status indicators of total phosphorus (TP), chl-a, and Secchi transparency were collected on all NLA lakes. As has been documented in historical MPCA reports and incorporated in lake eutrophication criteria (Heiskary and Wilson 1989; 2008), the distinct regional nature of trophic status across Minnesota's three ecoregions was again clearly evident in the 2017 NLA datasets. Trophic state based on TP tended to be lowest in the Northern Forests, highest in the Great Plains, with a transition in the Eastern Temperate Forests (*Figure 4*). Median TP concentrations were 19, 42, and 140 µg/L across the three ecoregions respectively. On a state-wide basis, about 41% of the lakes were in the oligotrophic /mesotrophic range, the remainder were eutrophic to hypereutrophic (*Figure 4*). Nation-wide in 2017, 10% of lakes were oligotrophic, 23% mesotrophic, 44% eutrophic, and 24% hypereutrophic (Pollard, 2019).

Similar to phosphorus, chl-a concentrations were lowest in the Northern Forests ecoregion, followed by the Eastern Temperate Forests and highest in the Great Plains (*Figure 5*). Variability increased along this gradient as well, and the highest range in chl-a values was in the Great Plains lakes. Median chl-a concentrations were 5.1, 17.1, and 45.5 μ g/L respectively, per ecoregion. On a statewide basis, 45% of lakes were oligotrophic to mesotrophic, and 55% of lakes were eutrophic to hypereutrophic.

Figure 5. 2017 Chlorophyll a. Chl-a regional distributions and box plots for 2017 NLA datasets. Categories corresponded to Carlson's TSI as follows: oligotrophic <3.5, mesotrophic 3.5-10, eutrophic 10-60, and hypereutrophic > 60 μ g/L, and were consistent with previous MPCA NLA reports.

The 2017 chl-a dataset was also compared to previously established thresholds related to algal bloom severity (Heiskary and Walker, 1988, *Figure 6*). Statewide, there was about an equal amount of the 158 lakes sampled classified as "no bloom" or "nuisance". Few lakes in the Northern Forests were above the "no bloom" threshold, while 72% of sampled lakes in the Great Plains had chl-a concentrations indicative of nuisance blooms (> 20 μ g/L). The maximum chl-a concentration (365 μ g/L) was recorded on Long Lake, a very shallow lake northwest of the city of Windom in Cottonwood County. The "very severe nuisance" threshold concentration of 60 μ g/L was exceeded in 20 lakes in the Great Plains ecoregion and eight in the Eastern Temperate Forests.

Figure 6. Chlorophyll a bloom frequencies. Chl-a nuisance bloom frequencies. Categories were as follows: no bloom - < 10 μ g/L, mild bloom 10-20 μ g/L, nuisance blooms - > 20 μ g/L.

As with phosphorus and chl-a, distinct regional patterns were evident in Secchi transparency (*Figure 7*). Secchi was highest in the Northern Forests, and lowest in the Great Plains. Median transparency was 2.3 meters in the Northern Forests (7.5 feet), 1.6 meters in the Eastern Temperate Forests (5.2 feet) and 0.9 meters in the Great Plains (2.9 feet). Individually, transparency ranged from 8.5 meters on an unnamed lake in Otter Tail County, to 0.1 meters on four lakes. Statewide, 27% of lakes were in the oligotrophic to mesotrophic range, versus 73% eutrophic to hypereutrophic. The proportion of statewide lakes classified as eutrophic was highest for Secchi, compared to TP or chl-a. This was likely influenced by several shallow lakes which may have had naturally low transparency due to wetland influence (primarily lakes in the Northern Forests), or the 2017 sampling of many shallow lakes with measured maximum depths less than the mesotrophic transparency range (2 meters).

Figure 7. 2017 Secchi transparency. Secchi transparency regional distributions and boxplots. Trophic categories were as follows: oligotrophic > 3.5 m, mesotrophic 3.5 - 2.0, eutrophic 0.7 - 2.0, and hypereutrophic <0.7 m. Five observations were recorded as equal to lake depth (Secchi disk visible on lake bottom).

Algal toxins

Three algal toxins were collected for the 2017 NLA: microcystin, cylindrospermopsin, and anatoxin-a. Microcystin was collected on all 155 lakes, while the other two toxins were only collected on the federal lakes. Microcystin results were put in three categories: below the 0.15 μ g/L detection limit, exceeding the 8 μ g/L recommended EPA ambient water quality criterion protective of recreation (i.e. swimming; EPA, 2019), and between the detection limit and the recommended criterion. In Minnesota lakes, microcystin was detected in 50% of the lakes (79 of 158 lake visits), and most detections were well below the recommended EPA water quality criterion. Microcystin concentrations exceeded the criterion in 9 lakes, or 6% of all sampled lakes (*Figure 8*). Median microcystin concentrations were quite low overall: below detection in the Northern Forests ecoregion, 0.27 μ g/L in the Eastern Temperate Forests, and 0.82 μ g/L in the Great Plains. Seven of the 9 lakes exceeding the EPA criterion were in the Great Plains, where the maximum concentration was in an unnamed lake near Ulen in Clay County. This concentration was high (118 μ g/L), noticeably exceeding the EPA criterion and the World Health Organization's threshold for high risk of microcystin exposure while swimming (WHO, 2003). Nationally, microcystin was not detected in 81% of lakes, detected but below the draft benchmark in 17% of lakes, and exceeded the benchmark in 2% of lakes (Pollard, 2019).

Several studies have used the national NLA datasets to document both weak relationships (see this <u>weak</u> relationship presentation) and stronger relationships (Yuan and Pollard, 2019) between microcystin concentration and either phytoplankton bio-volume or cyanobacteria abundance. However, there are many lake-specific environmental and weather factors responsible for both algal abundance and algal toxin production, and a single sample from a randomly selected lake is not necessarily the most appropriate sampling scale to identify such relationships. For example, in the 79 Minnesota lakes with detected microcystin concentrations, there was no statistical relationship ($R^2 = 0.003$) between microcystin and algal abundance (chl-a; *Figure 9*). Log-transforming the data increased the strength of the relationship between the two parameters, but the R^2 was still low (0.21) and likely not statistically significant. There was considerable variation in chl-a levels at low microcystin concentrations (*Figure 9*). Additionally, at microcystin concentrations below detection, chl-a concentrations ranged from near the detection limit to severe bloom levels ($0.6 - 121 \mu g/L$).

Although microcystin was present at low but detectable levels in approximately half of the sampled NLA lakes, the other two algal toxins (sampled only in the federal lakes) were rarely found. Cylindrospermospsin was below detection levels $(0.1 \ \mu g/L)$ on all lakes and anatoxin-a was detected in eight lakes, but the maximum concentration was quite low $(0.83 \ \mu g/L)$. Nationally, cylindrospermopsin was not detected in 92% of lakes, detected in 8% of lakes, and no lakes exceeded the draft benchmark of 8 $\mu g/L$ (Pollard, 2019). As was apparent in the Minnesota microcystin results, the results for the other algal toxins point to the episodic nature of both bloom formation and the algal toxin production. Numerous weather and environmental factors can contribute to bloom formation and toxin production and the connections are not fully understood; hence, the confounding correlations with chl-a concentration and microcystin observed in the 2017 NLA dataset. The MPCA and our partners continue to promote a "When in Doubt, Stay Out" message, protecting lake users from the health impacts of harmful algal blooms.

Figure 8. 2017 Microcystin results. Microcystin concentrations from 2017 NLA Lakes. Categories were as follows: not detected - < 0.15 μ g/L, 0.15 – 8 μ g/L, and > 8 μ g/L. Greater than 8 μ g/L is the recommended EPA criterion for protecting recreation in ambient waters.

Figure 9. Chlorophyll a and microcystin. Detected microcystin concentrations versus chl-a concentration in the 2017 NLA dataset; N=79.

Other NLA parameters

Concentrations of other parameters relevant to describing the water quality of Minnesota lakes were similar to regional conditions documented in past NLA surveys (Heiskary 2010, and 2014). Briefly, color and organic carbon were highest in the Northern Forest ecoregion, likely due to watershed influence from surrounding forests and wetlands. Ion chemistry, summarized by pH, acid neutralizing capacity and specific conductance indicated that waters were more dilute in the northeast and highest in the southwest Great Plains. The dominant cations in Minnesota lakes, calcium and magnesium, followed this same pattern. For example, median calcium concentration was 14 mg/L in the Northern Forest, 27 mg/L in the Eastern Temperate Forest, and 40 mg/L in the Great Plains.

Chloride is a conservative pollutant and is elevated in many Minnesota waters due to impacts from road salt application, permitted wastewater discharges, water softeners, and agricultural chemicals (MPCA, 2019). Similar to the parameters described above, chloride increased from northeast to southwest across Minnesota. Median concentrations were 0.7, 12.1, and 18.3 mg/L respectively across the north, central, and southern ecoregions. The maximum concentration was 173 mg/L in South Lake near Winsted in McLeod County. In 2017, no lakes exceeded the state chloride standard of 230 mg/L.

Sulfate is another dominant ion in Minnesota waters. The MPCA currently has a 10 mg/L sulfate standard in rule to protect waters with wild rice. In 2017, 22 lakes (14% of the total lakes) were below the 0.5 mg/L detection limit for sulfate. Median sulfate concentrations ranged from 0.6 mg/L in the Northern Forest, 6.5 mg/L in the Eastern Temperate Forest, and 52.5 mg/L in the Great Plains. A similar gradient was found in past NLA surveys, and is likely due to geologic influence (Heiskary, 2016; Gorham *et al.*, 1983). In 2017, 63 lakes exceeded the 10 mg/L water quality standard, but many of these lakes were in the southwestern portion of Minnesota and thus well beyond the range of the wild rice in Minnesota waters (MPCA Interactive Tool for Wild Rice Waters).

Lastly, *E.coli* bacteria was sampled on the federal lakes, and was present above the detection limit in 35 of 56 lakes. Generally, concentrations were very low; the maximum concentration was 46 colonies per 100 mL, much lower than the MPCA's standard protective of aquatic recreation in *streams and rivers* (126 as a geometric mean, or 1,260 for individual samples). The MPCA's metric for aquatic recreation in lakes is based on eutrophication (TP, chl-a, and Secchi transparency).

The Tableau data-viewer associated with this project allows the lake practitioner to further view data from all sampled NLA water quality parameters on a statewide and ecoregion scale (MPCA Tableau Data Viewer).

Temporal trends and patterns in NLA datasets

NLA surveys of Minnesota lakes have taken place in 2007, 2012, and 2017. Although a small sub-set of lakes remained the same across all three years, the majority of lakes were not sampled in every year. Fewer lakes were sampled in 2007 (n= 64), versus approximately 150 in 2012 and 2017 – reflective of 50 lakes in each of the state's three major ecoregions. Additionally, the change in lake minimum size from four to one hectares starting in 2012 resulted in the sampling of several small water bodies in 2012 and 2017 that could be considered similar to large open water wetlands. The median size of sampled lakes dropped from 77 hectares in 2007 to 19 and 25 hectares in 2012 and 2017, respectively. Because of these caveats, formal statistical trends were not calculated from the data from the three time periods. With further iterations of the NLA, more robust temporal and spatial trend statistics nationally, statewide, and by ecoregion will be available. However, medians for multiple chemicals, ecoregion-based comparisons for microcystin and trophic status indicators, and color values were all compared for the Minnesota NLA data from 2007, 2012 and 2017.

Yearly medians for select parameters were calculated for two of the main trophic status indicators, microcystin and for other chemical parameters of interest (Table 2). Overall, similar patterns were present in each year. For the three time periods microcystin concentrations in NLA datasets were low; median concentrations were often below or near the method detection limit. This differs significantly from the much higher concentrations found in the MPCA's targeted studies or incident-based investigations (Heiskary et. al., 2014).

Parameter	2007 NLA	2012 NLA	2017 NLA
Total Phosphorus (µg/L)	20	29	41
Chlorophyll-a (µg/L)	7.6	13.8	12.3
Secchi Transparency (m)	1.7	1.0	1.2
Total Nitrogen (µg/L)	807	1,300	780
Microcystin (µg/L)	0.2	<0.15	0.16
pH (std. units)	8.5	8.5	8.5
Spec. Cond. (us/cm)	321	303	311
Color (Pt. Co. Units)	12	30	20
DOC (mg/L)	8.6	12.6	8.9
Calcium (mg/L)	26	24	25
Sulfate (mg/L)	6.2	10.4	2.9

Table 2. Multi-Year NLA parameter results. Statewide median concentrations for select NLA parameters, 2007,2012, and 2017. These calculations used only index site data.

The trophic status indicators TP and chl-a were compared among sample years, by ecoregion. Secchi transparency was not included in these comparisons, since Secchi depth was unknown on shallow lakes where lake depth was less than Secchi depth (*i.e.*, the disk was visible on lake bottom) which occurred in 3% of the lakes in 2017 and 2007 and in 20% of the lakes in 2012. For TP, the central tendency of the dataset (height of box plots) did not significantly change on a state-wide basis among the three time periods (*Figure 10*). Similar patterns were visible in the chl-a data (*Figure 11*). In 2007, 2012 and 2017, both TP and chl-a were lowest in the Northern Forest ecoregion, moderate in the Eastern Temperate Forests ecoregion and highest in value and variability in the Great Plains ecoregion. In all three NLA years, the regional pattern in microcystin was similar to other trophic state parameters in the three ecoregions (*Figure 8*; Heiskary et. al., 2014).

Figure 10. Total phosphorus. Statewide and ecoregion NLA trends for TP in 2007, 2012, and 2017. Means were represented by X's.

0

2007, N=27 2012, N=51 2017, N=57

0

2007, N=10 2012, N=48 2017, N=51

Figure 11. Chlorophyll a. Statewide and ecoregion NLA trends for chl-a in 2007, 2012, and 2017.

A comparison of TP from the three NLA time periods and two MPCA long-term datasets (Sentinel Lakes, and the larger MPCA Water Quality assessment database) supported the differences based on ecoregion, and indicated that NLA sampling data values were consistent with other sampled values. The 25 sentinel lakes represent lake types across a gradient of trophic state and depth across the state's diverse ecoregions (Sentinel Lakes), and the Water Quality Assessment database reports summer-average values for all lakes with eutrophication monitoring over the most recent 10 years. With the passage of the Clean Water Legacy Amendment in 2008, the MPCA and partners have been able to sample and assess most large to medium sized lakes (> 100 acres) within the state (n=3,710) over this 2010-2019 timeframe.

Median TP was highest in the 2017 NLA data and lowest in the Sentinel Lakes (*Figure 12*). This was influenced by the sample frame of the datasets, since the NLA lakes included more shallow eutrophic lakes and came from a population that was not equally representative of lake distribution across the ecoregions. Minnesota's lake population is not equally spread across the state and approximately 90% of all of the state's lakes are in the Northern Forest and Eastern Temperature Forest ecoregions. The assessment dataset and the Sentinel Lakes dataset were more reflective of this. In the assessment database, only about 10% of the lakes were from the Great Plains. As such, the median phosphorus concentration from the MPCA assessment database was between NLA and the Sentinel Lakes. Median TP over the NLA time periods increased from approximately 20 to 41 μ g/L, although the central tendency of the phosphorus dataset over the three time periods was similar (*Figure 10*). The median phosphorus concentration of MPCA's recently assessed lakes was in the mesotrophic range (~ 30 μ g/L), similar to the average trophic state of the Sentinel Lakes. Given the findings from past NLA surveys, this value could be considered the approximate trophic condition of Minnesota lakes. Overall, the NLA datasets showed that one-time visits were useful proxies of the trophic state of both lakes statewide and by ecoregion.

Figure 12. Long-term TP medians. Median TP concentrations from NLA and MPCA long-term datasets; the former are June-September averages from 2010-2019.

Multi-year lakes

Twelve lakes were sampled all three NLA years, spanning two of the three ecoregions (Northern Forests and Eastern Temperate Forests). Total phosphorus and chl-a results varied by individual lake (*Table 3*). Some lakes were very consistent among years (such as Long Lake, 31-0266-01), while others varied considerably (such as South Lake). In general, deeper lakes within the Northern Forests had more stable TP and chl-a concentrations.

Lake Name	Lake ID Number	2007 TP	2012 TP	2017 TP	2007 Chl-a	2012 Chl-a	2017 Chl-a
Long	31026601	18	22	18	9	8	6
Spring	69012900	12	44	20	5	6	2
Lookout	18012300	20	36	34	6	14	5
Darling	21008000	15	48	20	6	3	3
Long	11048000	6	21	14	Missing	4	3
Richey	16064300	36	25	21	Missing	4	9
Snail	62007300	13	20	10	5	3	8
Eagle	7006001	239	159	243	126	93	114
Round	56047600	9	56	16	3	3	3
South	43001400	1,184	524	770	936	122	330
Flat	3024200	24	46	47	9	3	9
Jennie	47001500	69	38	42	32	3	21

Table 3. Total phosphorus and chl-a concentrations (μ g/L) for lakes sampled all three NLA time periods.

Lake color

Lake color can be used to examine trends in lake productivity, and this was explored using Minnesota's NLA dataset. Lakes were placed in to categories based on work by Leech *et al.* (2018), who used the national 2007 and 2012 NLA datasets to place lakes into four basic categories based on TP and color:

- Blue (oligotrophic), low phosphorus, low color
- Green (eutrophic), high phosphorus, low color
- Brown (dystrophic), low phosphorus, high color
- Murky (mesotrophic), high phosphorus, high color

Results comparing the 2007 and 2012 indicted that nationally, "blue" lakes were decreasing and "murky" lakes were increasing, while there were no statistical differences in the number of "green" or "brown" lakes. The loss of oligotrophic lakes and streams ubiquitously across the country is a key finding from NLA datasets, especially in wilderness areas (Stoddard et. al., 2016). These general trends also held true for the Minnesota lakes from 2007 to 2012; the proportion of blue lake declined substantially, while murky lakes increased (*Figure 13*). One caveat was that more Northern Forest lakes and fewer Great Plains lakes were sampled in 2007, and the latter were more likely to fall into the higher nutrient categories. From 2012 to 2017 in Federal lakes within Minnesota, the proportion of "blue" lakes increased while "murky" lakes declined.

Figure 13. Statewide color categories. Statewide and ecoregion NLA trends for lake color categories in 2007, 2012, and 2017. Color categories incorporated TP values and lake color, and were based on Leech *et al.* (2018).

Summary: Key findings

The MPCA and partners sampled 155 lakes, equally distributed over the state's three major ecoregions as part of EPA's 2017 National Lake Assessment. The randomized sample frame of EPA's NLA provided statistically based sampling of lake condition across Minnesota, and the approximately 50 samples per ecoregion allowed additional inferences of lake conditions across these landscapes. The distinct regional nature of trophic status across Minnesota's three ecoregions was clearly evident in the 2017 NLA dataset, and matched patterns documented in past NLA surveys and in other MPCA long-term water quality monitoring datasets. Both trophic state and parameters describing ionic chemical composition (*i.e.*, concentrations of dissolved solids and major cations and anions) were generally lowest in the northern portion of the state, highest in the southwest, with a transition zone in between. These patterns followed land-cover characteristics (and proportions of disturbed land use) in these regions, with forests and wetlands dominating in the north and agricultural land use in the south and southwest, with a transition in between within the Eastern Temperate Forest ecoregion (Heiskary and Wilson, 2008; Heiskary, 2016).

References cited

Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography 22(2) p. 361-369.

U.S. Environmental Protection Agency (EPA). 2009. National Lakes Assessment: A Collaborative

Survey of the Nation's Lakes. EPA 841-R-09-001. U.S. <u>https://www.epa.gov/sites/production/files/2013-11/documents/nla_newlowres_fullrpt.pdf</u>

U.S. Environmental Protection Agency (EPA). 2016. National Lakes Assessment 2012: A Collaborative Survey of Lakes in the United States. EPA 841-R-16-113. U.S. Environmental Protection Agency, Washington, DC. <u>https://www.epa.gov/sites/production/files/2016-12/documents/nla_report_dec_2016.pdf</u>

U.S. Environmental Protection Agency (EPA).2017. National Lakes Assessment 2017. Field Operations Manual. EPA 841-B-16-002. U.S. Environmental Protection Agency, Washington, DC.

U.S. Environmental Protection Agency (EPA).2019. Recommended Human Health Recreational Ambient Water Quality Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin. <u>https://www.epa.gov/sites/production/files/2019-09/documents/recommend-cyano-rec-water-2019-update.pdf</u>

Engel, L., J. Anderson, D. Tollefson, M. Ferrey, and J. Hirsch, Minnesota's Intensification of the National Lakes Assessment Survey. NALMS Lakeline, Summer, 2018, p. 26 – 29. <u>https://www.nalms.org/wp-content/uploads/2018/09/38-2-7.pdf</u>

Heiskary, S., Lindon, M., and J. Anderson. 2014. Summary of microcystin concentrations in Minnesota Lakes. Lake and Reservoir Management, 30:268-272.

Heiskary, S. and M. Lindon, 2010. Minnesota National Lakes Assessment Project: an overview of water chemistry in Minnesota Lakes. Minnesota Pollution Control Agency. wq-nlap1-05.

Heiskary, S. 2016. National Lakes Assessment 2012. Water chemistry, lake morphometry, and watershed characteristics of Minnesota's 2012 NLA lakes. Minnesota Pollution Control Agency.

Heiskary, S.A. and C.B. Wilson, 1989. The regional nature of lake water quality across Minnesota: an analysis for improving resource management. Journal of the Minnesota Academy of Science 55(1)71-77.

Heiskary, S.A. and C.B. Wilson, 2008. Minnesota's approach to lake nutrient criteria development. Lake and Reservoir Management. 24:282-297.

Leech, D.M., A.I. Pollard, S.G. Labou, and S.E. Hampton, 2018. Fewer blue lakes and more murky lakes across the continental U.S.: Implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680.

Minnesota Pollution Control Agency (MPCA). 2019. Draft Statewide Chloride Management Plan. 217 p. <u>https://www.pca.state.mn.us/sites/default/files/wq-s1-94.pdf</u>

Omernik, J.M. 1987. Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Annals of the Association of American Geographers 77(1):118-125.

Pollard. A. 2019. A Preview of Results From the 2017 US National Lakes Assessment, Office of Water, US Environmental Protection Agency, Washington, District of Columbia. NALMS 2019 Symposium, Burlington, Vermont, Nov. 11-15 2019.

World Health Organization. 2003. Guidelines for safe recreational water environments. Coastal and fresh waters. Volume 1. Geneva (Switzerland).

Yuan, L.L. and A. I. Pollard. 2019. Combining national and state data improves predictions of microcystin concentration. Harmful Algae 84:75-83).

Appendix 1. Minnesota's 2017 NLA lakes

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10001	Federal lake	31026601	8/1/2017	Long Lake	Itasca	360.2	10.4	Northern Forest
NLA17_MN- 10002	Federal lake	7006001	7/20/2017	Eagle Lake	Blue Earth	461.3	3.0	Eastern Temperate Forest
NLA17_MN- 10003	Federal lake	43001400	9/14/2017	South Lake	Mcleod	173.5	1.0	Eastern Temperate Forest
NLA17_MN- 10004	Federal lake	21008000	8/9/2017	Lake Darling	Douglas	1155.9	18.9	Eastern Temperate Forest
NLA17_MN- 10005	Federal lake	69012900	7/17/2017	Spring Lake	St Louis	98.6	7.6	Northern Forest
NLA17_MN- 10006	Federal lake	18012300	7/24/2017	Lookout Lake	Crow Wing	226.4	4.9	Northern Forest
NLA17_MN- 10007	Federal lake	11048000	7/12/2017	Long Lake	Cass	260.4	24.4	Northern Forest
NLA17_MN- 10008	Federal lake	16064300	8/15/2017	Richey Lake	Cook	103.9	2.1	Northern Forest
NLA17_MN- 10009	Federal lake	47001500	8/23/2017	Lake Jennie	Meeker	1058.4	4.3	Eastern Temperate Forest
NLA17_MN- 10010	Federal lake	62007300	7/10/2017	Snail Lake	Ramsey	157.5	9.1	Eastern Temperate Forest
NLA17_MN- 10011	Federal lake	56047600	8/8/2017	Round (Maine) Lake	Otter Tail	85.4	10.4	Eastern Temperate Forest
NLA17_MN- 10012	Federal lake	3024200	9/11/2017	Flat Lake	Becker	1835.9	2.7	Northern Forest
NLA17_MN- 10014	Federal lake	69075700	8/15/2017	Net Lake	St Louis	98.4	3.7	Northern Forest
NLA17_MN- 10016	Federal lake	3075100	9/7/2017	Unnamed	Becker	9.8	1.8	Eastern Temperate Forest
NLA17_MN- 10017	Federal lake	56081000	8/29/2017	Unnamed	Otter Tail	33.5	2.1	Great Plains
NLA17_MN- 10018	Federal lake	38062300	8/16/2017	Spree Lake	Lake	29.7	3.4	Northern Forest
NLA17_MN- 10019	Federal lake	49013900	8/7/2017	Unnamed	Morrison	6.7	3.0	Northern Forest
NLA17_MN- 10020	Federal lake	69092000	9/6/2017	Stuart Lake	St Louis	27.0	12.2	Northern Forest
NLA17_MN- 10021	Federal lake	30007200	7/10/2017	Long Lake	Isanti	349.2	3.4	Eastern Temperate Forest
NLA17_MN- 10022	Federal lake	58001300	8/31/2017	Greigs Lake	Pine	48.4	20.7	Northern Forest

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10023	Federal lake	26007100	9/13/2017	Unnamed	Grant	53.2	3.8	Eastern Temperate Forest
NLA17_MN- 10025	Federal lake	11013600	7/12/2017	Lake Lomish	Cass	264.0	4.6	Northern Forest
NLA17_MN- 10026	Federal lake	86023000	7/19/2017	Somers Lake	Wright	444.3	5.5	Eastern Temperate Forest
NLA17_MN- 10027	Federal lake	77003500	8/8/2017	Beauty Lake	Todd	230.0	8.8	Eastern Temperate Forest
NLA17_MN- 10028	Federal lake	38049200	8/22/2017	Neglige Lake	Lake	34.3	17.7	Northern Forest
NLA17_MN- 10030	Federal lake	17005601	8/30/2017	Double Lake (North Portion)	Cottonwood	123.1	2.1	Great Plains
NLA17_MN- 10032	Federal lake	31020000	9/7/2017	Unnamed (Mississippi)	Itasca	13.7	1.5	Northern Forest
NLA17_MN- 10033	Federal lake	29029600	7/31/2017	Unnamed	Hubbard	15.5	7.5	Northern Forest
NLA17_MN- 10034	Federal lake	56017102	9/12/2017	Peterson Lake	Otter Tail	35.3	2.4	Eastern Temperate Forest
NLA17_MN- 10037	Federal lake	56084600	9/11/2017	lverson Lake	Otter Tail	52.4	5.5	Eastern Temperate Forest
NLA17_MN- 10038	Federal lake	9005000	7/10/2017	Jaskari Lake	Carlton	83.8	2.0	Northern Forest
NLA17_MN- 10042	Federal lake	73042500	8/7/2017	Unnamed	Stearns	12.0	2.6	Eastern Temperate Forest
NLA17_MN- 10044	Federal lake	69020800	8/24/2017	Nibin Lake	St Louis	40.2	3.4	Northern Forest
NLA17_MN- 10045	Federal lake	3020900	9/5/2017	Carman Lake	Becker	116.2	8.2	Northern Forest
NLA17_MN- 10046	Federal lake	34020600	7/25/2017	Andrew Lake	Kandiyohi	752.1	7.9	Eastern Temperate Forest
NLA17_MN- 10047	Federal lake	18014600	7/25/2017	Unnamed	Crow Wing	23.8	4.8	Northern Forest
NLA17_MN- 10048	Federal lake	31051200	8/14/2017	Gale Lake	Itasca	74.3	15.2	Northern Forest
NLA17_MN- 10049	Federal lake	44015500	8/1/2017	Unnamed	Mahnomen	32.8	1.7	Eastern Temperate Forest
NLA17_MN- 10051	State lake	56049000	8/29/2017	Round Lake	Otter Tail	80.3	4.3	Eastern Temperate Forest
NLA17_MN- 10052	State lake	4001400	7/31/2017	Popple Lake	Beltrami	93.9	1.6	Northern Forest
NLA17_MN- 10053	State lake	22002200	6/19/2017	South Walnut Lake	Faribault	340.2	0.6	Great Plains

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10054	State lake	3039300	9/6/2017	Unnamed	Becker	10.5	3.2	Eastern Temperate Forest
NLA17_MN- 10055	State lake	56085300	8/30/2017	Unnamed	Otter Tail	34.3	1.9	Eastern Temperate Forest
NLA17_MN- 10056	State lake	73024100	6/21/2017	Black Oak Lake	Stearns	99.9	4.9	Eastern Temperate Forest
NLA17_MN- 10057	State lake	60007800	8/1/2017	Solbery Lake	Polk	15.6	1.4	Great Plains
NLA17_MN- 10058	State lake	34032100	6/29/2017	Swenson Lake	Kandiyohi	104.6	4.3	Eastern Temperate Forest
NLA17_MN- 10059	State lake	38051000	7/19/2017	Cattyman Lake	Lake	17.3	2.7	Northern Forest
NLA17_MN- 10060	State lake	26022800	6/22/2017	Hodgson Lake	Grant	50.3	1.3	Great Plains
NLA17_MN- 10061	State lake	17002400	6/20/2017	String Lake	Cottonwood	336.0	1.8	Great Plains
NLA17_MN- 10062	State lake	56011300	8/28/2017	Unnamed	Otter Tail	36.1	1.6	Eastern Temperate Forest
NLA17_MN- 10063	State lake	15010700	7/27/2017	Miskogineu Lake	Clearwater	135.1	1.0	Northern Forest
NLA17_MN- 10064	State lake	3062700	8/2/2017	Unnamed	Becker	19.0	2.0	Eastern Temperate Forest
NLA17_MN- 10065	State lake	30006000	7/20/2017	Section Lake	Isanti	125.0	1.2	Eastern Temperate Forest
NLA17_MN- 10066	State lake	73031700	6/21/2017	Unnamed	Stearns	13.2	1.5	Eastern Temperate Forest
NLA17_MN- 10067	State lake	44014000	8/1/2017	Circle Lake	Mahnomen	38.0	2.8	Eastern Temperate Forest
NLA17_MN- 10068	State lake	69005000	8/10/2017	Big Lake	St Louis	788.6	8.5	Northern Forest
NLA17_MN- 10069	State lake	37002601	6/27/2017	Unnamed	Lac Qui Parle	21.4	1.0	Great Plains
NLA17_MN- 10070	State lake	15027900	8/2/2017	Unnamed	Clearwater	12.1	1.5	Northern Forest
NLA17_MN- 10071	State lake	38002401	7/18/2017	Crooked Lake	Lake	170.0	5.5	Northern Forest
NLA17_MN- 10072	State lake	6026600	6/22/2017	Unnamed	Big Stone	61.7	1.4	Great Plains
NLA17_MN- 10074	State lake	56043000	8/9/2017	Fiske Lake	Otter Tail	242.5	7.9	Eastern Temperate Forest

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN -10076	State lake	27002900	7/26/2017	Edina Lake	Hennepin	23.6	1.2	Eastern Temperate Forest
NLA17_MN -10078	State lake	1010000	7/20/2017	Jenkins Lake	Aitkin	111.6	11.6	Northern Forest
NLA17_MN -10079	State lake	29014400	6/27/2017	Sunday Lake	Hubbard	63.1	1.2	Eastern Temperate Forest
NLA17_MN -10080	State lake	72005001	6/20/2017	High Island Lake	Sibley	1328.1	2.7	Great Plains
NLA17_MN -10081	State lake	56049200	8/29/2017	Horseshoe Lake	Otter Tail	9.6	4.2	Eastern Temperate Forest
NLA17_MN -10082	State lake	31089300	8/7/2017	Lower Pigeon Lake	Itasca	285.5	6.1	Northern Forest
NLA17_MN -10083	State lake	53002402	6/20/2017	Lake Ocheda (Middle Bay)	Nobles	714.6	1.5	Great Plains
NLA17_MN -10084	State lake	37010000	8/31/2017	Unnamed	Lac Qui Parle	25.4	1.5	Great Plains
NLA17_MN -10085	State lake	43007600	6/28/2017	Bear Lake	Mcleod	169.9	2.7	Eastern Temperate Forest
NLA17_MN -10086	State lake	56057800	8/2/2017	Holbrook Lake	Otter Tail	147.8	4.3	Eastern Temperate Forest
NLA17_MN -10087	State lake	11024100	6/26/2017	Tamarack Lake	Cass	44.0	1.1	Northern Forest
NLA17_MN -10088	State lake	11015000	6/26/2017	Tamarack Lake	Cass	28.5	1.1	Northern Forest
NLA17_MN -10089	State lake	31029800	7/31/2017	Walters Lake	Itasca	120.0	5.2	Northern Forest
NLA17_MN -10090	State lake	21006000	8/28/2017	Kruegers Slough	Douglas	40.8	15.8	Eastern Temperate Forest
NLA17_MN -10091	State lake	3041400	8/2/2017	Gandrud Lake	Becker	24.6	1.2	Eastern Temperate Forest
NLA17_MN -10092	State lake	26020500	6/22/2017	Unnamed	Grant	64.8	1.5	Great Plains
NLA17_MN -10094	State lake	56014700	8/28/2017	Unnamed	Otter Tail	29.3	3.5	Eastern Temperate Forest
NLA17_MN -10095	State lake	18043900	8/7/2017	Pennington Mine Lake	Crow Wing	47.9	78.9	Northern Forest
NLA17_MN -10096	State lake	27017901	6/28/2017	Little Long Lake (North Bay)	Hennepin	49.0	23.2	Eastern Temperate Forest
NLA17_MN -10097	State lake	31040700	8/8/2017	Hay Lake	Itasca	53.2	12.5	Northern Forest

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10098	State lake	13006100	7/20/2017	Unnamed	Chisago	31.4	1.1	Eastern Temperate Forest
NLA17_MN- 10099	State lake	86006500	6/21/2017	Unnamed	Wright	59.6	2.5	Eastern Temperate Forest
NLA17_MN- 10101	State lake	61018900	8/21/2017	Unnamed	Роре	28.9	1.7	Great Plains
NLA17_MN- 10102	State lake	3023600	9/6/2017	Unnamed	Becker	16.0	1.2	Northern Forest
NLA17_MN- 10103	State lake	75020500	6/26/2017	Unnamed	Stevens	10.0	1.3	Great Plains
NLA17_MN- 10104	State lake	14008100	8/1/2017	Unnamed	Clay	17.8	1.5	Great Plains
NLA17_MN- 10105	State lake	27000400	6/28/2017	Penn Lake	Hennepin	46.5	2.1	Eastern Temperate Forest
NLA17_MN- 10107	State lake	26020400	6/22/2017	Graham Lake	Grant	133.5	2.1	Great Plains
NLA17_MN- 10108	State lake	58020500	8/14/2017	Unnamed	Pine	29.3	1.2	Northern Forest
NLA17_MN- 10109	State lake	61011100	6/21/2017	Pelican Lake	Роре	510.8	10.4	Eastern Temperate Forest
NLA17_MN- 10110	State lake	16023600	6/28/2017	Lac Lake	Cook	60.8	7.6	Northern Forest
NLA17_MN- 10112	State lake	47006200	6/28/2017	Greenleaf Lake	Meeker	228.8	5.5	Eastern Temperate Forest
NLA17_MN- 10117	State lake	18009500	6/27/2017	Chrysler Lake	Crow Wing	110.4	1.1	Northern Forest
NLA17_MN- 10118	State lake	31014200	7/31/2017	Unnamed	Itasca	33.0	12.2	Northern Forest
NLA17_MN- 10122	State lake	69024900	7/18/2017	Colby Lake	St Louis	502.8	9.1	Northern Forest
NLA17_MN- 10123	State lake	14010300	9/6/2017	Cromwell Lake	Clay	28.6	1.3	Great Plains
NLA17_MN- 10127	State lake	36001200	7/24/2017	Miller Lake	Koochiching	17.6	14.6	Northern Forest
NLA17_MN- 10159	Federal lake	16018200	8/15/2017	Ball Club Lake	Cook	216.5	8.2	Northern Forest
NLA17_MN- 10161	Federal lake	34003300	7/24/2017	Ella Lake	Kandiyohi	141.4	3.4	Great Plains
NLA17_MN- 10162	State lake	40009800	7/18/2017	Unnamed	Le Sueur	4.2	1.6	Eastern Temperate Forest
NLA17_MN- 10164	State lake	3030300	8/3/2017	Bear Lake	Becker	29.2	4.2	Eastern Temperate Forest

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10165	State lake	21072900	8/30/2017	Unnamed	Douglas	5.5	1.7	Eastern Temperate Forest
NLA17_MN- 10166	State lake	82003100	9/11/2017	Terrapin Lake	Washington	124.1	2.0	Eastern Temperate Forest
NLA17_MN- 10179	Federal lake	3007700	8/2/2017	Unnamed	Becker	56.1	1.0	Northern Forest
NLA17_MN- 10180	Federal lake	56013400	8/29/2017	Unnamed	Otter Tail	86.2	1.7	Eastern Temperate Forest
NLA17_MN- 10183	Federal lake	6012000	8/21/2017	Cup Lake	Big Stone	51.1	3.4	Great Plains
NLA17_MN- 10187	Federal lake	11048700	7/11/2017	Little Twin Lake	Cass	108.6	9.1	Northern Forest
NLA17_MN- 10188	Federal lake	10010700	8/24/2017	Braunworth Lake	Carver	37.0	1.1	Eastern Temperate Forest
NLA17_MN- 10189	Federal lake	11004700	7/19/2017	Mule Lake	Cass	60.3	10.7	Northern Forest
NLA17_MN- 10191	Federal lake	3019900	9/6/2017	Johnson Lake	Becker	150.1	1.8	Northern Forest
NLA17_MN- 10192	Federal lake	34044000	8/22/2017	Johnson Lake	Kandiyohi	105.7	1.0	Great Plains
NLA17_MN- 10193	Federal lake	18043000	8/9/2017	Unnamed	Crow Wing	8.7	2.1	Northern Forest
NLA17_MN- 10194	Federal lake	31062300	8/15/2017	Boy Lake	Itasca	30.9	12.2	Northern Forest
NLA17_MN- 10195	State lake	60001500	8/7/2017	Whitefish Lake	Polk	231.0	5.5	Eastern Temperate Forest
NLA17_MN- 10196	State lake	56063000	8/29/2017	Unnamed	Otter Tail	102.1	3.1	Eastern Temperate Forest
NLA17_MN- 10198	State lake	69004400	6/28/2017	Butterball Lake	St Louis	438.7	1.8	Northern Forest
NLA17_MN- 10199	State lake	6000500	6/22/2017	Unnamed	Big Stone	47.7	1.9	Great Plains
NLA17_MN- 10202	State lake	16039900	6/27/2017	Unnamed	Cook	11.9	1.5	Northern Forest
NLA17_MN- 10204	State lake	18012700	7/24/2017	Coles Lake	Crow Wing	115.8	1.5	Northern Forest
NLA17_MN- 10205	State lake	38058000	9/12/2017	Horseshoe Lake	Lake	202.8	12.2	Northern Forest
NLA17_MN- 10230	State lake	46004900	6/19/2017	lowa Lake	Martin	680.5	2.7	Great Plains
NLA17_MN- 10239	State lake	87003200	6/27/2017	Mud Lake	Yellow Medicine	13.5	1.2	Great Plains
NLA17_MN- 10246	State lake	6005000	6/21/2017	Otrey Lake	Big Stone	450.4	2.4	Great Plains

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10254	State lake	3047800	9/6/2017	Baker Lake	Becker	34.5	1.1	Great Plains
NLA17_MN- 10260	State lake	19001100	7/26/2017	Kegan Lake	Dakota	28.1	2.3	Great Plains
NLA17_MN- 10278	State lake	60024400	8/1/2017	Unnamed	Polk	19.2	2.6	Great Plains
NLA17_MN- 10283	State lake	42003600	6/27/2017	Jacobsons Marsh	Lyon	28.0	1.0	Great Plains
NLA17_MN- 10291	State lake	26011100	6/26/2017	Patchen Lake	Grant	254.4	1.8	Great Plains
NLA17_MN- 10294	State lake	32003300	6/19/2017	Pearl Lake	Jackson	117.0	1.8	Great Plains
NLA17_MN- 10303	State lake	34024700	6/29/2017	Unnamed	Kandiyohi	8.6	1.0	Great Plains
NLA17_MN- 10315	State lake	47012700	6/28/2017	Goose Lake	Meeker	121.4	3.7	Great Plains
NLA17_MN- 10326	State lake	42006600	6/27/2017	Section Thirty- Three Lake	Lyon	97.5	2.3	Great Plains
NLA17_MN- 10330	State lake	83004300	6/20/2017	St. James Lake	Watonwan	193.5	4.6	Great Plains
NLA17_MN- 10346	State lake	51002700	6/20/2017	Smith Lake	Murray	95.0	2.7	Great Plains
NLA17_MN- 10353	State lake	56100200	8/29/2017	Unnamed	Otter Tail	47.9	2.3	Great Plains
NLA17_MN- 10357	State lake	24006700	6/19/2017	Unnamed	Freeborn	87.0	3.0	Great Plains
NLA17_MN- 10405	State lake	14008800	9/6/2017	Unnamed	Clay	25.1	1.3	Great Plains
NLA17_MN- 10437	State lake	6018800	6/21/2017	Unnamed	Big Stone	52.1	3.6	Great Plains
NLA17_MN- 10439	State lake	75003400	6/26/2017	Bjork Lake	Stevens	47.1	1.8	Great Plains
NLA17_MN- 10453	State lake	76016600	6/22/2017	Unnamed	Swift	28.8	2.1	Great Plains
NLA17_MN- 10485	State lake	46011600	8/29/2017	Round Lake	Martin	44.5	1.3	Great Plains
NLA17_MN- 10531	State lake	81000300	8/15/2017	St. Olaf Lake	Waseca	89.0	9.1	Great Plains
NLA17_MN- 10537	State lake	42003200	8/30/2017	Lake of the Hill	Lyon	110.8	2.0	Great Plains
NLA17_MN- 10548	State lake	32004000	8/29/2017	Summer Marsh	Jackson	27.1	1.1	Great Plains
NLA17_MN- 10556	State lake	34019400	9/14/2017	Unnamed	Kandiyohi	49.8	2.5	Great Plains
NLA17_MN- 10568	State lake	47011600	9/14/2017	Hoosier Lake	Meeker	104.9	2.1	Great Plains
NLA17_MN- 10579	State lake	41002200	8/30/2017	Slough Lake	Lincoln	159.9	1.5	Great Plains

NLA ID #	Federal or State Lake	DOW #	Date Sampled	Lake Name	County	Area (acres)	Depth (m)	Ecoregion
NLA17_MN- 10620	State lake	17004802	8/29/2017	Long Lake	Cottonwood	196.7	1.5	Great Plains
NLA17_MN- 10643	State lake	26028200	8/9/2017	Lightning Lake	Grant	526.5	3.4	Great Plains
NLA17_MN- 10842	Federal lake	15001000	9/13/2017	Elk Lake	Clearwater	279.3	28	Northern Forest
NLA17_MN- HP002	Federal lake	4019300	9/12/2017	Green Lake	Beltrami	61.2	19.0	Northern Forest
NLA17_MN- HP003	Federal lake	69076800	7/11/2017	Martin Lake	St. Louis	63.7	22.6	Northern Forest
NLA17_MN- HP004	Federal lake	N / A	7/13/2017	Unnamed	Cass	6.9	6.0	Northern Forest