

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF

FEB 1 2 2020

WW-16J

Glenn Skuta, Watershed Division Director Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, Minnesota 55155-4194

Dear Mr. Skuta:

The U.S. Environmental Protection Agency has conducted a complete review of the final Total Maximum Daily Loads (TMDLs) for the Minnesota River-Greater Blue Earth watershed, including supporting documentation and follow up information. The Minnesota River-Greater Blue Earth watershed is located in south-central Minnesota. The TMDLs were calculated for total suspended solids (TSS) to address the impaired Aquatic Life Use.

EPA has determined that these TMDLs meet the requirements of Section 303(d) of the Clean Water Act and EPA's implementing regulations at 40 C.F.R. Part 130. Therefore, EPA hereby approves Minnesota's 68 TMDLs for the Minnesota River-Greater Blue Earth watershed. The statutory and regulatory requirements, and EPA's review of Minnesota's compliance with each requirement, are described in the enclosed decision document.

We wish to acknowledge Minnesota's effort in submitting these TMDL addressing Aquatic Life Use, and look forward to future submissions by the State of Minnesota. If you have any questions, please contact Mr. David Pfeifer, Chief of the Watersheds and Wetlands Branch, at 312-353-9029.

Sincerely,

Thomas R. Short, Jr. Acting Director, Water Division

Enclosure

cc: Celine Lyman, MPCA Paul Davis, MPCA

wq-iw7-47g

TMDL: Minnesota River-Greater Blue Earth River Watershed TMDL, MNDate:FEB 1 2 2020

DECISION DOCUMENT FOR THE MINNESOTA RIVER-GREATER BLUE EARTH WATERSHED TMDLS, MN

Section 303(d) of the Clean Water Act (CWA) and EPA's implementing regulations at 40 C.F.R. Part 130 describe the statutory and regulatory requirements for approvable TMDLs. Additional information is generally necessary for EPA to determine if a submitted TMDL fulfills the legal requirements for approval under Section 303(d) and EPA regulations, and should be included in the submittal package. Use of the verb "must" below denotes information that is required to be submitted because it relates to elements of the TMDL required by the CWA and by regulation. Use of the term "should" below denotes information that is generally necessary for EPA to determine if a submitted TMDL is approvable. These TMDL review guidelines are not themselves regulations. They are an attempt to summarize and provide guidance regarding currently effective statutory and regulatory requirements relating to TMDLs. Any differences between these guidelines and EPA's TMDL regulations should be resolved in favor of the regulations themselves.

1. Identification of Waterbody, Pollutant of Concern, Pollutant Sources, and Priority Ranking

The TMDL submittal should identify the waterbody as it appears on the State's/Tribe's 303(d) list. The waterbody should be identified/georeferenced using the National Hydrography Dataset (NHD), and the TMDL should clearly identify the pollutant for which the TMDL is being established. In addition, the TMDL should identify the priority ranking of the waterbody and specify the link between the pollutant of concern and the water quality standard (see Section 2 below).

The TMDL submittal should include an identification of the point and nonpoint sources of the pollutant of concern, including location of the source(s) and the quantity of the loading, e.g., lbs/per day. The TMDL should provide the identification numbers of the NPDES permits within the waterbody. Where it is possible to separate natural background from nonpoint sources, the TMDL should include a description of the natural background. This information is necessary for EPA's review of the load and wasteload allocations, which are required by regulation.

The TMDL submittal should also contain a description of any important assumptions made in developing the TMDL, such as:

(1) the spatial extent of the watershed in which the impaired waterbody is located;
 (2) the assumed distribution of land use in the watershed (e.g., urban, forested, agriculture);

(3) population characteristics, wildlife resources, and other relevant information affecting the characterization of the pollutant of concern and its allocation to sources;

(4) present and future growth trends, if taken into consideration in preparing the TMDL (e.g., the TMDL could include the design capacity of a wastewater treatment facility); and

(5) an explanation and analytical basis for expressing the TMDL through *surrogate measures*, if applicable. *Surrogate measures* are parameters such as percent fines and turbidity for sediment impairments; chlorophyll <u>a</u> and phosphorus loadings for excess algae; length of riparian buffer; or number of acres of best management practices.

Comment:

Location Description/Spatial Extent:

The Minnesota River - Greater Blue Earth River (MRGBE) watershed is located in south-central Minnesota. The overall Minnesota River watershed covers over 17,000 square miles and includes all or parts of 37 counties and two states (Minnesota and South Dakota). For this TMDL project, the Minnesota Pollution Control Agency (MPCA) determined that the Lac Qui Parle reservoir was the upstream boundary; from the reservoir, the Minnesota River flows southeast until the City of Mankato. At Mankato, the Blue Earth River enters the Minnesota River, and the Minnesota River turns sharply north and flows northeast until it discharges into the Mississippi River near Fort Snelling, Minnesota (Figure 2 of the TMDL). The Greater Blue Earth River watershed includes the Blue Earth River, Le Sueur River, and Watonwan River watersheds (Figure 2 of the TMDL). The TMDL portion of the river is approximately 275 miles in length and drains approximately 13,000 square miles.

This TMDL effort addresses impaired segments of the Minnesota River mainstem, as well as numerous segments in the Watonwan, Blue Earth, and Le Sueur river watersheds (Figure 2 and Appendix D of the TMDL; Attachment 1 of this Decision Document). A total of 68 segments impaired by total suspended solids (TSS) are addressed in this TMDL. Two of the mainstem Minnesota River segments border tribal reservations; the State explicitly excluded these lands from the TMDL allocation process. A portion of the Blue Earth River watershed extends into Iowa; this area is excluded from the TMDL calculations.

MPCA identified several previously-approved TSS TMDLs within the Minnesota River watershed (Section 3 of the TMDL). The MRGBE TMDL project does not revise those TMDLs; they remain in effect.

Land Use:

The MRGBE TMDL watersheds are mainly cropland in nature, ranging from 50% to 85% cropland, mainly corn and soybeans. The more northern (upstream) watersheds include some significant pasturelands (10-24%), along with wetlands (10-11%). The Lower Minnesota River watershed (07020012), where the Minnesota River discharges into the Mississippi River, is moderately developed (16%). This watershed is located near Minneapolis/St. Paul. Table 5 of the TMDL contains the land use information for each Hydrologic Unit Code (HUC) 8 watershed.

MPCA does not anticipate increases in TSS loading due to changes in land use within the watersheds. An allocation for future growth (reserve capacity) was not determined by MPCA.

Problem Identification:

The waterbodies were placed on the MPCA 303(d) list of impaired waters over a lengthy time period, from 2002 to 2018. In addition, some waters will be placed on the 2020 303(d) list.

The segments were placed on the MPCA 303(d) list of impaired waters due to exceedances of the turbidity or TSS criteria. The waters listed before 2014 were determined to be impaired

based upon the turbidity criteria, which was replaced with a TSS criteria in 2011. Section 4.3, Table 6, and Appendix B of the TMDL summarize the data used to assess the waterbodies. Most segments have TSS data, although some segments were listed based upon turbidity data alone. Review of the data indicates exceedences vary in the segments, both in the number of exceedences as well as the magnitude.

Pollutant:

The pollutant of concern is TSS. TSS is a measurement of the sediment and organic material that inhibits natural light from penetrating the surface water column. Excessive sediment and organic material within the water column can negatively impact fish and macroinvertebrates within the ecosystem. Excess sediment and organic material may create turbid conditions within the water column and may increase the costs of treating surface waters used for drinking water or other industrial purposes (ex. food processing).

Excessive amounts of fine sediment in stream environments can degrade aquatic communities. Sediment can reduce spawning and rearing areas for certain fish species. Excess suspended sediment can clog the gills of fish, stress certain sensitive species by abrading their tissue, and thus reduce fish health. When in suspension, sediment can limit visibility and light penetration which may impair foraging and predation activities by certain species.

Excess siltation and flow alteration in streams impacts aquatic life by altering habitats. Excess sediment can fill pools, embed substrates, and reduce connectivity between different stream habitats. The result is a decline in habitat types that, in healthy streams, support diverse macroinvertebrate communities. Excess sediment can reduce spawning and rearing habitats for certain fish species.

Source Identification (point and nonpoint sources):

Point Source Identification:

MPCA identified approximately 200 municipal and industrial waste water treatment plants (WWTPs) discharging to the MRGBE project area (Section 4.4.3 and Appendix E of the TMDL; Attachment 3 of this Decision Document). MPCA explained that municipal WWTPs typically have an effluent limit of 30 or 45 mg/L of TSS, which is well below the in-stream WQS of 65 mg/L. As a result, MPCA considers these sources to have limited impact on sediment loading in the MRGBE TMDL watershed. Further explanation of how MPCA determined the allocations for these facilities is found in Section 5 of this Decision Document.

MPCA identified 62 Municipal Separate Storm Sewer System (MS4) dischargers in the TMDL watershed (Section 5.4.3 and Appendix F of the TMDL; Attachment 4 of this Decision Document). Stormwater can contain sediment loads as a result of precipitation runoff from urbanized areas. Permitted stormwaters loads were estimated based upon modeling results in the watershed. MPCA noted that while localized stormwater impacts are possible, stormwater loads represent a small portion of the overall loading in the TMDL watershed.

MPCA noted that construction may contribute sediment via stormwater runoff during precipitation events. These areas within the TMDL watershed must comply with the requirements of the MPCA's NPDES Stormwater Program. The NPDES program requires construction sites to create a Stormwater Pollution Prevention Plan (SWPPP) that summarizes how stormwater will be minimized from the site.

MPCA identified stormwater discharges from permitted industrial sites in the TMDL watershed as potential sources of TSS. The allocations are for sites regulated under several MPCA general permits, including the Industrial Stormwater Multi-Sector Permit (MNR050000) and the General Permit for Nonmetallic Mining and Associated Activities (MNG490000).

A total of 186 Concentrated Animal Feeding Operations (CAFOs) were identified in the MRGBE River TMDL watershed (Section 4.3 and Appendix I of the TMDL). CAFOs are generally defined as having over 1000 animal units confined for more than 45 days in a year. Under MPCA NPDES permit requirements, discharges of pollutants from CAFOs are not allowed except under extreme circumstances (24-hour storm duration exceeding the 25-year recurrence interval; approximately a 4-5 inch rain in the watershed), and therefore no allocations were developed for the manure-handling facilities. Runoff from the spreading of manure in agronomic rates is not regulated as a point source discharge and is therefore considered in the nonpoint source load discussed below.

Nonpoint Source Identification:

Near-channel sources: Eroding streambanks, bluffs and ravines add sediment to local surface waters (Section 4.4.2 of the TMDL). Eroding riparian areas may be linked to soil inputs within the water column and potentially to changes in flow patterns. Changes in flow patterns may also encourage down-cutting of the stream bed and streambanks. Subsurface drainage tiling, channelization of waterways, land cover alteration, and increases in impervious surfaces all decrease detention time in the watershed and increase flow from fields and in streams. Draining and tiling wetland areas can decrease water storage on the landscape, which can lead to lower evapotranspiration and increased river flow. Unrestricted livestock access to streams and streambank areas may lead to streambank degradation and sediment additions to stream environments. These sources can include both natural and anthropogenic causes.

Upland erosion: MPCA defined upland sources of sediment as those related to field runoff due to precipitation (Section 4.4.2 of the TMDL). This includes sheet and rill erosion, as well as gully erosion. MPCA noted that the conversion of prairie grassland to agricultural land (ranging from 55% to 83% of watersheds) has significantly altered the hydrological patterns in the watershed. Modern agricultural practices began in the 1940's, and further altered the landscape. TSS loadings have increased significantly since this time due to the alterations in the natural landscape. For example, when precipitation falls on unprotected soils surface runoff can carve gullies into the soils thereby transporting significant amounts of sediment into waterways. Agricultural tiling may reduce runoff, but increase flow downstream, exacerbating near-channel erosion.

Future Growth:

MPCA expects little change in the allocations between point and nonpoint sources (Sections 5 and 7 of the TMDL). MPCA did not set aside an allocation for future growth (reserve capacity). There is discussion in Section 7 of the TMDL on how future growth will be addressed for permitted sources.

Priority Ranking:

As discussed in Section 1.3 of the TMDL, MPCA's schedule for TMDL completions, as indicated on the 303(d) impaired waters list, reflects Minnesota's priority ranking of this TMDL.

4

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document The MPCA has aligned TMDL priorities with the watershed approach and Watershed Restoration and Protection Strategy (WRAPS) cycle. The schedule for TMDL completion corresponds to the WRAPS report completion on the 10-year cycle. Mainstem river TMDLs, which are not contained in major watersheds and thus not addressed in WRAPS, must also be completed. The MPCA developed a state plan, Minnesota's TMDL Priority Framework Report, to meet the needs of EPA's national measure (WQ-27) under EPA's Long-Term Vision for Assessment, Restoration and Protection under the CWA section 303(d) program. As part of these efforts, the MPCA identified water quality-impaired segments that will be addressed by TMDLs by 2022. The waters of the Minnesota River and Greater Blue Earth River basins addressed by this TMDL are part of the MPCA prioritization plan to meet EPA's national measure.

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the first criterion.

2. Description of the Applicable Water Quality Standards and Numeric Water Quality Target

The TMDL submittal must include a description of the applicable State/Tribal water quality standard, including the designated use(s) of the waterbody, the applicable numeric or narrative water quality criterion, and the antidegradation policy (40 C.F.R. §130.7(c)(1)). EPA needs this information to review the loading capacity determination, and load and wasteload allocations, which are required by regulation.

The TMDL submittal must identify a numeric water quality target(s) – a quantitative value used to measure whether or not the applicable water quality standard is attained. Generally, the pollutant of concern and the numeric water quality target are, respectively, the chemical causing the impairment and the numeric criteria for that chemical (e.g., chromium) contained in the water quality standard. The TMDL expresses the relationship between any necessary reduction of the pollutant of concern and the attainment of the numeric water quality target. Occasionally, the pollutant of concern is different from the pollutant that is the subject of the numeric water quality target (e.g., when the pollutant of concern is phosphorus and the numeric water quality target is expressed as Dissolved Oxygen (DO) criteria). In such cases, the TMDL submittal should explain the linkage between the pollutant of concern and the chosen numeric water quality target.

Comment:

Designated Uses:

Minnesota Rule Chapter 7050 designates uses for waters of the state. As noted in Attachment 1 of this Decision Document, the impaired waters addressed by this TMDL are designated as Class 2B. In Minnesota, Class 2C waters were upgraded in 2017 to Class 2B.

Class 2B waters are protected for aquatic life and recreation use (boating, swimming, fishing, etc.). The Class 2B aquatic life and recreation designated use is described as:

5

"The quality of Class 2B surface waters shall be such as to permit the propagation and maintenance of a healthy community of cool or warm water sport or commercial fish and associated aquatic life, and their habitats. These waters shall be suitable for aquatic recreation of all kinds, including bathing, for which the waters may be usable. "

Numeric TSS criteria:

EPA approved MPCA's regionally-based TSS criteria for rivers and streams in 2015. The TSS criteria replaced Minnesota's statewide turbidity criterion. The TSS criteria provide water clarity targets for measuring suspended particles in rivers and streams. The impaired waters are in the Southern River Nutrient Region, and the criteria is TSS to not exceed 65 mg/L in more than 10% of the samples collected between April 1 and September 30 (Minn. R. Ch. 7050.222; Section 2 of the TMDL).

Target: MPCA employed the Southern River Nutrient Region TSS criteria of 65 mg/L.

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the second criterion.

3. Loading Capacity - Linking Water Quality and Pollutant Sources

A TMDL must identify the loading capacity of a waterbody for the applicable pollutant. EPA regulations define loading capacity as the greatest amount of a pollutant that a water can receive without violating water quality standards (40 C.F.R. §130.2(f)).

The pollutant loadings may be expressed as either mass-per-time, toxicity or other appropriate measure (40 C.F.R. §130.2(i)). If the TMDL is expressed in terms other than a daily load, e.g., an annual load, the submittal should explain why it is appropriate to express the TMDL in the unit of measurement chosen. The TMDL submittal should describe the method used to establish the cause-and-effect relationship between the numeric target and the identified pollutant sources. In many instances, this method will be a water quality model.

The TMDL submittal should contain documentation supporting the TMDL analysis, including the basis for any assumptions; a discussion of strengths and weaknesses in the analytical process; and results from any water quality modeling. EPA needs this information to review the loading capacity determination, and load and wasteload allocations, which are required by regulation.

TMDLs must take into account *critical conditions* for steam flow, loading, and water quality parameters as part of the analysis of loading capacity (40 C.F.R. §130.7(c)(1)). TMDLs should define applicable *critical conditions* and describe their approach to estimating both point and nonpoint source loadings under such *critical conditions*. In particular, the TMDL should discuss the approach used to compute and allocate nonpoint source loadings, e.g., meteorological conditions and land use distribution.

Comment:

Functionally a TMDL is represented by the equation:

 $TMDL = LC = \Sigma WLA + \Sigma LA + MOS + RC,$

where: LC is the loading capacity; WLA is the wasteload allocation; LA is the load allocation; MOS is the margin of safety; and (pursuant to MPCA rules) RC is any reserve capacity set aside for future growth. MPCA used a load duration curve (LDC) process to determine TSS loads in the watershed. TMDL summary tables are located in Attachment 2 of this Decision Document (Appendix D of the TMDL).

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document HSPF is a comprehensive modeling package used to simulate watershed hydrology and water quality on a basin scale. The package includes both an Agricultural Runoff Model and a more general nonpoint source model. HSPF parametrizes numerous hydrologic and hydrodynamic processes to determine flow rate, sediment, and nutrient loads. HSPF uses continuous meteorological records to create hydrographs and to estimate time series pollution concentrations.^{1,2} The output of the HSPF process is a model of multiple hydrologic response units (HRUs), or subwatersheds of the overall MRGBE watershed. The flow from these HRUs were calibrated to different gage sites with up to seventeen years of data (1995 through 2012).

The approach utilized by the MPCA to calculate the loading capacity for the TSS TMDLs are described in Section 5.1 of the TMDL.

Flow duration curves (FDC) were created for individual impaired segments of the MRGBE TSS TMDL project. Each FDC was developed from flow data from one of the 25 United States Geological Survey (USGS) monitoring sites in the Minnesota River watershed or from flow results from the HSPF model. Daily stream flows were necessary to implement the LDC approach. MPCA utilized the flow results from the HSPF model to provide additional input into an additional 36 LDCs in the watershed (Section 5.1.1 of the TMDL).

The FDC was transformed into a LDC by multiplying individual flow values by the WQS (65 mg/L) and then multiplying that value by a conversion factor. The resulting points are plotted onto a load duration curve graph. The LDC graphs for the waterbodies have flow duration interval (percentage of time flow exceeded) on the X-axis and TSS loads (tons of TSS per day) on the Y-axis. The curved line on a LDC graph represents the TMDL for the respective flow conditions observed at that location.

TSS values from the monitoring sites were converted to individual sampling loads by multiplying the sample concentration by the instantaneous flow measurement observed/estimated at the time of sample collection. The individual sampling loads were plotted on the same figure with the LDC (Appendix D of the TMDL).

The LDC plots were subdivided into five flow regimes; very high flows (exceeded 0–10% of the time), high conditions (exceeded 10–40% of the time), mid-range flows (exceeded 40–60% of the time), low conditions (exceeded 60–90% of the time), and very low flows (exceeded 90–100% of the time). LDC plots can be organized to display individual sampling loads and the calculated LDC. Watershed managers can interpret these plots (individual sampling points plotted with the LDC) to understand the relationship between flow conditions and water quality exceedances within the watershed. Individual sampling loads which plot above the LDC represent violations of the WQS and the allowable load under those flow conditions at those locations. The difference between individual sampling loads plotting above the LDC and the LDC, measured at the same flow, is the amount of reduction necessary to meet WQS.

The strengths of using the LDC method are that critical conditions and seasonal variation are considered in the creation of the FDC by plotting hydrologic conditions over the flows measured during the year. Additionally, the LDC methodology is relatively easy to use and cost-effective.

¹ HSPF User's Manual - https://water.usgs.gov/software/HSPF/code/doc/hspfhelp.zip

 ² EPA TMDL Models Webpage - https://www.epa.gov/exposure-assessment-models/tmdl-models-and-tools
 Minnesota River-Greater Blue Earth Watershed
 7

Final TMDL Decision Document

The weaknesses of the LDC method are that nonpoint source allocations cannot be assigned to specific sources, and specific source reductions are not quantified. Overall, MPCA believes and EPA concurs that the strengths outweigh the weaknesses for the LDC method.

Implementing the results shown by the LDC requires watershed managers to understand the sources contributing to the water quality impairment and which Best Management Practices (BMPs) may be the most effective for reducing sediment loads based on flow magnitudes. Different sources will contribute sediment loads under varying flow conditions. For example, if exceedances are significant during high flow events, this would suggest storm events are one of the main contributors of sediment to the impaired segment, implementation efforts should target BMPs that will reduce stormwater runoff and consequently sediment loading into surface waters. This type of LDC analysis allows for a more efficient implementation effort.

TMDLs for the 68 waterbodies were calculated as appropriate. The regulated permittees discharging TSS have allocations determined for them (Attachment 3 of this Decision Document; Appendix E of the TMDL). The load allocation was calculated after the determination of the Margin of Safety (10% of the loading capacity). Load allocations were combined together into a generalized loading. Review of the LDCs indicate that exceedences are occurring under higher flow conditions, especially very high and high flows.

Attachment 2 of this Decision Document calculate five points (the midpoints of the designated flow regime) on the loading capacity curves. However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire loading capacity curve. The load duration curve method can be used to display collected sediment monitoring data and allows for the estimation of load reductions necessary for attainment of the TSS water quality standard. Using this method, daily loads were developed based upon the flow in the water body. Loading capacities were determined for the segment for multiple flow regimes. This allows the TMDL to be represented by an allowable daily load across all flow conditions. Although there are numeric loads for each flow regime, the LDC is what is being approved for these TMDLs.

MPCA explained that the allocations for portions of several segments are calculated as formulas rather than loads. In these segments, point source flow discharges theoretically exceed the actual instream flow. For the lowest flow regime, the WLA and LA estimates were set based on the formula of

Allocation = (flow contribution from a given source) * 65 mg/L (TSS standard).

EPA concurs with the data analysis and LDC approach utilized by MPCA in its calculation of loading capacities, wasteload allocations, load allocations and the margin of safety for the TSS TMDLs. The methods used for determining the TMDL are consistent with EPA technical memos.³

<u>Critical condition</u>: The critical condition for the TSS TMDLs is the higher flow conditions, generally during spring runoff or storm events (Section 5.7 of the TMDL). MPCA accounted for the critical conditions by focusing implementation actions towards the higher flow conditions, to reduce loads during these time periods (Sections 8 and 10 of the TMDL).

Final TMDL Decision Document

³ U.S. Environmental Protection Agency. August 2007. An Approach for Using Load Duration Curves in the Development of TMDLs. Office of Water. EPA-841-B-07-006. Washington, D.C.

Minnesota River-Greater Blue Earth Watershed 8

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the third criterion.

4. Load Allocations (LA)

EPA regulations require that a TMDL include LAs, which identify the portion of the loading capacity attributed to existing and future nonpoint sources and to natural background. Load allocations may range from reasonably accurate estimates to gross allotments (40 C.F.R. §130.2(g)). Where possible, load allocations should be described separately for natural background and nonpoint sources.

Comment:

Load allocations are addressed in Section 5 of the TMDL. The LAs for TSS are in Attachment 2 of this Decision Document (Appendix D of the TMDL). Review of the LDCs show that the exceedences generally occur under higher flows, indicating that precipitation-related sources are of particular concern. None of the LAs were subdivided by source type but were calculated as "gross allotments" as per 40 CFR 130.2(g).

MPCA explained that the allocations for several segments are calculated as formulas rather than loads. In these segments, point source flow discharges theoretically exceed the actual instream flow. For the lowest flow regime, the WLA and LA estimates were set based on the formula of Allocation = (flow contribution from a given source) * 65 mg/L (TSS standard).

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the fourth criterion.

5. Wasteload Allocations (WLAs)

EPA regulations require that a TMDL include WLAs, which identify the portion of the loading capacity allocated to individual existing and future point source(s) (40 C.F.R. §130.2(h), 40 C.F.R. §130.2(i)). In some cases, WLAs may cover more than one discharger, e.g., if the source is contained within a general permit.

The individual WLAs may take the form of uniform percentage reductions or individual mass based limitations for dischargers where it can be shown that this solution meets WQSs and does not result in localized impairments. These individual WLAs may be adjusted during the NPDES permitting process. If the WLAs are adjusted, the individual effluent limits for each permit issued to a discharger on the impaired water must be consistent with the assumptions and requirements of the adjusted WLAs in the TMDL. If the WLAs are not adjusted, effluent limits contained in the permit must be consistent with the individual WLAs specified in the TMDL. If a draft permit provides for a higher load for a discharger than the corresponding individual WLA in the TMDL, the State/Tribe must demonstrate that the total WLA in the TMDL will be achieved through reductions in the remaining individual WLAs and that localized impairments will not result. All permittees should be notified of any deviations from the initial individual WLAs contained in the TMDL. EPA does not require the establishment of a new TMDL to reflect these revised allocations as long as the total WLA, as expressed in the TMDL, remains the same or decreases, and there is no reallocation between the total WLA and the total LA.

Comment:

MPCA determined that approximately 200 wastewater point sources discharge to TSS-impaired waterbodies (Section 5.4.1 and Appendix E of the TMDL). These facilities include WWTPs, industrial wastewater, industrial process water, and noncontact cooling water. Attachment 3 of this Decision Document lists the facilities for which TSS WLAs were calculated by MPCA.

MPCA noted that the technology-based TSS limits in the NPDES permits are 30 mg/L as a calendar month average and 45 mg/L as a maximum calendar week average for mechanical systems, and 45 mg/L as a calendar monthly average and 65 mg/L as a calendar monthly average for pond systems. MPCA explained that the process used to calculate the WLAs varied depending upon the facility. As noted in Section 5.4.1 of the TMDL, some facilities have a load limit in their NPDES permit. For these facilities, the permit load limit was used as the WLA. Many facilities have a TSS concentration limit in the NPDES permit, and the WLA was calculated as the permitted concentration limit (using the monthly 30 mg/L or 45 mg/L limit) multiplied by the average wet weather design flow (AWWDF). For facilities without a permitted concentration limit and/or a design flow, MPCA used the effluent limit target of 30 mg/L multiplied by the maximum design flow or estimated flow.

MPCA explained that the allocations for several segments are calculated as formulas rather than loads. In these segments, point source maximum flow discharges theoretically exceed the actual instream flow. For the lowest flow regime, the WLA and LA estimates were set based on the formula of:

Allocation = (flow contribution from a given source) * 65 mg/L (TSS standard)

MPCA also determined categorical WLAs for 62 MS4 dischargers in the TMDL watersheds (Attachment 3 of this Decision Document; Section 5.4.3 and Appendix F of the TMDL). The MS4 WLAs were based upon the developed land area under the jurisdiction of the MS4 permit multiplied by a TSS export rate of 154 lbs/acre/year based upon U.S. Army Corp of Engineers data (Section 5.4.3 of the TMDL). WLAs were calculated for the Minnesota Department of Transportation (MnDOT) based upon regulated roads and rights-of-way. MPCA also calculated MS4 WLAs for four dischargers (City of Belle Plains, City of Jordan, City of LeSueur, and City of New Prague) that are not currently permitted as MS4s but are expected to be designated as MS4s in the next few years. MPCA noted that TSS loading from MS4s are calculated to not increase relative to the baseline year of 2010 (Section 5.4.3 of the TMDL).

MPCA set aside 0.2% of the total loading capacity less the Margin of Safety and the wastewater WLAs to account for TSS loading from construction and industrial stormwater (Attachment 2 of this Decision Document; Section 5.2.2 of the TMDL). MPCA estimated the areal coverage of construction and industrial general permits issued in the counties, and calculated coverage to be below 0.2%.

MPCA explained that BMPs and other stormwater control measures should be implemented at active construction sites to limit the discharge of pollutants of concern. BMPs and other stormwater control measures which should be implemented at construction sites are defined in the State's NPDES/State Disposal System (SDS) General Stormwater Permit for Construction Activity (MNR100001). If a construction site owner/operator obtains coverage under the

NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, including those related to impaired waters discharges and any applicable additional requirements found in Appendix A of the Construction General Permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL.

The WLA for stormwater discharges from sites where there is industrial activity reflects the number of sites in the watershed for which NPDES industrial stormwater permit coverage is required, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern; they are defined in the State's NPDES/SDS Industrial Stormwater Multi-Sector General Permit (MNR050000) or NPDES/SDS General Permit for Construction Sand & Gravel, Rock Quarrying and Hot Mix Asphalt Production facilities (MNG490000). If a facility owner/operator obtains coverage under the appropriate NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL.

A total of 186 Concentrated Animal Feeding Operations (CAFOs) were identified in the MRGBE River TMDL watershed (Section 4.3 and Appendix I of the TMDL). CAFOs are generally defined as having over 1000 animal units confined for more than 45 days in a year. Under MPCA NPDES permit requirements, discharges of pollutants from CAFOs are not allowed except under extreme circumstances (24-hour storm duration exceeding the 25-year recurrence interval; approximately a 4-5 inch rain in the watershed), and therefore no allocations were developed for the manure-handling facilities. If there is a discharge, MPCA noted that it must be consistent with the applicable permit. Runoff from the spreading of manure in agronomic rates is not regulated as a point source discharge and is therefore considered in the nonpoint source load.

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the fifth criterion.

6. Margin of Safety (MOS)

The statute and regulations require that a TMDL include a margin of safety (MOS) to account for any lack of knowledge concerning the relationship between load and wasteload allocations and water quality (CWA $\S303(d)(1)(C)$, 40 C.F.R. $\S130.7(c)(1)$). EPA's 1991 TMDL Guidance explains that the MOS may be implicit, i.e., incorporated into the TMDL through conservative assumptions in the analysis, or explicit, i.e., expressed in the TMDL as loadings set aside for the MOS. If the MOS is implicit, the conservative assumptions in the analysis that account for the MOS must be described. If the MOS is explicit, the loading set aside for the MOS must be identified.

Comment:

The MGBRE TSS TMDLs incorporated an explicit MOS of 10% of the total loading capacity (Attachment 2 of this Decision Document). MPCA determined this is sufficient based upon the modeling results. MPCA used both flow gages in the impaired waters as well as results from the HSPF model flow modeling to generate the LDC curves. MPCA noted that the MOS is reasonable due to the generally good calibration of the HSPF model for hydrology and pollutant loading (Section 5.5 and Appendix H of the TMDL; Minnesota River Basin HSPF Model

Hydrology Recalibration, Tetra Tech, 2015). The HSPF modeling utilized numerous streamflow gages in the watershed, as discussed in Section 5.5 of the TMDL. The calibration results indicate the model adequately characterize the waterbody segments, and therefore additional MOS is not needed.

The EPA finds that the TMDL document submitted by the MPCA contains an appropriate MOS satisfying the requirements of the sixth criterion.

7. Seasonal Variation

The statute and regulations require that a TMDL be established with consideration of seasonal variations. The TMDL must describe the method chosen for including seasonal variations. (CWA 303(d)(1)(C), 40 C.F.R. 310.7(c)(1)).

Comment:

The TSS WQS applies from April to September which is also the time period when high concentrations of sediment are expected in the surface waters of the MRGBE River watershed. Sediment loading to surface waters in the watershed varies depending on surface water flow, land cover and climate/season. Typically, in the watershed, sediment is being moved from terrestrial source locations into surface waters during or shortly after wet weather events. Spring is typically associated with large flows from snowmelt, the summer is associated with the growing season as well as periodic storm events and receding streamflows, and the fall brings increasing precipitation and rapidly changing agricultural landscapes. Large precipitation events and minimally covered land surfaces can lead to large runoff volumes, especially to those areas which drain agricultural fields. The conditions generally occur in the spring and early summer seasons. The LDC developed from these flow records represents a range of flow conditions within the TSS – impaired watersheds and thereby accounted for seasonal variability over the recreation season.

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of the seventh criterion.

8. Reasonable Assurance

When a TMDL is developed for waters impaired by point sources only, the issuance of a NPDES permit(s) provides the reasonable assurance that the wasteload allocations contained in the TMDL will be achieved. This is because 40 C.F.R. 122.44(d)(1)(vii)(B) requires that effluent limits in permits be consistent with, "the assumptions and requirements of any available wasteload allocation" in an approved TMDL.

When a TMDL is developed for waters impaired by both point and nonpoint sources, and the WLA is based on an assumption that nonpoint source load reductions will occur, EPA's 1991 TMDL Guidance states that the TMDL should provide reasonable assurances that nonpoint source control measures will achieve expected load reductions in order for the TMDL to be approvable. This information is necessary for EPA to determine that the TMDL, including the load and wasteload allocations, has been established at a level necessary to implement water quality standards.

EPA's August 1997 TMDL Guidance also directs Regions to work with States to achieve TMDL load allocations in waters impaired only by nonpoint sources. However, EPA cannot disapprove a TMDL for nonpoint source-only impaired waters, which do not have a demonstration of reasonable assurance that LAs will be achieved, because such a showing is not required by current regulations.

Comment:

Sections 8 and 10 of the TMDL provide information on actions and activities to reduce pollutant loading in the watershed. The main entities responsible for overseeing the pollutant reduction activities will be the MPCA, the 37 counties in the watershed, and numerous Soil and Water Conservation Districts (SWCDs).

SWCDs will provide actions and activities to attain WQSs in the MRGBE watershed. For example, the Blue Earth County SWCD has developed a *Water Management Plan (2017-2026)* that identifies impaired waters in the County, identifies priority areas for protection and restoration, and notes that sediment is a specific pollutant of concern. The plan also contains an implementation section that identifies responsible agencies/groups, ongoing and proposed actions, and sources of funding available to implement BMPs. The Cottonwood County SWCD has developed a *Local Watershed Management Plan (2017-2027)* that contains similar information as the Blue Earth SWCD Water Management Plan. Several other counties have watershed plans that address sediment in the TMDL basin.

Several watershed groups also have activities on-going in the TMDL watershed (Section 8.2 of the TMDL). One example is the Hawk Creek Watershed Project <u>https://www.hawkcreekwatershed.org/</u>, which has a list of BMPs in development in the Hawk Creek Watershed, as well as information on grants and cost-share programs available to landowners. Other local groups include the Chippewa River Watershed Project https://www.chippewariver.org/ and the Redwood-Cottonwood Rivers Alliance https://rcrca.com/.

MPCA also identified several existing TMDLs in the watershed (Section 3 of the TMDL). These TMDLs have been approved for several years, and implementation activities are underway. Table 3 of the TMDL lists the approved sediment TMDLs in the MRGBE watershed, and the link to these TMDLs can be found at https://www.pca.state.mn.us/water/total-maximum-daily-load-tmdl-projects). MPCA also noted that several TMDLs addressing bacteria and nutrients in the Minnesota River Basin will also reduce sediment loads, as many sources of bacteria and nutrients are linked with sediment, such as row-crop runoff.

Several additional TMDL projects are under development in the Minnesota River Basin (https://www.pca.state.mn.us/water/total-maximum-daily-load-tmdl-projects). The Lower Minnesota River TMDL, the Minnesota River-Mankato TMDL, and the Watonwan River TMDL are all in the final stages of development by MPCA.

MPCA also identified State-wide and regional nonpoint source reduction efforts that will help reduce sediment loads in the TMDL watershed (Section 8.4 of the TMDL). The Buffer Law was passed in 2015 and requires vegetative buffers to be planted along public streams. Buffers can filter runoff from fields and agricultural operations, removing sediment, bacteria, and nutrients. The buffers can also improve habitat and reduce streambank erosion.

MPCA has developed the *Sediment Reduction Strategy for the Minnesota River Basin and South Metro Mississippi River* (MPCA, 2015). The Strategy outlines several goals for reducing sediment in the Minnesota River Basin, including a 25% reduction in sediment by 2020 and by 50% by 2030. The Strategy also targets reductions in peak flow in the watershed, to reduce high-flow erosion and related sediment loading (Section 10 of the TMDL).

Reasonable assurance that the WLA set forth in the TMDLs will be implemented is provided by regulatory actions. According to 40 CFR 122.44(d)(1)(vii)(B), NPDES permit effluent limits must be consistent with assumptions and requirements of all WLAs in an approved TMDL. MPCA's NPDES permit program is the implementing program for ensuring effluent limits are consistent with the TMDL.

All regulated MS4 communities are required to satisfy the requirements of the MS4 general permit. The MS4 general permit requires the permittee to develop an SWPPP which addresses all permit requirements, including the following six minimum control measures:

- Public education and outreach;
- Public participation;
- Illicit Discharge Detection and Elimination (IDDE) Program;
- Construction-site runoff controls;
- Post-construction runoff controls; and
- Pollution prevention and municipal good housekeeping measures.

A SWPPP is a management plan that describes the MS4 permittee's activities for managing stormwater within their jurisdiction or regulated area. In the event a TMDL study has been completed, approved by EPA prior to the effective date of the general permit, and assigned a wasteload allocation to an MS4 permittee, that permittee must document the WLA in its application and provide an outline of the best management practices to be implemented in the current permit term to address any needed reduction in loading from a MS4 community.

The stormwater program requires construction and industrial sites to create a SWPPP that summarizes how stormwater will be minimized from a site. Permittees are required to review the adequacy of local SWPPPs to ensure that each plan meets WLA set in the TMDL. In the event that the SWPPP does not meet the WLA, the SWPPP will need to be modified prior to the effective date of the next General Permit. This applies to the MS4, Construction, and Industrial Stormwater General Permits.

<u>Clean Water Legacy Act (CWLA)</u>: The CWLA was passed in Minnesota in 2006 for the purposes of protecting, restoring, and preserving Minnesota water. The CWLA provides the protocols and practices to be followed in order to protect, enhance, and restore water quality in Minnesota.

The CWLA outlines how MPCA, public agencies and private entities should coordinate in their efforts toward improving land use management practices and water management. The CWLA anticipates that all agencies (i.e., MPCA, public agencies, local authorities and private entities, etc.) will cooperate regarding planning and restoration efforts. Cooperative efforts would likely include informal and formal agreements to jointly use technical, educational, and financial resources.

The CWLA also provides details on public and stakeholder participation, and how the funding will be used. In part to attain these goals, the CWLA requires MPCA to develop WRAPS. The WRAPS are required to contain such elements as the identification of impaired waters, watershed modeling outputs, point and nonpoint sources, load reductions, etc. (Chapter 114D.26; CWLA). The WRAPS also contain an implementation table of strategies and actions that are capable of achieving the needed load reductions, for both point and nonpoint sources (Chapter 114D.26, Subd. 1(8); CWLA). Implementation plans developed for the TMDLs are included in the table and are considered "priority areas" under the WRAPS process (Watershed Restoration and Protection Strategy Report Template, MPCA). This table includes not only needed actions but a timeline for achieving water quality targets, the reductions needed from both point and nonpoint sources, the governmental units responsible, and interim milestones for achieving the actions. MPCA has developed guidance on what is required in the WRAPS (Watershed Restoration and Protection Strategy Report Template, MPCA). Several of the WRAPS reports in the MRGBE watershed have been finalized (Table 11 of the TMDL). Many of the implementation actions listed in the WRAPS reports are already underway.

The Minnesota Board of Soil and Water Resources administers the Clean Water Fund as well and has developed a detailed grants policy explaining what is required to be eligible to receive Clean Water Fund money (FY 2014 Clean Water Fund Competitive Grants Request for Proposal (RFP); Minnesota Board of Soil and Water Resources, 2014).

The EPA finds that this criterion has been adequately addressed.

9. Monitoring Plan to Track TMDL Effectiveness

EPA's 1991 document, *Guidance for Water Quality-Based Decisions: The TMDL Process* (EPA 440/4-91-001), recommends a monitoring plan to track the effectiveness of a TMDL, particularly when a TMDL involves both point and nonpoint sources, and the WLA is based on an assumption that nonpoint source load reductions will occur. Such a TMDL should provide assurances that nonpoint source controls will achieve expected load reductions and, such TMDL should include a monitoring plan that describes the additional data to be collected to determine if the load reductions provided for in the TMDL are occurring and leading to attainment of water quality standards.

Comment:

The final TMDL document outlines the water monitoring efforts in the MRGBE watershed (Section 9 of the TMDL). Water quality monitoring is a critical component of the adaptive management strategy employed as part of the implementation planning efforts for these watersheds.

Follow-up monitoring is integral to the adaptive management approach. Monitoring addresses uncertainty in the efficacy of implementation actions and can provide assurance that implementation measures are succeeding in attaining water quality standards, as well as inform the ongoing TMDL implementation strategy. To assess progress toward meeting the TMDL targets, monitoring of the waterbodies will continue to be a part of the Soil and Water Conservation Districts monitoring programs. MPCA noted that monitoring will be especially important in the MRGBE watershed, as the land use differs in the watershed. At a minimum, the MRGBE watershed will be monitored once every 10 years as part of the MPCA's Intensive Watershed Monitoring cycle (Table 11 of the TMDL).

The EPA finds that this criterion has been adequately addressed.

10. Implementation

EPA policy encourages Regions to work in partnership with States/Tribes to achieve nonpoint source load allocations established for 303(d)-listed waters impaired by nonpoint sources. Regions may assist States/Tribes in developing implementation plans that include reasonable assurances that nonpoint source LAs established in TMDLs for waters impaired solely or primarily by nonpoint sources will in fact be achieved. In addition, EPA policy recognizes that other relevant watershed management processes may be used in the TMDL process. EPA is not required to and does not approve TMDL implementation plans.

Comment:

Implementation strategies are outlined in Section 10 of the TMDL and in the various WRAPS plans. The MPCA presented a variety of possible implementation activities which could be undertaken within the watersheds. MPCA outlined the importance of prioritizing areas within the MRGBE watershed, education and outreach efforts with local partners, and partnering with local stakeholders to improve water quality within the watershed. Reduction goals for the TSS TMDLs may be met via components of the following strategies:

Urban/residential Stormwater Reduction Strategies: Most downstream watersheds have significant amounts of urban/suburban land. MPCA anticipates that controls on stormwater will be needed to attain and maintain WQS. As noted in Section 5 of this Decision Document, the SWPPPs will be reviewed and revised as needed.

Improved Agricultural Drainage Practices: A review of local agricultural drainage networks will be completed to examine how improving drainage ditches and drainage channels could be reorganized to reduce the influx of sediments to the surface waters in the MRGBE watershed. The reorganization of the drainage network could include the installation of drainage ditches or sediment traps to encourage particle settling during high flow events. Additionally, cover cropping, and residue management is recommended to reduce erosion and thus siltation and runoff into streams.

Improving Storage Capacity/Riparian Area Management: These strategies involve reducing stormwater derived runoff from agricultural and urban landscapes and efforts toward attenuating peak flows and augmenting base flow in stream environments. These practices could include: stormwater retention structures (e.g., rain gardens), buffer/filter strips, wetland restoration, reestablishing vegetation in riparian areas (e.g., trees, shrubs, native grasses) and grassed waterways.

Identification of Stream, River, and Lakeshore Erosional Areas: An assessment of stream and river channel erosional areas should be completed to evaluate areas where erosion control strategies could be implemented in the MRGBE. Many of the projects and plans discussed in Section 8 of this Decision Document identify priority areas for pollutant controls. Implementation actions (e.g., planting deep-rooted vegetation near water bodies to stabilize

streambanks, grass filter strips, streambank stabilization practices, gully stabilization practices, installation of fencing near riparian areas, etc.) could be prioritized to target areas which are actively eroding. This strategy could prevent additional sediment inputs into surface waters of the TMDL watershed and minimize or eliminate degradation of habitat.

<u>Reducing Livestock Access to Stream Environments</u>: Livestock managers should be encouraged to implement measures to protect riparian areas. Managers should install exclusion fencing near stream environments to prevent direct access to these areas by livestock. Additionally, installing alternative watering locations and stream crossings between pastures may aid in reducing sediments to surface waters.

<u>Public Education Efforts:</u> Public programs will be developed to provide guidance to the general public on pollutant reduction efforts and their impact on water quality. These educational efforts could also be used to inform the general public on what they can do to protect the overall health of the waterbodies. As discussed in Section 11 of this Decision Document, MPCA has involved local stakeholders in the development of this TMDL for several years.

The EPA finds that this criterion has been adequately addressed. The EPA reviews but does not approve implementation plans.

11. Public Participation

EPA policy is that there should be full and meaningful public participation in the TMDL development process. The TMDL regulations require that each State/Tribe must subject calculations to establish TMDLs to public review consistent with its own continuing planning process (40 C.F.R. §130.7(c)(1)(ii)). In guidance, EPA has explained that final TMDLs submitted to EPA for review and approval should describe the State's/Tribe's public participation process, including a summary of significant comments and the State's/Tribe's responses to those comments. When EPA establishes a TMDL, EPA regulations require EPA to publish a notice seeking public comment (40 C.F.R. §130.7(d)(2)).

Provision of inadequate public participation may be a basis for disapproving a TMDL. If EPA determines that a State/Tribe has not provided adequate public participation, EPA may defer its approval action until adequate public participation has been provided for, either by the State/Tribe or by EPA.

Comment:

The public participation section of the TMDL submittal is found in Section 11 of the TMDL. Throughout the development of the MRGBE watershed TMDLs the public was given various opportunities to participate in the TMDL process. The MPCA encouraged public participation through public meetings and small group discussions with stakeholders within the watershed.

Meetings were first held in 2006, to begin the TMDL process. Initially, TMDLs were being developed for the Minnesota River and the Blue Earth River separately; and draft TMDLs were developed and public noticed in 2012. As a result of the public comments received, the MPCA reworked the TMDL, and combined the two projects into one; the Minnesota River-Greater Blue Earth River TMDL. Section 11 of the TMDL lists the numerous meetings regarding the TMDL

process held in the watershed. Participants included local government officials, stakeholders, and the public.

The draft TMDL was posted online by the MPCA at (http://www.pca.state.mn.us/water/tmdl). The public comment period began on July 22, 2019 and ended on September 20, 2019. The MPCA received numerous public comments and adequately addressed these comments. Comments were submitted by landowners in the watershed and several special interest groups. A summary of some of the major issues and MPCA responses is below.

Several commentors expressed support for the TMDL effort, and strongly encouraged the state to ensure that the sediment reductions were attained. The commentors also expressed support for the implementation of sediment controls, and how important the improvement of water quality was.

Several commentors expressed concerns over the presence of agricultural tile drains, and requested MPCA to either require permits, or reduce/remove tile drains. MPCA noted that that Clean Water Act specifically exempts agricultural stormwater from regulation as a point source. However, the State has several programs designed in part to encourage farmers to implement Best Management Practices (BMPs) that reduce sediment and other pollutants from entering waterbodies. Many watersheds have WRAPS either approved or in final stages of completion, which identify priority areas and actions needed to control sediment in the watershed.

Other commenters disagreed with MPCA that agricultural drain tiles are a significant source of flow and associated sediment into waterbodies in the MRGBR watershed. They explained that groundwater seepage and freeze-thaw cycles are leading to destabilized bluffs and gullies, causing them to fail and slump into the Minnesota River and its tributaries, rather than increased streamflow from agricultural tiles causing increased undercutting of streambanks and bluffs. MPCA explained that the causes of sediment loading in the MRGBE watershed vary in type and amount across the watershed. In some locations, bluff erosion is a significant sources, while in others, there is clear evidence that agricultural tiles are contributing to increased in-stream flows and related streambank erosion. MPCA agreed that detailed analyses (such as in the WRAPS and other implementation plans) are needed to determine the specific causes and locations of sediment loading, and that a suite of BMPs are best suited to reducing the loads. The State welcomed further study of sediment sources in the TMDL watershed to better understand sources and impacts.

Several commenters expressed concerns over the need to reduce high flows in the various waterbodies. As noted by MPCA, precipitation and related runoff levels have increased in the Minnesota River watershed, first in the 1940's with the advent of modern agricultural practices, and then in the 1980's, with a less discernable cause. Commentors requested addition controls such as ponds, detention structures and constructed/restored wetlands to help increase water storage and reduce the flashy flows. MPCA explained that the TMDL and related WRAPS documents include the impacts that increased water storage efforts will have on runoff volume, and these efforts will become even more critical as storm patterns change. MPCA reviewed rainfall data during the TMDL development process and noted that fewer but more intense storm events appear to be occuring, resulting in longer droughts but greater runoff when the storm events occur. The various WRAPS documents and Sediment Reduction Strategy provide information on what efforts are needed in which priority locations.

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document

Comments were also raised regarding the prioritization of CWLA funding. Several commentors requested that funding be shifted from watershed assessment and monitoring to implementation activities. MPCA explained that over 81% of the CWLA funding has been spent on implementation activities. MPCA noted that over \$3.3 billion has been spent since 2004 on water quality improvements in Minnesota, including both State and Federal dollars.

The EPA finds that the TMDL document submitted by the MPCA satisfies the requirements of this eleventh element.

12. Submittal Letter

A submittal letter should be included with the TMDL submittal, and should specify whether the TMDL is being submitted for a *technical review* or *final review and approval*. Each final TMDL submitted to EPA should be accompanied by a submittal letter that explicitly states that the submittal is a final TMDL submitted under Section 303(d) of the Clean Water Act for EPA review and approval. This clearly establishes the State's/Tribe's intent to submit, and EPA's duty to review, the TMDL under the statute. The submittal letter, whether for technical review or final review and approval, should contain such identifying information as the name and location of the waterbody, and the pollutant(s) of concern.

Comment:

The EPA received the final MRGBE watershed TMDL document, submittal letter and accompanying documentation from the MPCA on January 16, 2020. The transmittal letter explicitly stated that the final Minnesota, Blue Earth, Le Sueur, and Watonwan River watershed TMDLs for TSS were being submitted to EPA pursuant to Section 303(d) of the Clean Water Act for EPA review and approval. The letter clearly stated that this was a final TMDL submittal under Section 303(d) of CWA. The letter also contained the name of the watershed as it appears on Minnesota's 303(d) list, and the causes/pollutants of concern. This TMDL was submitted per the requirements under Section 303(d) of the Clean Water Act and 40 CFR 130.

The EPA finds that the TMDL transmittal letter submitted for the MRGBE watershed by the MPCA satisfies the requirements of this twelfth element.

13. Conclusion

After a full and complete review, the EPA finds that the TMDLs for the MRGBE watershed satisfy all of the elements of approvable TMDLs. This approval is for 68 TMDLs, addressing aquatic life use impairments due to TSS.

The EPA's approval of these TMDLs extends to the water bodies which are identified In Table 1 of this Decision Document with the exception of any portions of the water bodies that are within Indian Country, as defined in 18 U.S.C. Section 1151. The EPA is taking no action to approve or disapprove TMDLs for those waters at this time. The EPA, or eligible Indian Tribes, as appropriate, will retain responsibilities under the CWA Section 303(d) for those waters.

EPA sent a letter to the Lower Sioux Indian Community and the Upper Sioux Indian Community in Minnesota. In the letter, EPA offered the Tribal representatives the opportunity to consult with the EPA regarding these TMDLs. EPA received no official response.

Attachment 1

List of Waters Addressed by the Minnesota River- Blue Earth River TMDL

HUC-8	Stream Name	AUID (HUC-8)	Use Class	Description	Affected Designated Use	Year Listed	Target Start/ Completion
	Yellow Medicine River	502	2B, 3C	Spring Creek to Minnesota River	Aquatic Life	2002	2008/2016
Minnesota	Minnesota River	747	1C, 2Bd, 3C	Lac qui Parle Dam to Granite Falls Dam	Aquatic Life	а	
River-Yellow Medicine River	Minnesota River ^b	748	2B, 3C	Granite Falls Dam to Yellow Medicine River	Aquatic Life	а	
(07020004)	Minnesota River	749	2B, 3C	Yellow Medicine River to Echo Creek	Aquatic Life	a	
	Minnesota River	750	2B, 3C	Echo Creek to Beaver Creek	Aquatic Life	a	
Chippewa River (07020005)	Chippewa River	501	2B, 3C	Watson Sag to Minnesota River	Aquatic Life	2002	2004/2016
Redwood River (07020006)	Redwood River	501	2B, 3C	Ramsey Creek to Minnesota River	Aquatic Life	2004	2008/2016
	Minnesota River °	720	2B, 3C	Beaver Creek to Little Rock Creek	Aquatic Life	а	
Minnesota Biyon Mankata	Minnesota River	721	2B, 3C	Little Rock Creek to Cottonwood River	Aquatic Life	а	
River–Mankato (07020007)	Minnesota River	722	2B, 3C	Cottonwood River to Blue Earth River	Aquatic Life	а	
	Minnesota River	723	2B, 3C	Blue Earth River to Cherry Creek	Aquatic Life	а	
Cottonwood River (07020008)	Cottonwood River	501	2B, 3C	Judicial Ditch 30 to Minnesota River	Aquatic Life	2002	2016/2016
	Blue Earth River	501	2B, 3C	Le Sueur River to Minnesota River	Aquatic Life	2002	2008/2016
	Elm Creek	502	2B, <u>3</u> C	Cedar Creek to Blue Earth River	Aquatic Life	1996	2004/2016
	Center Creek	503	2B, 3C	Lily Creek to Blue Earth River	Aquatic Life	2002	2004/2016
	Blue Earth River	504	2B, 3C	West Branch Blue Earth River to Coon Creek	Aquatic Life	2002	2004/2016
Blue Earth River (07020009)	Blue Earth River	507	2B, 3C	Willow Creek to Watonwan River	Aquatic Life	2008	2004/2016
(01020003)	Blue Earth River	508	2B, 3C	East Branch Blue Earth River to South Creek	Aquatic Life	2002	2004/2016
	Blue Earth River	509	2B, 3C	Rapidan Dam to Le Sueur River	Aquatic Life	2004	2017/2016
	Blue Earth River	514	2B, 3C	Center Creek to Elm Creek	Aquatic Life	2010	2010/2016
	Blue Earth River	515	2B, 3C	Elm Creek to Willow Creek	Aquatic Life	2002	2004/2016

	Blue Earth	518	2B, 3C	Coon Creek to Badger Creek	Aquatic Life	2008	2007/2016
-	River Cedar (Run) Creek	521	2C	Cedar Lake to Elm Creek	Aquatic Life	2006	2004/2016
Elm Creek		522	2B, 3C	South Fork Elm Creek to Cedar Creek	Aquatic Life	2006	2004/2016
	Elm Creek ^d	523	2B, 3C	Headwaters to South Fork Elm Creek	Aquatic Life	2010	2004/2016
		630	2B, 3C	Headwaters to 570 th Ave	Aquatic Life	2020°	2020 ^e
		631	2B, 3C	570 th Ave to South Fork Elm Creek	Aquatic Life	2020°	2020 ^e
	Elm Creek <i>,</i> South Fork	524	2C	T103 R34W S30, W line to T103 R34W S1, N line	Aquatic Life	2010	2004/2017
	Lily Creek ^d	525	2B, 3C	Headwaters (Fox Lake 460109-00) to Center Crk	Aquatic Life	2006	2004/2016
		632	2B, 3C	Headwaters (Fox Lake 460109-00) to N Bixby Rd	Aquatic Life	2020°	2020 ^e
		633	2B, 3C	N Bixby Rd to Center Creek	Aquatic Life	2020 ^e	2020 ^e
	Dutch Creek ^d	527	2B, 3C	Headwaters to Hall Lake	Aquatic Life	2006	2004/2016
		634	2B, 3C	Headwaters to -94.507, 43.626	Aquatic Life	2020 ^e	2020 ^e
		635	2B, 3C	-94.507, 43.626 to T102 R31W S13, south line	Aquatic Life	2020 ^e	2020 ^e
		636	2B, 3C	T102 R31W S13, S line to T102 R31W S18, S line	Aquatic Life	2020°	2020 ^e
		637	2B, 3C	T102 R30W S19, north line to Hall Lk	Aquatic Life	2020°	2020 ^e
	Blue Earth River, E Br.	553	2C, 3C	Brush Creek to Blue Earth River	Aquatic Life	2008	2004/2016
	Blue Earth River, E Br. ^d	554	2B, 3C	Headwaters to Brush Creek	Aquatic Life	2008	2004/2016
		649	2B, 3C	East Branch; Headwaters to - 93.663 43.624	Aquatic Life	2020 ^e	2020 ^e
		650	2B, 3C	-93.663 43.624 to -93.73 43.654	Aquatic Life	2020 ^e	2020 ^e
	Blue Earth River	565	2B, 3C	Badger Creek to East Branch Blue Earth River	Aquatic Life	2008	2004/2016
	Le Sueur River	501	2B, 3C	Maple River to Blue Earth River	Aquatic Life	2002	2008/2016
Le Sueur River (07020011)	Unnamed Creek (Little Beauford Ditch) ^d	503	2B, 3C	Headwaters to Cobb River	Aquatic Life	2002	2004/2016
		642	2B, 3C	Headwaters to Victory Dr (MN22)	Aquatic Life	2020 ^e	2020°
		643	2B, 3C	Victory Dr (MN22) to Cobb R	Aquatic Life	2020 ^e	2020 ^e

	Little Cobb River	504	2C	Bull Run Creek to Cobb River	Aquatic Life	2002	2004/2016
	Le Sueur River	506	2B, 3C	Cobb River to Maple River	Aquatic Life	2010	2008/2016
	Le Sueur River	507	2B, 3C	County Ditch 6 to Cobb River	Aquatic Life	2008	2004/2016
	Rice Creek	531	2B, 3C	Headwaters to Maple River	Aquatic Life	2010	2008/2016
	Maple River	534	2B, 3C	Rice Creek to Le Sueur River	Aquatic Life	2008	2004/2016
	Maple River	535	2B, 3C	Minnesota Lake Outlet to Rice Creek	Aquatic Life	2010	2010/2016
	County Ditch 3 (Judicial Ditch 9) ^d	552	2B, 3C	Judicial Ditch 9 to Maple River	Aquatic Life	2010	2008/2016
		652	2B, 3C	JD 9 to -93.958, 43.852	Aquatic Life	2020 ^e	2020 ^e
		653	2B, 3C	-93.958, 43.852 to Maple R	Aquatic Life	2020 ^e	2020 ^e
	Cobb River	556	2C	T107 R26W S30, west line to Le Sueur River	Aquatic Life	2008	2004/2016
	Cobb River	568	2C	T104 R23W S34, south line to Little Cobb River	Aquatic Life	2010	2008/2016
	Le Sueur River ^d	619	2B, 3C	Headwaters to Boot Creek	Aquatic Life	2010	2010/2016
		664	2B, 3C	Headwaters to Freeborn/Steele County border	Aquatic Life	2020ª	2020 ^e
		665	2B, 3C	Freeborn/Steele County border to Boot Creek	Aquatic Life	2020°	2020 ^e
	Le Sueur River	620	2B, 3C	Boot Creek to CD6	Aquatic Life	2010	2010/2016
Lower Minnesota	Minnesota River	505	2C, 3C	RM 22 to Mississippi	Aquatic Life	1996	2014/2019
River (07020012)	Minnesota River	506	2C, 3C	Carver Creek to RM 22	Aquatic Life	1996	2014/2019
	Minnesota River	799	2B, 3C	Cherry Creek to High Island Creek	Aquatic Life	а	
	Minnesota River	800	2B, 3C	High Island to Carver Creek	Aquatic Life	а	
	Watonwan River	501	2B, 3C	Perch Creek to Blue Earth River	Aquatic Life	2002	2008/2016
	Watonwan River	510	2B, 3C	South Fork Watonwan River to Perch Creek	Aquatic Life	2008	2004/2016
	Watonwan River	511	2B, 3C	Butterfield Creek to South Fork Watonwan River	Aquatic Life	2006	2004/2016
Watonwan River	Butterfield Creek	516	2C	Headwaters to St. James Creek	Aquatic Life	2008	2004/2016
(07020010)	Watonwan River, South Fork	517	2B, 3C	Willow Creek to Watonwan River	Aquatic Life	2006	2004/2016
	Perch Creek	524	2C	Headwaters (Perch Lk 460046-00) to Spring Cr	Aquatic Life	2006	2004/2016
	St. James Creek (Kansas Lake Inlet)	528	2C	Headwaters to Kansas Lake	Aquatic Life	2002	2004/2016

				and the second s		
Watonwan River, South Fork	547	2B, 3C	Irish Lake to Willow Creek	Aquatic Life	2006	2008/2016
Watonwan River	562	2B, 3C	North Fork Watonwan River to T107 R32W S13, east line	Aquatic Life	2006	2004/2016
Watonwan River	563	2B, 3C	T107 R31W S18, west line to Butterfield Creek	Aquatic Life	2006	2004/2016
Watonwan River, North Fork	564	2B, 3C	Headwaters to T107 R32W S6, east line	Aquatic Life	2006	2004/2016
Watonwan River	566	2B, 3C	Headwaters to T107 R33W S33, east line	Aquatic Life	2006	2004/2016
Watonwan River	567	2B, 3C	T107 R33W S34, west line to North Fork Watonwan River	Aquatic Life	2006	2004/2016

a. Listed for TSS in the 2018 303(d) list of impaired waters

b. Adjacent to tribal lands of the Upper Sioux Community; noted as "partial designation" in the state's 2018 impaired waters list

c. Adjacent to tribal lands of the Lower Sioux Community; noted as "partial designation" in the state's 2018 impaired waters list

d. Reach split into multiple AUIDs following listing on 303(d) impaired waters list

e. Split reach proposed to be added to the 2020 303(d) impaired waters list

Attachment 2

TMDL Summaries for the Minnesota River – Blue Earth River TMDL

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TSS	5 Load (ton/	d)		
WLA: Industrial/Construction Stormwater	0.29	0.062	0.013	0.0024	b	
WLA: Wastewater	1.0	1.0	1.0	1.0	_ ^b	
Load Allocation	146	31	6.7	1.2	_ b	
Margin of Safety	16	3.6	0.86	0.25	0.064	
Loading Capacity	163	36	8.6	2.5	0.64	
Existing Concentration (mg/L)	211					
Percent Reduction to Achieve Concentration Standard			69%			

Table D-1. TSS TMDL summary, Yellow Medicine River (07020004-502)

Table D-2. TSS TMDL summary, Minnesota River (07020004-747)

		Fl	ow Regime	S	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: City, County, and/or Township MS4 ^a	1.29	0.48	0.19	0.088	0.042
WLA: Industrial/Construction Stormwater	0.59	0.18	0.069	0.029	b
WLA: Wastewater	4.2	4.2	4.2	4.2	_ ^b
Load Allocation	291	91	35	15	_ b
Margin of Safety	33	11	4.3	2.1	0.43
Loading Capacity	1,132	354	138	60	8.5
Existing Concentration (mg/L)	78				
Percent Reduction to Achieve Concentration Standard			17%		

Table D-3. TSS TMDL summary, Minnesota River (07020004-748)*

		Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low		
		TSS	5 Load (ton/	d)			
Upstream Boundary Condition	802	247	94	39	4.2		
WLA: City, County, and/or Township MS4 ^a	1.29	0.48	0.19	0.088	0.042		
WLA: Industrial/Construction Stormwater	0.63	0.20	0.073	0.030	— ^b		
WLA: Wastewater	4.9	4.9	4.9	4.9	_ b		
Load Allocation	312	98	36	15	_ b		
Margin of Safety	35	11	4.6	2.2	0.45		
Loading Capacity	1,156	362	140	61	8.7		
Existing Concentration (mg/L)	76						
Percent Reduction to Achieve Concentration Standard			14%				

* - TMDL does not apply to Tribal lands

		F	ow Regime	S	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: City, County, and/or Township MS4 ^a	3.88	1.44	0.58	0.26	0.13
WLA: Industrial/Construction Stormwater	1.1	0.33	0.12	0.046	b
WLA: Wastewater	8.7	8.7	8.7	8.7	_ ^b
Load Allocation	524	162	59	22.5	_ ^b
Margin of Safety	60	19	7.6	3.5	0.63
Loading Capacity	1,400	438	170	74	11
Existing Concentration (mg/L)	122				
Percent Reduction to Achieve Concentration Standard			47%		

Table D-4. TSS TMDL summary, Minnesota River (07020004-749)

Table D-5. TSS TMDL summary, Minnesota River (07020004-750)

		F	ow Regime	5	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: City, County, and/or Township MS4 ^a	7.23	2.68	1.08	0.49	0.24
WLA: Industrial/Construction Stormwater	1.41	0.54	0.16	0.06	0.03
WLA: Wastewater	15.3	15.3	15.3	15.3	15.3
Load Allocation	695	265.5	78.5	26.3	12.1
Margin of Safety	80	31	11	4.8	3.1
Loading Capacity	1,601	562	200	86	35
Existing Concentration (mg/L)	120				
Percent Reduction to Achieve Concentration Standard			46%		

Table D-6. TSS TMDL summary, Chippewa River (07020005-501)

	Flow Regimes						
TMDL Parameter	Very High	High	Mid	Low	Very Low		
		TS	S Load (ton,	/d)			
WLA: City, County, and/or Township MS4 ^a	0.63	0.23	0.094	0.043	0.021		
WLA: Industrial/Construction Stormwater	0.31	0.15	0.049	0.020	0.0058		
WLA: Wastewater	2.4	2.4	2.4	2.4	2.4		
Load Allocation	157	72	24.5	10	2.9		
Margin of Safety	18	8.3	3.0	1.4	0.59		
Loading Capacity	178	83	30	14	5.9		
Existing Concentration (mg/L)	52						

** This impairment was originally listed in 2002 based on turbidity data; however, the TSS data presented in this report do not show impairment. Older (1989–1994) TSS data evaluated by MPCA for the impairment assessment include observations that exceed the current TSS standard. The MPCA will reevaluate the reach in the next impairment assessment for this watershed.

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: City, County, and/or Township MS4 ^a	3.35	1.24	0.50	0.23	0.11	
WLA: Industrial/Construction Stormwater	0.35	0.076	0.020	0.0049	b	
WLA: Wastewater	2.5	2.5	2.5	2.5	b	
Load Allocation	173	37	9.6	2.2	_ ^b	
Margin of Safety	20	4.5	1.4	0.55	0.17	
Loading Capacity	199	45	14	5.5	1.7	
Existing Concentration (mg/L)	61					
Percent Reduction to Achieve Concentration Standard			_ **			

Table D-7. TSS TMDL summary, Redwood River (07020006-501)

** This impairment was originally listed in 2004 based on turbidity data; however, the TSS data presented in this report do not show impairment. The MPCA will reevaluate the reach in the next impairment assessment for this watershed.

Table D-8. TSS TMDL summary, Minnesota River (07020007-720)*

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
Upstream Boundary Condition	802	247	94	39	4.2	
WLA: City, County, and/or Township MS4 ^a	7.92	2.94	1.18	0.54	0.26	
WLA: Industrial/Construction Stormwater	1.54	0.58	0.17	0.06	0.02	
WLA: Wastewater	17.5	17.5	17.5	17.5	17.5	
Load Allocation	759	286	85	27.7	11.7	
Margin of Safety	87	34	11	5.2	3.3	
Loading Capacity	1,675	588	209	90	37	
Existing Concentration (mg/L)	151					
Percent Reduction to Achieve Concentration Standard	57%					

Table D-9. TSS TMDL summary, Minnesota River (07020007-721)

TMDL Parameter	Flow Regimes						
	Very High	High	Mid	Low	Very Low		
	TSS Load (ton/d)						
Upstream Boundary Condition	802	247	94	39	4.2		
WLA: City, County, and/or Township MS4 ^a	9.40	3.49	1.41	0.64	0.31		

WLA: Industrial/Construction Stormwater	1.6	0.60	0.18	0.062	0.025	
WLA: Wastewater	17.5	17.5	17.5	17.5	17.5	
Load Allocation	794.5	297.4	88.9	30.4	12.6	
Margin of Safety	91	36	12	5.4	3.4	
Loading Capacity	1,716	602	214	93	38	
Existing Concentration (mg/L)			145			
Percent Reduction to Achieve Concentration Standard	55%					

Table D-10. TSS TMDL summary, Minnesota River (07020007-722)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton	/d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.034	0.013	0.0053	0.0023	0.00075
WLA: City, County, and/or Township MS4 ^a	11.52	4.27	1.72	0.78	0.38
WLA: Industrial/Construction Stormwater	3.6	1.3	0.47	0.13	0.010
WLA: Wastewater	23	23	23	23	23
Load Allocation	1798	655.5	234	64.3	5.2
Margin of Safety	204	76	29	9.8	3.2
Loading Capacity	2,842	1,007	382	137	36
Existing Concentration (mg/L)	219				
Percent Reduction to Achieve Concentration Standard	70%				

Table D-11. TSS TMDL summary, Minnesota River (07020007-723)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton	/d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.45	0.17	0.07	0.03	0.01
WLA: City, County, and/or Township MS4 ^a	25.54	9.47	3.82	1.74	0.84
WLA: Industrial/Construction Stormwater	5.27	1.87	0.65	0.16	- ^b
WLA: Wastewater	45.88	45.88	45.88	45.88	- ^b
Load Allocation	2607.96	927.56	323.66	81.16	- ^b
Margin of Safety	298	109	41	14	4.3
Loading Capacity	3,785	1,341	509	182	48
Existing Concentration (mg/L)	301				
Percent Reduction to Achieve Concentration Standard	78%				

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TSS	S Load (ton/	d)		
WLA: City, County, and/or Township MS4 ^a	1.23	0.46	0.18	0.084	0.040	
WLA: Industrial/Construction Stormwater	0.68	0.19	0.056	0.011	_ ^b	
WLA: Wastewater	4.5	4.5	4.5	4.5	_ b	
Load Allocation	339.6	93	28	5.5	_ b	
Margin of Safety	38	11	3.6	1.1	0.33	
Loading Capacity	384	109	36	11	3.3	
Existing Concentration (mg/L)	370					
Percent Reduction to Achieve Concentration Standard	82%					

Table D-12. TSS TMDL summary, Cottonwood River (07020008-501)

Table D-13. TSS TMDL summary, Blue Earth River (07020009-501)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: MnDOT Outstate MS4 ^a	0.14	0.052	0.021	0.0091	0.0030	
WLA: City, County, and/or Township MS4 ^a	5.60	2.08	0.84	0.38	0.18	
WLA: Industrial/Construction Stormwater	2.69	0.82	0.24	0.044	_ b	
WLA: Wastewater	11	11	11	11	_ b	
Load Allocation	1339.6	408	119.9	23.7	_ b	
Margin of Safety	151	47	15	3.9	0.96	
Loading Capacity	1,510	469	147	39	9.6	
Existing Concentration (mg/L)	437					
Percent Reduction to Achieve Concentration Standard	85%					

Table D-14. TSS TMDL summary, Elm Creek (07020009-502)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: Industrial/Construction Stormwater	0.19	0.053	0.018	0.0046	— ^b	
WLA: Wastewater	.164	.164	.164	.164	— ^b	
Load Allocation	96.5	26.5	9.6	2.8	— ^b	
Margin of Safety	11	3.0	1.1	0.33	0.051	
Loading Capacity	108	30	11	3.3	0.51	
Existing Concentration (mg/L)	121					
Percent Reduction to Achieve Concentration Standard	46%					

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: City, County, and/or Township MS4 ^a	2.61	0.97	0.39	0.18	0.086	
WLA: Industrial/Construction Stormwater	0.088	0.021	0.0068	0.00013	_ ^b	
WLA: Wastewater	.60	.60	.60	.60	_ ^b	
Load Allocation	41.6	10.1	3.1	.66	— ^b	
Margin of Safety	5.0	1.3	0.46	0.16	0.024	
Loading Capacity	50	13	4.6	1.6	0.24	
Existing Concentration (mg/L)	139					
Percent Reduction to Achieve Concentration Standard	53%					

Table D-15. TSS TMDL summary, Center Creek (07020009-503)

 Table D-16. TSS TMDL summary, Blue Earth River (07020009-504)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
WLA: Industrial/Construction Stormwater	0.25	0.066	0.020	0.0060	0.00043
WLA: Wastewater	0.47	0.47	0.47	0.47	0.47
Load Allocation	126	33	10	3.0	0.21
Margin of Safety	14	3.7	1.2	0.39	0.076
Loading Capacity	141	37	12	3.9	0.76
Existing Concentration (mg/L)	***				
Percent Reduction to Achieve			***		
Concentration Standard					

*** No data in the TMDL period (2006–2015); data in Figure D-16 are from 1998–2000.

Table D-17. TSS TMDL summary, Blue Earth River (07020009-507)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	5 Load (ton/	′d)		
WLA: City, County, and/or Township MS4 ^a	2.61	0.97	0.39	0.18	0.086	
WLA: Industrial/Construction Stormwater	1.14	0.34	0.10	0.023	0.0017	
WLA: Wastewater	2.4	2.4	2.4	2.4	2.4	
Load Allocation	568.8	167.1	52.8	11.8	1.5	
Margin of Safety	64	19	6.2	1.6	0.44	
Loading Capacity	639	190	62	16	4.4	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard			_ ***			

*** No data in the TMDL period (2006–2015); data in Figure D-17 are from 1999–2000.

		Fl	ow Regime	s		
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.64	0.17	0.058	0.017	0.0018	
WLA: Wastewater	1.42	1.42	1.42	1.42	1.42	
Load Allocation	321.5	86.9	29.2	8.57	0.95	
Margin of Safety	36	9.8	3.4	1.1	0.26	
Loading Capacity	360	98	34	11	2.6	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard	***					

Table D-18. TSS TMDL summary, Blue Earth River (07020009-508)

*** No data in the TMDL period (2006–2015); data in Figure D-18 are from 1999–2000.

Table D-19. TSS TMDL summary, Blue Earth River (07020009-509)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: MnDOT Outstate MS4 ^a	0.0050	0.0019	0.00077	0.00033	0.00011	
WLA: City, County, and/or Township MS4 ^a	3.03	1.12	0.45	0.21	0.10	
WLA: Industrial/Construction Stormwater	1.8	0.53	0.16	0.034	0.0004	
WLA: Wastewater	5.42	5.42	5.42	5.42	5.42	
Load Allocation	895.6	262.9	81.3	17.8	.74	
Margin of Safety	101	30	9.7	2.6	0.69	
Loading Capacity	1,007	300	97	26	6.9	
Existing Concentration (mg/L)	386					
Percent Reduction to Achieve Concentration Standard	83%					

Table D-20. TSS TMDL summary, Blue Earth River (07020009-514)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: City, County, and/or Township MS4 ^a	2.61	0.97	0.39	0.18	0.086	
WLA: Industrial/Construction Stormwater	0.81	0.23	0.08	0.022	0.0018	
WLA: Wastewater	2.02	2.02	2.02	2.02	2.02	
Load Allocation	402.6	111.8	37.9	11.3	.95	
Margin of Safety	45	13	4.5	1.5	0.34	
Loading Capacity	453	128	45	15	3.4	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard			***			

*** No data in the TMDL period (2006–2015); data in Figure D-20 are from 1999.

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: City, County, and/or Township MS4 ^a	2.61	0.97	0.39	0.18	0.086	
WLA: Industrial/Construction Stormwater	1.05	0.31	0.096	0.021	0.0011	
WLA: Wastewater	2.4	2.4	2.4	2.4	2.4	
Load Allocation	519.6	153.4	47.6	10.9	1.1	
Margin of Safety	59	17	5.6	1.5	0.40	
Loading Capacity	585	174	56	15	4.0	
Existing Concentration (mg/L)	189					
Percent Reduction to Achieve Concentration Standard	66%					

Table D-21. TSS TMDL summary, Blue Earth River (07020009-515)

Table D-22. TSS TMDL summary, Blue Earth River (07020009-518)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TSS	5 Load (ton	(ton/d)		
WLA: Industrial/Construction Stormwater	0.33	0.09	0.03	0.010	0.001	
WLA: Wastewater	0.54	0.54	0.54	0.54	0.54	
Load Allocation	162	425	13	3.9	0.49	
Margin of Safety	18	4.8	1.5	0.50	0.11	
Loading Capacity	181	48	15	5.0	1.1	
Existing Concentration (mg/L)	93					
Percent Reduction to Achieve Concentration Standard	30%					

Table D-23. TSS TMDL summary, Cedar Creek (07020009-521)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.04	0.01	0.0033	— ^b	b	
WLA: Wastewater	.024	.024	.024	_ b	_ b	
Load Allocation	19.4	4.9	1.4	— ^b	_ b	
Margin of Safety	2.2	0.55	0.16	0.037	0.0031	
Loading Capacity	22	5.5	1.6	0.37	0.031	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard			***			

*** No data in the TMDL period (2006–2015); data in Figure D-23 are from 2000.

Table D-24. TSS TMDL summary, Elm Creek (07020009-522)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
	TSS Load (ton/d)				
WLA: Industrial/Construction Stormwater	0.094	0.025	0.0080	0.0025	0.00040
Load Allocation	47	13	4.0	1.3	0.20
Margin of Safety	5.2	1.4	0.44	0.14	0.022
Loading Capacity	52	14	4.4	1.4	0.22
Existing Concentration (mg/L)	94				
Percent Reduction to Achieve Concentration Standard	31%				

Table D-25. TSS TMDL summary, Elm Creek (07020009-523) #

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.034	0.0084	0.0028	0.00087	0.00012	
Load Allocation	17	4.2	1.4	0.43	0.058	
Margin of Safety	1.9	0.47	0.16	0.048	0.0065	
Loading Capacity	19	4.7	1.6	0.48	0.065	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard			_ ***			

AUID 07020009-523 has been split into child AUIDs 07020009-630 and 07020009-631. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

Table D-26. TSS TMDL summary, Elm Creek, South Fork (07020009-524)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	· .	TS	SS Load (ton/d)			
WLA: Industrial/Construction Stormwater	0.023	0.0055	0.0017	0.00055	0.000079	
Load Allocation	11	2.4	0.75	0.25	0.035	
Margin of Safety	1.2	0.27	0.084	0.028	0.0039	
Loading Capacity	12	2.7	0.84	0.28	0.039	
Existing Concentration (mg/L)	***					
Percent Reduction to Achieve Concentration Standard			***			

Table D-27. TSS TMDL summary, Lily Creek (07020009-525)#

TMDL Parameter	Flow Regimes					
	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: City, County, Township MS4 ^a	0.024	0.0090	0.0036	0.0017	0.00079	
WLA: Industrial/Construction Stormwater	0.024	0.0057	0.0017	0.0038	— ^b	
WLA: Wastewater	.0325	.0325	.0325	.0325	— ^b	

Load Allocation	11.65	2.95	1.02	0.33	_ b	
Margin of Safety	1.3	0.33	0.12	0.041	0.0059	
Loading Capacity	13 3.3 1.2 0.41				0.059	
Existing Concentration (mg/L)	***					
Percent Reduction to Achieve Concentration Standard	_ ***					

AUID 07020009-525 has been split into child AUIDs 07020009-632 and07020009-633. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

Table D-28. TSS TMDL summary, Dutch Creek (07020009-527)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		S Load (ton/	Load (ton/d)		
WLA: City, County, Township MS4 ^a	0.061	0.023	0.0091	0.0042	0.0020
WLA: Industrial/Construction Stormwater	0.011	0.0028	0.00091	0.00030	0.000041
WLA: Wastewater	0.00038	0.00038	0.00038	0.00038	0.00038
Load Allocation	5.6	1.3	0.44	0.15	0.018
Margin of Safety	0.63	0.15	0.050	0.017	0.0023
Loading Capacity	6.3	1.5	0.50	0.17	0.023
Existing Concentration (mg/L)	64				
Percent Reduction to Achieve Concentration Standard	_ **				

** This impairment was originally listed in 2004 based on turbidity data; however, the TSS data presented in this report do not show impairment. The MPCA will reevaluate the reach in the next impairment assessment for this watershed.

AUID 07020009-527 has been split into child AUIDs 07020009-634, 07020009-635, 07020009-636 and 07020009-637. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for all of these reaches.

Table D-29. TSS TMDL summary, Blue Earth River, East Branch (07020009-553)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: Industrial/Construction Stormwater	0.26	0.065	0.023	0.0062	0.00029	
WLA: Wastewater	0.76	0.76	0.76	0.76	0.76	
Load Allocation	128	32	11	3.1	0.14	
Margin of Safety	14	3.7	1.3	0.43	0.10	
Loading Capacity	143	37	13	4.3	1.0	
Existing Concentration (mg/L)	141					
Percent Reduction to Achieve Concentration Standard	54%					

Table D-30. TSS TMDL summary, Blue Earth River, East Branch (07020009-554)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.12	0.030	0.011	0.0029	— ^b	
WLA: Wastewater	0.49	0.49	0.49	0.49	_ a	

Load Allocation	61	15	5.4	1.4	_ b	
Margin of Safety	6.8	1.7	0.66	0.21	0.036	
Loading Capacity	68	17	6.6	2.1	0.36	
Existing Concentration (mg/L)	***				·	
Percent Reduction to Achieve	***					
Concentration Standard			-			

AUID 07020009-554 has been split into child AUIDs 07020009-649 and 07020009-650. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

Table D-31. TSS TMDL summary, Blue Earth River (07020009-565)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton	/d)	
WLA: Industrial/Construction Stormwater	0.39	0.10	0.032	0.0098	0.0012
WLA: Wastewater	0.66	0.66	0.66	0.66	0.66
Load Allocation	193	51	16	4.9	0.57
Margin of Safety	22	5.8	1.9	0.62	0.14
Loading Capacity	216	58	19	6.2	1.4
Existing Concentration (mg/L)	_ ***				
Percent Reduction to Achieve Concentration Standard	***				

Table D-32. TSS TMDL summary, Watonwan River (07020010-501)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
	TSS Load (ton/d)				
WLA: Industrial/Construction Stormwater	0.57	0.15	0.041	0.0057	_ b
WLA: Wastewater	3.0	3.0	3.0	3.0	_ a
Load Allocation	284	73	20	2.8	_ b
Margin of Safety	32	8.5	2.6	0.65	0.16
Loading Capacity	320	85	26	6.5	1.6
Existing Concentration (mg/L)	141				
Percent Reduction to Achieve Concentration Standard	54%				

Table D-33. TSS TMDL summary, Watonwan River (07020010-510)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.44	0.11	0.031	0.0034	<u> </u>	
WLA: Wastewater	2.8	2.8	2.8	2.8	_ a	
Load Allocation	221	56	15	1.7	_ ^b	
Margin of Safety	25	6.6	2.0	0.50	0.12	
Loading Capacity	249	66	20	5.0	1.2	
Existing Concentration (mg/L)	95					

Percent	Reduction	to	Achieve	32%
Concentrat	tion Standard			5270

Table D-34. TSS TMDL summary, Watonwan River (07020010-511)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS Load (ton/d)			
WLA: Industrial/Construction Stormwater	0.15	0.036	0.012	0.0024	— ^b
WLA: Wastewater	2.1	2.1	2.1	2.1	— ^a
Load Allocation	72	19	6.2	1.2	— ^b
Margin of Safety	8.3	2.3	0.92	0.37	0.12
Loading Capacity	83	23	9.2	3.7	1.2
Existing Concentration (mg/L)	158				
Percent Reduction to Achieve Concentration Standard	59%				

Table D-35. TSS TMDL summary, Butterfield Creek (07020010-516)

		F	low Regime	s	
TMDL Parameter	Very High	High	Mid	Low	Very Low
	TSS Load (ton/d)				
WLA: Industrial/Construction Stormwater	0.023	0.0052	0.00086	— ^b	— ^b
WLA: Wastewater	0.97	0.97	0.97	— ^a	_ ^a
Load Allocation	12	2.6	0.43	_ b	— ^b
Margin of Safety	1.4	0.40	0.16	0.057	0.012
Loading Capacity	14	4.0	1.6	0.57	0.12
Existing Concentration (mg/L)	77.2				
Percent Reduction to Achieve Concentration Standard	16%				

Table D-36. TSS TMDL summary, Watonwan River, South Fork (07020010-517)

·	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
	TSS Load (ton/d)				
WLA: Industrial/Construction Stormwater	0.10	0.025	0.0092	0.0027	0.00024
WLA: Wastewater	0.087	0.087	0.087	0.087	0.087
Load Allocation	52	12	4.6	1.4	0.12
Margin of Safety	5.8	1.4	0.52	0.16	0.023
Loading Capacity	58	13.5	5.2	1.6	0.22
Existing Concentration (mg/L)	132				
Percent Reduction to Achieve Concentration Standard	51%				

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton/	′d)		
WLA: Industrial/Construction Stormwater	0.092	0.020	0.0070	0.0019	0.00017	
WLA: Wastewater	0.10	0.10	0.10	0.10	0.10	
Load Allocation	46	9.7	3.5	0.95	0.087	
Margin of Safety	5.1	1.1	0.40	0.12	0.021	
Loading Capacity	51	11	4.0	1.2	0.21	
Existing Concentration (mg/L)	***					
Percent Reduction to Achieve Concentration Standard	1		_ ***			

Table D-37. TSS TMDL summary, Perch Creek (07020010-524)

Table D-38. TSS TMDL summary, St. James Creek (07020010-528)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.0040	0.00085	0.00034	0.00010	0.000018	
Load Allocation	2.0	0.42	0.17	0.052	0.0087	
Margin of Safety	0.22	0.047	0.019	0.0058	0.00097	
Loading Capacity	2.2	0.47	0.19	0.058	0.0097	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve Concentration Standard	_ ***					

*** No data in the TMDL period (2006–2015); data in Figure D-38 are from 1992.

Table D-39. TSS TMDL summary, Watonwan River, South Fork (07020010-547)

	Flow Regimes						
TMDL Parameter	Very High	High	Mid	Low	Very Low		
		TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.050	0.012	0.0041	0.0012	0.000049		
WLA: Wastewater	0.078	0.078	0.078	0.078	0.078		
Load Allocation	25	5.8	2.1	0.59	0.024		
Margin of Safety	2.8	0.66	0.24	0.075	0.012		
Loading Capacity	28	6.6	2.4	0.74	0.11		
Existing Concentration (mg/L)	_ ***						
Percent Reduction to Achieve Concentration Standard	_ ***						

Table D-40. TSS TMDL summary, Watonwan River (07020010-562)

	Flow Regimes						
TMDL Parameter	Very High	High	Mid	Low	Very Low		
	TSS Load (ton/d)						
WLA: Industrial/Construction Stormwater	0.077	0.018	0.0061	0.0015	— ^b		
WLA: Wastewater	0.77	0.77	0.77	0.77	— ^b		
Load Allocation	39	9.0	3.0	0.75	— ^b		

Margin of	Safety			4.4	1.1	0.42	0.17	0.043	
Loading Ca	ipacity			44 11 4.2 1.7					
Existing Co	ncentration (m	g/L)		_ ***					
Percent	Reduction	to	Achieve	***					
Concentra	tion Standard								

Table D-41. TSS TMDL summary, Watonwan River (07020010-563)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.080	0.019	0.0063	0.0016	_ b - ′	
WLA: Wastewater	0.78	0.78	0.78	0.78	— ^a	
Load Allocation	40	9.3	3.2	0.80	— ^b	
Margin of Safety	4.5	1.1	0.44	0.18	0.044	
Loading Capacity	45	11	4.4	1.8	0.44	
Existing Concentration (mg/L)	79					
Percent Reduction to Achieve Concentration Standard	17%					

Table D-42. TSS TMDL summary, Watonwan River, North Fork (07020010-564)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.031	0.0064	0.0023	0.00090	0.00022	
Load Allocation	15	3.2	1.2	0.45	0.11	
Margin of Safety	1.7	0.36	0.13	0.050	0.012	
Loading Capacity	17	3.6	1.3	0.50	0.12	
Existing Concentration (mg/L)	47					
Percent Reduction to Achieve Concentration Standard	**					

** This impairment was originally listed in 2004 based on turbidity data; however, the TSS data presented in this report do not show impairment. The MPCA will reevaluate the reach in the next impairment assessment for this watershed.

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton/	′d)	-	
WLA: Industrial/Construction Stormwater	0.036	0.0073	0.0022	_ b	– ^b	
WLA: Wastewater	0.77	0.77	0.77	_ b	— ^b	
Load Allocation	18	3.6	1.1	_ b	— ^b	
Margin of Safety	2.1	0.49	0.21	0.081	0.020	
Loading Capacity	21	4.9	2.1	0.81	0.20	
Existing Concentration (mg/L)	_ ***					
Percent Reduction to Achieve	2***					
Concentration Standard						

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.048	0.011	0.0036	0.00048	— ^b	
WLA: Wastewater	0.77	0.77	0.77	0.77	— ^b	
Load Allocation	23	5.4	1.7	0.24	b	
Margin of Safety	2.7	0.69	0.28	0.11	0.028	
Loading Capacity	27	6.9	2.8	1.1	0.28	
Existing Concentration (mg/L)	81					
Percent Reduction to Achieve Concentration Standard	20%					

Table D-44. TSS TMDL summary, Watonwan River (07020010-567)

Table D-45. TSS TMDL summary, Le Sueur River (07020011-501)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: MnDOT Outstate MS4 ^a	0.11	0.041	0.017	0.0072	0.0024	
WLA: City, County, and/or Township MS4 ^a	2.13	0.79	0.32	0.15	0.070	
WLA: Industrial/Construction Stormwater	0.95	0.26	0.067	0.0072	_ ^b	
WLA: Wastewater	6.2	6.2	6.2	6.2	_ b	
Load Allocation	472.7	127	33	3.6	,— ^b	
Margin of Safety	54	15	4.4	1.1	0.25	
Loading Capacity	536	149	44	11	2.5	
Existing Concentration (mg/L)	592					
Percent Reduction to Achieve Concentration Standard	89%					

Table D-46. TSS TMDL summary, Unnamed creek (Little Beauford Ditch; 07020011-503)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
	TSS Load (ton/d)					
WLA: Industrial/Construction Stormwater	0.0076	0.0010	0.00021	0.000046	0.000076	
Load Allocation	3.8	0.52	0.11	0.023	0.0038	
Margin of Safety	0.42	0.058	0.012	0.0026	0.00042	
Loading Capacity	4.2	0.58	0.12	0.026	0.0042	
Existing Concentration (mg/L)	90					
Percent Reduction to Achieve Concentration Standard	28%					

AUID 07020011-503 has been split into child AUIDs 07020011-642 and 07020011-643. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

		F	low Regime	s	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton/	'd)	
WLA: Industrial/Construction Stormwater	0.11	0.023	0.0058	0.00096	— ^b
WLA: Wastewater	0.13	0.13	0.13	0.13	— ^a
Load Allocation	54	12	2.9	0.48	— ^b
Margin of Safety	6.0	1.3	0.34	0.068	0.013
Loading Capacity	60	13	3.4	0.68	0.13
Existing Concentration (mg/L)	128				
Percent Reduction to Achieve Concentration Standard	49%				

Table D-47. TSS TMDL summary, Little Cobb River (07020011-504)

Table D-48. TSS TMDL summary, Le Sueur River (07020011-506)

		F	ow Regime	s	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
WLA: MnDOT Outstate MS4 ^a	0.11	0.041	0.017	0.0072	0.0024
WLA: City, County, and/or Township MS4 ^a	2.04	0.76	0.31	0.14	0.067
WLA: Industrial/Construction Stormwater	0.66	0.18	0.049	0.0083	- ^b
WLA: Wastewater	2.6	2.6	2.6	2.6	b
Load Allocation	324.6	88.5	24	3.9	_ b
Margin of Safety	37	10	3.0	0.74	0.17
Loading Capacity	367	102	30	7.4	1.7
Existing Concentration (mg/L)	_ ***				
Percent Reduction to Achieve Concentration Standard			***		
Concentration Stanuaru	l				

Table D-49. TSS TMDL summary, Le Sueur River (07020011-507)

		F	low Regime	s		
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TSS	6 Load (ton/	ˈd)		
WLA: MnDOT Outstate MS4 ^a	0.11	0.041	0.017	0.0072	0.0024	
WLA: City, County, and/or Township MS4 ^a	2.04	0.76	0.31	0.14	0.067	
WLA: Industrial/Construction Stormwater	0.36	0.091	0.030	0.0073	_ c .	
WLA: Wastewater	1.7	1.7	1.7	1.7	_ b	
Load Allocation	178.8	44.2	15	3.5	_ c	
Margin of Safety	20	5.2	1.9	0.60	0.16	
Loading Capacity	203	52	19	6.0	1.6	
Existing Concentration (mg/L)	476					
Percent Reduction to Achieve Concentration Standard	86%					

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton/	/d)		
WLA: Industrial/Construction Stormwater	0.075	0.012	0.0028	0.00047	— ^b	
WLA: Wastewater	0.076	0.076	0.076	0.076	_ b	
Load Allocation	38	6.2	1.5	0.24	— ^b	
Margin of Safety	4.2	0.70	0.17	0.035	0.0048	
Loading Capacity	42	7.0	1.7	0.35	0.048	
Existing Concentration (mg/L)	79					
Percent Reduction to Achieve Concentration Standard	e 17%					

Table D-50. TSS TMDL summary, Rice Creek (07020011-531)

Table D-51. TSS TMDL summary, Maple River (07020011-534)

		F	low Regime	S		
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton,	/d)		
WLA: Industrial/Construction Stormwater	0.32	0.053	0.0094	— ^b	- ^b	
WLA: Wastewater	3.6	3.6	3.6	— ^b	- ^b	
Load Allocation	158	26	4.7	— ^b	- ^b	
Margin of Safety	18	3.3	0.92	0.35	0.080	
Loading Capacity	180	33	9.2	3.5	0.80	
Existing Concentration (mg/L)	293					
Percent Reduction to Achieve Concentration Standard	78%					

Table D-52. TSS TMDL summary, Maple River (07020011-535)

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: Industrial/Construction Stormwater	0.20	0.031	0.0055	_ b	_ ^b	
WLA: Wastewater	2.9	2.9	2.9	b	_ b	
Load Allocation	98	15	2.8	_ b	— ^b	
Margin of Safety	11	2.0	0.63	0.26	0.046	
Loading Capacity	112	20	6.3	2.6	0.46	
Existing Concentration (mg/L)	***					
Percent Reduction to Achieve Concentration Standard			_ ***			

Table D-53. TSS TMDL summary, County Ditch 3 (07020011-552)

TMDL Parameter	Flow Regimes						
	Very High	High	Mid	Low	Very Low		
	TSS Load (ton/d)						
WLA: Industrial/Construction Stormwater	0.071	0.010	0.0022	0.00043	0.000043		
Load Allocation	36	4.9	1.1	0.22	0.022		
Margin of Safety	4.0	0.55	0.12	0.024	0.0024		

Loading Ca	apacity			40	5.5	1.2	0.24	0.024		
Existing Co	oncentration (m	g/L)		49						
Percent	Reduction	to	Achieve		**					
Concentra	tion Standard			_ **						

** This impairment was originally listed in 2004 based on turbidity data; however, the TSS data presented in this report do not show impairment. The MPCA will reevaluate the reach in the next impairment assessment for this watershed.

AUID 07020011-552 has been split into child AUIDs 07020011-652 and 07020011-653. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

Table D-54. TSS TMDL summary, Cobb River (07020011-556)

		F	low Regime	s	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton/	′d)	
WLA: Industrial/Construction Stormwater	0.28	0.064	0.017	0.0034	_ b
WLA: Wastewater	0.85	0.85	0.85	0.85	— ^a
Load Allocation	138	32	8.6	1.7	b
Margin of Safety	16	3.7	1.1	0.28	0.090
Loading Capacity	155	37	11	2.8	0.90
Existing Concentration (mg/L)	247				
Percent Reduction to Achieve Concentration Standard	74%				

Table D-55. TSS TMDL summary, Cobb River (07020011-568)

	F	low Regime	s		
Very High	High	Mid	Low	Very Low	
	TS	S Load (ton/	′d)		
0.14	0.034	0.0095	0.0018	— ^b	
0.72	0.72	0.72	0.72	_ b	
68	17	4.8	0.89	_ b	
7.6	2.0	0.61	0.18	0.061	
76	20	6.1	1.8	0.61	
_ ***					
		<u> </u>			
	0.14 0.72 68 7.6	Very High High 0.14 0.034 0.72 0.72 68 17 7.6 2.0	Very High High Mid TSS Load (ton/ 0.14 0.034 0.0095 0.72 0.72 0.72 68 17 4.8 7.6 2.0 0.61 76 20 6.1	TSS Load (ton/d) 0.14 0.034 0.0095 0.0018 0.72 0.72 0.72 0.72 68 17 4.8 0.89 7.6 2.0 0.61 0.18 76 20 6.1 1.8	

	Flow Regimes					
TMDL Parameter	Very High	High	Mid	Low	Very Low	
		TS	S Load (ton	/d)		
WLA: Industrial/Construction Stormwater	0.079	0.019	0.0065	0.0019	0.00038	
Load Allocation	40	9.6	3.2	0.93	0.19	
Margin of Safety	4.4	1.1	0.36	0.10	0.021	
Loading Capacity	44	11	3.6	1.0	0.21	
Existing Concentration (mg/L)	***					
Percent Reduction to Achieve Concentration Standard	_ ***					

Table D-56. TSS TMDL summary, Le Sueur River (07020011-619)

AUID 07020011-619 has been split into child AUIDs 07020011-664 and 07020011-665. These child AUIDs will be proposed for the 2020 303(d) Impaired Waters List. The allocations in the above table address the impairments for both reaches.

Table D-57. TSS TMDL summary, Le Sueur River (07020011-620)

		F	low Regime	s	
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton/	′d)	
WLA: City, County, and/or Township MS4 ^a	0.37	0.14	0.055	0.025	0.012
WLA: Industrial/Construction Stormwater	0.23	0.055	0.018	0.0039	— ^b
WLA: Wastewater	1.0	1.0	1.0	1.0	— ^b
Load Allocation	115.4	26.7	8.8	1.95	_ b
Margin of Safety	13	3.1	1.1	0.33	0.085
Loading Capacity	130	31	11	3.3	0.85
Existing Concentration (mg/L)	_ ***				
Percent Reduction to Achieve Concentration Standard			_ ***		

Table D-58. TSS TMDL summary, Minnesota River (07020012-505)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton/	′d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.45	0.17	0.07	0.03	0.01
WLA: MnDOT Metro MS4 ^a	4.87	1.8	0.73	0.33	0.16
WLA: City, County, and/or Township MS4 ^a	119.2	44.21	17.83	8.12	3.9
WLA: Industrial/Construction Stormwater	6.3	2.3	0.83	0.28	0.07
WLA: Wastewater	90.5	90.5	90.5	90.5	90.5
Load Allocation	3009.7	1099.2	395.1	133.8	30.2
Margin of Safety	359	138	56	26	14
Loading Capacity	4,392	1,623	655	298	143
Existing Concentration (mg/L)	163				
Percent Reduction to Achieve Concentration Standard	ve 60%				

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	5 Load (ton/	d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.45	0.17	0.07	0.03	0.01
WLA: MnDOT Metro MS4 ^a	0.81	0.30	0.12	0.055	0.027
WLA: City, County, and/or Township MS4 ^a	45.77	16.98	6.85	3.12	1.50
WLA: Industrial/Construction Stormwater	6.0	2.22	0.79	0.23	0.011
WLA: Wastewater	55.1	55.1	55.1	55.1	55.1
Load Allocation	2965.1	1092.1	388.2	109.5	5.39
Margin of Safety	341	130	50	19	6.8
Loading Capacity	4,216	1,544	595	226	73
Existing Concentration (mg/L)	252				
Percent Reduction to Achieve Concentration Standard	· .		74%		

Table D-59. TSS TMDL summary, Minnesota River (07020012-506)

Table D-60. TSS TMDL summary, Minnesota River (07020012-799)

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TSS	6 Load (ton/	d)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.45	0.17	0.07	0.03	0.01
WLA: City, County, and/or Township MS4 ^a	26.38	9.78	3.95	1.80	0.86
WLA: Industrial/Construction Stormwater	5.63	2.08	0.74	0.21	0.01
WLA: Wastewater	52.14	52.14	52.14	52.14	52.14
Load Allocation	2783.4	1027.9	364.5	102.9	5.39
Margin of Safety	319	121	47	18	6.4
Loading Capacity	3,989	1,460	563	214	69
Existing Concentration (mg/L)			200		
Percent Reduction to Achieve Concentration Standard	68%				

	Flow Regimes				
TMDL Parameter	Very High	High	Mid	Low	Very Low
		TS	S Load (ton/	'd)	
Upstream Boundary Condition	802	247	94	39	4.2
WLA: MnDOT Outstate MS4 ^a	0.45	0.17	0.07	0.03	0.01
WLA: City, County, and/or Township MS4 ^a	30.27	11.23	4.53	2.06	0.99
WLA: Industrial/Construction Stormwater	5.96	2.2	0.78	0.22	0.01
WLA: Wastewater	53.8	53.8	53.8	53.8	53.8
Load Allocation	2945.5	1085.6	386.9	109.9	5.57
Margin of Safety	337	128	50	19	6.8
Loading Capacity	4,175	1,528	590	224	72
Existing Concentration (mg/L)	243				
Percent Reduction to Achieve Concentration Standard	73%				

Table D-61. TSS TMDL summary, Minnesota River (07020012-800)

^a To meet the WLAs for permitted MS4s, TSS loading does not need to be reduced but is not allowed to increase.

^b Unable to calculate allocations because the wastewater WLA exceeds the loading capacity. The allocations are expressed as an equation rather than an absolute number: allocation = flow contribution from a given source x 65 mg/L. See Sections 5.4.2 and 5.6 for more detail.

*** N < 10; existing concentration and percent reduction not calculated.

Attachment 3

Individual Wastewater WLAs

Facility	Permit	Wasteload Allocation (tons/day)	Impairment AUID ^a
ADM Corn Processing - Marshall	MN0057037	0.330	07020006-501
Alden WWTP	MNG585118	0.462	07020009-554
Altona Hutterian Brethren WWTP	MN0067610	0.0220	07020012-799
Amboy WWTP	MN0022624	0.0359	07020011-534
Anchor Glass Container Corp	MN0003042	0.00739	07020012-505
Arlington WWTP	MN0020834	0.100	07020012-800
Balaton WWTP	MN0020559	0.153	07020008-501
Belle Plaine WWTP	MN0022772	0.705	07020012-800
Belview WWTP	MNG580003	0.163	07020004-750
Benson WWTP	MN0020036	0.0978	07020005-501
Bird Island WWTP	MN0022829	0.213	07020004-750
Blomkest Svea Sewer Board WWTP	MN0069388	0.0849	07020004-587
Blue Earth WWTP	MN0020532	0.122	07020009-565
Bongards' Creameries Inc	MN0002135	0.357	07020012-506
Bricelyn WWTP	MNG585129	0.0875	07020009-553
Butterfield WWTP	MN0022977	0.519	07020010-516
CHS Mankato ^b	MN0001228	0.497	07020009-501
Clara City WWTP	MN0023035	0.0575	07020004-587
Clarkfield WWTP	MNG580093	0.550	07020004-748
Clements WWTP	MNG580094	0.0305	07020008-501
Cleveland WWTP	MNG580009	0.202	07020007-723
Clontarf WWTP	MNG580108	0.0397	07020005-501
Cold Spring Granite Co	MNG490143	0.452	07020007-720
Cologne WWTP	MN0023108	0.0407	07020012-506
Comfrey WWTP	MN0021687	0.00937	07020007-722
Community of Roseland WWTP	MN0070092	0.0694	07020004-587
Cottonwood WWTP	MNG580010	0.347	07020004-749
Dairy Farmers of America Inc - Winthrop	MN0003671	0.150 °	07020012-799
Danube WWTP	MNG580057	0.121	07020004-750
Danvers WWTP	MNG585119	0.0354	07020005-501

Table E-1. Inc	dividual wastewate	r wasteload	allocations
----------------	--------------------	-------------	-------------

Darling International Inc - Blue Earth	MN0002313	0.069	07020009-518
De Graff WWTP ^d	MN0071234	0.054	07020005-501
Del Monte Foods Inc - Sleepy Eye Plant 114	MN0001171	0.144	07020008-501
Delavan WWTP	MNG585109	0.0764	07020011-531
Delft Sanitary District WWTP	MN0066541	0.000717	07020010-566
Delhi WWTP	MN0067008	0.0018	07020004-750

.

Delta Air Lines Inc - Mpls/Saint Paul	MN0054194	0.00363	07020012-505
		0.651	07020004-587
		1.14	07020004-747
Duininck Inc	MNG490046	1.63	07020004-750
		0.651	07020005-501
Echo WWTP	MNG580059	0.122	07020004-749
Eden Prairie Well House 6 & 7	MNG250084	0.00125	07020012-505
Elmore WWTP	MNG585110	0.467	07020009-504
Erosion Control Plus Inc	MNG490321	0.452	07020010-510
Evan WWTP	MNG580202	0.0272	07020007-720
Evansville WWTP	MNG585074	0.141	07020005-501
Fabcon Inc	MN0068284	0.0901	07020012-505
Fairfax WWTP	MNG580060	0.791	07020007-720
Fairmont Foods Inc	MN0001996	0.00812	07020009-503
Fairmont WTP	MN0045527	0.000376	07020009-527
Fairmont WWTP	MN0030112	0.488	07020009-503
Farwell Kensington Sanitary District WWTP	MNG585220	0.107	07020005-501
Franklin WWTP	MN0021083	0.0216	07020007-720
Freeborn WWTP	MN0040908	0.0459	07020011-568
Frost WWTP	MNG585120	0.0737	07020009-553
Garvin WWTP	MNG580101	0.0317	07020008-501
Gaylord WWTP	MNG580204	0.826	07020012-799
Ghent WWTP	MNG585121	0.0485	07020006-501
Gibbon WWTP	MNG580020	0.187	07020012-799
Good Thunder WWTP	MNG580206	0.133	07020011-534
Granada WWTP	MNG585023	0.0679	07020009-503
Granite Falls Energy LLC	MN0066800	0.0165	07020004-587

		0.100	0700004 740
Granite Falls WWTP	MN0021211	0.100	07020004-748
	NANG 400447	0.905	07020004-750
Granite Valley Quarry	MNG490117	0.452	07020007-720
Great River Energy - Lakefield Junction Station	MN0067709	0.00113	07020009-521
Groebner Farms	MNG490270	0.452	07020008-501
Hamburg WWTP	MN0025585	0.106	07020012-800
Hancock WWTP	MNG585299	0.257	07020005-501
Hanley Falls WWTP	MNG580122	0.0459	07020004-502
Hanska WWTP	MN0052663	0.0703	07020007-722
Hartland WWTP	MNG585102	0.0743	07020011-620
Hoffman WWTP	MNG585134	0.463	07020005-501
Hopkins Well 4 WTP	MNG640045	0.0250	07020012-505

NT			
Ivanhoe WWTP	MNG580103	0.104	07020004-502
Janesville WWTP	MNG580025	0.642	07020011-507
Jeffers WWTP	MNG580111	0.0642	07020008-501
Jordan Sands LLC	MN0070581	0.376	07020007-723
Jordan WWTP	MN0020869	0.161	07020012-800
Kerkhoven WWTP	MN0020583	0.0187	07020005-501
Kiester WWTP	MNG585097	0.0933	07020009-553
Kraemer Mining & Materials Burnsville	MN0002224	1.88	07020012-505
La Salle WWTP	MN0067458	0.00187	07020010-563
Lafayette WWTP	MN0023876	0.0119	07020012-799
Lake Crystal WWTP	MN0055981	0.0739	07020007-722
Laketown Community WWTP	MN0054399	0.000772	07020012-506
Lamberton WWTP	MNG580100	0.245	07020008-501
Le Center WWTP	MN0023931	0.103	07020012-799
Le Sueur Cheese Co	MN0060216	0.0250	07020012-799
Lewisville WWTP	MNG585314	0.0871	07020010-501
LifeCore Biomedical LLC	MN0060747	0.00626	07020012-506
Lincoln County Highway		0.452	07020004-502
Department	MNG490203	0.452	07020006-501
Lowry WWTP	MNG585123	0.0791	07020005-501
Lucan WWTP	MN0031348	0.0428	07020008-501
Lynd WWTP	MNG580030	0.0642	07020006-501

MA Gedney Co	MN0022446	0.254	07020012-506
Madelia WWTP	MN0024040	0.164	07020010-510
Magellan Pipeline Co LP - Marshall	MN0059838	0.0901	07020006-501
Mankato Water Resource Recovery Facility	MN0030171	1.41	07020007-723
Mapleton WWTP	MN0021172	0.672	07020011-568
Marshall WWTP	MN0022179	0.562	07020006-501
Martin Marietta Materials Yellow Medicine	MNG490195	0.626	07020004-747
Mathiowetz Construction Co	MNG490137	0.452	07020010-516
Mathowetz construction co		0.452	07020011-534
Maynard WWTP	MN0056588	0.0192	07020004-587
McLaughlin Gormley King Co	MN0058033	0.000871	07020012-506
Met Council - Blue Lake WWTP	MN0029882	5.252	07020012-505
Met Council - Seneca WWTP	MN0030007	4.749	07020012-505
Metropolitan Airports Commission	MN0002101	21.5	07020012-505
MG Waldbaum Co	MN0060798	0.0688	07020012-799
Millerville WWTP	MN0054305	0.0476	07020005-501

Milroy WWTP	MNG585124	0.0463	07020006-501
Minneota WWTP	MNG580033	0.336	07020004-502
Montevideo WWTP	MN0020133	0.309	07020005-501
Montgomery WWTP	MN0024210	0.121	07020012-800
Morgan WWTP ^e	MN0020443	0.434	07020007-720
Morton WWTP	MN0051292	0.0248	07020007-720
Mountain Lake WWTP	MN0021466	0.773	07020010-566
MRVPUC WWTP	MN0068195	0.230	07020012-799
Murdock WWTP	MNG585086	0.0595	07020005-501
Neuhof Hutterian Brethren	MNG580113	0.0217	07020010-547
New Prague Utilities Commission	MNG640117	0.00426	07020012-800
New Prague WWTP	MN0020150	0.229	07020012-800
New Richland WWTP	MN0021032	0.0750	07020011-620
New Ulm WWTP	MN0030066	0.847	07020008-501
Nicollet WWTP	MNG580037	0.480	07020007-722
Northern Con-Agg LLP	MNG490088	0.452	07020006-501
Northern Con-Agg LLP - Redwood Falls	MN0059331	0.0451	07020007-720

Northrop WWTP	MN0024384	0.148	07020009-502
Northstar Ethanol LLC dba Poet Biorefining - Lake Crystal	MN0067172	0.0163	07020007-722
Norwood Young America WWTP	MN0024392	0.114	07020012-800
Odin-Ormsby WWTP	MN0069442	0.0562	07020010-547
Olivia WWTP	MN0020907	0.122	07020004-750
OMG Midwest Inc/Southern MN Construction Co Inc	MNG490131	0.452	07020007-722
Pemberton WWTP	MNG585075	0.122	07020011-504
Pennock WWTP	MNG580104	0.122	07020004-587
Pepsi Beverages Co	MN0060101	0.0156	07020012-505
Polar Semiconductor LLC	MN0064661	0.0175	07020012-505
Porter WWTP	MNG580128	0.0305	07020004-502
Prinsburg WWTP	MN0063932	0.00681	07020004-587
Prior Lk/Spring Lk Ferric Chloride WTP	MN0067377	0.000626	07020012-505
Rahr Malting Co	MN0031917	0.625	07020012-506
Raymond WWTP	MN0045446	0.266	07020004-587
Redwood Falls WWTP	MN0020401	0.248	07020004-750
Renville WWTP	MN0020737	0.107	07020004-750
Revere WWTP	MNG580114	0.0281	07020008-501
Russell WWTP	MNG585062	0.110	07020006-501
Ruthton WWTP	MNG585105	0.0709	07020006-501
Sacred Heart WWTP	MN0024708	0.0297	07020004-749
Saint Clair WWTP	MN0024716	0.0265	07020011-507
Saint George District Sewer System	MN0064785	0.000816	07020007-721
Saint James WWTP	MN0024759	0.370	07020010-511
Saint Leo WWTP	MN0024775	0.0265	07020004-502
Saint Peter WWTP	MN0022535	0.500	07020007-723
Sanborn WWTP	MNG580115	0.0642	07020008-501
Seagate Technology LLC - Bloomington	MN0030864	0.00376	07020012-505
Searles WWTP	MNG580080	0.0722	07020007-722
Seneca Foods Corp - Blue Earth	MN0001287	0.0182	07020009-553
Seneca Foods Corp - Montgomery	MN0001279	0.0625	07020012-800
SkyWater Technology Foundry	MN0056723	0.160	07020012-505

Sleepy Eye WWTP	MNG580041	1.21	07020008-501
Southern Minnesota Beet Sugar Coop ^f	MN0040665	0.614	07020004-750
Springfield WWTP	MN0024953	0.0977	07020008-501
Starbuck WWTP	MN0021415	0.0438	07020005-501
Starland Hutterian Brethren Inc	MN0067334	0.0298	07020012-799
Storden WWTP	MNG580106	0.0495	07020008-501
SUEZ WTS Solutions USA Inc	MN0059013	0.0249	07020012-505
Sunburg WWTP	MNG585125	0.0221	07020005-501
Superior Minerals Co	MN0063584	0.0136 ^g	07020012-505
Taunton WWTP	MNG580090	0.0367	07020004-502
Tracy WWTP ^h	MN0021725	0.656	07020008-501
Trimont WWTP	MN0022071	0.0231	07020009-521
Truman WTP	MNG640129	0.00188	07020010-524
Truman WWTP	MN0021652	0.0981	07020010-524
Tyler WWTP	MNG585116	0.205	07020006-501
Ulland Brothers Inc	MNG490069	0.452	07020011-620
Unimin Corp - Kasota Mining Project	MN0053082	2.09	07020007-723
		3.76	07020007-723
Unimin Corp - Ottawa Plant	MN0001716	3.76	07020007-799
Urbank WWTP	MNG585343	0.0150	07020005-501
Vernon Center WWTP	MN0030490	0.0110	07020009-507
Vesta WWTP	MNG580043	0.0486	07020006-501
Vetter Stone Co	MNG490173	2.71	07020007-723
Wabasso WWTP	MN0025151	0.0141	07020008-501
Waldorf WWTP	MN0021849	0.0120	07020011-504
Walnut Grove WWTP	MN0021776	0.0254	07020008-501
Walters WWTP	MNG585223	0.0274	07020009-554
Wanda WWTP	MNG580126	0.0336	07020008-501
Waseca WWTP	MN0020796	0.438	07020011-620
Welcome WWTP	MN0021296	0.0325	07020009-525
Wells Public Utilities	MN0025224	2.915	07020011-535
Westbrook WWTP	MNG580127	0.305	07020008-501
Willmar WWTF	MN0025259	0.939	07020004-587
Winnebago WWTP	MN0025267	0.213	07020009-515

Winthrop WWTP	MN0051098	0.392	07020012-799
Wood Lake WWTP	MNG580107	0.0672	07020004-749
Xcel Energy - Black Dog Generating Plant	MN0000876	1.69	07020012-505
Xcel Energy - Key City/Wilmarth	MN0000914	0.0174	07020007-723

a. Only the most upstream impairment watershed is listed; each permitted facility's WLA also applies to impairments in this report that are located downstream of the indicated impairment AUID. b. WLA based on updated permitted flow of 3.9744 mgd.

c. The current permit limit of Dairy Farmers of America Inc–Winthrop (MN0003671) is based on 66 mg/L TSS, and the WLA is based on 65 mg/L TSS. A WQBEL will need to be considered upon permit reissuance.

d. An NPDES permit for the new De Graff WWTP is expected to be issued in summer or fall of 2018.

e. New permit and pond constructed since the WLA calculated for South Metro Mississippi TSS TMDL

f. WLA includes discharge of cooling water not accounted for in South Metro Mississippi TSS TMDL

g. The current permit limit of Superior Minerals Co (MN0063584) is based on 188 mg/L TSS, and the WLA is based on 65 mg/L TSS and flow of 0.0495 mgd. A WQBEL will need to be considered upon permit reissuance. h. Permitted flow increased to 0.462 mgd. 45 mg/L limit remains protective of WQS.

Attachment 4

MS4 Permittees in the Minnesota River-Great Blue Earth River TMDL

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document

Permit	Regulated Entity Name	07020004-747	07020004-748	07020004-749	07020004-750	07020005-501	07020006-501	07020007-720	07020007-721	07020007-722	07020007-723	07020008-501	07020009-501	07020009-503	07020009-507	07020009-509	07020009-514	07020009-515	07020009-525	07020009-527	07020011-501	07020011-506	07020011-507	02070011-620	07020012-505	07020012-506	07020012-799	07020012-800
MS400074	Apple Valley City MS4																								√			
a	Belle Plaine City MS4						ĵ																		~	~		~
MS400005	Bloomington City MS4																								~			
MS400276	Blue Earth County MS4										~		~			~					~	~	~		√	~	~	~
MS400076	Burnsville City MS4					_															_				~			
MS400077	Carver City MS4																								\checkmark	\checkmark		\checkmark
MS400070	Carver County MS4																								~	~		
MS400079	Chanhassen City MS4	_									_														~	~		
MS400080	Chaska City MS4																								\checkmark	\checkmark		
MS400131	Credit River Township MS4																								~	~		~
MS400132	Dakota County MS4																								~			
MS400013	Deephaven City MS4																								~			
MS400014	Eagan City MS4																								\checkmark			
MS400284	Eagle Lake City MS4										~		~								~	~	~		~	~	~	~
MS400015	Eden Prairie City MS4					-				-															~	~		
MS400016	Edina City MS4					-																			\checkmark			

×.

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document

Permit	Regulated Entity Name	07020004-747	07020004-748	07020004-749	07020004-750	07020005-501	07020006-501	07020007-720	07020007-721	07020007-722	07020007-723	07020008-501	07020009-501	07020009-503	07020009-507	07020009-509	07020009-514	07020009-515	07020009-525	07020009-527	07020011-501	07020011-506	07020011-507	02070011-620	07020012-505	07020012-506	07020012-799	07020012-800
MS400237	Elko New Market City MS4																								1	~		\checkmark
MS400239	Fairmont City MS4										✓		✓	~	~	~	~	~	✓	~					\checkmark	<	~	~
MS400138	Hennepin County MS4			·			-																		~	~		
MS400199	Hennepin Technical College Eden Prairie MS4	÷																							~			
MS400024	Hopkins City MS4																								✓			
MS400096	Inver Grove Heights City MS4																								1			
MS400140	Jackson Township MS4																								√ .	~		~
_ ^a	Jordan City MS4																								~	\checkmark		\checkmark
MS400142	Laketown Township MS4																								~	~		
MS400099	Lakeville City MS4																								~			
a	Le Sueur City MS4																-								~	~	~	~
MS400028	Lilydale City MS4																								\checkmark			
MS400144	Louisville Township MS4				-												-								1	~		~
MS400226	Mankato City MS4									~	~		~								~	~	~		~	~	~	~
MS400297	Mankato Township MS4										~		~								~	~	~		~	~	~	~

Permit	Regulated Entity Name	07020004-747	07020004-748	07020004-749	07020004-750	07020005-501	07020006-501	07020007-720	07020007-721	07020007-722	07020007-723	07020008-501	07020009-501	07020009-503	07020009-507	07020009-509	07020009-514	07020009-515	07020009-525	07020009-527	07020011-501	07020011-506	07020011-507	02070011-620	07020012-505	07020012-506	07020012-799	07020012-800
MS400241	Marshall City MS4				~		~	~	1	~	1	~													~	1	~	~
MS400033	Mendota City MS4																								√			
MS400034	Mendota Heights City MS4																								~			
MN0061018	Minneapolis Municipal Storm Water											-													~			
MS400035	Minnetonka City MS4																								~			
MS400106	Minnetrista City MS4									-															~	~		
MS400279	Minnesota State University – Mankato									_	~			-											~	~	~	~
MS400170	Mn/DOT Metro District MS4										_														v	~		
MS400180	Mn/DOT Outstate District MS4									~	~		~			~					~	~	~		~	~	~	~
MS400261	Montevideo City MS4	~	~	~	~	~		~	~	~	~														~	~	~	~
_ a	New Prague City MS4																			1					~	~		~
MS400228	New Ulm City MS4								~	~	~	√ ¹													~	~	~	~
MS400255	Normandale Community College MS4																								~			

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document

Permit	Regulated Entity Name	07020004-747	07020004-748	07020004-749	07020004-750	07020005-501	07020006-501	07020007-720	07020007-721	07020007-722	07020007-723	07020008-501	07020009-501	07020009-503	07020009-507	07020009-509	07020009-514	07020009-515	07020009-525	07020009-527	07020011-501	07020011-506	07020011-507	02070011-620	07020012-505	07020012-506	07020012-799	07020012-800
MS400229	North Mankato City MS4									~	✓														✓	~	~	~
MS400113	Prior Lake City MS4															·									~	~		~
MS400189	Prior Lake-Spring Lake WSD MS4															•									~			
MS400236	Redwood Falls City MS4				~		~	~	~	~	~														~	~	~	~
MS400045	Richfield City MS4																								~			
MS400117	Rosemount City MS4												,									-			~			
MS400119	Savage City MS4								÷																✓			
MS400154	Scott County MS4																					-			✓	✓		
MS400120	Shakopee City MS4																								✓	~		
MS400122	Shorewood City MS4			·																				1	✓			
MS400292	Skyline City MS4										\checkmark		\checkmark												\checkmark	\checkmark	\checkmark	\checkmark
MS400156	Spring Lake Township MS4																								~	~		~
MS400299	Southbend Township MS4									~	~		~			~					Ý				~	~	~	~
MS400245	St Peter City MS4										\checkmark														\checkmark	\checkmark	\checkmark	\checkmark
MS400126	Victoria City MS4																								✓	\checkmark		
MS400232	Waconia City MS4																								✓	~		
MS400258	Waseca City MS4										\checkmark		~								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark

Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document Minnesota River-Greater Blue Earth Watershed Final TMDL Decision Document

MS400272	Permit
Willmar City MS4	Regulated Entity Name
	07020004-747
	07020004-748
<	07020004-749
<	07020004-750
	07020005-501
	07020006-501
۲	07020007-720
<	07020007-721
<	07020007-722
۲	07020007-723
	07020008-501
	07020009-501
	07020009-503
	07020009-507
	07020009-509
	07020009-514
	07020009-515
	07020009-525
	07020009-527
	07020011-501
	07020011-506
	07020011-507
	02070011-620
<	07020012-505
<	07020012-506
<	07020012-799
<	07020012-800