Upper Minnehaha Creek Watershed Nutrient and Bacteria TMDL Study

Prepared for:

MINNESOTA POLLUTION CONTROL AGENCY

520 Lafayette Road St. Paul, Minnesota 55155

Prepared by:

WENCK ASSOCIATES, INC.

1800 Pioneer Creek Center P.O. Box 249 Maple Plain, Minnesota 55359-0249 (763) 479-4200

1-800-472-2232 Corporate Headquarters: 1800 Pioneer Creek Center, PO Box 249, Maple Plain, MN 55359 www.wenck.com Maple Plain, MN Woodbury, MN 763-479-4200 651-294-4580 Fargo, ND 701-297-9600 Windom, MN Bloomington, MN Roswell, GA Mandan, ND Minot, ND Cheyenne, WY Sheridan, WY 507-831-2703 952-831-5408 678-987-5840 701-751-3370 701-858-9999 307-634-7848 307-675-1148

Wenck File 0147-243-2

March 2014

Table of Contents

TMDI		ARY TABLE	E		v
ACRO	NYMS				IX
EXEC	UTIVE SU	IMMARY.			XI
1.0	PROJEC	T OVERVI	EW		1-1
	1.1	Purpose			1-1
	1.2	Problem	n Identifica	tion	1-3
	1.3	Priority	Ranking		
2.0	IMPAIR	RED WATE	RS AND M	INNESOTA WATER QUALITY STANDARDS	2-1
	2.1	State of	Minnesota	a Designated Uses	2-1
	2.2	State of	Minnesota	a Standards and Criteria for Listing	2-1
	2.3	Analysis	of Impairr	nent	2-2
3.0	WATER	SHED ANI	D WATER E	BODY CHARACTERIZATION	
	3.1	Lakes			3-1
	3.2				
	3.3				
	3.4				
	3.5			ality	
	0.0	3.5.1		5	
		3.5.2			
	3.6			ummary	
	0.0	3.6.1		s in Impaired Lakes	
			3.6.1.1	Permitted Sources	
			3.6.1.2	Non-Permitted Sources	
		3.6.2	<i>E. coli</i> Ba	cteria Sources	
4.0	TMDL	DEVELOPN	/IENT		
	4.1	Nutrient	ts		4-1
		4.1.1		Capacity Methodology	
			4.1.1.1	Watershed Loading	
			4.1.1.2	Septic System Loading	
			4.1.1.3	Upstream Lakes	
			4.1.1.4	Atmospheric Deposition	
			4.1.1.5	Groundwater	
			4.1.1.6	Internal Loading	
			4.1.1.7	BATHTUB Model (Lake Response)	
		4.1.2		ocation Methodology	

		4.1.3	Wasteload Allocation Methodology	
		4.1.4	Margin of Safety	4-9
		4.1.5	Seasonal Variation	4-9
		4.1.6	Reserve Capacity	
		4.1.7	TMDL Summary	
	4.2	E. coli		
		4.2.1	Loading Capacity Methodology	4-21
			4.2.1.1 Flow Duration Curve Development	4-22
			4.2.1.2 Load Duration Curve Development	4-22
		4.2.2	Load Allocation Methodology	
		4.2.3	Wasteload Allocation Methodology	4-24
		4.2.4	Margin of Safety	4-24
		4.2.5	Seasonal Variation	4-24
		4.2.6	Reserve Capacity	
		4.2.7	TMDL Summary	
5.0 6.0			SSURANCES	
0.0	WON		LAN	0-1
7.0	IMPLE	MENTATI	ON STRATEGY SUMMARY	
	7.1	Implen	nentation Framework	7-1
	7.2	Potenti	ial Nutrient Reduction Implementation Strategies	7-2
	7.3	Potenti	ial <i>E. coli</i> Reduction Implementation Strategies	7-4
	7.4	Adaptiv	ve Management	7-5
8.0	PUBLIC		PATION	
9.0	LITERA	ATURE CIT	ED	

Table of Contents (Cont.)

TABLES

Table 1.1. Impairments addressed in this report	1-3
Table 2.1. Numeric standards for lakes in the North Central Hardwood Forest Ecoregion	2-1
Table 3.1. Lake morphometry for all impaired lakes in the study area.	3-2
Table 3.2. Land use in TMDL study area	3-3
Table 3.3. Deep lake growing season averages for water quality parameters	3-5
Table 3.4. Shallow lake growing season averages for water quality parameters	3-5
Table 3.5. Monthly geometric mean of <i>E. coli</i> values for Painter Creek	3-7
Table 3.6. Potential permitted sources of phosphorus	3-8
Table 3.7. Potential non-permitted sources of phosphorus	3-9
Table 3.8. Sources of phosphorus by lake	
Table 3.9. E. coli bacteria produced and available within the Painter Creek subwatershed	3-12
Table 4.1. Land Use Loading Rates Used to Estimate Runoff Concentrations	
Table 4.2. Upstream Lakes Addressed in this TMDL Study	4-3
Table 4.3. Internal and watershed load reductions.	4-6
Table 4.4. Permitted MS4s in each Lakeshed	4-8
Table 4.5. Dutch Lake TMDL summary.	4-11
Table 4.6. East Auburn Lake TMDL summary	4-11
Table 4.7. Forest Lake TMDL summary	4-12
Table 4.8. Gleason Lake TMDL summary	4-12
Table 4.9. Holy Name Lake TMDL summary	4-13
Table 4.10. Langdon Lake TMDL summary	4-13
Table 4.11. Long Lake TMDL summary	4-14
Table 4.12. Halsted Bay TMDL summary	4-14
Table 4.13. Jennings Bay TMDL summary	4-15
Table 4.14. Stubbs Bay TMDL summary	4-16
Table 4.15. West Arm TMDL summary	4-16
Table 4.16. Mooney Lake TMDL summary	4-17
Table 4.17. Stone Lake TMDL summary	4-17
Table 4.18. Tamarack Lake TMDL summary	4-18
Table 4.19. Tanager Lake TMDL summary	4-18
Table 4.20. Wolsfeld Lake TMDL summary	
Table 4.21. Snyder Lake TMDL summary	4-19
Table 4.22. School Lake TMDL summary	4-20
Table 4.23. Hadley Lake TMDL summary	4-20
Table 4.24. Turbid Lake TMDL summary	4-21
Table 4.25 Painter Creek Permitted MS4s	4-24
Table 4.26. Painter Creek TMDL summary	4-25
Table 7.1. Implementation baseline years	7-1
Table 7.2. Potential nutrient reduction implementation strategies	7-2
Table 7.3. Potential E. coli reduction implementation strategies	7-5
Table 8.1 Stakeholder communications	8-1

FIGURES

Figure 1.1. Minnehaha Creek Watershed District upper watershed impaired waters and drainage	
areas	1-2
-igure 3.1. Langdon Lake summer TP concentrations.	3-4
-igure 3.2. Tamarack Lake summer TP concentrations	3-6
-igure 4.1. Total Phosphorus Flow Weighted Mean Concentration	4-1
-igure 4.2. Painter Creek flow duration curve	4-22
igure 4.3. Painter Creek load duration curve (TMDL).	4-23
-igure 7.1. Adaptive Management	7-6

APPENDICES

- A Subwatershed Figures
- B Land use Figures
- C Painter Creek Bacteria Source Assessment
- D Groundwater Contribution Calculation Method
- E Internal Load Calculation Method
- F Lake Response Model Results
- G MS4 Figures
- H WLA Partitioning Methods

TMDL Summary Table

	TMDL Summary Table					
EPA/MPCA Required Elements	Summary Located within the Minnehaha Creek Watershed District's upper watershed within the Mississippi River Basin. Located within Hennepin and Carver Counties west and southwest of the Twin Cities Metro Area.					
Location						
303(d) Listing Information	Water body	HUC/ Lake No.	Pollutant/ Stressor	P. 1-3,		
	Painter Creek	07010206-800	E. coli	1-4		
	Dutch Lake	27-0181-00	Nutrient/Eutrophication Biological Indicators			
	East Auburn Lake	10-0044-02	Nutrient/Eutrophication Biological Indicators			
	Forest Lake	27-0139-00	Nutrient/Eutrophication Biological Indicators			
	Gleason Lake	27-0095-00	Nutrient/Eutrophication Biological Indicators			
	Holy Name Lake	27-0158-00	Nutrient/Eutrophication Biological Indicators			
	Langdon Lake	27-0182-00	Nutrient/Eutrophication Biological Indicators			
	Long Lake	27-0160-00	Nutrient/Eutrophication Biological Indicators			
	Minnetonka (Halsted Bay)	27-0133-09	Nutrient/Eutrophication Biological Indicators			
	Minnetonka (Jennings Bay)	27-0133-15	Nutrient/Eutrophication Biological Indicators			
	Minnetonka (Stubbs Bay)	27-0133-12	Nutrient/Eutrophication Biological Indicators			
	Minnetonka (West Arm)	27-0133-14	Nutrient/Eutrophication Biological Indicators			
	Mooney Lake	27-0134-00	Nutrient/Eutrophication Biological Indicators			
	Stone Lake	10-0056-00	Nutrient/Eutrophication Biological Indicators			
	Tamarack Lake	10-0010-00	Nutrient/Eutrophication Biological Indicators			

		тмі	DL Summary Tab	le		
EPA/MPCA Required Elements	Summary				TMDL Page #	
	Tanager Lake		27-0157-00	Nutrient/Eutrophication Biological Indicators		
	Wolsfeld Lake	9	27-0141-00	Nutrient/Eutrophication Biological Indicators		
	Snyder Lake		27-0108-00	Nutrient/Eutrophication Biological Indicators		
	School Lake		27-0151-00 27-0109-00	These lakes are not yet included on the state's		
	Hadley Lake Turbid Lake		10-0051-00	303(d) list of impaired waters; however data indicate that these lakes qualify for inclusion on the list for nutrients due to impaired aquatic recreation.		
Applicable Water Quality Standards/	Criteria set forth in Minn. R. 7050.0150 (5) and 7050.0222 (total phosphorus and <i>E. coli.)</i>					
Numeric Targets	Water body	Num				
	Painter Creek					
	Dutch Lake	Tota				
	East Auburn Lake	Tota				
	Forest Lake]				
	Gleason Lake	Tota	l phosphorus cor	ncentration of 60 μg/L or less		
	Holy NameTotal phosphorus concentration of 60 μg/L or lessLakeLangdonLakeTotal phosphorus concentration of 60 μg/L or lessLakeLake					
	Long Lake	Tota	l phosphorus cor	ncentration of 40 μg/L or less		
	Minnetonka (Halsted Bay)	Tota	l phosphorus cor	ncentration of 40 μg/L or less		
	Minnetonka (Jennings	Tota	l phosphorus cor	ncentration of 40 μg/L or less		

TMDL Summary Table					
PA/MPCA Required Elements	Summary				
	Bay)				
-	Minnetonka (Stubbs Bay)	Total phosphorus concentration of 40 μg/L or less			
	Minnetonka (West Arm)	Total phosphorus concentration of 40 μ g/L or less			
	Mooney Lake	Total phosphorus concentration of 60 μ g/L or less			
	Stone Lake	Total phosphorus concentration of 40 μ g/L or less			
	Tamarack Lake	Total phosphorus concentration of 40 μg/L or less			
-	Tanager Lake	Total phosphorus concentration of 40 μg/L or less			
	Wolsfeld Lake	Total phosphorus concentration of 40 μ g/L or less			
	Snyder Lake Total phosphorus concentration of 60 µg/L or less				
	School Lake Total phosphorus concentration of 60 µg/L or less				
	Hadley Lake	Total phosphorus concentration of 40 µg/L or less			
	Turbid Lake	Total phosphorus concentration of 40 μ g/L or less			
Loading Capacity	Bacteria: See S	Sections 4.2.1 and 4.2.7	Bacteria		
expressed as daily	Lake Nutrients	s: See Sections 4.1.1 and 4.1.7	P. 4-22 to		
load)			4-26		
			Lake		
			Nutrients P. 4-1 to		
			4-5 and		
			4-3 and 4-10 to		
			4-21		
asteload Allocation	Bacteria: See S	Section 4.2.3	Bacteria		
			P. 4-24		
	Lake Nutrients	s: See Section 4.1.3	and 4-26		
			Lake		
			Nutrients		
			P. 4-7 to		
			4-21		
Load Allocation	Bacteria: See S	Section 4.2.2	Bacteria		
		s: San Saction 4.1.7	P. 4-24		
	Lake Nutrients	5. See Section 4.1.2	and 4-26 Lake		
			Nutrients P. 4-6 to		
Lake Nutrients: See Section 4.1.2					

TMDL Summary Table					
EPA/MPCA Required Elements	Nimmarv				
		4-21			
Margin of Safety	Bacteria: An explicit 10% of the loading capacity for each flow zone was used to represent the MOS. <i>See Section 4.2.4</i> Lake Nutrients: Explicit MOSs of 5% were used for each of the Lakes, respectively, in addition to an implicit MOS. <i>See Section</i> <i>4.1.4</i>	Bacteria P. 4-25 Lake Nutrients P. 4-9			
Seasonal Variation	Bacteria: Load duration curve methodology accounts for seasonal variations. <i>See Section 4.2.5</i> Lake Nutrients: <i>See Section 4.1.5</i>	Bacteria P. 4-25 Lake Nutrients P. 4-9 to 4-10			
Reasonable Assurance	TMDL implementation will be carried out on an iterative basis so that implementation course corrections based on periodic monitoring and reevaluation can adjust the strategy to meet the standard. <i>See Section 5.0</i>	Section 5.0			
Monitoring	Progress of TMDL implementation will be measured through regular monitoring efforts of water quality and total BMPs completed. This will be accomplished through the efforts of several cooperating agencies and groups. <i>See Section 7.0</i>	Section 6.0			
Implementation	This report sets forth an implementation framework to achieve the TMDL. (A separate more detailed implementation plan will be developed within one year after of EPA's approval of this TMDL report.) <i>See Section 6.0</i>	Section 7.0			
Public Participation	See Section 8.0 Public Comment Period: December 30, 2013 - January 30, 2014	Section 8.0			

Acronyms

ac-ft	acre feet
ac-ft/yr	acre feet per year
AF	Anoxic factor
AUID	Assessment Unit ID
BMP	Best Management Practice
CAFO	Concentrated Animal Feeding Operation
CAC	Citizens Advisory Committee
cfu	colony-forming unit
Chl-a	Chlorophyll-a
CN	Curve number
EPA	Environmental Protection Agency
EQuIS	Environmental Quality Information System
FWMC	Flow weighted mean concentration
GW	Groundwater
HHPLS	Hydrologic/Hydraulic and Pollutant Loading Study
in/yr	inches per year
km ²	square kilometer
LA	Load Allocation
lb	pound
lb/day	pounds per day
lb/yr	pounds per year
LGU	Local Government Unit
LMCD	Lake Minnetonka Conservation District
m	meter
MCES	Metropolitan Council Environmental Services
MCWD	Minnehaha Creek Watershed District
mg/L	milligrams per liter
mg/m²-day	milligram per square meter per day
mL	milliliter
MLCCS	Minnesota Land Cover Classification System
MN DNR	Minnesota Department of Natural Resources
MOS	Margin of Safety
MPCA	Minnesota Pollution Control Agency
MPN	Most Probable Number
MPRB	Minneapolis Park and Recreation Board
MR	Minnesota Rules
MS4	Municipal Separate Storm Sewer Systems
NPDES	National Pollutant Discharge Elimination System
P8	Program for Predicting Polluting Particle Passage
	thru Pits, Puddles, & Ponds

RR	Release rate
SCS	Soil Conservation Service
SRO	Surface runoff
SONAR	Statement of Need and Reasonableness
SSTS	Subsurface Sewage Treatment Systems
SWPPP	Stormwater Pollution Prevention Plan
TDLC	Total Daily Loading Capacity
TMDL	Total Maximum Daily Load
ТР	Total phosphorus
TRPD	Three Rivers Park District
UAL	Unit-area Load
μg/L	microgram per liter
WLA	Wasteload Allocation
WRAPP	Watershed Restoration and Protection Plan
XP-SWMM	XP Stormwater & Wastewater Management Model
yr	year

This Total Maximum Daily Load (TMDL) study addresses nutrient impairments in twenty lakes and an *E. coli* impairment in Painter Creek within the Minnehaha Creek Watershed District (MCWD), which is located within the Upper Mississippi River Basin. The MCWD covers approximately 178 square miles in Hennepin and Carver Counties, including parts of Minneapolis, Minnesota and its western suburbs. The watershed drains to Minnehaha Creek and ultimately the Mississippi River. The water bodies addressed in this study are located within a distinct hydrologic basin within the MCWD referred to as the "Upper Watershed," which drains through agricultural land and suburbs west of Minneapolis to Lake Minnetonka, which outlets into Minnehaha Creek. The goal of this TMDL is to quantify the pollutant reductions needed to meet State water quality standards for nutrients in the lakes and *E. coli* standards in Painter Creek.

Fifteen of these lakes are defined as deep lakes for which the North Central Hardwood Forest ecoregion numeric water quality standards are a summer average total phosphorus concentration of 40 μ g/L, 14 μ g/L chlorophyll-*a*, and greater than 1.4 meter in Secchi depth. The other six lakes are shallow, for which the numeric water quality standards are a summer average total phosphorus concentration of 60 μ g/L, 20 μ g/L chlorophyll-*a*, and greater than one meter in Secchi depth.

Nutrient budgets were developed for all twenty lakes along with lake response models to set the TMDL and Load and Wasteload Allocations. A robust lake and stream monitoring dataset was available and was the basis of the nutrient budget calculations. Wasteload reductions ranging from no reduction to a 93 percent reduction and load reductions ranging from no reduction to 79 percent reduction will be necessary to meet water quality standards.

Flow and bacteria monitoring data recorded in Painter Creek were used to establish a load duration curve meeting the *E. coli* numeric standard of no more than 126 organisms per 100 mL as a geometric mean of not less than five samples representative of conditions within any calendar month, nor more than 10% of all samples taken during any calendar month individually exceed 1,260 organisms per 100 mL. A TMDL, Wasteload Allocations, and Load Allocations were established for five flow categories: high flow, wet, mid-range, dry, and low flow. No reductions are necessary for high flow, wet, and mid-range flows. A 31 percent reduction will be necessary during dry conditions and a 37 percent reduction under low flow conditions to meet *E. coli* concentration standards.

1.1 Purpose

This Total Maximum Daily Load (TMDL) study addresses nutrient impairments in twenty lakes in the Minnehaha Creek watershed, and an *E. coli* impairment in Painter Creek. The impaired water bodies are located in the Minnehaha Creek Upper Watershed in the Upper Mississippi River Basin, as shown on Figure 1.1. The Upper Watershed drains to Lake Minnetonka. Minnehaha Creek is formed as the outlet of the lake, which flows to the Mississippi River. The Upper Watershed is located in Hennepin and Carver Counties in the State of Minnesota.

The goal of this TMDL is to quantify the pollutant reductions needed to meet State water quality standards for nutrients in the lakes listed in Table 1.1 and bacteria standards in Painter Creek. This MCWD Upper Watershed Nutrient and Bacteria TMDL is established in accordance with Section 303(d) of the Clean Water Act and provides wasteload allocations (WLAs) and load allocations (LAs) for the watershed areas as appropriate.

A draft nutrient TMDL has been completed for Lake Hiawatha in the Minnehaha Creek Lower Watershed downstream of this project, near the mouth of Minnehaha Creek. That project assumes an upstream boundary load of no more than 1,279 lbs of phosphorus per growing season delivered at Gray's Bay Dam. Achievement of the goals outlined in this report for the Upper Minnehaha Watershed will help to assure that the boundary condition is maintained or improved.

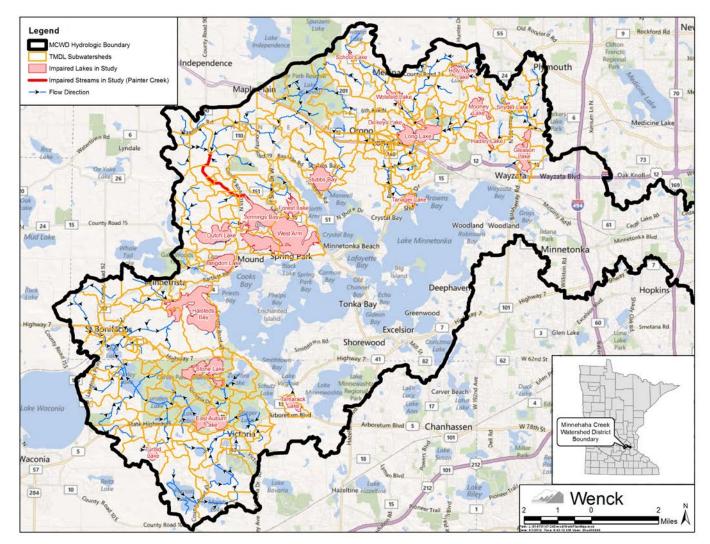


Figure 1.1. Minnehaha Creek Watershed District upper watershed impaired waters and drainage areas.

1.2 Problem Identification

The lakes addressed in this study were first placed by the Minnesota Pollution Control Agency (MPCA) on the State of Minnesota's 303(d) list of impaired waters for nutrient (total phosphorus) impairment in 2008 and 2010 as detailed in Table 1.1. In 2010, Painter Creek was placed on the 303(d) list for excess *E. coli* concentrations.

Listed Water			Impaired	Year Placed in Impairment	303(d) List Scheduled Start & Completion
body Name	AUID#	Listed Pollutant	Use	Inventory	Dates
Painter Creek	07010206- 700	E. coli	Aquatic recreation	2010	2011/2016
Dutch	27-0181-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
East Auburn	10-0044-02	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Forest	27-0139-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2012/2016
Gleason	27-0095-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Holy Name	27-0158-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Langdon	27-0182-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Long (1)	27-0160-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Minnetonka (Halsted Bay) (1)	27-0133-09	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2009/2013
Minnetonka (Jennings Bay) (1)	27-0133-15	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2009/2013
Minnetonka (Stubbs Bay)	27-0133-12	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2009/2013
Minnetonka (West Arm)	27-0133-14	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2009/2013
Mooney	27-0134-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016
Stone	10-0056-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2010/2013
Tamarack	10-0010-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2008	2012/2016
Tanager	27-0141-00	Nutrient/Eutrophication Biological Indicators	Aquatic recreation	2010	2011/2016

Listed Water body Name	AUID#	Listed Pollutant	Impaired Use	Year Placed in Impairment Inventory	303(d) List Scheduled Start & Completion Dates
Douy Name	AUID#				
Wolsfeld	27-0157-00	Nutrient/Eutrophication	Aquatic	2010	2011/2016
Wolsteid	27 0137 00	Biological Indicators	recreation		
Snyder	27-0108-00	Nutrient/Eutrophication	Aquatic	2010	2011/2016
Shyuei	27-0108-00	Biological Indicators	recreation		
School	27-0151-00	(2)	(2)	(2)	NA
Hadley	27-0109-00	(2)	(2)	(2)	NA
Turbid	10-0051-00	(2)	(2)	(2)	NA

(1) These lakes were also listed for mercury in fish tissue (impaired aquatic consumption) in 1998. This impairment is not addressed herein.

(2) These lakes are on or expected to be on the draft 2014 303(d) list of impaired waters. Data indicate that these lakes qualify for inclusion on the list for nutrients.

1.3 Priority Ranking

The MPCA's projected schedule for TMDL completions on the 303(d) impaired waters list implicitly reflects Minnesota's priority ranking of this TMDL. Ranking criteria for scheduling TMDL projects include, but are not limited to: impairment impacts on public health and aquatic life; public value of the impaired water resource; likelihood of completing the TMDL in an expedient manner, including a strong base of existing data and restorability of the water body; technical capability and willingness locally to assist with the TMDL; and appropriate sequencing of TMDLs within a watershed or basin.

1.4 Data Used in this Report

Considerable data is available to complete this TMDL and identify appropriate implementation strategies. The MCWD operates a robust annual monitoring program and conducts periodic detailed assessments of its resources. Sources used or consulted for this document include:

- Annual Hydrodata program data;
- Comprehensive Water Resources Management Plan;
- Hydraulic, Hydrologic, and Pollutant Loading Study;
- Functional Assessment of Wetlands;
- Upper Watershed Streams Assessment;
- Diatom-inferred TP in MCWD Lakes;
- Six Mile Creek Diagnostic Study; and
- LGU Annual Reports.

2.0 Impaired Waters and Minnesota Water Quality Standards

2.1 State of Minnesota Designated Uses

The impaired waters addressed in this TMDL are classified as Class 2B waters for which aquatic life and recreation are the protected beneficial uses.

2.2 State of Minnesota Standards and Criteria for Listing

Nutrients. Under Minnesota Rules 7050.0150 and 7050.0222, Subp. 4, the lakes addressed in this study are located within the North Central Hardwood Forest ecoregion with a numeric target dependent on depth as listed in Table 2.1. Therefore, this TMDL presents load and wasteload allocations and estimated load reductions assuming an end point of $\leq 60 \ \mu g/L$ and $\leq 40 \ \mu g/L$ total phosphorus for shallow lakes and deep lakes, respectively.

In addition to meeting a phosphorus limit of 60 μ g/L and 40 μ g/L for shallow and deep lakes, chlorophyll-*a* and Secchi depth standards must also be met. In developing the lake nutrient standards for Minnesota lakes (Minn. Rule 7050), the MPCA evaluated data from a large cross-section of lakes within each of the state's ecoregions (Heiskary and Wilson, 2005). Clear relationships were established between the causal factor total phosphorus and the response variables chlorophyll-*a* and Secchi disk. Based on these relationships it is expected that by meeting the phosphorus targets of 60 μ g/L and 40 μ g/L for shallow and deep lakes, the chlorophyll-*a* and Secchi standards will likewise be met.

Parameters	Shallow ¹ Lake Standard	Deep Lake Standard			
Total Phosphorus (μg/L)	≤60	≤40			
Chlorophyll-a (µg/L)	≤20	≤14			
Secchi disk transparency (meters)	≥1.0	≥1.4			

¹ Shallow lakes are defined as lakes with a maximum depth of 15 feet or less, or with 80% or more of the lake area shallow enough to support emergent and submerged rooted aquatic plants (littoral zone).

E. coli. The Painter Creek bacterial impairment listing was based on *E. coli* measurements. Under Minnesota Rules 7050.0150 and 7050.0222 *E. coli* concentrations are:

"Not to exceed 126 organisms per 100 milliliters as a geometric mean of not less than five samples representative of conditions within any calendar month, nor shall more than ten percent of all samples taken during any calendar month individually exceed 1,260 organisms/100 mL. The standard applies only between April 1 and October 31."

2.3 Analysis of Impairment

The criteria used for determining impairments are outlined in the MPCA document <u>Guidance Manual for</u> <u>Assessing the Quality of Minnesota Surface Waters for Determination of Impairment – 305(b) Report</u> <u>and 303(d) List, January 2010</u>. The applicable water body classifications and water quality standards are specified in MR Chapter 7050.0470 and MR 7050.0222, respectively.

3.0 Watershed and Water Body Characterization

The Minnehaha Creek Watershed District encompasses approximately 178 square miles in Hennepin and Carver Counties in the Upper Mississippi River Basin. The watershed includes eight major creeks (including Minnehaha Creek), 129 lakes (including Lake Minnetonka and the Minneapolis Chain of Lakes), and thousands of wetlands. The watershed consists of two distinct hydrologic basins. The "Upper Watershed" drains through 104 square miles of land and suburbs west of Minneapolis to Lake Minnetonka. The "Lower Watershed" consists of the area east of Lake Minnetonka that is drained by Minnehaha Creek and extends to the Mississippi River.

In 2001, the MCWD initiated a multi-year Hydrologic/Hydraulic and Pollutant Loading Study (HHPLS) of the watershed. The HHPLS Report (EOR 2003) presents a compilation of work by District staff, technical consultants, elected officials, and the public. The over-arching goal of the HHPLS was to improve and maintain the surface water, groundwater, and associated natural resources of the MCWD. The data collected during the study were used in various combinations to characterize subwatersheds and define both hydrologic and hydraulic parameters. Predictive quantity and quality computer models were developed. Portions of the HHPLS report and associated work products were used for development of this TMDL study.

In 2012, the MCWD retained Wenck Associates, Inc. to perform a diagnostic study of the Six Mile Creek subwatershed, located within the Upper Watershed of MCWD. The nutrient TMDLs for East Auburn, Stone, and Turbid lakes were developed concurrent to the TMDL study as part of this separate diagnostic and feasibility study of the Six Mile Creek subwatershed for MCWD.

3.1 Lakes

Lake morphometry for the impaired lakes is listed in Table 3.1.

	Surface	Average	Maximum	Lake	Littoral	Depth	Drainage
Parameter	Area	Depth	Depth	Volume Area		Class	Area*
Water body	acre	feet	feet	ac-ft	%		acre
Dutch	176.0	14.0	42	2462	59	Deep	1567
E. Auburn	147.9	12.0	40	1781	28	Deep	7307
Forest	89.5	14.0	38	1227	59	Deep	855
Gleason	168.8	6.0	15	1009	100	Shallow	2437
Holy Name	70.0	5.0	8	340	100	Shallow	388
Langdon	142.4	8.0	32	1207	87	Shallow	913
Long	286.5	14.0	35	3982	54	Deep	5968
Halsted's Bay	561.1	13.2	32	7401	57	Deep	18760
Jennings Bay	305.6	12.0	22	3748	59	Deep	11121
Stubbs Bay	198.5	14.0	36	2777	56	Deep	1748
West Arm	822.3	13.0	29	10681	71	Deep	12967
Mooney	113.0	5.0	10	565	100	Shallow	486
Stone	99.3	10.2	30	1009	72	Deep	782
Tamarack	30.0	25.4	82	761	38	Deep	179
Tanager	53.7	10.0	18	512	80	Deep	7566
Wolsfeld	40.3	9.5	27	380	76	Deep	1553
Snyder	12.0	6.0	13	72	100	Shallow	362
School	11.1	8.1	15	90	81	Shallow	541
Hadley**	35.3	17.0	35	600	unknown	Deep	502
Turbid	39.9	10.4	35	417	65	Deep	493

Table 3.1. Lake morphometry for all impaired lakes in the study area.

* Excludes Lake Surface

**Bathymetry data was unavailable for Hadley Lake. The maximum depth was measured by MCWD staff in February 2012. The lake volume was estimated using the lake area and half of the measured maximum depth.

3.2 Streams

The impaired reach of Painter Creek extends from an unnamed creek within Painter Marsh to Lake Minnetonka (Jennings Bay). The Painter Creek subwatershed area is 8,669.5 acres in size.

3.3 Subwatersheds

Figures depicting the subwatersheds for each water body addressed in the TMDL study are included in Appendix A. Subwatersheds for each lake were delineated first by the HHPLS defined subwatersheds and further delineated to each lake outlet or monitoring station as relevant based on LiDAR data (flown in 2007 and distributed in 2008 for the areas within Hennepin County) and USGS Quadrangle Maps (within Carver County).

3.4 Land Use

Approximately 75 square miles of the MCWD Upper Watershed is included in the TMDL study area. A broad range of land use exists within the general TMDL study area and is shown in Table 3.2 below. Figures depicting land use for each impaired water body subwatershed are included in Appendix B.

	Area	
2010 METC Land Use	(acres)	Percent
Agricultural	7527	16%
Farmstead	344	1%
Golf Course	1005	2%
Industrial and Utility	240	1%
Institutional	799	2%
Major Highway	329	1%
Manufactured Housing Parks	4	< 1%
Mixed Use Commercial	13	< 1%
Mixed Use Industrial	10	< 1%
Mixed Use Residential	30	< 1%
Multifamily	133	< 1%
Office	23	< 1%
Open Water	6402	13%
Park, Recreational, or Preserve	6647	14%
Railway	8	< 1%
Retail and Other Commercial	315	1%
Seasonal/Vacation	18	< 1%
Single Family Attached	372	1%
Single Family Detached	10096	21%
Undeveloped	13444	28%
TOTAL	47760	100%

Table 3.2.	Land use	in TMDI	study	area.
10010 3.2.	Luna ast			uicu.

Source: 2010 Met Council

3.5 Historic Water Quality

3.5.1 Nutrients

Water quality sampling in the MCWD is conducted as part of the District's annual Hydrologic Data Monitoring Program, designed for the collection of background water quality and quantity data. The monitoring data set used for the purposes of this TMDL was obtained from the MCWD Water Quality Database and supplemented with data from the MPCA database as necessary. Sampling site locations are indicated on the maps included in Appendix A.

In general, historical in-lake water quality data collected from 2000 to 2012 was reviewed for use in the TMDL study. For the purposes of developing the majority of the nutrient TMDLs, only available data

from 2005 to 2011 was used to establish the "average" condition. Data collected from 2005 to 2011 was chosen as the most representative data set due to the robust set of upper watershed wide stream monitoring data available during those years. The exception to this is East Auburn, Stone, and Turbid Lakes. As previously stated, the nutrient TMDLs for these lakes were developed concurrent to the TMDL study as part of the separate diagnostic and feasibility study of the Six Mile Creek Watershed conducted by MCWD. Available data from 2000 to 2012 was used to establish the "average" condition for those lakes. In some cases, in-lake data was not available for all years of the 2005 to 2011 or 2000 to 2012 data sets.

For Langdon Lake, there was available data excluded from the lake response modeling process. Langdon Lake was initially modeled using the available data from 2005-2011. However, the model did not calibrate well based on the monitored watershed data and the measured sediment release rate (72.4 μ g/L modeled versus 103.7 μ g/L observed for 2005-2011). The data shows a shift in water quality after 2008 (Figure 3.1 below). Due to the shift, Langdon was re-modeled using the 2009-2011 data. This model calibrated well for those data years (67.6 μ g/L modeled and 64.7 μ g/L observed). Therefore, the 2009-2011 model was used to set the TMDL.

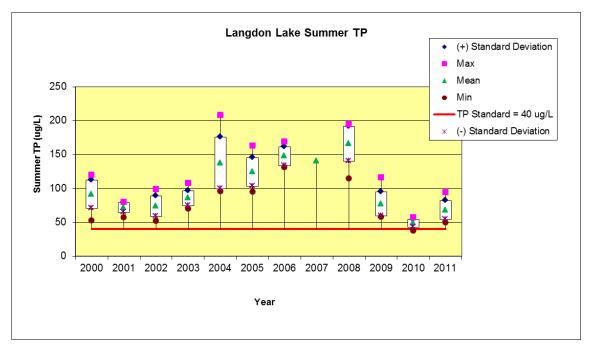
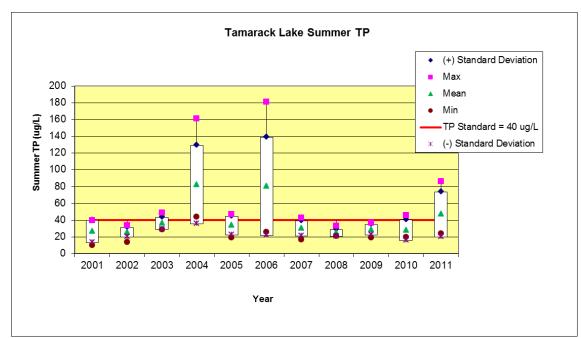


Figure 3.1. Langdon Lake summer TP concentrations.


Tables 3.3 and 3.4 list the June through September averages of total phosphorus (TP) concentration, chlorophyll-a (chl-a) concentration, and Secchi depth for each impaired lake. The table also lists the data years which were used to calculate the "average" condition for the TMDL study.

		In-Lake "Average" Condition (Calculated June - September)						
Lake Name	"Average" Condition Calculation Years	TP Concentration (µg/L)	Chl- <i>a</i> Concentration (µg/L)	Secchi Depth (m)				
Water Qualit	y Standard for Deep Lakes	40.0	14.0	1.4				
Dutch	2005-2011	54.8	35.5	1.1				
E. Auburn	2008, 2010, 2012	49.4	40.5	1.3				
Forest	2005-2011	58.7	55.1	0.8				
Long	2005-2011	61.4	38.4	1.0				
Halsted's Bay	2005-2011	88.5	60.0	0.8				
Jennings Bay	2005-2011	97.4	66.5	0.8				
Stubbs Bay	2005-2011	49.9	41.3	0.9				
West Arm	2005-2011	59.8	47.4	1.1				
Stone	2000, 2002, 2007-2008, 2010-2012	42.9	16.8	2.2				
Tamarack	2005-2011	38.9	14.1	2.4				
Tanager	2005-2011	92.0	74.3	0.9				
Wolsfeld	2006-2008	80.1	56.8	0.8				
Hadley	2006-2008	58.2	16.7					
Turbid	2008, 2011, 2012	66.8	35.2	1.4				

Table 3.3. Deep lake growing season averages for water quality parameters.

		In-Lake "Average" Condition (Calculated June - September)							
Lake Name	"Average" Condition Calculation Years	TP Concentration (µg/L)	Chl- <i>a</i> Concentration (µg/L)	Secchi Depth (m)					
Water Quality S	tandard for Shallow Lakes	60.0	20.0	1.0					
Mooney	2006-2008, 2011	78.2	50.8	1.0					
Gleason	2005-2011	97.8	50.7	1.1					
Holy Name	2006-2008	149.5	87.9	0.7					
Snyder	2006-2008	71.6	44.1	1.0					
Langdon	2009-2011	64.7	33.8	0.9					
School	2009-2010	157.7	96.0	0.3					

All lakes indicate an average summer TP concentration above the state standard with the exception of Tamarack Lake. The listed Tamarack Lake average TP concentration for 2005 to 2011 is below the state water quality standard concentration of 40 μ g/L. However, the average TP concentration from 2001 to 2011 is 41.6 μ g/L; above the standard. Figure 3.2 depicts the summer average TP concentrations in Tamarack Lake from 2001 to 2011. Even though the most recent period indicates the lake meets state standards, a TMDL was still completed for Tamarack Lake based on its official impaired status.

Allocations for the lake should serve to assure that loading will not increase and that it meets the standard over the long term.

Figure 3.2. Tamarack Lake summer TP concentrations.

3.5.2 *E. coli*

A stream reach is placed on the 303(d) impaired waters list if the geometric mean (or "geomean") of the aggregated monthly *E. coli* concentrations for one or more months exceed 126 organisms per 100 mL. A water body is also considered impaired if more than 10% of the individual samples within a month exceed 1,260 organisms per 100 mL.

Table 3.5 shows the monthly geometric means for April to October for four sample stations located within the impaired reach of Painter Creek and two sample stations located upstream. The impaired reach of Painter Creek is approximately 2.37 miles long. Monthly geometric means, total number of samples, and the percentage of samples exceeding the acute standard are tabulated. Exceedances of the chronic and acute *E. coli* standard are shown in red. Geometric means are often used to describe bacteria data over arithmetic means as the geometric mean normalizes the ranges being averaged.

 $Geometric\ mean = \sqrt[n]{x_1*\ x_2*\ldots x_n}$

Available data from 2001 to 2011 was used for the purpose of the bacteria TMDL.

				Ар	ril		Ma	y		Jun	е		July	/		Augu	ıst		Septen	nber		Octob	ber	A	ll Mon	iths
Comuling Doint	Location	Data Voaro	2	600	%n > 1260	n	Coo	%n >	n	Coo	%n >	n	Coo	%n > 1260	n	600	%n >	n	600	%n >	n	600	%n >	2	Coo	%n >
Sampling Point CPA05 (Mile 0.39)	Location	Data Years 2001-2003	n	Geo N/	1260 A	6	Geo 72	1260 0	n 14	Geo 88	1260 0	9	Geo 178	1260 0	8	Geo 197	1260 0	12	Geo 427	1260 25%	n 4	Geo 205	1260 25%	n 53	Geo 167	1260 8%
CPA01 (Mile 0.79)	Within Impaired	2001- 2003,2005- 2006,2010- 2011	7	5	0	18	23	6%	33	58	0	25	105	4%	22	137	9%	16	196	13%	11	85	9%	132	70	5%
CPA06 (Mile 1.3)	Reach	2010-2011		N	4	7	31	0	9	80	0	9	186	0	7	148	0	10	157	0	2	27	0	44	100	0
CPA04 (Mile 2.0)		2002-2003, 2006, 2010-2011	2	4	0	15	30	0	20	87	0	18	187	0	14	132	0	14	150	0	9	24	0	92	81	0
CPA02 (Mile 4.16)	Upstream	2002-2003		N	4	5	5	0	9	81	0	6	33	0	4	44	0	5	11	0	4	13	0	33	24	0
CPA03 (Mile 5.2)		2001-2003	3	3	0	11	13	0	15	49	0	12	48	0	11	35	0	6	59	0	6	13	0	64	29	0

Table 3.5. Monthly geometric mean of *E. coli* values for Painter Creek.

Notes: n = number of samples

Geo = Geometric mean in MPN/100 mL

3.6 Pollutant Source Summary

3.6.1 Nutrients in Impaired Lakes

A key component to developing a nutrient TMDL is understanding the sources contributing to the impairment. This section provides a brief description of the potential sources in the watershed contributing to excess nutrients in the 20 lakes addressed in this TMDL. The latter sections of this report discuss the major pollutant sources that have been quantified using collected monitoring data and water quality modeling. The information presented here and in the upcoming sections together will provide information necessary to both assess the existing contributions of pollutant sources and target pollutant load reductions. MCWD has also completed a number of specialized studies that will inform implementation activities.

Both permitted and non-permitted sources are present within the watershed. There are a number of factors that can influence the nutrient levels in a lake. In the case of a number of the lakes addressed in this study, water quality in upstream lakes has a direct influence on the lakes located downstream in the watershed. Other factors influencing total phosphorus nutrient levels in these water bodies to consider are atmospheric nutrient loading, watershed nutrient loading, and internal phosphorus loading in each lake.

3.6.1.1 Permitted Sources

Phosphorus in lakes often originates on land. Phosphorus from sources such as phosphorus-containing fertilizer, manure, and the decay of organic matter can adsorb to soil particles. Wind and water action erode the soil, detaching particles and conveying them in stormwater runoff to nearby water bodies where the phosphorus becomes available for algal growth (Table 3.6.). Organic material such as leaves and grass clippings can leach dissolved phosphorus into standing water and runoff or be conveyed directly to water bodies where biological action breaks down the organic matter and releases phosphorus. Flow-through and ditched wetlands that have been disturbed and hydraulically altered can turn from a natural sink and become a source, exporting both particulate and dissolved phosphorus downstream. These wetlands typically fall under the "undeveloped" land use category.

Permitted Source	Source Description	Phosphorus Loading Potential
Phase II Municipal	Municipal Separate Storm Sewer	Potential for runoff to transport sediment,
Stormwater	Systems (MS4s)	grass clippings, leaves, car wash
NPDES/SDS		wastewater, and other phosphorus-
General Permit		containing materials to surface water
		through a regulated MS4 conveyance
		system.

Table 3.6. Potential permitted sources of phosphorus.

Permitted Source	Source Description	Phosphorus Loading Potential
Construction	Permits for any construction activities	The Environmental Protection Agency
Stormwater	disturbing: 1) One acre or more of	(EPA) estimates a soil loss of 20 to 150
NPDES/SDS	soil, 2) Less than one acre of soil if	tons per acre per year from stormwater
General Permit	that activity is part of a "larger	runoff at construction sites. Such sites
	common plan of development or	vary in the number of acres they disturb.
	sale" that is greater than one acre or	
	3) Less than one acre of soil, but the	
	MPCA determines that the activity	
	poses a risk to water resources.	
Multi-sector	Applies to facilities with Standard	Significant materials include any material
Industrial	Industrial Classification Codes in ten	handled, used, processed, or generated
Stormwater	categories of industrial activity with	that when exposed to stormwater may
NPDES/SDS	significant materials and activities	leak, leach, or decompose and be carried
General Permit	exposed to stormwater.	offsite.

3.6.1.2 Non-Permitted Sources

Table 3.7 describes several phosphorus sources that are not regulated by the NPDES program. For many lakes, especially shallow lakes, internal phosphorus sources can be a significant share of the total load to the lake. Under anoxic conditions at the lake bottom, weak iron-phosphorus adsorption bonds on sediment particles break, releasing phosphorus in a form highly available for algal uptake. In some cases such as Langdon Lake and Tanager Lake, a large pool of phosphorus is available in the sediments from decades of wastewater treatment plant effluent released into the lake. Carp and other rough fish uproot aquatic macrophytes during feeding and spawning and re-suspend bottom sediments, releasing phosphorus and increasing turbidity. Some aquatic vegetation species such as the invasive curly leaf pondweed die back in mid-summer, releasing phosphorus into the water column and often causing a late-summer algal bloom. (Eurasian watermilfoil, which is present in many of the lakes, is not a phosphorus source, but is an invasive that can negatively impact recreational use of lakes.)

Non-Permitted Source	Source Description
Atmospheric Phosphorus	Precipitation and dryfall (dust particles suspended by winds and later
Loading	deposited).
Watershed Phosphorus	Variety in land use (see Table 3.2) creating both rural and urban
Export	stormwater runoff that does not pass through a regulated MS4
	conveyance system.
Internal Phosphorus Release	Release from lake bottom sediments during periods of low
	dissolved oxygen; release from aquatic vegetation during
	senescence and breakdown.
Groundwater Contribution	Groundwater can be a source or sink for water in a lake and contains
	varying levels of phosphorus.
SSTS (Subsurface Sewage	SSTS failures on lakeshore homes can contribute to lake nutrient
Treatment Systems)	impairments. Contributions from SSTSs are estimated in Section 4 and
	are generally very small for the lakes in this study.

	Watershed Sources		Internal Sources						
Lake	Agriculture	Urban	Other	Sediment Release	Historic Impacts (i.e. WWTP discharge)	Aquatic Vegetation (1)	Rough Fish (i.e. Carp) (2)	Upstream Lakes	Notes
Dutch	0	0	•	0			Δ		Phosphorus export from the extensive wetland system within the watershed is likely the predominant fish present (2009).
E. Auburn			•			Δ	Δ	0	Eurasian watermilfoil and curly leaf pondweed present. Carp and other rough fish present (2012). Pho watershed is likely the predominant source.
Forest		•	0	0			Δ		Eurasian watermilfoil present. Carp and other rough fish present (1992). Phosphorus export from ups
Gleason		•		•		Δ	Δ	0	Eurasian watermilfoil and curly leaf pondweed present with the vegetation community dominated by
Holy Name	0	0	0	•					Source of excess watershed TP load likely from urban and agricultural areas.
Langdon		•	0	•	•				Rough fish present (1993). Historical wastewater effluent discharge load from the Mound Treatment concentrations and surface water concentrations in the lake. The plant operated from 1963 to 1974 (* system within the watershed may be a contributing source.
Long		•		•			Δ	•	Eurasian watermilfoil present. Carp and other rough fish present (2008).
Halsted Bay	0	0	•	•	0		Δ		Eurasian watermilfoil present. Carp and other rough fish present (2008). Halsted Bay was a secondary export from the extensive wetland system within the watershed is likely a predominant source.
Jennings Bay	•	0	•	0	0		Δ	0	Eurasian watermilfoil present. Carp and other rough fish present (2008). Jennings Bay was a secondar Phosphorus export from wetlands within the watershed is likely a source.
Stubbs Bay		•	0	0			Δ		Eurasian watermilfoil present. Carp and other rough fish present (2008). Phosphorus export from ups
West Arm		0		•			Δ	•	Eurasian watermilfoil present. Carp and other rough fish present (2008).
Mooney	0	•	0	•		Δ	Δ		Curly leaf pondweed present (1995-2001, 2005, 2007-2011). A control program for curly leaf pondwe herbicide treatment was performed in June 2011 (Blue Water Science 2011). Carp and other rough fis potential loading from urban and agricultural areas is unapparent.
Stone	0		0	•			Δ		Eurasian watermilfoil present. Rough fish present (2006). Upstream wetland may be a contributing ph
Tamarack	0		0	•			Δ		Carp and other rough fish present (1994). Source of excess watershed TP load other than potential load
Tanager		ο	0	0	0		Δ	•	Eurasian watermilfoil present. Rough fish present (1992). Tanager Lake was a primary receiving water upstream wetlands may be a contributing source.
Wolsfeld	•		٠	0			Δ	0	Rough fish present (1993). Source of excess watershed TP load other than potential loading from agri
Snyder		0		0				•	
School	0		٠	•					Source of excess watershed TP load likely from agricultural areas.
Hadley		٠		•					
Turbid	•			•			Δ		Rough fish present (1992).

Table 3.8. Sources of phosphorus by lake.

Primary Source

o Secondary Source

Δ Potential Source (Unknown Level of Impact)

Notes: (1) Very little aquatic vegetation information is available. A vegetation survey was performed in 2012 for East Auburn lake for the Six Mile Creek Diagnostic Study. Several lakes are included on the list of Minnesota's designated infested waters for Eurasian watermilfoil (an invasive plant species).

(2) Fish survey reports for the lakes addressed in this TMDL study were accessed from the Minnesota DNR LakeFinder website (http://www.dnr.state.mn.us/lakefind/index.html). Information was not available for all of the lakes. Fish survey data for Lake Minnetonka does not differentiate between bays.

ant source. Eurasian watermilfoil is present. Carp and other rough

Phosphorus export from the extensive wetland system within the

apstream wetlands may be a contributing source. by coontail (Wenck 2007). Carp and other rough fish present (1996).

nt Plant is thought to have impacted bottom sediment phosphorus 4 (Wenck 2010). Phosphorus export from the upstream wetland

ary receiving water for the Victoria WWTP (Wenck 2007). Phosphorus

dary receiving water for the Maple Plain WWTP (Wenck 2007).

upstream wetlands may be a contributing source.

weed has been implemented by the Mooney Lake Association and fish present (1992). Source of excess watershed TP load other than

phosphorus source.

loading from agricultural areas is not apparent.

ter for the Long Lake WWTP (Wenck 2007). Phosphorus export from

gricultural areas is not apparent.

3.6.2 E. coli Bacteria Sources

The lower portion of Painter Creek, which drains to Lake Minnetonka's Jennings Bay, is listed as impaired for *E. coli*. Bacteria loading can occur from both permitted and non-permitted sources. Permitted sources of bacteria can include industrial wastewater effluent, municipal wastewater treatment plant effluent, and municipal stormwater runoff.

Review of the Painter Creek watershed indicates that there are no current permitted wastewater discharges in the watershed. There are also no current Concentrated Animal Feeding Operations (CAFOs) within the watershed. However, there are NPDES/SDS Phase II permittees for municipal separate storm sewer systems (MS4s). Runoff from homes, pastures and other areas has the potential to transport waste from pets and other animals to surface water. Failing or nonconforming SSTS near waterways can also be a source of *E. coli* bacteria to streams, especially during dry periods when these sources continue to discharge and runoff driven sources are not active.

A roadside bacteria source assessment survey was performed in 2012 within the subwatersheds directly tributary to the impaired reach. The purpose of the assessment survey was to supplement wildlife and domestic animal estimates derived from literature values and census data by visually assessing potential bacteria sources in the Painter Creek subwatershed. The assessment survey area included both agricultural and urban areas. Appendix C includes a map of the surveyed areas and recorded observations. Based on the survey results, the primary source of bacteria loading is fecal matter from animals. Horses, cattle, chickens, turkeys, and ducks were all observed during the survey. In multiple cases, such livestock were observed directly adjacent to the creek on parcels in the riparian areas. Geese, deer, and other wildlife are also present in the Painter Creek subwatershed. Table 3.9 provides an estimate of the animals present and *E. coli* bacteria produced and available within the watershed.

Category	Source	Animal Units or Individuals in Subwatershed (8)	<i>E.coli</i> Organisms Produced Per Unit Per Month (Billions of Org.) (1)	Total <i>E. coli</i> Produced Per Month (Billions of Org.) (9)	Total <i>E. coli</i> Produced Per Month by Category (Billions of Org.) (9)	,	Percent by Category	
Livestock (Surface Applied Manure) (6)	Horses (Animal Units)	170 - 200	8.0	1,400 - 1,600				
	Cattle (Animal Units)	60 - 80	1,900	110,000 - 150,000	110,000 - 150,000	110,000 - 150,000	75%	
	Chickens/Turkeys (Animal Units)	0 - 0	650	0 - 0				
	Deer (4)	40 - 120	10	400 - 1200				
Wildlife	Waterfowl (5)	130 - 160	0.20	30	830 - 2400	830 - 2400	1%	
Withine	Other Wildlife	Equivalent of Deer	10	400 - 1200	030 - 2400	050 - 2400	170	
Human	Failing Septic Systems (3)	10	40	400	400	400	0%	
Domestic Animals (2)	Improperly Managed Pet Waste	1030 - 1260	100	100,000 - 130,000	100,000 - 130,000	35,000 - 45,500	24%	
	Total 150,000 - 200,000 100%							

Table 3.9. E. coli bacteria produced and available within the Painter Creek subwatershed.

(1) Derived from literature values in Metcalf and Eddy (1991), Horsley and Witten (1996), Alderisio and DeLuca (1999), and ASAE Standards (1998). Values have been reported to two significant digits.

(2) 0.584 dogs/household and 0.638 cats/household (American Veterinary Medical Association, 2012)

(3) Based on map review, estimated 15 homes with septic systems adjacent to Painter Creek and a 25% failure rate (MPCA, 2012).

(4) Range based on 3 to 9 deer/sq mile (MNDNR 2011 Pre-Fawn Deer Density from Deer Population Model: Average of permit areas 229, 285, 338)

(5) Estimated from the MNDNR and US Fish & Wildlife Service 2011 Waterfowl Breeding Population Survey: Minnesota. The range of *E. coli* produced is very small and not apparent due to rounding.

(6) Based on data collected during the bacteria source assessment survey and and MPCA documented feedlots.

(7) Estimated that 35% of the E. Coli produced per month attributed to pet waste is improperly managed and available for runoff (CWP, 1999).

(8) Range provided is $\pm 10\%$ of the estimated number rounded to the nearest 10th.

(9) Rounded to two significant digits.

4.1 Nutrients

4.1.1 Loading Capacity Methodology

The first step in developing an excess nutrient TMDL for lakes is to determine the total nutrient loading capacity or assimilative capacity for the lake. A key component for this determination is to estimate the current phosphorus loading by the sources for each lake. Following estimation of the current loading, lake response to phosphorus loading was modeled using the BATHTUB suite of models for the impaired lakes and the loading capacity was determined. The components of this process are described below.

4.1.1.1 Watershed Loading

Stream sampling data collected throughout the watershed from 2005-2011 was used to calculate watershed loading for the majority of the lakes addressed. 2005-2011 was used as the representative data period as it provided the most consistent data set. Discrete flow measurements and total phosphorus grab samples from 12 stream sampling sites were used to calculate Flow Weighted Mean Concentrations (FWMC) for total phosphorus. Figure 4.1 provides box plots of the FWMC data for each sample station examined. Sample station locations are indicated on the maps included in Appendix A.

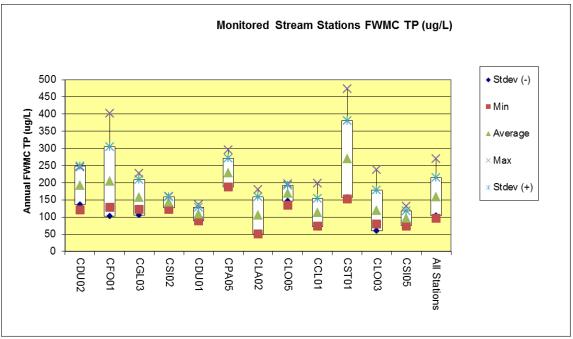


Figure 4.1. Total Phosphorus Flow Weighted Mean Concentration.

For unmonitored watersheds tributary to each lake, an average runoff volume and TP concentration applicable to the entire upper watershed area were used in the lake response models. The averages were calculated using the runoff volume and TP concentrations derived from the monitored subwatersheds tributary to each lake. The average watershed runoff depth was calculated as 5.12 inches/year. The average FWMC for the watershed was calculated as 159 μ g/L. The range of values used to calibrate the models was 104 to 214 μ g/L (representing +/- the standard deviation from the average).

For East Auburn, Stone, and Turbid lakes, water volume and phosphorus loading to the lake were not monitored and therefore were derived from watershed modeling. An XP-SWMM model calibrated to annual runoff was developed to estimate runoff volumes. Once the volumes were estimated, a P8 model was developed to match the XP-SWMM runoff volumes on a monthly basis. Since water quality data were not available everywhere in the Six Mile Creek watershed, and the P8 model is of limited utility in agricultural parts of the watershed, a Unit Area Load (UAL) model was developed for the watershed. The UAL model was developed using the Minnesota Land Cover Classification System (MLCCS) and assigning categories a loading rate of lbs TP/acre (Table 4.1). The loading rates for each land use category were based on literature review values for land uses in Minnesota (Reckhow et al. 1980). The unmonitored watershed loads were then calculated by multiplying the percent of each land use category by its respective loading rate.

MLCCS Land Use Category	Phosphorus Load (lbs/acre/year)
4% to 10% impervious cover	0.03
11% to 25% impervious cover	0.03
26% to 50% impervious cover	0.31
51% to 75% impervious cover	0.41
76% to 90% impervious cover	0.41
91% to 100% impervious cover	0.41
Agriculture	0.19
Emergent Marsh	0
Forest	0.03
Grassland	0.06
Open Water	0
Shrubland	0.06
Wetland	0

Table 4.1. Land Use Loading Rates Used to Estimate Runoff Concentrations.

4.1.1.2 Septic System Loading

Septic information within the TMDL study area was collected by MCWD staff and provided by city, county, and Metropolitan Council Environmental Services (MCES) on septic systems in use. Based on the provided data, review of aerial photos, and a map review of the MCES facilities and infrastructure, the number of homes along the shore of each impaired lake using septic systems was estimated. Minimal

information was available with regard to system failure rates, so a failure rate of 25% was applied to the estimated number of septic systems for use in the lake response models (MPCA, 2012). The annual load per septic system was calculated by assuming 2.8 people per system with a loading rate of 2.7 grams TP/person/day (USEPA Manual, 2002).

4.1.1.3 Upstream Lakes

Some of the lakes addressed in the TMDL have upstream lakes which are also addressed in the TMDL (Table 4.2). Meeting water quality standards in the downstream lakes is contingent on water quality improvements in the impaired upstream lakes. For example, improvements to Long Lake will be needed for Tanager Lake to meet state water quality standards. In turn, improvements to Wolsfeld, Holy Name, and School Lakes will be necessary to achieve water quality standards in Long Lake. Achieving water quality standards in Long Lake also assumes that ultimately the upstream Dickeys Lake, not addressed in this TMDL study, will meet the TP standard of $40 \mu g/L$. (Note: Dickeys Lake is only slightly above the TP standard, and translates to only a three pound reduction from current estimated loading. This represents only about 0.4 percent of Long Lake's needed reduction. Dickeys Lake is not on the 303(d) list of impaired waters because it meets both chlorophyll-a and Secchi disk standards.)

Table 4.2. Opsilean Lakes Addressed in this TWDE Study.				
Lake	Upstream Lake			
East Auburn	Stone			
Gleason	Snyder			
Long	Wolsfeld, Holy Name, School			
Halsted Bay	E. Auburn, Stone, Turbid			
Jennings Bay	Dutch			
West Arm	Jennings Bay, Forest			
Tanager	Long, Holy Name, Wolsfeld, School			
Wolsfeld	School			
Hadley	Mooney*			

Table 4.2. Upstream Lakes Addressed in this TMDL Study.

*Mooney is a landlocked lake. However, in emergency situations (high water/flood conditions) the capability exists to pump water from the lake to lower the water elevation. Water pumped from Mooney ultimately discharges to Hadley Lake. However, this system has never been operated and no pumping took place during the TMDL "average condition" period.

Kreatz Lake (lake number 27-0468-00), although not addressed in this TMDL study, is located directly upstream of Snyder Lake. Available data indicates that Kreatz Lake TP concentrations are exceeding state standards. Discharge from Kreatz Lake represents approximately 74% of the water load to Snyder. Improvements to Kreatz Lake are necessary in order to realize improvements in Snyder Lake. Kreatz Lake has been set as an upstream boundary condition of Snyder Lake and the load considered part of the load allocation (LA). Kreatz Lake is not addressed in this TMDL study because the lake is less than 10 acres in size and therefore was not assessed for listing. It is of note that the DNR and MPCA nomenclature for these lakes, which was used in this TMDL, is opposite of the local nomenclature. According to the DNR, the lake on the east side of County Road 101 in Plymouth, MN is Snyder Lake, and the lake on the west side of County Road 101 is Kreatz Lake. The City of Plymouth and local residents for many years have called the basin on the <u>east</u> side of County Road 101 Kreatz Lake, with Snyder Pond on the west side of the road.

Carl Krey Lake, Church Lake, Kelzer Pond, Stieger Lake, Wassermann Lake, and Sunny Lake are all located directly upstream of East Auburn Lake. These lakes represent approximately 85% of the water load to East Auburn and have been set as upstream boundary conditions with the load considered part of the LA. Available data indicates that Church and Wassermann Lakes are exceeding state standards and improvements are necessary to reach water quality goals in East Auburn Lake. It is of note that Wassermann Lake has a US EPA approved TMDL for nutrients and lake water quality is expected to improve.

There are other lakes upstream of those addressed in this TMDL that were not explicitly accounted for in each lake phosphorus and water budget. This is due to the lack of in-lake water quality data available for some upstream lakes as well as the data sets available for stream monitoring stations in close proximity to the downstream lake inlet (which include the phosphorus output from the upstream lake). The TP load from the upstream lakes not explicitly itemized is accounted for in the watershed load.

4.1.1.4 Atmospheric Deposition

A study conducted for the MPCA, "Detailed Assessment of Phosphorus Sources to Minnesota Watersheds" (Barr Engineering, 2004), estimated the atmospheric inputs of phosphorus from deposition for different regions of Minnesota. The rates vary based on the precipitation received in a given year. Precipitation received during 2005-2011 was within that study's average range (25" to 38"). That study's annual atmospheric deposition rate of 26.8 kg/km² for average precipitation years was used to calculate annual atmospheric deposition load for these lakes.

4.1.1.5 Groundwater

Groundwater (GW) can act as a source of water and phosphorus, a sink of water and phosphorus, or have no interaction with a lake. For the lakes addressed in this study, groundwater was determined to be either a net gain of water or a net loss. In some cases the source or sink of groundwater was calculated to have a negligible effect on the lake water budget. A description of the groundwater contribution calculation method can be found in Appendix D.

4.1.1.6 Internal Loading

Internal nutrient loading within a lake is typically the result of organic sediments releasing phosphorus into the water column. This often occurs when anoxic conditions are present, meaning that the lower portion of the water column is devoid of oxygen. Anoxic conditions occur when lakes stratify with warm, well oxygenated water near the surface and cold, oxygen depleted water at greater depths, down to the lake bottom. Temperature and dissolved oxygen profiles are used to determine the volume of lake water where anoxic conditions are occurring. The volume of the lake with anoxic conditions is used to calculate an anoxic factor (Nürnberg 2004), which is normalized over the entire lake basin and reported as a number of days. For example, if 25 percent of the volume of the lake experienced anoxic conditions for eight days, the anoxic factor would be two days. A description of the internal load calculation method and release rates can be found in Appendix E.

As discussed in Section 3.6, over-abundance of carp and some aquatic plants can also affect lake ecosystems by changing the dynamics of internal phosphorus loading. Minimal data is available to quantify carp and aquatic vegetation for the lakes addressed in this TMDL study (see Table 3.8).

4.1.1.7 BATHTUB Model (Lake Response)

Once the nutrient budget for a lake has been developed, the response of the lake to those nutrient loads must be established. Lake response to nutrient loading was modeled using the BATHTUB suite of models and the significant data set available for the impaired lakes. BATHTUB is a series of empirical eutrophication models that predict the response to phosphorus inputs for morphologically complex lakes and reservoirs (Walker 1999). Several models (subroutines) are available for use within the BATHTUB model, and the Canfield-Bachmann model was used to predict the lake response to total phosphorus loads. The Canfield-Bachmann model estimates the lake phosphorus sedimentation rate, which is needed to predict the relationship between in-lake phosphorus concentrations and phosphorus load inputs. The phosphorus sedimentation rate is an estimate of net phosphorus loss from the water column through sedimentation to the lake bottom, and is used in concert with lake-specific characteristics such as annual phosphorus loading, mean depth, and hydraulic flushing rate to predict inlake phosphorus concentrations. These model predictions are compared to measured data to evaluate how well the model describes the lake system, and if necessary, the model parameters are adjusted appropriately to achieve an approximate match. Once a model is well calibrated, the resulting relationship between phosphorus load and in-lake water quality is used to determine the assimilative capacity.

To set the TMDL for each impaired lake in the study, the nutrient inputs partitioned between sources in the lake response model were then systematically reduced until the model predicted that each lake met the current total phosphorus standard of 60 μ g/L as a growing season mean for shallow lakes and 40 μ g/L for deep lakes. Lake response model results are included in Appendix F.

4.1.2 Load Allocation Methodology

The Load Allocation (LA) includes all non-permitted sources, including: atmospheric deposition, septic systems, discharge from upstream lakes, watershed loading from non-regulated areas, and internal loading. Some discharges from areas geographically located in a regulated MS4 that do not drain through a conveyance system (and therefore are not regulated sources) are also included in the LA (determined as described in the following section).

As atmospheric load is impossible to control on a local basis, no reduction in the source was assumed for the TMDLs. Also, septic systems when properly functioning do not discharge to surface water, so 100% reduction from failing systems is assumed. The general approach to internal load reductions was to evaluate the capacity for reducing the internal loading based on review of the existing sediment release rates and the lake morphometry. The capacity for watershed load reductions was also considered. For example, some watershed phosphorus export rates are already so low that large reductions would be infeasible. Therefore an internal load reduction is required to achieve water quality goals. However, in some cases, the situation was reversed and the internal load was already so low that watershed reductions were required. For example, the existing Stone Lake watershed load is 52 lbs/yr (approximately 0.07 lbs/acre/year) and the existing internal load is 130 lbs/yr (calculated using a

sediment release rate of 3.5 mg/m^2 -day). The watershed load is so low that a reduction would likely not be feasible. Therefore, the reduction was taken from the internal load (goal sediment release rate of 3.0 mg/m^2 -day) to achieve the in-lake water quality goal. As a converse example, the existing internal load for East Auburn Lake is 41 lbs/yr (calculated using a sediment release rate of 0.7 mg/m^2 -day) and the existing watershed load is 1,337 lbs/yr (approximately 1.5 lbs/acre/yr, in-line wetlands just upstream of the lake are a probable source of excess TP load). The reduction was taken from the watershed load because a reduction to the internal load would likely not be feasible due to the low existing sediment release rate. Table 4.3 presents the reductions required from the internal load and the watershed load to achieve water quality goals for each lake.

Lake Name	Depth Class	Internal Load Reduction ⁽¹⁾	Watershed Load Reduction ⁽¹⁾⁽²⁾	
Dutch	Deep	10%	60%	
E. Auburn	Deep	0%	31%	
Forest	Deep	26%	60%	
Gleason	Shallow	50%	64%	
Holy Name	Shallow	79%	87%	
Langdon	Shallow	21%	27%	
Long	Deep	19%	62%	
Halsted Bay	Deep	70%	72%	
Jennings Bay	Deep	79%	72%	
Stubbs Bay	Deep	0%	51%	
West Arm	Deep	40%	93%	
Mooney	Shallow	5%	89%	
Stone	Deep	23%	0%	
Tamarack	Deep	0%	0%	
Tanager	Deep	70%	61%	
Wolsfeld	Deep	34%	79%	
Snyder	Shallow	0%	33%	
School	Shallow	70%	75%	
Hadley	Deep	54%	41%	
Turbid	Deep	77%	20%	

Table 4.3. Internal and watershed load reductions.

(1) considers MOS (5%)

(2) The total watershed load reduction is presented here and includes both WLA and LA. The tables in Section 4.1.7 split out the watershed load between WLA and LA (Non-MS4 runoff).

4.1.3 Wasteload Allocation Methodology

The WLA is required to include permitted discharges such as regulated stormwater. To address Construction and Industrial Stormwater NPDES/SDS General Permitting, one percent of the allowable

watershed load has been assigned as a WLA for future permits. The remaining total wasteload has been distributed among regulated MS4s. Table 4.4 lists the regulated MS4s that will receive WLAs for each TMDL. Figures depicting the MS4 permittee jurisdictions for each lakeshed are included in Appendix G.

Table 4.4. Permitted MS4s in each Lakeshed.

ID Number	Name	Dutch	E. Auburn	Forest	Gleason	Holy Name	Langdon	Long	Halsted Bay	Jennings Bay	Stubbs Bay	West Arm	Mooney	Stone	Tamarack	Tanager	Wolsfeld	Snyder	School	Hadley	Turbid
MS400070	Carver County MS4	-	WLA	-	-	-	-	-	-	-	-	-	-	-	WLA	-	-	-	-	-	-
MS400079	Chanhassen City MS4	-	-	-	-	-	-	-	-	-	-	-	-	-	WLA	-	-	-	-	-	-
MS400138	Hennepin County MS4	WLA	-	WLA	WLA	WLA	WLA	WLA	WLA	WLA	WLA	WLA	WLA	WLA	-	WLA	WLA	WLA	-	WLA	-
	Independence City																				
MS400095	MS4	-	-	-	-	-	-	-	-	WLA	-	-	-	-	-	-	-	-	-	-	
	Laketown Township																				
MS400142	MS4	-	WLA	-	-	-	-	-	WLA	-	-	-	-	WLA	-	-	-	-	-	-	WLA
MS400101	Long Lake City MS4	-	-	-	-	-	-	WLA	-	-	-	-	-	-	-	WLA	-	-	-	-	-
MS400103	Maple Plain City MS4	-	-	-	-	-	-		-	WLA	-	-	-	-	-	-	-	-	-	-	-
MS400105	Medina City MS4	-	-	-	-	WLA	-	WLA	-	WLA	-	-	WLA	-	-	-	WLA	-	WLA	-	-
	Minnehaha Creek WD																				
MS400182	MS4	-	-	-	WLA	-	-	-	WLA	-	-	-	-	-	-	-	-	-	-	-	
MS400035	Minnetonka City MS4	-	-	-	WLA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MS400106	Minnetrista City MS4	WLA	-	WLA	-	-	WLA		WLA	WLA	-	WLA	-	WLA	-	-	-	-	-	-	-
MS400170	MNDOT Metro District MS4		WLA	_	WLA	_		WLA	WLA	_	WLA		_	_	WLA	WLA	_				
MS400170	Mound City MS4	-						VVLA		WLA	VVLA	-				VVLA		-	-	-	-
	,	WLA	-	-	-	-	WLA		WLA		-	WLA	-	-	-	-	-	-	-	-	
MS400111	Orono City MS4	-	-	WLA	-	-	-	WLA	-	WLA	WLA	WLA	WLA	-	-	WLA	WLA	-	-	WLA	-
MS400112	Plymouth City MS4	-	-	-	WLA	WLA	-	WLA	-	-	-	-	WLA	-	-	-	-	WLA	-	WLA	-
MS400123	Spring Park City MS4	-	-	-	-	-	-	-	-	-	-	WLA	-	-	-	-	-	-	-	-	-
MS400124	St Bonifacius City MS4	-	-	-	-	-	-	-	WLA	-	-	-	-	-	-	-	-	-	-	-	-
MS400126	Victoria City MS4	-	WLA	-	-	-	-	-	WLA	-	-	-	-	WLA	WLA	-	-	-	-	-	-
MS400058	Wayzata City MS4	-	-	-	WLA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

The MS4 stakeholders reviewed three possible methods to assign each MS4 an individual WLA for each TMDL, and agreed the fairest approach is a "combination method" based half on the area of regulated land in the MS4's jurisdiction in each lakeshed and half on land use and the percent impervious surface in the MS4 regulated area. The existing load was also partitioned between the MS4s based on runoff volume from a 1.3-inch event, calculated using composite curve numbers (CNs) and the SCS method, to determine required reductions.

The first step in partitioning the WLA and existing load among the MS4s was division of each lake watershed by MS4 permit holder. Next, the discharges to include in the WLA and those to include in the LA was determined. MS4s owned or operated within the entire jurisdiction of a city or township are subject to NPDES permit regulation. Counties, watershed districts, MnDOT, and other non-traditional MS4s are only subject to NPDES regulation for MS4s owned or operated within the U.S. Census Bureau-defined urban area. The 2010 U.S. Census Bureau-defined urban area was the dividing factor for the majority of the MS4 permitted areas. The percent impervious surface was also calculated for each MS4 regulated area using data from the HHPLS model, MLCCS land cover data, and Met Council land use data. For the MnDOT MS4 regulated area, MnDOT provided right of way data, impervious area and CN information for use in calculations. The impervious surface percentage for each MS4 regulated area was then used for the "combination method" calculation. These steps for partitioning the WLA and existing load are described in detail in Appendix H.

There is one non-stormwater NPDES –permitted point source in the Minnetonka (West Arm) watershed: Nilfisk-Advance Inc. (MN006648). Nilfisk-Advance, Inc. operates a groundwater remediation system located near the site of the former Advance Machine Company, 4080 Sunset Drive, Spring Park, and discharges groundwater treated with granulated activated carbon. The WLA for this facility is calculated below. This WLA may be expanded in the future if necessary, as long as the effluent concentration remains at levels that are less than or equal to the water quality standard.

- The maximum permitted flow rate is 0.144 MGD.
- The TP effluent concentration is 0.012 mg/L (based on a sample taken in June 2013); increased by 50 percent to account for uncertainty = 0.018 mg/L.
- Loading per day is: 0.144 x 0.018 x 8.34 conversion factor = 0.0216 lbs P/day. Loading per year is: 0.0216 x 365 days = 8 lbs P/year.

4.1.4 Margin of Safety

An explicit margin of safety (MOS) has been included in this TMDL. Five percent of the load has been set aside to account for any uncertainty in the lake response models. The 5% MOS was considered reasonable for all of the modeled lakes due to the quantity of watershed and in-lake monitoring data available. Watershed monitoring data collected over a 7 year period (2005 to 2011) was used for the majority of the lake modeling. In-lake monitoring data collected during the same 7 year period was also available for the majority of the lakes.

4.1.5 Seasonal Variation

Seasonal variation is accounted for through the use of annual loads and developing targets for the summer period, where the frequency and severity of nuisance algal growth will be the greatest.

Although the critical period is the summer, lakes are not sensitive to short term changes in water quality, rather lakes respond to long-term changes such as changes in the annual load. Therefore, seasonal variation is accounted for in the annual loads. Additionally, by setting the TMDL to meet targets established for the most critical period (summer), the TMDL will inherently be protective of water quality during the other seasons.

4.1.6 Future Growth Considerations/Reserve Capacity

The watersheds for these lakes are entirely within MS4 communities (and potentially subject to a WLA, determined as described in Section 4.1.3) with the exception of approximately 166 acres located in Watertown Township in the Halsted Bay subwatershed, areas of county and MnDOT right of way outside the U.S. Census Bureau-defined urban area, and agricultural and wetland drainage through unregulated conveyances. As such, urban stormwater is currently regulated under the NPDES Phase II stormwater permits and the reserve capacity is included in the WLA. The development projects that will occur will be covered under the member cities ordinances and the MCWD rules that are in place for development and redevelopment that are protective of water quality. Consequently, future development will have to meet watershed requirements that will account for pollution reductions in this TMDL.

Transfer of WLA to WLA will be required in the future for the East Auburn, Halsted Bay, Stone, and Turbid Lake TMDLs. Laketown Township has an orderly annexation agreement in place with the Cities of Victoria and Waconia. The Laketown Township WLA will be transferred to Victoria or Waconia as appropriate as land is annexed. Future transfer of loads will be based on methods consistent with those used in setting the allocations in this TMDL. Load transfers may also occur from LA to WLA or additional from WLA to WLA (e.g., due to expansion of the U.S. Census Bureau-defined urban area). In cases where WLA is transferred from or to a regulated MS4, the permittees will be notified and will have an opportunity to comment on the reallocation.

4.1.7 TMDL Summary

The allowable TP load (TMDL) for each lake was divided among the WLA, LA, and the MOS as described in the preceding sections. Tables 4.5 through 4.24 below summarize the existing and allowable TP loads, the TMDL allocations, and required reductions for each lake. In these tables the total load reduction is the sum of the required WLA reductions plus the required LA reductions; this is not the same as the net difference between the existing and allowable total loads, however, because the WLA and LA reductions must accommodate the MOS (e.g. in Table 4.5 the difference between the total existing annual load, 591 lbs, and the total allowable load, 347 lbs, is 255 lbs; but the estimated load reduction is 262 lbs because it includes the MOS of 17 lbs).

The following rounding conventions were used in Tables 4.5 through 4.24:

- Values ≥1 reported in lbs/yr have been rounded to the nearest whole number.
- Values <1 reported in lbs/yr have been rounded to the nearest tenth of a pound.
- Values reported in lbs/day have been rounded to three significant digits.

Table 4.5. Dutch Lake TMDL summary.

		Existin	g TP Load	Allowat	ole TP Load	Estimate Reduc	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	591	1.62	347	0.950	262	44
	Total WLA	319	0.874	126	0.346	193	60
	Construction/Industrial SW	1	0.00406	1	0.00406	0.0	0
Wasteload	Hennepin Co. (MS400138)	1	0.00354	0.5	0.00129	0.8	64
	Minnetrista (MS400106)	288	0.787	115	0.314	173	60
	Mound (MS400108)	29	0.0795	10	0.0268	19	66
	Total LA	272	0.745	203	0.557	69	25
	Non-MS4 runoff	10	0.0281	5	0.0127	6	55
	SSTS	46	0.125	0	0	46	100
Load	Upstream lakes	0	0	0	0	0	NA
	Atmospheric deposition	42	0.115	42	0.115	0	0
	Groundwater	0	0	0	0	0	NA
	Internal load	174	0.476	157	0.429	17	10
	MOS			17	0.0475		

Table 4.6. East Auburn Lake TMDL summary.

		Existin	g TP Load	Allowal	ole TP Load	Estimated Reduct	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	2099	5.75	1551	4.25	626	30
	Total WLA	1245	3.41	835	2.29	410	33
	Construction/Industrial SW	10	0.0272	10	0.0272	0	0
Wastalaad	Carver County (MS400070)	1	0.00371	1	0.00371	0	0
Wasteload	Laketown Township (MS400142)	2	0.00605	2	0.00605	0	0
	MNDOT (MS400170)	27	0.0752	11	0.0306	16	59
	Victoria City (MS400126)	1204	3.30	810	2.22	394	33
	Total LA	854	2.34	639	1.75	215	25
	Non-MS4 runoff	92	0.252	82	0.224	10	11
	SSTS	6	0.0167	0	0	6	100
Load	Upstream lakes	680	1.86	480	1.31	199	29
	Atmospheric deposition	35	0.0968	35	0.0968	0	0
	Groundwater	0	0	0	0	0	NA
	Internal load	41	0.112	41	0.112	0	0
	MOS			78	0.212		

Table 4.7. Forest Lake TMDL summary.	Table 4.7.	Forest Lake	TMDL	summary.
--------------------------------------	------------	-------------	------	----------

		Existin	g TP Load	Allowa	ble TP Load		ted Load uction
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	327	0.896	189	0.518	147	45
	Total WLA	194	0.530	78	0.213	116	60
	Construction/Industrial SW	1	0.00248	1	0.00248	0	0
Wasteload	Orono City MS4 (MS400111)	118	0.324	39	0.106	79	67
	Hennepin County (MS400138)	8	0.0228	3	0.00870	5	62
	Minnetrista City MS4 (MS400106)	66	0.181	35	0.0951	31	47
	Total LA	134	0.366	102	0.280	31	24
	Non-MS4 runoff	8	0.0219	4	0.00991	4	55
	SSTS	0	0	0	0	0	NA
Load	Upstream lakes	0	0	0	0	0	NA
	Atmospheric deposition	21	0.0586	21	0.0586	0	0
	Groundwater	0	0	0	0	0	NA
	Internal load	104	0.285	77	0.211	27	26
	MOS			9	0.0259		

Table 4.8. Gleason Lake TMDL summary.

		Existing TP Load		Allowab	le TP Load	Estimate	d Load Reduction
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	856	2.34	431	1.180	447	52
	Total WLA	325	0.890	118	0.324	207	64
	Construction/Industrial SW	1	0.00383	1	0.00383	0	0
	Hennepin County (MS400138)	10	0.0266	3	0.007	7	73
Wasteload	MNDOT (MS400170)	5	0.0135	3	0.007	2	47
wasteloau	Plymouth City MS4 (MS400112)	290	0.794	105	0.288	185	64
	Minnetonka City MS4 (MS400035)	2	0.00658	1	0.003	1	50
	Wayzata City MS4 (MS400058)	16	0.0437	5	0.014	11	69
	MCWD (MS400182)	0.5	0.00134	0.2	0.0006	0	57
	Total LA	531	1.45	291	0.797	240	45
	Non-MS4 runoff	0	0	0	0	0	NA
	SSTS	0	0	0	0	0	NA
Load	Upstream lakes	53	0.146	20	0	33	62
	Atmospheric deposition	40	0.111	40	0.111	0	0
	Groundwater	23	0.0642	23	0.0642	0	0
	Internal load	414	1.13	207	0.567	207	50
	MOS			22	0.0590		

		Existi	ng TP Load	Allow	able TP Load	Estimate Reduc	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	450	1.23	106	0.290	350	78
	Total WLA	32	0.088	1	0.0031	31	96
	Construction/Industrial SW	0.1	0.000392	0.1	0.000392	0	0
Wasteload	Medina City MS4 (MS400105)	27	0.0732	1	0.00233	26	97
	Hennepin County (MS400138)	0.1	0.000162	0.0	0.00000319	0	98
	Plymouth City MS4 (MS400112)	5	0.0144	0.1	0.000375	5	97
	Total LA	418	1.14	99	0.272	319	76
	Non-MS4 runoff	39	0.108	8	0.0216	32	80
	SSTS	0	0	0	0	0	NA
Load	Upstream lakes	0	0	0	0	0	NA
	Atmospheric deposition	17	0.0458	17	0.0458	0	0
	Groundwater	0	0	0	0	0	NA
	Internal load	362	0.991	75	0.205	287	79
	MOS			5	0.0145		

Table 4.9. Holy Name Lake TMDL summary.

Table 4.10. Langdon Lake TMDL summary.

		Existin	g TP Load	Allowal	ole TP Load	Estimated Reduct	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	393	1.08	325	0.891	84	21
	Total WLA	166	0.454	121	0.332	44	27
	Construction/Industrial SW	1	0.00383	1	0.00383	0	0
Wasteload	Hennepin County (MS400138)	7	0.0195	4	0.0108	3	45
	Minnetrista City MS4 (MS400106)	65	0.178	58	0.159	7	11
	Mound (MS400108)	92	0.252	58	0.158	34	37
	Total LA	228	0.623	188	0.514	40	17
	Non-MS4 runoff	3	0.00716	2	0.00600	0.4	16
	SSTS	0	0	0	0	0	NA
Load	Upstream lakes	0	0	0	0	0	NA
	Atmospheric deposition	34	0.0932	34	0.0932	0	0
	Groundwater	0	0	0	0	0	NA
	Internal load	191	0.523	152	0.415	39	21
	MOS			16	0.0445		

		Existin	g TP Load	-	vable TP .oad	Estimate Reduc	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	1465	4.01	761	2.08	742	51
	Total WLA	665	1.82	255	0.697	411	62
	Construction/Industrial SW	3	0.00812	3	0.00812	0	0
Wasteload	Orono City MS4 (MS400111)	224	0.614	100	0.273	125	56
	Hennepin County (MS400138)	41	0.113	5	0.0150	36	87
	Plymouth City MS4 (MS400112)	0.0	0.000	0.0	0.000	0.0	0
	Long Lake City MS4 (MS400101)	164	0.449	29	0.0790	135	82
	Medina City MS4 (MS400105)	216	0.591	113	0.309	103	48
	MNDOT (MS400170)	17	0.0470	5	0.0132	12	72
	Total LA	800	2.19	468	1.28	332	41
	Non-MS4 runoff	8	0.0226	4	0.00999	5	56
	SSTS	0	0	0	0	0	NA
Load	Upstream lakes	363	0.994	97	0.265	266	73
	Atmospheric deposition	69	0.188	69	0.188	0	0
	Groundwater	39	0.106	39	0.106	0	0
	Internal load	322	0.881	261	0.713	61	19
	MOS			38	0.104		

Table 4.11. Long Lake TMDL summary.

Table 4.12. Halsted Bay TMDL summary.

		Existin	g TP Load	Allowal	ole TP Load	Estimated Reducti	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	6171	16.9	2064	5.65	4210	68
	Total WLA	2858	7.82	771	2.11	2087	73
	Construction/Industrial SW	10	0.0282	10	0.0282	0	0
	Hennepin County (MS400138)	15	0.0399	6	0.0160	9	60
	Minnetrista City MS4 (MS400106)	1289	3.53	382	1.04	907	70
Wasteload	Mound (MS400108)	11	0.0310	5	0.0130	6.6	58
wasteloau	MNDOT (MS400170)	16	0.0444	4	0.0104	12	76
	St Bonifacius City (MS400124)	183	0.502	77	0.211	106	58
	MCWD (MS400182)	9	0.0246	2	0.00583	7	76
	Victoria City (MS400126)	0.4	0.00117	0.0	0.000	0.4	93
	Laketown Township (MS400142)	1324	3.62	285	0.781	1038	78

Ē

	Total LA	3314	9.07	1190	3.26	2123	64
	Non-MS4 runoff	511	1.40	157	0.430	354	69
	SSTS	0	0.000	0	0	0	NA
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	134	0.367	134	0.367	0	0
	Groundwater	141	0.386	141	0.386	0	0
	Internal load	2527	6.92	758	2.08	1769	70
	MOS			103	0.283		

Table 4.13. Jennings Bay TMDL summary.

		Existin	g TP Load	Allowa	ole TP Load	Estimated Load Reduction	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	3505	9.60	1039	2.84	2518	72
	Total WLA	2159	5.91	596	1.63	1563	72
	Construction/Industrial SW	7	0.0189	7	0.0189	0	0
	Medina City MS4 (MS400105)	538	1.47	140	0.383	398	74
	Orono City MS4 (MS400111)	244	0.669	92	0.251	153	62
Wasteload	Hennepin County (MS400138)	7	0.0203	2	0.00589	5.3	71
	Minnetrista City MS4 (MS400106)	418	1.14	139	0.381	279	67
	Mound (MS400108)	31	0.0859	8	0.0232	23	73
	Independence City MS4 (MS400095)	806	2.21	189	0.517	617	77
	Maple Plain City MS4 (MS400103)	107	0.294	18	0.0506	23 617 88.8	83
	Total LA	1346	3.69	391	1.07	955	71
	Non-MS4 runoff	144	0.394	43	0.119	101	70
	SSTS	0	0.000	0	0	0	NA
Load	Upstream lakes	210	0.574	77	0.211	132	63
	Atmospheric deposition	73	0.200	73	0.200	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	920	2.52	198	0.541	722	79
	MOS			52	0.142		

		Existin	ng TP Load	Allowa	ble TP Load	Estimated Load Reduction	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	585	1.60	406	1.11	199	34
	Total WLA	275	0.754	134	0.366	142	51
	Construction/Industrial SW	2	0.00463	2	0.00463	0	0
Wasteload	Orono City MS4 (MS400111)	269	0.735	129	0.354	139	52
	Hennepin County (MS400138)	5	0.0131	3	0.00719	2	45
	MNDOT (MS400170)	0.5	0.00129	0.1	0.000356	0.3	72
	Total LA	309	0.847	252	0.690	57	19
	Non-MS4 runoff	27	0.0734	15	0.0413	12	44
	SSTS	46	0.125	0	0.000	46	100
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	47	0.130	47	0.130	0	0
	Groundwater	50	0.137	50	0.137	0	0
	Internal load	140	0.382	140	0.382	0	0
	MOS			20	0.0556		

Table 4.14. Stubbs Bay TMDL summary.

Table 4.15. West Arm TMDL summary.

Table 4.1	5. West Arm TMDL summary.						
		Existi	ng TP Load	Allowa	ble TP Load	Estimated L	oad Reduction
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	3421	9.37	1915	5.24	1602	47
	Total WLA	156	0.427	19	0.0513	137	88
	Construction/Industrial SW	1	0.00292	1	0.00292	0	0
	Orono City MS4 (MS400111)	31	0.0845	3	0.00849	28	90
Wasteload	Hennepin County (MS400138)	19	0.0527	1	0.00265	18	95
wasteloau	Minnetrista City MS4 (MS400106)	0.7	0.00179	0.0	0.0000411	0.6	98
	Mound (MS400108)	53	0.144	4	0.0099	49	93
	Spring Park City MS4 (MS400123)	43	0.118	2	0.00542	41	95
	Nilfisk-Advance Inc. (MN006648)	8	0.0219	8	0.0219	0	0
	Total LA	3265	8.94	1800	4.93	1465	45
	Non-MS4 runoff	0.2	0.000522	0.1	0.000378	0.1	27
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	1403	3.84	607	1.66	795	57
	Atmospheric deposition	197	0.538	197	0.538	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	1665	4.560	996	2.73	669	40
	MOS			96	0.262		

		Existi	ng TP Load	Allowa	ble TP Load	Estimated Reduct	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	209	0.572	134	0.368	81	39
	Total WLA	65	0.178	7	0.0181	58	90
	Construction/Industrial SW	0.2	0.000418	0.2	0.000418	0	0
Wasteload	Medina City MS4 (MS400105)	8	0.0229	1	0.00355	7	84
wasteloau	Orono City MS4 (MS400111)	1	0.00337	0.4	0.00109	1	68
	Hennepin County (MS400138)	0.7	0.00180	0.1	0.000200	0.6	89
	Plymouth City MS4 (MS400112)	55	0.150	5	0.0129	50	91
	Total LA	144	0.394	121	0.331	23	16
	Non-MS4 runoff	9	0.0258	2	0.00529	7.5	79
	SSTS	11	0.0292	0	0.000	11	100
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	27	0.0740	27	0.0740	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	97	0.265	92	0.252	5	5
	MOS			7	0.0184		

Table 4.17. Stone Lake TMDL summary.

		Existi	ng TP Load	Allowa	ble TP Load	Estimated Reduct	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	206	0.563	186	0.508	29	14
	Total WLA	34	0.0937	34	0.0937	0	0
	Construction/Industrial SW	0.5	0.00142	0.5	0.00142	0	0
Wasteload	Hennepin County (MS400138)	0.1	0.000276	0.1	0.000276	0	0
wasteloau	Minnetrista City MS4 (MS400106)	9	0.0239	9	0.0239	0	0
	Victoria City (MS400126)	2	0.00479	2	0.00479	0	0
	Laketown Township (MS400142)	23	0.0633	23	0.0633	0	0
	Total LA	171	0.469	142	0.389	29	17
	Non-MS4 runoff	18	0.0484	18	0.0484	0	0
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	24	0.0650	24	0.0650	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	130	0.356	101	0.276	29	23
	MOS			9	0.0254		

		Existi	ng TP Load	Allowa	ble TP Load	Estimate Reduc	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	73	0.201	73	0.201	0	0
	Total WLA	6	0.0171	6	0.0171	0	0
	Construction/Industrial SW	0.2	0.000591	0.2	0.000591	0	0
Wasteload	Carver County (MS400070)	0.1	0.000312	0.1	0.000312	0	0
wasteloau	Victoria City (MS400126)	4	0.01205	4	0.01205	0	0
	MNDOT (MS400170)	1	0.00325	1	0.00325	0	0
	Chanhassen City MS4 (MS400079)	0.3	0.000918	0.3	0.000918	0	0
	Total LA	67	0.184	67	0.184	0	0
	Non-MS4 runoff	15	0.0420	15	0.0420	0	0
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	7	0.0196	7	0.0196	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	45	0.122	45	0.122	0	0
	MOS			NA	NA		

Table 4.18. Tamarack Lake TMDL summary.

Table 4.19. Tanager Lake TMDL summary.

		Existi	ng TP Load	Allowa	ble TP Load	Estimated I	oad Reduction
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	1178	3.22	447	1.22	753	64
	Total WLA	174	0.477	68	0.187	106	61
	Construction/Industrial SW	0.9	0.00249	0.9	0.00249	0	0
Wasteload	Orono City MS4 (MS400111)	114	0.312	55	0.151	59	51
wasteloau	Hennepin County (MS400138)	7	0.0180	2	0.00562	5	69
	MNDOT (MS400170)	7	0.0197	1	0.00333	6	83
	Long Lake City MS4 (MS400101)	46	0.125	9	0.0242	37	81
	Total LA	1003	2.75	356	0.975	647	64
	Non-MS4 runoff	0.2	0.000640	0.1	0.000335	0.1	48
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	737	2.02	258	0.705	480	65
	Atmospheric deposition	13	0.0352	13	0.0352	0	0
	Groundwater	14	0.0382	14	0.0382	0	0
	Internal load	239	0.654	72	0.196	167	70
	MOS			22	0.0612		

		Existin	g TP Load	Allowal	ple TP Load	Estimate Reduct	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	361	0.989	136	0.372	232	64
	Total WLA	96	0.263	17	0.0470	79	82
	Construction/Industrial SW	0.5	0.00126	0.5	0.00126	0	0
Wasteload	Medina City MS4 (MS400105)	92	0.252	16	0.0440	76	83
	Orono City MS4 (MS400111)	3	0.00945	1	0.00180	3	81
	Hennepin County (MS400138)	0.0	0.000	0.0	0.000	0.0	80
	Total LA	265	0.725	112	0.306	153	58
	Non-MS4 runoff	88	0.242	22	0.0607	66	75
	SSTS	3	0.00833	0	0.000	3	100
Load	Upstream lakes	102	0.279	38	0.105	63	62
	Atmospheric deposition	10	0.0264	10	0.0264	0	0
	Groundwater	3	0.00687	3	0.00687	0	0
	Internal load	59	0.162	39	0.107	20	34
	MOS			7	0.0186		

Table 4.20. Wolsfeld Lake TMDL summary.

Table 4.21. Snyder Lake TMDL summary.

		Existi	ng TP Load	Allowa	ble TP Load	Estimated Reductio	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	69	0.188	49	0.134	22	32
	Total WLA	11	0.0313	8	0.0209	4	33
Wasteload	Construction/Industrial SW	0.1	0.000277	0.1	0.000277	0.0	0
wasteloau	Hennepin County (MS400138)	0.9	0.00245	0.5	0.00146	0.4	40
	Plymouth City MS4 (MS400112)	10	0.0286	7	0.0191	3	33
	Total LA	57	0.156	39	0.106	18	32
	Non-MS4 runoff	0.0	0.000	0.0	0.000	0	11
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	37	0.100	18	0.0505	18	50
	Atmospheric deposition	3	0.00786	3	0.00786	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	18	0.0480	18	0.0480	0	0
	MOS			2	0.00670		

		Existi	ng TP Load	Allowable TP Load		Estimated Load Reduction	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	242	0.661	69	0.189	176	73
	Total WLA	39	0.108	8	0.0207	32	81
Wasteload	Construction/Industrial SW	0.3	0.000766	0.3	0.000766	0	0
	Medina City MS4 (MS400105)	39	0.107	7	0.0199	32	81
	Total LA	202	0.553	58	0.159	144	71
	Non-MS4 runoff	60	0.165	17	0.0465	43	72
	SSTS	11	0.0291	0	0.000	11	100
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	3	0.00727	3	0.00727	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	128	0.351	39	0.105	90	70
	MOS			3	0.00946		

Table 4.23. Hadley Lake TMDL summary.

		Existing TP Load		Allowable TP Load		Estimated Load Reduction	
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
TOTAL LOAD		157	0.429	89	0.243	72	46
	Total WLA	61	0.166	36	0.0973	25	41
	Construction/Industrial SW	0.4	0.00109	0.4	0.00109	0	0
Wasteload	Orono City MS4 (MS400111)	0.2	0.000445	0.1	0.000304	0	32
	Hennepin County (MS400138)	6	0.0168	2	0.00660	4	61
	Plymouth City MS4 (MS400112)	54	0.147	33	0.0893	21	39
	Total LA	96	0.263	49	0.134	47	49
	Non-MS4 runoff	0.0	0.000	0.0	0.000	0.0	34
	SSTS	0	0.000	0	0.000	0	NA
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	8	0.0231	8	0.0231	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	88	0.240	40	0.110	47	54
MOS				4	0.012		

		Existin	g TP Load	Allowal	ble TP Load		ated Load duction
		lbs/yr	lbs/day	lbs/yr	lbs/day	lbs/yr	%
	TOTAL LOAD	249	0.683	117	0.321	138	55
	Total WLA	5	0.013	4	0.010	1	27
Wasteload	Construction/Industrial SW	0.8	0.00210	0.8	0.00210	0	0
	Laketown Township (MS400142)	4	0.011	3	0.008	1	32
	Total LA	244	0.669	108	0.295	137	56
	Non-MS4 runoff	84	0.2307	67	0.1845	17	20
	SSTS	15	0.0416	0	0.000	15	100
Load	Upstream lakes	0	0.000	0	0.000	0	NA
	Atmospheric deposition	10	0.0261	10	0.0261	0	0
	Groundwater	0	0.000	0	0.000	0	NA
	Internal load	135	0.371	31	0.0848	104	77
MOS				6	0.0161		

Table 4.24. Turbid Lake TMDL summary.

4.2 E. coli

The *E. coli* data used for the development of the Painter Creek TMDL are grab samples collected by MCWD between 2001 and 2011 that represent current conditions in the watershed. Samples were analyzed for fecal coliform prior to 2006 and more recently *E. coli*. All fecal coliform data was converted to *E. coli* "equivalents" using the following equation:

E. coli concentration (equivalents) = 0.63 x (Fecal Coliform Concentration)

The *E. coli* concentration standard of 126 cfu/100 mL was considered reasonably equivalent to the former fecal coliform standard of 200 cfu/100 mL from a public health protection standpoint. The SONAR (Statement of Need and Reasonableness) Book III Section VII.D.5 (MPCA 2007) supports this rationale using a log plot to show the relationship between these two parameters. The relationship has an R² value of 0.69. The above regression equation was deemed reasonable to convert fecal coliform data to *E. coli* equivalents. Appendix A includes a figure of the Painter Creek subwatershed which shows the location of the monitoring stations at which samples were collected to support this TMDL.

Stream flow data was crucial to support development of the TMDL. Streamflow data paired with *E. coli* measurements allow exceedances to be evaluated by flow regime which, in turn, may provide insight into potential sources.

4.2.1 Loading Capacity Methodology

Loading capacity of the impaired stream was developed from a load duration curve. Load duration curves incorporate flow and *E. coli* data across stream flow regimes and provide loading capacities and a means of estimating load reductions necessary to meet water quality standards.

4.2.1.1 Flow Duration Curve Development

A flow duration curve (Figure 4.2) was developed using discrete 2000 to 2011 flow data collected seasonally at station CPA01, the furthermost downstream monitoring station within the impaired reach, located approximately 0.8 miles upstream from Jennings Bay. CPA01 was chosen for use due to the quantity of flow data available compared to the other three monitoring stations located within the impaired reach (CPA05, CPA06, and CPA04).

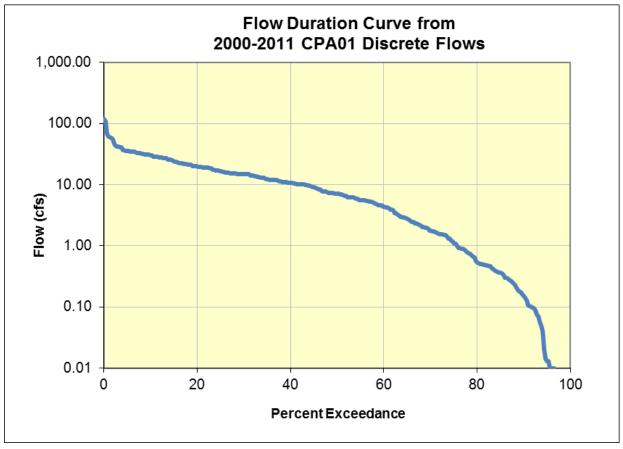
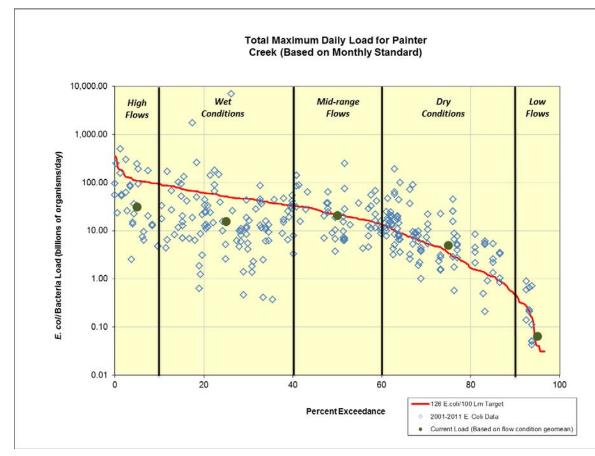



Figure 4.2. Painter Creek flow duration curve.

The curved line relates mean daily flow to the percent of time those values are exceeded. For example, at the 40% exceedance value, the streamflow was 10 cubic feet per second or greater 40% of the time.

4.2.1.2 Load Duration Curve Development

To develop a load duration curve, all average daily flow values were multiplied by the 126 cfu/100 mL standard and converted to a daily load to create a "continuous" load duration curve (Figure 4.3). On this figure the curve represents the loading capacity of the stream for each daily flow. The curve is divided into flow zones including High (0-10%), Wet (10-40%), Mid-range (40-60%), Dry (60-90%) and Low (90 to 100%) flow conditions. In the TMDL equation table (Table 4.28), for simplicity only the median (or midpoint) load of each flow zone is used to show the TMDL equation components. The loading capacity can also be compared to current conditions by plotting the measured load for each water quality

sampling event. Each value that is above the curve represents an exceedance of the water quality standard while those below the line are below the water quality standard.

Figure 4.3. Painter Creek load duration curve (TMDL).

The calculated current load, based on the flow condition geomean and the median flow, indicates that load reductions are required in the impaired reach of Painter Creek for the Dry and Low Flow conditions. Although there are discrete data points where the measured load exceeds the TDLC for the High, Wet, and Mid-range flow conditions, reductions are not required based on the flow condition geomean.

4.2.2 Load Allocation Methodology

Non-point sources include all non-permitted sources in the watershed such as runoff from some agricultural land and non-regulated areas. This category also includes any *E. coli* considered "natural background." Natural background is that contribution that occurs outside of human influence. This would generally be wildlife contributions that are directly loaded to the water body (as opposed to loaded via a stormwater conveyance). Because the geomeans of the impaired reach of Painter Creek are below or meeting water quality standards for the High, Wet, and Mid-range conditions, the WLA and the LA were set equal to the calculated current load. Load remaining following subtraction of the MOS, WLA, and LA for each of these flow zones was identified as "Unallocated Load." The unallocated load is the difference between the allowed load and the total loading capacity of the impaired reach.

4.2.3 Wasteload Allocation Methodology

For bacteria TMDLs, sources of bacteria that require wasteload allocations may include wastewater dischargers, regulated MS4s, and sometimes others. There are currently no permitted wastewater dischargers in the Painter Creek impaired reach watershed. Table 4.26 lists the permitted MS4s receiving individual WLAs for the Painter Creek Bacteria TMDL. Appendix G includes a figure of the MS4 permit holder jurisdictions for the Painter Creek subwatershed.

ID Number	Name				
MS400138	Hennepin County MS4				
MS400095	Independence City MS4				
MS400103 Maple Plain City MS4					
MS400105	Medina City MS4				
MS400106	Minnetrista City MS4				
MS400111	Orono City MS4				

Table 4.25 Painter Creek Permitted MS4s

The WLA was determined based on land area under the jurisdiction of MS4s determined by the same methods previously described in section 4.1.3 and detailed in Appendix H. The WLA is distributed amongst the MS4s based on the same methodology as well.

4.2.4 Margin of Safety

The MOS for the bacteria TMDL accounts for uncertainties in both characterizing current conditions and the relationship between the load, wasteload, monitored flows, and in-stream water quality so the TMDL allocations result in attainment of water quality standards. An explicit MOS equal to 10 percent of the total load was applied whereby 10 percent of the loading capacity for each flow regime was subtracted before allocations were made among wasteload and load. Ten percent was considered an appropriate MOS since the load duration curve approach minimizes a great deal of uncertainty associated with the development of TMDLs because the calculation of the loading capacity is very precise since it is the resulting product of flow multiplied by the target value. Most of the uncertainty with that calculation is therefore associated with the estimated flows in each assessed segment which were based on the discrete flow record at CPA01 and is considered fairly accurate.

4.2.5 Seasonal Variation

Geometric means for *E. coli* bacteria within the impaired reach of Painter Creek are above the state chronic standard in July through October. Exceedances of the acute standard also occur in September and October. Fecal bacteria are most productive at temperatures similar to their origination environment in animal digestive tracts. Thus, these organisms are expected to be at their highest concentrations during warmer summer months when stream flow is typically low and water temperatures are highest. High *E. coli* concentrations continue into the fall, which may be attributed to constant sources of *E. coli* (such as animal access to the stream) and less flow for dilution. However, this data may be skewed as more samples were collected in the summer months than in October. Seasonal and annual variations are accounted for by setting the TMDL across the entire observed flow record using the Load Duration Method.

4.2.6 Future Growth Considerations/Reserve Capacity

There are MS4 communities located within the Painter Creek Watershed potentially subject to a WLA (determined as described in Section 4.2.3). Urban stormwater is currently regulated under the NPDES Phase II stormwater permits except for areas of county and MnDOT right of way outside the U.S. Census Bureau-defined urban area and agricultural and wetland drainage through unregulated conveyances. The reserve capacity is included in the WLA. Development projects that will occur will be covered under the MCWD and member cities' rules in place for development and redevelopment that are protective of water quality. Consequently, future development will have to meet watershed requirements that will account for pollution reductions in this TMDL. Also, future development of agricultural land will result in alternate land uses, potentially reducing bacteria sources related to agriculture.

Future transfer of loads in this TMDL may be necessary. Load transfers will be based on methods consistent with those used in setting the allocations in this TMDL. Load transfers may occur from LA to WLA or from WLA to WLA (e.g., due to expansion of the U.S. Census Bureau-defined urban area). In cases where WLA is transferred from or to a regulated MS4, the permittees will be notified and will have an opportunity to comment on the reallocation.

4.2.7 TMDL Summary

Table 4.28 presents the current loading, the total loading capacity, margin of safety, wasteload allocations, and load allocations for the impaired reach of Painter Creek. Values reported in billions of organisms/day have been rounded to three significant digits. Due to rounding, the reported numbers may not sum exactly to the total values presented, and the required percent reductions may not exactly reflect the reported values.

		Flow Regime					
_		High	Wet	Mid	Dry	Low	
			Billions of Organisms/day				
	TOTAL LOAD	110	51.0	21.9	3.45	0.0401	
	Existing Load	30.8	15.5	20.5	4.99	0.0636	
	Total WLA	28.9	14.5	19.3	2.92	0.0339	
	Medina City MS4 (MS400105)	7.85	3.94	5.22	0.778	0.00903	
	Orono City MS4 (MS400111)	3.56	1.79	2.37	0.493	0.00572	
Wasteload	Hennepin County (MS400138)	0.0361	0.0181	0.0240	0.00318	0.0000369	
	Minnetrista City MS4 (MS400106)	4.15	2.08	2.76	0.508	0.00590	
	Independence City MS4 (MS400095)	11.8	5.92	7.85	1.04	0.0120	
	Maple Plain City MS4 (MS400103)	1.56	0.783	1.04	0.103	0.00120	
Load	Total LA	1.86	0.933	0.470	0.188	0.00218	
Unallocated Load		67.9	30.5	0.000	0.000	0.000	
MOS		11.0	5.10	2.19	0.345	0.00401	
	Estimated Load Reduction			%			
			0%	0%	31%	37%	

Table 4.26. Painter Creek TMDL summary.

Reasonable assurance (RA) activities are programs that are in place to assist in attaining the Upper Watershed TMDL allocations and applicable water quality standards. The RA evaluation provides documentation that the TMDL's WLAs and LAs are properly calibrated and the TMDL loads will ultimately meet the applicable water quality targets. Without such calibration, a TMDL's ability to serve as an effective guidepost of water quality improvement is significantly diminished. The development of a rigorous RA demonstration includes both state and local regulatory oversight, funding, implementation strategies, follow-up monitoring, progress tracking and adaptive management. (Note: Some of these elements are described in sections 6.0 and 7.0.)

There are two separate but complimentary frameworks in place to ensure progress toward achieving the water quality targets identified in this TMDL. The first is between the MPCA and regulated MS4s through the MPCA's Stormwater Program. The second is between the Minnehaha Creek Watershed District (MCWD) and local government units (LGUs) in the TMDL study area through the MCWD's Water Resources Management Plan and the LGUs' local water management plans. Both of these frameworks are described in detail below.

5.1 MPCA Stormwater Program

The MPCA is responsible for applying federal and state regulations to protect and enhance water quality within the Upper Minnehaha Creek watershed. The MPCA oversees all regulated MS4 entities in stormwater management accounting activities. All regulated MS4s in the Upper Minnehaha Creek watershed fall under the category of Phase II. MS4 NPDES/SDS permits require regulated municipalities to implement BMPs to reduce pollutants in stormwater runoff to the Maximum Extent Practicable (MEP).

All owners or operators of regulated MS4s (also referred to as "permittees") are required to satisfy the requirements of the MS4 general permit. The MS4 general permit requires the permittee to develop a Stormwater Pollution Prevention Program (SWPPP) that addresses all permit requirements, including the following six minimum control measures:

- Public education and outreach
- Public participation
- Illicit Discharge Detection and Elimination (IDDE) Program
- Construction-site runoff controls;
- Post-construction runoff controls; and
- Pollution prevention and municipal good housekeeping measures

A SWPPP is a management plan that describes the MS4 permittee's activities for managing stormwater within their jurisdiction or regulated area. In the event a TMDL study has been completed, approved by U.S. EPA prior to the effective date of the general permit, and assigns a wasteload allocation to an MS4 permittee, that permittee must document the WLA in their application and provide an outline of the best management practices to be implemented in the current permit term to address any needed reduction in loading from the MS4.

MPCA requires applicants submit their application materials and SWPPP document to MPCA for review. Prior to extension of coverage under the general permit, all application materials are placed on 30-day public notice by the MPCA, to ensure adequate opportunity for the public to comment on each permittee's stormwater management program. Upon extension of coverage by the MPCA, the permittees are to implement the activities described within their SWPPP, and submit annual reports to MPCA by June 30 of each year. These reports document the implementation activities which have been completed within the previous year, analyze implementation activities already installed, and outline any changes within the SWPPP from the previous year.

The MPCA has assigned nutrient and bacteria loads for the Upper Watershed TMDLs to the regulated MS4s. The pollutant load allocations for each MS4 entity are outlined in section 4.0 of the TMDL. The MS4 General Permit, which became effective August 1, 2013, requires permittees to develop compliance schedules for any TMDL that received U.S. EPA-approval prior to the effective date of the General Permit. This schedule must identify BMPs that will be implemented over five-year permit term, timelines for their implementation, an assessment of progress, and a long term strategy for continued progress toward ultimately achieving those WLAs. Because this Upper Watershed TMDL will be approved after the effective date of the General Permit, MS4s will not be required to report on WLAs contained in this TMDL until the effective date of the next General Permit, expected in 2018.

Reasonable assurance that the WLAs calculated for the Upper Watershed TMDLs will be implemented is provided by regulatory actions. According to 40 CFR 122.44(d)(1)(vii)(B), NPDES permit effluent limits must be consistent with assumptions and requirements of all WLAs in an approved TMDL. MPCA's stormwater program and its NPDES permit program are the state programs responsible for ensuring that implementation activities are initiated and maintained, and effluent limits are consistent with the WLAs calculated from the TMDLs. The NPDES program requires construction and industrial sites to create SWPPPs which summarize how stormwater will be minimized from construction and industrial sites.

5.2 MCWD Water Resources Management Plan

The Minnehaha Creek Watershed District (MCWD) was created under the Minnesota Watershed District Act of 1955, which charged watershed districts with integrating water management efforts among city, county and state agencies. The overall goals of restoring impaired water resources and protecting water resources from further degradation require an active partnership between the MCWD and local government units (LGUs) which include all the cities and townships with the MCWD. MCWD has actively engaged in partnering efforts with LGUs whose jurisdiction areas are within the boundaries of the Upper Minnehaha Creek watershed. The MCWD's main effort at partnering with LGUs has been via implementation efforts devised from MCWD's Comprehensive Water Resources Management Plan of 2007 (referred to as the '2007 MCWD Plan').

Prior to the development of the Upper Watershed TMDLs, the MCWD sought to improve water quality within the TMDL study area boundaries. These efforts included various watershed studies and the crafting of nutrient loading reduction strategies. The MCWD completed a Hydrologic, Hydraulic, and Pollutant Loading Study (HHPLS) in 2003 to investigate water quantity and quality within the watershed. The HHPLS was intentionally designed to parallel the MPCA's TMDL program and incorporated an extensive public process to help identify water quality goals for all the major lakes and streams within the Minnehaha Creek watershed. Information from this effort was utilized as the foundation for MCWD developing initial nutrient load reduction targets.

The 2007 MCWD Plan includes phosphorus load reduction plans that were developed for each lake that did not meet the water quality goals identified through the HHPLS. These phosphorus load reduction plans consist of three main components: the MCWD regulatory program, MCWD capital improvement projects, and LGU requirements. The load reductions assigned to the LGUs were calculated based on existing land uses where a 15 percent reduction in loading was required from residential land use; 25 percent from agricultural land use; and 10 percent from other developed land use.

The District undertakes projects and programs each year as it implements its 2007 Plan. Some recent examples pertinent to this TMDL include:

- Partnered with the City of Plymouth to restore an eroding channel upstream of Gleason Lake (2012).
- Restored a partially drained wetland and expanded a City of Victoria pond that together will expand flood storage and water quality treatment for 250 acres tributary to Steiger Lake, which is upstream of East Auburn Lake (2013).
- Constructed four curb-cut rain gardens in a residential area tributary to Saunders Lake, which is upstream of Langdon Lake (2012).
- Installed an iron filing filter berm on a tributary just upstream of Dutch Lake to add particulate and dissolved phosphorus reduction (2012).
- Converted 20 acres of row crops in the Painter Creek subwatershed into upland prairie, three wetlands, a water control structure to control water level, and woodland plantings (2008)
- Converted 130 acres of cropland in the Six Mile Creek subwatershed just upstream of Halsted Bay to native prairie and created or expanded six wetlands through drain tile removal (2013).
- Operates a variety of grant programs to provide financial and technical assistance for residents, business owners, and local government units for water quality improvement projects such as: low impact development practices, stormwater BMPs, shoreline and streambank stabilization, replacement of failing septic systems, and environmental education/demonstration projects.
- Operates a Land Conservation Program to acquire fee title or conservation easements on key parcels to protect water resources, and develop and implement restoration projects and conservation management plans.
- Operates an active education and outreach program including information booths at numerous public events; maintaining an active traditional and social media presence; and an ongoing Citizen's Advisory Committee.

Under MN Statutes 103B.231, each LGU is required to prepare its own local water management plan, capital improvement program, and official controls as necessary to bring local water management into conformance with the watershed plan. These local water management plans are then reviewed and approved by the watershed district. Therefore, within the MCWD, the LGUs must identify in their local water management plans specific steps they will take to accomplish the phosphorus reductions that are assigned to them in the 2007 MCWD Plan. The MCWD provides the LGUs with the flexibility to determine the most efficient and cost-effective means of achieving the reductions. The LGUs must annually report to the MCWD their progress toward accomplishing their load reductions.

This existing framework for identifying reduction strategies and tracking progress toward achieving water quality goals closely parallels the framework for tracking progress toward TMDL goals through the MPCA's Stormwater Program. With the completion of the Upper Watershed TMDLs, the MCWD will serve to coordinate implementation efforts among LGUs and help ensure progress toward the TMDL targets.

In addition to the reductions that were assigned to the LGUs and reductions that were anticipated through implementation of the MCWD's regulatory program, the 2007 MCWD Plan identified capital improvement projects that the MCWD would undertake in order to achieve the remaining reductions that were needed to meet the water quality targets. Although the MCWD is a regulated MS4, its jurisdiction as a regulated MS4 entity is limited to the conveyances owned or operated by the District within the U.S. Census Bureau-defined urban area which is a fairly small area. Since the MCWD generally does not need the credit for the reductions it will achieve through its capital improvement program for the purposes of MS4 permit compliance, MCWD has adopted a policy that allows for the distribution of this credit among its member communities.

This policy ensures that credit for pollutant reductions achieved through MCWD projects is accounted for and is distributed in a fair and equitable way among its member communities in recognition that the funding for those projects comes from a watershed-wide ad valorem tax levy. The MCWD will track and report annually, by May 30th, to the MS4s and MPCA a summary of the reductions achieved through its projects in the previous calendar year and the breakdown of credit by MS4.

Reductions for the non-regulated (load allocation) portions of the TMDLs will also be needed. These loads include non-MS4 runoff, which includes some agricultural land as well as shoreline and streambank erosion, and internal loading, which is significant for some lakes. Both the Hennepin Conservation District and the Carver Soil & Water Conservation District provide technical and financial assistance to agricultural landowners to implement conservation efforts that reduce runoff and erosion and protect water quality. The MCWD's capital improvement program includes a number of internal load reduction projects and streambank stabilization projects, and the MCWD will continue to take the lead on efforts to reduce loading from these non-regulated sources.

5.3 Funding

LGU funding for water resource projects typically comes from some combination of the following sources: general tax revenue, special assessments, development fees, stormwater utility fees, and grants. The MCWD is funded through local property taxes. This annual tax base comprises one of the

main funding mechanisms for MCWD sponsored implementation activities within the watershed. The MCWD utilizes this funding base to sponsor cost-share and grant programs to assist municipal partners with local water quality improvement projects. There are other funding mechanisms which the MCWD and LGUs may apply for in the State of Minnesota such as; grants under the Clean Water Legacy Act (CWLA) and funding through the Clean Water Partnership program. MCWD may also explore the funding mechanisms provided through the federal Section 319 grant program which provides cost share dollars to implement voluntary activities in the watershed.

The CWLA is a statute passed in Minnesota in 2006 for the purposes of protecting, restoring, and preserving Minnesota water and providing significant funding to do so. The Act discusses how MPCA and the involved public agencies and private entities will coordinate efforts regarding land use, land management, water management, etc. Cooperation is also expected between agencies and other entities regarding planning efforts, and various local authorities and responsibilities. This would also include informal and formal agreements to jointly use technical, educational, and financial resources.

The CWLA also provides details on the overall TMDL process and follow-up implementation strategy development, and how the funding will be used. The Minnesota Board of Soil and Water Resources administers the Clean Water Fund for restoration and protection grants, and has developed a detailed grants policy explaining what is required to be eligible to receive Clean Water Fund money (FY '11 Clean Water Fund Competitive Grants Policy; Minnesota Board of Soil and Water Resources, 2011).

5.4 Schedule and Tracking

After the approval of the TMDL by EPA, the MCWD will work with LGUs to develop a general timeline and strategy for implementation activities to be conducted within each permit cycle and/or plan cycle. The reduction targets assigned to LGUs through the 2007 MCWD Plan were generally less stringent than those identified in the TMDL and can therefore serve as interim goals through the end of the current plan cycle in 2017. Progress toward the TMDL targets will be assessed as part of the decennial MCWD Plan revision and new targets will be set for that plan cycle. Progress will also be assessed through the reporting requirements of the MPCA's stormwater program and NPDES permit requirements.

6.0 Monitoring Plan

Water quality sampling in MCWD is conducted as part of the annual Hydrologic Data Monitoring Program. MCWD has monitored lake water quality, stream flow and quality, precipitation and other hydrologic parameters annually beginning in 1968. Since 1997, the District has actively coordinated with other agencies to collect additional monitoring data. The ongoing program was expanded in 2002 and again in 2003 to include more monitoring locations and additional automatic monitoring equipment.

The District's monitoring program:

- Tracks long term lake and stream water quality trends,
- Quantifies nutrient and sediment export and watershed runoff
- Informs feasibility studies,
- Tracks efficacy of District Projects
- Provides model calibration datasets, and
- Provides the foundation for the District's Capital Improvement Program.

The program is a joint collaboration between MCWD, the Minneapolis Park and Recreation Board (MPRB), the Metropolitan Council Environmental Services (MCES), the Three Rivers Park District (TRPD), the Minnesota Pollution Control Agency (MPCA), the Lake Minnetonka Conservation District (LMCD), and the Minnesota Department of Natural Resources (MN DNR). In 2012 MCWD staff monitored 27 sites on Lake Minnetonka and 15 sites on other upper watershed lakes, and 17 additional upper watershed lakes were monitored by program partners. Streamflow and water quality were monitored at 31 stream sites in the upper watershed. Program data including a calculation of annual runoff, flow, pollutant loads, and precipitation is published annually in the Annual Hydrological Monitoring Report (posted on-line: http://www.minnehahacreek.org/data-center/monitoring-reports). Lake Report Cards summarizing data in a non-technical manner are published each year.

Progress toward meeting TMDL goals will be measured by regularly monitoring water quality and tracking total BMPs completed. Water quality monitoring will be accomplished through the Hydrologic Data Monitoring Program. It is anticipated that member cities and permitted MS4s will perform monitoring in the watershed or evaluation via other methods as applicable to the partitioned WLA and associated correlation to each NPDES permit.

7.0 Implementation Strategy Summary

7.1 Implementation Framework

The strategies described in this section are potential actions to reduce nutrient and bacterial loads in the Upper Watershed. These actions will be further developed in a separate, more detailed strategy development report. MCWD will coordinate implementation actions identified in this TMDL and the separate report.

NPDES permit requirements must be consistent with the assumptions and requirements of an approved TMDL and associated Wasteload Allocations. For the purposes of this TMDL, the baseline year for implementation will be the mid-range year of the data years used for the lake response modeling (Table 7.1) and development of the bacteria load duration curve. The rationale for this is that projects undertaken recently may take a few years to influence water quality. Any load-reducing BMP implemented since the baseline year will be eligible to "count" toward an MS4's load reductions. If a BMP was implemented during or just prior to the baseline year, the MPCA is open to presentation of evidence by the MS4 permit holder to demonstrate that it should be considered as a credit.

Water body	Baseline Year
Painter Creek	2006
Dutch	2008
East Auburn	2010
Forest	2008
Gleason	2008
Holy Name	2007
Langdon	2010
Long	2008
Halsted Bay	2008
Jennings Bay	2008
Stubbs Bay	2008
West Arm	2008
Mooney	2007
Stone	2006
Tamarack	2008
Tanager	2008
Wolsfeld	2007
Snyder	2007
School	2009
Hadley	2007
Turbid	2006

Table 7.1. Implementation baseline years.

7.2 Potential Nutrient Reduction Implementation Strategies

Table 7.2 lists Best Management Practices (BMPs) that may be successful in reducing nutrient loads and managing lake water quality. Not all BMPs would be appropriate for every lake. These potential BMPs will be explored more thoroughly, including targeting the most appropriate BMPs for each water body, in the accompanying strategy report. Table 7.2 also shows typical cost ranges for each practice, and an estimated overall cost that will be refined in the strategy report. As noted in Section 5.2 above, the District and the MS4s have been and will continue to implement BMPs, and have already undertaken similar projects in the lakesheds since the TMDL baseline year.

Reduction Target	Potential BMP/Reduction Strategy	Range of BMP/ Reduction Strategy Costs	Total Estimated Associated Cost
Taiget	Education Programs – Provide education and	Strategy Costs	COST
	outreach on grazing management, low-impact lawn care practices, and other topics to increase awareness of sources of pollutants.	\$2,000 - \$10,000	\$42,000 - \$210,000
	Shoreline Restoration – Encourage property owners to restore their shoreline with native plants and install/enhance shoreline buffers.	\$15,000 - \$22,500	\$315,000 - \$472,500
Watershed	Raingarden/Bio-filtration Basins – Encourage the use of rain gardens and similar features as a means of increasing infiltration and evapotranspiration. Opportunities may range from a single property owner to parks and open spaces.	\$500 - \$10,000	\$105,000 — \$2,100,000
Load	Stormwater Pond Retrofits/Installation - As opportunities arise, retrofit stormwater treatment through a variety of BMPS. Pond expansion and pre- treatment of water before it reaches the ponds may be beneficial dependent on drainage area. Also, identify target areas for new stormwater pond installation.	\$30,000 - \$100,000	\$1,890,000 - \$6,300,000
	Street Sweeping Program Review/Implementation – Identify target areas for increased frequency of street sweeping and consider upgrades to traditional street sweeping equipment.	\$100,000 - \$200,000	\$1,500,000 - \$3,000,000

 Table 7.2. Potential nutrient reduction implementation strategies.

Reduction Target	Potential BMP/Reduction Strategy	Range of BMP/ Reduction Strategy Costs	Total Estimated Associated Cost
	Agricultural BMP Implementation – Encourage property owners to implement agricultural BMPs for nutrient load reduction. The Agricultural BMP Handbook for Minnesota (MDA 2012) provides an inventory of agricultural BMPs that address water quality in Minnesota. Several examples include conservation cover, buffer strips, grade stabilization, controlled drainage, rotational grazing, and irrigation management, among many other practices.	\$15,000 - \$20,000	\$315,000 - \$420,000
	Technical Review – Prior to internal load reduction strategy implementation, a technical review is recommended to evaluate the cost and feasibility of lake management techniques such as hypolimnetic withdrawal, alum treatment, and hypolimnetic aeration to manage internal nutrient sources.	\$25,000 - \$50,000	\$325,000 - \$650,000
	Alum Dosing – If determined feasible based on technical review, chemically treat with alum to remove phosphorus from the water column as well as bind it in sediments.	\$155,000 - \$465,000	\$2,015,000 - \$6,045,000
Internal Load	Hypolimnetic Withdrawal or Aeration – <i>If</i> determined feasible based on technical review, pump nutrient-rich water from the hypolimnion to an external location for phosphorus treatment and discharge treated water back into the lake. Or as an alternate option, aerate the hypolimnetic waters to maintain oxic condition (the anoxic condition of the hypolimnetic sediments is the contributor to the internal phosphorus load).	\$150,000 - \$1,000,000	\$1,950,000 - \$13,000,000
	Aquatic Plant Surveys/Vegetation Management – Conduct periodic aquatic plant surveys and prepare and implement vegetation management plans.	\$10,000 - \$15,000	\$130,000 - \$195,000
	Rough Fish Surveys/Management – Consider partnership with the DNR to monitor and manage the fish population. Evaluate options to reduce rough fish populations such as installation of fish barriers to reduce rough fish access and migration.	\$10,000 - \$15,000	\$130,000 - \$195,000

Reduction Target	Potential BMP/Reduction Strategy	Range of BMP/ Reduction Strategy Costs	Total Estimated Associated Cost
SSTS Load	Septic System Inspection Program – Although not a significant source of nutrients, Hennepin and Carver Counties should continue to inspect and order upgrades of existing septic systems; prioritizing properties near surface waters.	\$25,000 - \$30,000	\$50,000 - \$60,000
Total Estimated Nutrient TMDL Implementation Cost		\$8,452,000 - \$32,228,000	
Lotal Estimated Nutrient LNUL WIA Reduction Implementation (ost 1 1 2			\$2,958,000 - \$11,280,000
Total Estimated Nutrient TMDL LA Reduction Implementation Cost			\$5,494,000 - \$20,948,000

Construction Stormwater: The wasteload allocation for stormwater discharges from sites where there is construction activities reflects the number of construction sites of one or more acres expected to be active in the watershed at any one time, and the Best Management Practices (BMPs) and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at construction sites are defined in the State's NPDES/SDS General Stormwater Permit for Construction Activity (MNR100001). If a construction site owner/operator obtains coverage under the NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, including those related to impaired waters discharges and any applicable additional requirements found in Appendix A of the Construction General Permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local construction stormwater requirements must also be met.

Industrial Stormwater: The wasteload allocation for stormwater discharges from sites where there is industrial activity reflects the number of sites in the watershed for which NPDES industrial stormwater permit coverage is required, and the BMPs and other stormwater control measures that should be implemented at the sites to limit the discharge of pollutants of concern. The BMPs and other stormwater control measures that should be implemented at the industrial sites are defined in the State's NPDES/SDS Industrial Stormwater Multi-Sector General Permit (MNR050000) or NPDES/SDS General Permit for Construction Sand & Gravel, Rock Quarrying, and Hot Mix Asphalt Production facilities (MNG490000). If a facility owner/operator obtains coverage under the appropriate NPDES/SDS General Stormwater Permit and properly selects, installs and maintains all BMPs required under the permit, the stormwater discharges would be expected to be consistent with the WLA in this TMDL. It should be noted that all local stormwater management requirements must also be met.

7.3 Potential E. coli Reduction Implementation Strategies

Table 7.3 lists Best Management Practices (BMPs) that may be successful in reducing bacteria loads. These potential BMPs will be explored more thoroughly, including targeting the most appropriate BMPs

by location, in the accompanying strategy report. Table 7.3 also shows typical cost ranges for each practice, and an estimated overall cost that will be refined in the strategy report.

Potential BMP/Reduction Strategy	Total Estimated Associated Cost
Streambank Stabilization/Buffer Enhancement – Stabilize native vegetation	
to filter runoff from pastures adjacent to the stream. A recommended goal is	\$200,000 - \$250,000
at least 50 feet of buffer on 100% of both sides of the stream.	
Education – Provide educational and outreach opportunities about proper	
fertilizer use, manure management, grazing management, and other topics	\$2,000 - \$10,000
to encourage good individual property management practices.	
Pasture Management – Livestock exclusion from public waters, creating	
alternate livestock watering systems, rotational grazing, and vegetated	\$5,000 - \$25,000
buffer strips between grazing land and surface water bodies.	
Manure Management - Reduction of winter spreading, eliminate spreading	
near open inlets, apply at agronomic rates, erosion control practices, and	\$5,000 - \$25,000
manure stockpile runoff controls.	
Septic System Inspection Program Review Although not a significant source	
of bacteria, Hennepin County should continue to inspect and order upgrades	\$25,000 - \$30,000
of existing septic systems; prioritizing properties near Painter Creek and its	323,000 - 330,000
tributaries.	
Limit Animal Access to the Stream – Limit animal access to the stream by	
installing fencing in pastures where access is unimpeded and installing buffer	\$50,000 - \$75,000
vegetation where existing fencing is directly adjacent to the stream bank.	
Pet Waste Management – Review member cities local ordinances and	
associated enforcement and fines for residents who do not clean up pet	
waste. Increase enforcement and education about compliance with such an	\$5,000 - \$15,000
ordinance.	
Total Estimated Bacteria TMDL Implementation Cost	\$292,000 - \$430,000
Total Estimated Bacteria TMDL WLA Reduction Implementation Cost	\$272,000 - \$400,000
Total Estimated Bacteria TMDL LA Reduction Implementation Cost	\$20,000 - \$30,000

Table 7.3. Potential *E. coli* reduction implementation strategies.

7.4 Adaptive Management

This list of implementation elements and the more detailed implementation strategy report that will be prepared following this TMDL assessment focuses on adaptive management (Figure 7.1). Continued monitoring and "course corrections" responding to monitoring results are the most appropriate strategy for attaining the water quality goals established in this TMDL. Management activities will be changed or refined to efficiently meet the TMDL and lay the groundwork for de-listing the impaired water bodies.

Figure 7.1. Adaptive Management.

8.0 Public Participation

A stakeholder participation process was undertaken for this TMDL to obtain input from, review results with, and take comments from the public and interested and affected agencies regarding the development of and conclusions of the TMDL.

The stakeholder process involved meetings and other communications as tabulated below.

Date	Communication Method	Content
February 9, 2012	Mailing	Introductory letter, fact sheet, map, and meeting invitation
March 7 and 8, 2012	Meeting	Project kickoff
April 16, 2012	E-mail	Revised water body list and meeting invitation
May 8, 2012	Meeting	Preliminary modeling results and discussion of allocation approaches
September 5, 2012	E-mail	Memo on allocation approaches and sample calculations
December 13, 2012	E-mail	Revised memo on allocation approaches and sample calculations
February 28, 2013	Meeting	WLA and existing load partitioning, Painter Creek Source assessment, and implementation
July 18, 2013	E-mail	Pre-public notice review and comment opportunity on draft TMDL report
August 27, 2013	Meeting	Discuss comments and draft implementation strategy table

Table 8.1 Stakeholder communications.

The following cities/agencies/interested parties were invited to project meetings and received email communications regarding the project:

- Deephaven
- Excelsior
- Greenwood
- Independence
- Long Lake
- Maple Plain
- Medina
- Minnetonka
- Minnetonka Beach

- Plymouth
- Shorewood
- Spring Park
- St. Bonifacius
- Tonka Bay
- Victoria
- Wayzata
- Woodland
- Laketown Township

- BWSR
- Met Council Environmental Services
- MN Department of Agriculture
- DNR
- MN Department of Health
- MnDOT
- Three Rivers Park District
- MN Agricultural Water Resource Center
- MN Milk Producers Association

Minnetrista •

HHPLS report (EOR 2003).

- Watertown Township
- Mooney Lake Association President

• Freshwater Society

- Mound •
- Carver County • •

Orono

Hennepin County

It is of note that a lengthy public participation process was previously completed in 2003 as part of the HHPLS. Background information on water resources management, lakes, modeling, water quality, and water quantity was provided to participants at a series of meeting held throughout the MCWD. In turn, participants provided input on the water resources issues in their areas and management strategies were presented and discussed. More information regarding this stakeholder process can be found in the

Also of note, development of the MCWD Comprehensive Water Resources Management Plan 2007-2017 incorporated an extensive public and technical planning process. The MCWD Board of Managers convened a Technical Advisory Committee (TAC) of City representatives and state and other agency staff as well as a Citizens Advisory Committee (CAC) of interested citizens. The development process is detailed in Appendix B of the plan (Wenck 2007).

The official TMDL public comment period was held from December 30, 2013 through January 30, 2014.

9.0 Literature Cited

American Society of Agricultural Engineers (ASAE). 1998. Standards Engineering Practices Data.

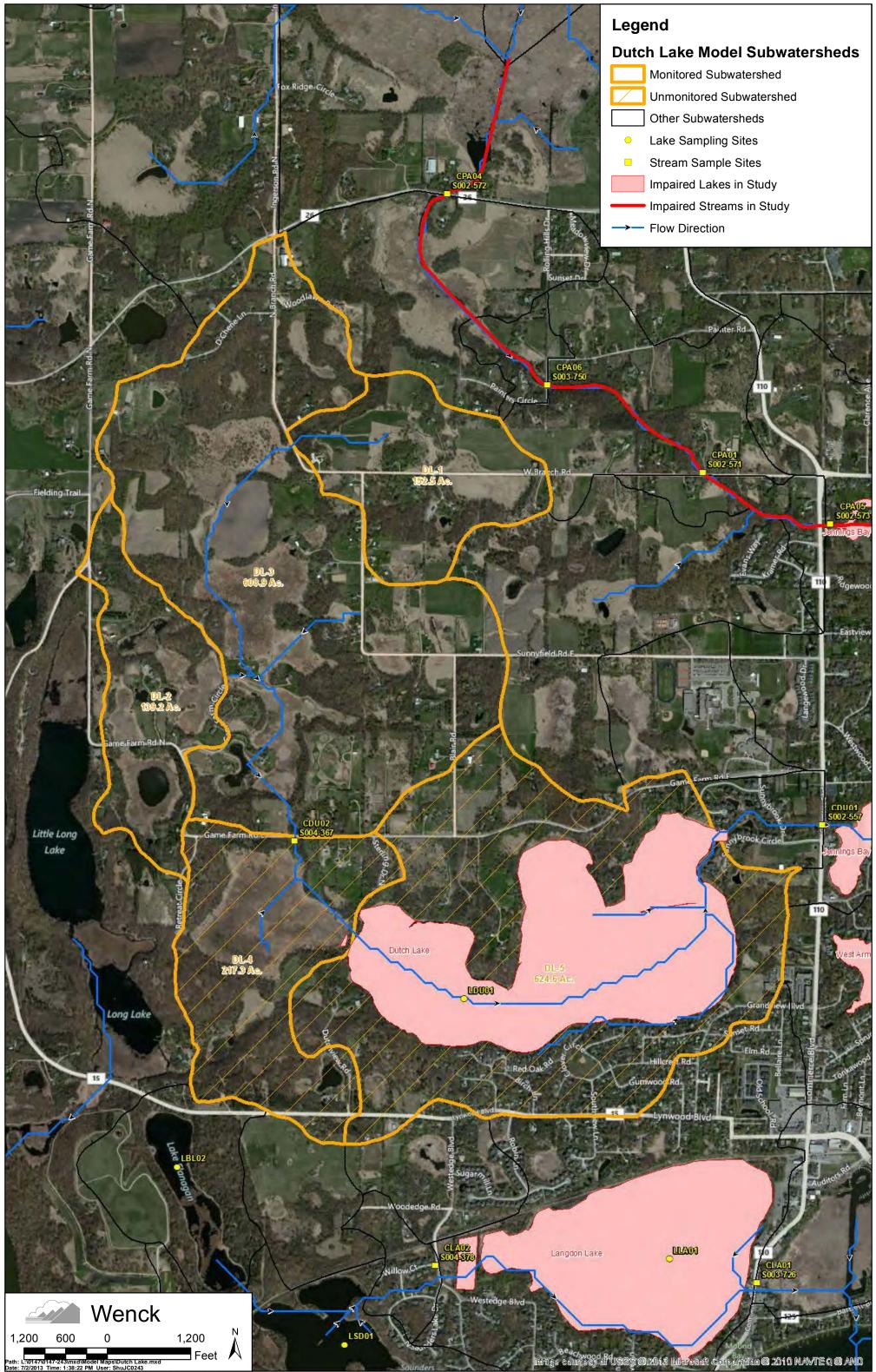
- American Veterinary Medical Association (AVMA). 2012. U.S. Pet Ownership & Demographics Sourcebook. << <u>https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-</u> <u>statistics-US-pet-ownership.aspx</u> >>
- Alderisio, K.A, and DeLuca, H. 1999. Seasonal Enumeration of Fecal Coliform Bacteria from the Feces of Ring-Billed Gulls (Larus delawarensis) and Canada Geese (Branta canadensis). Applied and Environmental Microbiology p. 5628-5630.
- Barr Engineering Company. 2004 (updated 2007). Phosphorus Sources to Minnesota Watersheds. Prepared for Minnesota Pollution Control Agency.
- Blue Water Science. 2011. Aquatic Plant Surveys for Mooney Lake, Hennepin Co, Minnesota, 2011. Prepared for Mooney Lake Association and City of Plymouth.
- Center for Watershed Protection (CWP). 1999. A Survey of Residential Nutrient Behavior in the Chesapeake Bay. <<<u>http://www.myxyz.org/phmurphy/dog/DogWasteSurveyChesapeakeBay2.pdf</u>>>
- Emmons and Olivier Resources, Inc. 2003. Minnehaha Creek Watershed District Hydrologic/Hydraulic and Pollutant Loading Study (HHPLS) Report.
- Heiskary, S.A. and C.B. Wilson. 2005. Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria, 3rd Edition.
- Horsley and Witten, Inc. 1996. Identification and evaluation of nutrient and bacterial loadings to Maquoit Bay, New Brunswick and Freeport, Maine. Final Report.
- Metcalf and Eddy. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. 3rd Edition. McGraw-Hill, Inc., New York.
- Minnesota Department of Agriculture (MDA). 2012. The Agricultural BMP Handbook for Minnesota. September 2012.
- Minnesota Department of Natural Resources and U.S. Fish and Wildlife Service. 2011. Waterfowl Breeding Population Survey for Minnesota. <<<u>http://files.dnr.state.mn.us/recreation/hunting/waterfowl/waterfowl_survey2011.pdf</u>>>

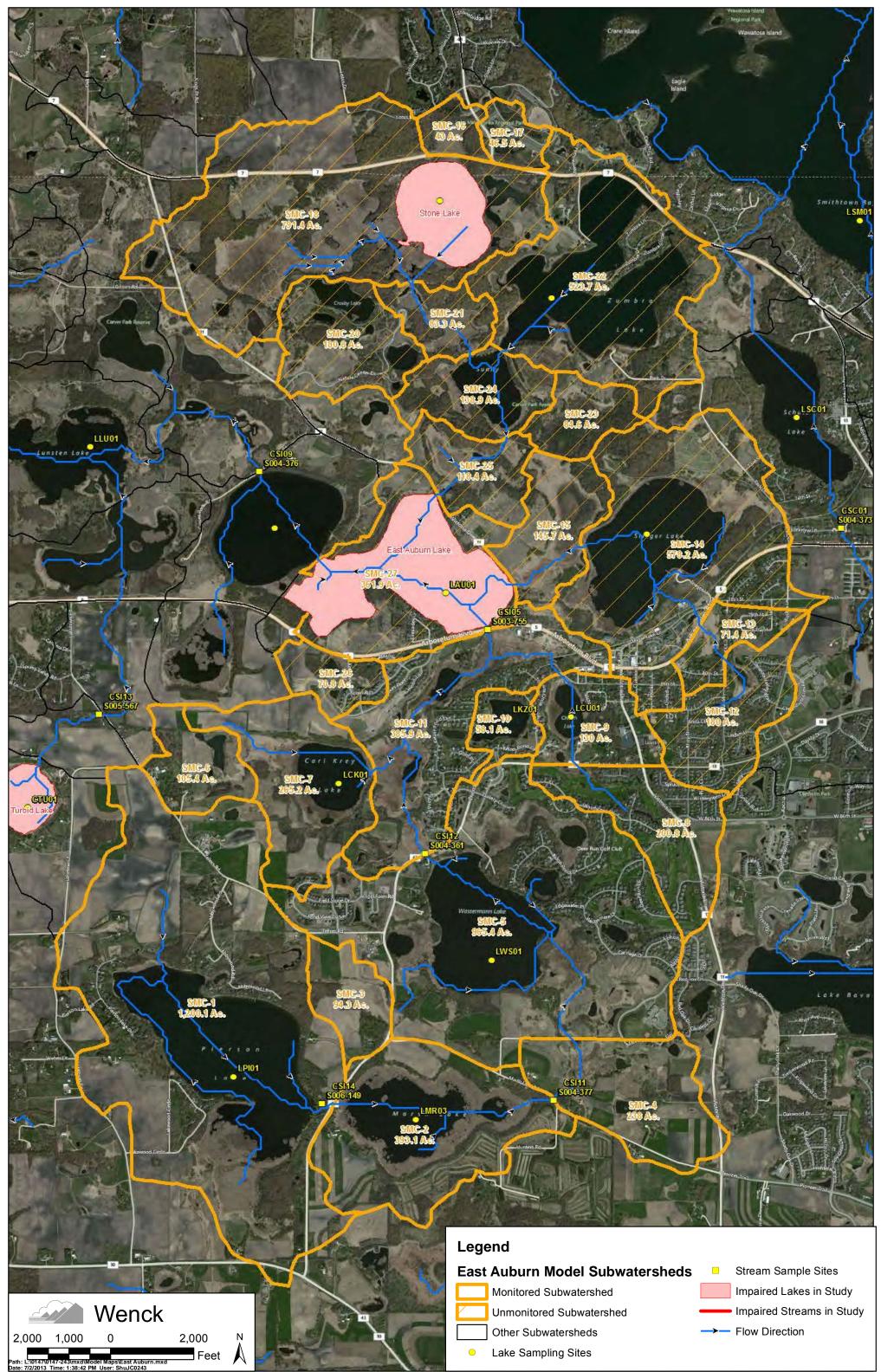
Minnesota Department of Natural Resources (MNDNR). 2011. Pre-Fawn Deer Density from Deer Population Model.

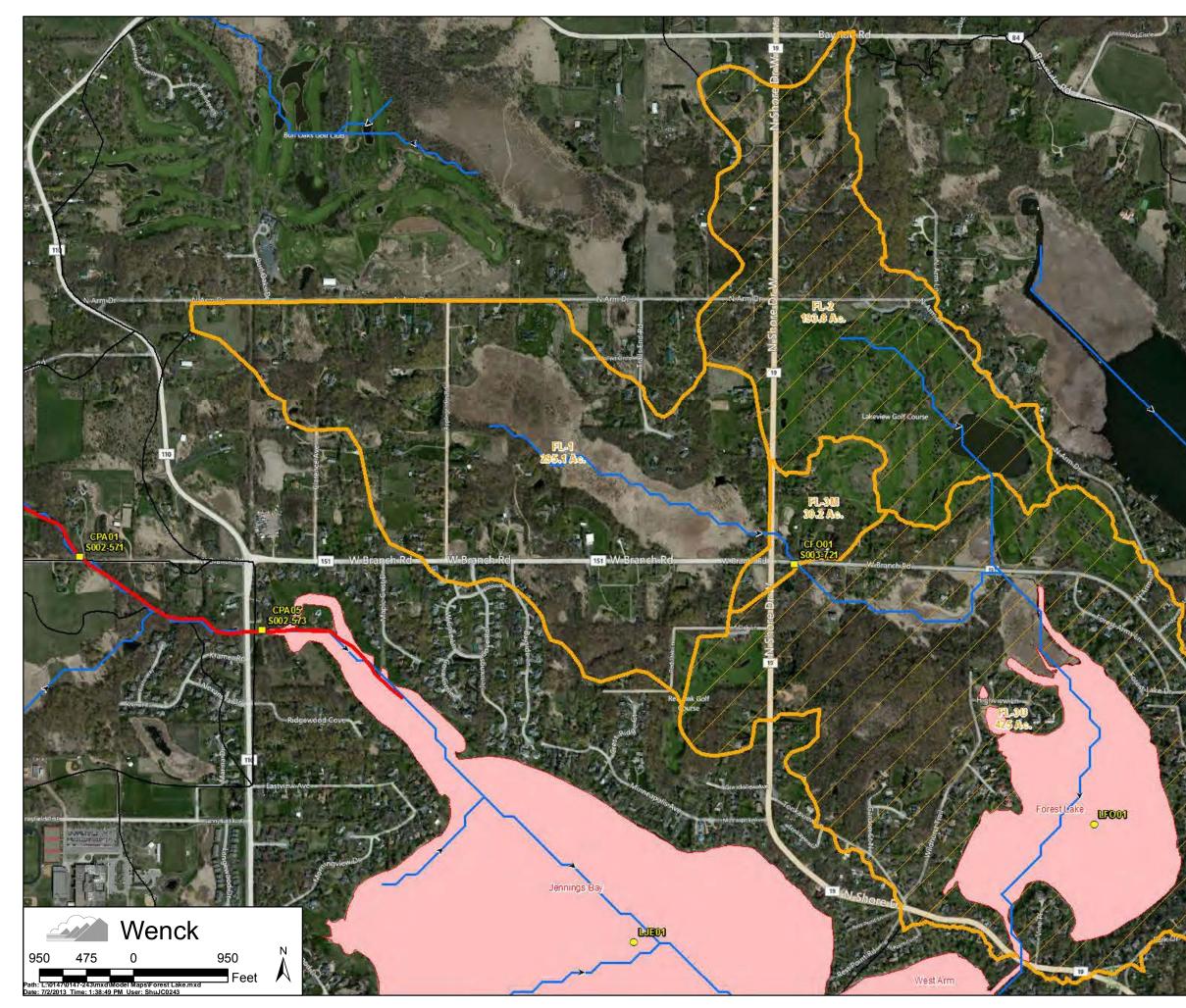
Minnesota Geological Survey. 1989. Hennepin County, MN Geologic Atlas.

Minnesota Geological Survey. 2009. Carver County, MN Geologic Atlas.

- Minnesota Pollution Control Agency (MPCA). 1999. Baseline Water Quality of Minnesota's Principal Aquifers: Twin Cities Metropolitan Region. January 1999. <<<u>http://www.pca.state.mn.us/index.php/water/water-types-and-programs/groundwater/groundwater-monitoring-and-assessment/statewide-baseline-study.html</u>>>
- Minnesota Pollution Control Agency (MPCA). 2007. Statement of Need and Reasonableness (SONAR) in the Matter of Proposed Revisions of Minnesota Rules Chapter 7050, Relating to the Classification and Standards for Waters of the State. Book III of III. July 2007.
- Minnesota Pollution Control Agency (MPCA). 2009. Bacteria TMDL Protocols and Submittal Requirements.
- Minnesota Pollution Control Agency (MPCA). 2010. Guidance Manual for Assessing the Quality of Minnesota Surface Waters for Determination of Impairment: 305(b) Report and 303(d) List. 2010 Assessment Cycle. <<<u>http://www.pca.state.mn.us/publications/wq-iw1-04.pdf</u>>>
- Minnesota Pollution Control Agency (MPCA). 2012. 2011 Annual Report Summary: Minnesota Subsurface Sewage Treatment Systems. June 2012.
- Nürnberg, G.K. 1997. Coping With Water Quality Problems Due to Hypolimnetic Anoxia in Central Ontario Lakes. Water Quality Research Journal of Canada 32 (2): 391-405.
- Nürnberg, G. K. 2004. Quantified Hypoxia and Anoxia in Lakes and Reservoirs. The Scientific World Journal 4: 42-54.
- Nürnberg, G. 2005. Quantification of Internal Phosphorus Loading in Polymictic Lakes. Verhanlungen Interationalen Vereinigung Limnologie (SIL). Vol. 29.
- Pitt, R. 1999. Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices. Advances in Modeling the Management of Stormwater Impacts, Volume 7.
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson. 1980. Modeling Phosphorus Loading and Lake Response Under Uncertainty: A Manual and Compilation of Export Coefficients. Report No. EPA/440/5-80-011. US EPA, Office of Water Regulations and Standards, Washington, D.C.
- Sharpley, A.N., T. Daniel, G. Gibson, L. Bundy., M. Cabrera, T. Sims, R. Stevens, J. Lemunyon, P. Kleinman, and R. Parry. 2006. Best Management Practices to Minimize Agricultural Phosphorus Impacts on

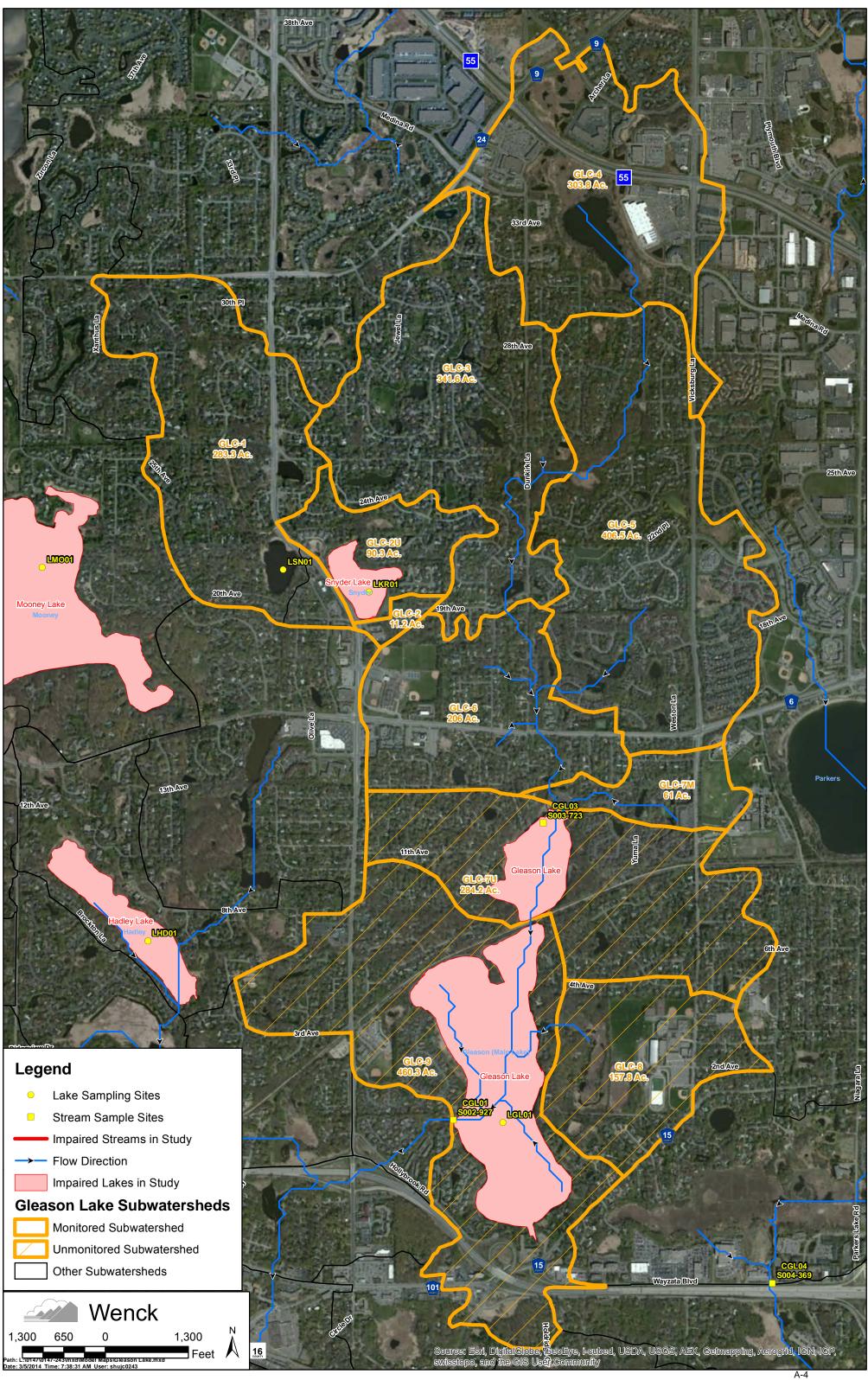

Water Quality. United States Department of Agriculture, Agricultural Research Service, Publication ARS-163. <<<u>http://www.ars.usda.gov/is/np/BestMgmtPractices/Best%20Management%20Practices.pdf</u>>>


- U. S. Environmental Protection Agency. 2002. Onsite Wastewater Treatment Systems Manual.
- U.S. Department of Agriculture (USDA). 1986. Urban Hydrology for Small Watersheds (TR-55). <<<u>http://www.cpesc.org/reference/tr55.pdf</u>>>
- Walker, W.W. 1985. Empirical Methods for Predicting Eutrophication in Impoundments, Report 3.
 Prepared for office, Chief of Engineers, U.S. Army, Washington, D.C., Technical Report E-81-9,
 U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, draft 1983,
 published 1985.
- Walker, W. W. 1999. Simplified Procedures for Eutrophication Assessment and Prediction: User Manual. USACE Report w-96-2.
- Walker, W. W. 2003. Consideration of Variability and Uncertainty in Phosphorus Total Maximum Daily Loads for Lakes. J. Water Resour. Plng. and Mgmt. 129 (4): 337-344.
- Wenck Associates, Inc. 2013. Minnehaha Creek Watershed District Six Mile Creek Diagnostic Study. Wenck File 0185-5050.
- Wenck Associates, Inc. 2010. Preliminary Langdon Lake Water Quality Improvement Project Feasibility Study. Wenck File 0185-4568
- Wenck Associates, Inc. 2007. Minnehaha Creek Watershed District Comprehensive Water Resources Management Plan. Wenck File 0185-4315

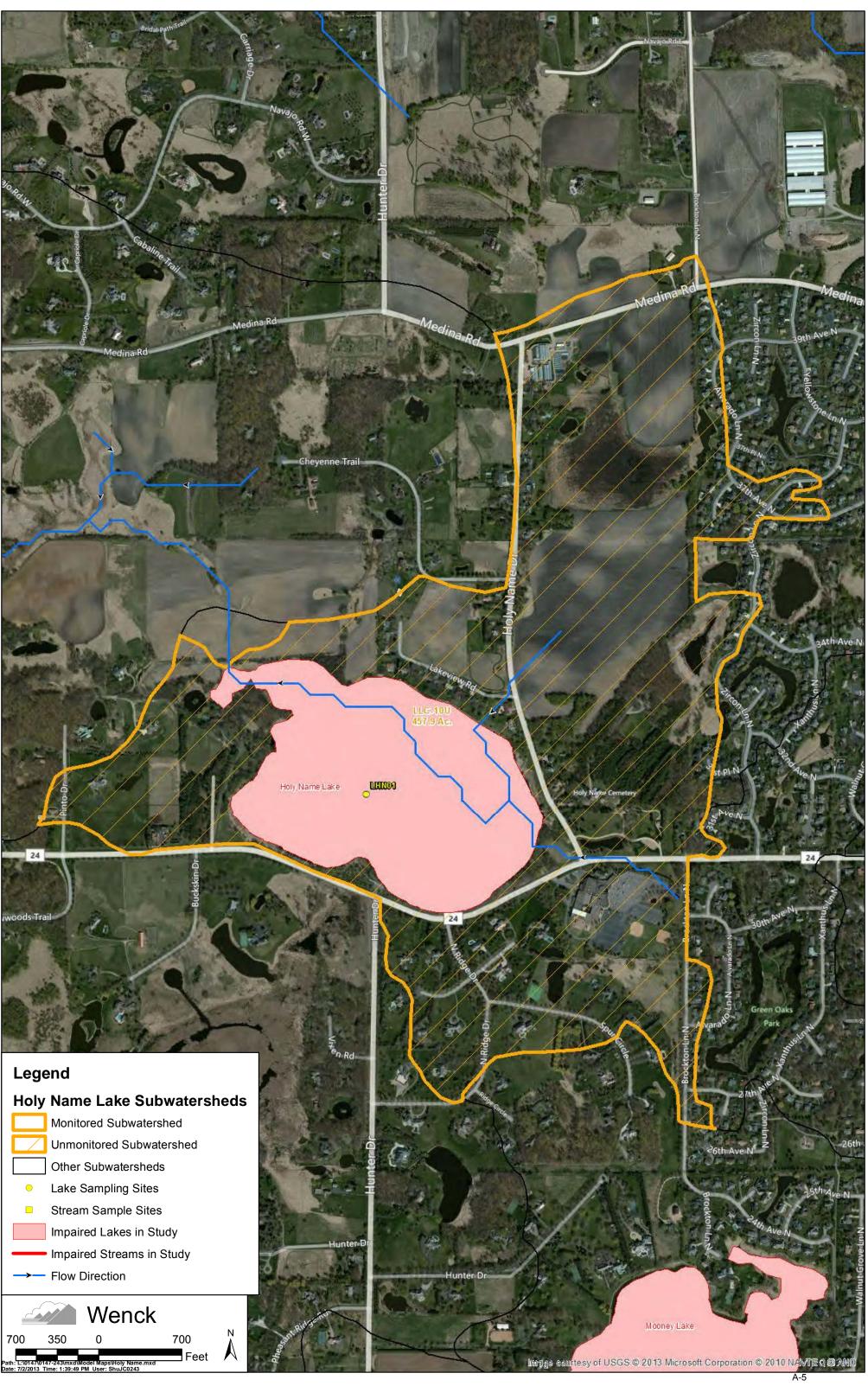

Appendix A

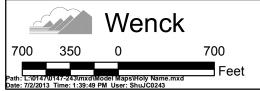
Subwatershed Figures

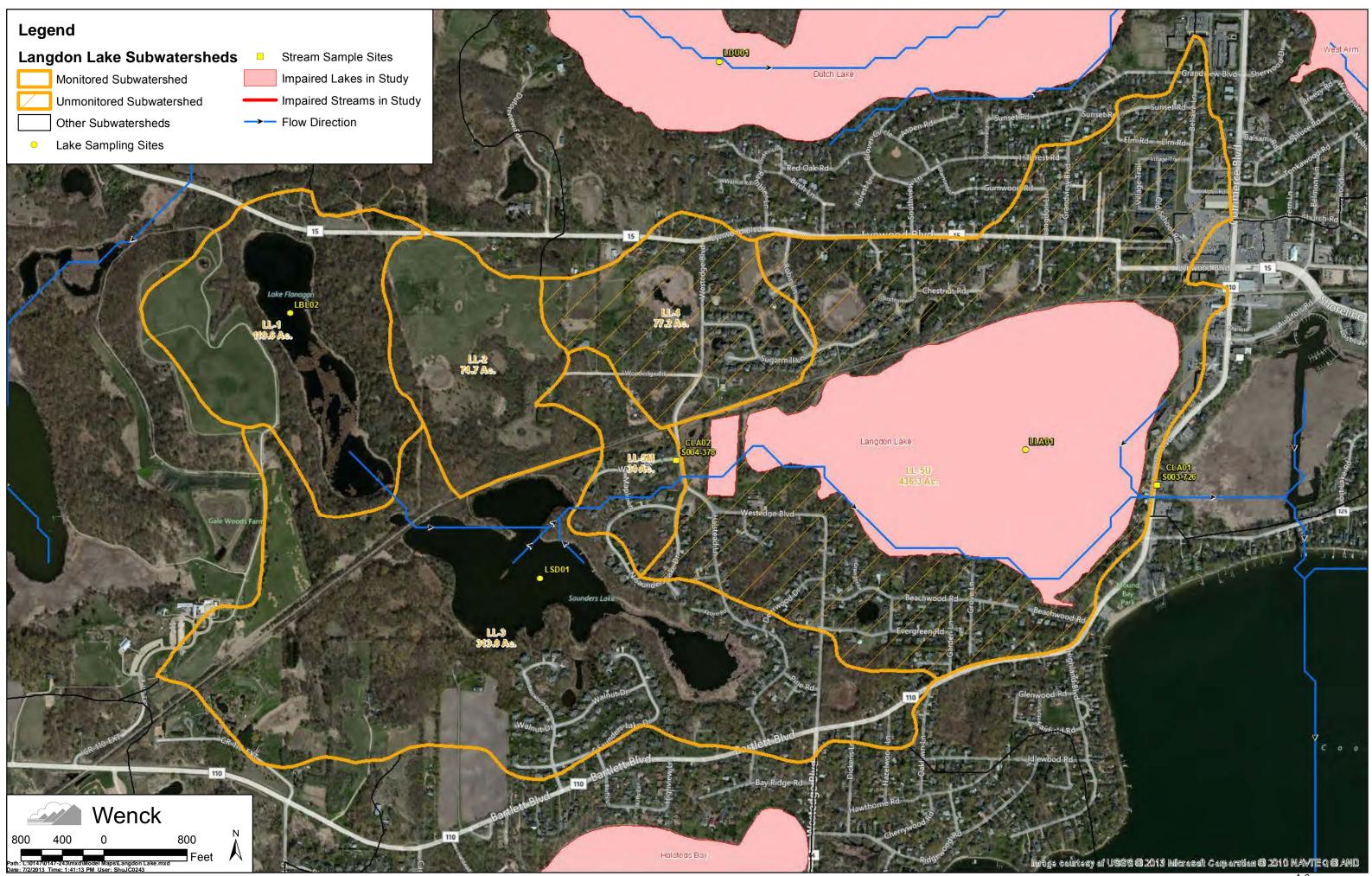
- A-1 Dutch Lake
- A-2 East Auburn Lake
- A-3 Forest Lake
- A-4 Gleason Lake
- A-5 Holy Name Lake
- A-6 Langdon Lake
- A-7 Long Lake
- A-8 Halsteds Bay
- A-9 Jennings Bay
- A-10 Stubbs Bay
- A-11 West Arm
- A-12 Mooney Lake
- A-13 Stone Lake
- A-14 Tamarack Lake
- A-15 Tanager Lake
- A-16 Wolsfeld Lake
- A-17 Snyder Lake
- A-18 School Lake
- A-19 Hadley Lake
- A-20 Turbid Lake
- A-21 Painter Creek

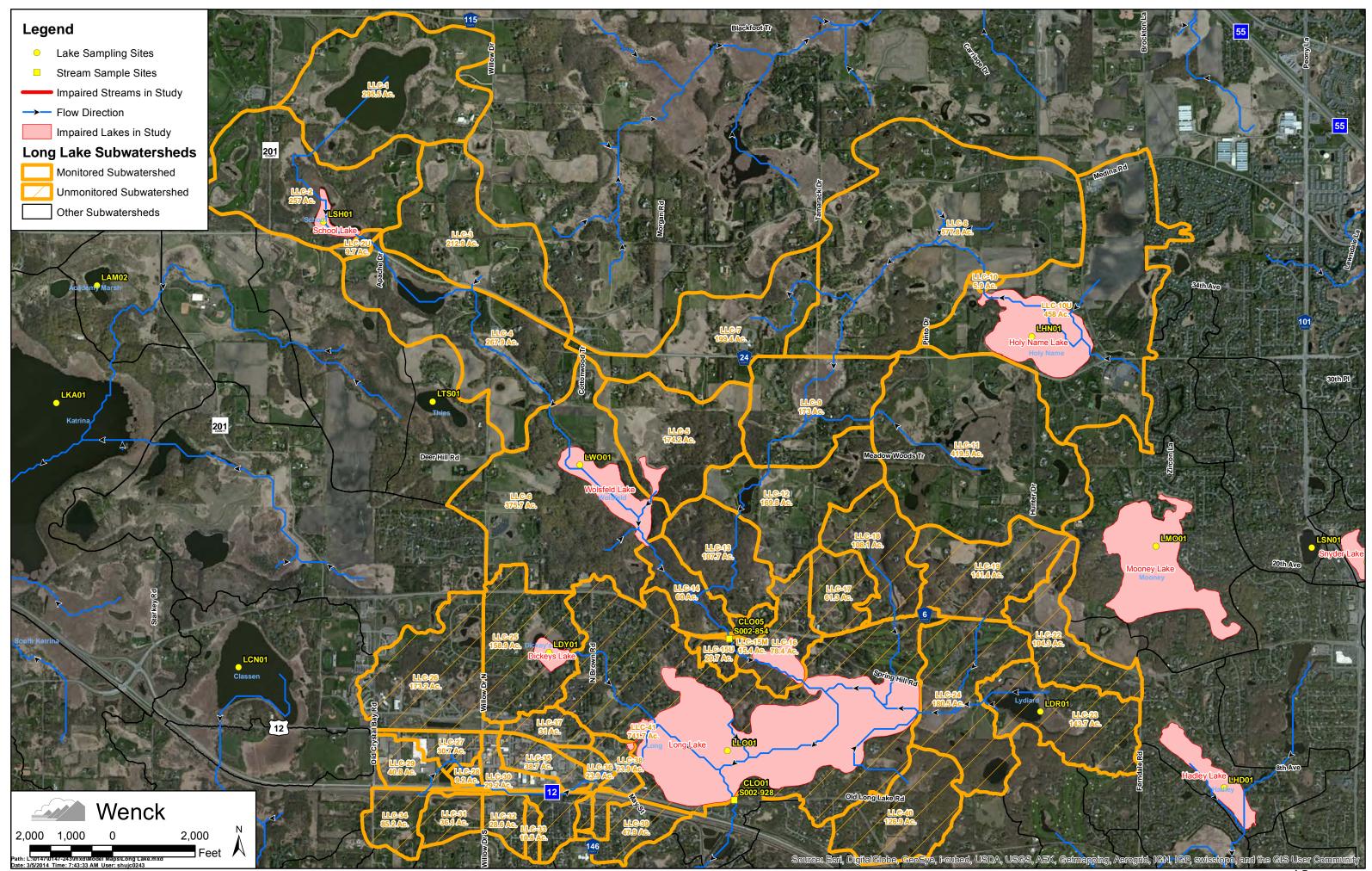


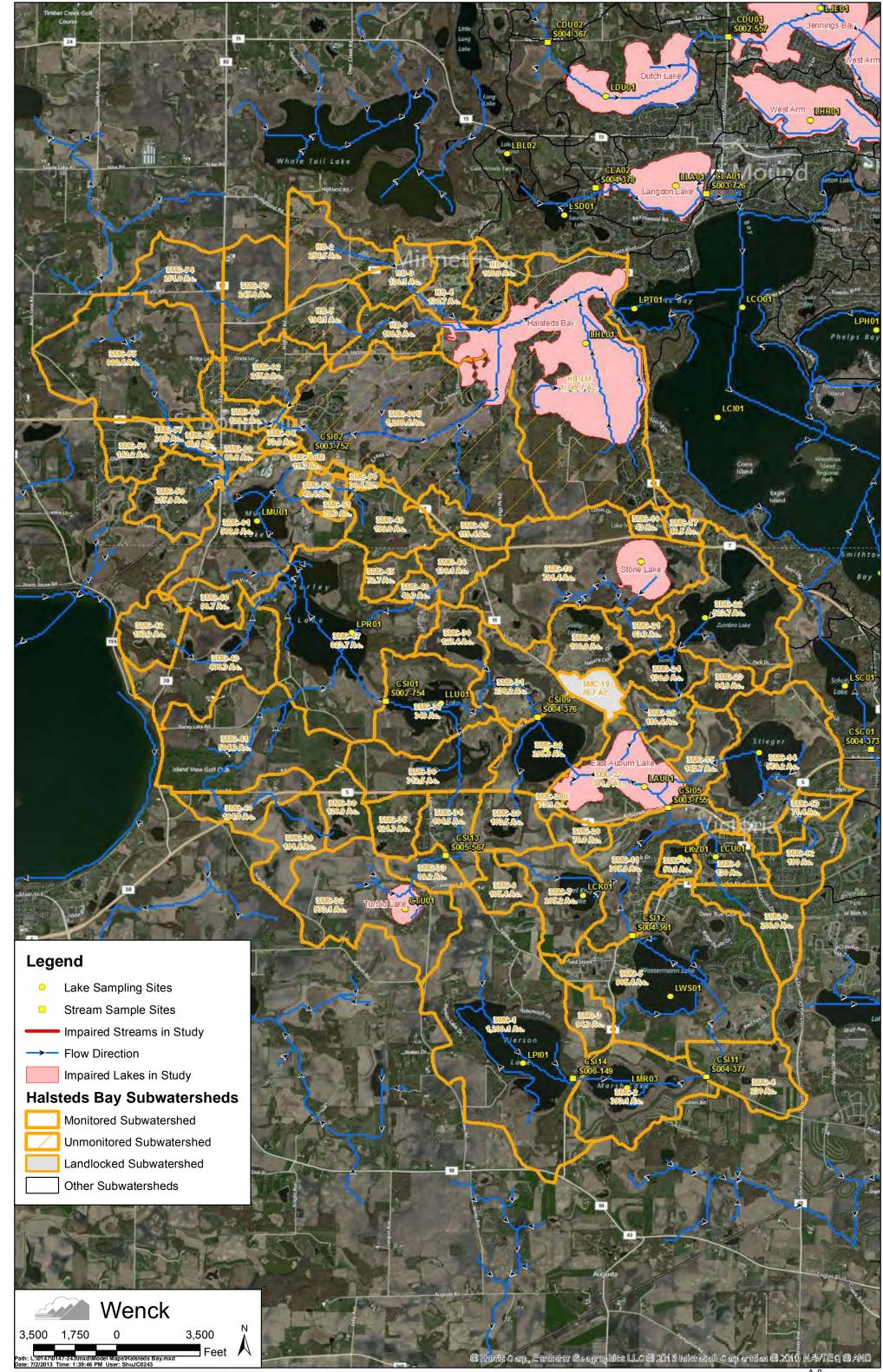
Forest Lake Model Subwatersheds

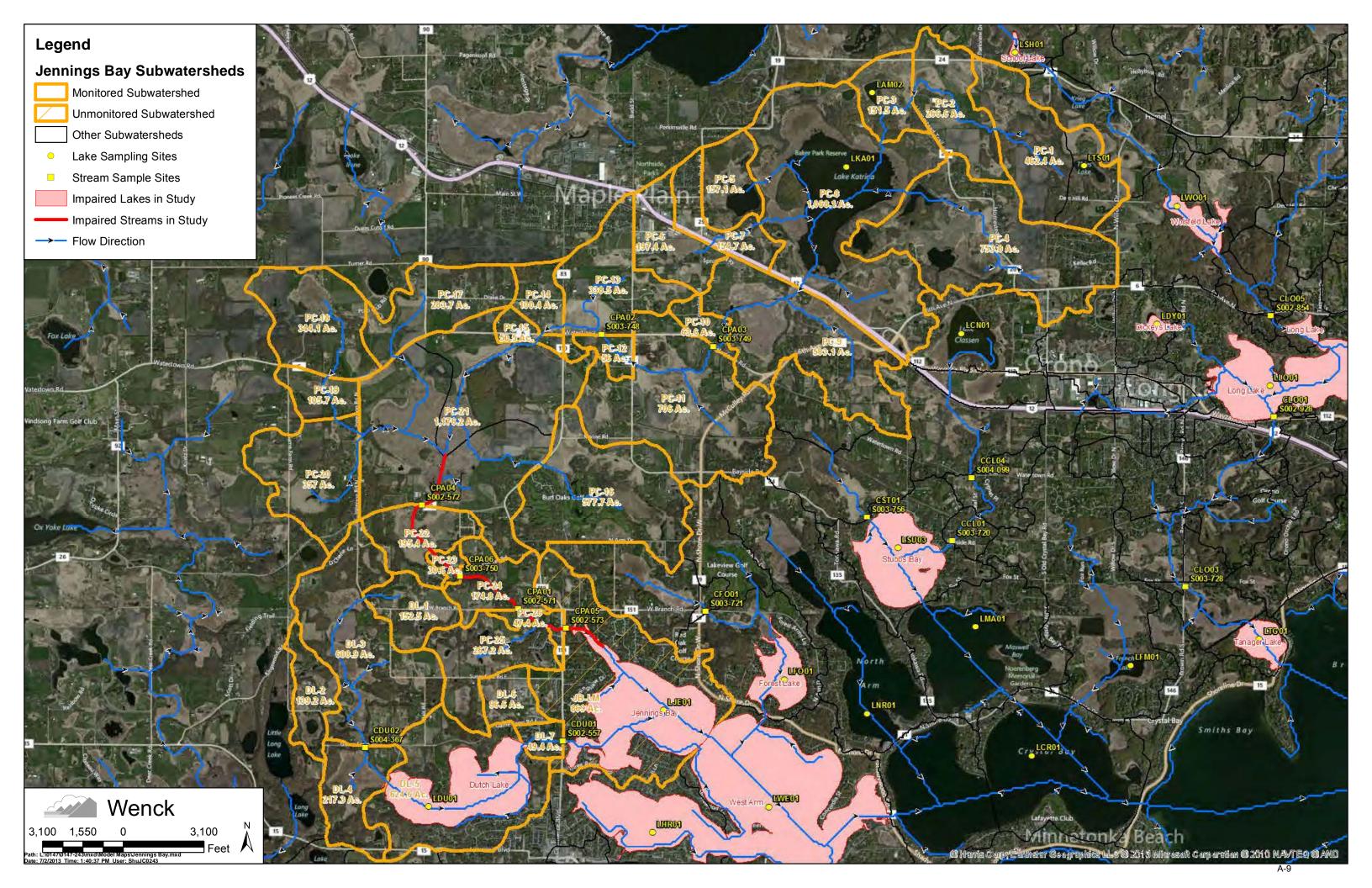

- Monitored Subwatershed
- Unmonitored Subwatershed
- Other Subwatersheds
- Lake Sampling Sites
- Stream Sample Sites
- Impaired Lakes in Study
- Impaired Streams in Study

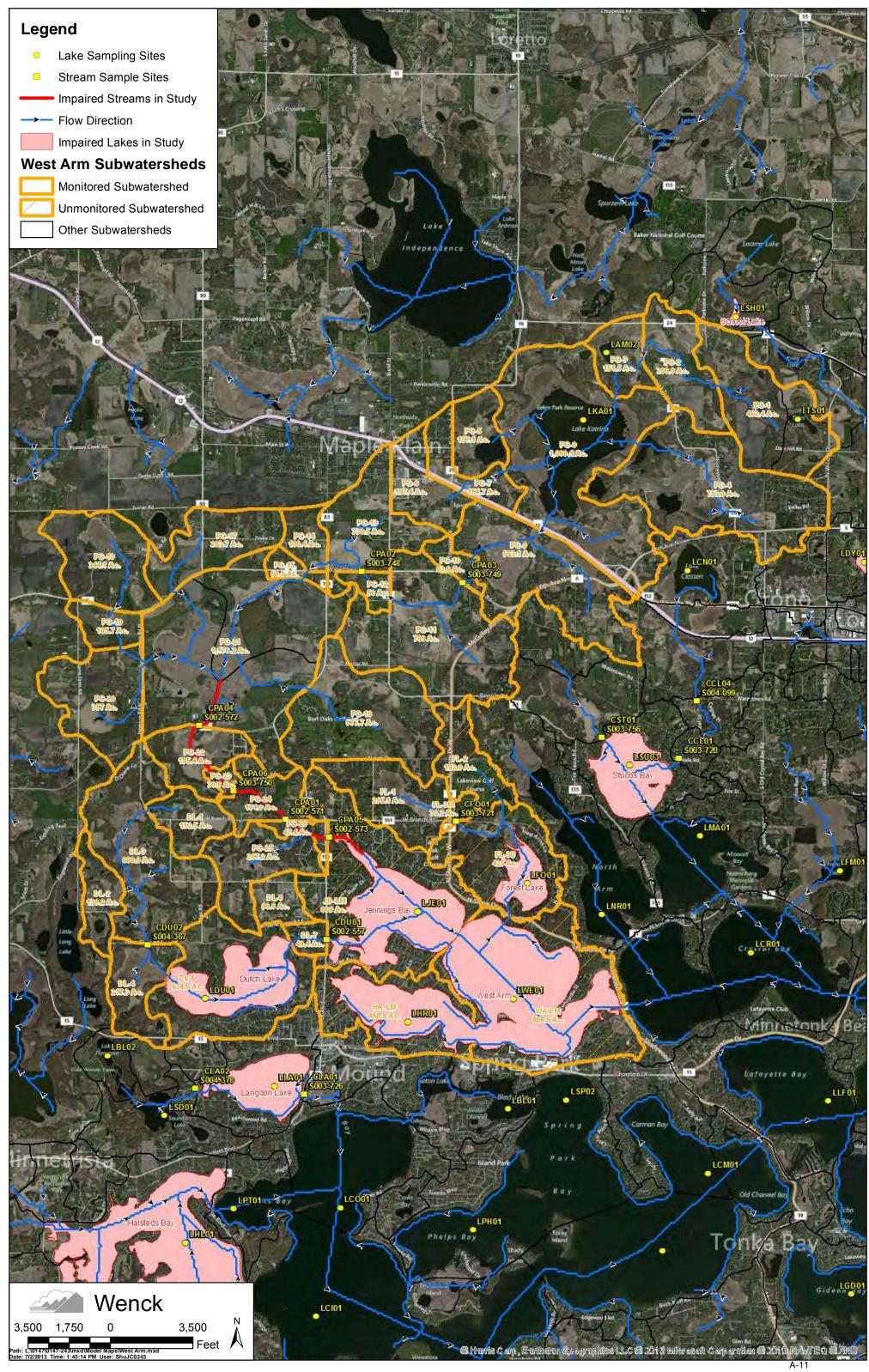

Stubbs Bay

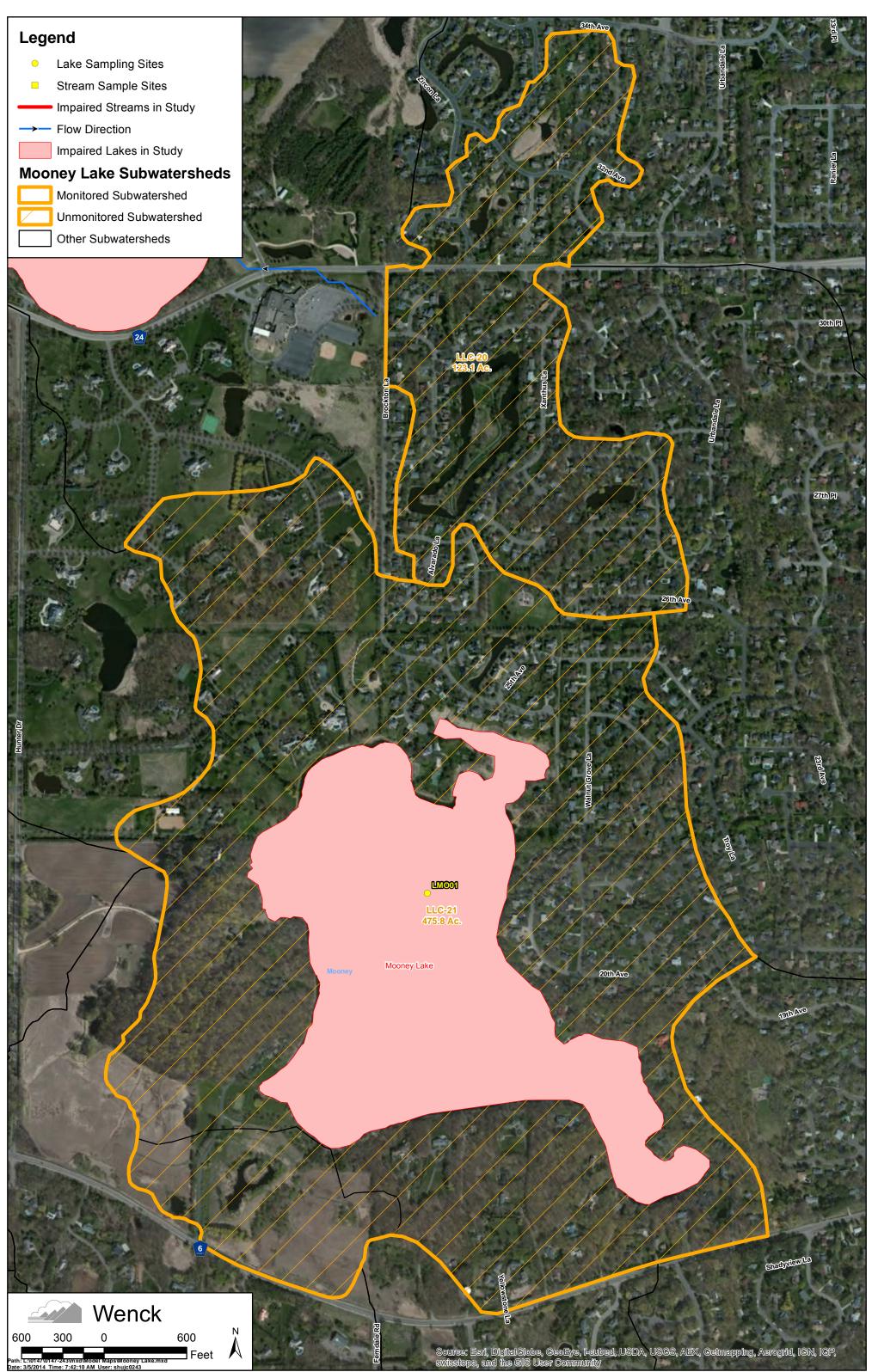

→ Flow Direction

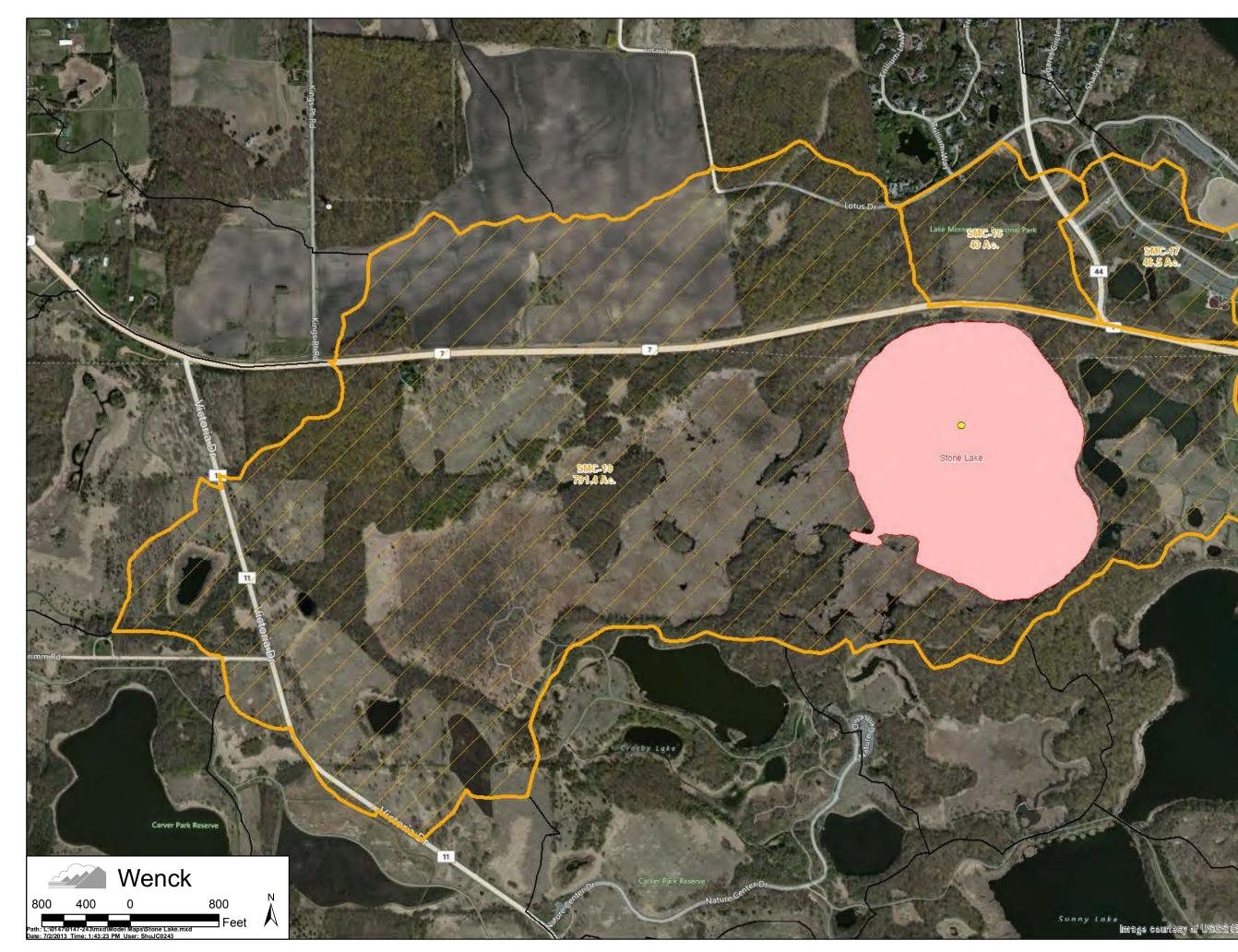




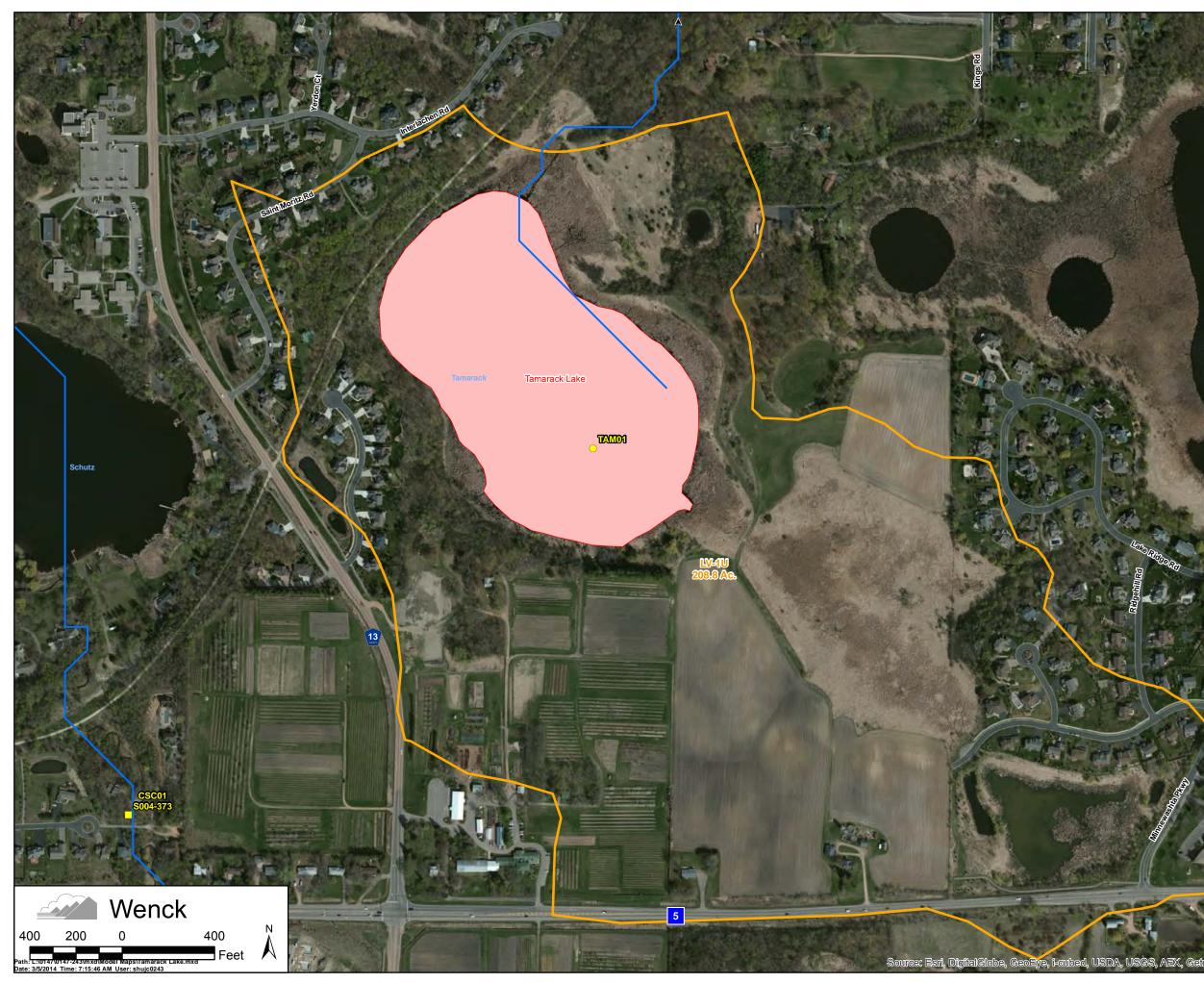








0

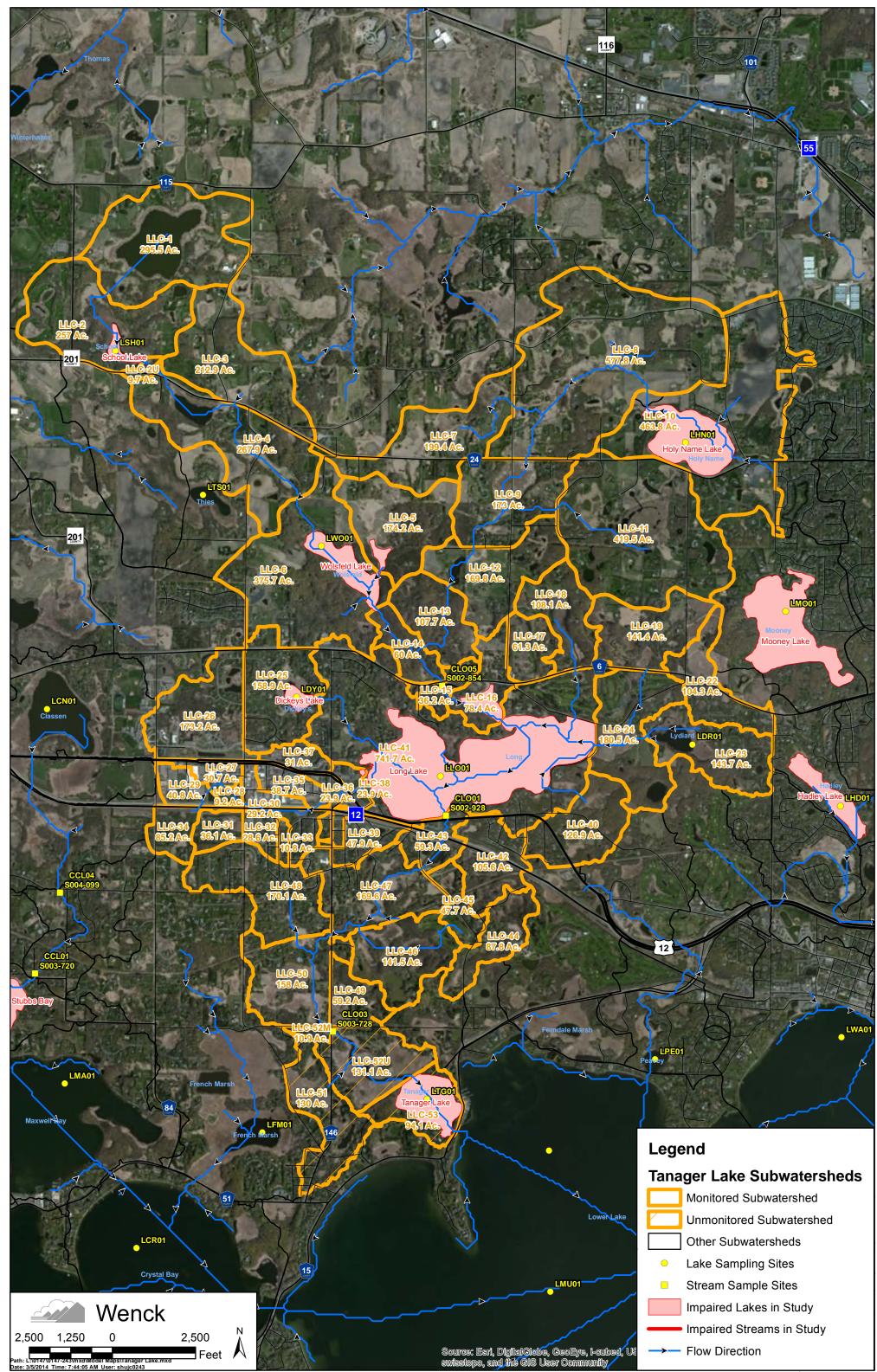

Stone Lake Subwatersheds

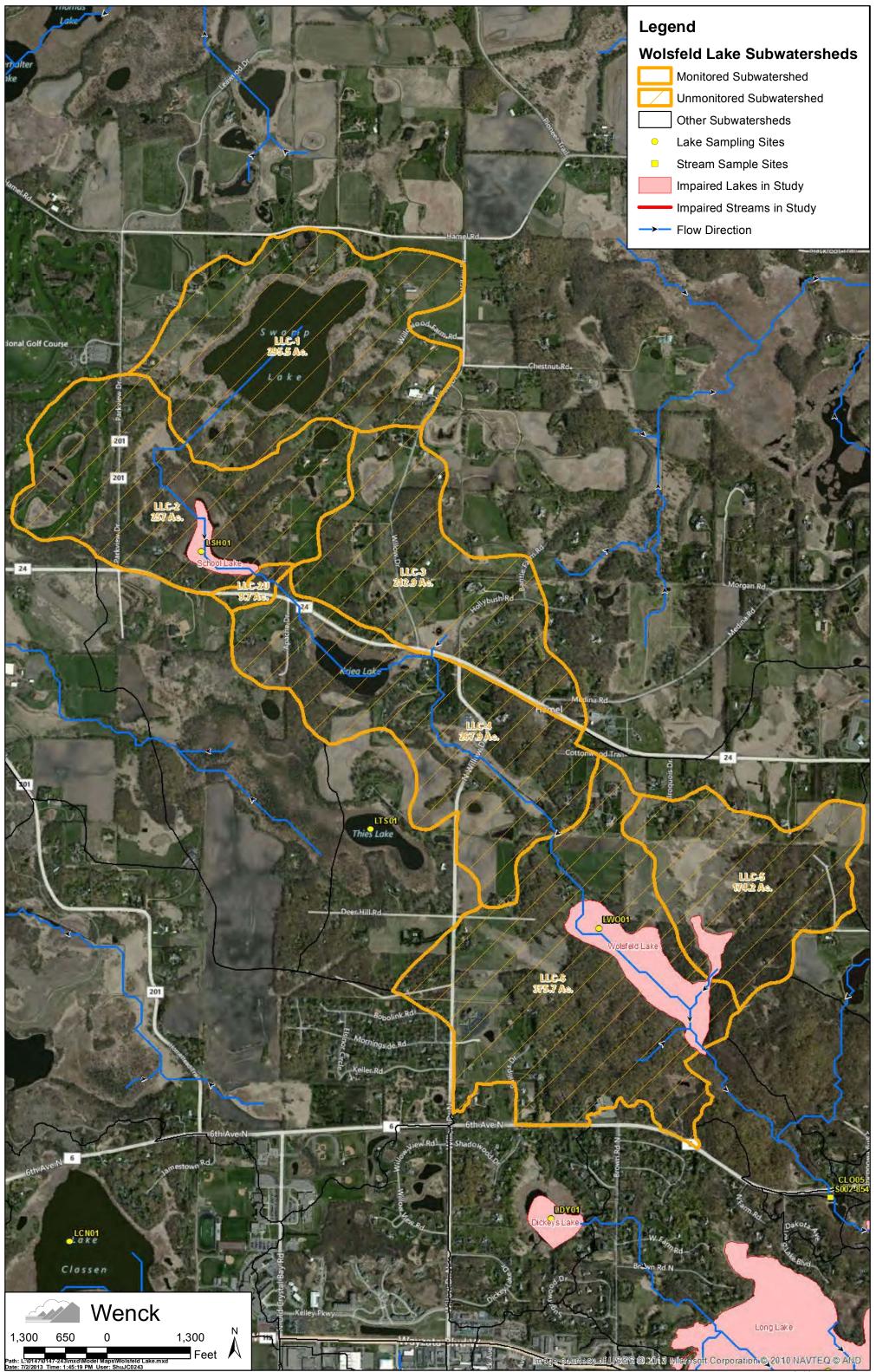
 $\overline{}$

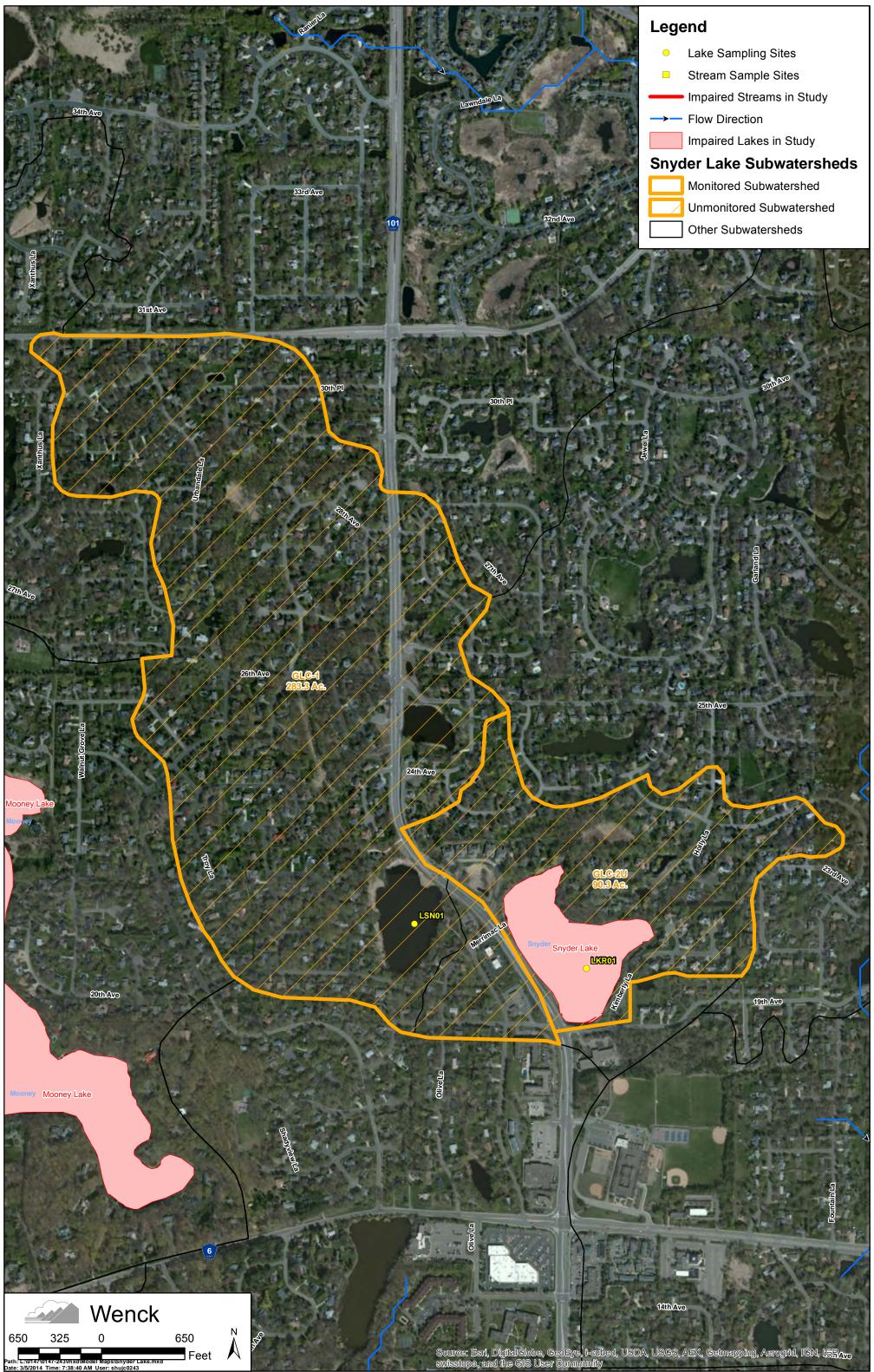
Monitored Subwatershed Unmonitored Subwatershed Other Subwatersheds Lake Sampling Sites

- Stream Sample Sites
- Impaired Lakes in Study
- Impaired Streams in Study

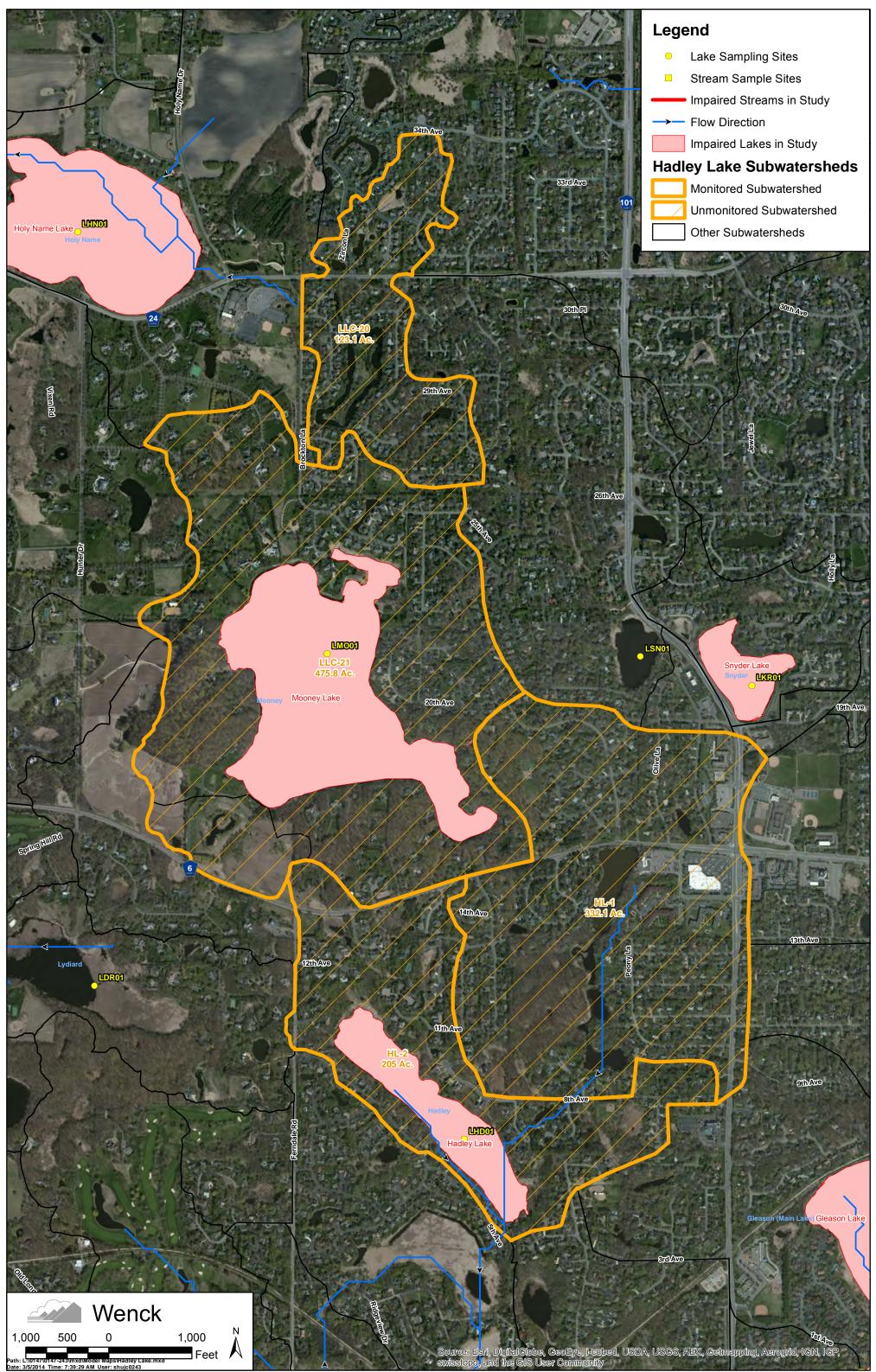
M

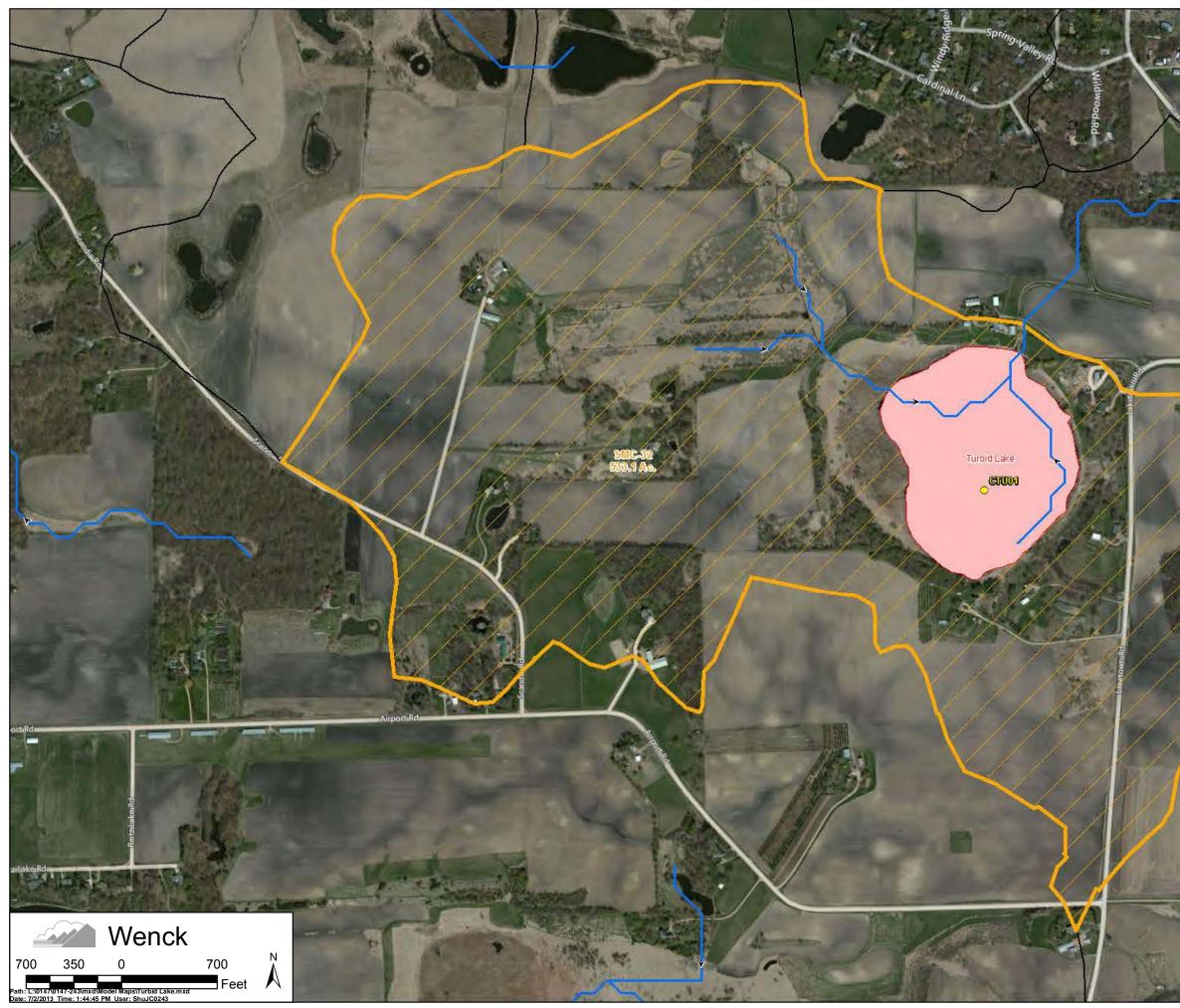

Legend Lake Sampling Sites Stream Sample Sites Impaired Streams in Study Flow Direction Impaired Lakes in Study Tamarack Lake Subwatersheds

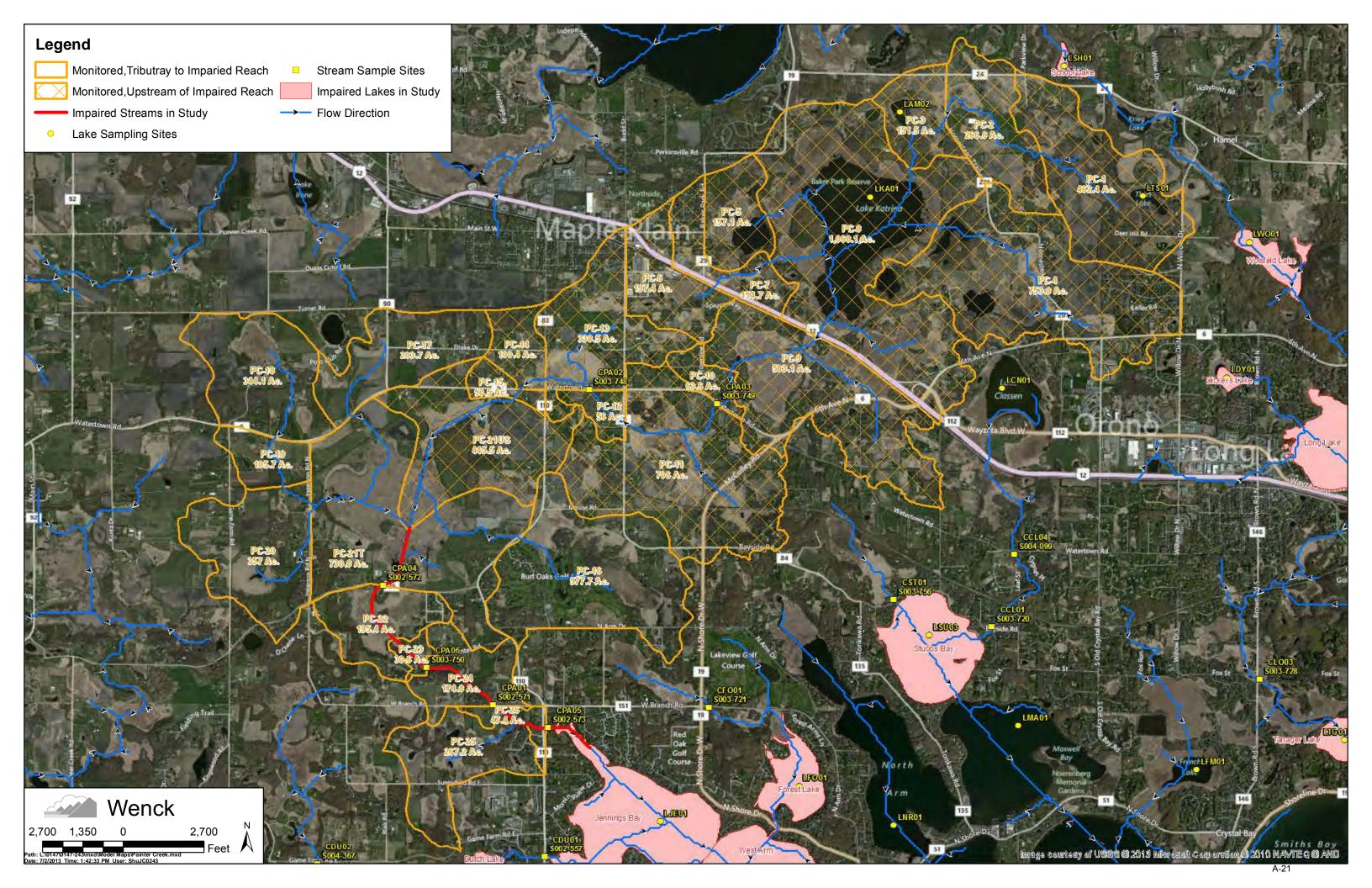

St. Joe


Hawthorne Cir

Minnewashta


3S, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Communit

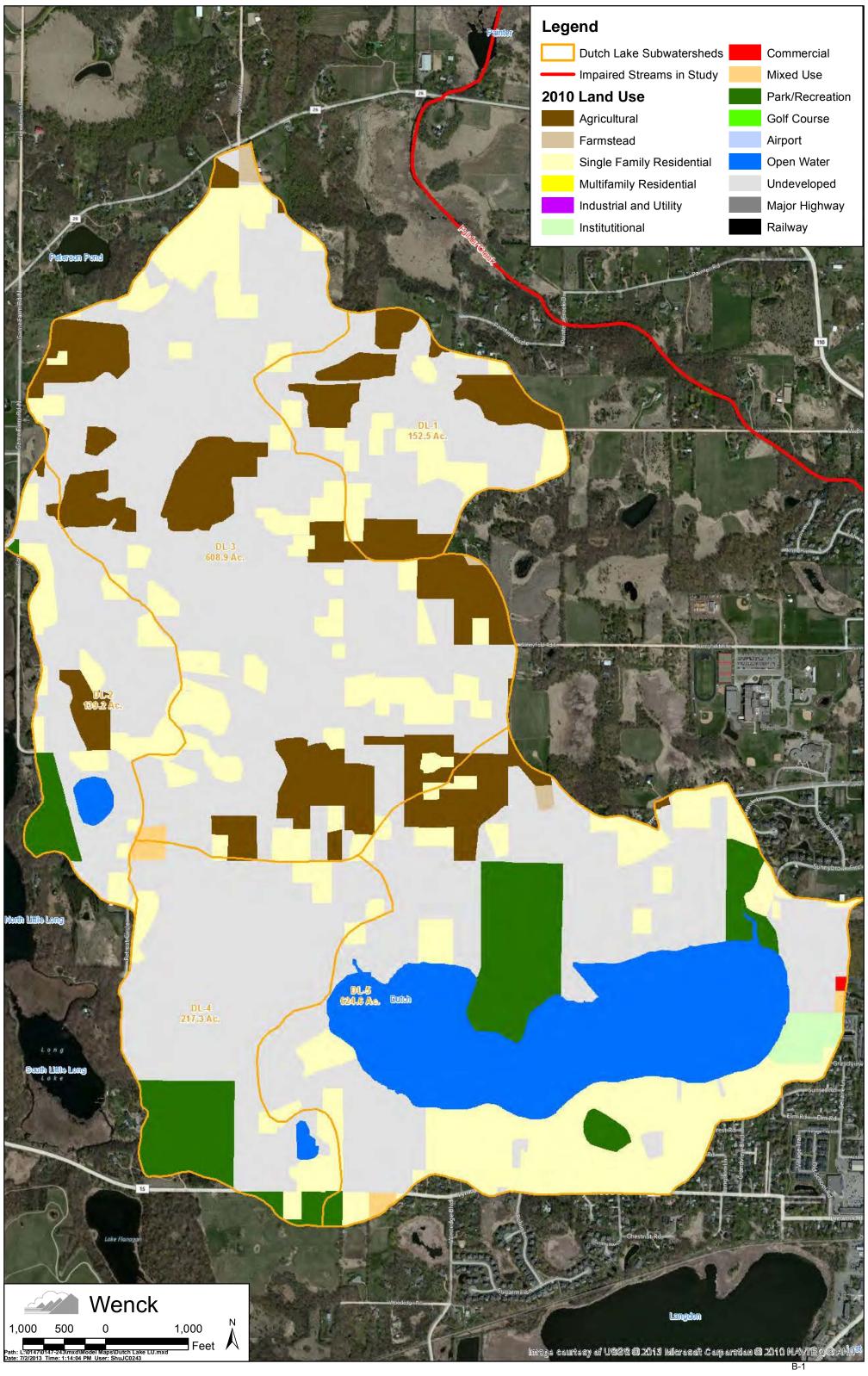


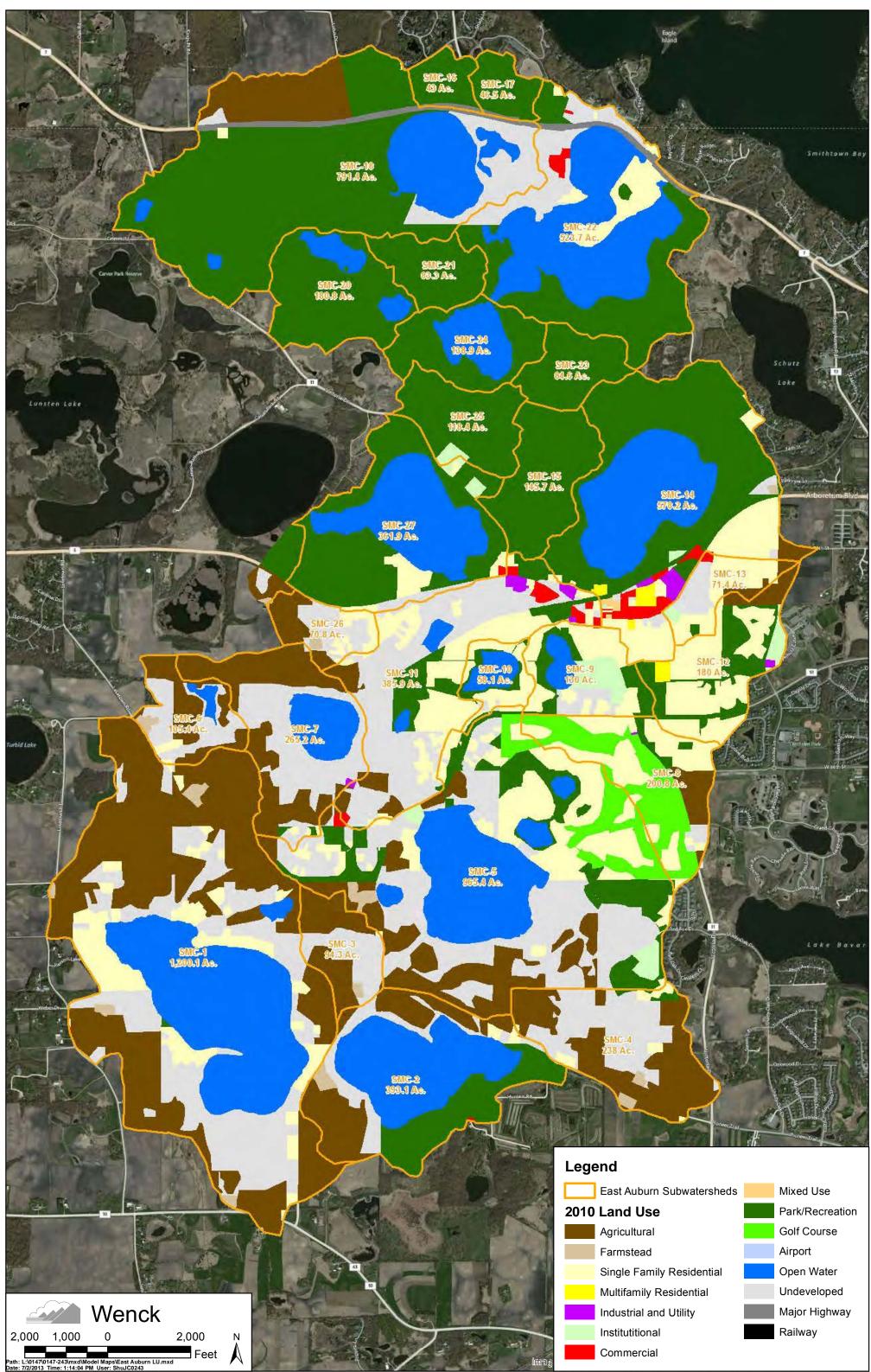


Turbid Lake Subwatersheds

0

Monitored Subwatershed Unmonitored Subwatershed Other Subwatersheds Lake Sampling Sites Stream Sample Sites Impaired Lakes in Study Impaired Streams in Study

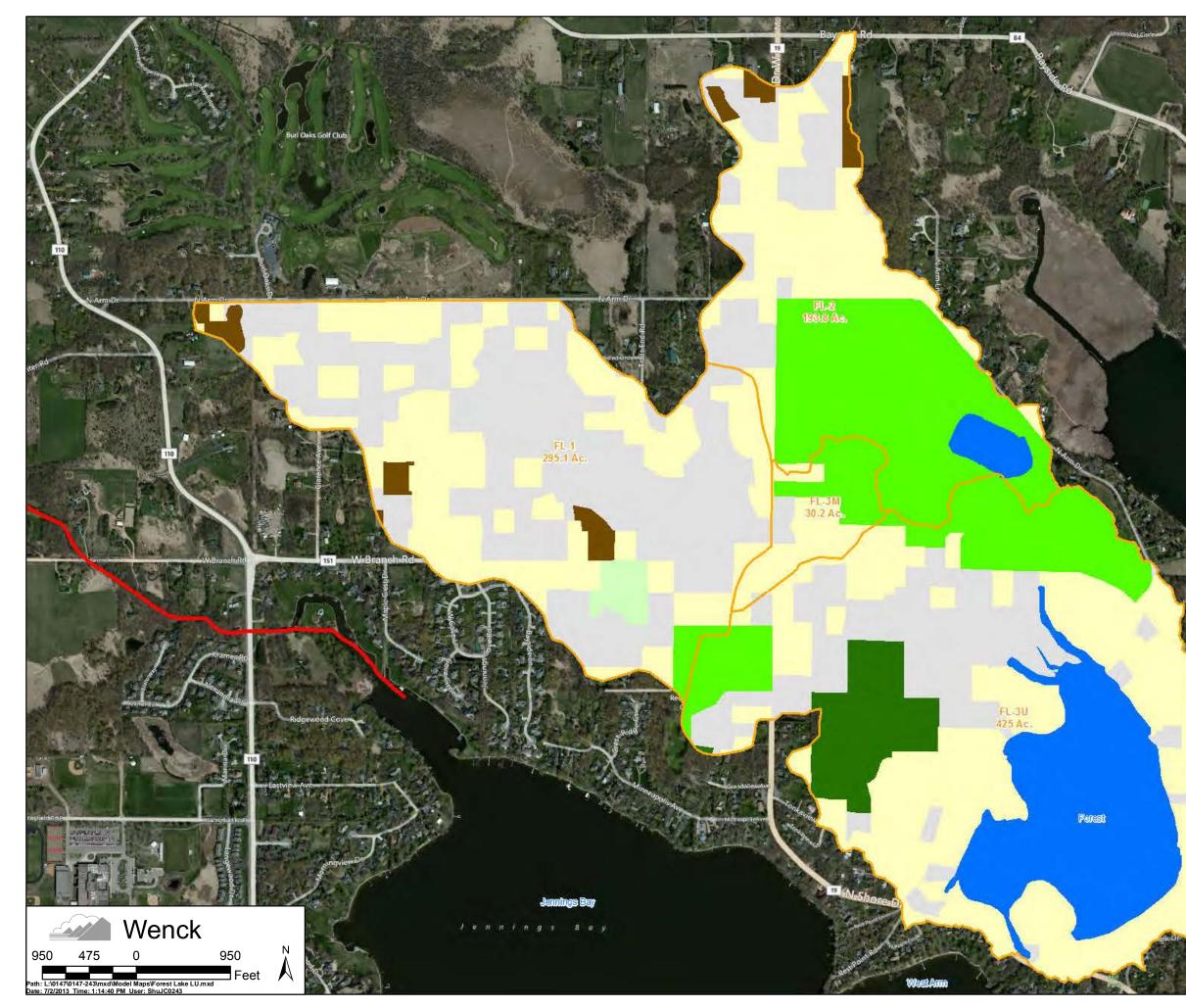

288 @ 2013 Milerosoft Comportion @ 2010 NAVITE Q @ AND linage c A-20



Appendix B

Landuse Figures

- B-1 Dutch Lake
- B-2 East Auburn Lake
- B-3 Forest Lake
- B-4 Gleason Lake
- B-5 Holy Name Lake
- B-6 Langdon Lake
- B-7 Long Lake
- B-8 Halsteds Bay
- B-9 Jennings Bay
- B-10 Stubbs Bay
- B-11 West Arm
- B-12 Mooney Lake
- B-13 Stone Lake
- B-14 Tamarack Lake
- B-15 Tanager Lake
- B-16 Wolsfeld Lake
- B-17 Snyder Lake
- B-18 School Lake
- B-19 Hadley Lake
- B-20 Turbid Lake
- B-21 Painter Creek



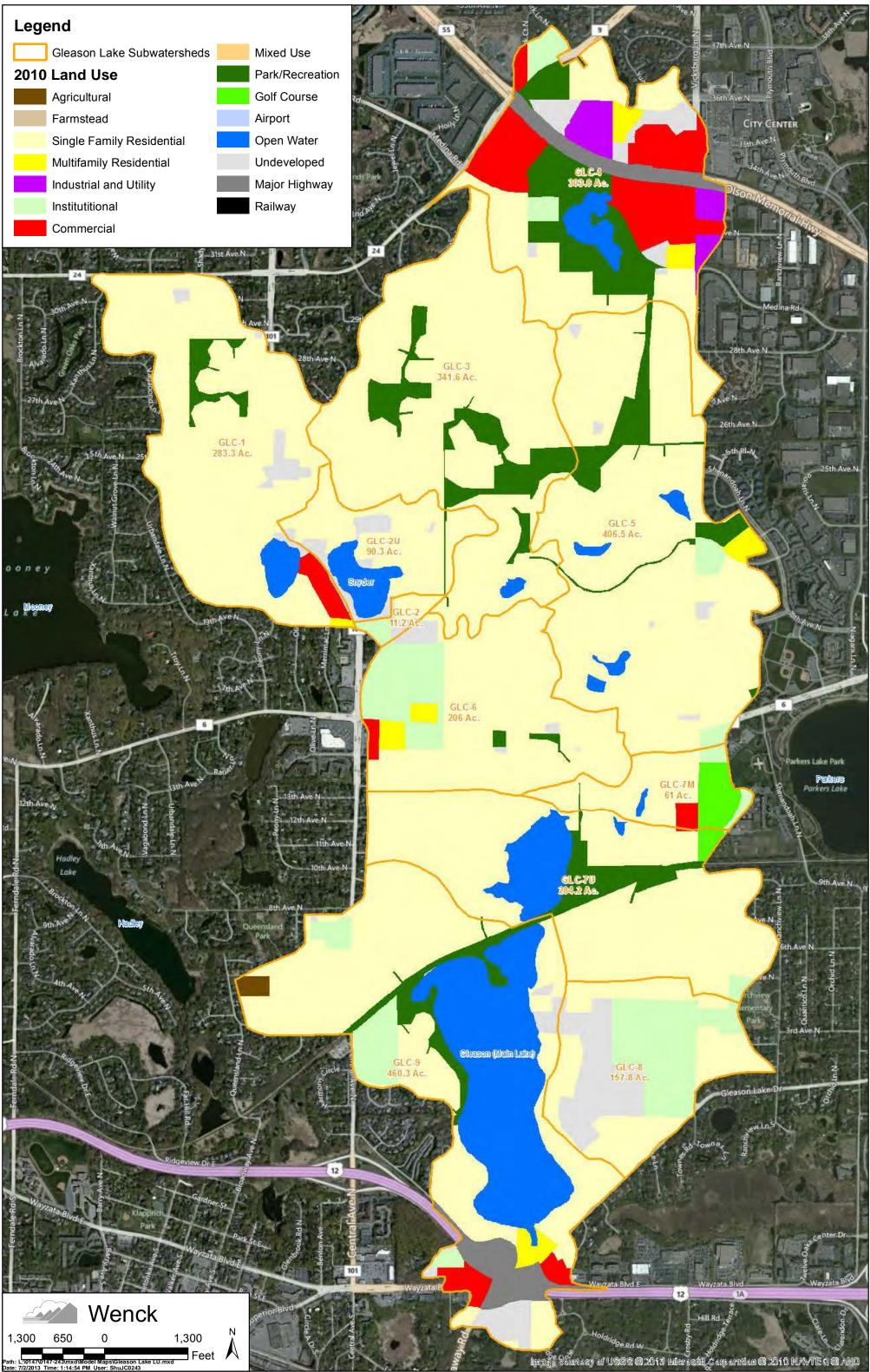
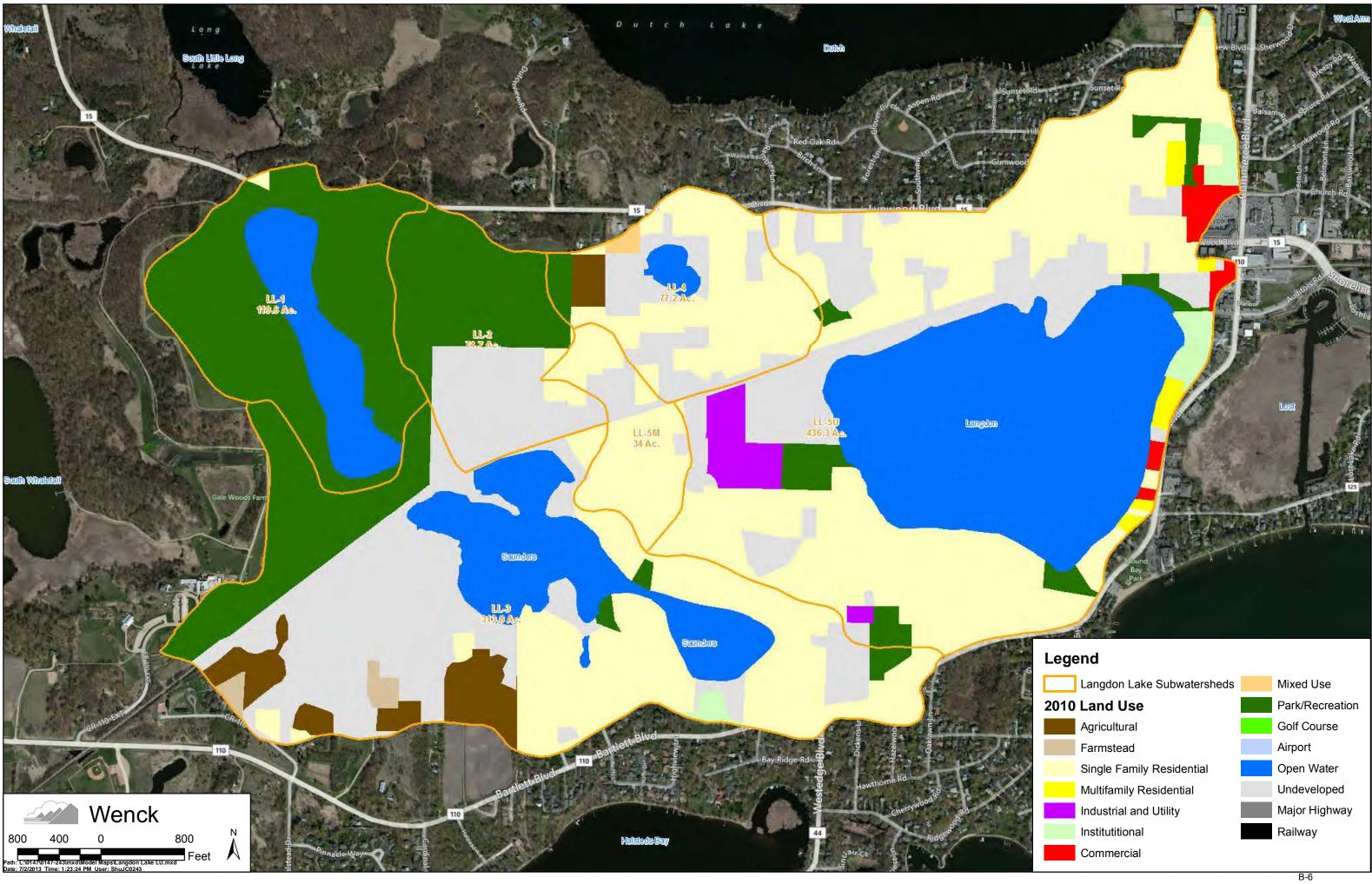
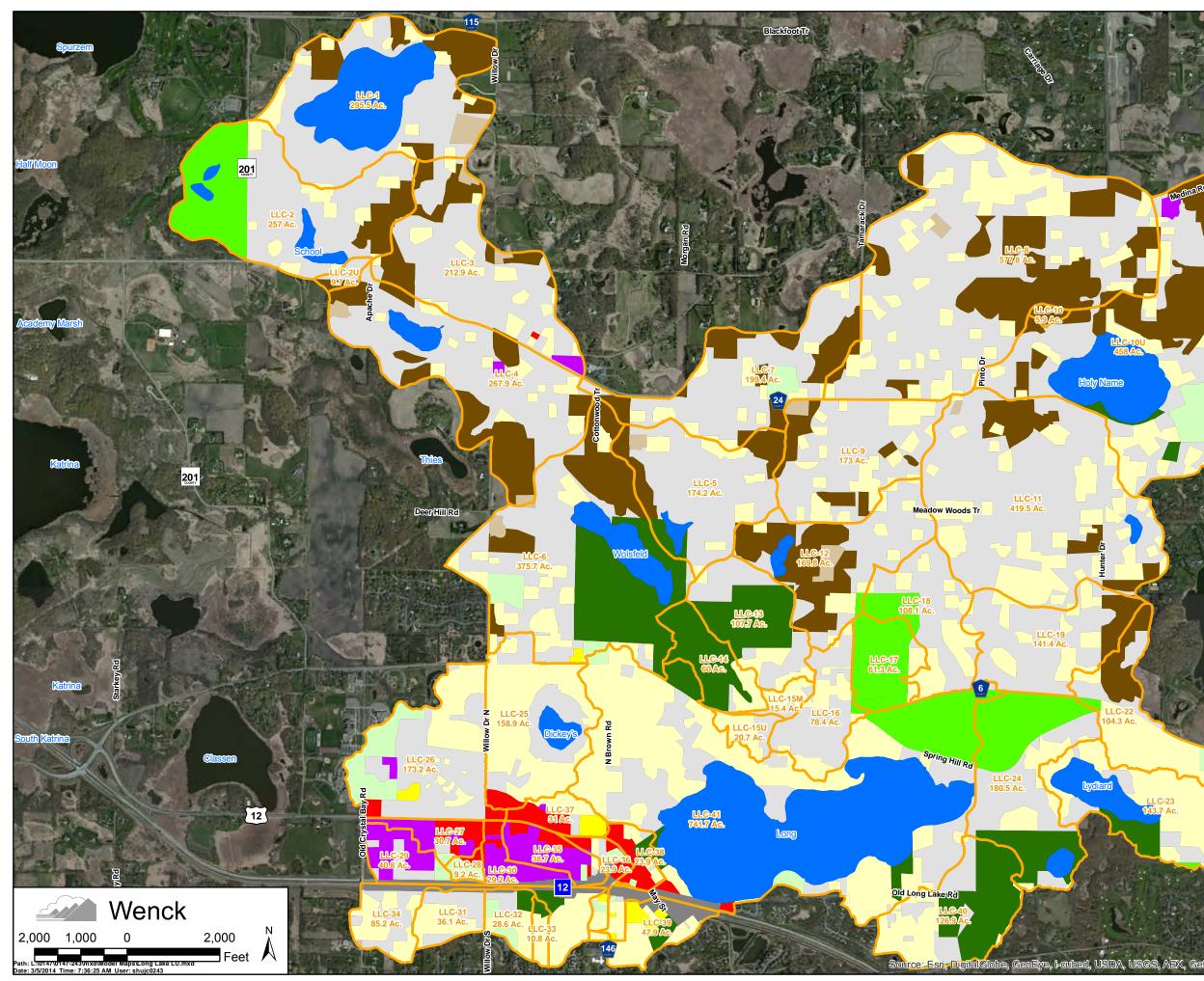
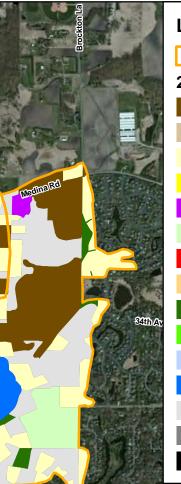
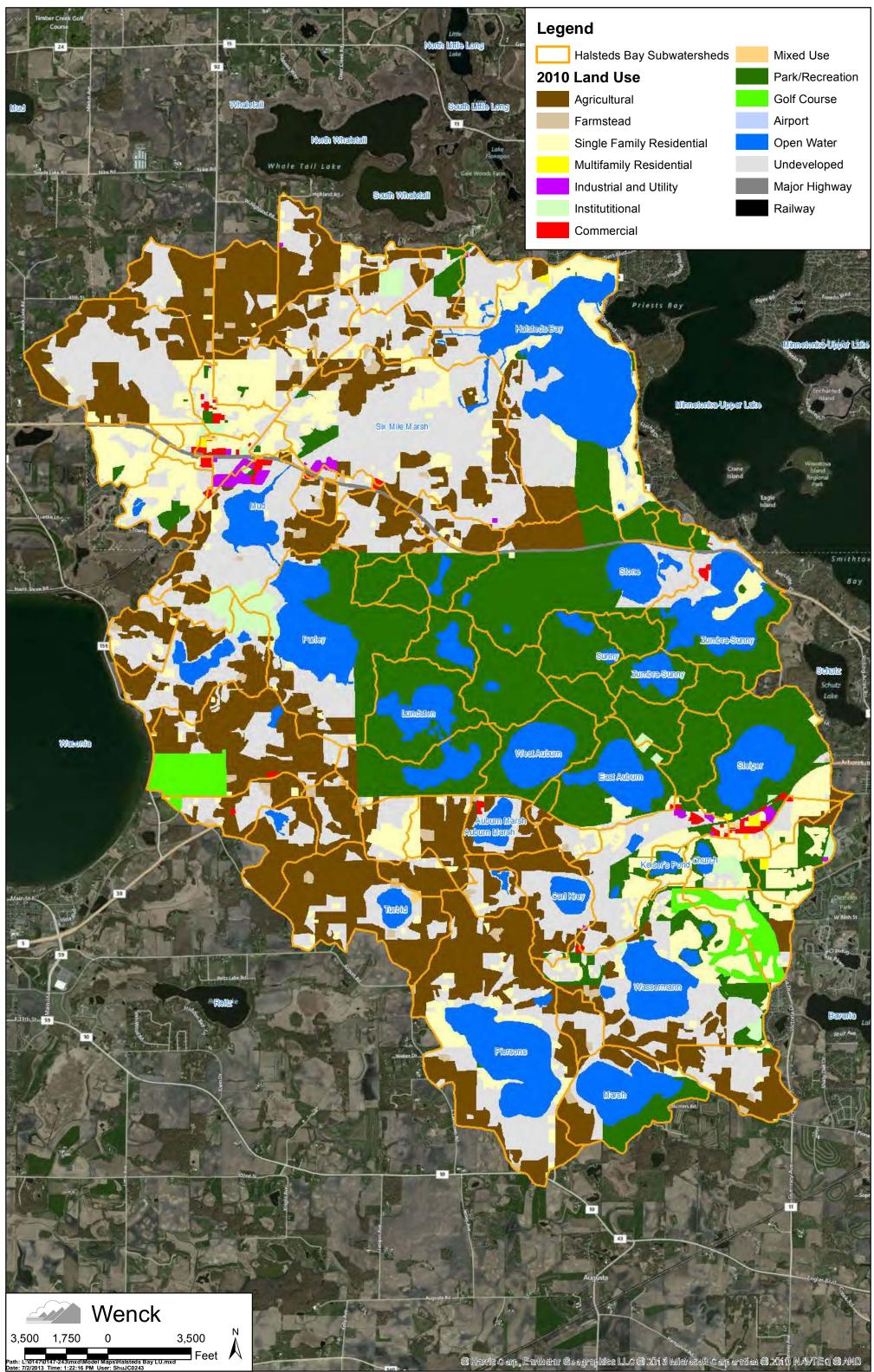


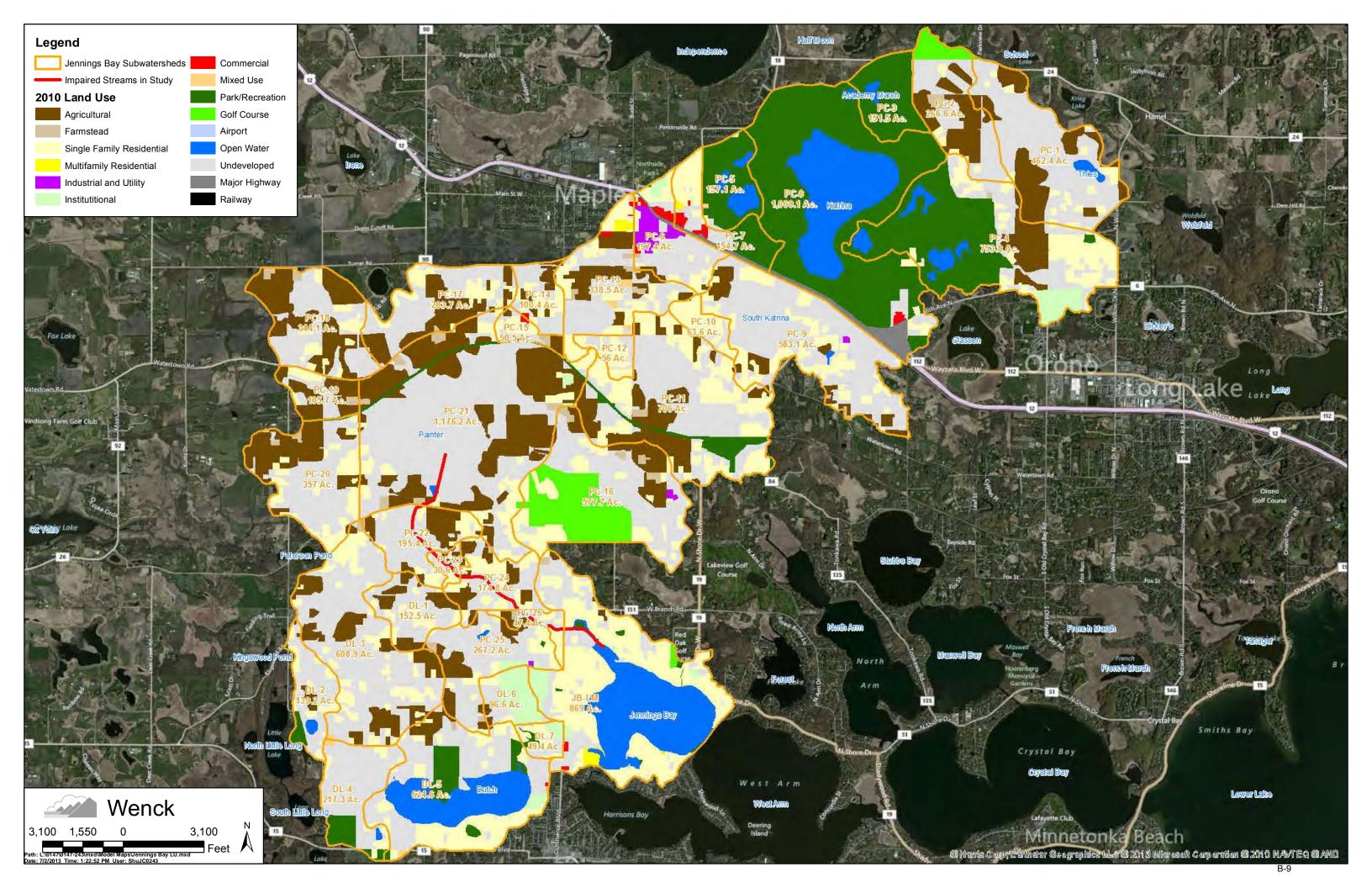
Image courtesy of USCS @ 2013 Microsoft Conservation @ 2010 NAVTE @ @,AND

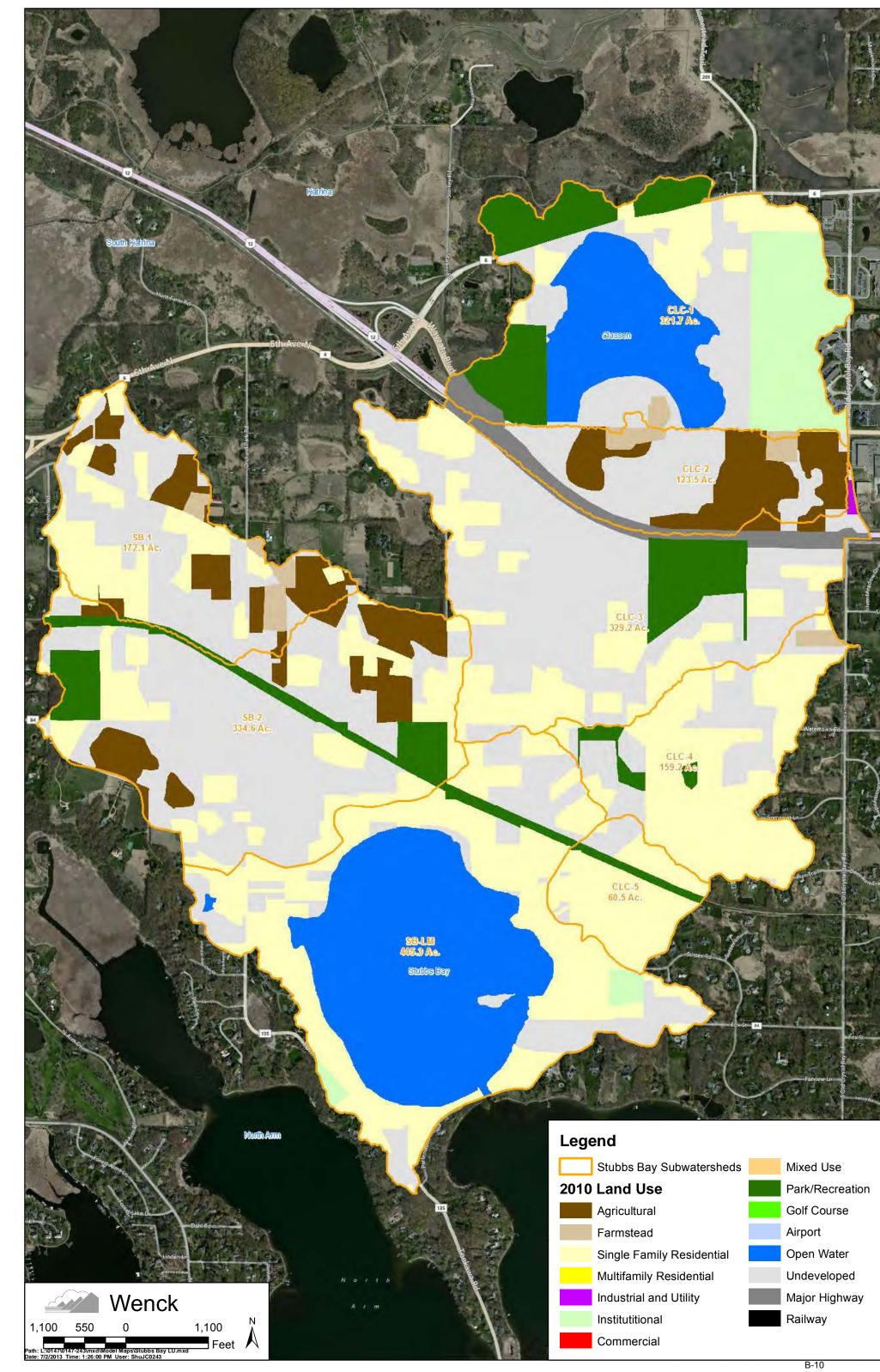

Norib Arm

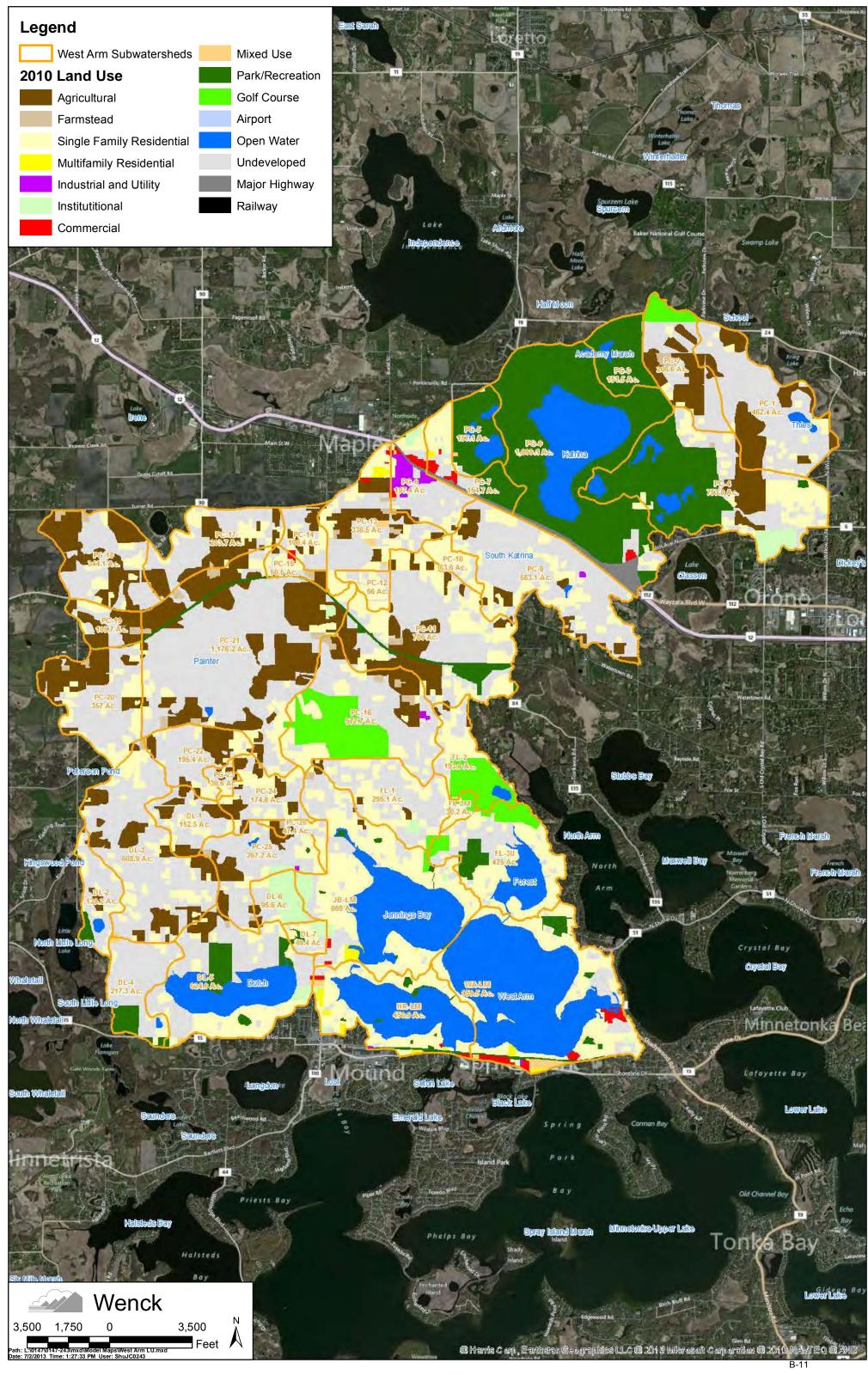

No

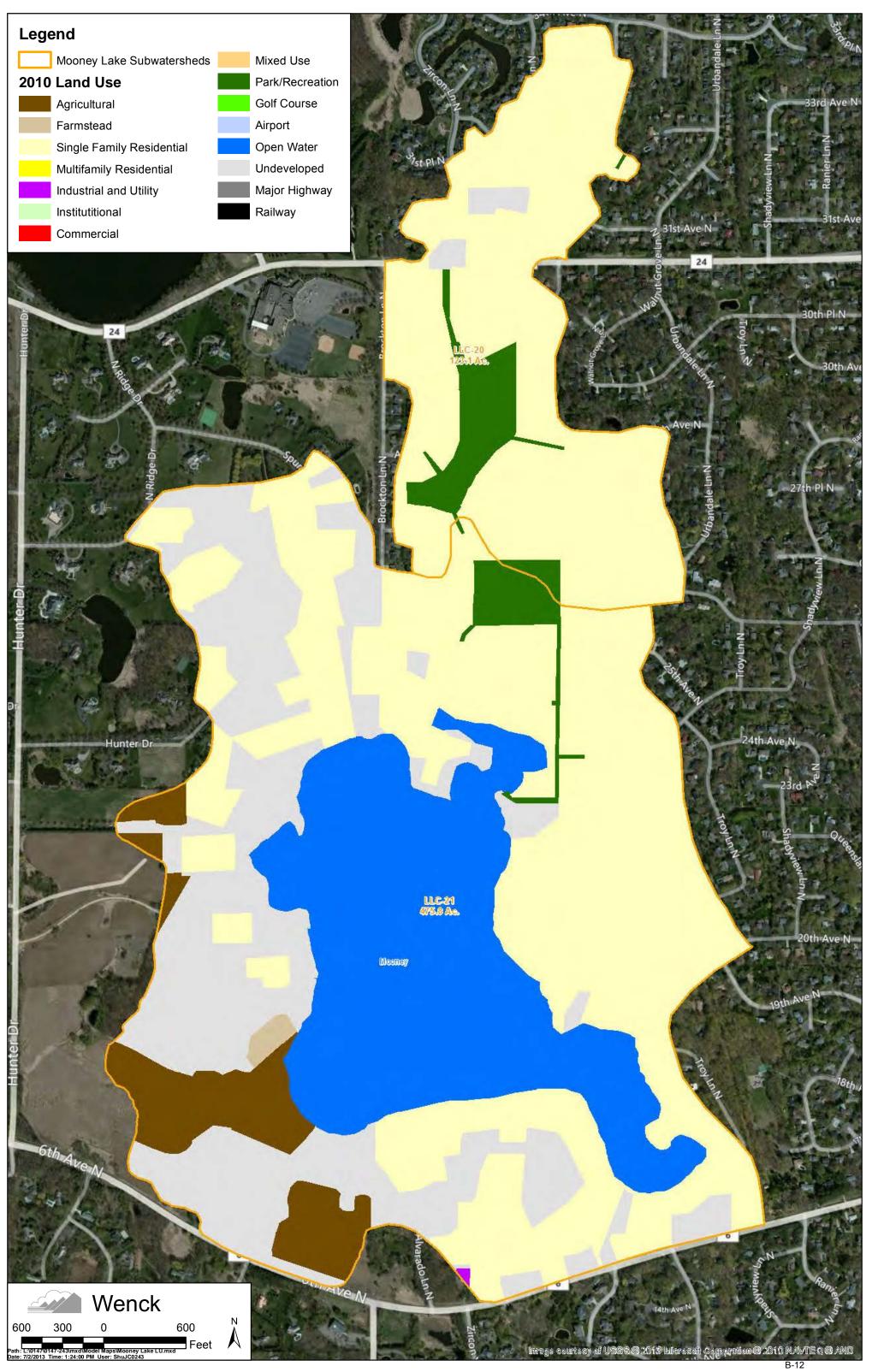

Siddes Day Srubbs

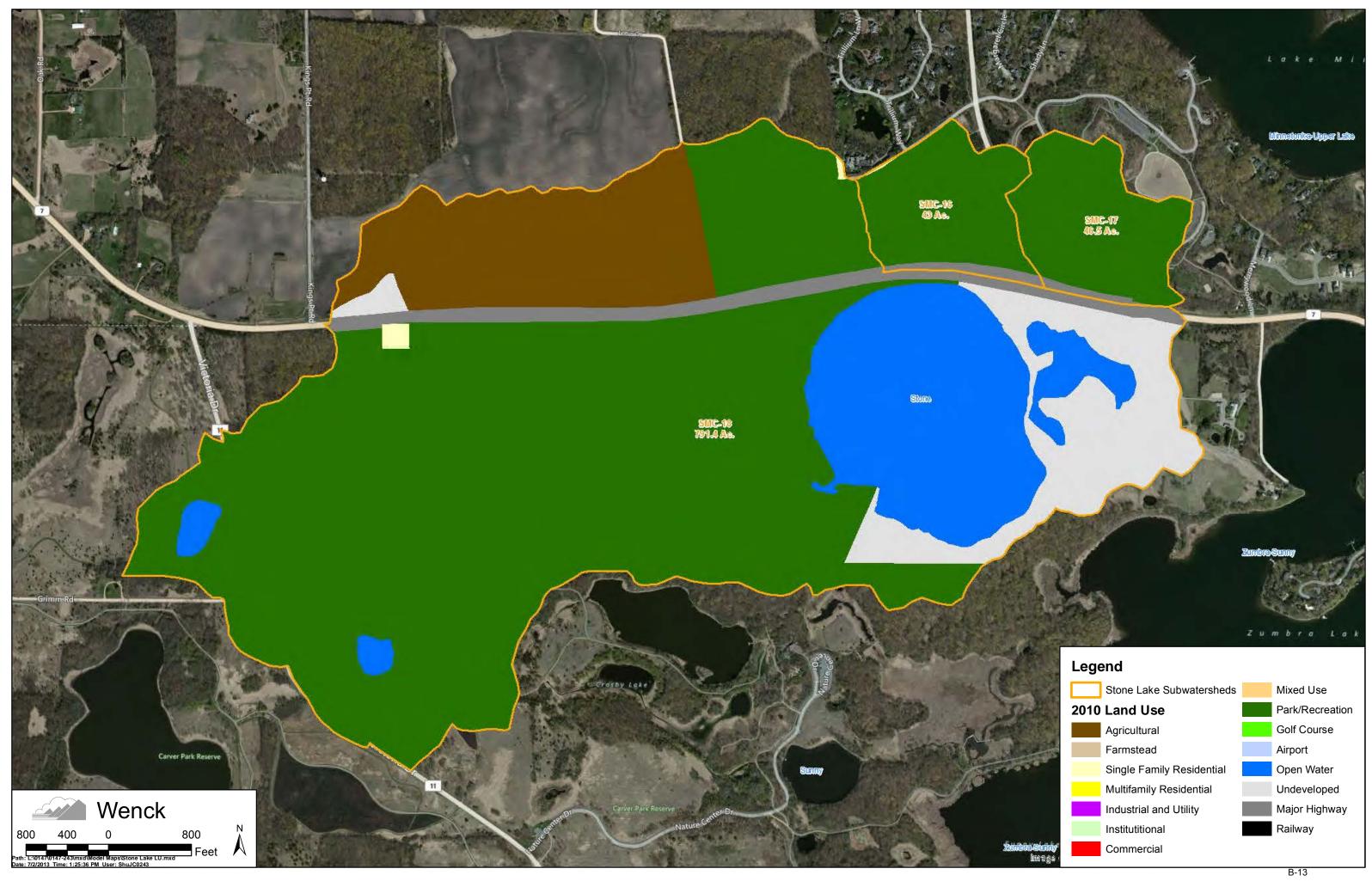

Long Lake Subwatersheds 2010 Land Use Agricultural Farmstead Single Family Residential Multifamily Residential Industrial and Utility Institutitional Commercial Mixed Use Park/Recreation Golf Course Airport Open Water Undeveloped Major Highway Railway

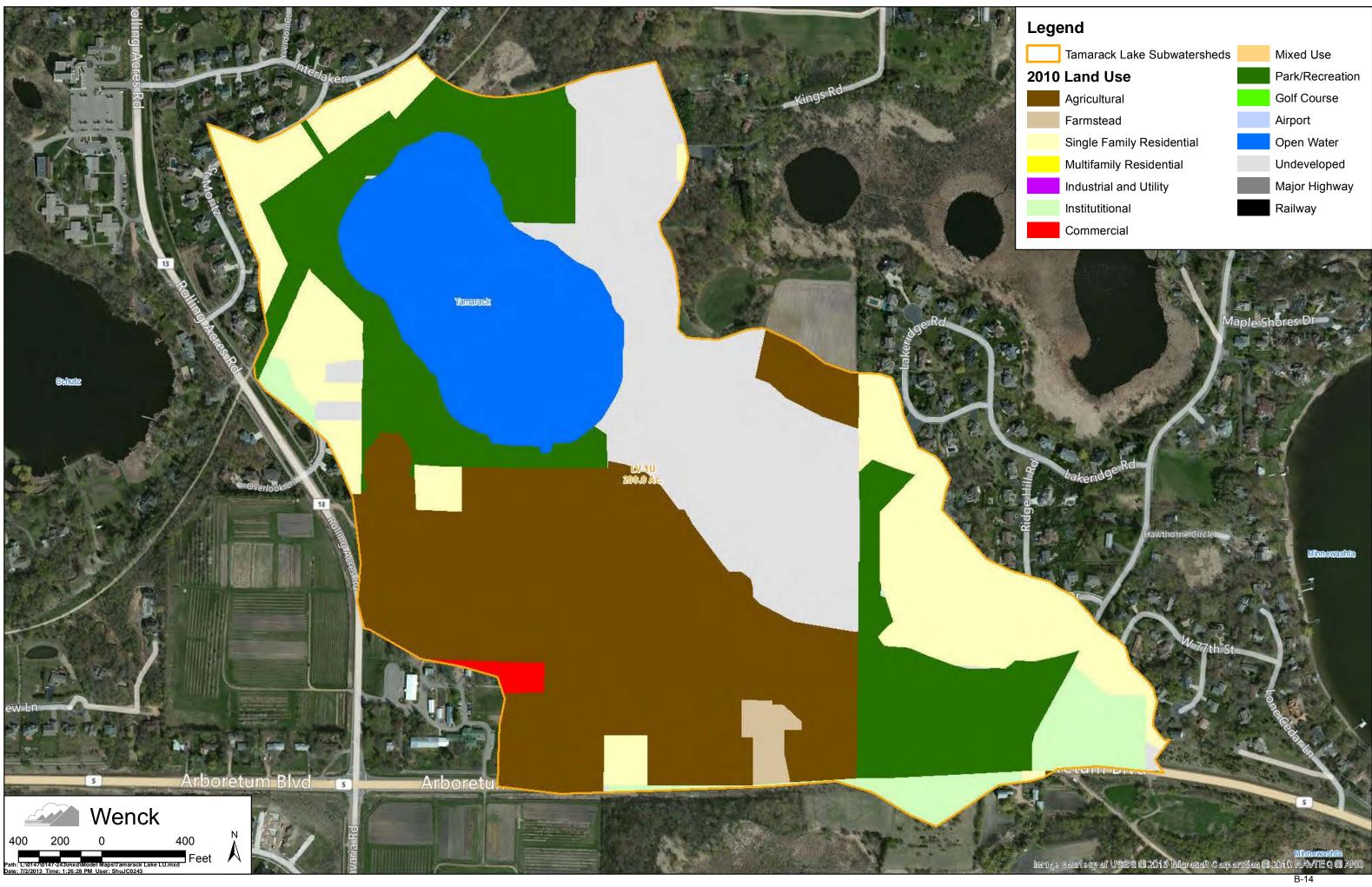

Mooney

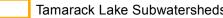

8thAve

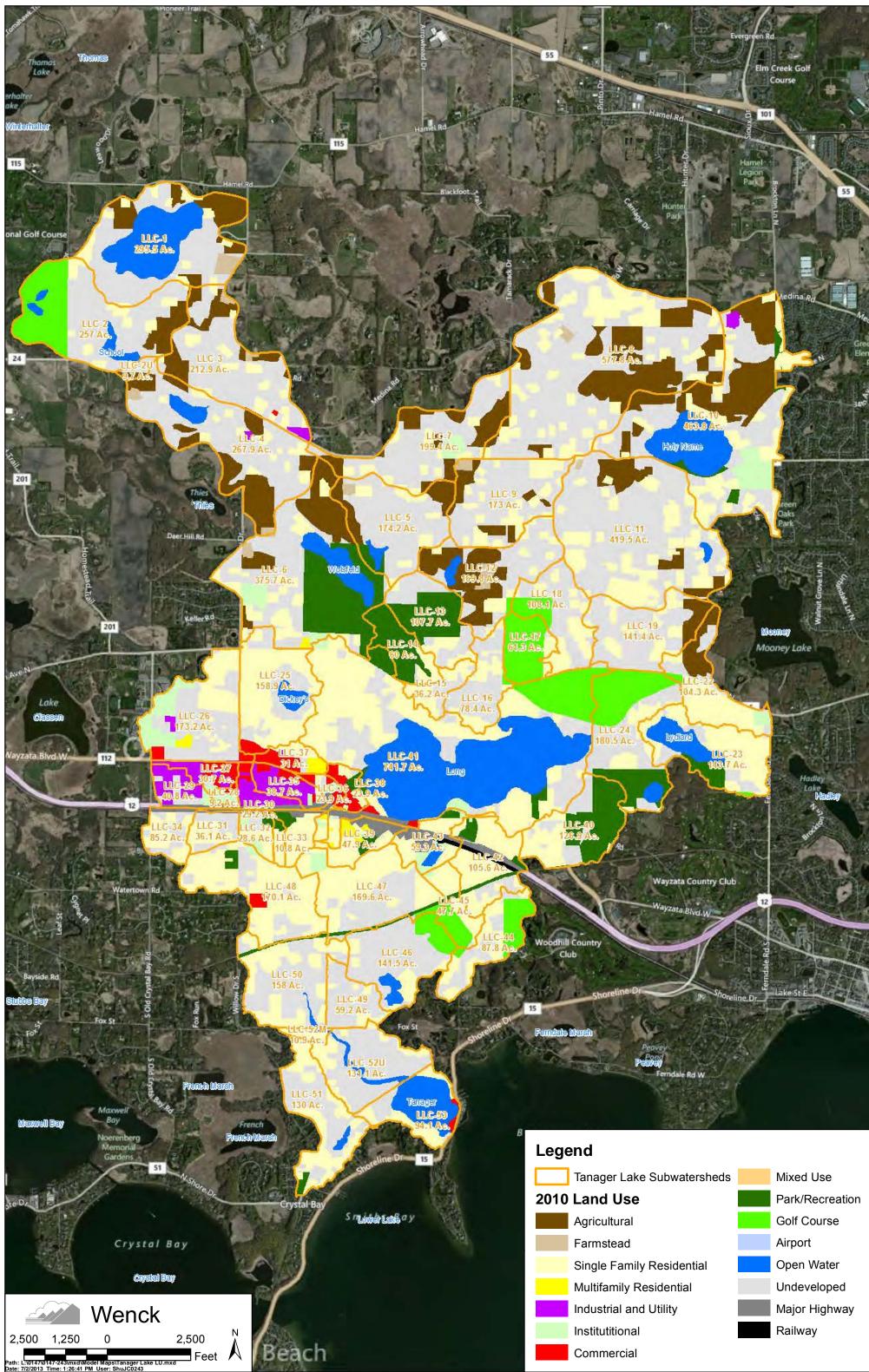

9th Ave

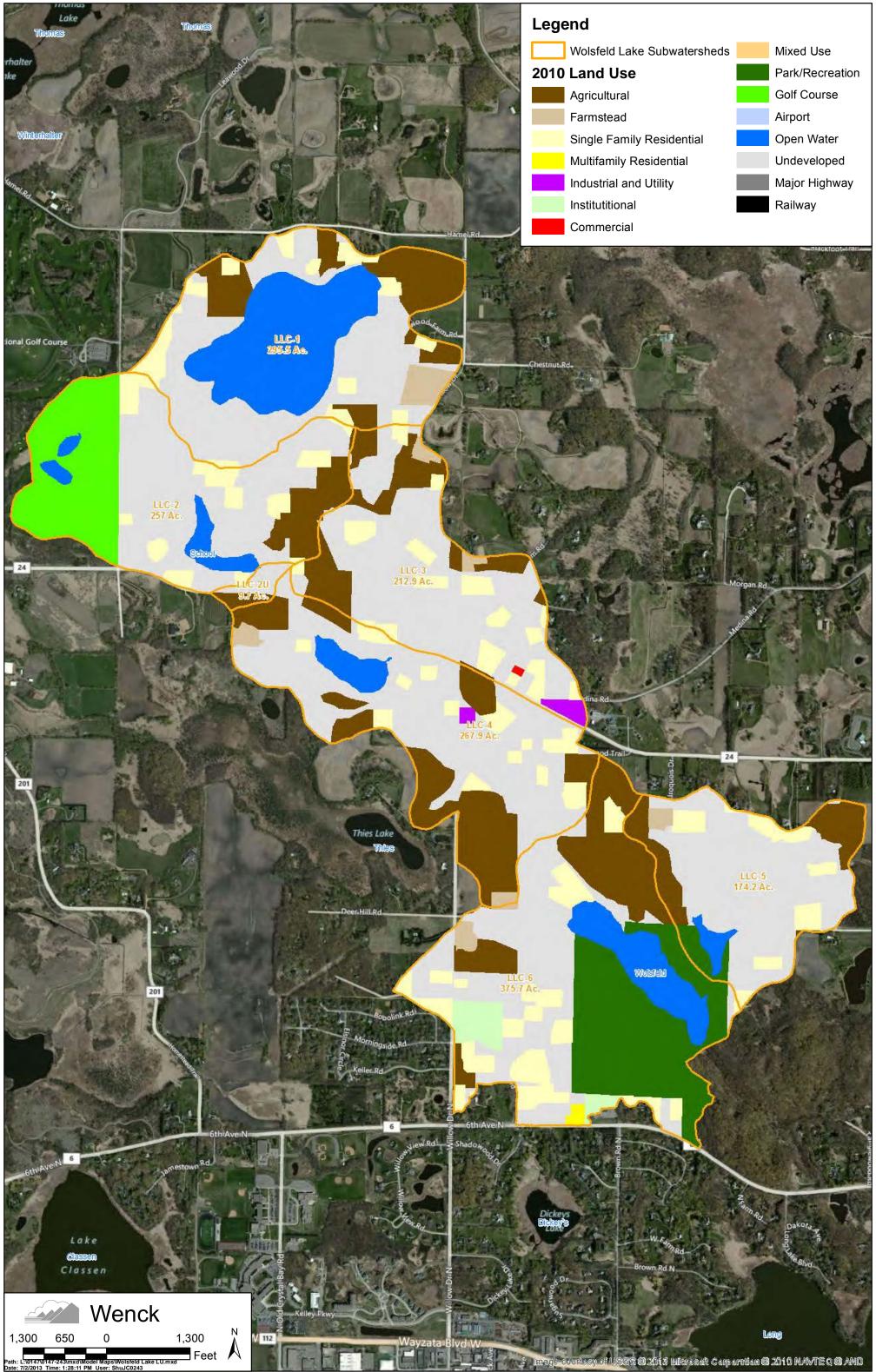

Gleason (Main Lake)

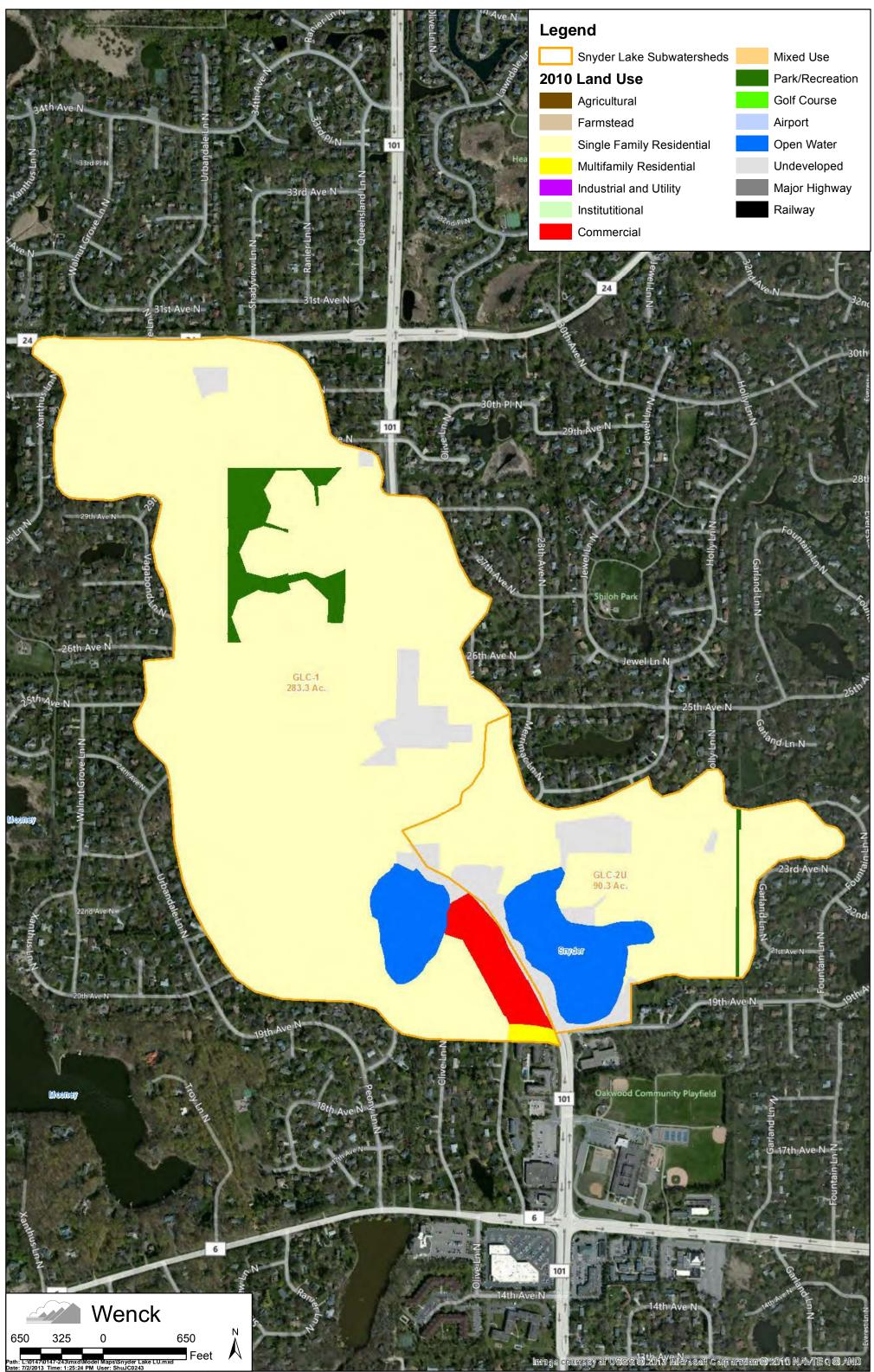


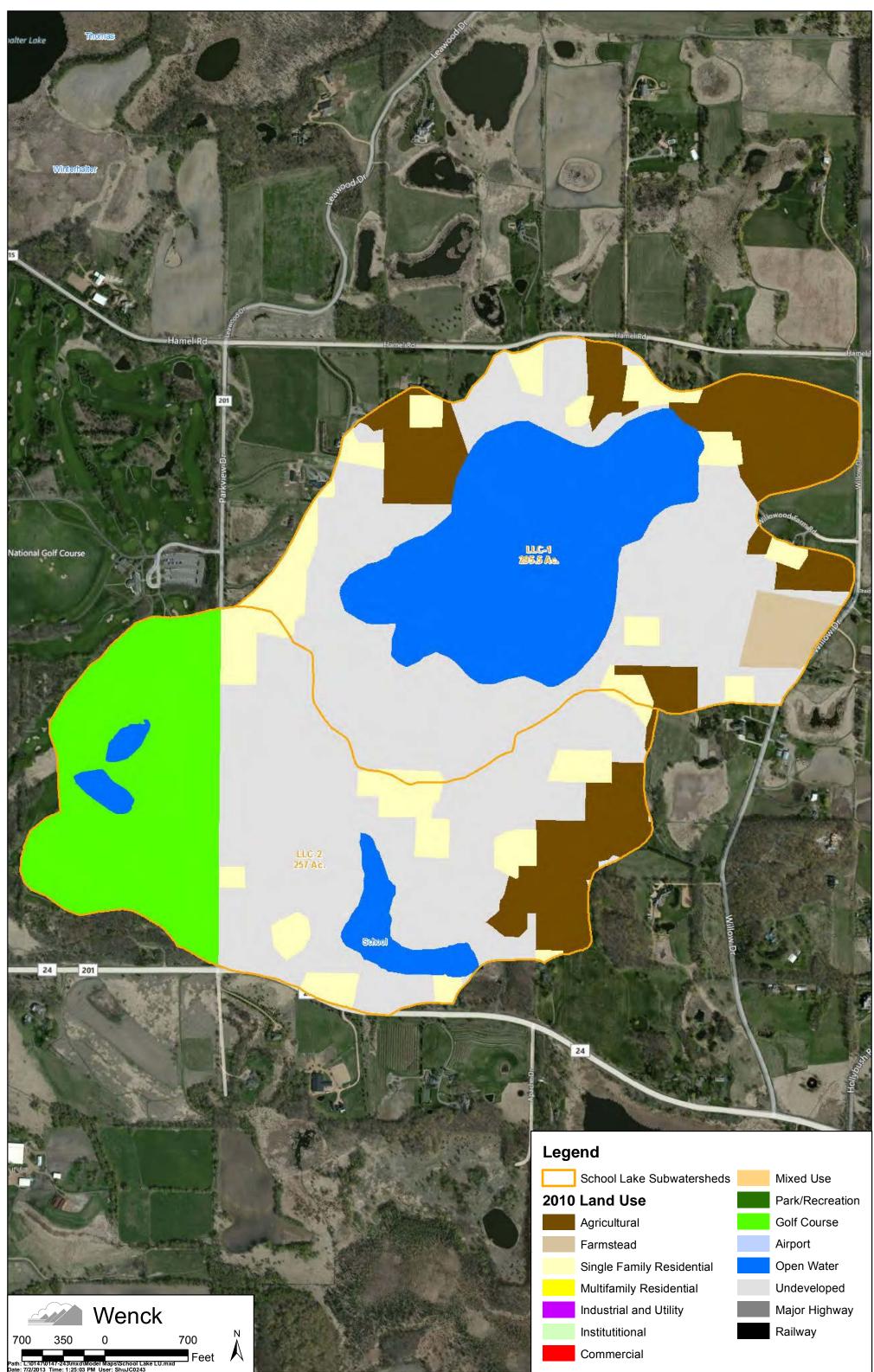


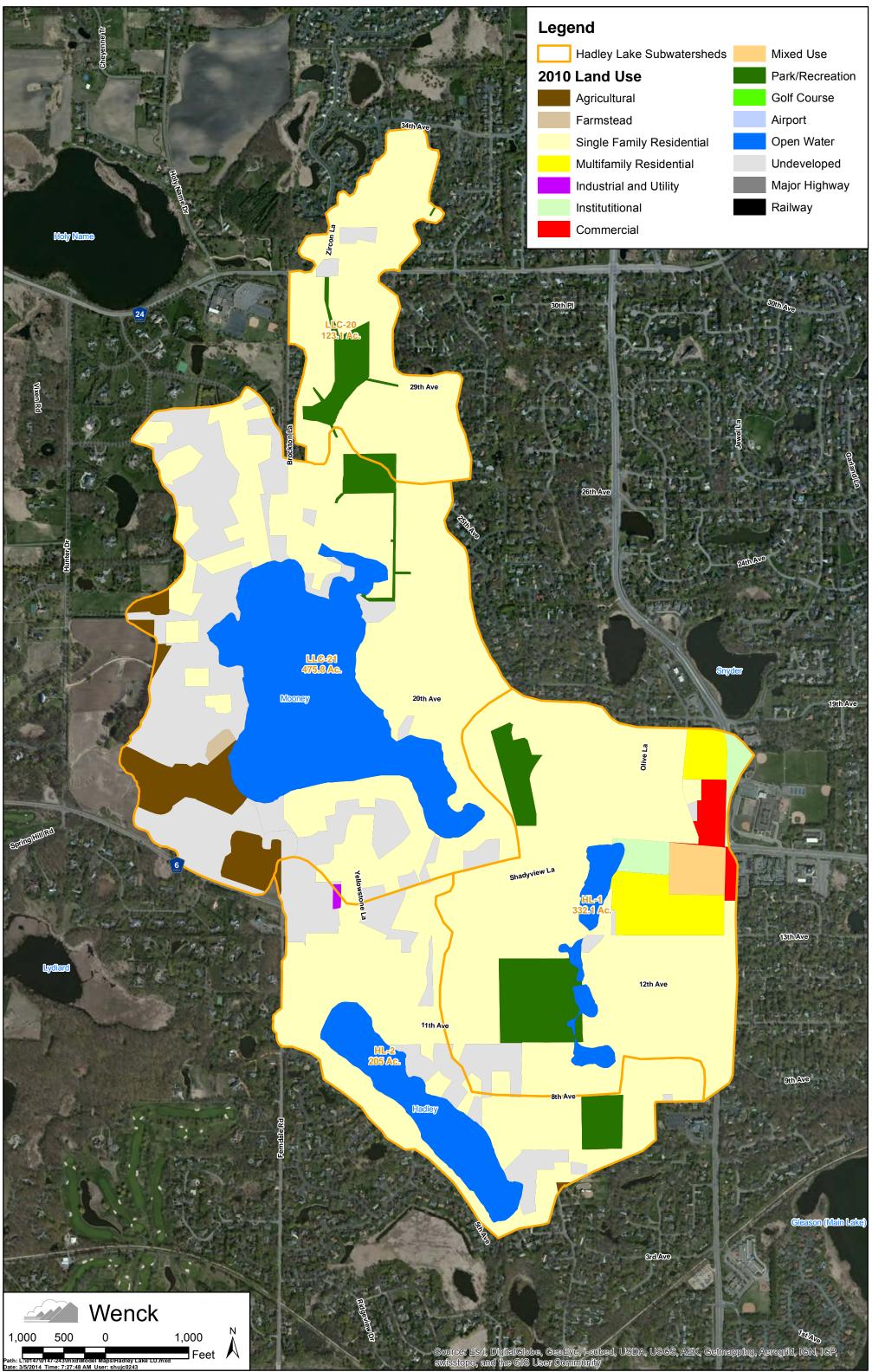


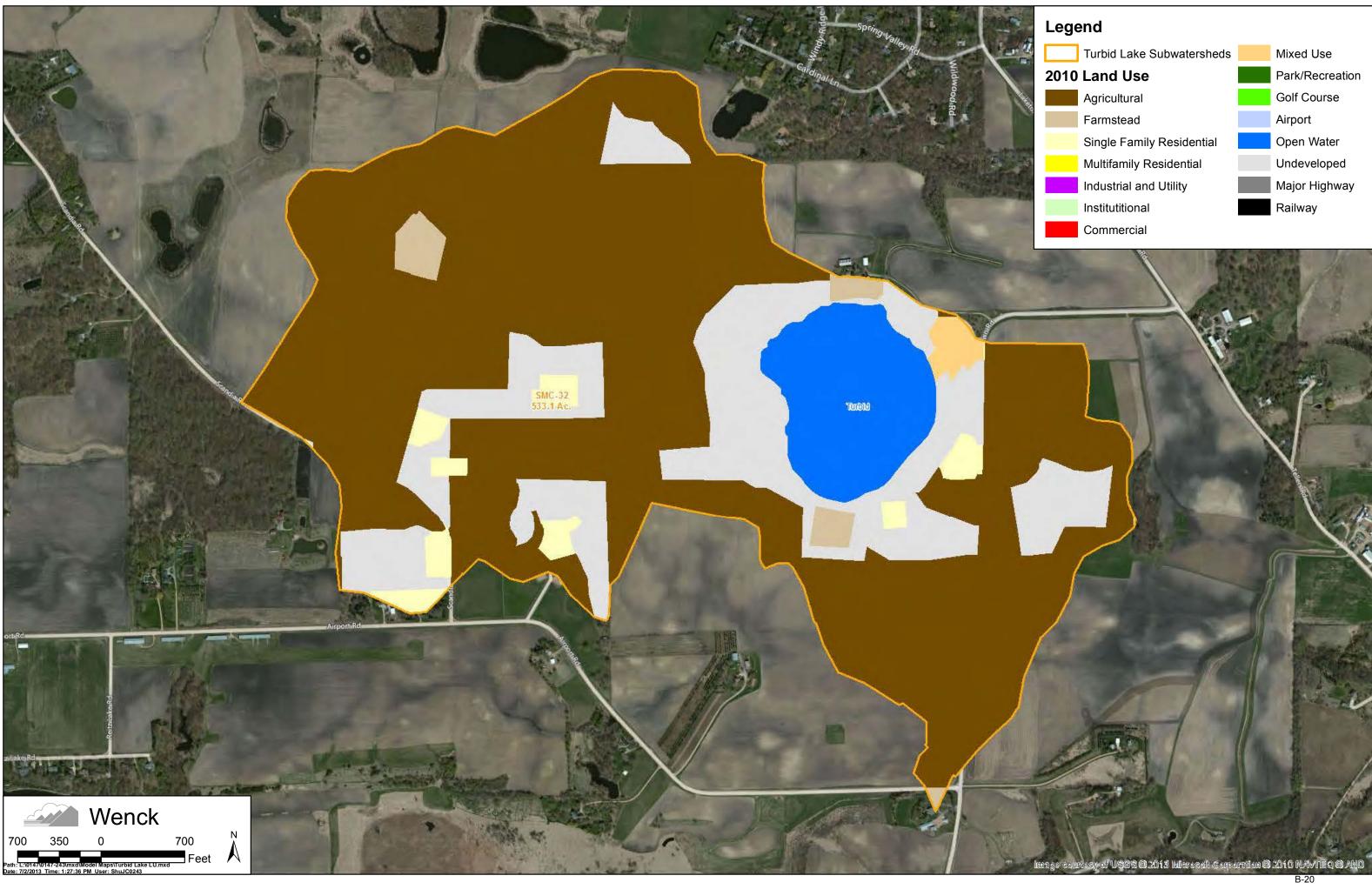


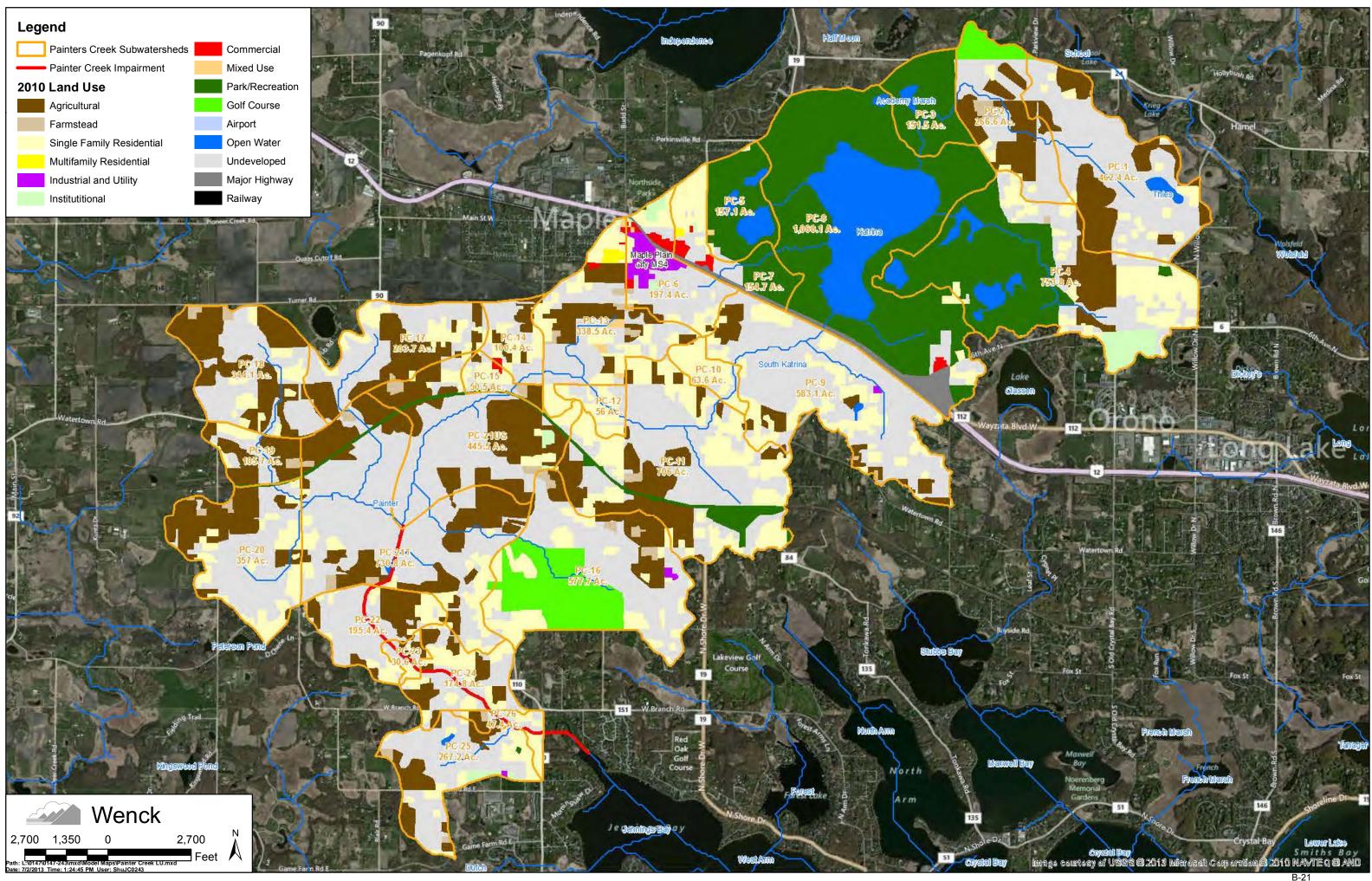

B-13

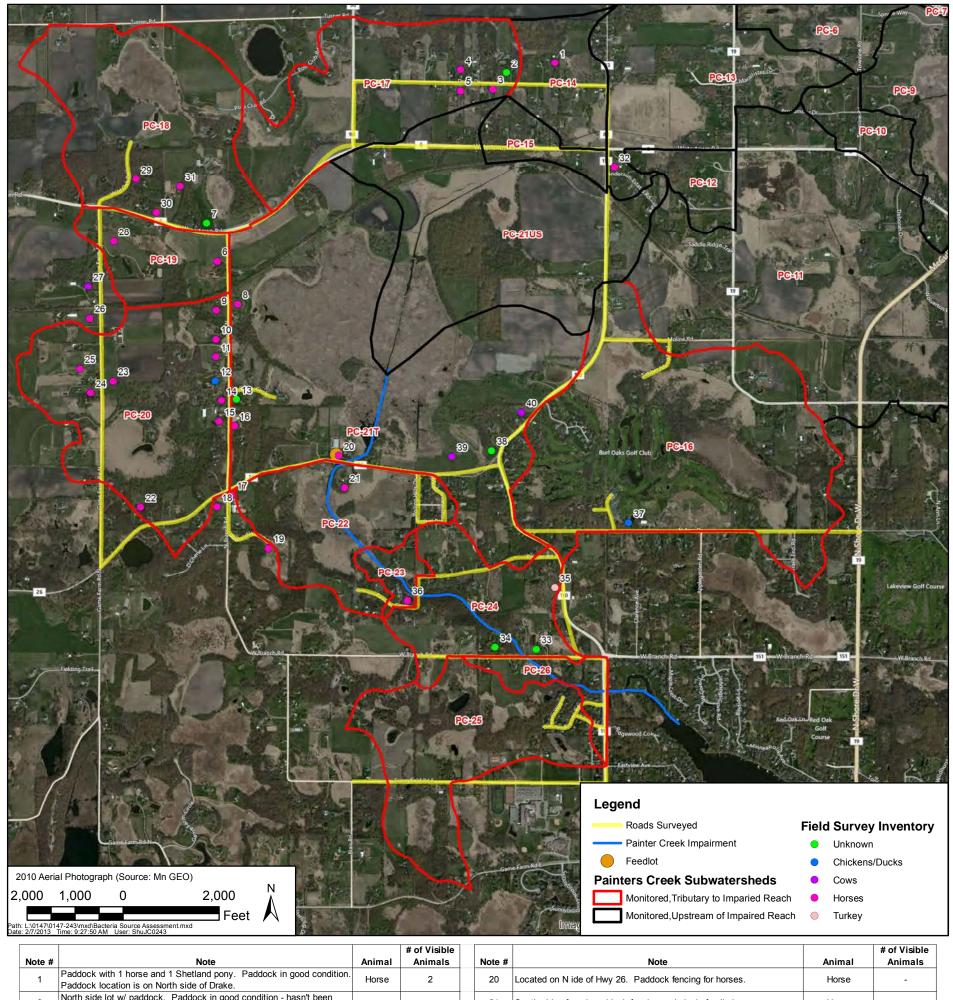












Appendix C

Painter Creek Bacteria Source Assessment

Note #	Note	Animai	Animais	Note #	Note	Animai	Animais
1	Paddock with 1 horse and 1 Shetland pony. Paddock in good condition. Paddock location is on North side of Drake.	Horse	2	20	Located on N ide of Hwy 26. Paddock fencing for horses.	Horse	-
2	North side lot w/ paddock. Paddock in good condition - hasn't been recently used. No horses visible	-	-	21	South side of road; paddock fencing and single family home.	Horse	-
3	South side of Drake. Two horses. Manure hasn't been spread in a while. Paddock is on ditch w/ low lying area. Wetland vegetation - dry right now.	Horse	2	22	Paddock but no horses visible.	Horse	-
4	1 horse visible in back of house. Difficult to see from road.	Horse	1	23	Electric paddock fencing in two locations. No horses visible but has been recently grazed.	Horse	-
5	Two paddocks visible on parcel. Not mowed or recently used. Horse trailer on yard.	Horse	-	24	3 horses visible	Horse	3
6	South on Ingerson from Cty 6. 5 horses in paddock on south side of cty 6, 4 in adjacent paddock. More horses visible in back by buildings. Paddock is in decent condition.	Horse	16	25	Paddocks w/ horse jumps. Hilly grade. 3 horses visible.	Horse	3

	0	Paddock is in decent condition.	10130	10		Taddecks w holse jumps. Thing grade. Thorses visible.	TIOISC	0
	7	Empty paddock in good condition.	-	-	26	4 horses visible on back of parcel. Front paddock not recently used.	Horse	4
	8	1 horse in paddock (surrounds single family home). Feedlot on steep slope adjacent to Painter Creek. Bare lot with visible excrement.	Horse	1	27	4 cows visible on parcel.	Cows	4
-	9	2 horses in paddock. Paddock in good condition.	Horse	2	28	4 horses visible on recently used paddock.	Horses	4
	10	3 horses in sloped paddock. Paddock in good condition.	Horse	3	29	Horse paddock - no visible animals.	Horse	-
	11	2 horses in a feeding area. Paddock is adjacent in wetland area on steep slope that drains to tributary.	Horse	2	30	Horses in paddock.	Horse	
	12	Chickens present. ~5 visible. Lot looks fenced for horses.	Chickens	5	31	Horses in paddock.	Horse	-
	13	Paddock fenced but doesn't appear to have been recently used.	-	-	32	Horse paddocks. Good condition. 1 horse visible.	Horse	1
	14	Heavily used paddock - not raked recently.	Horse	-	33	Fencing on parcel; likely pasture or paddock. No animals visible.	-	-
	15	Horse trailer. Lots of fenced paddocks adjacent to creek tributary. Mostly excluded by fence but right up to trib. Bare paddock with visible excrement. Lots of horse trailers/barns.	Horse	-	34	Paddock on parcel. Looks unused; no visible animals; deteriorated fencing.	-	-
	14	Visible horse excrement on Ingerson Road - Horse crossing signage.	Horse		35	10-12 wild turkeys on side of road	Turkey	12
	15	Visible horse excrement on Ingerson Road - Horse crossing signage.	Horse	-	36	Horse paddock with bare spots. No visible animals. Took two pictures of the creek on either side of the road.	Horse	-
	16	7 horses on small paddock. Decent condition. Several small fenced paddocks with very short grass.	Horse	7	37	Pond w/ ducks	Ducks	10
	17	Horse trailers, horse ring, hay visible. Multiple paddocks with 7+ horses visible.	Horse	7	38	Pastures/paddocks on parcel. Good condition. No visible animals but likely recently used. On the N side of the driveway is an older unused pasture.	-	-
	18	Paddock, no horse visible. Recently graded.	Horse	-	39	8 cows visible in pasture. Pasture is in good condition. Cows are directly adjacent to the wetland. One cow is in the wetland.	Cows	8
	19	Abandoned paddock; new home construction.	Horse	-	40	40 to 50 cows on pasture. Pasture is in good condition.	Cows	50
	Μ	INNEHAHA CREEK WATERSHED	DISTRI	ICT		Wenck	FEE	3 2013
	В	acteria Source Assessment Roadsic	de Surv	vey		Engineers - Scientists 1800 Pioneer Creek Center Business Professionals Maple Plain, MN 55359-0429 www.woodc.com 1.800.472,2222	Fig	jure 1

Groundwater Contribution Calculation Method

Groundwater Contribution Calculation Method

Contribution to the lake phosphorous load from groundwater (GW) was calculated as described below:

- The lake surface elevation was taken as the Ordinary High Water Level as listed on the DNR LakeFinder website (<u>http://www.dnr.state.mn.us/lakefind/index.html</u>). For lakes not listed on the website, the surface elevation was estimated from LiDAR/topographic mapping.
- 2) GW elevation beneath the listed lakes within Hennepin County was interpreted from the Hennepin County, MN Geologic Atlas published by the Minnesota Geological Survey, 1989. Surficial geology was also interpreted from the Geologic Atlas. GW elevation beneath Stone and East Auburn Lakes (Carver County) was interpreted from well logs of surficial aquifer wells drilled in the vicinity of the lake (data accessed from the County Well Index) and surficial geology was interpreted from the Carver County, MN Geologic Atlas published by the Minnesota Geological Survey, 2009.
- 3) Based on the elevation difference between the lake surface and groundwater and the surficial geology for each lake, each lake was identified as either a source or sink of water. The quantity of water contributed to or lost from each lake was determined using the following equation:

Q=KiA

Where Q is the flow, K is the hydraulic conductivity $(3.28 \times 10^{-11} \text{ ft/s for clay soils and } 3.28 \times 10^{-8} \text{ ft/s for other soil types})$, i is the difference in lake surface and GW elevation divided by 10 feet, and A is the lake area.

4) A mean groundwater concentration of 84 ug/L was used for lake response modeling as listed in Table A.17 of *Baseline Water Quality of Minnesota's Principal Aquifers: Twin Cities Metropolitan Region* (a MPCA publication).

Appendix E

Internal Load Calculation Method

Internal Load Calculation Method

Temperature and dissolved oxygen profiles were used to determine the volume of lake water under anoxic conditions. The volume of the lake with anoxic conditions was used to calculate an anoxic factor (Nürnberg 2004) normalized over the lake basin and reported as a number of days.

For lakes where temperature and DO data had not been collected, the average annual anoxic factor was predicted using the following equation (Nürnberg 2005):

 $AF_{pred} = -35.4 + 44.2 \log (TP) + 0.95 z/A^{0.5}$ where TP is the long term average total phosphorus concentration of the lake, z is the mean depth (m) and A the lake surface area in km².

	Anoxic Factor
Lake	Determination Method
Dutch	Temp/DO Profiles
East Auburn	Shallow Lakes Equation
Forest	Temp/DO Profiles
Gleason	Shallow Lakes Equation
Holy Name	Shallow Lakes Equation
Langdon	Temp/DO Profiles
Long	Temp/DO Profiles
Halsteds Bay	Temp/DO Profiles
Jennings Bay	Temp/DO Profiles
Stubbs Bay	Temp/DO Profiles
West Arm	Temp/DO Profiles
Mooney	Shallow Lakes Equation
Stone	Shallow Lakes Equation
Tamarack	Shallow Lakes Equation
Tanager	Temp/DO Profiles
Wolsfeld	Shallow Lakes Equation
Snyder	Shallow Lakes Equation
School	Shallow Lakes Equation
Hadley	Shallow Lakes Equation
Turbid	Shallow Lakes Equation

Table E.1 Anoxic factor determination method.

Internal load is calculated using the following equation:

Internal load = AF x RR

Where AF is the anoxic factor and RR is the release rate of phosphorus from the lake sediments. The anoxic factor is reported in days and the release rate is reported in mg/m²-day. Release rates can be obtained by collecting sediment cores from a lake and conducting an experiment in the lab to measure total phosphorus release rate from the sediment cores. For this project, lab determined release rates were only available for Langdon, East Auburn, Stone, and Turbid Lakes. Literature value release rates

were used for the remaining lakes. The literature value release rates that have been developed based on lake trophic state (Figure E.1) were used for the other lakes (Nürnberg 1997).

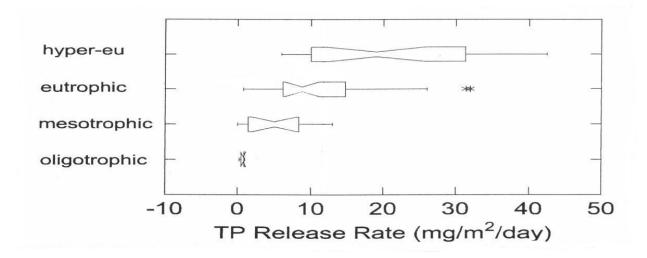


Figure E.1 Literature value phosphorus release rates (used for lake response modeling).

Release rates were then adjusted during calibration of the Canfield-Bachmann lake response model for each lake. The monitoring data quantified watershed loads. The quantified watershed loads, in-lake water quality, and periods of anoxia (modeled or predicted dependent on the lake) were used in combination with the Canfield-Bachmann lake response model to back-calculate sediment release rates.

Appendix F

Lake Response Model Results

- F-1 Average Loading Summary for Dutch Lake
- F-4 TMDL Loading Summary for Dutch Lake
- F-6 Average Loading Summary for East Auburn Lake
- F-9 TMDL Loading Summary for East Auburn Lake
- F-11 Average Loading Summary for Forest Lake
- F-14 TMDL Loading Summary for Forest Lake
- F-16 Average Loading Summary for Gleason Lake
- F-19 TMDL Loading Summary for Gleason Lake
- F-21 Average Loading Summary for Holy Name Lake
- F-24 TMDL Loading Summary for Holy Name Lake
- F-26 Average Loading Summary for Langdon Lake
- F-29 TMDL Loading Summary for Langdon Lake
- F-31 Average Loading Summary for Long Lake
- F-34 TMDL Loading Summary for Long Lake
- F-36 Average Loading Summary for Halsteds Bay
- F-39 TMDL Loading Summary for Halsteds Bay
- F-41 Average Loading Summary for Jennings Bay
- F-44 TMDL Loading Summary for Jennings Bay
- F-46 Average Loading Summary for Stubbs Bay
- F-49 TMDL Loading Summary for Stubbs Bay
- F-51 Average Loading Summary for West Arm
- F-54 TMDL Loading Summary for West Arm
- F-56 Average Loading Summary for Mooney Lake
- F-59 TMDL Loading Summary for Mooney Lake
- F-61 Average Loading Summary for Stone Lake
- F-64 TMDL Loading Summary for Stone Lake
- F-66 Average Loading Summary for Tamarack Lake
- F-69 TMDL Loading Summary for Tamarack Lake
- F-71 Average Loading Summary for Tanager Lake
- F-74 TMDL Loading Summary for Tanager Lake
- F-76 Average Loading Summary for Wolsfeld Lake
- F-79 TMDL Loading Summary for Wolsfeld Lake
- F-81 Average Loading Summary for Snyder Lake
- F-84 TMDL Loading Summary for Snyder Lake
- F-86 Average Loading Summary for School Lake
- F-89 TMDL Loading Summary for School Lake
- F-91 Average Loading Summary for Hadley Lake
- F-94 TMDL Loading Summary for Hadley Lake
- F-96 Average Loading Summary for Turbid Lake
- F-99 TMDL Loading Summary for Turbid Lake

Average L	oading Sun	nmary for	Dutch La	ake Ye	ars 2005-20	11
	Water Budge	ts		Phos	phorus Loading	
nflow from Draina	ge Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
	Ū	·	0		ζ, γ	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CDU02	901	6.3	476	192.5	1.0	249
2 Direct	666	5.1	284	103.9	1.0	80
3		••••			1.0	
4					1.0	
5					1.0	
Summation	1,567	5.8	760	159.4	-	330
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CDU02	Alea [ac] 901	# OI OYSICIIIS		Load / Oystern	[เม/สป]	[ID/ JI]
2 Direct	666	30	25%	6.1	0.1	46
3	000	00	2070	0.1	0.1	40
4						
5						
Summation	1566	30	25%			46
Inflow from Upstre						
	an Lakes			Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				[ug/L]	<u> </u>	[ID/yI]
2					1.0	
3				_	1.0	
Summation			0	-	1.0	0
Atmosphere						÷
Aunosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
	•	•				
[acre] 176	[in/yr] 29.3	[in/yr] 29.3	[ac-ft/yr]	[lb/ac-yr] 0.239	1.0	[lb/yr] 42
170		29.3 Dry-year total P	 doposition -		1.0	42
		ige-year total P				
		Vet-year total P				
	v		eering 2004)			
Groundwater						
Giounuwalei	Groundwater			Phosphorus	Calibration	
Lako Aroo			Net Inflow	Concentration		
Lake Area	Flux				Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
176	0.0		0.00	0	1.0	0
Internal						
				_	Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
176	44.3			2.50	1.0	174
	Net Discha		760		et Load [lb/yr] =	591

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Average Lake Response	Modeling for Dutch Lake)
	quation Parameters	S Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTR	ATION	
	as f(W,Q,V) from Canfield & B	Bachmann (1981)
D /	ן C _P =	= 1.00 []
$P = \frac{\Gamma_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	= 0.162 []
$ 1+C_P \times C_{CP} \times \frac{m_P}{2} \times T $	b =	= 0.458 []
	W (total P load = inflow + atm.) =	= 591 [lb/yr]
	Q (lake outflow) =	
	V (modeled lake volume) =	= 2,463 [ac-ft]
	T = V/Q =	= 3.2 [yr]
	$P_i = W/Q =$	
Model Predicted In-Lake [TP]		56.2 [ug/l]
Observed In-Lake [TP]		54.8 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
	P _{sed} (phosphorus sedimentation) =	= 475 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		116 [lb/yr]

Average	Average Load Reduction Table for Dutch Lake								
LOA	D		ELED IN-LAKE WA ALITY PARAMETE		TROPHIC STATE INDICES (Carlson, 1980)				
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI				
TION	LOAD		TATION	FLOW	[TP]				
[%]	[lb]	[ug/L]	[lb]	[lb]	[]				
0%	591	56	475	116	62.3				
5%	562	54	449	113	61.8				
10%	532	53	423	109	61.3				
15%	503	51	398	105	60.8				
20%	473	49	372	101	60.2				
25%	444	47	347	97	59.6				
30%	414	45	321	93	59.0				
35%	384	43	296	88	58.3				
40%	355	41	271	84	57.5				
45%	325	38	246	79	56.7				
50%	296	36	221	74	55.8				
55%	266	34	197	69	54.8				
60%	237	31	172	64	53.7				
65%	207	28	148	59	52.4				
70%	177	26	125	53	50.9				
75%	148	23	101	47	49.1				
80%	118	19	78	40	46.9				
85%	89	16	56	33	44.0				
90%	59	12	35	24	39.7				
95%	30	7	15	15	32.3				

	.oading Sur	-	Duich			
	Water Budge	ts		Phosp	horus Loadin	g
nflow from Draina	age Areas					
				Phosphorus	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CDU02	901	6.3	476	192.5	1.0	249
2 Direct	666	5.1	284	103.9	1.0	80
3					1.0	
4					1.0	
5 Summation	1.567	5.8	760	71.7	1.0 0.45	148
Summation	,	0.8	760	/1./	0.45	148
Failing Septic Sys					 / -	 -
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CDU02	900.6	22	001	<u> </u>	0.0	0.0
2 Direct	665.9	30	0%	6.1	0.0	0.0
3						
4 5						
5 Summation	1566.5	30	0%			0.0
		50	078			0.0
Inflow from Upstre	eann Lakes			Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Nome			•			
Name			[ac-ft/yr]	[ug/L]	<u>[]</u> 1.0	[lb/yr]
1 2				-	1.0	
3					1.0	
Summation	1		0	-	1.0	0
Atmosphere						
Autosphere				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
176	29.3	29.3	[ac=10 y1]	0.239	1.0	42
110		Dry-year total P	deposition =		1.0	16
		age-year total P				
		Vet-year total P				
			eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
176	0.0		0.00	0	1.0	0
110				-		
Internal					Reduction	
Internal	Anoxic Factor			Release Rate	Reduction Factor	Load
Internal Lake Area				Release Rate	Factor	Load
Internal	Anoxic Factor [days] 44.3			Release Rate [mg/m ² -day] 2.50		Load [lb/yr] 157

TMDL Lake Response Modeling		
Nodeled Parameter Equation	Parameters	Value [Units]
OTAL IN-LAKE PHOSPHORUS CONCENTRATION		(1001)
as f()	V,Q,V) from Canfield & Bach	
<i>P</i> /	C _P =	1.00 []
$P = \frac{I_i}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^b \right)$	C _{CB} =	0.162 []
$\left 1+C \times C \times \left(\frac{W_{P}}{2}\right) \times T \right $	b =	
$P = \left[\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V} \right)^b \times T \right) \right] \text{W (total)}$	⊃ load = inflow + atm.) =	347 [lb/yr]
	Q (lake outflow) =	
V	modeled lake volume) =	
. (T = V/Q =	
	$P_i = W/Q =$	
Model Predicted In-Lake [TP]	·	40.0 [ug/l]
Goal In-Lake [TP]		40.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
P _{sed} (phosph	norus sedimentation) =	264 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		83 [lb/yr]

Average Lo			East Aul		2008, 2010	
	Water Budge	ts		Phos	phorus Loading	g
nflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 East Auburn	214	12.9	230	32.4	1.0	20
2 SMC-26	71	9.3	55	35.1	1.0	5
3 SMC-15	146	7.3	89	1,122.0	1.0	271
4 SMC-25	118	9.7	96	1,582.1	1.0	413
5 SMC-11	342	10.0	285	807.9	1.0	627
Summation	891	10.2	755			1,337
ailing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 East Auburn	214	3	0	6	0.0	5
2 SMC-26	71		25%	6.1		
3 SMC-15	146		25%	6.1		
4 SMC-25	118		25%	6.1		
5 SMC-11	342	1	25%	6.1	0.0	2
Summation	891	4				6
nflow from Upstre	am Lakes					
			Discharge	Estimated P	Calibration	اممط
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Carl Krey			224	28.5	1.0	17
2 Church			250	94.5	1.0	64
3 Kelzer			17 735	35.0	1.0	2 77
3 Stieger				38.6	1.0	
4 Wassermann			1,849	72.2	1.0	363
3 Sunny Summation			1,145 <u>4,220</u>	50.0 53.1	1.0	156 680
			4,220	55.1		000
Atmosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
148	30.7	30.7	0.00	0.24	1.0	35
140		Dry-year total P		0.222	1.0	00
	Avera	age-year total P Vet-year total P	deposition =	0.239 0.259		
Groundwater			2007)			
. Juna Multi	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
148	0.0		0	0	1.0	0
nternal			-	-		-
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[km ²]	[days]			[mg/m ² -day]	[]	[lb/yr]
0.60	[~~]0]		Oxic	[1.0	[.~,]
0.60	44.4		Anoxic	7.0	0.1	41
Summation						41
	Not Diacha	rge [ac-ft/yr] =	4,975	Mat	Load [lb/yr] =	2,099

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Average Lake Response I	Nodeling for East A	uburn	
	ation Param	eters V	alue [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRA	TION		
	as f(W,Q,V) from Canfie	ld & Bachmann	n (1981)
		C _P =	2.29 []
$P = \frac{P_i}{2}$		C _{CB} = C).162 []
$\left[1+C\times C\times \left(\frac{W_p}{W_p}\right)^{\circ}\times T\right]$		b = 0).458 []
$P = \frac{V_{I}}{\left(1 + C_{P} \times C_{CB} \times \left(\frac{W_{P}}{V}\right)^{b} \times T\right)}$	W (total P load = inflow + at	tm.) = 2	2,099 [lb/yr]
			,975 [ac-ft/yr]
	V (modeled lake volu		,781 [ac-ft]
		,	0.36 [yr]
	P _i = V		55.1 [µg/l]
Model Predicted In-Lake [TP]		49.4	[ug/l]
Observed In-Lake [TP]		49.4	[ug/l]
PHOSPHORUS SEDIMENTATION RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	×V		
P _s	 _{sed} (phosphorus sedimentati	ion) = 1,43 ²	1 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			668 [lb/yr]

	LOAD	MODELED IN-LAKE WATER QUALITY PARAMETERS	
REDUC-	NET	NET	[TP]
TION	LOAD	LOAD	
[%]	[kg]	[lb]	[ug/L]
0%	952	2,099	49.4
5%	904	1,994	47.6
10%	857	1,889	45.9
15%	809	1,784	44.1
20%	762	1,679	42.3
25%	714	1,574	40.4
30%	666	1,469	38.5
35%	619	1,364	36.5
40%	571	1,259	34.5
45%	524	1,154	32.4
50%	476	1,049	30.3
55%	428	945	28.1
60%	381	840	25.8
65%	333	735	23.4
70%	286	630	20.8
75%	238	525	18.2
80%	190	420	15.3
85%	143	315	12.3
90%	95	210	8.9
95%	48	105	5.0

	oading Sur	-	Last Aut		-	
	Water Budge	ts		Phos	ohorus Loadin	g
nflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 East Auburn	214	12.9	230	32.4	1.0	20
2 SMC-26	71	9.3	55	35.1	1.0	5
3 SMC-15	146	7.3	89	740.5	0.66	179
4 SMC-25	118	9.7	96	791.1	0.50	207
5 SMC-11	342	10.0	285	751.3	0.93	583
Summation	891	10.2	755		0.00	994
Failing Septic Syst					Į	
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 East Auburn	214	3	0	6	0.0	0
2 SMC-26	71	-	0%	6.1		-
3 SMC-15	146		0%	6.1		
4 SMC-25	118		0%	6.1		
5 SMC-11	342		0%	6.1		
Summation	891	3				0
Inflow from Upstre	am Lakes					
			Discharge	Estimated P Concentration	Reduction Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Carl Krey			224	28.5	1.0	17
2 Church			250	40.0	0.42	27
3 Kelzer			17	35.0	1.0	2
3 Stieger 4 Wassermann			735 1,849	38.6 40.0	1.0 0.55	77 201
3 Sunny			1,049	50.0	1.0	156
Summation			4,220	38.7	1.0	480
Atmosphere						
Lake Area	Precipitation	Evaporation	Net Inflow	Aerial Loading Rate	Reduction Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
148	30.7	30.7	0.00	0.24	1.0	35
	Avera	Dry-year total P age-year total P Wet-year total P (Barr Engin	deposition =	0.222 0.239 0.259		
Groundwater						
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
148	0.0		0	0	1.0	0
Internal					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[km ²]	[days]			[mg/m ² -day]	[]	[lb/yr]
0.60	[] 2]		Oxic	[[]	1.0	[
0.60	44.4		Anoxic	7.0	0.1	41
Summation						41
	Not Discha	rge [ac-ft/yr] =	4,975	Net	Load [lb/yr] =	1,551

TMDL Lake Response I	Modeling for East Aubur	m	
•	ation Parameters	Value	e [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT	ION		
	as f(W,Q,V) from Canfield & B	achmann (19	81)
	C _P =	2.29	9 []
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	0.162	2 []
$1 + C \times C \times \left(\frac{W_P}{W_P}\right) \times T$	b =	0.458	
$\left \right\rangle \left $	W (total P load = inflow + atm.) =	1,550.8	8 [lb/yr]
	Q (lake outflow) =		5 [ac-ft/yr]
	V (modeled lake volume) =	1,78	1 [ac-ft]
	T = V/Q =		6 [yr]
	$P_i = W/Q =$		6 [µg/l]
Model Predicted In-Lake [TP]		40.0	[ug/l]
Goal In-Lake [TP]		40.0	[ug/l]
PHOSPHORUS SEDIMENTATION RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$\times V$		
P,	sed (phosphorus sedimentation) =	1,010	[lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =		54 ⁻	1 [lb/yr]

Average L	.oading Sur		Forest L		2005-2011	
	Water Budge	ts		Phosp	ohorus Loading	9
nflow from Draina	age Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CFO01	325	9.2	249	203.7	1.0	138
2 Direct	529	5.1	226	104.0	1.0	64
3					1.0	
4					1.0	
5					1.0	
Summation	n 855	6.7	474	156.3		202
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CFO01	325	0				
2 Direct	529	0				
3						
4						
5						
Summation	n 855	0				0
Inflow from Upstro	eam Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	0
2				-	1.0	
3				-	1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
90	31.2	31.2	21	0.239	1.0	21
		Dry-year total P				
		ige-year total P		0.239		
	V	Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
90	0.0		0	0	1.0	0
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
90	43.5			3.00	1.0	104
	Not Diacha	rge [ac-ft/yr] =	496	Not	Load [lb/yr] =	327

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Average Lake Res	Average Lake Response Modeling for Forest Lake					
Modeled Parameter	Equation	Parameters	Value [Units]			
TOTAL IN-LAKE PHOSPHORUS CO	-					
$P_{\rm e}$		',Q,V) from Canfield & Bac	hmann (1981)			
$P = \frac{I_i}{\ell}$	$(\mathbf{W})^b$	C _P =	1.00 []			
$P = \frac{1}{\left(1 + C_P \times C_{CB}\right)}$	$\times \left(\frac{W_P}{U} \right) \times T$		0.162 []			
		b =	0.458 []			
	W (total P	load = inflow + atm.) =	327 [lb/yr]			
		Q (lake outflow) =	475 [ac-ft/yr]			
	V (m	odeled lake volume) =				
	·	T = V/Q =	2.6 [yr]			
		$P_i = W/Q =$	253.6 [ug/l]			
Model Predicted In-Lake [TP]			57.3 [ug/l]			
Observed In-Lake [TP]			58.7 [ug/l]			
PHOSPHORUS SEDIMENTATION R	ATE					
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b$	$\times [TP] \times V$					
	P _{sed} (phospho	orus sedimentation) =	253 [lb/yr]			
PHOSPHORUS OUTFLOW LOAD						
W-P _{sed} =			74 [lb/yr]			

Average	Average Load Reduction Table for Forest Lake					
LOA	LOAD		LED IN-LAKE WATE PARAMETERS	TROPHIC STATE INDICES (Carlson, 1980)		
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI	
TION	LOAD		TATION	FLOW	[TP]	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	
0%	327	57	253	74	62.5	
5%	311	55	239	72	62.1	
10%	295	54	225	69	61.6	
15%	278	52	212	67	61.0	
20%	262	50	198	64	60.4	
25%	245	48	184	61	59.8	
30%	229	45	170	59	59.2	
35%	213	43	157	56	58.5	
40%	196	41	143	53	57.7	
45%	180	39	130	50	56.9	
50%	164	36	117	47	56.0	
55%	147	34	104	44	54.9	
60%	131	31	91	40	53.8	
65%	115	28	78	37	52.4	
70%	98	26	65	33	50.9	
75%	82	23	53	29	49.1	
80%	65	19	41	25	46.8	
85%	49	16	29	20	43.8	
90%	33	12	18	15	39.5	
95%	16	7	8	9	31.8	

TMDL	Loading Sur	nmary for	Forest L	ake		
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Drair	nage Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CFO01	325	9.2	249	204	1.0	138
2 Direct	529	5.1	226	104.0	1.0	64
3					1.0	
4					1.0	
5					1.0	
Summatic	on 855	6.7	474	70.3	0.45	91
Failing Septic Sy	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CFO01	325	0		Loud / Oyotom	[10/00]	[10,]1]
2 Direct	529	0				
3		-				
4						
5						
Summatic	on 855	0				0
Inflow from Upst	ream Lakes					
				Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				[\$,5,-] _	1.0	0
2				-	1.0	-
3				-	1.0	
Summatic	on		0	-		0
Atmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
90	31.2	31.2	21	0.239	1.0	21
		Dry-year total P				
		age-year total P	•			
		Vet-year total P		0.259		
			eering 2004)			
Groundwater		<u>_</u>	- /			
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
90	0.0		0	0	1.0	0
Internal			-	-		-
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
[acre]	[uays] 43.5			3.00	0.74	[ID/yI] 77
30			400		-	
	Net Discha	rge [ac-ft/yr] =	496	Net	Load [lb/yr] =	189

TMDL Lake Response Modeling for Forest Lake					
Modeled Parameter Equation		Value [Units]			
TOTAL IN-LAKE PHOSPHORUS CONCENTRATION		(100.1)			
$P = \frac{P_i}{2}$	as f(W,Q,V) from Canfield & Ba	· · · ·			
$P = \frac{1}{2} \left(\frac{W}{2} \right)^{b}$	C _P =	1.00 []			
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	0.162 []			
	b =	0.458 []			
W	(total P load = inflow + atm.) =	189 [lb/yr]			
	Q (lake outflow) =	475 [ac-ft/yr]			
	V (modeled lake volume) =	1,228 [ac-ft]			
	T = V/Q =				
	$P_i = W/Q =$	147 [ug/l]			
Model Predicted In-Lake [TP]		40.0 [ug/l]			
Goal In-Lake [TP]		40.0 [ug/l]			
PHOSPHORUS SEDIMENTATION RATE					
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$					
P _{sed} (p	- hosphorus sedimentation) =	138 [lb/yr]			
PHOSPHORUS OUTFLOW LOAD					
W-P _{sed} =		52 [lb/yr]			

Average l	Loading Sur		Gleason		2005-2011	
	Water Budge	ts		Phosp	horus Loading	
Inflow from Drain	age Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CGL03	1,329	4.0	443	157.3	1.0	190
2 Direct	734	5.1	313	159.1	1.0	135
3					1.0	
4					1.0	
5					1.0	
Summation	n 2,063	4.4	756	158.0		325
Failing Septic Sys	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CGL03	1,329	0	- L	- ,		
2 Direct	734	0				
3						
4						
5						
Summation	n 2,063	0				0
Inflow from Upstr	eam Lakes					
				Estimated P	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Snyder Lake	374	4.0	125	157.4	1.0	53
2				-	1.0	
3				-	1.0	
Summation	n		125	157.4		53
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
169	31.9	31.9	0	0.239	1.0	40
		Dry-year total P		0.222		
		age-year total P		0.239		
	V	Vet-year total P		0.259		
<u> </u>		(Barr Engin	eering 2004)			
Groundwater			-			
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
169	7.3		103	84.0	1.0	23
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
169	55.0			5.00	1.0	414
			983	Net		

¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Average Lake Response Mod	leling for Gleason Lal	ke
Modeled Parameter Equation		Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRATION		
- P /] as f(W,Q,V) from Canfield & Ba	achmann (1981)
$P = \frac{I_i}{(M_i)^b}$	C _P =	1.00 []
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	0.162 [] 0.458 []
	b =	0.458 []
V	(total P load = inflow + atm.) =	856 [lb/yr]
	Q (lake outflow) =	984 [ac-ft/yr]
	V (modeled lake volume) =	1,009 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	320.1 [ug/l]
Model Predicted In-Lake [TP]		96.8 [ug/l]
Observed In-Lake [TP]		97.8 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
P _{sed} (phosphorus sedimentation) =	597 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		259 [lb/yr]

Average Load Reduction Table for			Gleaso	on Lake			
LOA	D	MODELED IN-LAKE WATER QUALITY PARAMETERS					TROPHIC STATE INDICES (Carlson, 1980) FOR MODELED
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI		
TION	LOAD		TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	856	97	597	259	70.1		
5%	814	93	563	250	69.6		
10%	771	90	530	241	69.1		
15%	728	87	496	232	68.5		
20%	685	83	463	222	67.9		
25%	642	79	430	213	67.2		
30%	599	76	397	203	66.5		
35%	557	72	364	192	65.8		
40%	514	68	332	182	65.0		
45%	471	64	300	171	64.1		
50%	428	60	268	160	63.1		
55%	385	55	237	148	62.0		
60%	343	51	206	136	60.8		
65%	300	46	176	124	59.4		
70%	257	41	147	110	57.8		
75%	214	36	118	96	55.8		
80%	171	30	90	81	53.4		
85%	128	24	63	65	50.2		
90%	86	18	38	47	45.6		
95%	43	10	16	27	37.5		

TMDL L	oading Sur	nmary for	Gleason	Lake		
	Water Budge	ts		Phosp	horus Loading	I
Inflow from Draina	age Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CGL03	1,329	4.0	443	157.3	1.0	190
2 Direct	734	5.1	313	159.1	1.0	135
3					1.0	
4					1.0	
5					1.0	
Summation	2,063	4.4	756	68.0	0.43	140
Failing Septic Sys						
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CGL03	1,329	0	r andre [70]	Loud / Oystern	[ib/do]	[10/ 91]
2 Direct	734	0				
3		Ū				
4						
5						
Summation	2,063	0				0
Inflow from Upstro	,					
				Estimated P	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Snyder Lake	374	4.0	125	<u>60.0</u>	1.0	20
2	011	1.0	120	-	1.0	20
3				-	1.0	
Summation	1		125	60.0	_	20
Atmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
169	31.9	31.9	0	0.239	1.0	40
		Dry-year total P				-
		ge-year total P				
		Vet-year total P	•	0.259		
		•	eering 2004)			
Groundwater			_ /			
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
169	7.3		103	84.0	1.0	23
Internal				0.10		
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]				[mg/m ² -day]	[]	[lb/yr]
[acrej 169	[days] 55.0			[ing/in -day] 5.00	0.50	207
100		rao [oo 44] -	000			
	Net Discha	rge [ac-ft/yr] =	983	Net	Load [lb/yr] =	431

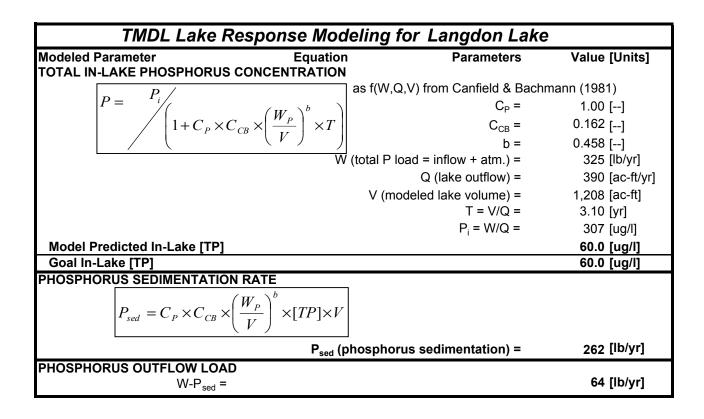
TMDL Lake Response Mode	ling for Gleason Lake	;
Modeled Parameter Equation TOTAL IN-LAKE PHOSPHORUS CONCENTRATION	Parameters	Value [Units]
	as f(W,Q,V) from Canfield & Bacl	nmann (1981)
		1.00 []
P_{i}	C _{CB} =	0.162 []
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)} W$	b =	0.458 []
$ + C_P \times C_{CB} \times \frac{n_P}{n_P} \times T W$	(total P load = inflow + atm.) =	431 [lb/yr]
	Q (lake outflow) =	984 [ac-ft/yr]
	V (modeled lake volume) =	1,009 [ac-ft]
		1.03 [yr]
	$P_i = W/Q =$	161.1 [ug/l]
Model Predicted In-Lake [TP]		60.0 [ug/l]
Goal In-Lake [TP]		60.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
P _{sed} (pl	nosphorus sedimentation) =	270 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		161 [lb/yr]

Average L	oading Sur	-	HOIY Na		2006-2008	
	Water Budge		Phos	phorus Loadin	g	
Inflow from Draina	ge Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed Total	388	5.1	166	159.2	1.0	[lb/yr] 72
2					1.0	
3					1.0	
4					1.0	
5					1.0	
Summation	388	5.1	166	159.1		72
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	388	0			[· ···]	L
2						
3						
4						
5						
Summation	388	0				0
Inflow from Upstre	eam Lakes					
i				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	0
2				-	1.0	
3				-	1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
70	27.3	27.3	0	0.239	1.0	17
		Dry-year total P				
		ge-year total P				
	V	Vet-year total P				
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
70	0.0		0	0	1.0	0
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
						File / , 1
[acre]	days			[mg/m ⁻ -day]	[]	ID/yri
[acre] 70	[days] 61.0			[mg/m ² -day] 9.50	[] 1.0	[lb/yr] 362

Average Lake Response	Modelin	g for Holy Name L	.ake
	uation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTR/	ATION		
	as f(\	N,Q,V) from Canfield & Ba	chmann (1981)
P /		C _P =	1.00 []
$P = \frac{P_{i}}{\left(1 + C_{P} \times C_{CB} \times \left(\frac{W_{P}}{V}\right)^{b} \times T\right)}$		C _{CB} =	0.162 []
$ + C_P \times C_{CB} \times \frac{m_P}{m} \times T $		b =	0.458 []
	W (total P	load = inflow + atm.) =	450 [lb/yr]
	·	Q (lake outflow) =	166 [ac-ft/yr]
	V (n	nodeled lake volume) =	340 [ac-ft]
	, ,	T = V/Q =	
		$P_i = W/Q =$	1,000.1 [ug/l]
Model Predicted In-Lake [TP]			150.1 [ug/l]
Observed In-Lake [TP]			149.5 [ug/l]
PHOSPHORUS SEDIMENTATION RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [Th]$	$P] \times V$		
P	_{sed} (phosph	orus sedimentation) =	383 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			68 [lb/yr]

Averag	Average Load Reduction Table for Holy Name Lake						
LO	AD	MODELED IN-LAKE WATER QUALITY PARAMETERS			TROPHIC STATE INDICES (Carlson 1980)		
REDUC-TION	NET LOAD	[TP]	P SEDIMEN-	TP OUT-	TSI		
			TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	450	150	383	68	76.4		
5%	428	145	362	65	76.0		
10%	405	141	342	63	75.5		
15%	383	136	322	61	75.0		
20%	360	131	301	59	74.4		
25%	338	126	281	57	73.9		
30%	315	121	261	54	73.2		
35%	293	115	241	52	72.6		
40%	270	109	221	49	71.9		
45%	248	104	201	47	71.1		
50%	225	98	181	44	70.2		
55%	203	91	162	41	69.2		
60%	180	85	142	38	68.2		
65%	158	78	123	35	66.9		
70%	135	70	103	32	65.5		
75%	113	62	84	28	63.8		
80%	90	54	66	24	61.7		
85%	68	44	48	20	58.9		
90%	45	34	30	15	54.8		
95%	23	21	13	9	47.7		

TMDL	Loading Sur	nmary for	Holy Na	me Lake		
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Drain	nage Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Watershed Total	388	5.1	166	159.2	1.0	72
2					1.0	
3					1.0	
4					1.0	
5					1.0	
Summatio		5.1	166	31.8	0.20	14
Failing Septic Sy	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	388	0				
2						
3						
4						
5						
Summatio		0				0
Inflow from Upst	ream Lakes					
				Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	0
2				-	1.0	
3			0	-	1.0	0
Summatio	n		0	-		0
Atmosphere						
	D			Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
70	27.3	27.3	0 doposition –	0.239	1.0	17
		Dry-year total P				
		age-year total P	•			
	v	Vet-year total P	eering 2004)	0.259		
Oue un disse te a			cenny 2004)			
Groundwater	Crousdurate			Dhoorborie	Doduction	
Lake Area	Groundwater		Not Inflow	Phosphorus Concentration	Reduction	Lood
Lake Area	Flux		Net Inflow		Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
70	0.0		0	0	1.0	0
Internal					Devis (
				Dalassa D. (Reduction	1 1
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
70	61.0			9.50	0.21	75
	Net Discha	rge [ac-ft/yr] =	166	Net	Load [lb/yr] =	106


TMDL Lake Response	Modeling for Holy I	Name Lak	9
-		neters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRA			(()
	as f(W,Q,V) from Can	field & Bachma	ann (1981)
$P_{\mu} = P_{i}/$		C _P =	1.00 []
$P = \sqrt{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$		C _{CB} =	0.162 []
$ 1+C_p \times C_{CB} \times \frac{1}{V} \times T $		b =	0.458 []
	W (total P load = inflow + a	atm.) =	106 [lb/yr]
	Q (lake out	flow) =	166 [ac-ft/yr]
	V (modeled lake vol	ume) =	340 [ac-ft]
		V/Q =	
	P _i =	W/Q =	235.0 [ug/l]
Model Predicted In-Lake [TP]			60.0 [ug/l]
Goal In-Lake [TP]			60.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$P] \times V$		
P	_{sed} (phosphorus sedimenta	tion) =	79 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			27 [lb/yr]

Average L	oading Sul.	-	Langdor		2009-2011	
	Water Budge	ets		Phosp	horus Loading	
Inflow from Draina	age Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1						
2 Direct	913	5.1	390	158.9	1.0	168
3					1.0	
4					1.0	
5					1.0	
Summation		5	390	158.8		168
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1						
2 Direct	913	0				
3						
4						
5	040	0				0
Summation		0				0
Inflow from Upstre	eam Lakes					
			Diasharra	Estimated P	Calibration	المعط
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2				-	1.0 1.0	0
3				-	1.0	
Summation	1		0	-	1.0	0
Atmosphere			-			Ť
Aunosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]		[lb/yr]
142	31.4	31.4		0.239	[] 1.0	<u>[10/y1]</u> 34
174		Dry-year total P	·	0.222	1.0	07
		age-year total P		0.239		
		Vet-year total P		0.259		
			eering 2004)			
Groundwater		X				
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
142	0.0		0	0	1.0	0
Internal					•	
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
142	15.5			9.70	1.0	191
		rge [ac-ft/yr] =	390		Load [lb/yr] =	393
NOTES			000	INEL		000

Average Lake Resp	onse Modelin	g for Langdon Lake	
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CON	CENTRATION		
$P_{\rm e}$		W,Q,V) from Canfield & Bachr	mann (1981)
$P = \prod_{i=1}^{n} P_{i}$	$(W)^b$		1.00 []
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times C_{CB}\right)}$	$\left \frac{W_{P}}{W}\right \times T$		0.162 []
		b =	0.458 []
	W (tota	P load = inflow + atm.) =	393 [lb/yr]
		Q (lake outflow) =	390 [ac-ft/yr]
	V	(modeled lake volume) =	1,208 [ac-ft]
		T = V/Q =	3.10 [yr]
		$P_i = W/Q =$	371 [ug/l]
Model Predicted In-Lake [TP]			67.6 [ug/l]
Observed In-Lake [TP]			64.7 [ug/l]
PHOSPHORUS SEDIMENTATION RA	ГЕ		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)$	$\left \right)^{b} \times [TP] \times V$		
	P _{sed} (phosp	horus sedimentation) =	322 [lb/yr]
PHOSPHORUS OUTFLOW LOAD			
W-P _{sed} =			72 [lb/yr]

Average Load Reduction Table for Langdon Lake						
LOA	D		DELED IN-LAKE QUALITY PARAME	TROPHIC STATE INDICES (Carlson, 1980)		
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI	
TION	LOAD		TATION	FLOW	[TP]	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	
0%	393	68	322	72	64.9	
5%	374	65	304	69	64.4	
10%	354	63	287	67	63.9	
15%	334	61	270	65	63.4	
20%	315	59	252	62	62.9	
25%	295	56	235	60	62.3	
30%	275	54	218	57	61.7	
35%	256	51	201	55	61.0	
40%	236	49	184	52	60.2	
45%	216	46	167	49	59.4	
50%	197	43	151	46	58.5	
55%	177	41	134	43	57.5	
60%	157	38	118	40	56.4	
65%	138	34	101	36	55.2	
70%	118	31	85	33	53.7	
75%	98	27	69	29	51.9	
80%	79	24	54	25	49.7	
85%	59	19	39	20	46.8	
90%	39	14	24	15	42.7	
95%	20	9	10	9	35.3	

TMDL L	oading Sur	nmary for	Langdor	n Lake		
	Water Budge	ts		Phosp	horus Loading	9
Inflow from Draina	age Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2 Direct 3 4	913	5.1	390	131.9	<mark>0.83</mark> 1.0 1.0	140
5					1.0	
Summation	913	5.1	390	131.8		140
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 2 Direct 3 4 5	913	0				[]
Summation	913	0				0
Inflow from Upstre		•				
			Discharge	Estimated P Concentration	Reduction Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2 3 Summation					1.0 1.0 1.0	0
			0	-		U
Atmosphere Lake Area [acre] 142	Precipitation [in/yr] 31.4	Evaporation [in/yr] 31.4 Dry-year total P	Net Inflow [ac-ft/yr] 0 deposition =	Aerial Loading Rate [lb/ac-yr] 0.239 0.222	Reduction Factor [] 1.0	Load [lb/yr] 34
	Avera	age-year total P Vet-year total P	deposition =	0.239 0.259		
Groundwater		_				
Lake Area [acre] 142	Groundwater Flux [m/yr] 0.0		Net Inflow [ac-ft/yr] 0	Phosphorus Concentration [ug/L] 0	Reduction Factor [] 1.0	Load [lb/yr] 0
	0.0			<u> </u>	1.0	0
Internal Lake Area [acre]	Anoxic Factor [days]			Release Rate [mg/m ² -day]	Reduction Factor []	Load [lb/yr]
142	15.5			9.70	0.794	152
	Net Discha	rge [ac-ft/yr] =	390	Net	Load [lb/yr] =	325

Average L	oading Sur Water Budge	Long La	ke				
	Phosphorus Loading						
Inflow from Draina	ge Areas						
					0 111 11		
				Phosphorus	Calibration		
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]	
1 CLO05	1,729	4.3	624	176.3	1.0	299	
2 Direct	2,030	5.1	866	159.1	1.0	375	
3					1.0		
4					1.0		
5	0.750		1 100	100.0	1.0	074	
Summation	,	4.8	1,490	166.2		674	
Failing Septic Sys				1			
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]	
1 CLO05	1,729	-					
2 Direct	2,030	0					
3							
4							
5 Summation	3,758	0				0	
	,	0				0	
Inflow from Upstre	eam Lakes				0 111 11		
			Distance	Estimated P	Calibration	1	
	Drainage Area	•	Discharge	Concentration	Factor	Load	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]	
1 Dickeys	159	7.9	68	42.8	1.0	8	
2 3 Wolsfeld	1,593	4.3	575	176.4	1.0	276	
4 Holy Name	458	4.3	165	176.4	1.0	79	
Summation		4.0	808	165.2	1.0	363	
	2,210		000	100.2	I	505	
Atmosphere				Aerial Loading	Calibration		
Lake Area	Procinitation	Evaporation	Net Inflow	Rate	Factor	Load	
	Precipitation	Evaporation					
[acre] 287	[in/yr] 31.2	[in/yr] 31.2	[ac-ft/yr]	[lb/ac-yr] 0.239	[] 1.0	[lb/yr] 69	
201		Dry-year total P	Ŭ		1.0	03	
		age-year total P					
		Vet-year total P					
	•		eering 2004)				
Groundwater		<u> </u>					
	Groundwater			Phosphorus	Calibration		
Lake Area	Flux		Net Inflow	Concentration	Factor	Load	
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]	
287	7.1		169	84	1.0	39	
Internal					-		
manai					Calibration		
Lake Area	Anoxic Factor			Release Rate	Factor	Load	
				[mg/m ² -day]		[lb/yr]	
Iacrol							
[acre] 287	[days] 41.9			3.00	[]	322	

Average Lake Response I	Modeling for Long Lake	
Modeled Parameter Equ	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRA	TION	
	as f(W,Q,V) from Canfield & Ba	achmann (1981)
	C _P =	1.00 []
$P = \frac{P_i}{c}$	C _{CB} =	0.162 []
$\left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ \end{array} \right] \left[\begin{array}{c} & & \\ \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \\ \left[\begin{array}{c} & & & \end{array} \\ \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \end{array} \\ \left[\begin{array}{c} & & & \end{array} \\ \\ \\ & & \end{array} \\ \\[c] \left[\begin{array}{c} & & \\ \end{array} \\[\end{array}] \left[\begin{array}{c} & & \\ \end{array} \\[c] \\[c] \\[\end{array}] \left[\end{array} \\[\end{array} \\[c] \\[c] \\[c] \\[c] \end{array} \\[c] \\[c] \\[c] \\[c] \end{array} \\[c] \\[c] \\[c] \\[c] \\[c] \\[c] \\[c] \\[c]$	b =	0.458 []
$ 1 + C_P \times C_{CB} \times \frac{1}{V} \times T $	W (total P load = inflow + atm.) =	1,465 [lb/yr]
$P = \frac{T_{i}}{\left(1 + C_{P} \times C_{CB} \times \left(\frac{W_{P}}{V}\right)^{b} \times T\right)}$	Q (lake outflow) =	2,467 [ac-ft/yr]
	V (modeled lake volume) =	3,984 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	218.4 [ug/l]
Model Predicted In-Lake [TP]		62.8 [ug/l]
Observed In-Lake [TP]		61.4 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$] \times V$	
P	sed (phosphorus sedimentation) =	1,044 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		422 [lb/yr]

Avera	Average Load Reduction Table for					
LO	LOAD		DELED IN-LAKE UALITY PARAM	TROPHIC STATE INDICES (Carlson, 1980)		
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI	
TION	LOAD		TATION	FLOW	[TP]	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	
0%	1,465	63	1044	422	63.9	
5%	1,392	61	985	407	63.4	
10%	1,319	59	926	393	62.8	
15%	1,246	56	868	378	62.3	
20%	1,172	54	810	362	61.7	
25%	1,099	52	752	347	61.0	
30%	1,026	49	695	331	60.4	
35%	952	47	638	314	59.6	
40%	879	44	582	297	58.8	
45%	806	42	526	280	57.9	
50%	733	39	471	261	57.0	
55%	659	36	417	243	55.9	
60%	586	33	363	223	54.7	
65%	513	30	310	203	53.3	
70%	440	27	258	181	51.7	
75%	366	24	208	158	49.7	
80%	293	20	159	134	47.3	
85%	220	16	112	108	44.2	
90%	147	12	68	79	39.7	
95%	73	7	28	45	31.6	

	oading Sur					
	Water Budge	ts		Phosph	orus Loading	9
nflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CLO05	1,729	4.3	624	176.3	1.0	299
2 Direct	2,030	5.1	866	159.1	1.0	375
3					1.0	
4					1.0	
5					1.0	
Summation	3,758	4.8	1,490	73.1	0.44	296
ailing Septic Sys						
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CLO05 2 Direct 3 4	1,729 2,030	0				
5 Summation	3,758	0				0
nflow from Upstre		0				0
mow nom opsire	anii Lanes			Estimated P	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Dickeys 2	159	7.9	68	40.0	1.0	7
3 Wolsfeld	1,593	4.3	575	40.0	1.0	63
4 Holy Name	458	4.3	165	60.0	1.0	27
Summation	1,752		808	44.1		97
tmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
287	31.2	31.2	0	0.239	1.0	69
		Dry-year total P		0.222		
		ige-year total P Vet-year total P		0.239 0.259		
	v		eering 2004)	0.209		
Groundwater		, <u> </u>	- 3 - • • • • •			
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
287	7.1		169	<u>84.0</u>	1.0	39
nternal						
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
287	41.9			3.00	0.81	261

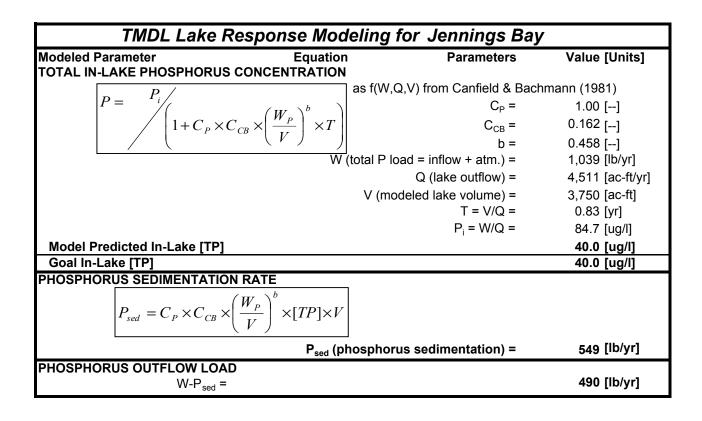
TMDL Lake Response M	TMDL Lake Response Modeling for Long Lake						
Modeled Parameter Equa		Value [Units]					
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT							
$P_{\rm e}$	as f(W,Q,V) from Canfield & Ba	achmann (1981)					
$P = \frac{I_i}{(M_i)^b}$	C _P =	1.00 []					
$P = \frac{1}{\sqrt{1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b}} \times \frac{W_P}{V}$	$< T \parallel$ C _{CB} =	0.162 []					
) b=	0.458 []					
	W (total P load = inflow + atm.) =	761 [lb/yr]					
	Q (lake outflow) =	2,467 [ac-ft/yr]					
	V (modeled lake volume) =	3,984 [ac-ft]					
		1.61 [yr]					
	$P_i = W/Q =$	113.4 [ug/l]					
Model Predicted In-Lake [TP]		40.0 [ug/l]					
Goal In-Lake [TP]		40.0 [ug/l]					
PHOSPHORUS SEDIMENTATION RATE							
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$\times V$						
P	e _{sed} (phosphorus sedimentation) =	492 [lb/yr]					
PHOSPHORUS OUTFLOW LOAD							
W-P _{sed} =		269 [lb/yr]					

Averag	e Loading Sur	-	Halsted	-	2005-2011	
	Water Budge	Phos	phorus Loadir	ng		
Inflow from Dra	ainage Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
	·		Ū.		. ,	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CSI02	15,267	5.4	6,852	146.2	1.0	2,724
2 Direct	3,494	5.1	1,491	159.1	1.0	645
3	-,		.,		1.0	
4					1.0	
5					1.0	
Summa	ation 18,760	5.3	8,342	148.4		3,369
Failing Septic S	Svstems		•	•		-
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CSI02	15,267	0	· and c [/0]		[10/00]	[יעייין
2 Direct	3,494	0				
3	0,101	Ū				
4						
5						
Summa	ation 18,760	0				0
Inflow from Up	stream Lakes			•		
				Estimated P	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1	[40.0]	[[[~9/=]	1.0	0
2					1.0	
3					1.0	
4					1.0	
Summa	ation 0		0	-		0
Atmosphere						
-				Aerial Loading	Calibration	
Lake Area	a Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
561	31.2	31.2	0	0.239	1.0	134
		Dry-year total P	deposition =	0.222		
		ige-year total P				
	V	Vet-year total P				
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
561	13.2		617	84.0	1.0	141
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
561	28.0			18.00	1.0	2,527
		rge [ac-ft/yr] =	8,960		Load [lb/yr] =	
NOTES	Het Disclid		0,300	inet		0,171

Average Lake Response Modeling for Halsteds Bay						
Modeled Parameter	Equation	Parameters	Value [Units]			
TOTAL IN-LAKE PHOSPHORUS C						
$P_{\rm e}$		/,Q,V) from Canfield & Bac	hmann (1981)			
$P = \frac{I_i}{I_i}$	$(W)^b$		1.00 []			
$P = \int_{-1}^{1} (1 + C_p \times C_q)$	$_{CB} \times \left \frac{W_P}{W} \right \times T \parallel$		0.162 []			
		b =	0.458 []			
	W (total P I	oad = inflow + atm.) =	6,171 [lb/yr]			
		Q (lake outflow) =	8,963 [ac-ft/yr]			
	V (me	odeled lake volume) =	7,404 [ac-ft]			
		T = V/Q =	0.83 [yr]			
		$P_i = W/Q =$	253.2 [ug/l]			
Model Predicted In-Lake [TP]			89.1 [ug/l]			
Observed In-Lake [TP]			88.5 [ug/l]			
PHOSPHORUS SEDIMENTATION	RATE					
$P_{sed} = C_P \times C_{CB} \times \left($	$\frac{W_P}{V}\right)^b \times [TP] \times V$					
	4,000 [lb/yr]					
PHOSPHORUS OUTFLOW LOAD						
W-P _{sed} =			2,171 [lb/yr]			

Average Load Reduction Table for Halsteds Bay							
LO	DAD	MODELED IN-LAKE WATER QUALITY TRO PARAMETERS ST IND (Car					
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI		
TION	LOAD		TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	6,171	89	4000	2171	68.9		
5%	5,863	86	3769	2094	68.4		
10%	5,554	83	3538	2016	67.8		
15%	5,246	79	3310	1936	67.2		
20%	4,937	76	3083	1854	66.6		
25%	4,629	73	2858	1770	65.9		
30%	4,320	69	2635	1685	65.2		
35%	4,011	66	2415	1597	64.5		
40%	3,703	62	2196	1507	63.6		
45%	3,394	58	1981	1414	62.7		
50%	3,086	54	1768	1318	61.7		
55%	2,777	50	1558	1219	60.6		
60%	2,469	46	1352	1117	59.3		
65%	2,160	41	1150	1010	57.9		
70%	1,851	37	953	898	56.2		
75%	1,543	32	762	781	54.1		
80%	1,234	27	578	656	51.6		
85%	926	21	403	522	48.3		
90%	617	15	241	376	43.6		
95%	309	9	98	210	35.2		

	-	-	Halsteds			
	Water Budge	ts		Phosp	phorus Loadin	g
nflow from Draina	ge Areas					
				Dhaanhaas	Deduction	
			Discharge	Phosphorus	Reduction	اممط
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Nama	[a ara]	lin / rl		[ua/]]		
Name 1 CSI02	[acre] 15,267	[in/yr] 5.4	[ac-ft/yr] 6,852	[ug/L] 146.2	<u>[]</u> 1.0	[lb/yr] 2,724
				-		
2 Direct 3	3,494	5.1	1,491	159.1	1.0 1.0	645
4					1.0	
5					1.0	
Summation	18,760	5.3	8,342	45.4	0.31	1,031
Failing Septic Syst	,	0.0	0,012	10.1	0.07	1,001
		# of Sustance	Eailura ^{[0/1}	Lood / System		[[[[]]]
Name 1 CSI02	Area [ac]	# of Systems 0	Failure [%]	Load / System	[lb/ac]	[lb/yr]
2 Direct	15,267 3,494	0				
2 Direct	3,494	U				
4						
5						
Summation	18,760	0				0.0
nflow from Upstre	,			1		
	um Eures			Estimated P	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1	[doro]	[[[]] y]	[ac-it/yi]	[ug/L]	1.0	0
2					1.0	Ū
3					1.0	
4					1.0	
Summation	0		0	-		0
tmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
561	31.2	31.2	0	0.239	1.0	134
		Dry-year total P	deposition =	0.222	-	
		age-year total P	•	0.239		
		Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
Groundwater						
•	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
561	13.2		617	84	1.0	141
nternal					I	
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
561	0233 28.0			18.00	0.30	758
		rge [ac-ft/yr] =	8,960		Load [lb/yr] =	2,064

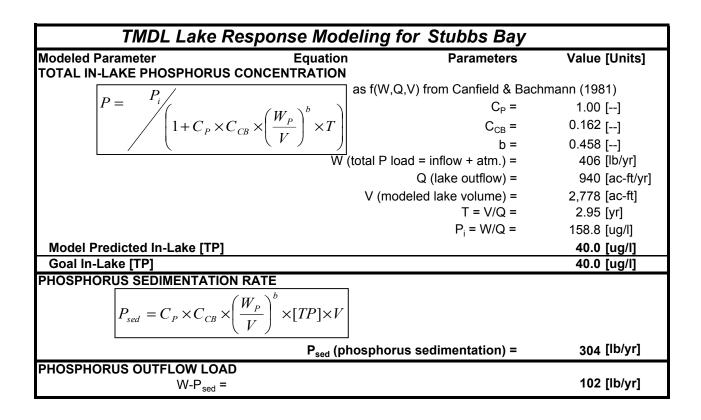

TMDL Lake Response N	lodeling for Halsteds Bay	/
	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT		
	as f(W,Q,V) from Canfield & Bac	chmann (1981)
p /	C _P =	1.00 []
$P = \frac{P_i}{f}$	C _{CB} =	0.162 []
$P = \left[\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V} \right)^b \times T \right) \right]$	b =	
$\left \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	W (total P load = inflow + atm.) =	2,064 [lb/yr]
	Q (lake outflow) =	
	V (modeled lake volume) =	7,404 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	85 [ug/l]
Model Predicted In-Lake [TP]		40.0 [ug/l]
Goal In-Lake [TP]		40.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$ \times V$	
	_{sed} (phosphorus sedimentation) =	1,088 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		070 54 4 3
W-P _{sed} =		976 [lb/yr]

Average I	Loading Sur	nmary for	Jenning	s Bay	2005-2011	
	Water Budge	ts		Phosp	horus Loading	
Inflow from Drain	age Areas					
	0				Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CPA05	8670	4.8	3499	229.1	1.0	2181
2 CDU01	146	4.9	59	108.6	1.0	18
3 Direct	563	5.1	240	159.1	1.0	104
4					1.0	
5					1.0	
Summatior		4.9	3799	222.8		2303
Failing Septic Sys	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CPA05	8670	0				
2 CDU01	146	0				
3 Direct	563	0				
4						
5 Summatior	n 9379	0				0
		0				U
Inflow from Upstr	eam Lakes			Estimated D	Oalibaatiaa	
	Drainage Area	Pupoff Dopth	Discharge	Estimated P Concentration	Calibration Factor	Load
Nomo	-	-	•			
Name 1 Dutch	[acre] 1743	[in/yr] 4.9	[ac-ft/yr] 710	[ug/L] 108.6	<u>[]</u> 1.0	[lb/yr] 210
2	1745	4.5	710	-	1.0	210
3				-	1.0	
Summation	า		710	108.6	-	210
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
306	31.2	31.2	0	0.239	1.0	73
		Dry-year total P		0.222		
		age-year total P		0.239		
	V	Vet-year total P		0.259		
<u> </u>		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
306	0.0		0	0	1.0	0
Internal					<u> </u>	
1 - 1 - 4	Americ East			Deless Det	Calibration	ا م م ا
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
306	21.1			16.00	1.0	920
NOTES	Net Discha	rge [ac-ft/yr] =	4509	Net	Load [lb/yr] =	3505

Average Lake Response N	lodeling for Jennings Ba	y
Modeled Parameter Equa	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT	ION	
	as f(W,Q,V) from Canfield & Bac	hmann (1981)
	C _P =	1.00 []
$P = \frac{P_i}{2}$	C _{CB} =	0.162 []
$\left(1+C\times C\times C\times W_{P}\right)^{b}\times T$	b =	0.458 []
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	W (total P load = inflow + atm.) =	3505 [lb/yr]
	Q (lake outflow) =	4511 [ac-ft/yr]
	V (modeled lake volume) =	
	T = V/Q =	
	$P_i = W/Q =$	285.8 [ug/l]
Model Predicted In-Lake [TP]		96.8 [ug/l]
Observed In-Lake [TP]		97.4 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$\times V$	
P	P _{sed} (phosphorus sedimentation) =	2319 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		4407 [lb/sm]
W-P _{sed} =		1187 [lb/yr]

Average L	Jennings Bay				
LOAD)	-	ELED IN-LAKE WA ALITY PARAMETE	TROPHIC STATE INDICES (Carlson, 1980)	
REDUC-TION	NET	[TP]	P SEDIMEN-	TP	TSI
	LOAD		TATION	OUT-	[TP]
[%]	[lb]	[ug/L]	[lb]	[lb]	[]
0%	3,505	97	2319	1187	70.1
5%	3,330	93	2185	1145	69.6
10%	3,155	90	2053	1102	69.0
15%	2,980	86	1921	1059	68.4
20%	2,804	83	1790	1015	67.8
25%	2,629	79	1660	969	67.2
30%	2,454	75	1531	923	66.5
35%	2,279	71	1404	875	65.7
40%	2,103	67	1277	826	64.9
45%	1,928	63	1152	776	63.9
50%	1,753	59	1029	724	62.9
55%	1,577	55	908	670	61.8
60%	1,402	50	788	614	60.6
65%	1,227	45	671	556	59.1
70%	1,052	40	557	495	57.5
75%	876	35	446	431	55.5
80%	701	30	339	362	53.0
85%	526	24	237	289	49.7
90%	351	17	142	209	45.0
95%	175	10	58	117	36.7

TMDL L	oading Sur	nmary for	Jenning	s Bay		
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Draina	age Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CPA05	8,670	4.8	3,499	229.1	1.0	2,181
2 CDU01	146	4.9	59	108.6	1.0	18
3 Direct	563	5.1	240	159.1	1.0	104
4					1.0	
5					1.0	
Summation	9,379	4.9	3,799	66.8	0.30	691
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CPA05	8,670	0			[[····].]
2 CDU01	146	0				
3 Direct	563	0				
4						
5						
Summation	9,379	0				0
Inflow from Upstre	eam Lakes					
				Estimated P	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Dutch	1,743	4.9	710	40.0	1.0	77
2	.,			-	1.0	
3				-	1.0	
Summation			710	40.0		77
Atmosphere						
, lancopiioi o				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
306	31.2	31.2	0	0.239	1.0	73
		Dry-year total P		0.222	-	
		ige-year total P	•	0.239		
		Vet-year total P		0.259		
			eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
306	0.0		0	0	1.0	0
Internal				-		-
				[Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
306	[uays] 21.1			16.00	0.22	198
500			4 500			
	Net Discha	rge [ac-ft/yr] =	4,509	Net	Load [lb/yr] =	1,039

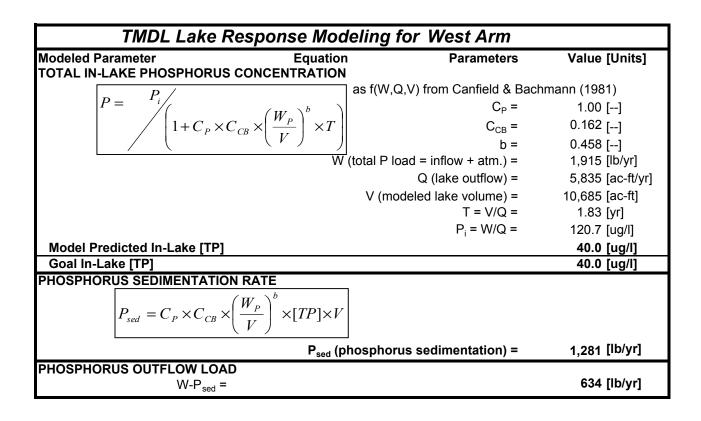


Average L	oading Su	nmary for	Stubbs I	Bay	2005-2011	
	Water Budge	-			horus Loading	
Inflow from Draina				•		
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CCL01	994	4.9	403	113.3	1.0	124
2 CST01	507	5.0	213	255.6	1.0	148
3 Direct	247	5.1	105	104.0	1.0	30
4		•			1.0 1.0	
Summation	1,748	5.0	722	153.9	1.0	302
Failing Septic Sys	,					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CCL01	Area [ac] 994			Luau / System	[เม/สป]	[lb/yr]
2 CST01	507					
3 Direct	247	30	25%	6.1	0.2	46
4	271	00	2070	0.1	0.2	40
5						
Summation	1,748	30				46
Inflow from Upstre	am Lakes				•	
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0.0	-	1.0	[10/]
2			0.0	-	1.0	
3				-	1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
199	31.2	31.2	0	0.239	1.0	47
		Dry-year total P	deposition =		•	
		age-year total P		0.239		
	V	Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
199	13.2		218	84.0	1.0	50
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
199	39.4			2.00	1.0	140
		rge [ac-ft/yr] =	940		Load [lb/yr] =	585
NOTES		. 30 [ao-in ji] -	0.10	itet		000

Modeled Parameter Equ	ation Parameters	Value [Units]			
TOTAL IN-LAKE PHOSPHORUS CONCENTRA	TION				
	as f(W,Q,V) from Canfield & Bachr	as f(W,Q,V) from Canfield & Bachmann (1981)			
	C _P =	1.00 []			
$P = \frac{P_i}{\ell}$	C _{CB} =	0.162 []			
$I = \langle (W_p)^b \rangle$	b =	0.458 []			
$ 1+C_P \times C_{CB} \times \frac{r}{V} \times T $	W (total P load = inflow + atm.) =	585 [lb/yr]			
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	940 [ac-ft/yr]			
	V (modeled lake volume) =	2,778 [ac-ft]			
	T = V/Q =	2.95 [yr]			
	$P_i = W/Q =$	228.7 [ug/l]			
Model Predicted In-Lake [TP]		50.7 [ug/l]			
Observed In-Lake [TP]		49.9 [ug/l]			
PHOSPHORUS SEDIMENTATION RATE					
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$V] \times V$				
	P _{sed} (phosphorus sedimentation) =	455 [lb/yr]			
PHOSPHORUS OUTFLOW LOAD W-P _{sed} =		130 [lb/yr]			

Average Load Reduction Table for Stubbs Bay							
LOA	LOAD		ED IN-LAKE WAT PARAMETER:	TROPHIC STATE INDICES (Carlson, 1980)			
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI		
TION	LOAD		TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	585	51	455	130	60.8		
5%	556	49	430	126	60.3		
10%	526	47	405	121	59.8		
15%	497	46	380	117	59.3		
20%	468	44	356	112	58.7		
25%	439	42	331	108	58.1		
30%	409	40	306	103	57.4		
35%	380	38	282	98	56.7		
40%	351	36	258	93	56.0		
45%	322	34	234	88	55.1		
50%	292	32	210	82	54.2		
55%	263	30	187	77	53.2		
60%	234	28	163	71	52.0		
65%	205	25	140	65	50.7		
70%	175	23	117	58	49.2		
75%	146	20	95	51	47.3		
80%	117	17	73	44	45.1		
85%	88	14	52	35	42.1		
90%	58	10	32	26	37.8		
95%	29	6	14	15	30.1		

TMDL L	oading Sur	nmary for	Stubbs I	Bay		
	Water Budge	ts		Phosp	horus Loading	g
Inflow from Draina	age Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CCL01	994	4.9	403	113.3	1.0	124
2 CST01	507	5.0	213	255.6	1.0	148
3 Direct	247	5.1	105	104.0	1.0	30
4					1.0	
5					1.0	
Summation	1,748	5.0	722	86.2	0.56	169
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CCL01	994				[[]
2 CST01	507					
3 Direct	247	30	0%	6.1	0.0	0
4						
5						
Summation	1,748	30				0
Inflow from Upstr	eam Lakes					
				Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0	-	1.0	[]
2				-	1.0	
3				-	1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
199	31.2	31.2	0	0.239	1.0	47
		Dry-year total P				
		age-year total P	•			
	V	Vet-year total P	deposition =	0.259		
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
199	13.2		218	84.0	1.0	50
Internal						
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
199	39.4			2.00	1.00	140
		rge [ac-ft/yr] =	940			
	iver Disclid	ige [ac-ivyi] -	340	inet	Load [lb/yr] =	406



Average	Loading Sui	nmary for	West Ar	m	2005-2011	
	Water Budge	ts		Phos	phorus Loading	g
nflow from Drain	age Areas					-
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1					1.0	
2 Direct	596	5.1	254	214.1	1.0	148
3					1.0	
4					1.0	
5			_		1.0	
Summatio	n 596	5.1	254	214.0		148
Failing Septic Sys	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1	0					
2 Direct	596	0				
3						
4						
5	500	0			1	0
Summatio		0				0
Inflow from Upsti	ream Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name	Area [ac]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Jenning's Bay	11,427		4,856	97.4	1.0	1,287
2 Forest Lake	944		724	58.7	1.0	116
3 Summatio	n 12,371		5,580	- 78.1	1.0	1,403
	11 12,371		9,560	70.1		1,403
Atmosphere					0 111 11	
	Des sinitation	F uene en effere		Aerial Loading	Calibration	المعط
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr] 31.2	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
822	31.2	31.2 Dry-year total P	0	0.239 0.222	1.0	197
		age-year total P		0.222		
		Vet-year total P		0.259		
	v		eering 2004)	0.200		
Groundwater		\ _ gii				
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
822	0.0			0	1.0	0
Internal			J			Ū
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
				[mg/m ² -day]	[]	[lb/yr]
[acre] 822	[days] 19.8			11.5	1.0	1,673
022			E 005			
	Net Discha	rge [ac-ft/yr] =	5,835	Net	Load [lb/yr] =	3,421

Average Lake	Response Modeling	g for West Arm	
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHOR			
$P_{\rm e}$		V,Q,V) from Canfield & Bach	mann (1981)
$P = \frac{1}{i}$	$(W)^b$	C _P =	1.00 []
$1+C_P$	$\times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T$	C _{CB} =	0.162 []
		b =	0.458 []
	W (total	P load = inflow + atm.) =	3,421 [lb/yr]
		Q (lake outflow) =	5,835 [ac-ft/yr]
	V	modeled lake volume) =	10,685 [ac-ft]
		T = V/Q =	1.83 [yr]
		$P_i = W/Q =$	215.6 [ug/l]
Model Predicted In-Lake [The second s	2]		59.3 [ug/l]
Observed In-Lake [TP]			59.8 [ug/l]
PHOSPHORUS SEDIMENTAT	ION RATE		
$P_{sed} = C_P \times C_{CE}$	$_{A} \times \left(\frac{W_{P}}{V}\right)^{b} \times [TP] \times V$		
	P _{sed} (phospl	norus sedimentation) =	2,480 [lb/yr]
PHOSPHORUS OUTFLOW LC	DAD		
W-P _{sec}	=		941 [lb/yr]

Averag	West Arm						
LO	LOAD MODELED IN-LAKE WATER QUALITY PARAMETERS						
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI		
TION	LOAD		TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	3,421	59	2480	941	63.0		
5%	3,250	57	2340	909	62.5		
10%	3,079	55	2202	877	62.0		
15%	2,908	53	2064	844	61.5		
20%	2,737	51	1927	810	60.9		
25%	2,565	49	1790	775	60.2		
30%	2,394	47	1655	740	59.5		
35%	2,223	44	1520	703	58.8		
40%	2,052	42	1387	665	58.0		
45%	1,881	39	1255	626	57.2		
50%	1,710	37	1124	586	56.2		
55%	1,539	34	995	544	55.1		
60%	1,368	32	867	501	53.9		
65%	1,197	29	742	455	52.6		
70%	1,026	26	619	408	51.0		
75%	855	22	498	357	49.0		
80%	684	19	382	303	46.7		
85%	513	15	269	244	43.5		
90%	342	11	164	178	39.0		
95%	171	6	69	103	31.1		

TMDL L	oading Sur		West Ar	т		
	Water Budge	ts		Phosp	horus Loading	g
Inflow from Draina	age Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2 Direct 3 4	596	5.1	254	214	1.0 1.0 1.0 1.0	148
5					1.0	
Summation		5.1	254	154.1	0.72	107
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 2 Direct 3 4 5	0 596	0				
Summation	596	0				0
Inflow from Upstre		-				-
Name	Area [ac]		Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Reduction Factor []	Load [lb/yr]
1 Jenning's Bay 2 Forest Lake 3	11,427 944		4,856 724	40.0 40.0	1.0 1.0 1.0	528 79
Summation	12,371		5,580	40.0		607
Atmosphere				Aerial Loading	Reduction	
Lake Area [acre]	Precipitation [in/yr]	Evaporation [in/yr]	Net Inflow [ac-ft/yr]	Rate [lb/ac-yr]	Factor []	Load [lb/yr]
822	31.2	31.2	0	0.239	1.0	197
	Avera	Dry-year total P age-year total P Vet-year total P (Barr Engin	deposition =			
Groundwater						
Lake Area [acre] 822	Groundwater Flux [in/yr]		Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Reduction Factor []	Load [lb/yr]
	0.0		0	0	1.0	0
Internal Lake Area [acre]	Anoxic Factor [days]			Release Rate [mg/m ² -day]	Reduction Factor []	Load [lb/yr]
822	19.8			11.50	0.60	1,004
	Net Discha	rge [ac-ft/yr] =	5,835	Net	Load [lb/yr] =	1,915

Average I	Loading Sur	-	Mooney		2006-2008,	2011
	Water Budge	ts		Phosp	horus Loading	
Inflow from Drain	age Areas					
					Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	486	5.1	207	132.1	1.0	74
2					1.0	
3					1.0	
4					1.0	
5		- /		(00.0	1.0	
Summation		5.1	207	132.0		74
Failing Septic Sys						
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	486	7	25%	6.1	0.0	11
2						
3						
4						
5 Summation	496	7				11
Summation		7				11
Inflow from Upstr	eam Lakes					
			Diashawa	Estimated P	Calibration	امما
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2			0	-	1.0 1.0	
3				-	1.0	
Summation	1		0		1.0	0
Atmosphere	•		-			-
Aunosphere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
113	27.4	27.4		0.239	1.0	27
		Dry-year total P	v	0.222		
		age-year total P		0.239		
		Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
113	-10.0		-94	0	0.0	0
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
				2		
	[davs]			[mg/m ² -dav]	[]	IID/Vri
[acre] 113	[days] 48.0			[mg/m ² -day] 2.00	[] 1.0	[lb/yr] 97

Average Lake Response M Modeled Parameter Equa	• •	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT		
	as f(W,Q,V) from Canfield & Bachr	mann (1981)
D (C _P =	1.00 []
$P = \frac{P_i}{(1 + 1)^{k}}$	C _{CB} =	0.162 []
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	b =	0.458 []
	W (total P load = inflow + atm.) =	209 [lb/yr]
	Q (lake outflow) =	113 [ac-ft/yr]
	V (modeled lake volume) =	565 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	677.2 [ug/l]
Model Predicted In-Lake [TP]		78.2 [ug/l]
Observed In-Lake [TP]		78.2 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$\times V$	
P	_{sed} (phosphorus sedimentation) =	185 [lb/yr]
PHOSPHORUS OUTFLOW LOAD W-P _{sed} =		24 [lb/yr]

Average	Average Load Reduction Table for Mooney Lake					
LOA	LOAD		ELED IN-LAKE W ALITY PARAMET	TROPHIC STATE INDICES (Carlson, 1980)		
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI	
TION	LOAD		TATION	FLOW	[TP]	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	
0%	209	78	185	24	67.0	
5%	198	76	175	23	66.6	
10%	188	73	165	23	66.1	
15%	178	71	156	22	65.6	
20%	167	68	146	21	65.1	
25%	157	66	136	20	64.5	
30%	146	63	127	19	63.9	
35%	136	60	117	19	63.3	
40%	125	58	108	18	62.6	
45%	115	55	98	17	61.8	
50%	104	52	89	16	61.0	
55%	94	48	79	15	60.1	
60%	84	45	70	14	59.0	
65%	73	41	60	13	57.8	
70%	63	38	51	12	56.4	
75%	52	33	42	10	54.8	
80%	42	29	33	9	52.7	
85%	31	24	24	7	50.1	
90%	21	18	15	6	46.2	
95%	10	12	7	4	39.4	

TMDL L	oading Sur		Mooney	Lake		
	Water Budge	ts		Phosp	horus Loading)
Inflow from Draina	age Areas					
	-	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	486	5.1	207	132.1	1.0	74
2 3 4 5					1.0 1.0 1.0 1.0	
Summatior	า 486	5.1	207	27.1	0.21	15
Failing Septic Sys	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct 2 3 4 5	486	7	0%	6.1	0.0	0
Summation	n 486	7				0
Inflow from Upstr						
			Discharge	Estimated P Concentration	Reduction Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 2 3 Summatior	7		0	- - -	1.0 1.0 1.0	0
Atmosphere			, j			
Lake Area [acre] 113		Evaporation [in/yr] 27.4 Dry-year total P age-year total P	•	Aerial Loading Rate [lb/ac-yr] 0.239 0.222 0.239	Reduction Factor [] 1.0	Load [lb/yr] 27
		Vet-year total P		0.259		
Groundwater						
Lake Area [acre] 113	Groundwater Flux [in/yr] -10.0		Net Inflow [ac-ft/yr] -94	Phosphorus Concentration [ug/L] 0	Reduction Factor [] 0.0	Load [lb/yr] 0
Internal						
Lake Area [acre] 113	Anoxic Factor [days] 48.0			Release Rate [mg/m ² -day] 2.00	Reduction Factor [] 0.95	Load [lb/yr] 92
		rge [ac-ft/yr] =	113		Load [lb/yr] =	134
		-90 [ac-inhi] -	115	Net	-Jau [ib/yi] -	134

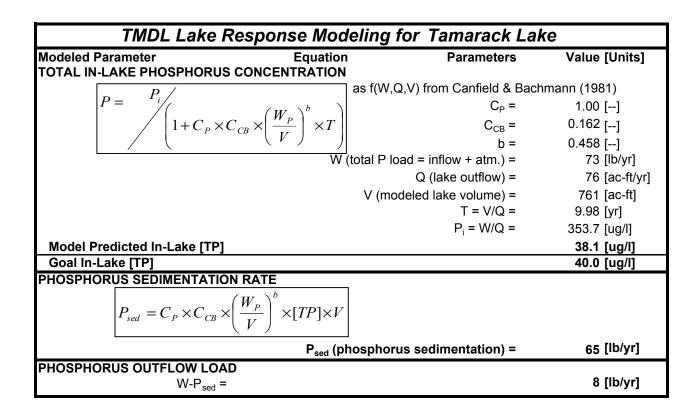
TMDL Lake Response Mod	leling for Mooney Lake	;
Modeled Parameter Equation		Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRATION		hmann (1001)
$P - P_i/$	as f(W,Q,V) from Canfield & Bac	· · · ·
$I = \langle (W_{\rm p})^b \rangle$	G _P =	1.00 []
$P = \sqrt{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	0.162 []
	b =	0.458 []
V	(total P load = inflow + atm.) =	134 [lb/yr]
	Q (lake outflow) =	113 [ac-ft/yr]
	V (modeled lake volume) =	565 [ac-ft]
		4.98 [yr]
	$P_i = W/Q =$	435.0 [ug/l]
Model Predicted In-Lake [TP]		60.0 [ug/l]
Goal In-Lake [TP]		60.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE	_	
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
P _{sed} (phosphorus sedimentation) =	116 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		19 [lb/yr]

5	oading Sur		otone	2000, 2002, 20		5 2012
flow from Droing	Water Budge	ts		Phosphorus Loading		
oflow from Draina	ge Areas				Loading	
				Dhaanhama	Calibration	
				Phosphorus		
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Stone	692	8.5	491	32	1.0	43
2 SMC-16	43	5.0	18	40.0	1.0	2
3 SMC-17	46	9.7	38	71.5	1.0	7
4	10	0.1	00	11.0	110	
5						
Summation	782	23	546			52
ailing Septic Syst		20	040			02
Name		# of Svotome	Epiluro 10/1	Load / System	[lb/ac]	[lb/ym]
1 Stone	Area [ac] 692	# of Systems	Failure [%]	Load / System	[ib/ac]	[lb/yr]
2 SMC-16	43		0%	0.0		
	43 46		0% 0%			
3 SMC-17	40		0%	0.0		
4						
5 Summation	700	0				0
Summation		0				0
flow from Upstre	am Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	
2				-	1.0	
3				-	1.0	
Summation			0	-		0
tmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
99	30.7	30.7	0	0.24	1.0	24
		Dry-year total P		0.222		
		age-year total P		0.239		
	١	Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
roundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
99	0.0		0	0	1.0	0
ternal						
-					Calibration	
	Anoxic Factor			Release Rate	Factor	Load
Lake Area				[mg/m ² -day]	[]	[lb/yr]
	Idavsi					[,]
[km ²]	[days]		Oxic		10	
[km ²] 0.40			Oxic Anoxic	3.5	1.0 1.0	130
[km ²]	[days] 41.9		Oxic Anoxic	3.5	1.0 1.0	130 130

Average Lake Re	sponse Modeling	for Stone		
Modeled Parameter	Equation	Parameters	Valu	e [Units]
TOTAL IN-LAKE PHOSPHORUS CO	ONCENTRATION			
	as f(W	,Q,V) from Canfield & Bachn	nann (1981)
D /		C _P =	1.0	3 []
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{N}{2}\right)\right)}$	$V \rightarrow b$	C _{CB} =	0.16	2 []
$ 1+C_p \times C_{cp} \times \frac{m}{2}$	$\left \frac{T_{P}}{T} \right \times T$	b =	0.45	8 []
	☑ /) │ W (total	P load = inflow + atm.) =	20	6 [lb/yr]
	/	Q (lake outflow) =		6 [ac-ft/yr]
	V	(modeled lake volume) =		9 [ac-ft]
		T = V/Q =		5 [yr]
		$P_i = W/Q =$		8 [µg/l]
Model Predicted In-Lake [TP]			42.9	[ug/l]
Observed In-Lake [TP]			42.9	[ug/l]
PHOSPHORUS SEDIMENTATION F	RATE			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{1}{2}\right)$	$\left(\frac{W_P}{V}\right)^b \times [TP] \times V$			
	P _{sed} (phosp	horus sedimentation) =	142	[lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			6	4 [lb/yr]

	LOAD		MODELED IN-LAKE WATER QUALITY PARAMETERS
REDUC-	NET	NET	[TP]
TION	LOAD	LOAD	
[%]	[kg]	[lb]	[ug/L]
0%	93	206	42.9
5%	89	195	41.4
10%	84	185	39.9
15%	79	175	38.4
20%	75	164	36.8
25%	70	154	35.2
30%	65	144	33.5
35%	61	134	31.8
40%	56	123	30.1
45%	51	113	28.3
50%	47	103	26.4
55%	42	92	24.5
60%	37	82	22.5
65%	33	72	20.4
70%	28	62	
			18.2
75%	23	51	15.9
80%	19	41	13.4
85%	14	31	10.7
90%	9	21	7.8
95%	5	10	4.4

		nmary for				
	Water Budge	ts		Phosp	horus Loading	
nflow from Draina	ige Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Stone	692	8.5	491	32	1.0	43
2 SMC-16	43	5.0	18	40.0	1.0	2
3 SMC-17	46	9.7	38	71.5	1.0	7
4						
5			-			
Summation		23	546			52
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Stone	692					
2 SMC-16	43		0%	0.0		
3 SMC-17 4	46		0%	0.0		
4 5						
Summation	782	0				0.0
Inflow from Upstre						
				Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1				-	1.0	
2				-	1.0	
3			0	-	1.0	0
Summation			0	-		0
Atmosphere				AcrielLeading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Aerial Loading Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
99	30.7	30.7		0.24	1.0	24
		Dry-year total P	deposition =	0.222	1 - 1	
		age-year total P		0.239		
	V	Vet-year total P		0.259		
-		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater		Net L. O.	Phosphorus	Reduction	1
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre] 99	[m/yr] 0.0		[ac-ft/yr]	[ug/L] 0	[] 1.0	[lb/yr] 0
	0.0		0	U	1.0	0
Internal					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[km ²]	[days]			[mg/m ² -day]	[]	[lb/yr]
0.40	[ປປັງວ]		Oxic	[mg/m day]	1.0	[10/91]
0.40	41.9		Anoxic	3.0	1.0	110
Summation						110


TMDL Lake Response Modeling for Stone				
Nodeled Parameter Equat		Valu	ie [Units]	
TOTAL IN-LAKE PHOSPHORUS CONCENTRATION	-			
	as f(W,Q,V) from Canfield & Bachn		·	
_ P /		1.0		
$P = \frac{I_i}{2}$	C _{CB} =	0.16	62 []	
$\left 1 + C_{P} \times C_{CP} \times \left \frac{W_{P}}{2} \right \times T \right $	b =	0.45	58 []	
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	W (total P load = inflow + atm.) =	18	86 [lb/yr]	
· · · · · · · · · · · · · · · · · · ·	Q (lake outflow) =	54	6 [ac-ft/yr]	
	V (modeled lake volume) =	100)9 [ac-ft]	
	T = V/Q =		35 [yr]	
	$P_i = W/Q =$	12	25 [µg/l]	
Model Predicted In-Lake [TP]		40.0	[ug/l]	
Goal In-Lake [TP]		40.0	[ug/l]	
HOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times$:V			
F	P _{sed} (phosphorus sedimentation) =	126	[lb/yr]	
HOSPHORUS OUTFLOW LOAD		_		
W-P _{sed} =		5	59 [lb/yr]	

<u>Ave</u> rage L	oading Sur	-	Tamarac		2005-2011	
	Water Budge	ts		Phosp	horus Loading	
Inflow from Draina	age Areas					
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	179	5.1	76	104.0	1.0	22
2					1.0	
3 4					1.0 1.0	
4 5					1.0	
Summation	179	5.1	76	104.0	1.0	22
Failing Septic Sys					Ł	
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	179	0	0%	0.0	0.0	0
2						
3						
4						
5 Summation	n 179	0				0
Summation		0				0
Inflow from Upstr	eam Lakes			Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0	[09/L] -	1.0	[10/91]
2			_	-	1.0	
3				-	1.0	
Summatior	1		0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr] 31.2	[in/yr] 31.2	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
30		31.2 Dry-year total P	0 deposition =	0.239 0.222	1.0	7
		age-year total P		0.222		
		Vet-year total P		0.259		
			eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
30	0.0		0	0	0.0	0
Internal						
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
30	55.7			3.00	1.0	45
	Net Discha	rge [ac-ft/yr] =	76	Ne	t Load [lb/yr] =	73

Average Lake Response Mo	deling for Tamarack Lake	
Modeled Parameter Equation		Value [Units]
FOTAL IN-LAKE PHOSPHORUS CONCENTRATIO		
	as f(W,Q,V) from Canfield & Bachm	ann (1981)
	C _P =	1.00 []
$P - \frac{P_i}{I}$	C _{CB} =	0.162 []
$\left[\begin{array}{c} & - & \\ & & \\ & & \\ \end{array} \right] \left[\left(\begin{array}{c} & - & \\ & - & \\ \end{array} \right) \left(\begin{array}{c} & W_{p} \end{array} \right)^{b} \right] \right]$	b =	0.458 []
$ 1 + C_P \times C_{CB} \times \frac{T_P}{V} \times T $	W (total P load = inflow + atm.) =	73 [lb/yr]
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	76 [ac-ft/yr]
	V (modeled lake volume) =	761 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	353.7 [ug/l]
Model Predicted In-Lake [TP]		38.1 [ug/l]
Observed In-Lake [TP]		38.9 [ug/l]
PHOSPHORUS SEDIMENTATION RATE	_	
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times$	V	
P	sed (phosphorus sedimentation) =	65 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		8 [lb/yr]

Average Load Reduction Table for Tamarack Lake					
LOAI	כ	MODELED IN-LAKE WATER QUALITY PARAMETERS			TROPHIC STATE INDICES (Carlson, 1980)
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI
TION	LOAD		TATION	FLOW	[TP]
[%]	[lb]	[ug/L]	[lb]	[lb]	[]
0%	73	38	65	8	56.6
5%	70	37	62	8	56.2
10%	66	36	59	7	55.7
15%	62	35	55	7	55.3
20%	59	33	52	7	54.7
25%	55	32	48	7	54.2
30%	51	31	45	6	53.6
35%	48	29	42	6	52.9
40%	44	28	38	6	52.2
45%	40	27	35	6	51.5
50%	37	25	31	5	50.7
55%	33	24	28	5	49.7
60%	29	22	25	5	48.7
65%	26	20	21	4	47.5
70%	22	18	18	4	46.1
75%	18	16	15	3	44.5
80%	15	14	12	3	42.5
85%	11	12	9	2	39.8
90%	7	9	5	2	36.0
95%	4	6	2	1	29.3

TMDL	Loading Sur	nmary for	Tamarac	ck Lake		
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Drail	nage Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	179	5.1	76	104.0	1.0	22
2 3					1.0 1.0	
4 F					1.0	
5 Summatio	on 179	5.1	76	104.0	1.0 1.0	22
		5.1	70	104.0	1.0	22
Failing Septic Sy		#			FII- / - · 7	[]]- /:]
Name 1 Direct	Area [ac] 179	# of Systems	Failure [%] 0%	Load / System	[lb/ac] 0.0	[lb/yr] 0
2 3	179	U	0%	0.0	0.0	0
5 4 5						
Summatio	on 179	0				0
Inflow from Upst		•				
				Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0	-	1.0	[]
2				-	1.0	
3				-	1.0	
Summatio	on		0	-		0
Atmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
30	31.2	31.2	0	0.239	1.0	7
		Dry-year total P				
		ige-year total P				
	V	Vet-year total P	eering 2004)	0.259		
Croundurates			cenny 2004)			
Groundwater	Croundwater			Dhoonhamia	Doduction	
Laka Araa	Groundwater Flux		Net Inflow	Phosphorus Concentration	Reduction Factor	Load
Lake Area						
[acre] 30	[in/yr] 0.0		[ac-ft/yr]	[ug/L] 0	[] 0.0	[lb/yr] 0
	0.0		0	U	0.0	0
Internal					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]				[mg/m ² -day]	[]	[lb/yr]
[acre] 	[days] 55.7			3.00	[] 1.0	45
		rge [ac-ft/yr] =	76			-
	Net Discha	ige [ac-ivyi] =	76	Net	Load [lb/yr] =	73

		nmary for	Tanager		2005-2011	
	Water Budge	ts		Phosp	horus Loading	
Inflow from Draina	ge Areas					
					Oalikaatiaa	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Norma	[a ara]	line (sur]		[[]][6 /6 /27]
Name 1 CLO03	[acre] 1010	[in/yr] 4.5	[ac-ft/yr] 382	[ug/L] 114.4	<u>[]</u> 1.0	[lb/yr] 119
2 Direct	302	4.5 5.1	129	159.1	1.0	56
2 Direct	302	D . I	129	159.1	1.0	00
4					1.0	
5					1.0	
Summation	1311	4.7	511	125.7	1.0	175
Failing Septic Syst			-			
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CLO03	1010		· ···· [/•]]	L
2 Direct	302	0				
3						
4						
5						
Summation	1311	0				0
Inflow from Upstre	am Lakes					
				Estimated P	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Long Lake	6254	4.5	2367	114.5	1.0	737
2				-	1.0	
3			0007	-	1.0	707
Summation			2367	114.5		737
Atmosphere					O a l'ha a t' a a	
	Description	–	NULLING	Aerial Loading	Calibration	1
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
54	31.2	31.2 Dry-year total P	0 dependition =	0.239	1.0	13
		ory-year total P age-year total P		0.222 0.239		
		Vet-year total P		0.259		
	v		eering 2004)	0.239		
Groundwater						
<u>Ci Sullawalci</u>	Groundwater			Phosphorus	Calibration	
Lako Aroa	Flux		Net Inflow	Concentration	Factor	Load
	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
Lake Area					L]	
[acre] 54			61	84	1.0	14
[acre] 54	13.6		61	84	1.0	14
[acre]			61	84	•	14
[acre] 54 Internal			61	84 Release Rate	Calibration	
[acre] 54 Internal Lake Area	13.6 Anoxic Factor		61	Release Rate	Calibration Factor	Load
[acre] 54 Internal	13.6		61		Calibration	

Average Lake Response N	lodeling for Tanager Lake	e
Modeled Parameter Equa		Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT	ION	
	as f(W,Q,V) from Canfield & Bac	hmann (1981)
	C _P =	1.00 []
$P_i/$	C _{CB} =	0.162 []
$P = \frac{1}{2} \left(\frac{W}{2} \right)^{b}$	b =	0.458 []
$\left 1 + C_P \times C_{CB} \times \left \frac{m_P}{m} \right \times T \right \right $	W (total P load = inflow + atm.) =	1178 [lb/yr]
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	2939 [ac-ft/yr]
	V (modeled lake volume) =	
	T = V/Q =	
	$P_i = W/Q =$	147.3 [ug/l]
Model Predicted In-Lake [TP]		91.0 [ug/l]
Observed In-Lake [TP]		92.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$\times V$	
P	ed (phosphorus sedimentation) =	450 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		728 [lb/yr]

Average Load Reduction Table for Tanager Lake								
LOAD			ELED IN-LAKE V ALITY PARAMET	TROPHIC STATE INDICES (Carlson, 1980)				
REDUC-TION	NET	[TP]	P SEDIMEN-	TP OUT	TSI			
	LOAD		TATION	FLOW	[TP]			
[%]	[lb]	[ug/L]	[lb]	[lb]	[]			
0%	1,178	91	450	728	69.2			
5%	1,119	87	421	697	68.6			
10%	1,060	83	393	667	67.9			
15%	1,001	80	365	636	67.3			
20%	942	76	338	604	66.5			
25%	883	72	310	573	65.7			
30%	824	68	284	540	64.9			
35%	765	64	258	508	64.0			
40%	707	59	232	474	63.0			
45%	648	55	207	440	62.0			
50%	589	51	183	406	60.8			
55%	530	46	159	371	59.5			
60%	471	42	136	335	58.0			
65%	412	37	114	298	56.3			
70%	353	33	93	260	54.4			
75%	294	28	73	222	52.1			
80%	236	23	54	182	49.2			
85%	177	18	36	140	45.5			
90%	118	12	21	97	40.1			
95%	59	6	8	51	30.8			

TMDL L	oading Sur	nmary for	Tanager	Lake		
	Water Budge	ts		Phospl	norus Loading	
Inflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 CLO03	1,010	4.5	382	114.4	1.0	119
2 Direct	302	5.1	129	159.1	1.0	56
3					1.0	
4					1.0	
5					1.0	
Summation	1,311	4.7	511	65.3	0.5	91
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 CLO03	1,010			Loud / Official	[10/00]	[, j.]
2 Direct	302	0				
3		·				
4						
5						
Summation	1,311	0				0
Inflow from Upstre	*					
	um Eureo			Estimated P	Reduction	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name	[acre]	-	[ac-ft/yr]			
	6,254	[in/yr] 4.5	2,367	[ug/L] 40	<u>[]</u> 1.0	[lb/yr] 258
1 Long Lake	0,204	4.5	2,307	40	1.0	200
2 3				-	1.0	
Summation			2,367	40.0	1.0	258
			2,007	40.0		200
Atmosphere				A	<u> </u>	
	Due sie it stie e	-		Aerial Loading	Reduction	1
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
54	31.2	31.2	0	0.239	1.0	13
		Dry-year total P	•	0.222		
		ige-year total P		0.239		
	V	Vet-year total P		0.259		
• • •		(Barr Engin	eering 2004)			
Groundwater					_	
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
54	13.6		61	84	1.0	14
Internal						
					Reduction	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
54	27.7			18.00	0.30	72
		rge [ac-ft/yr] =	2,939		Load [lb/yr] =	447
	Net Discila	-90 [ac-10 yi] =	2,353	ivel	-Jau [ib/yi] -	

TMDL Lake Response Modeling for Tanager Lake					
Modeled Parameter Equat		Value [Units]			
TOTAL IN-LAKE PHOSPHORUS CONCENTRATI	as f(W,Q,V) from Canfield & Bachr	mann (1081)			
		1.00 []			
$P = \frac{P_i}{2}$	C _{CB} =	0.162 []			
$\left \begin{array}{c} I \\ - \end{array} \right \left(\left(W_{p} \right)^{b} \right) \right $	b =	0.458 []			
$ 1 + C_P \times C_{CB} \times \frac{T_P}{V} \times T $	W (total P load = inflow + atm.) =	447 [lb/yr]			
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	2,939 [ac-ft/yr]			
	V (modeled lake volume) =	512 [ac-ft]			
	T = V/Q =				
	$P_i = W/Q =$	55.9 [ug/l]			
Model Predicted In-Lake [TP]		40.0 [ug/l]			
Goal In-Lake [TP]		40.0 [ug/l]			
PHOSPHORUS SEDIMENTATION RATE					
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] >$	$\langle V$				
	e _{sed} (phosphorus sedimentation) =	127 [lb/yr]			
PHOSPHORUS OUTFLOW LOAD					
W-P _{sed} =		320 [lb/yr]			

[acre] 1,000 <u>1,000</u> <u>ns</u> <u>Area [ac]</u> 1,000 <u>1,000</u> <u>n Lakes</u>	ts Runoff Depth [in/yr] 5.1 5.1 5.1 4 of Systems 2 2 2 Runoff Depth [in/yr] 5	Discharge [ac-ft/yr] 427 427 Failure [%] 25% Discharge [ac-ft/yr]	Phosphorus Concentration [ug/L] 159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	Calibration Factor (CF) ¹ [] 1.0 1.0 1.0 1.0 1.0 [Ib/ac] 0.0 Calibration Factor []	2 Load [lb/yr] 185 185 [lb/yr] 3 3 Load [lb/yr]
rainage Area [acre] 1,000 <u>1,000</u> <u>ns</u> Area [ac] 1,000 <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	[in/yr] 5.1 5.1 # of Systems 2 2 Runoff Depth [in/yr]	[ac-ft/yr] 427 427 Failure [%] 25% Discharge [ac-ft/yr]	Concentration [ug/L] 159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	Factor (CF) ¹ [] 1.0 1.0 1.0 1.0 1.0 [Ib/ac] 0.0 Calibration Factor	[lb/yr] 185 <u>185</u> [lb/yr] 3 3 Load
[acre] 1,000 <u>1,000</u> <u>ns</u> <u>Area [ac]</u> 1,000 <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	[in/yr] 5.1 5.1 # of Systems 2 2 Runoff Depth [in/yr]	[ac-ft/yr] 427 427 Failure [%] 25% Discharge [ac-ft/yr]	Concentration [ug/L] 159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	Factor (CF) ¹ [] 1.0 1.0 1.0 1.0 1.0 [Ib/ac] 0.0 Calibration Factor	[lb/yr] 185 <u>185</u> [lb/yr] 3 3 Load
[acre] 1,000 <u>1,000</u> <u>ns</u> <u>Area [ac]</u> 1,000 <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	[in/yr] 5.1 5.1 # of Systems 2 2 Runoff Depth [in/yr]	[ac-ft/yr] 427 427 Failure [%] 25% Discharge [ac-ft/yr]	Concentration [ug/L] 159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	Factor (CF) ¹ [] 1.0 1.0 1.0 1.0 1.0 [Ib/ac] 0.0 Calibration Factor	[lb/yr] 185 <u>185</u> [lb/yr] 3 3 Load
[acre] 1,000 <u>1,000</u> <u>ns</u> <u>Area [ac]</u> 1,000 <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	[in/yr] 5.1 5.1 # of Systems 2 2 Runoff Depth [in/yr]	[ac-ft/yr] 427 427 Failure [%] 25% Discharge [ac-ft/yr]	[ug/L] 159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	[] 1.0 1.0 1.0 1.0 [lb/ac] 0.0 Calibration Factor	[lb/yr] 185 <u>185</u> [lb/yr] 3 3 Load
<u>1,000</u> <u>1,000</u> <u>ns</u> <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	5.1 <u>5.1</u> # of Systems 2 2 Runoff Depth [in/yr]	427 <u>427</u> Failure [%] 25% Discharge [ac-ft/yr]	159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	1.0 1.0 1.0 1.0 [lb/ac] 0.0 Calibration Factor	185 <u>185</u> [lb/yr] 3 <u>3</u> Load
<u>1,000</u> <u>1,000</u> <u>ns</u> <u>1,000</u> <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	5.1 <u>5.1</u> # of Systems 2 2 Runoff Depth [in/yr]	427 <u>427</u> Failure [%] 25% Discharge [ac-ft/yr]	159.1 159.0 Load / System 6 Estimated P Concentration [ug/L]	1.0 1.0 1.0 1.0 [lb/ac] 0.0 Calibration Factor	185 <u>185</u> [lb/yr] 3 <u>3</u> Load
<u>1,000</u> <u>ns</u> <u>Area [ac]</u> 1,000 <u>1,000</u> <u>n Lakes</u> rainage Area [acre]	5.1 # of Systems 2 2 Runoff Depth [in/yr]	427 Failure [%] 25% Discharge [ac-ft/yr]	159.0 Load / System 6 Estimated P Concentration [ug/L]	1.0 1.0 1.0 [lb/ac] 0.0 Calibration Factor	<u>185</u> [lb/yr] 3 <u>3</u> Load
ns Area [ac] 1,000 1,000 n Lakes rainage Area [acre]	# of Systems 2 2 Runoff Depth [in/yr]	Failure [%] 25% Discharge [ac-ft/yr]	Load / System 6 Estimated P Concentration [ug/L]	1.0 1.0 1.0 [Ib/ac] 0.0 Calibration Factor	[lb/yr] 3 3 Load
ns Area [ac] 1,000 1,000 n Lakes rainage Area [acre]	# of Systems 2 2 Runoff Depth [in/yr]	Failure [%] 25% Discharge [ac-ft/yr]	Load / System 6 Estimated P Concentration [ug/L]	1.0 1.0 [Ib/ac] 0.0 Calibration Factor	[lb/yr] 3 3 Load
ns Area [ac] 1,000 1,000 n Lakes rainage Area [acre]	# of Systems 2 2 Runoff Depth [in/yr]	Failure [%] 25% Discharge [ac-ft/yr]	Load / System 6 Estimated P Concentration [ug/L]	1.0 [lb/ac] 0.0 Calibration Factor	[lb/yr] 3 3 Load
ns Area [ac] 1,000 1,000 n Lakes rainage Area [acre]	# of Systems 2 2 Runoff Depth [in/yr]	Failure [%] 25% Discharge [ac-ft/yr]	Load / System 6 Estimated P Concentration [ug/L]	[lb/ac] 0.0 Calibration Factor	[lb/yr] 3 3 Load
ns Area [ac] 1,000 1,000 n Lakes rainage Area [acre]	# of Systems 2 2 Runoff Depth [in/yr]	Failure [%] 25% Discharge [ac-ft/yr]	Load / System 6 Estimated P Concentration [ug/L]	0.0 Calibration Factor	[lb/yr] 3 3 Load
Area [ac] 1,000 <u>1,000</u> n Lakes rainage Area [acre]	2 2 Runoff Depth [in/yr]	25% Discharge [ac-ft/yr]	6 Estimated P Concentration [ug/L]	0.0 Calibration Factor	3 <u>3</u> Load
1,000 <u>1,000</u> n Lakes rainage Area [acre]	2 2 Runoff Depth [in/yr]	25% Discharge [ac-ft/yr]	6 Estimated P Concentration [ug/L]	0.0 Calibration Factor	3 <u>3</u> Load
<u>1,000</u> n Lakes rainage Area [acre]	2 Runoff Depth [in/yr]	Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Calibration Factor	3 Load
n Lakes rainage Area [acre]	Runoff Depth [in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	Load
n Lakes rainage Area [acre]	Runoff Depth [in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	Load
n Lakes rainage Area [acre]	Runoff Depth [in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	Load
n Lakes rainage Area [acre]	Runoff Depth [in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	Load
n Lakes rainage Area [acre]	Runoff Depth [in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	Load
rainage Area [acre]	[in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	
[acre]	[in/yr]	[ac-ft/yr]	Concentration [ug/L]	Factor	
[acre]	[in/yr]	[ac-ft/yr]	[ug/L]		
				[]	[ID/yr]
553	5			4.0	400
		236	159.1	1.0 1.0	102
			-	1.0	
		236	159.1	1.0	102
					=
			Aerial Loading	Calibration	
Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
27.3	27.3		0.239	1.0	10/yrj
		•			10
			0.259		
	(Barr Engin	eering 2004)			
Groundwater			Phosphorus	Calibration	
Flux		Net Inflow	Concentration	Factor	Load
					[lb/yr]
3.3		11	84	1.0	3
				•	
				Calibration	
noxic Factor			Release Rate		Load
					[lb/yr]
[days]				1.0	59
[days] 55.0			3.00		
	Avera v Froundwater Flux [in/yr] 3.3 noxic Factor [days]	Average-year total P Wet-year total P (Barr Engin Froundwater Flux [in/yr] 3.3	Average-year total P deposition = Wet-year total P deposition = (Barr Engineering 2004) Froundwater Flux Net Inflow [in/yr] [ac-ft/yr] 3.3 11 noxic Factor [days]	Average-year total P deposition = Wet-year total P deposition = (Barr Engineering 2004) 0.239 Barr Engineering 2004) 0.259 Barr Engineering 2004) Phosphorus Concentration Flux Net Inflow [in/yr] [ac-ft/yr] 3.3 11 84 noxic Factor Release Rate [mg/m ² -day]	Average-year total P deposition = 0.239 Wet-year total P deposition = 0.259 (Barr Engineering 2004) 0.259 Groundwater Phosphorus Calibration Flux Net Inflow Concentration Factor [in/yr] [ac-ft/yr] [ug/L] [] 3.3 11 84 1.0 noxic Factor Release Rate Factor [days] [mg/m²-day] []

Average Lake I	Response Modeling	for Wolsfeld Lake	;
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS			
P_{i}		Q,V) from Canfield & Bach	. ,
$P = \prod_{i=1}^{i}$	$(W)^{b}$	C _P =	1.00 []
$P = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$C_{CB} \times \left \frac{m_{P}}{T} \right \times T \right $	C _{CB} =	0.162 []
		b =	0.458 []
	W (total P	load = inflow + atm.) =	361 [lb/yr]
		Q (lake outflow) =	674 [ac-ft/yr]
	V (m	odeled lake volume) =	380 [ac-ft]
		T = V/Q =	0.56 [yr]
		P _i = W/Q =	197.1 [ug/l]
Model Predicted In-Lake [TP]			84.4 [ug/l]
Observed In-Lake [TP]			80.1 [ug/l]
PHOSPHORUS SEDIMENTATIO	N RATE		
$P_{sed} = C_P \times C_{CB} \times$	$\left\langle \left(\frac{W_P}{V}\right)^b \times [TP] \times V \right\rangle$		
		rus sedimentation) =	207 [lb/yr]
PHOSPHORUS OUTFLOW LOA			
W-P _{sed} =			155 [lb/yr]

Average Load Reduction Table for Wolsfeld Lake						
LOAD MOD			ED IN-LAKE W PARAMET	TROPHIC STATE INDICES (Carlson, 1980)		
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-FLOW	TSI	
TION	LOAD		TATION		[TP]	
[%]	[lb]	[ug/L]	[lb]	[lb]	[]	
0%	361	84	207	155	68.1	
5%	343	81	194	149	67.6	
10%	325	78	182	143	67.0	
15%	307	75	170	137	66.4	
20%	289	71	158	131	65.7	
25%	271	68	146	125	65.0	
30%	253	65	134	118	64.3	
35%	235	61	123	112	63.5	
40%	217	57	111	105	62.6	
45%	199	54	100	98	61.6	
50%	181	50	89	92	60.6	
55%	162	46	78	84	59.4	
60%	144	42	68	77	58.0	
65%	126	38	57	69	56.5	
70%	108	33	47	61	54.7	
75%	90	29	37	53	52.6	
80%	72	24	28	44	50.0	
85%	54	19	19	35	46.6	
90%	36	13	11	25	41.6	
95%	18	7	5	13	32.9	

T	MDL L	oading Sur	nmary for	Wolsfeld	l Lake		
		Water Budge	ts		Phosp	horus Loading	9
Inflow from	n Draina	ge Areas					
		Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name		[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct		1,000	5.1	427	159.1	1.0	185
2 3						1.0 1.0	
4						1.0	
5			- /	(a =		1.0	
	ımmation	1,000	5.1	427	39.8	0.25	46
Failing Sep	otic Syst						
Name		Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct		1,000	2	0%	6	0.0	0
2 3 4 5							
SL	ımmation	1,000	2				0
Inflow from	n Upstre	am Lakes					
					Estimated P	Reduction	
		Drainage Area	Runoff Depth	Discharge	Concentration	Factor	Load
Name		[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 School		553	5	236	60.0	1.0	38
2					-	1.0	
3					-	1.0	
SL	ımmation			236	60.0		38
Atmospher	ĩe						
-	Area	Precipitation	Evaporation	Net Inflow	Aerial Loading Rate	Reduction Factor	Load
[ac	re]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
	0	27.3	27.3	0	0.239	1.0	10
		[Dry-year total P	deposition =	0.222		
			age-year total P		0.239		
		V	Vet-year total P		0.259		
			(Barr Engin	eering 2004)			
Groundwat	ter						
		Groundwater			Phosphorus	Reduction	
Lake Ar	rea	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
40		3.3		11	84	1.0	3
Internal							
						Reduction	
Lake Ar	rea	Anoxic Factor			Release Rate	Factor	Load
1 1 1 1 1 1 1 1	1	[days]			[mg/m ² -day]	[]	[lb/yr]
[acre]	1	[]			<u> </u>		
Lacre 40		55.0			3.0	0.66	39

TMDL Lake Response N	Nodeling for Wolsfeld La	ke
•	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT		abmann (1091)
	as f(W,Q,V) from Canfield & Ba	· · ·
	C _P =	1.00 []
$P = \frac{P_i}{c}$	C _{CB} =	0.162 []
$\left[\begin{array}{c} & \\ & \\ \end{array} \right] \left[\begin{array}{c} & \\ \end{array} \\ \left[\begin{array}{c} & \\ \end{array} \right] \left[\end{array} \right] \left[\begin{array}{c} & \\ \end{array} \\ \left[\end{array} \right] \left[\begin{array}{c} & \\ \end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\begin{array}{c} & \\ \end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \\ \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \right] \left[\end{array} \\ \\ \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \\ \\ \left[\end{array} \\ \\ \\ \\ \left[\end{array} \\ \\ \\ \\ \\ \left[\end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \left[$	b =	0.458 []
$ 1 + C_P \times C_{CB} \times \frac{1}{V} \times T $	W (total P load = inflow + atm.) =	136 [lb/yr]
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	674 [ac-ft/yr]
	V (modeled lake volume) =	380 [ac-ft]
	T = V/Q =	0.56 [yr]
	$P_i = W/Q =$	74.2 [ug/l]
Model Predicted In-Lake [TP]		40.0 [ug/l]
Goal In-Lake [TP]		40.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$ \times V $	
P,	sed (phosphorus sedimentation) =	63 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		73 [lb/yr]

Average L	oading Sur	-	Snyder		2006-2008	
	Water Budge	ts		Phos	phorus Loading	g
nflow from Draina	age Areas					
					Calibration	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
	[]	F: (-1		F . (1.)		FIL / .1
Name 1 Direct	[acre] 95	[in/yr] 5.1	[ac-ft/yr]	[ug/L] 104.0	<u>[]</u> 1.0	[lb/yr]
1 Direct	95	D . I	41	104.0		11
2 3					1.0 1.0	
4					1.0	
5					1.0	
Summatior	n 95	5.1	41	104.0	1.0	11
Failing Septic Sys		-	<u>.</u>			
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	95	0			[10, 00]	[10, 91]
2		Ũ				
3						
4						
5						
Summatior	ח 95	0				0
Inflow from Upstr	eam Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Kreatz	266		113	118.9	1.0	37
2				-	1.0	
3 Summatior	<u> </u>		113	- 118.9	1.0	37
	1		113	110.9		37
Atmosphere					O a l'ha a fi a a	
	Drasinitation			Aerial Loading	Calibration	اممط
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre] 12	[in/yr] 27.3	[in/yr] 27.3	[ac-ft/yr]	[lb/ac-yr] 0.24	[] 1.0	[lb/yr] 3
12		Dry-year total P	5		1.0	5
		age-year total P				
		Vet-year total P		0.259		
			eering 2004)			
Groundwater		<u> </u>				
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
12	0.0		0	0	1.0	0
Internal			-			
					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
12	54.6			3.00	1.0	18
	Net Discha			Net		

Modeled Parameter		Parameters	Value [Units]
		V,Q,V) from Canfield & Bach	ımann (1981)
$P = \frac{I_i}{I_i}$	$(\mathbf{W} \geq^{b})$	C _P =	1.00 []
$ 1+C_P \rangle$	$\left(\left(C_{CB} \times \left(\frac{W_P}{V} \right)^b \times T \right) \right)$	C _{CB} =	0.162 []
		b =	0.458 []
	W (total F	P load = inflow + atm.) =	
		Q (lake outflow) =	154 [ac-ft/yr]
	V (I	nodeled lake volume) =	72 [ac-ft]
			0.47 [yr]
		$P_i = W/Q =$	163.8 [ug/l]
Model Predicted In-Lake [TP	1		77.6 [ug/l]
Observed In-Lake [TP]			71.6 [ug/l]
PHOSPHORUS SEDIMENTATI	ON RATE		
$P_{sed} = C_P \times C_{CB}$	$\times \left(\frac{W_P}{V}\right)^b \times [TP] \times V$		
	P _{sed} (phosph	orus sedimentation) =	36 [lb/yr]
			22 [lb/sm]
W-P _{sed}	=		32 [lb/yr]

Average Load Reduction Table for Snyder Lake					
LO	LOAD		ED IN-LAKE WA PARAMETEF	TROPHIC STATE INDICES (Carlson, 1980)	
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI
TION	LOAD		TATION	FLOW	[TP]
[%]	[lb]	[ug/L]	[lb]	[lb]	[]
0%	69	78	36	32	66.9
5%	65	75	34	31	66.3
10%	62	72	32	30	65.7
15%	58	69	30	29	65.1
20%	55	65	27	27	64.4
25%	51	62	25	26	63.7
30%	48	59	23	25	63.0
35%	45	56	21	23	62.1
40%	41	52	19	22	61.2
45%	38	49	17	20	60.2
50%	34	45	15	19	59.1
55%	31	42	13	17	57.9
60%	27	38	12	16	56.6
65%	24	34	10	14	55.0
70%	21	30	8	13	53.2
75%	17	26	6	11	51.0
80%	14	21	5	9	48.3
85%	10	17	3	7	44.8
90%	7	12	2	5	39.8
95%	3	6	1	3	30.9

TMDL	Loading Sur	nmary for	Snyder	Lake		
	Water Budge	ts		Phosp	horus Loading	9
Inflow from Drain	nage Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	95	5.1	41	104.0	1.0	11
2 3 4 5					1.0 1.0 1.0 1.0	
Summatio	on 95	5.1	41	91.5	0.88	10
Failing Septic Sy	/stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct 2 3 4	95	Ö				
5 Summatio	on 95	0				0
		0				0
Inflow from Upst	tream Lakes					
			Discharge	Estimated P Concentration	Reduction Factor	Load
Name	000		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Kreatz 2 3	266		113	60.0 -	<mark>0.50</mark> 1.0 1.0	18
Summatio	on		113	60.0		18
Atmosphere					•	
Lake Area [acre] 12.00	Precipitation [in/yr]	Evaporation [in/yr] 27.3	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr]	Reduction Factor []	Load [lb/yr]
12.00	27.3	27.3 Dry-year total P	0 deposition =	0.24 0.222	1.0	3
	Avera	age-year total P Vet-year total P	deposition =			
Groundwater						
Lake Area	Groundwater Flux		Net Inflow	Phosphorus Concentration	Reduction Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
12	0.0		0	0	1.0	0
Internal						
Lake Area	Anoxic Factor			Release Rate	Reduction Factor	Load
[acre] 12	[days] 54.6			[mg/m ² -day] 3.00	[]	[lb/yr] 18
12		F 64 -	454			
	Net Discha	rge [ac-ft/yr] =	154	Net	Load [lb/yr] =	49

TMDL Lake Response I	Modeling for Snyder Lake	
	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRA		
	as f(W,Q,V) from Canfield & Ba	· · · ·
	C _P =	1.00 []
P_{i}	C _{CB} =	
$P = \frac{1}{2} \left(\frac{W}{b} \right)$	b =	0.458 []
$\left 1 + C_{P} \times C_{CP} \times \left \frac{W_{P}}{2} \right \times T \right $	W (total P load = inflow + atm.) =	49 [lb/yr]
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	154 [ac-ft/yr]
	V (modeled lake volume) =	
		0.47 [yr]
	$P_i = W/Q =$	117.0 [ug/l]
Model Predicted In-Lake [TP]		60.0 [ug/l]
Goal In-Lake [TP]		60.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$] \times V$	
P	sed (phosphorus sedimentation) =	24 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		25 [lb/yr]

Average	Loading Sur		School I		2009-2010	
	Water Budge	ts		Phosp	ohorus Loading	
Inflow from Draii	nage Areas					
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
Nama	[ooro]	[in / r]		[ua/]]	r 1	[lb/ser]
Name 1 Direct	[acre] 541	[in/yr] 5.1	[ac-ft/yr] 231	[ug/L] 159.1	[] 1.0	[lb/yr] 100
	541	5.1	251	159.1		100
2 3					1.0 1.0	
4					1.0	
5					1.0	
Summatio	on 541	5.1	231	159.1	1.0	100
Failing Septic Sy		•••				
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	<u> </u>	7	25%	6.1	0.0	11
2	••••	·	_0,0	••••	010	
3						
4						
5						
Summatio		7				11
Inflow from Upst	ream Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0.0	-	1.0	
2				-	1.0	
3				-	1.0	
Summatio	on		0	-		0
Atmosphere						
				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
11	33.1	33.1	0	0.239	1.0	3
		Dry-year total P				
		age-year total P Vet-year total P		0.239		
	v		eering 2004)			
Groundwater			2004)			
Giounuwalei	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre] 11	[m/yr] 0.0		[ac-ft/yr]	[ug/L] 0	[] 1.0	[lb/yr] 0
Internal	0.0		0	0	1.0	0
internal					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre] 11	[days] 72.0			[mg/m ² -day] 18.00	[] 1.0	[lb/yr] 128
11			001			
	Net Discha	rge [ac-ft/yr] =	231	Net	Load [lb/yr] =	242

Average Lake Response Mo	odeling for School Lake)
Modeled Parameter Equati		Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRATIC	DN	
	as f(W,Q,V) from Canfield & Ba	chmann (1981)
	C _P =	1.00 []
P_{i}	C _{CB} =	0.162 []
$\Gamma = \langle (W) \rangle^b$	b =	0.458 []
$\left 1 + C_P \times C_{CB} \times \left \frac{m_P}{m} \right \times T \right $	W (total P load = inflow + atm.) =	242 [lb/yr]
$P = \frac{\Gamma_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	231 [ac-ft/yr]
	V (modeled lake volume) =	90 [ac-ft]
	T = V/Q =	
	$P_i = W/Q =$	384.6 [ug/l]
Model Predicted In-Lake [TP]		155.1 [ug/l]
Observed In-Lake [TP]		157.7 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP] \times$	V	
P _{sed}	(phosphorus sedimentation) =	144 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		97 [lb/yr]

Average Load Reduction Table for School Lake							
LOA	D	MODELED IN-LAKE WATER QUALITY PARAMETERS		MODELED IN-LAKE WATER QUALITY PARAMETERS			
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI		
TION	LOAD		TATION	FLOW	[TP]		
[%]	[lb]	[ug/L]	[lb]	[lb]	[]		
0%	242	155	144	97	76.9		
5%	229	149	136	94	76.3		
10%	217	144	127	90	75.8		
15%	205	138	119	87	75.2		
20%	193	132	111	83	74.5		
25%	181	126	102	79	73.8		
30%	169	119	94	75	73.1		
35%	157	113	86	71	72.3		
40%	145	106	78	67	71.4		
45%	133	100	70	63	70.5		
50%	121	93	63	58	69.4		
55%	109	85	55	54	68.3		
60%	97	78	48	49	67.0		
65%	85	70	40	44	65.5		
70%	72	62	33	39	63.7		
75%	60	54	27	34	61.6		
80%	48	45	20	28	59.1		
85%	36	36	14	22	55.7		
90%	24	25	8	16	50.8		
95%	12	14	3	9	42.2		

TMDL L	oading Sur	nmary for	School I	Lake		
	Water Budge	ts		Phosp	horus Loadin	g
Inflow from Drain	age Areas			•		
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	541	5.1	231	159.1	1.0	100
2 3 4					1.0 1.0 1.0	
5					1.0	
Summation	า 541	5	231	44.5	0.28	28
Failing Septic Sys		•			••	
Name	Area [ac]	# of Systems	Failura 10/1	Load / System	[lb/ac]	[lb/yr]
1 Direct	541	7	0%	6.1	0.0	[lb/yr] 0
2 3 4 5	541	,	070	0.1	0.0	0
Summation	า 541	7				0
Inflow from Upstr				1		
	cum Eurco			Estimated P	Reduction	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0.0	-	1.0	[,].]
2				-	1.0	
3				-	1.0	
Summation	า		0	-		0
Atmosphere						
Lake Area	Precipitation	Evaporation	Net Inflow	Aerial Loading Rate	Reduction Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
11	33.1	33.1	0	0.239	1.0	3
		Dry-year total P	•			
		age-year total P				
	V	Vet-year total P				
One and the t		(Barr Engin	eering 2004)			
Groundwater					<u> </u>	
	Groundwater		Net Inflor	Phosphorus	Reduction	1
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
11	0.0		0	0	1.0	0
Internal				l		
					Reduction	1
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[acre]	[days]			[mg/m ² -day]	[]	[lb/yr]
11	72.0			18.00	0.30	38.5
	Net Discha	rge [ac-ft/yr] =	231	Net	Load [lb/yr] =	69

TMDL Lake Response I	Modeling for School Lake	Ģ
	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRA		(1001)
	as f(W,Q,V) from Canfield & Ba	, ,
	C _P =	1.00 []
$P = \frac{P_i}{2}$	C _{CB} =	0.162 []
$I = \langle (W_{-})^{b} \rangle$	b =	0.458 []
$ 1 + C_P \times C_{CB} \times \frac{m_P}{m} \times T $	W (total P load = inflow + atm.) =	69 [lb/yr]
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	Q (lake outflow) =	231 [ac-ft/yr]
	V (modeled lake volume) =	90 [ac-ft]
		0.39 [yr]
	$P_i = W/Q =$	
Model Predicted In-Lake [TP]		60.0 [ug/l]
Goal In-Lake [TP]		60.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$] \times V$	
٣	ed (phosphorus sedimentation) =	31 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		
W-P _{sed} =		38 [lb/yr]

Average l	Loading Sui		Hadley L		(2006-200	
	Water Budge	ets		Phosp	horus Loading	I
Inflow from Draina	age Areas					
	•				Loading	
				Phosphorus	Calibration	
	Drainage Area	Runoff Depth	Discharge	Concentration	Factor (CF) ¹	Load
	C C		C C		. ,	
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	502	5.1	214	104.0	1.0	61
2					1.0	
3					1.0	
4					1.0	
5					1.0	
Summatior	า 502	5.1	214	104.0		61
Failing Septic Sys	stems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct	502	0	0%	0	0.0	0
2				-		
3						
4						
5						
Summatior	า 502	0				0
Inflow from Upstr	eam Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1			0	-	1.0	
2				-	1.0	
3				-	1.0	
Summatior	า		0	-		0
Atmosphere						
•				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
35	27.3	27.3	0	0.239	1.0	8
		Dry-year total P	deposition =	0.222		
		age-year total P		0.239		
	١	Vet-year total P		0.259		
		(Barr Engin	eering 2004)			
Groundwater						
	Groundwater			Phosphorus	Calibration	-
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[in/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
35	-1.7		-5	0	1.0	0
Internal						
					Calibration	
				Release Rate	Factor	Load
Lake Area	Anoxic Factor			Release Rale	I actor	
Lake Area						
Lake Area [acre] 35	Anoxic Factor [days] 55.7			[mg/m ² -day] 5.00	[] 1.0	[lb/yr] 88

Average Lake	Response Modeling	g for Hadley Lake	
Modeled Parameter	Equation	Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS			
P		V,Q,V) from Canfield & Bachr	mann (1981)
$P = \frac{1}{2}$	$(W)^b$		1.00 []
$P = \frac{1}{1 + C_p} \times \frac{1}{1 + C_p}$	$C_{CB} \times \left \frac{W_P}{W} \right \times T \parallel$	C _{CB} =	0.162 []
		b =	0.458 []
	W (total	P load = inflow + atm.) =	157 [lb/yr]
		Q (lake outflow) =	209 [ac-ft/yr]
	V	modeled lake volume) =	600 [ac-ft]
		T = V/Q =	2.87 [yr]
		$P_i = W/Q =$	275.5 [ug/l]
Model Predicted In-Lake [TP]			57.9 [ug/l]
Observed In-Lake [TP]			58.2 [ug/l]
PHOSPHORUS SEDIMENTATIO	N RATE		
$P_{sed} = C_P \times C_{CB} \times$	$\left\langle \left(\frac{W_P}{V}\right)^b \times [TP] \times V \right\rangle$		
		norus sedimentation) =	124 [lb/yr]
PHOSPHORUS OUTFLOW LOA			
W-P _{sed} =			33 [lb/yr]

Average Load Reduction Table for Hadley Lake					
LO	AD		DELED IN-LAKI UALITY PARAN	TROPHIC STATE INDICES (Carlson, 1980)	
REDUC-	NET	[TP]	P SEDIMEN-	TP OUT-	TSI
TION	LOAD		TATION	FLOW	[TP]
[%]	[lb]	[ug/L]	[lb]	[lb]	[]
0%	157	58	124	33	62.7
5%	149	56	117	32	62.2
10%	141	54	110	31	61.7
15%	133	52	104	30	61.2
20%	125	50	97	29	60.6
25%	118	48	90	27	60.0
30%	110	46	84	26	59.4
35%	102	44	77	25	58.7
40%	94	42	70	24	57.9
45%	86	39	64	22	57.1
50%	78	37	57	21	56.2
55%	71	34	51	20	55.2
60%	63	32	45	18	54.0
65%	55	29	38	16	52.7
70%	47	26	32	15	51.2
75%	39	23	26	13	49.4
80%	31	20	20	11	47.1
85%	24	16	14	9	44.2
90%	16	12	9	7	39.9
95%	8	7	4	4	32.3

TM	DL Loading Su	mmary for	Hadley L	.ake		
	Water Budg	ets		Phosp	horus Loading	9
nflow from D	rainage Areas					
	Drainage Area	a Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Direct	502		214	104.0	1.0	61
2 3 4					1.0 1.0 1.0	
5			-		1.0	
	mation 502	5.1	214	68.6	0.66	40
Failing Septic	: Systems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Direct 2 3 4 5	502	2 0	0%	0	0.0	0
	mation 502	0				0
	pstream Lakes	-				
			Discharge	Estimated P Concentration	Reduction Factor	Load
Name			[ac-ft/yr] 0	[ug/L]	<u>[]</u> 1.0	[lb/yr]
1 2 3	c			-	1.0 1.0 1.0	
	mation		0	-		0
Atmosphere Lake Ar [acre]	[in/yr]	[in/yr]	Net Inflow [ac-ft/yr]	Aerial Loading Rate [lb/ac-yr]	Reduction Factor []	Load [lb/yr]
35	27.3	27.3	0	0.239	1.0	8
		Dry-year total P rage-year total P Wet-year total P (Barr Engin	deposition =	0.222 0.239 0.259		
Groundwater						
Lake Area [acre]	Groundwater Flux [in/yr]		Net Inflow [ac-ft/yr]	Phosphorus Concentration [ug/L]	Reduction Factor []	Load [lb/yr]
35	-1.7		-5	0	1.0	0
Internal				-		
Lake Area [acre]	Anoxic Factor [days]	-		Release Rate [mg/m ² -day]	Reduction Factor []	Load [lb/yr]
35	55.7			5.00	0.46	40
	Net Disch	arge [ac-ft/yr] =	209	Net	Load [lb/yr] =	89

TMDL Lake Response N	Modeling for Hadley Lake	;
Modeled Parameter Equa TOTAL IN-LAKE PHOSPHORUS CONCENTRA	ation Parameters	Value [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTRAT	as f(W,Q,V) from Canfield & Ba	achmann (1981)
	. ,	1.00 []
$P = \underbrace{P_i}_{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times T\right)}$	C _{CB} =	0.162 []
$P = \frac{1}{2} \left(\left(W_{p} \right)^{b} \right)$	b =	0.458 []
$ 1 + C_P \times C_{CB} \times \frac{T_P}{V} \times T $	W (total P load = inflow + atm.) =	89 [lb/yr]
	Q (lake outflow) =	209 [ac-ft/yr]
	V (modeled lake volume) =	600 [ac-ft]
		2.87 [yr]
	$P_i = W/Q =$	156.0 [ug/l]
Model Predicted In-Lake [TP]		40.0 [ug/l]
Goal In-Lake [TP]		40.0 [ug/l]
PHOSPHORUS SEDIMENTATION RATE		
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [TP]$	$ \times V $	
P	_{sed} (phosphorus sedimentation) =	66 [lb/yr]
PHOSPHORUS OUTFLOW LOAD		00 511 / 1
W-P _{sed} =		23 [lb/yr]

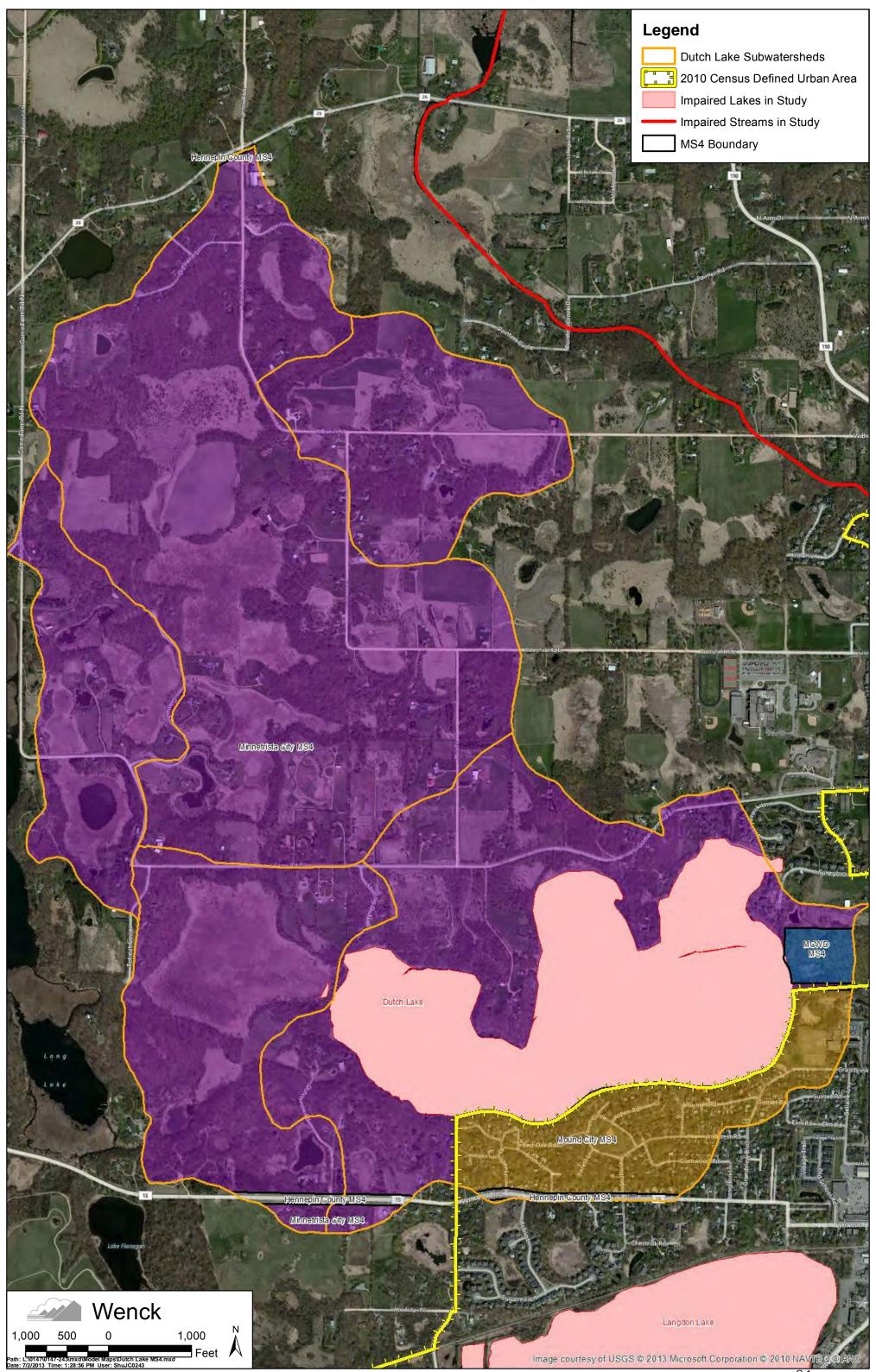
Average L	oading Sur	nmary for	Turbid	2008, 201		
	Water Budge	ts		Phos	phorus Loading	
nflow from Draina	ge Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Loading Calibration Factor (CF) ¹	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Turbid	533	8.2	366	89.6	1.0	89
2					1.0	
3					1.0	
4					1.0	
5					1.0	
Summation	533	8.2	366			89
ailing Septic Syst	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Turbid	533	10	0	6	0.0	15
2 3 4 5						
Summation	533	10				15
flow from Upstre	am Lakes					
				Estimated P	Calibration	
			Discharge	Concentration	Factor	Load
Name			[ac-ft/yr]	[ug/L]	[]	[lb/yr
1 2				-	1.0 1.0	
3 Summation			0		1.0	0
tmosphere			Ŭ			Ŭ
unospiiere				Aerial Loading	Calibration	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
40	30.7	30.7	0	0.24	1.0	10
	Avera	Dry-year total P age-year total P Net-year total P (Barr Engin	deposition =	0.222 0.239 0.259		
iroundwater						
	Groundwater			Phosphorus	Calibration	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre] 40	[m/yr] 0.0		[ac-ft/yr]	[ug/L] 0	[]	[lb/yr] 0
	0.0		0	0	1.0	0
nternal					Calibration	
Lake Area	Anoxic Factor			Release Rate	Factor	Load
[km ²]	[days]			[mg/m ² -day]	[]	[lb/yr]
0.16	[)~]		Oxic	[1.0	L
0.16	40.9		Anoxic	9.3	1.0	135
Summation						135
	Net Discha	rge [ac-ft/yr] =	366	Net	: Load [lb/yr] =	249

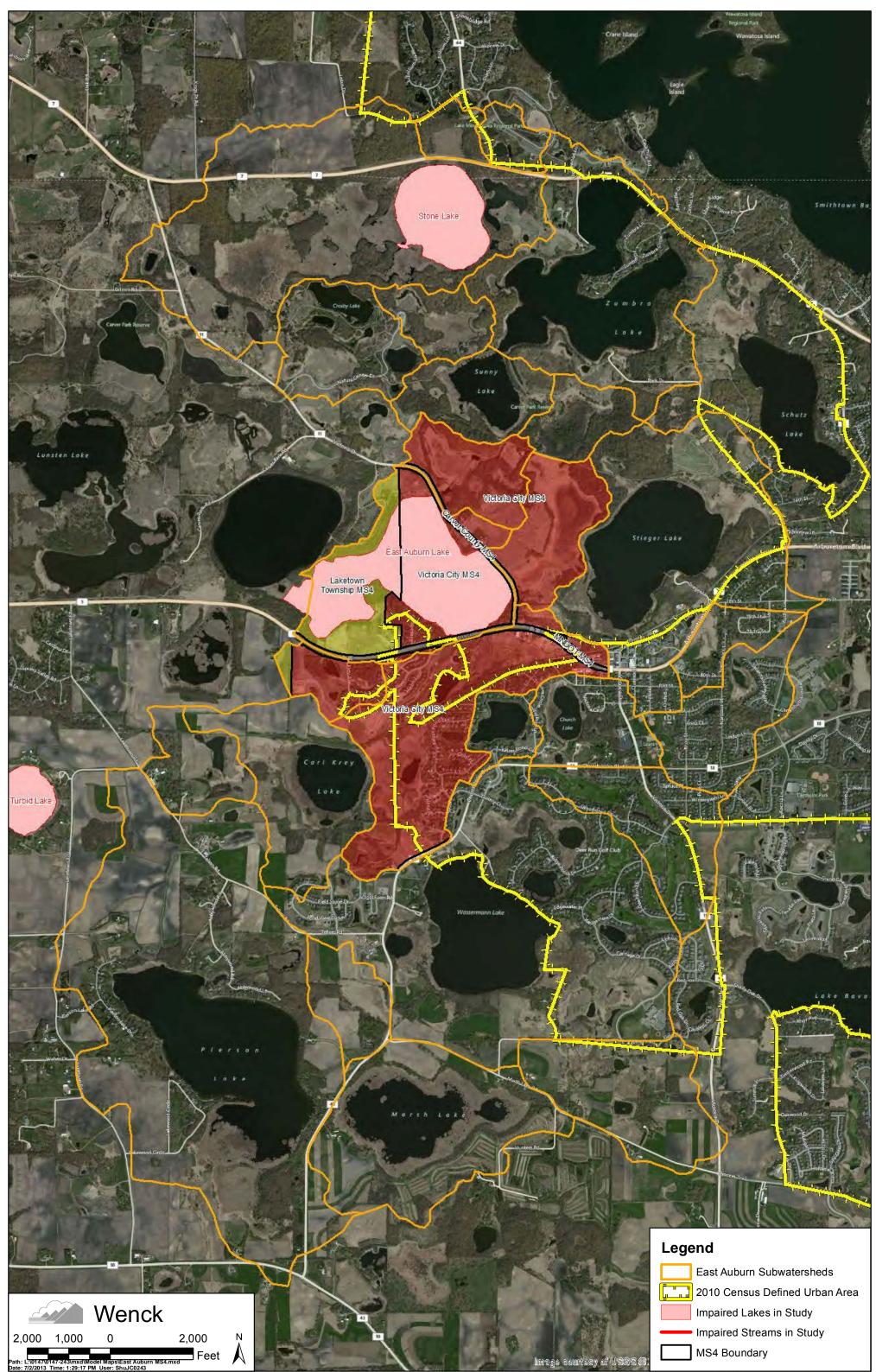
NOTES

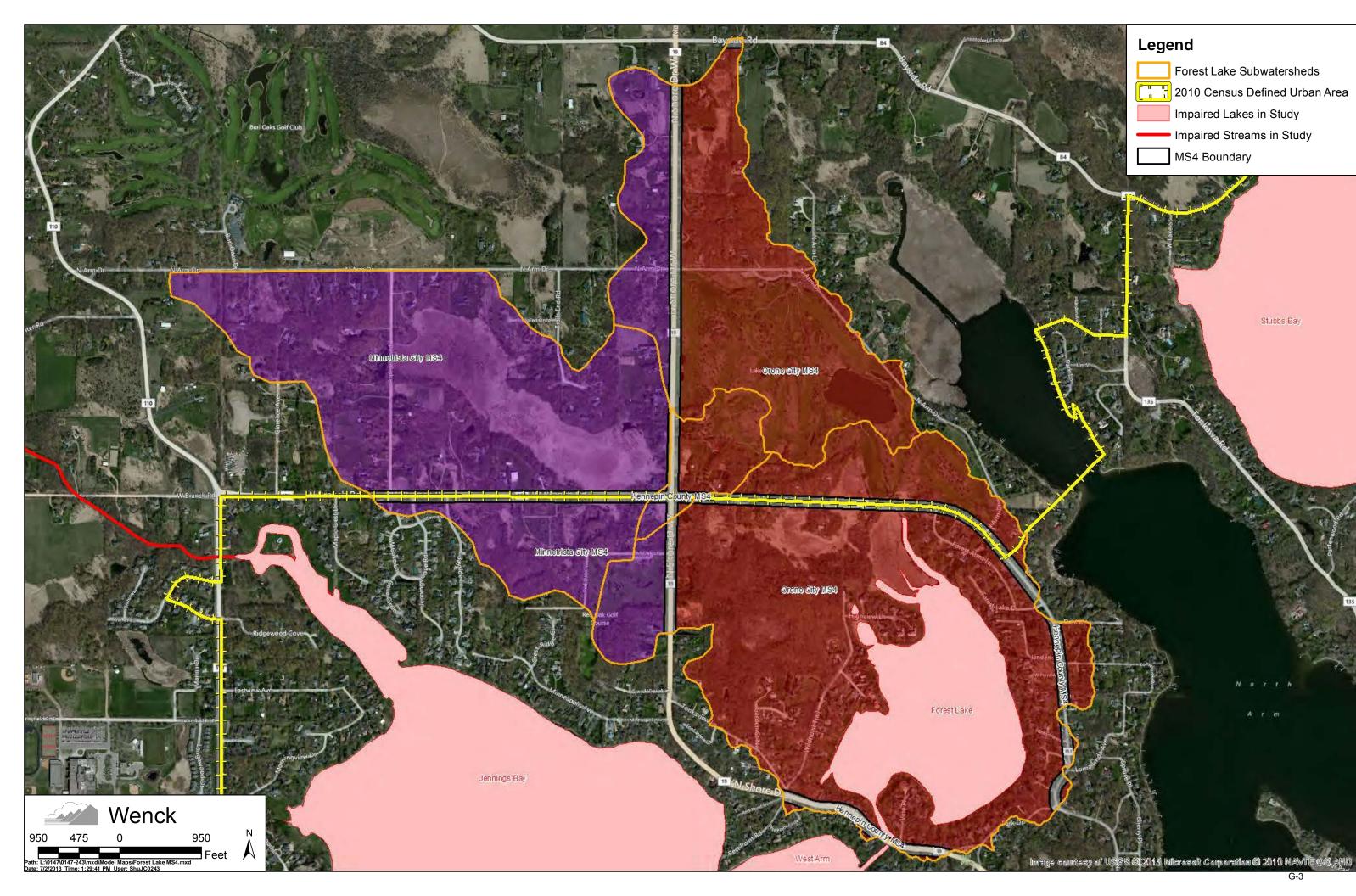
¹ Loading calibration factor used to account for special circumstances such as wetland systems, fertilizer use, or animal waste, among others, that might apply to specific loading sources.

Average Lake Response	e Mod	eling for Turbid		
	quation	Parameters	Value	e [Units]
TOTAL IN-LAKE PHOSPHORUS CONCENTR	ATION			
D /		as f(W,Q,V) from Canfield & Bachr	nann (198 ⁻	1)
$P = \frac{P_i}{c}$		C _P =	1.26	S []
$P = \frac{P_i}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times \right)}$	T		0.162	2 []
	Л	b =	0.458	3 []
	— w	(total P load = inflow + atm.) =	249) [lb/yr]
		Q (lake outflow) =	366	δ [ac-ft/yr]
Qs = Max(Z/T,4)		V (modeled lake volume) =	417	7 [ac-ft]
25 11000 (2 + 1 ; 1)		T = V/Q =		[yr]
		$P_i = W/Q =$		ζ [μg/l]
Model Predicted In-Lake [TP]			66.8	[ug/l]
Observed In-Lake [TP]			66.8	[ug/l]
PHOSPHORUS SEDIMENTATION RATE				
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b \times [T]$	$TP] \times V$			
	P _{sed} (p	phosphorus sedimentation) =	183	[lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			66	6 [lb/yr]

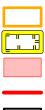
	LOAD	MODELED IN- LAKE WATER QUALITY	
		PARAMETER	
REDUC-	NET	NET	[TP]
TION	LOAD	LOAD	
[%]	[kg]	[lb]	[ug/L]
0%	113	249	66.8
5%	107	237	64.6
10%	102	224	62.3
15%	96	212	59.9
20%	90	199	57.5
25%	85	187	55.1
30%	79	175	52.6
35%	74	162	50.0
40%	68	150	47.3
45%	62	137	44.6
50%	57	125	41.7
55%	51	112	38.8
60%	45	100	35.7
65%	40	87	32.5
70%	34	75	
			29.1
75%	28	62	25.5
80%	23	50	21.6
85%	17	37	17.5
90%	11	25	12.8
95%	6	12	7.4

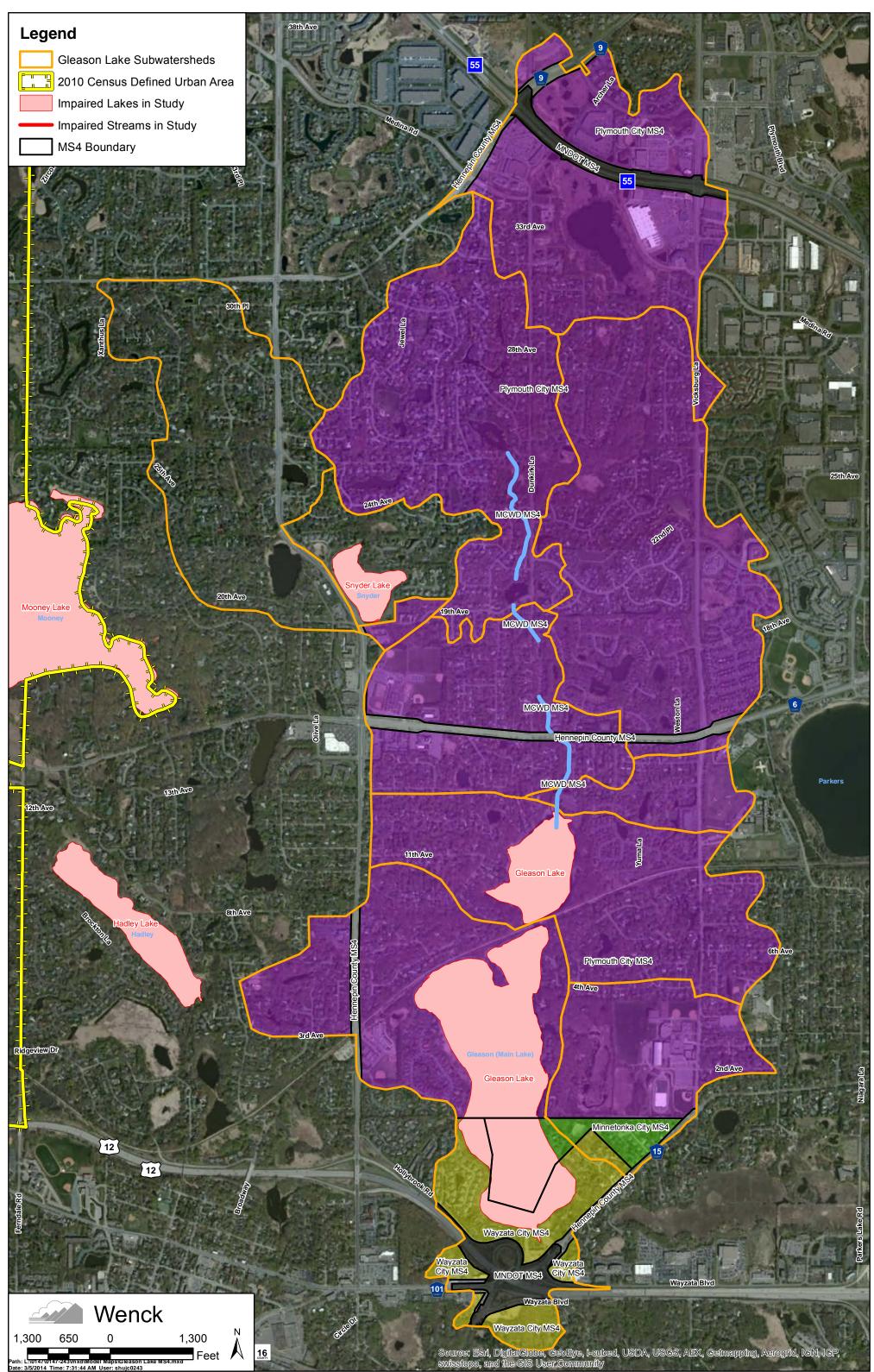

TMDL L	oading Sur	nmary for	Turbid			
	Water Budge	ts		Phos	ohorus Loadir	g
Inflow from Draina	ige Areas					
	Drainage Area	Runoff Depth	Discharge	Phosphorus Concentration	Reduction Factor	Load
Name	[acre]	[in/yr]	[ac-ft/yr]	[ug/L]	[]	[lb/yr]
1 Turbid	533	8.2	366	77.2	0.86	77
2 3 4 5						
Summation	533	8.2	366			77
Failing Septic Sys	tems					
Name	Area [ac]	# of Systems	Failure [%]	Load / System	[lb/ac]	[lb/yr]
1 Turbid	533	10	0	6	0.0	0
2 3 4 5						
Summation		10				0
Inflow from Upstre	am Lakes					
Name			Discharge [ac-ft/yr]	Estimated P Concentration [ug/L]	Reduction Factor []	Load [lb/yr]
1 2 3					1.0 1.0 1.0	
Summation			0	-		0
Atmosphere						
				Aerial Loading	Reduction	
Lake Area	Precipitation	Evaporation	Net Inflow	Rate	Factor	Load
[acre]	[in/yr]	[in/yr]	[ac-ft/yr]	[lb/ac-yr]	[]	[lb/yr]
40	30.7	30.7 Dry-year total P	0 doposition =	0.24 0.222	1.0	10
	Avera	age-year total P Vet-year total P	deposition =	0.222 0.239 0.259		
Groundwater						
	Groundwater			Phosphorus	Reduction	
Lake Area	Flux		Net Inflow	Concentration	Factor	Load
[acre]	[m/yr]		[ac-ft/yr]	[ug/L]	[]	[lb/yr]
40	0.0		0	0	1.0	0
Internal				[Deduction	
Laka Araa	Anovia Easter			Polosos Data	Reduction	Lood
Lake Area [km ²]	Anoxic Factor			Release Rate [mg/m ² -day]	Factor	Load
<u>[KII]</u> 0.16	[days]		Oxic	[iiig/iii -uay]	[] 1.0	[lb/yr]
0.16	40.9		Anoxic	2.13	1.0	31
Summation		_				31
	Net Discha	rge [ac-ft/yr] =	366	Net	Load [lb/yr] =	117

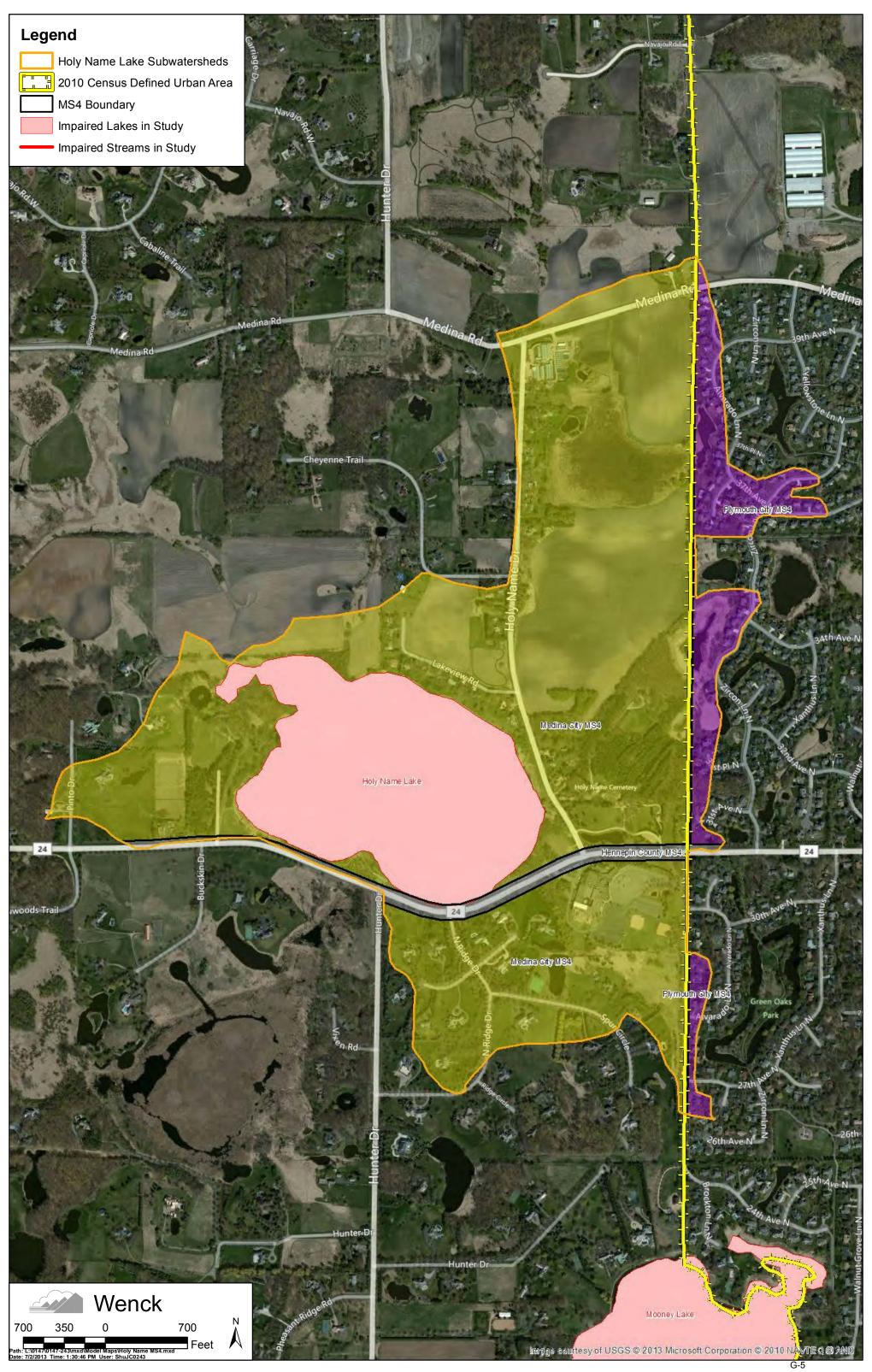

TMDL Lake Respo	nse Modeling	for Turbid		
Modeled Parameter	Equation	Parameters	Valu	ue [Units]
TOTAL IN-LAKE PHOSPHORUS CONCE	-			
D /	as f(W,	Q,V) from Canfield & Bacl	nmann (1	981)
$P = \frac{\Gamma_i}{\ell}$	h	C _P =	1.2	26 []
$P = \frac{1}{\left(1 + C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)\right)}$	$ \mathbf{x}_T $	C _{CB} =	0.16	62 []
		b =	0.45	58 []
	─────────────────────────────────────	load = inflow + atm.) =	11	17 [lb/yr]
		Q (lake outflow) =	36	6 [ac-ft/yr]
Qs = Max(Z/T,4)	V (m	odeled lake volume) =	41	17 [ac-ft]
		T = V/Q =	1.1	14 [yr]
		P _i = W/Q =	118	.0 [µg/l]
Model Predicted In-Lake [TP]			40.0	[ug/l]
Goal In-Lake [TP]			40.0	[ug/l]
PHOSPHORUS SEDIMENTATION RATE	_			
$P_{sed} = C_P \times C_{CB} \times \left(\frac{W_P}{V}\right)^b$	\times [TP] \times V			
	P _{sed} (phospho	rus sedimentation) =	78	[lb/yr]
PHOSPHORUS OUTFLOW LOAD				
W-P _{sed} =			4	40 [lb/yr]

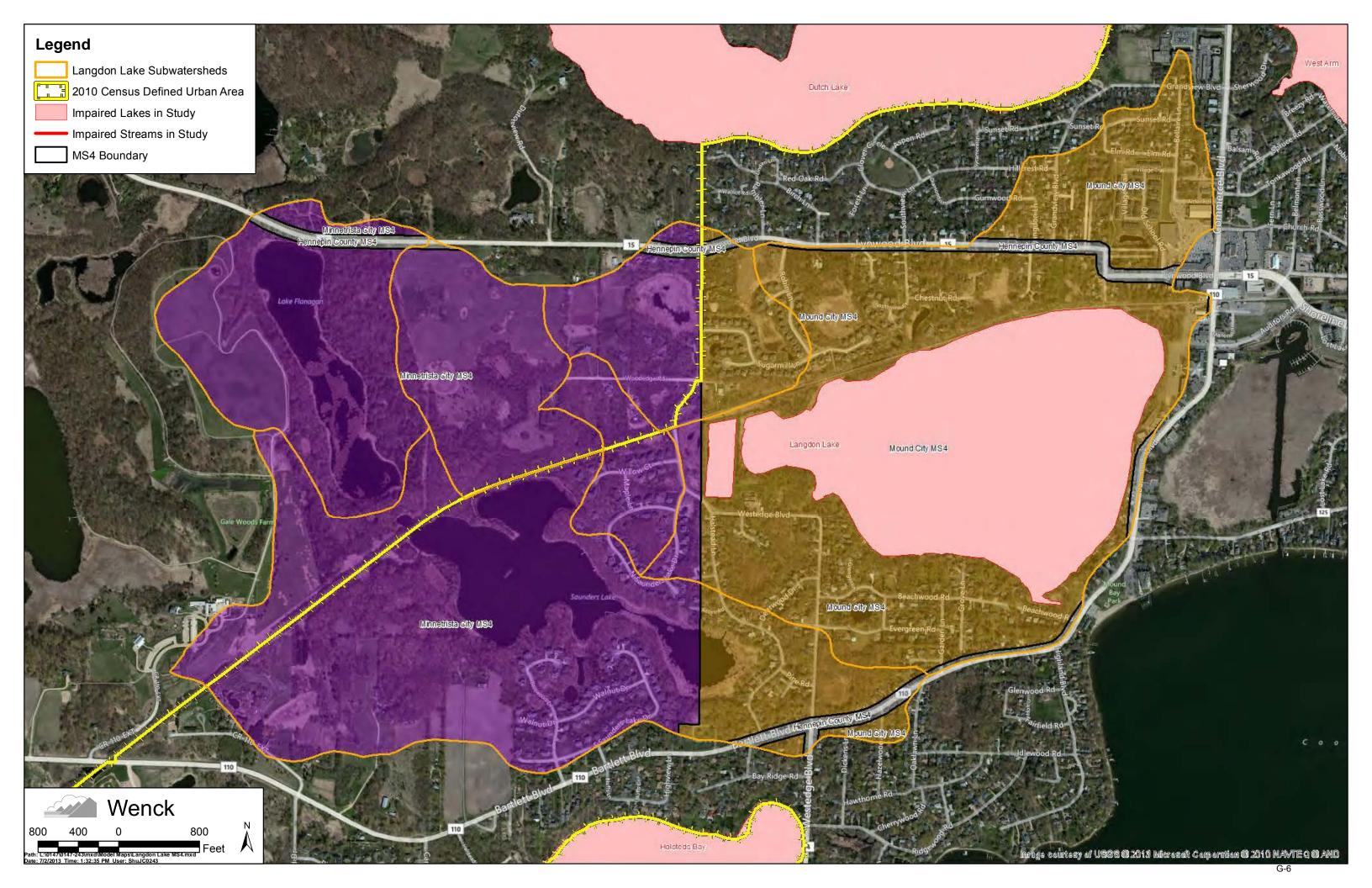

Appendix G

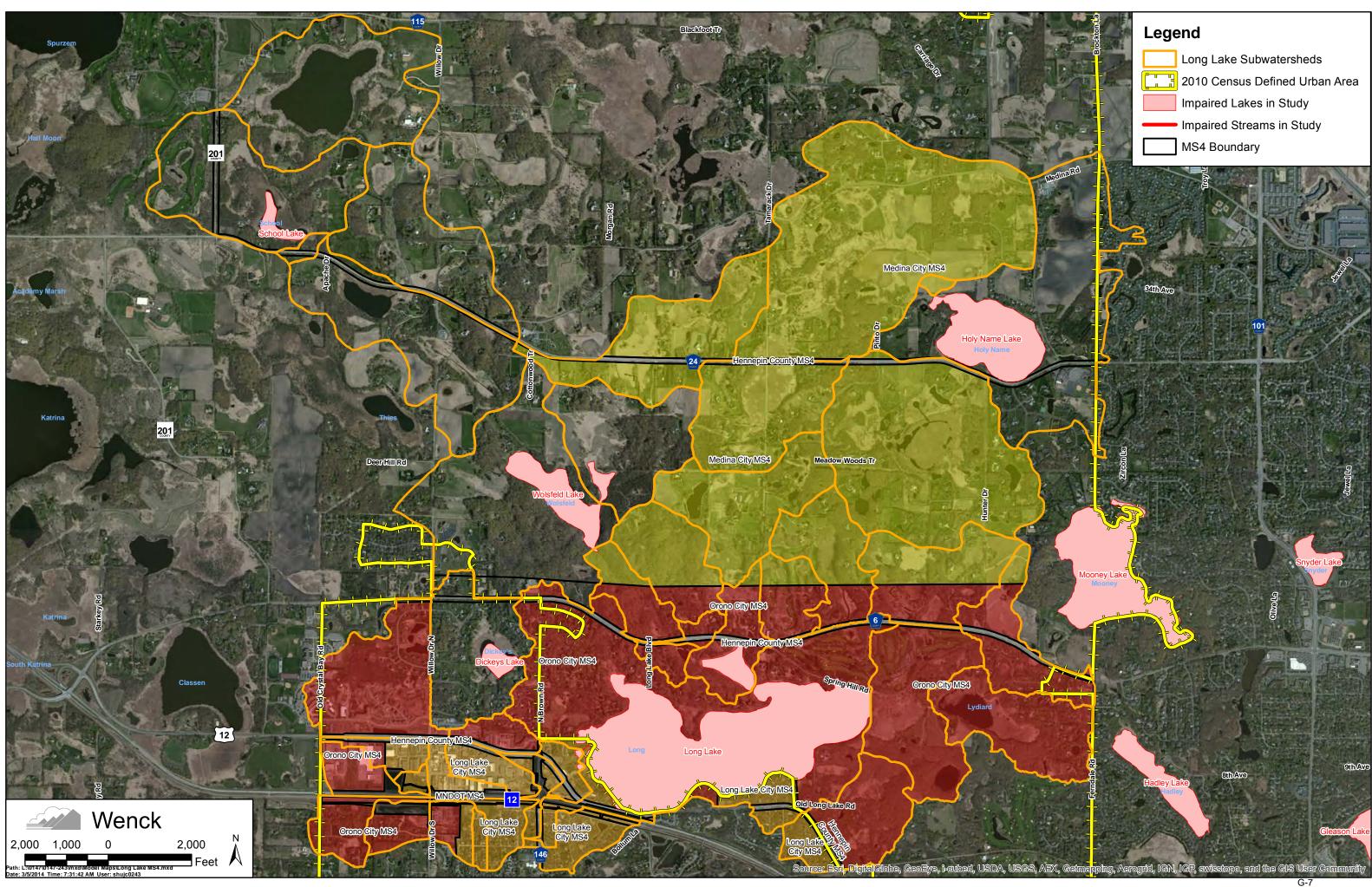
MS4 Figures

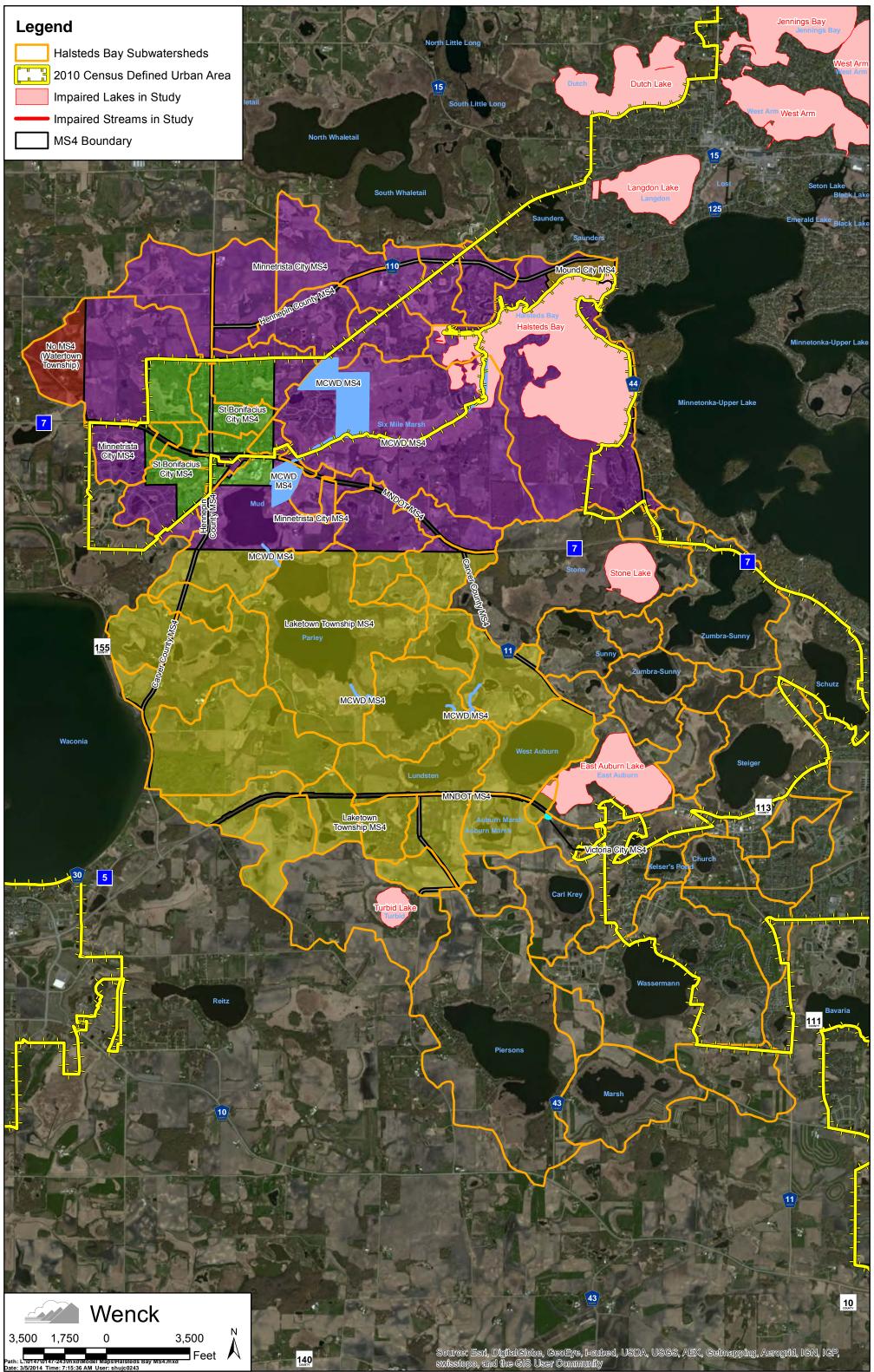

- G-1 Dutch Lake
- G-2 East Auburn Lake
- G-3 Forest Lake
- G-4 Gleason Lake
- G-5 Holy Name Lake
- G-6 Langdon Lake
- G-7 Long Lake
- G-8 Halsteds Bay
- G-9 Jennings Bay
- G-10 Stubbs Bay
- G-11 West Arm
- G-12 Mooney Lake
- G-13 Stone Lake
- G-14 Tamarack Lake
- G-15 Tanager Lake
- G-16 Wolsfeld Lake
- G-17 Snyder Lake
- G-18 School Lake
- G-19 Hadley Lake
- G-20 Turbid Lake
- G-21 Painter Creek

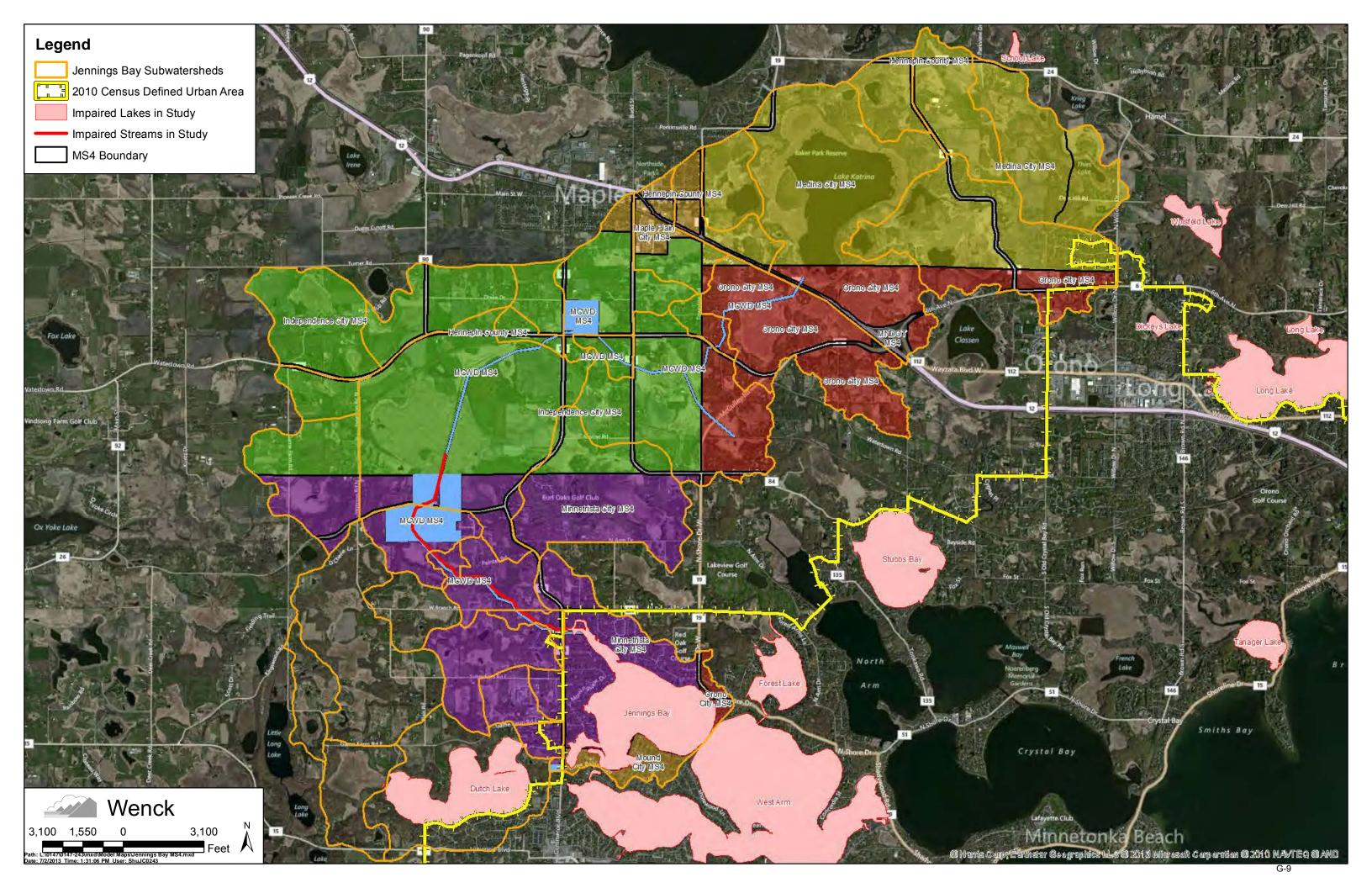


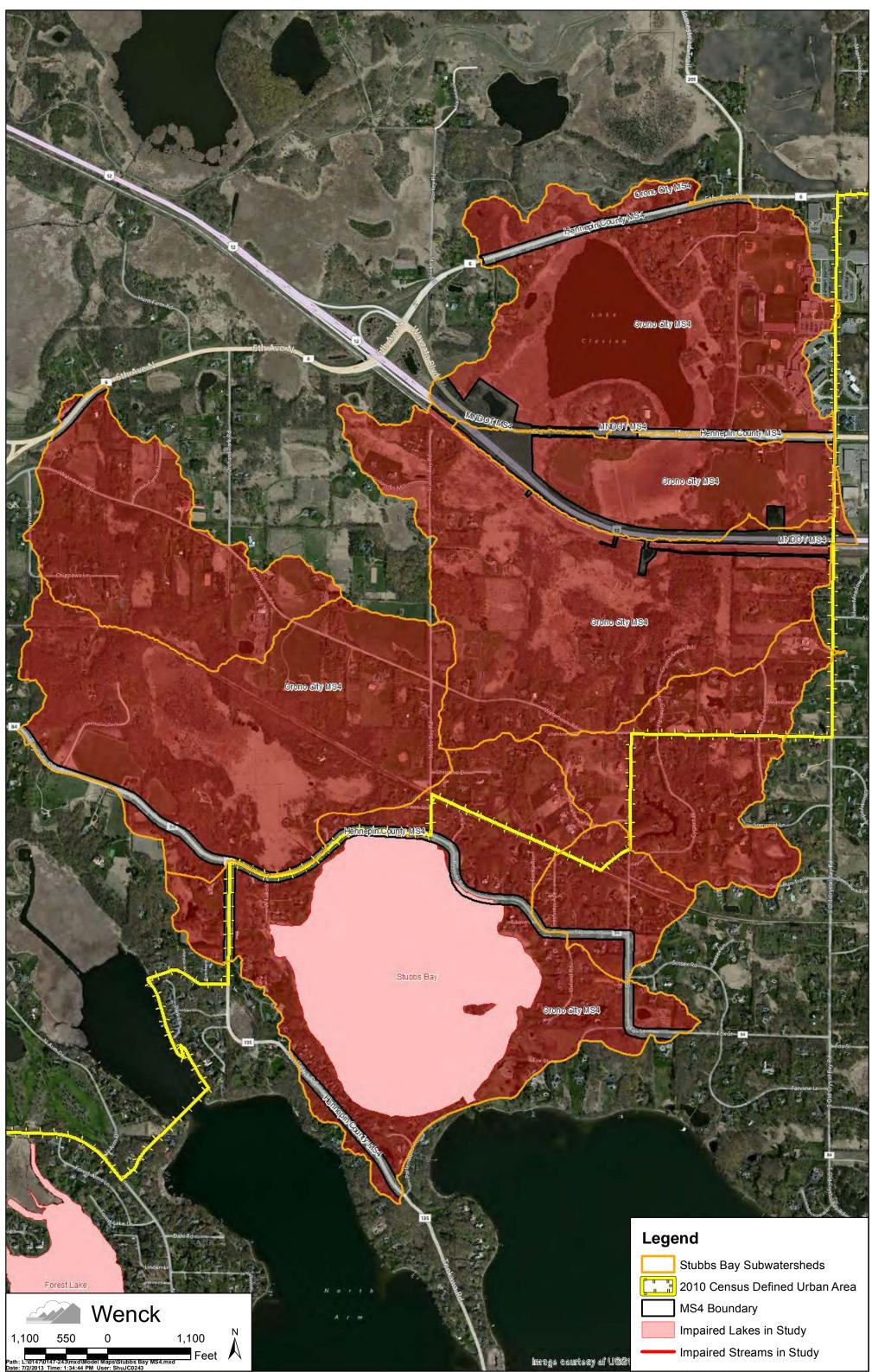

Legend

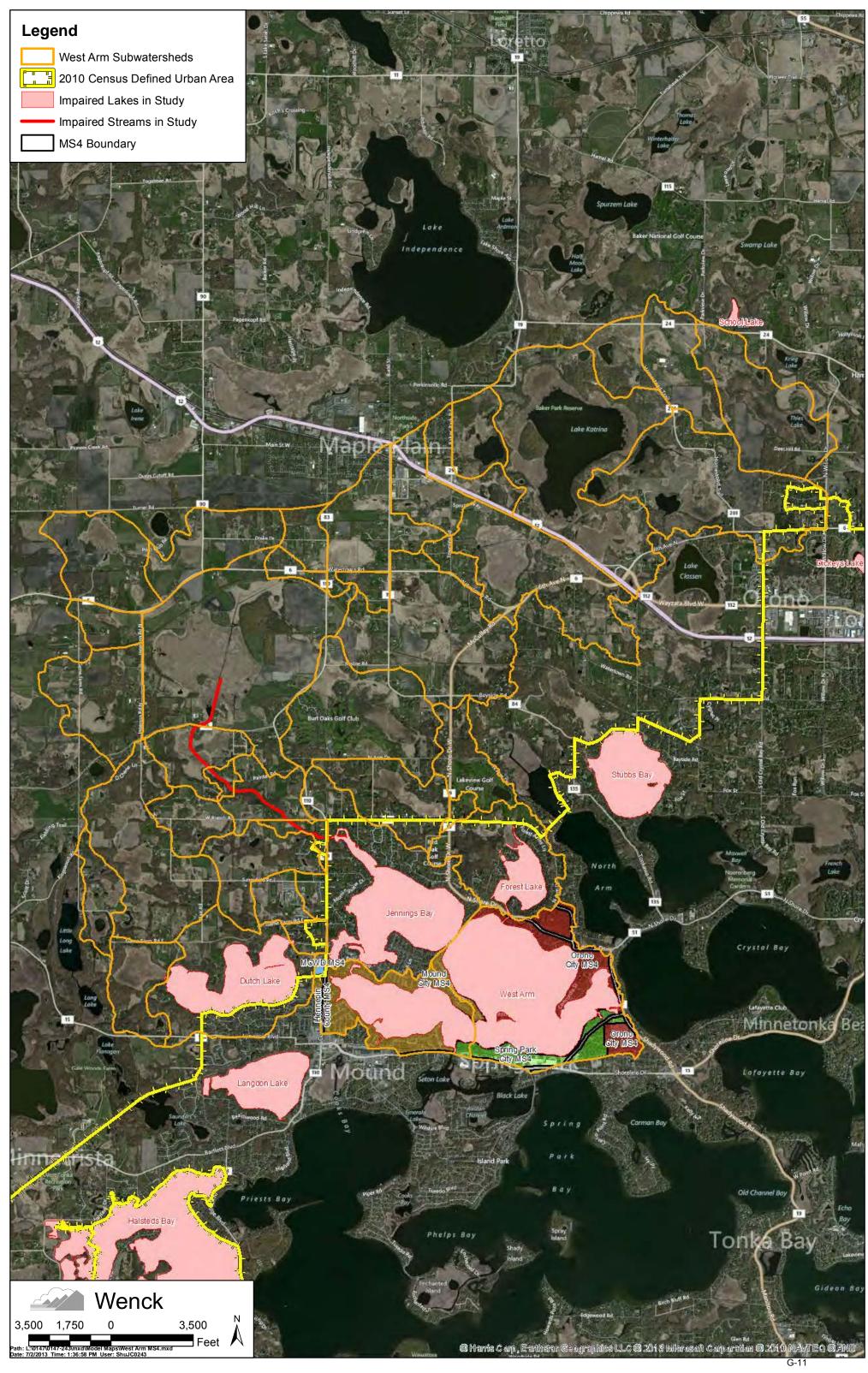


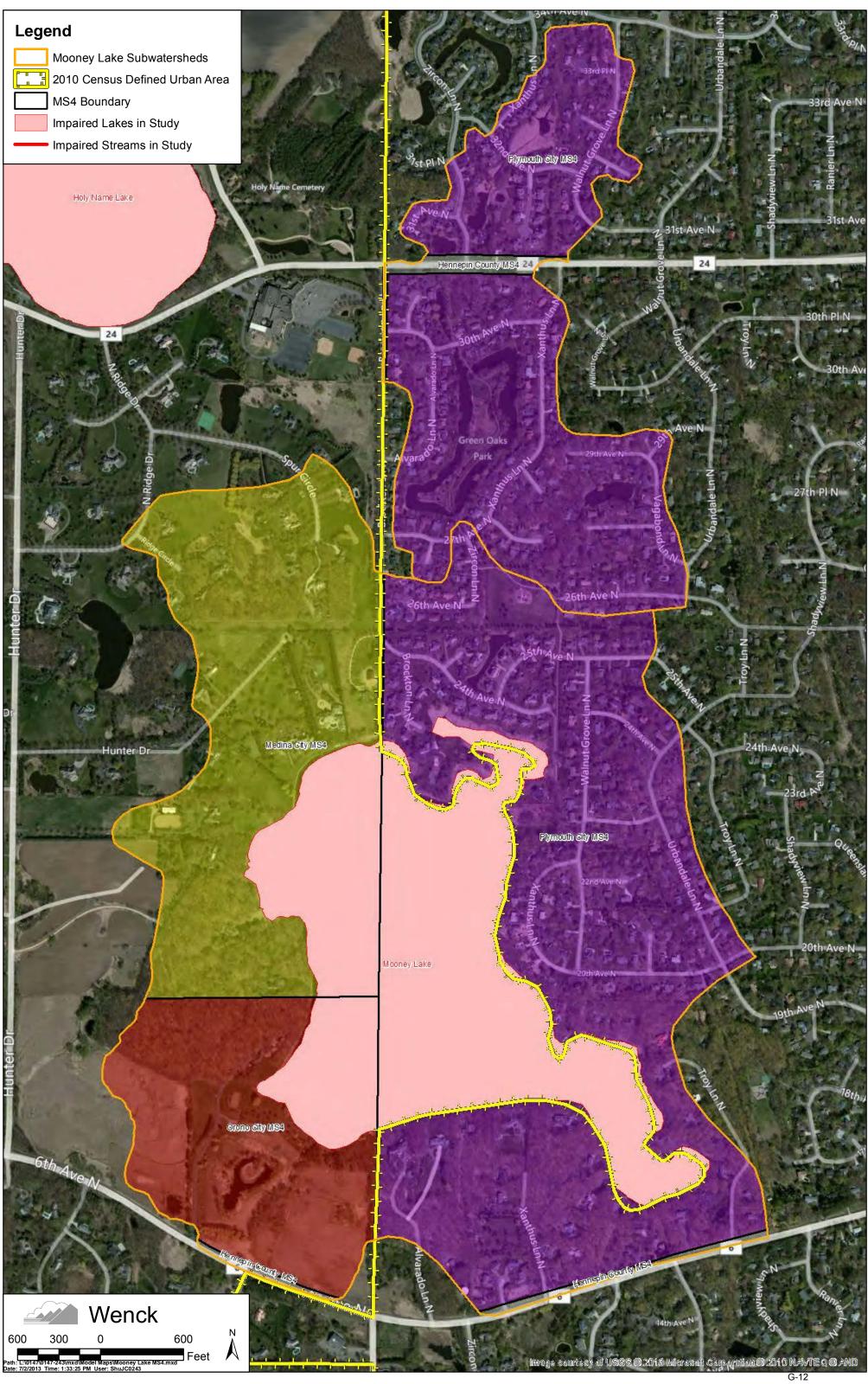

Forest Lake Subwatersheds 2010 Census Defined Urban Area Impaired Lakes in Study Impaired Streams in Study MS4 Boundary

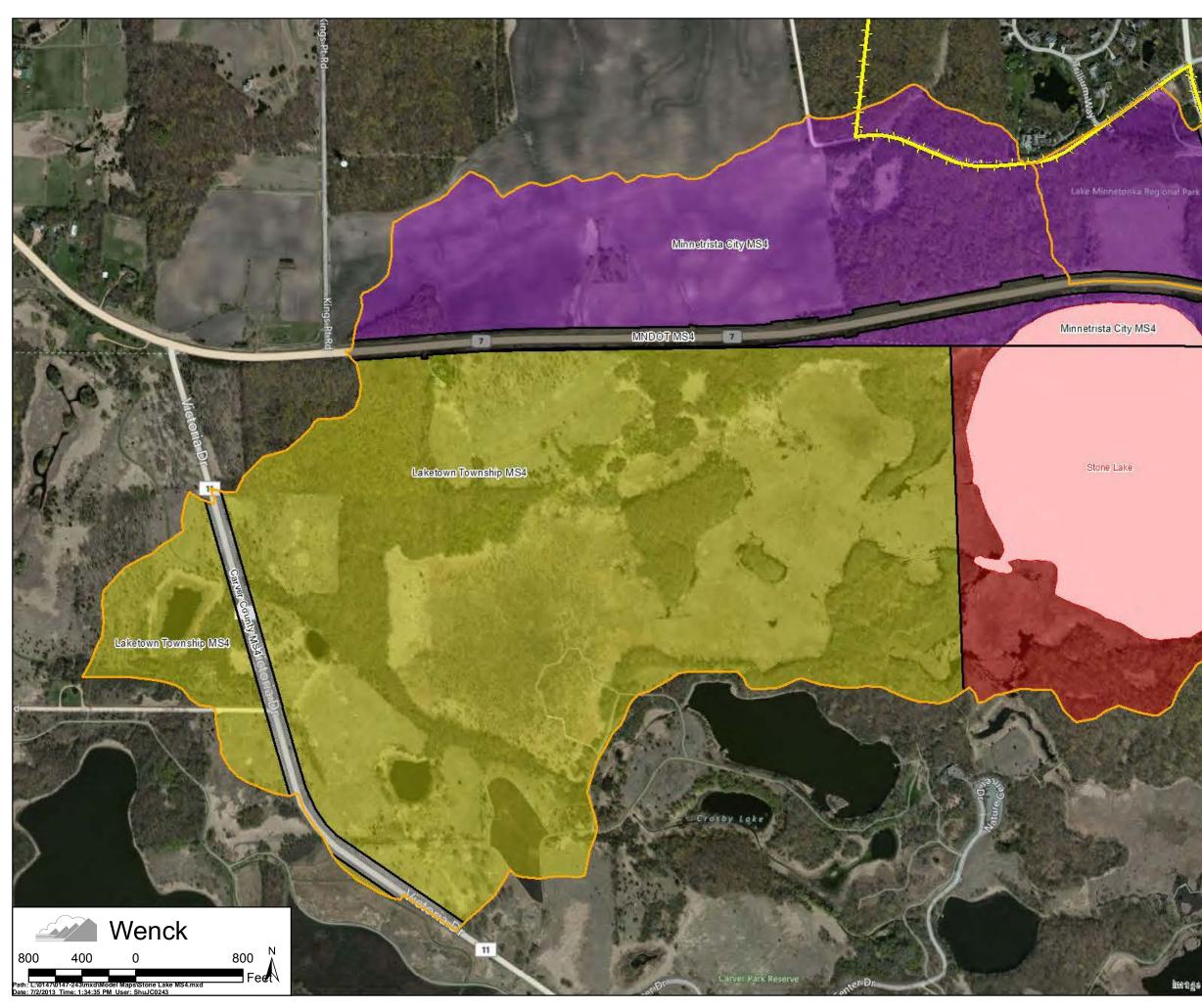

Stubbs Bay



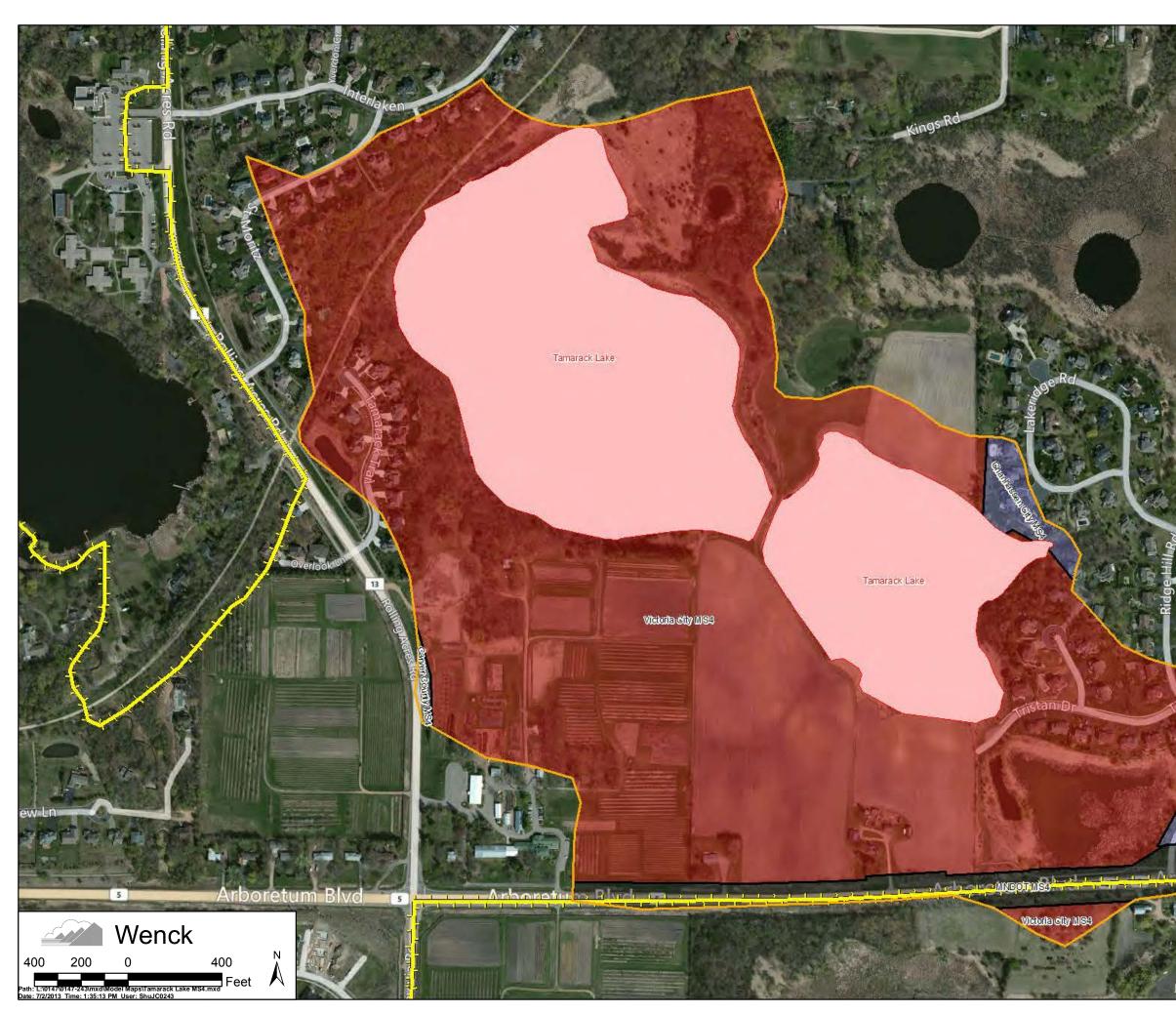








Minnatrista City MS4

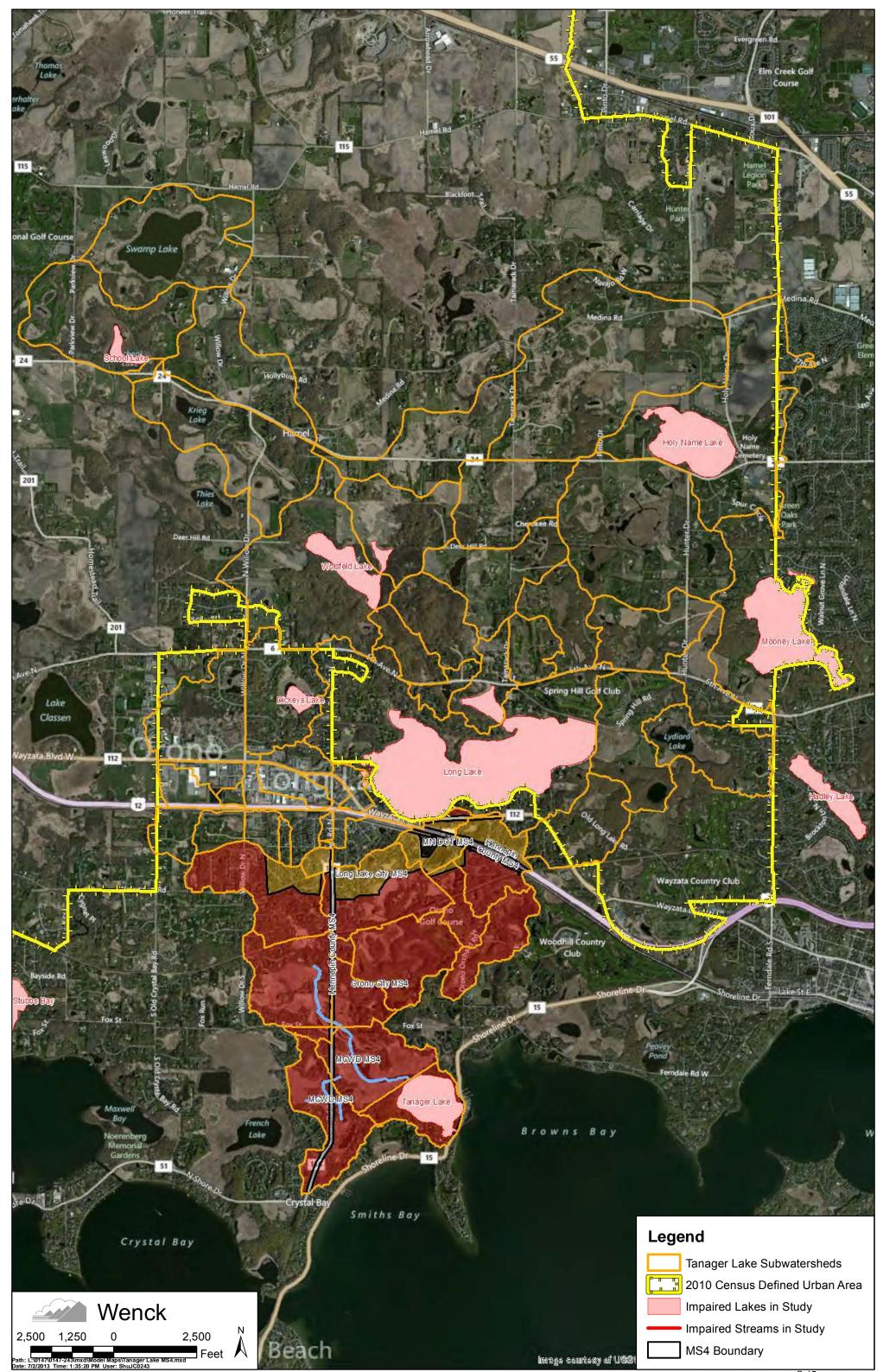

Victoria City MS4

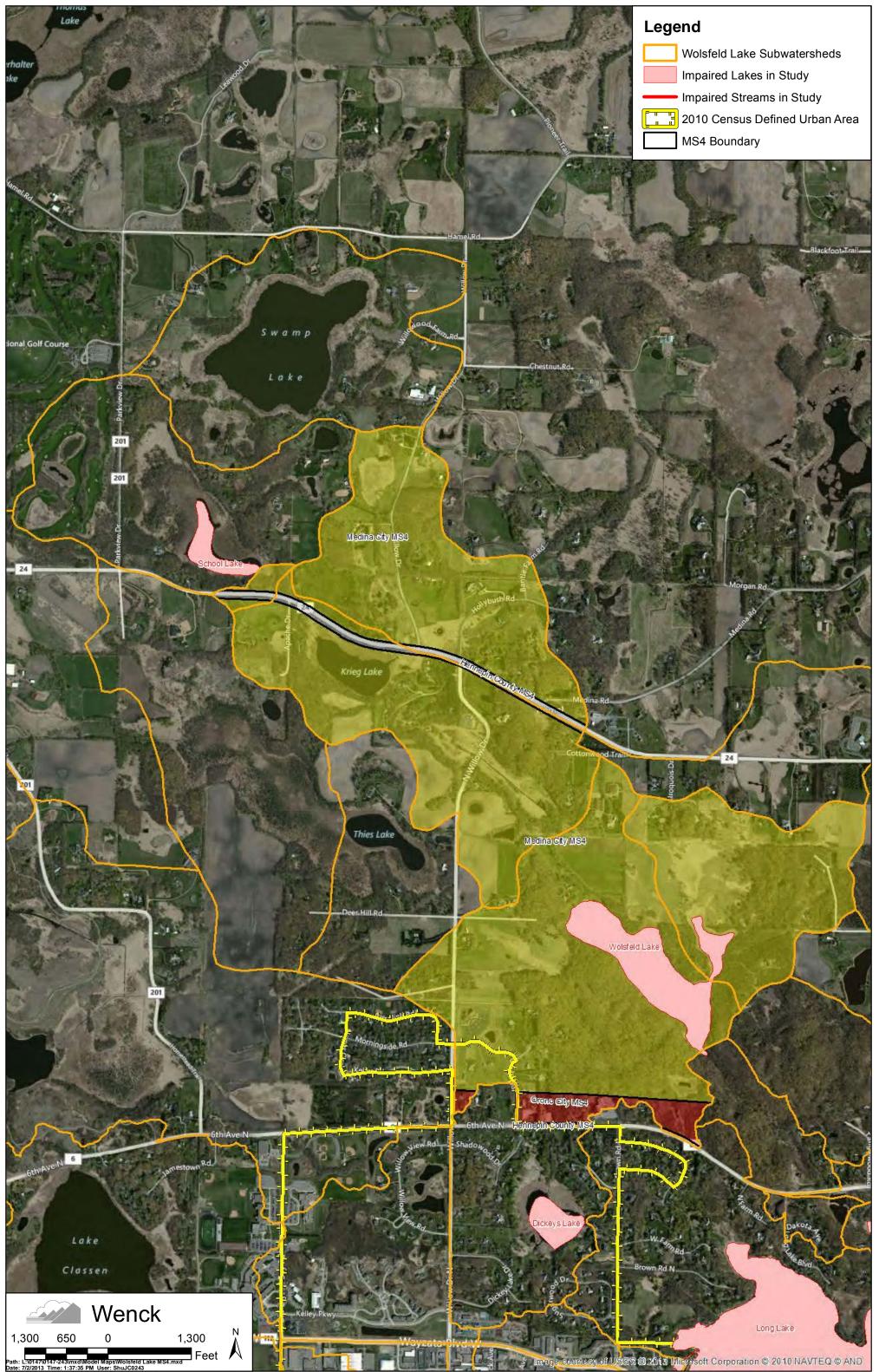
Legend

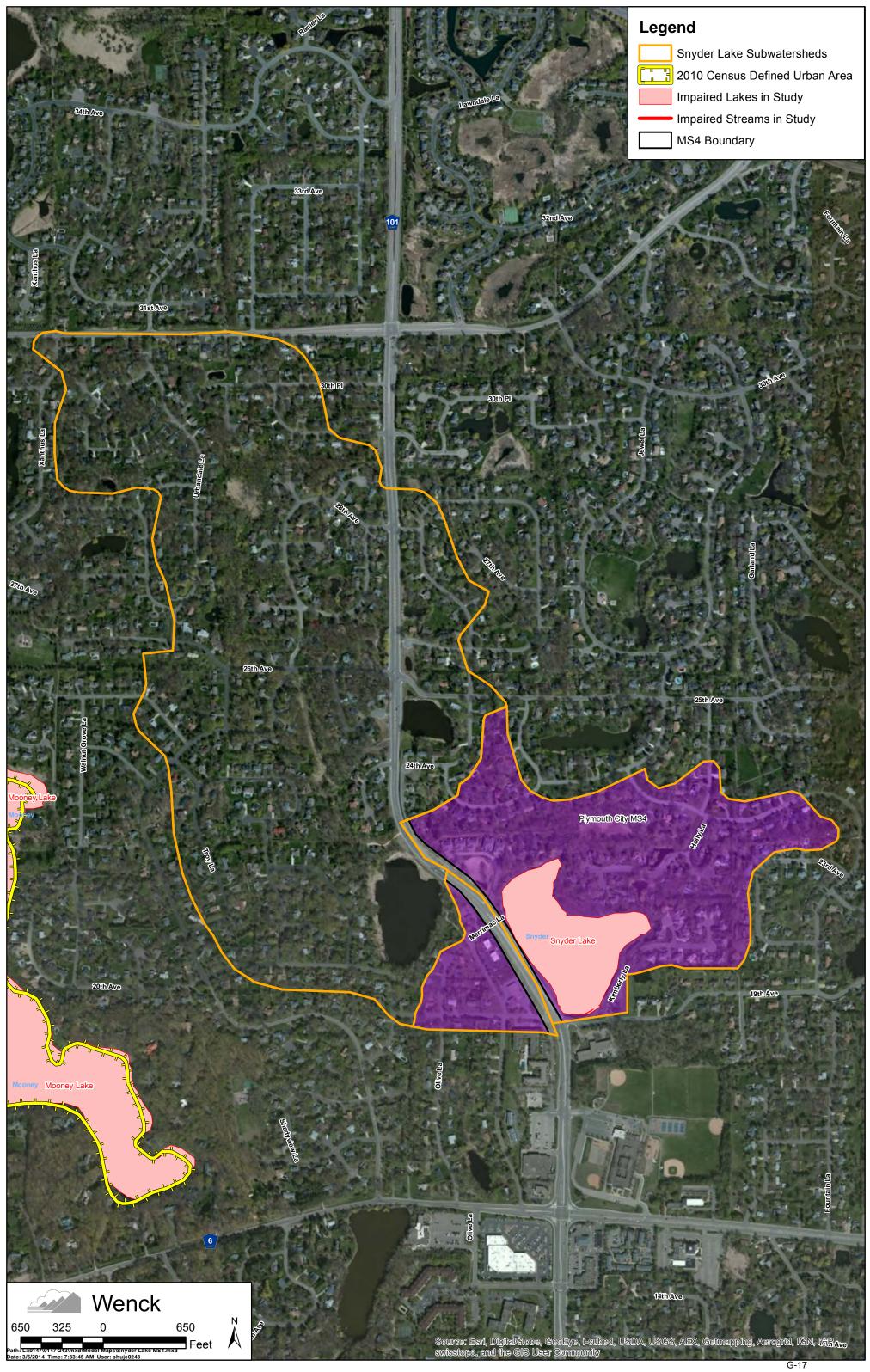
[n n	E

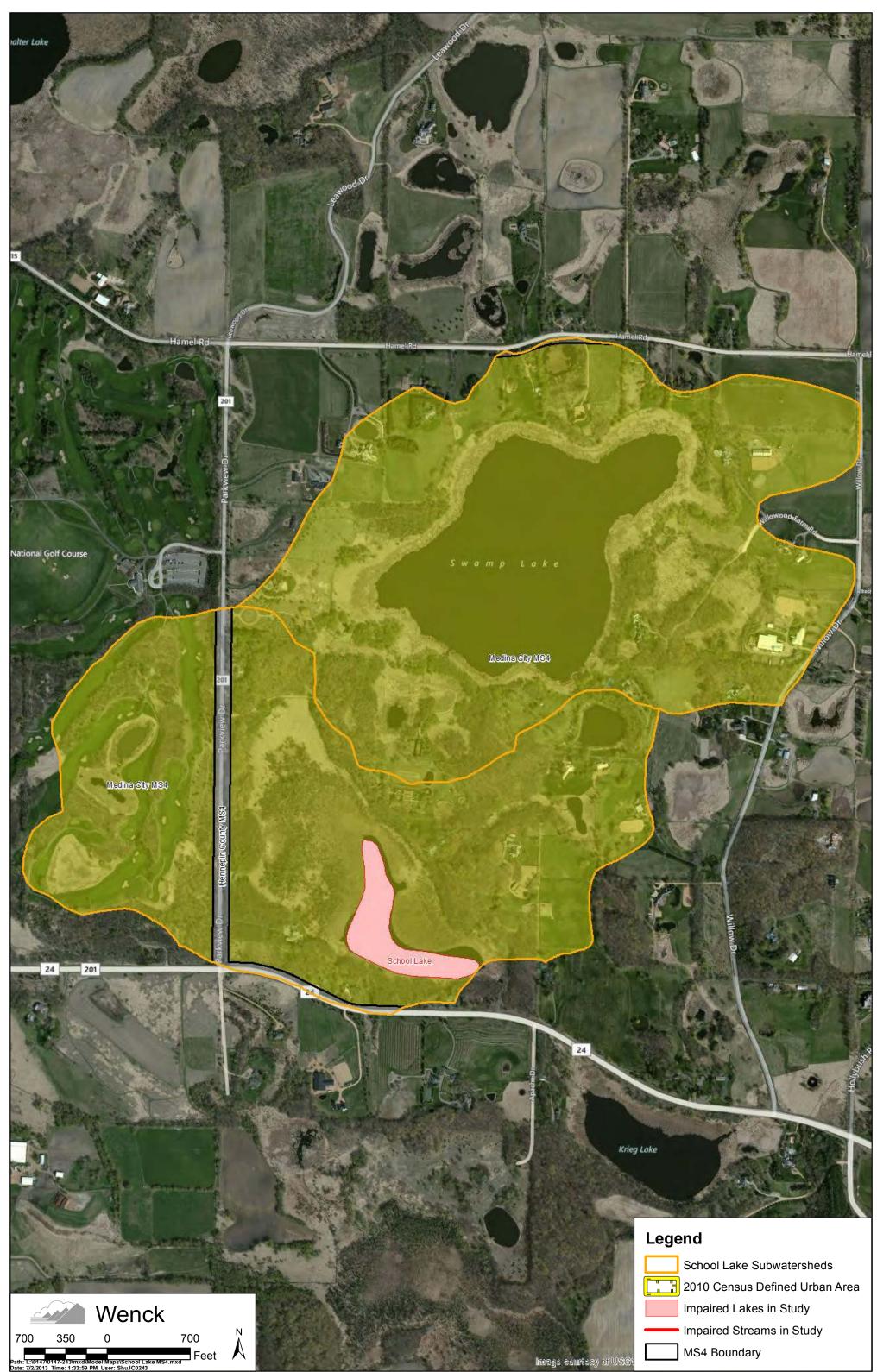
Stone Lake Subwatersheds 2010 Census Defined Urban Area MS4 Boundary Impaired Lakes in Study Impaired Streams in Study

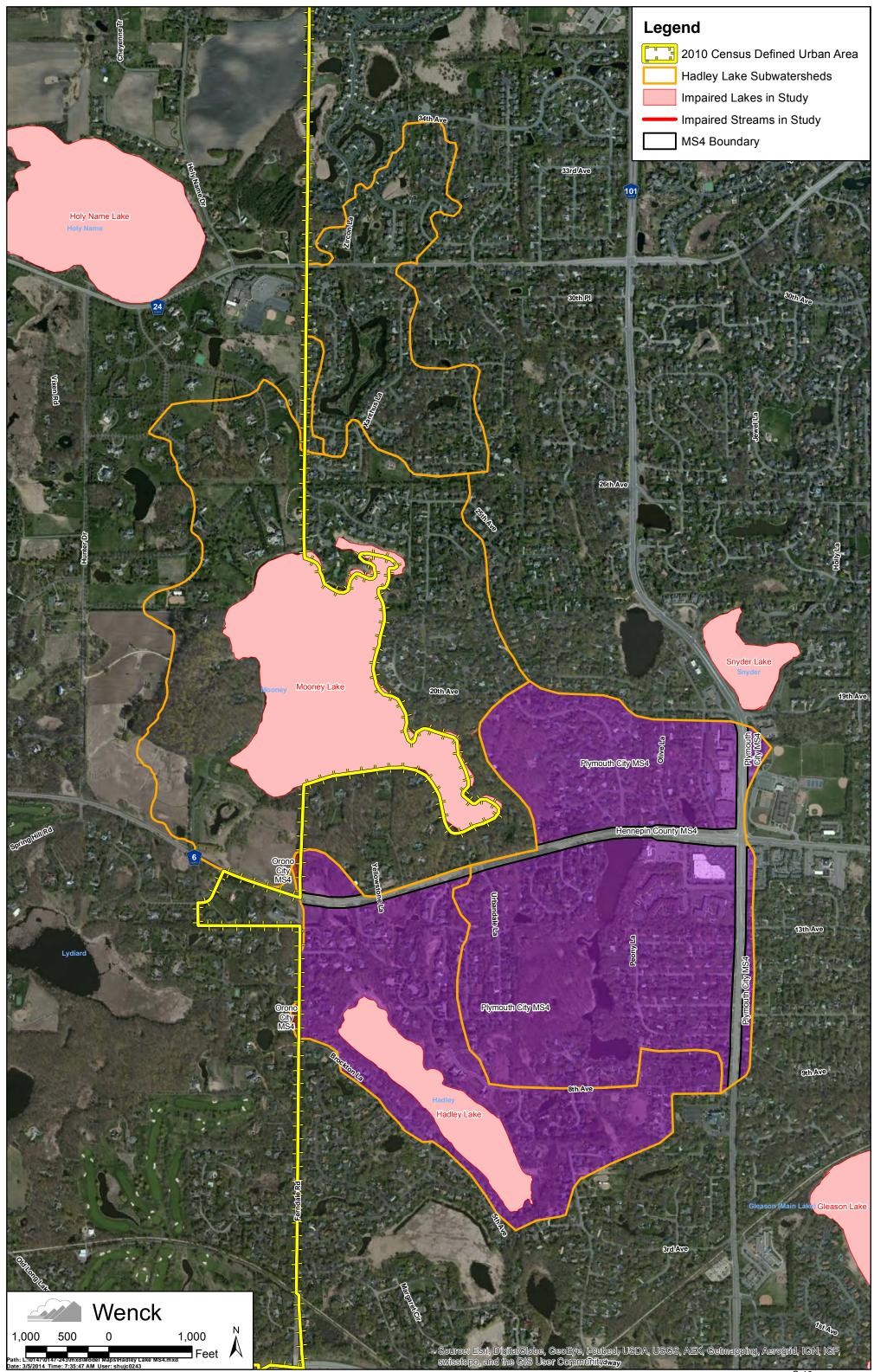
linage courtesy of USC

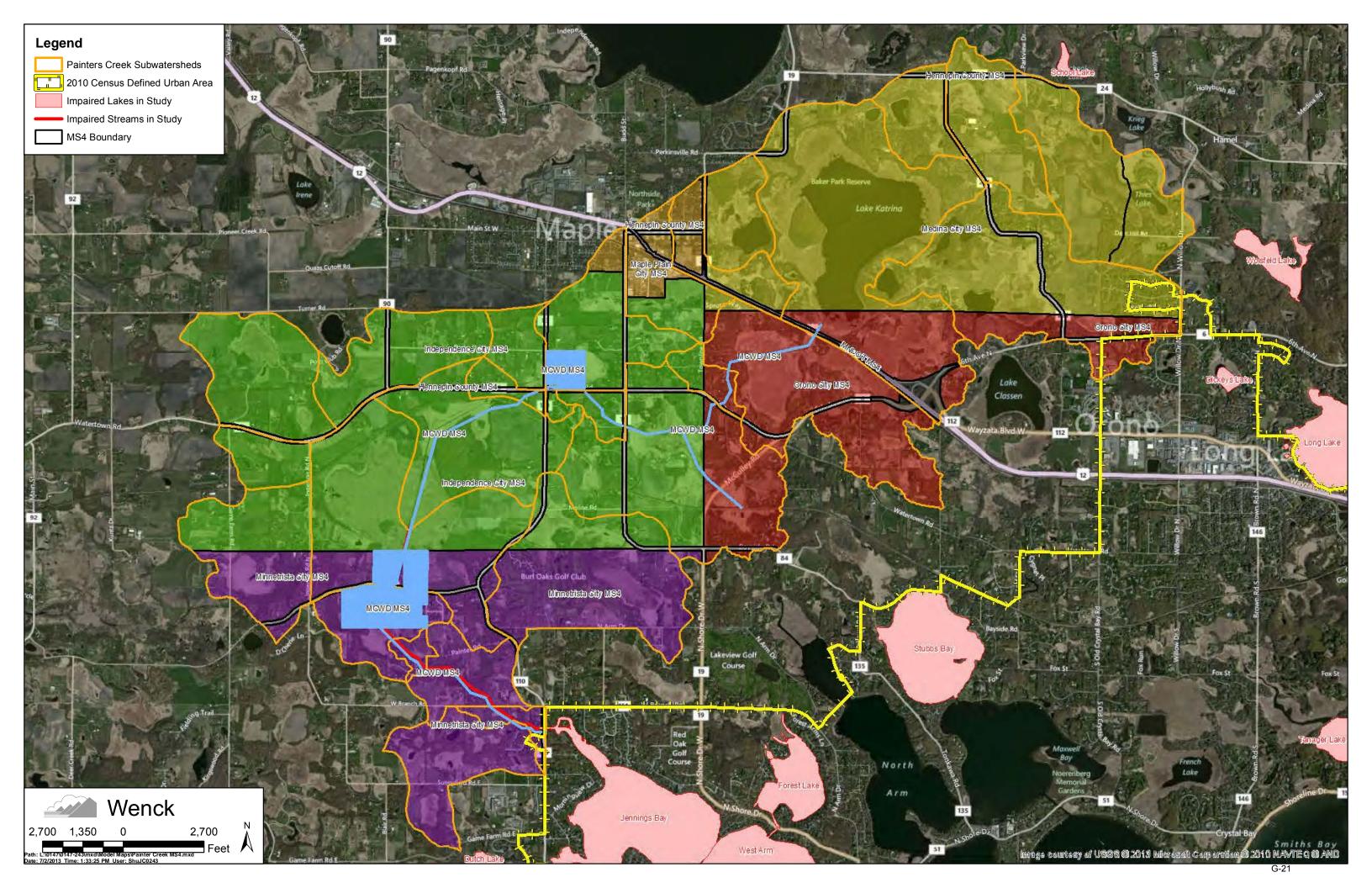



Legend




Tamarack Lake Subwatersheds 2010 Census Defined Urban Area Impaired Lakes in Study Impaired Streams in Study MS4 Boundary


/ictoria City MS



Appendix H

WLA Partitioning Methods

WLA Partitioning Methods

Determination of MS4 Boundaries. The first step in the process was division of each lake watershed by MS4 permit holder. All areas within each watershed were potentially under the jurisdiction of an MS4 permit holder and subject to a potential WLA with the exception of approximately 166 acres located in Watertown Township in the Halsted's Bay subwatershed. City and township MS4 permit boundaries were established by the MPCA. Mn/DOT and Carver County provided information regarding the roadways under their jurisdiction. For Hennepin County, a 66 foot buffer from the centerline of any county road was used to represent the MS4 permit boundary.

MCWD is also included as an MS4 permit holder. A ditch inventory performed in 2003 was used to determine the MCWD MS4 permitted area. For MCWD jurisdictional ditches, the MS4 permitted area was determined by applying a buffer of 1 rod (16.5 feet) on either side of each ditch centerline. The ditches include only the existing (as observed on aerial photos) open channel segments of the ditch plans. Land under fee title of MCWD in each lake subwatershed was also considered part of the MS4 permitted area. Permit areas for Mn/DOT, Hennepin County, Carver County, and MCWD were incorporated into the same file as the city and township MS4 data to calculate permitted areas for each MS4 permit holder within each lake sub-watershed.

Partitioning Between WLA and LA. The next step was to determine which MS4 discharges to include in the WLA and which to include in the Load Allocation (LA). It is important to note that the 2010 Census Defined Urban Area was the dividing factor for the majority of the MS4 permitted areas. The decision making process is detailed as follows:

- 1. All area inside the defined urban area was considered part of the WLA (with exceptions detailed in items number 3 and 4 below).
- 2. For Mn/DOT, MCWD, and County MS4 permitted areas, the area outside of the defined urban area was included in the LA (regardless of landuse).
- 3. Areas inside the defined urban area with agricultural land use draining directly to the impaired water body were included in the LA. Areas inside the defined urban area with undeveloped or park, recreational, or preserve land use within wetland areas identified by the MCWD's Functional Assessment of Wetlands (FAW) that drain directly to the lake were also included in the LA. These areas were determined as explained in item number 5 below.
- 4. Ditches under MCWD's jurisdiction which follow a natural water course were excluded from the WLA as they are potentially waters of the state and could be assessed for impairment. To determine which conveyances under MCWD jurisdiction fall into that category, topographic maps of the watershed dating from 1901 to 1909 were reviewed. All of MCWD's ditches in the TMDL study area follow a natural water course with the exception of several conveyances which drain to Gleason Lake. Ditches following a natural water course were included in the LA regardless of the defined urban area.
- 5. For all other MS4 permitted areas, the area outside of the defined urban area was included in the WLA with the exception of areas with an agriculture land use designation or undeveloped and park, recreational or preserve land use designation with undevelopable wetlands. These undevelopable wetlands were examined on a case by case basis for inclusion in the WLA. If the area was determined to likely drain to a regulated conveyance prior to reaching the lake, it was included in the WLA. If the area in question was discharging directly to the lake, or not through a regulated conveyance (for example a wetland in a City MS4 permitted area but outside the Urban Service Area draining through an unregulated County or Mn/DOT culvert prior to

discharging to the lake), it was included in the LA. These determinations were based on a map review of the lake sub-watershed (topographic maps, land use maps, and aerial photos indicating flow direction). MCWD's Functional Assessment of Wetlands (FAW) was reviewed for the determination of wetland areas to include in the LA. The agricultural areas and undeveloped/park, recreational, and preserve areas excluded from the WLA are listed in Tables H.1 and H.2, respectively. Figures depicting the areas are also include at the end of this appendix.

	Excluded Agricultural Land Area	
Lake	(acres)	MS4
East Auburn	6.63	Laketown Township MS4
	17.58	Victoria City MS4
Holy Name	106.25	Medina City MS4
Holy Name	0.03	Plymouth City MS4
Maanay	4.01	Medina City MS4
Mooney	25.07	Orono City MS4
School	72.93	Medina City MS4
Stone	87.00	Minnetrista City MS4
Tamarack	57.52	Victoria City MS4
Turbid	349.36	Laketown Township MS4
Wolsfeld	119.89	Medina City MS4
	189.79	Minnetrista City MS4
Halsteds Bay	160.34	Laketown Township MS4
	55.30	MCWD

Table H.1 Lakeshed excluded agricultural land.

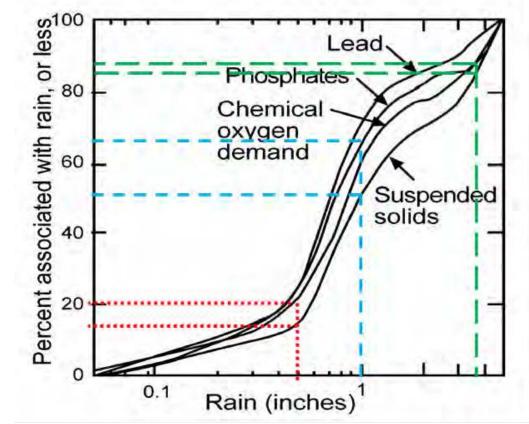
	Excluded Undevelopable Wetland Area			
Lake	(acres)	Landuse	MS4	
East	60.85	Undeveloped	Victoria City MS4	
Auburn	6.47	Park, Recreational, or Preserve		
	79.72	Park, Recreational, or Preserve	Laketown Township MS4	
Mooney	1.77	Undeveloped	Orono City MS4	
School	97.64	Undeveloped	Medina City MS4	
	6.32	Undeveloped	Minnetrista City MS4	
	12.01	Park, Recreational, or Preserve	Winnethsta City 10154	
Stone	58.32	Undeveloped	Victoria City MS4	
	29.13	Park, Recreational, or Preserve		
	368.19	Park, Recreational, or Preserve	Laketown Township MS4	
	0.03	Park, Recreational, or Preserve	Chanhassen City MS4	
Tamarack	14.96	Park, Recreational, or Preserve	- Victoria City MS4	
26.36		Undeveloped		
Turbid	45.67	Undeveloped	Laketown Township MS4	
	62.42	Undeveloped	Madina City MSA	
Wolsfeld	32.47	Park, Recreational, or Preserve	Medina City MS4	
	1.25	Undeveloped	Orono City MS4	
Dutch	4.46	Park, Recreational, or Preserve	Minnotricto City MS4	
Dutth	71.40	Undeveloped	Minnetrista City MS4	
Forest	24.23	Undeveloped	Orono City MS4	
	375.56	Undeveloped	Minnotrista City MCA	
	16.18	Park, Recreational, or Preserve	Minnetrista City MS4	
	9.43	Undeveloped	St Bonifacius City MS4	
Halsteds Bay	0.66	Park, Recreational, or Preserve	St BUIIIACIUS CIty 19134	
Day	147.58	Undeveloped	Lakatawa Tawashia NACA	
	196.87	Park, Recreational, or Preserve	Laketown Township MS4	
	32.47	Undeveloped	MCWD	
Langdon	5.02	Park, Recreational, or Preserve	Mound City MC4	
Langdon	21.47	Undeveloped	Mound City MS4	
Long	21.75	Undeveloped	Orono City MS4	
Snyder	2.52	Undeveloped	Plymouth City MS4	

6. Areas with Open Water as the designated land use were excluded from the WLA/LA partitioning and calculations.

Existing Watershed Load Partitioning. The existing conditions watershed load was partitioned between wasteload and load, and the wasteload was partitioned between the MS4s contributing to the wasteload, based on their respective runoff volume from a 1.3-inch precipitation event (the "water quality" event). Runoff was calculated using the SCS method. Composite curve numbers (CN) for each MS4 area, non-MS4 area, and area contributing to load but not wasteload were developed by assigning a CN to each Met Council land use category within the watershed based on literature values; the predominant hydrologic soil group (HSG B in all cases); and the percent impervious surface calculated for each area (derived as described in the following section). A composite CN was calculated by multiplying the respective CN and area by land use type; summing those products; and dividing by the total area. The MNDOT MS4 area composite CN was determined based on information provided by MNDOT. The calculated composite CNs for each area were then used to calculate surface water runoff (SRO) for the 1.3-inch rainfall event using the SCS Method:

SRO= (P-0.2S)²/(P+0.8S)

Where P is precipitation and P=1.3 inch rainfall event and


S= (1000/CN) -10

The calculated SRO was converted to a runoff volume for each MS4, non-MS4 area and areas contributing to the load but not the wasteload by multiplying the SRO by the area. The existing annual phosphorus load to each lake was partitioned between these areas based on their percentage of the total runoff volume.

The 1.3-inch rainfall event was chosen for this calculation based on research findings (Pitt, 1999):

- Rains of less than 0.5" are relatively low in pollutants but are key conveyances of bacteria. Those small events should be captured and infiltrated.
- Rains between 0.5" and 1.5" convey 75% of the annual pollutant load.
- Rains greater than 1.5" are responsible for only a small percent of the annual pollutant load.

Events of almost 1.3-inches convey approximately 85% of the annual total suspended solids (TSS) load and almost 90% of the annual TP load (Figure H.1).

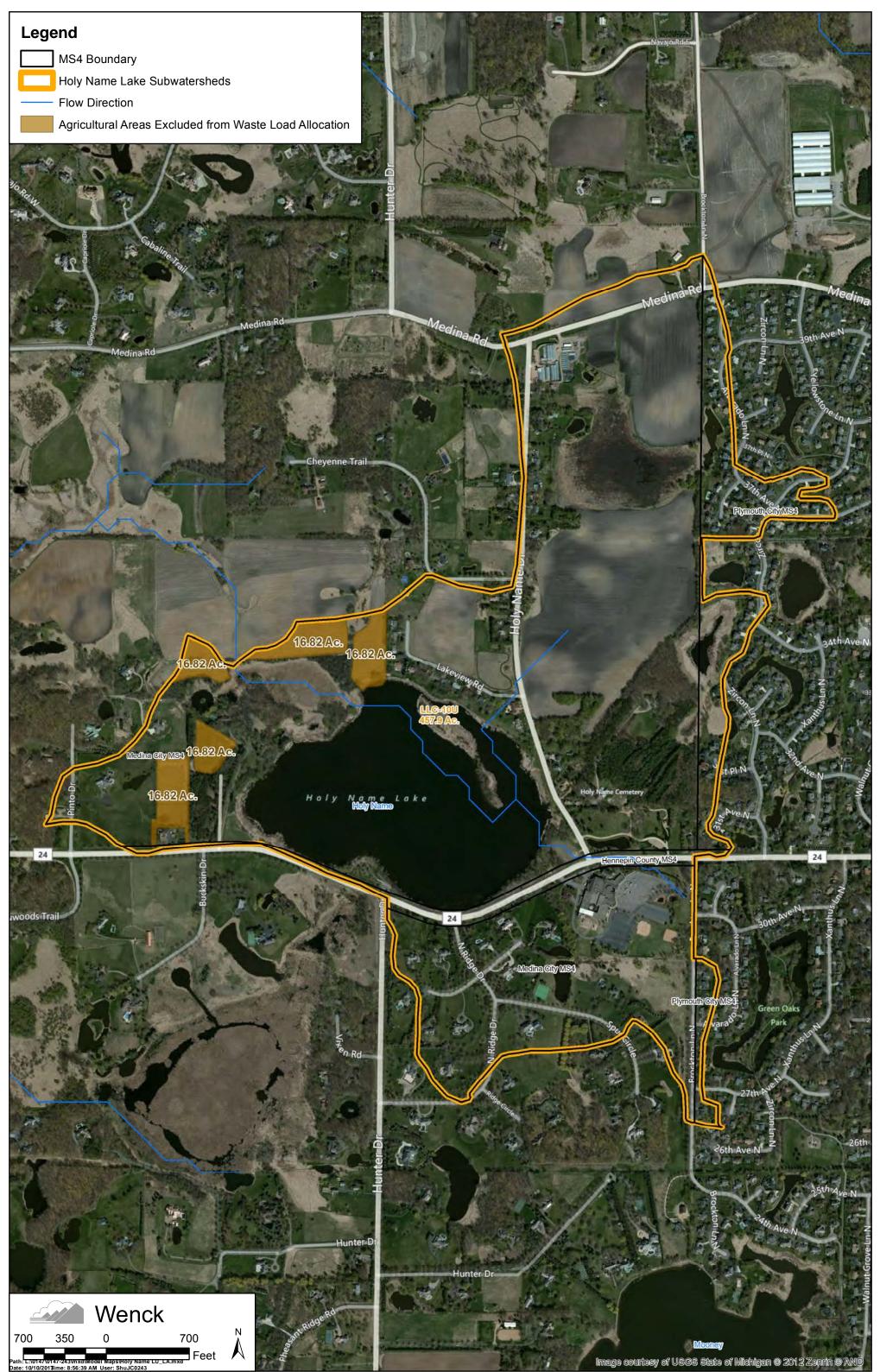
Figure H.1. Annual Pollutant Loading by Rain Event

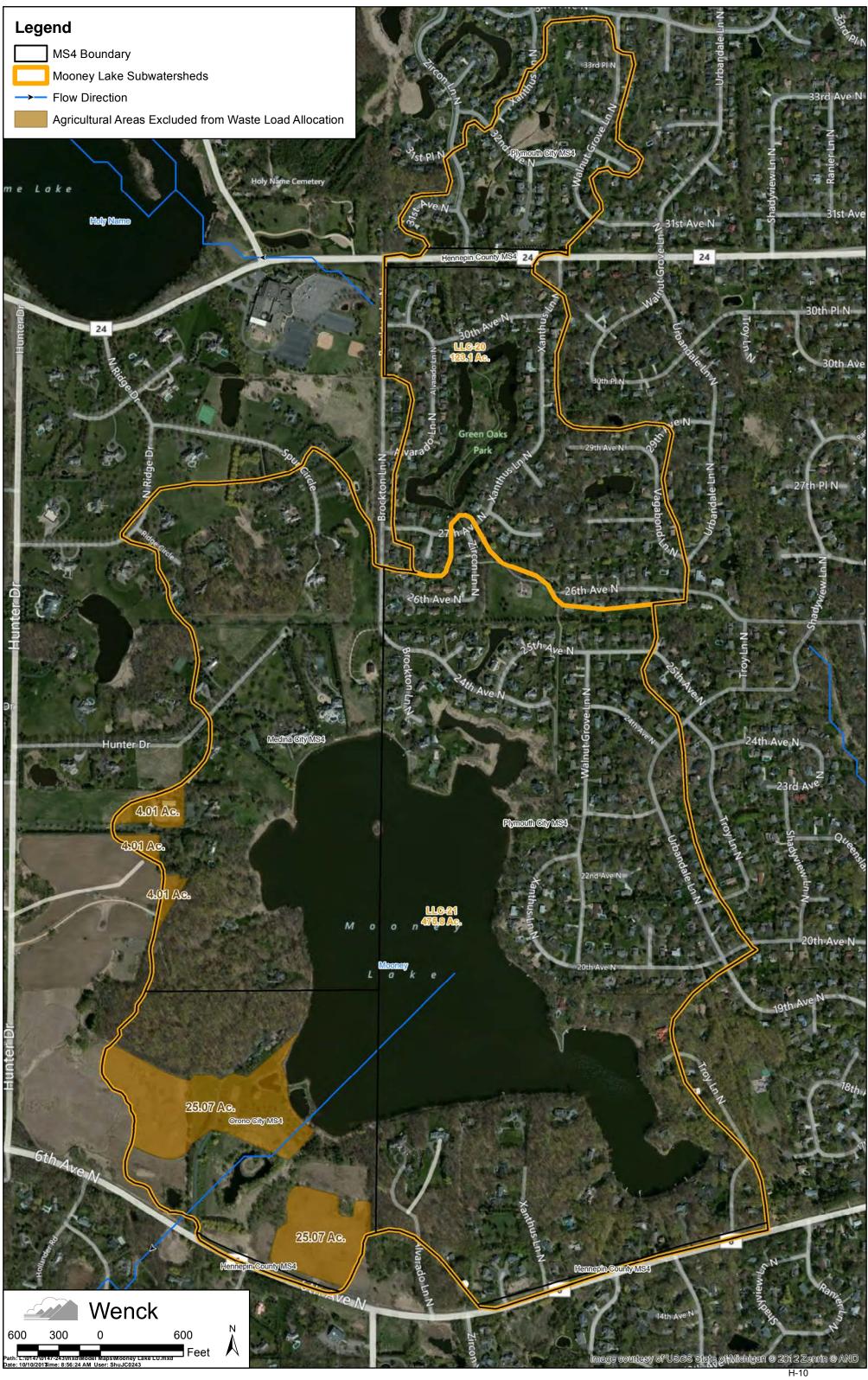
Source: Pitt, "Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices," *Advances in Modeling the Management of Stormwater Impacts, Volume 7*. (Edited by W. James). Computational Hydraulics International, Guelph, Ontario and Lewis Publishers/CRC Press. 1999.

Percent Impervious Calculations. The percent impervious surface was calculated using the data from the HHPLS modeling performed in 2003 using the Pload method, which uses land use to estimate the volume of runoff and mass of pollutant loading. The PLoad modeling used MLCCS land cover data for each sub-watershed and applied an estimated percent impervious surface to each land use. For the TMDL WLA calculations, 2010 Met Council land use data was merged with the most recent MLCCS land use data. The percent impervious surface from the HHPLS PLoad modeling was then applied to the 2010 Met Council land use data based on the associated updated MLCCS land use.

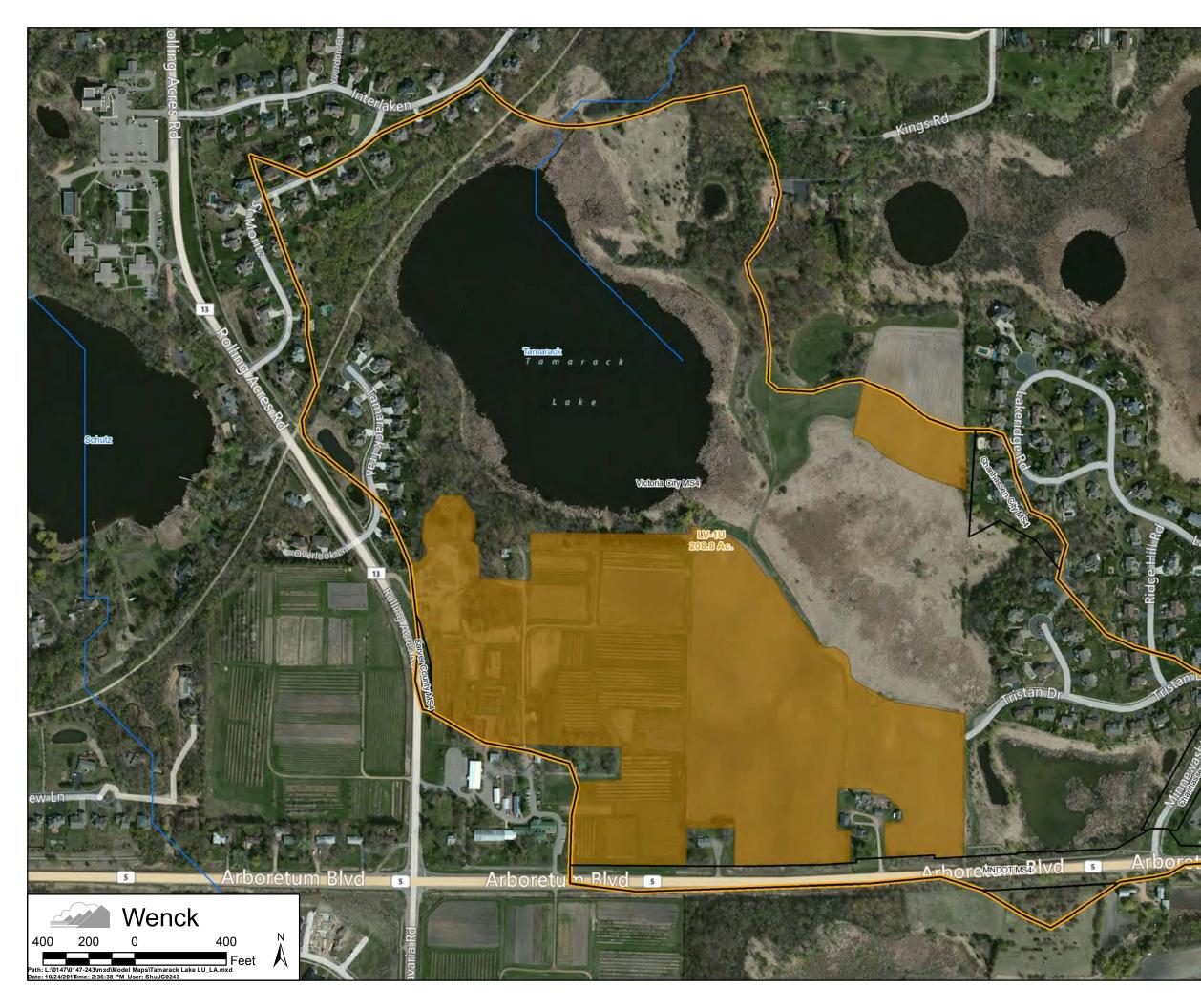
For example, the 2010 land use of a particular area might be Single Family Residential. However, the MLCCS might identify sub-areas within that Single Family Residential as 11-25% impervious cover or 26-50% impervious cover, or a large vacant lot as grassland with sparse trees. Each of the MLCCS classifications has an assumed percent impervious. A composite percent impervious surface was calculated for each 2010 Met Council land use category based on the imperviousness of the MLCCS subareas by area within that land use category.

For the MNDOT MS4 area, the percent impervious surface was provided by MNDOT.


Appendix H Attached Figures:

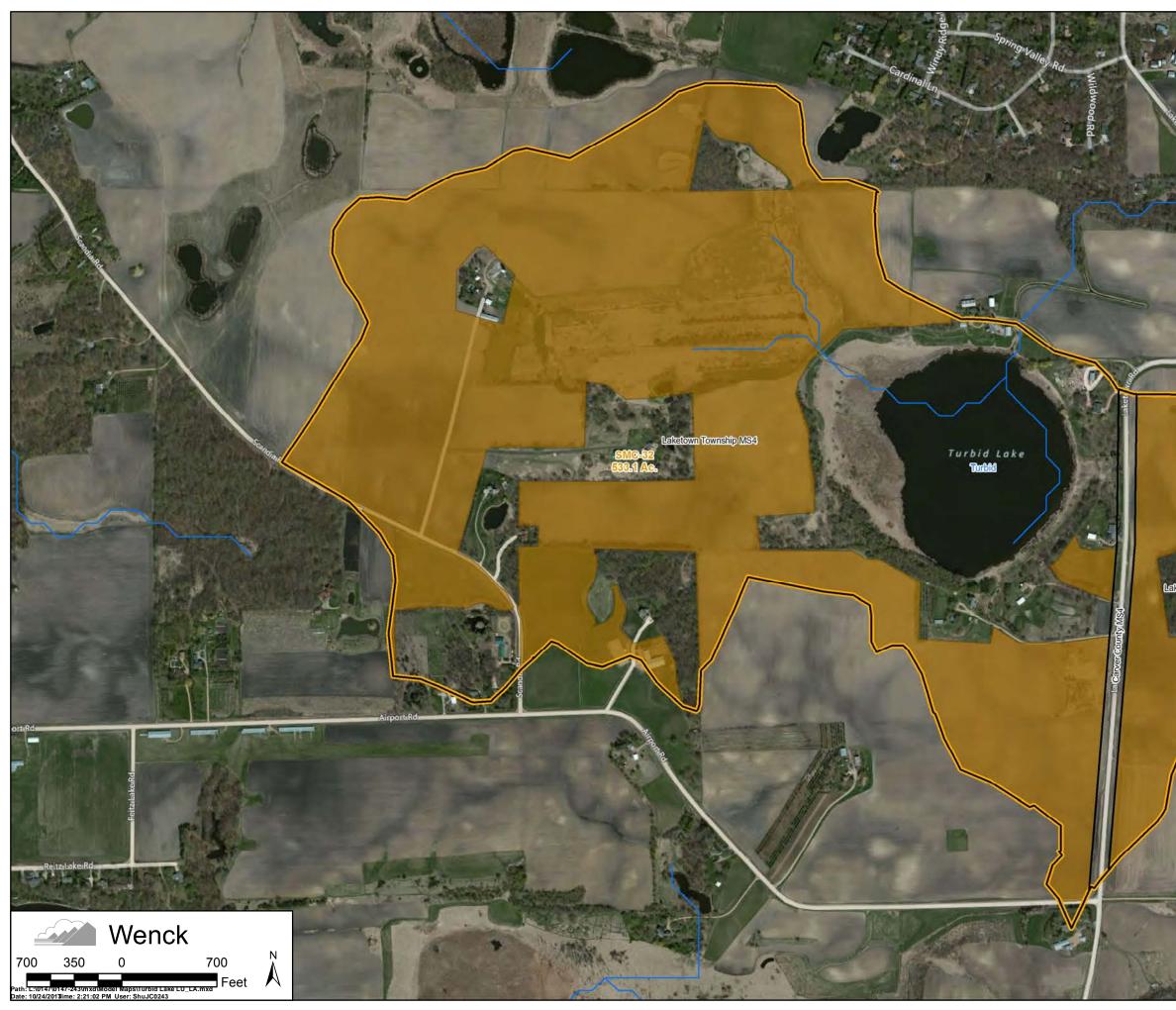

Page Figure H-7 East Auburn Lake Agricultural Areas Excluded from Waste Load Allocation Halsteds Bay Agricultural Areas Excluded from Waste Load Allocation H-8 Holy Name Lake Agricultural Areas Excluded from Waste Load Allocation H-9 H-10 Mooney Lake Agricultural Areas Excluded from Waste Load Allocation H-11 School Lake Agricultural Areas Excluded from Waste Load Allocation H-12 Stone Lake Agricultural Areas Excluded from Waste Load Allocation H-13 Tamarack Lake Agricultural Areas Excluded from Waste Load Allocation H-14 Turbid Lake Agricultural Areas Excluded from Waste Load Allocation H-15 Wolsfeld Lake Agricultural Areas Excluded from Waste Load Allocation Dutch Lake Wetland Areas Excluded from Waste Load Allocation H-16 East Auburn Lake Wetland Areas Excluded from Waste Load Allocation H-17 H-18 Forest Lake Wetland Areas Excluded from Waste Load Allocation H-19 Halsteds Bay Wetland Areas Excluded from Waste Load Allocation H-20 Langdon Lake Wetland Areas Excluded from Waste Load Allocation H-21 Long Lake Wetland Areas Excluded from Waste Load Allocation H-22 Mooney Lake Wetland Areas Excluded from Waste Load Allocation H-23 School Lake Wetland Areas Excluded from Waste Load Allocation Snyder Lake Wetland Areas Excluded from Waste Load Allocation H-24 H-25 Stone Lake Wetland Areas Excluded from Waste Load Allocation H-26 Tamarack Lake Wetland Areas Excluded from Waste Load Allocation H-27 Turbid Lake Wetland Areas Excluded from Waste Load Allocation

H-28 Wolsfeld Lake Wetland Areas Excluded from Waste Load Allocation



MS4 Boundary

Tamarack Lake Subwatersheds


Flow Direction

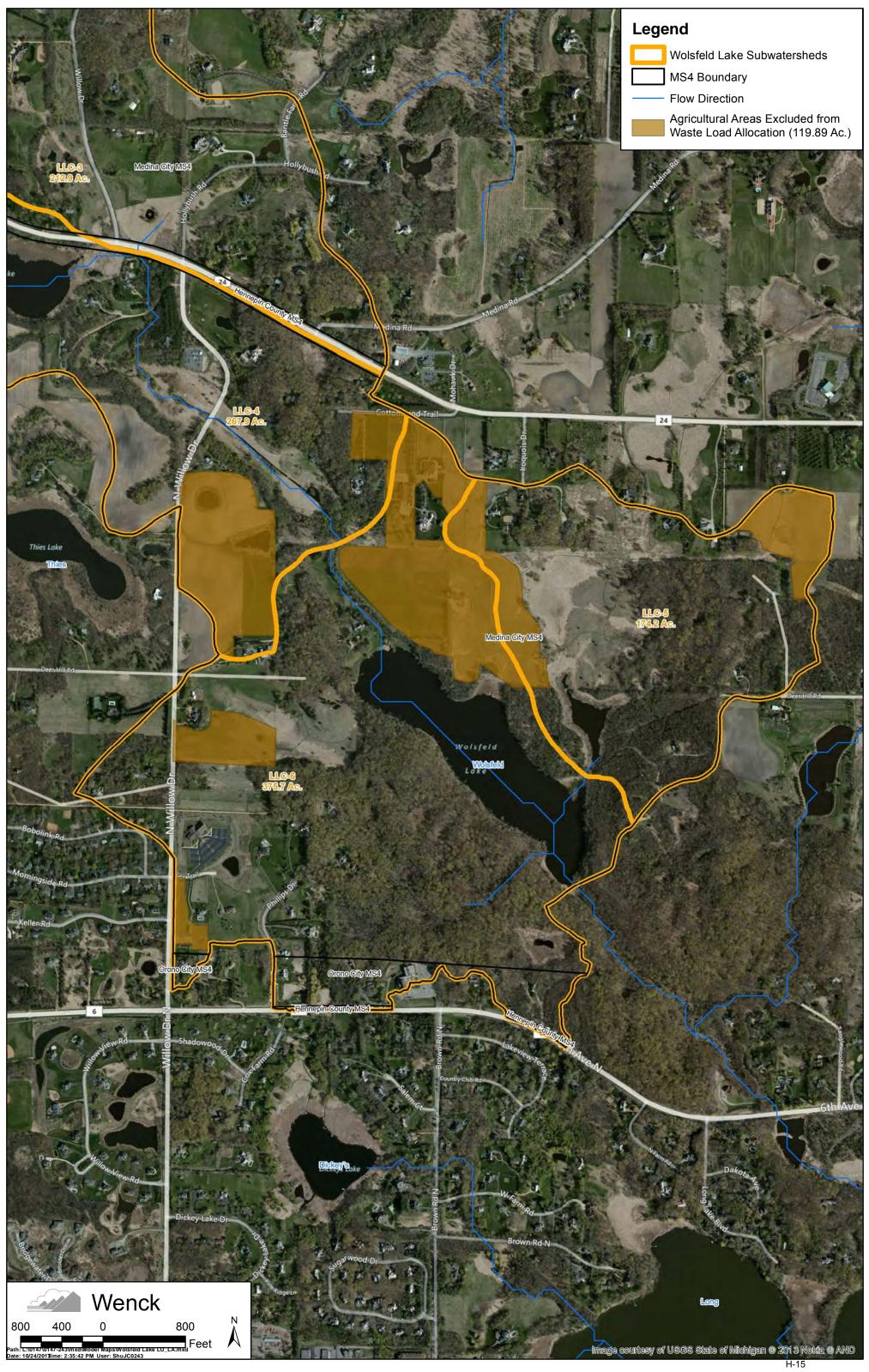
Agricultural Areas Excluded from Waste Load Allocation (57.52 Ac.)

SLJ

wthorne Circle

age courtesy of USGS state of Midhigan © 2013 Nokia © ANI

MS4 Boundary

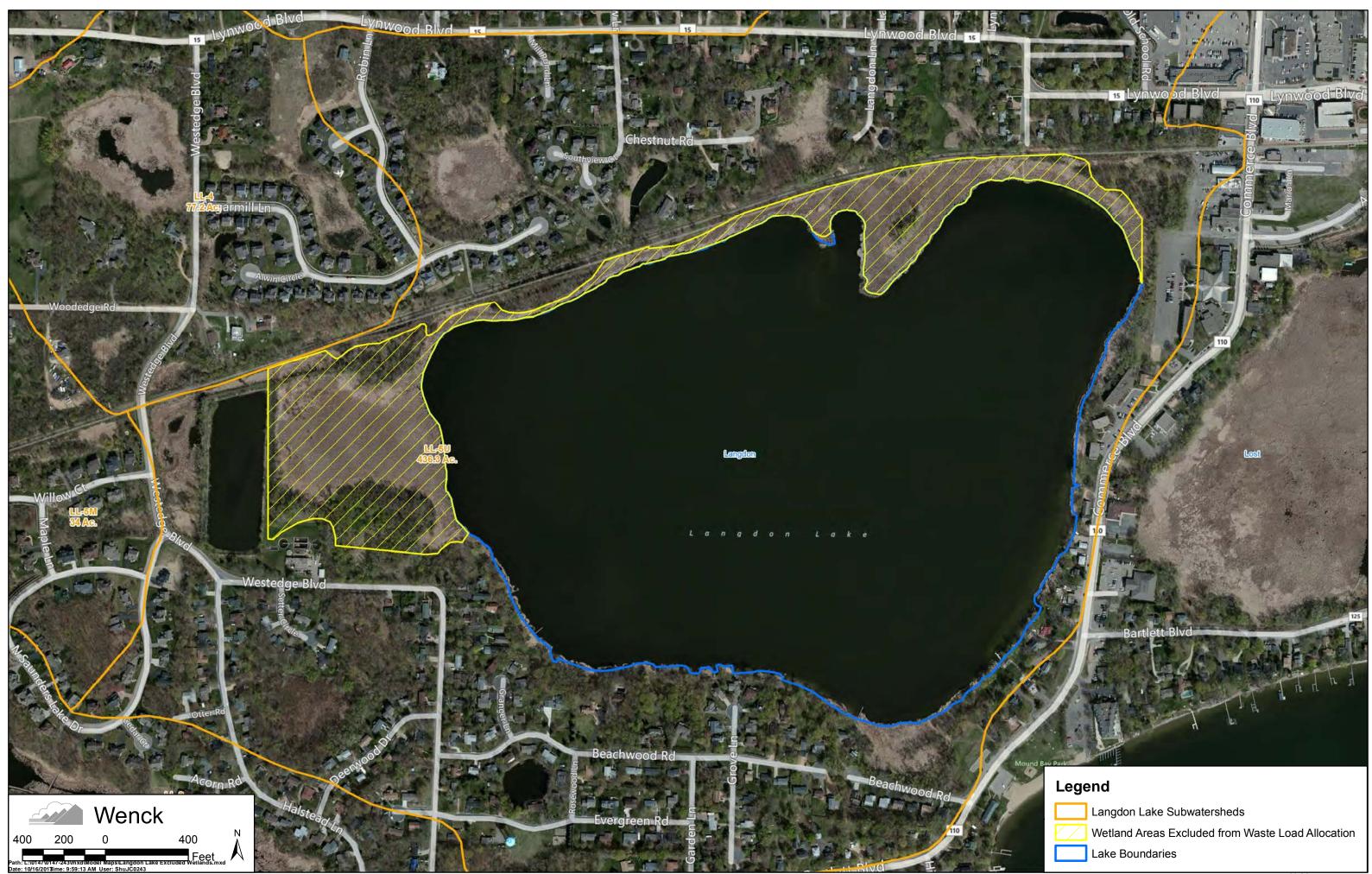

Turbid Lake Subwatersheds

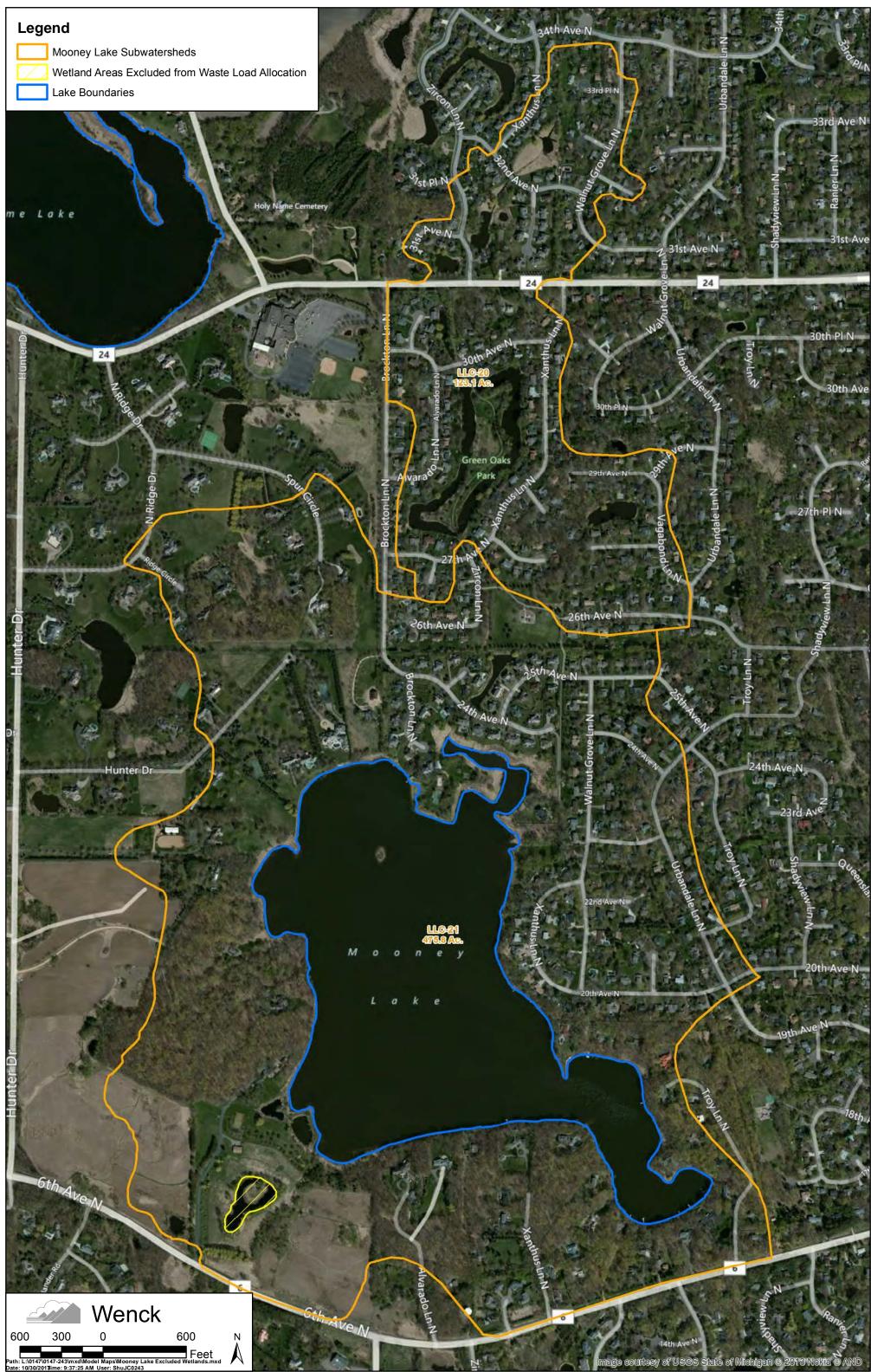
- Flow Direction

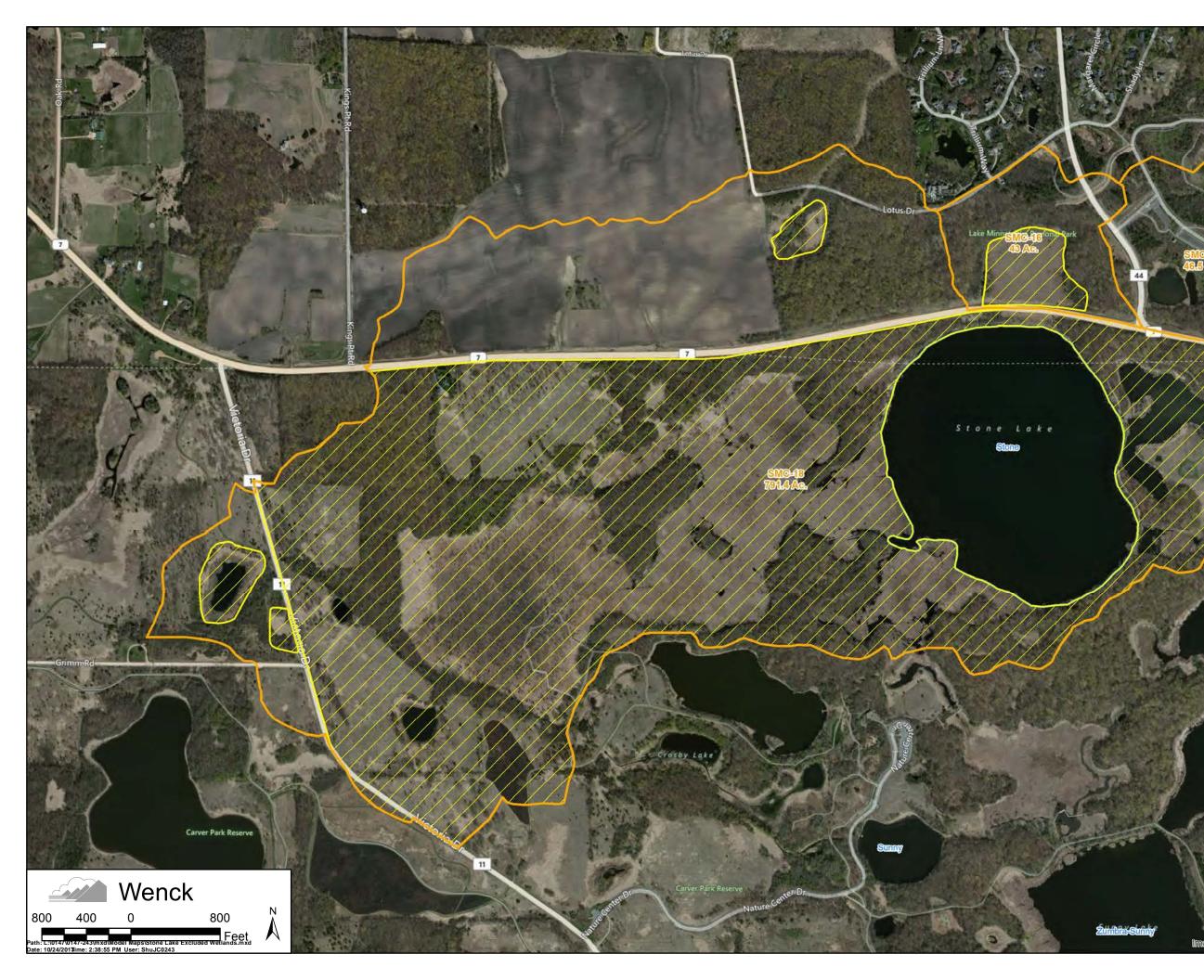
Agricultural Areas Excluded from Waste Load Allocation (349.36 Ac.)

katown Townshito MS4

Image courtesy of USGS state of Midhigan @ 2013 Nokia @ AND







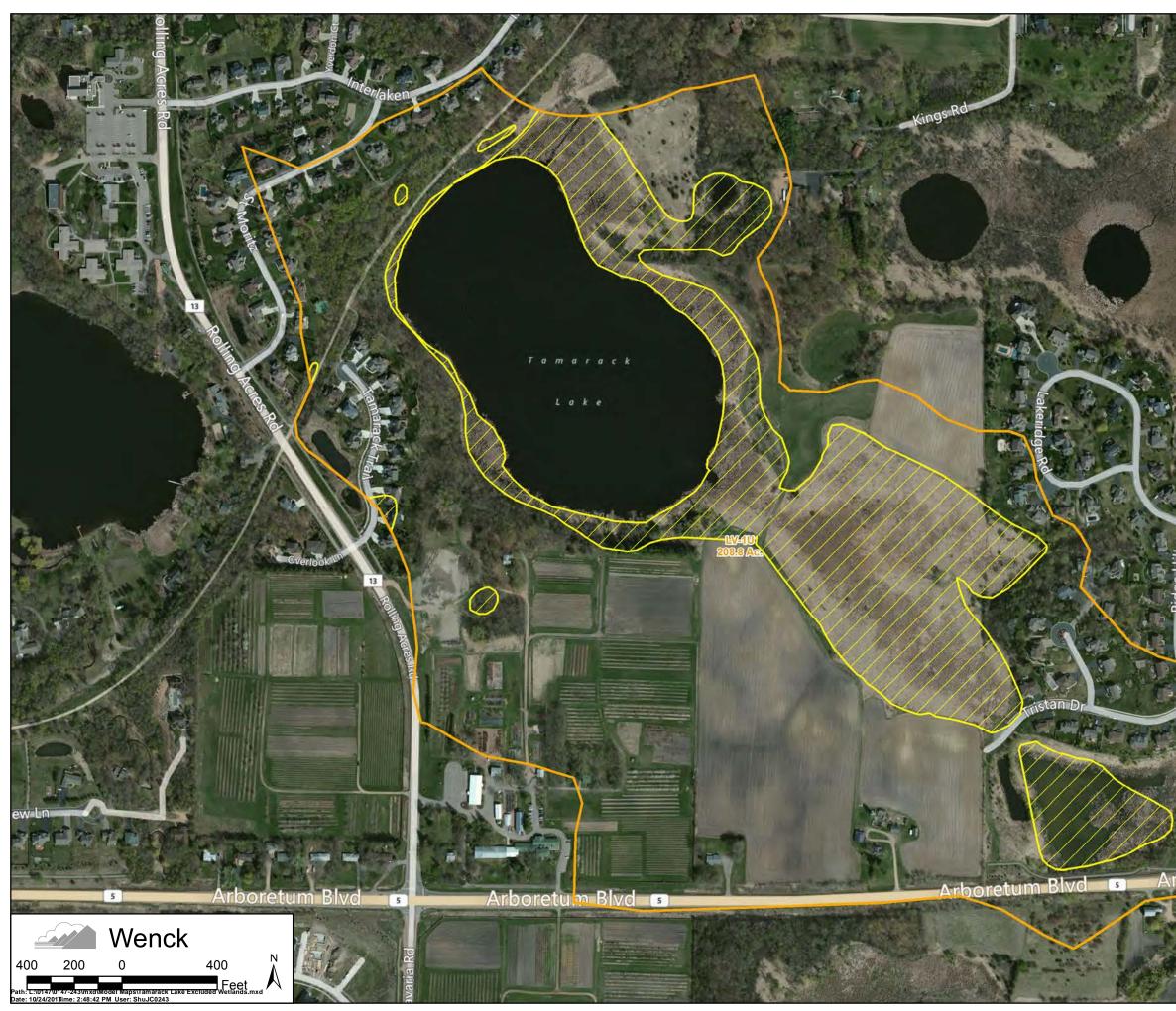
s V V

Stone Lake Subwatersheds

Wetland Areas Excluded from Waste Load Allocation

Lake

Minnetonka-Upper Lake

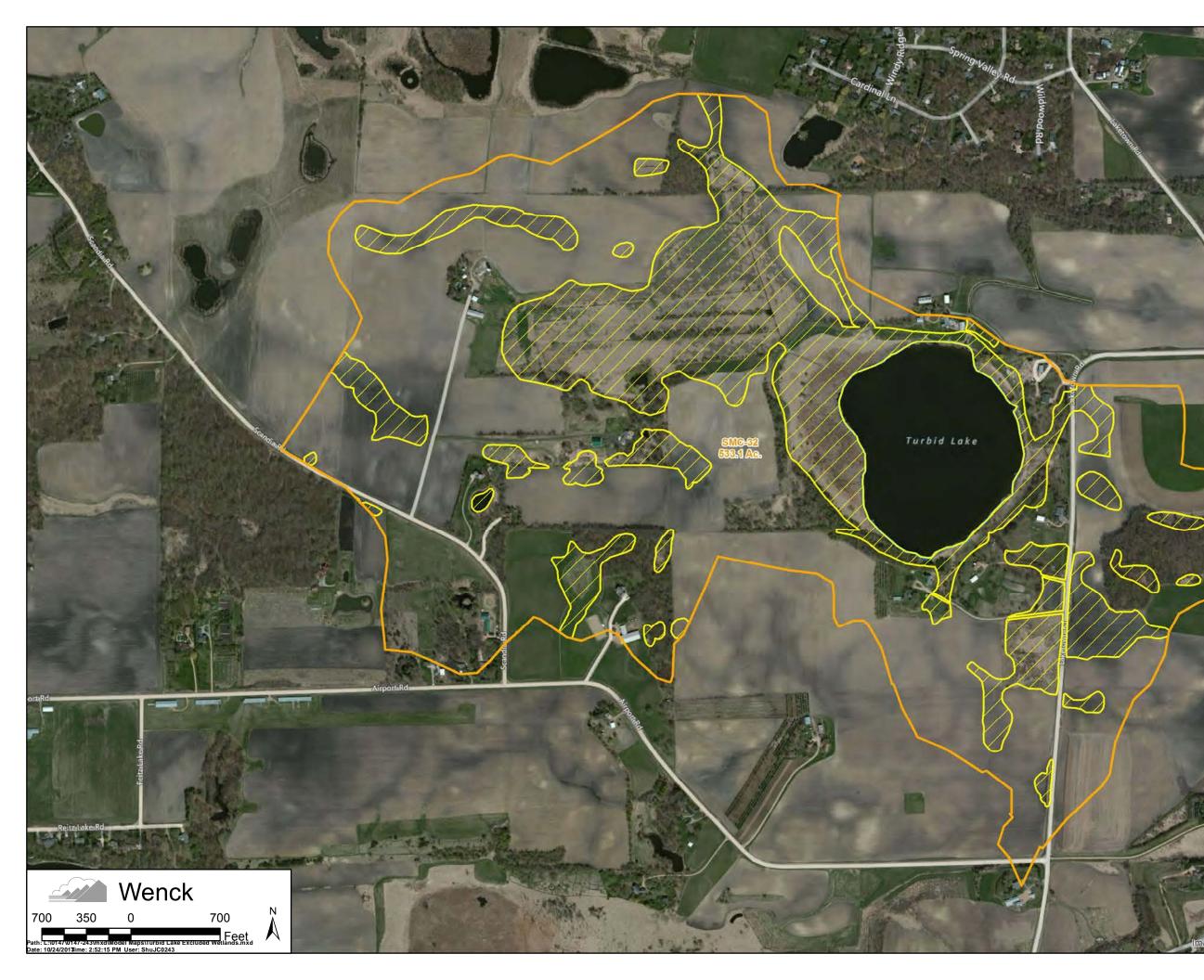

7

Mi

Lake Boundaries

Zu

a

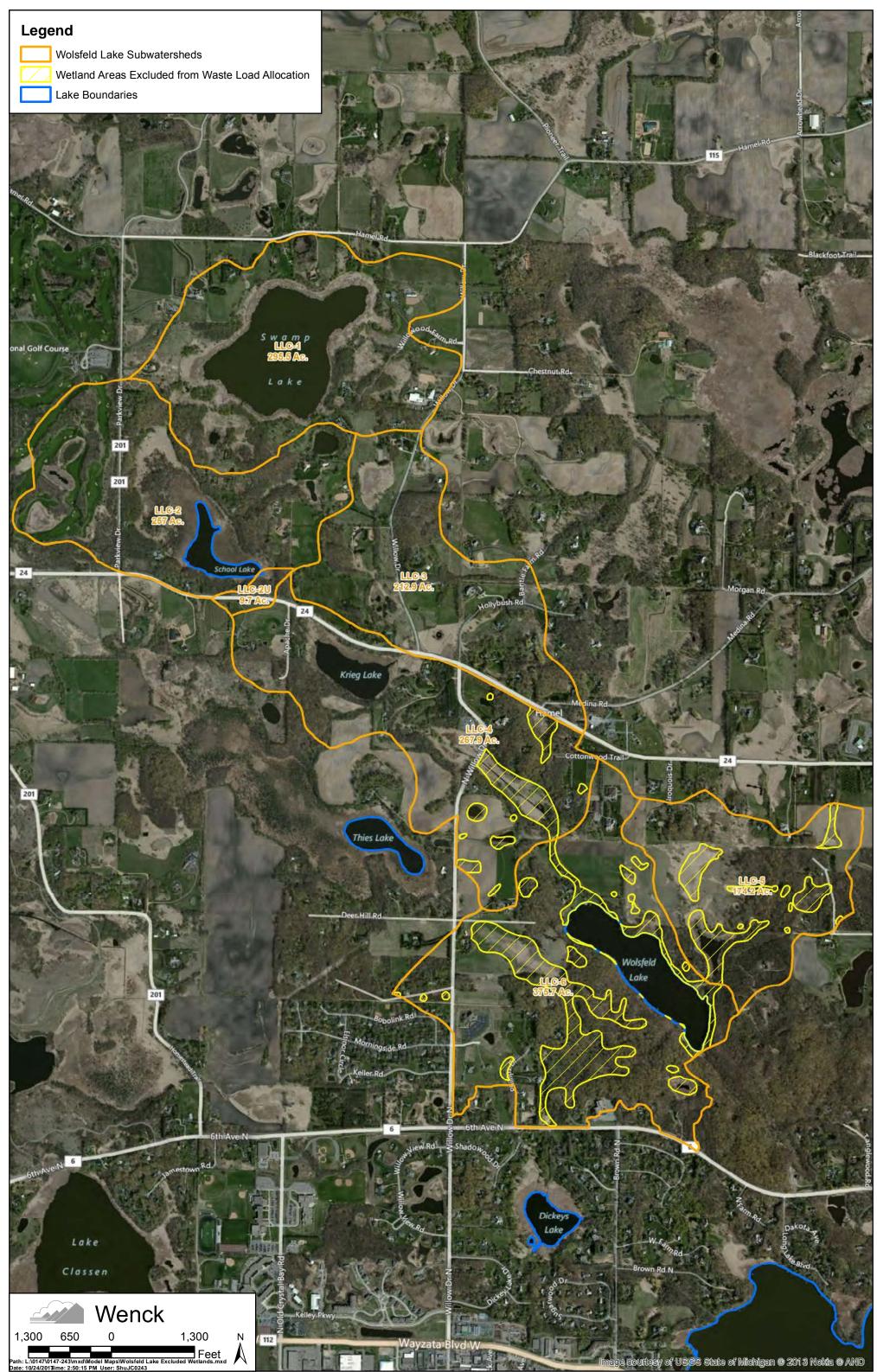

Lake

Tamarack Lake Subwatersheds

Wetland Areas Excluded from Waste Load Allocation

Lake Boundaries

boretum Blvd


 \bigcirc

Turbid Lake Subwatersheds

Wetland Areas Excluded from Waste Load Allocation

Lake Boundaries

courtesy of USGS State of Midhigan @ 2012 Zenrin @ AND

