Minnesota River Turbidity TMDL
Fingerprinting Sediment Sources

Daniel Engstrom
Shawn Schottler
(SCWRS/SMM)

Dylan Blumentritt
(UMN Geology)

Carrie Jennings
(MGS)
What’s the problem?
1. Turbidity impairment of water quality
2. Accelerated infilling of Lake Pepin

What do we want to know?
1. What is the source of the sediment?
2. How has that changed over time?
Lake Pepin Sedimentation

Natural (background)

1,500,000 m3 per year
The Minnesota River is the primary source – both past and present

Pre-settlement = 81%
Present Day = 88%

Kelley & Nater 2000
J. Environ. Qual.
The Question
How much from upland field erosion?
vs.
How much from non-field sources?

(banks, bluffs, ravines)

The Challenge
How to quantify...
...and believe the answer?

(upland fields)
...Fingerprinting Fundamentals

Constant Exposure to Atmosphere and Rain

Cultivated Field

Bank (etc.) Sediment

Suspended Sediment

Minimal Exposure to Atmosp. and Rain

Pb-210

Activity (bq/g)
"Traditional" Fingerprinting Approach

Sampled
- Fields, Streambanks, River TSS
- 700 total samples
- Utilized 15 tracers

Direct sampling of “mobilized” field sediment

Ravens Creek (sub-watershed of Minnesota River)
Two year mean % contribution from non-field erosion ~70%
Accurately Characterizing Upland-source Fingerprint is Tricky

- High spatial and temporal variability
- Significant particle size correction
- Event based
- Expensive for whole basin...
 ...won’t work for Pepin-size watershed!

Variability of 7Be in Mobilized Sediment Collected from Cultivated Field

- Bank Sediment
- Mobilized Sediment Cultivated Fields

<table>
<thead>
<tr>
<th></th>
<th>May - June Bank Sites</th>
<th>Sites 1-6 5/28/00</th>
<th>Sites 1-6 6/1/00</th>
<th>Sites 1-3 6/4/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be [Bq/g]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lakes as reference systems for upland fingerprint

Seepage-type lakes with small watersheds
- No incoming rivers
- Time integrated
- Upland source integrated (sheet + rill + gully)

George Lake, Blue Earth Co.
Lakes as reference systems for upland fingerprint

Use large number of lakes to derive isotopic fingerprint

Slope = concentration on incoming particles

= integrated upland fingerprint
Riverine Depositional (Integrator) Sites

Sites like Kasota Pond:

- collect and store suspended sediment
- integrate upstream erosion processes

Excess $^{210}\text{Pb} = 1.4 \text{ pCi/g}$

Very high sed rate

![Map showing Riverine Depositional Sites with Kasota Pond highlighted.](image)
... other integrator sites: Reservoirs

e.g. Redwood Reservoir: 100-yr record
... or backwater sites of temporary riverine storage (Hawk Creek)
... or direct sampling of suspended sediment
Relative Field Contribution to Riverine Sediment
Average of Cs and Pb methods

S. Fork Crow = 42%
Lake Pepin = 22%

TSS-Snowmelt
Watersheds are very different, but field contribution always relatively small

This doesn’t seem right...?
Sediment Yields by watershed

Some basins have fewer ravines, bluffs, thus % from field should be greater.

Differences in non-field loading drive overall sediment yield variance... i.e. field yield roughly constant throughout MN River watershed
Source of Sediment to Pepin ...

<table>
<thead>
<tr>
<th>Year</th>
<th>Field (%)</th>
<th>Non-field (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>1964</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>1940</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>Pre~1860</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Why change over time???
... if you express as loading, some sources not really changing

• Field constant (or decreasing)
• Non-field constant until c. 1940
• Non-field accelerating since 1940
Fingerprinting... important assumptions

1. Average Particle Residence time in river is small \(\leq 5\) years

2. Direct Atmospheric Contribution of \(^{210}\text{Pb}\) to river surface is minimal

3. Value from reference lakes is correct and representative
1. **Average Particle Residence time in river is small** \(<\sim5\ \text{years}\)**

Considerations:
- only concerned with very fine particles (2-10 \(\mu m\)) low storage potential
- results similar throughout lower basin & Pepin; if res-time long this wouldn’t be true...
 ...Pepin would show greater non-field than tribs
- if we are wrong -- Pepin has more field than estimated
2. Direct Atmospheric Contribution of ^{210}Pb to river surface is minimal

Considerations:
- results similar throughout lower basin & Pepin; if atmospheric contribution was large...
 ... Pepin would show greater field than tribs
- if we are wrong -- Pepin is even more non-field than presently estimated

Will address using $^{210}\text{Pb}/^{137}\text{Cs}$ ratios on TSS in upper and lower River
3. Value from reference lakes is correct and representative

Considerations:
- Effect of sediment focusing on sedimentation rates?
- Regional differences?
- If we are wrong -- reference fingerprint could be too large or too small

- Add 15 more reference lakes, examine difference among lakes
- Compare/Validate to direct sampling of field soils
Conclusions

✓ Sedimentation in Lake Pepin has increased 10X since pre-settlement times

✓ The Minnesota River is the primary source of the sediment

✓ Apx. 70% of the sediment currently entering the Minnesota R. and L. Pepin is from non-field erosion

✓ Differences in non-field loading among tribs drive overall sediment yield variance ...i.e. field yield roughly constant throughout MN River watershed

✓ The portion due to non-field erosion has increased substantially in the last 60 years