Minnesota River Turbidity TMDL

Larry Gunderson
Minnesota River

What are the sediment sources?

Why do we care about it?

What are we doing now?

How is it related to Lake Pepin?
Minnesota River – Where is it located?

18 reaches
9 on major tributaries
9 on the mainstem

Legend
- 18 Impaired Reaches in TMDL
- Down Stream, Affected Reaches
- Major Rivers
- Modeled Watershed
- Metro Area
What are the sediment sources?

- Ravines
- Banks/Bluffs
- Upland
Minnesota River – What are we doing now?

Spatial scope of HSPF model

Graphic by Tetra Tech
What is modeling and what does it tell us?

- Looks at **big picture**
- Way to **calculate potential results** of change without making the change
- Can **limit results** to technically-achievable practices
- Can help **determine high-leverage practices**
Modeling & the Minnesota River

Based on modeling, some practices are more effective.

There are choices/alternatives.

The larger community must decide.
Modeling example 1

- **Perennial vegetation**
 - Increase in each watershed
 - Redistribution to lower reaches (except in Yellow Medicine and Hawk Creek)

- **Controlled drainage**: <1% slope

- **Water storage**
 - On-field storage of runoff
 - About half of the first 2 inches
Modeling example 2

Example 1 practices *plus*

- Reduce bed, bank, bluff contributions
 - Earthen benches – against steep walls
 - Grade control measures
 - Vegetative management

Using

- Proven & tested ecological engineering concepts
- Existing materials and resources
Goal for Minnesota River

Mainstem Minnesota River 100 mg/l

Compare to

- Western watersheds 50 mg/l
- Redwood & Cottonwood 70 mg/l
- Southern watersheds 90 mg/l

Concentration-based target;
Accounts for variability in flow
Total suspended solids used as surrogate for 25 NTUs
Some practices are more effective than others

(Example: Le Sueur River Load Duration Curve)
Implementation choices/alternatives

Examples

<table>
<thead>
<tr>
<th>Year</th>
<th>Crop residue</th>
<th>Eliminate open tile intakes</th>
<th>Perennial vegetation at watershed mouths</th>
<th>Ravine BMPs</th>
<th>In-line ditch treatment</th>
<th>Store runoff</th>
<th>Channel stability/Rehabilitate bluffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Groundwork**
- **Implementation**
- **Continued implementation**
The larger community must settle on some critical balances.
What’s next. . .

Preliminary EPA review

Public notice

EPA approval

Develop implementation plan coordinated with Lake Pepin TMDL
What’s next. . .

Implementation plan

• Adjust focus from TMDL study to implementation planning
• Identify and engage stakeholders
• Determine high leverage actions
• Identify action steps over 30 years
• Identify performance measures
Summary

Based on modeling, some practices are more effective.

There are choices/alternatives.

The larger community must decide.